1 | /* |
2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | /* |
57 | */ |
58 | |
59 | /* |
60 | * Hardware trap/fault handler. |
61 | */ |
62 | |
63 | #include <mach_kdp.h> |
64 | #include <mach_ldebug.h> |
65 | |
66 | #include <types.h> |
67 | #include <i386/eflags.h> |
68 | #include <i386/trap.h> |
69 | #include <i386/pmap.h> |
70 | #include <i386/fpu.h> |
71 | #include <i386/misc_protos.h> /* panic_io_port_read() */ |
72 | #include <i386/lapic.h> |
73 | |
74 | #include <mach/exception.h> |
75 | #include <mach/kern_return.h> |
76 | #include <mach/vm_param.h> |
77 | #include <mach/i386/thread_status.h> |
78 | |
79 | #include <vm/vm_kern.h> |
80 | #include <vm/vm_fault.h> |
81 | |
82 | #include <kern/kern_types.h> |
83 | #include <kern/processor.h> |
84 | #include <kern/thread.h> |
85 | #include <kern/task.h> |
86 | #include <kern/sched.h> |
87 | #include <kern/sched_prim.h> |
88 | #include <kern/exception.h> |
89 | #include <kern/spl.h> |
90 | #include <kern/misc_protos.h> |
91 | #include <kern/debug.h> |
92 | #if CONFIG_TELEMETRY |
93 | #include <kern/telemetry.h> |
94 | #endif |
95 | #include <sys/kdebug.h> |
96 | #include <kperf/kperf.h> |
97 | #include <prng/random.h> |
98 | |
99 | #include <string.h> |
100 | |
101 | #include <i386/postcode.h> |
102 | #include <i386/mp_desc.h> |
103 | #include <i386/proc_reg.h> |
104 | #if CONFIG_MCA |
105 | #include <i386/machine_check.h> |
106 | #endif |
107 | #include <mach/i386/syscall_sw.h> |
108 | |
109 | #include <libkern/OSDebug.h> |
110 | #include <i386/cpu_threads.h> |
111 | #include <machine/pal_routines.h> |
112 | |
113 | extern void throttle_lowpri_io(int); |
114 | extern void kprint_state(x86_saved_state64_t *saved_state); |
115 | |
116 | /* |
117 | * Forward declarations |
118 | */ |
119 | static void user_page_fault_continue(kern_return_t kret); |
120 | static void panic_trap(x86_saved_state64_t *saved_state, uint32_t pl, kern_return_t fault_result); |
121 | static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip); |
122 | |
123 | #if CONFIG_DTRACE |
124 | /* See <rdar://problem/4613924> */ |
125 | perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */ |
126 | |
127 | extern boolean_t dtrace_tally_fault(user_addr_t); |
128 | #endif |
129 | |
130 | extern boolean_t pmap_smep_enabled; |
131 | extern boolean_t pmap_smap_enabled; |
132 | |
133 | __attribute__((noreturn)) |
134 | void |
135 | thread_syscall_return( |
136 | kern_return_t ret) |
137 | { |
138 | thread_t thr_act = current_thread(); |
139 | boolean_t is_mach; |
140 | int code; |
141 | |
142 | pal_register_cache_state(thr_act, DIRTY); |
143 | |
144 | if (thread_is_64bit_addr(thr_act)) { |
145 | x86_saved_state64_t *regs; |
146 | |
147 | regs = USER_REGS64(thr_act); |
148 | |
149 | code = (int) (regs->rax & SYSCALL_NUMBER_MASK); |
150 | is_mach = (regs->rax & SYSCALL_CLASS_MASK) |
151 | == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT); |
152 | if (kdebug_enable && is_mach) { |
153 | /* Mach trap */ |
154 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
155 | MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END, |
156 | ret, 0, 0, 0, 0); |
157 | } |
158 | regs->rax = ret; |
159 | #if DEBUG |
160 | if (is_mach) |
161 | DEBUG_KPRINT_SYSCALL_MACH( |
162 | "thread_syscall_return: 64-bit mach ret=%u\n" , |
163 | ret); |
164 | else |
165 | DEBUG_KPRINT_SYSCALL_UNIX( |
166 | "thread_syscall_return: 64-bit unix ret=%u\n" , |
167 | ret); |
168 | #endif |
169 | } else { |
170 | x86_saved_state32_t *regs; |
171 | |
172 | regs = USER_REGS32(thr_act); |
173 | |
174 | code = ((int) regs->eax); |
175 | is_mach = (code < 0); |
176 | if (kdebug_enable && is_mach) { |
177 | /* Mach trap */ |
178 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
179 | MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END, |
180 | ret, 0, 0, 0, 0); |
181 | } |
182 | regs->eax = ret; |
183 | #if DEBUG |
184 | if (is_mach) |
185 | DEBUG_KPRINT_SYSCALL_MACH( |
186 | "thread_syscall_return: 32-bit mach ret=%u\n" , |
187 | ret); |
188 | else |
189 | DEBUG_KPRINT_SYSCALL_UNIX( |
190 | "thread_syscall_return: 32-bit unix ret=%u\n" , |
191 | ret); |
192 | #endif |
193 | } |
194 | |
195 | #if DEBUG || DEVELOPMENT |
196 | kern_allocation_name_t |
197 | prior __assert_only = thread_get_kernel_state(thr_act)->allocation_name; |
198 | assertf(prior == NULL, "thread_set_allocation_name(\"%s\") not cleared" , kern_allocation_get_name(prior)); |
199 | #endif /* DEBUG || DEVELOPMENT */ |
200 | |
201 | throttle_lowpri_io(1); |
202 | |
203 | thread_exception_return(); |
204 | /*NOTREACHED*/ |
205 | } |
206 | |
207 | |
208 | static inline void |
209 | user_page_fault_continue( |
210 | kern_return_t kr) |
211 | { |
212 | thread_t thread = current_thread(); |
213 | user_addr_t vaddr; |
214 | |
215 | if (thread_is_64bit_addr(thread)) { |
216 | x86_saved_state64_t *uregs; |
217 | |
218 | uregs = USER_REGS64(thread); |
219 | |
220 | vaddr = (user_addr_t)uregs->cr2; |
221 | } else { |
222 | x86_saved_state32_t *uregs; |
223 | |
224 | uregs = USER_REGS32(thread); |
225 | |
226 | vaddr = uregs->cr2; |
227 | } |
228 | |
229 | |
230 | /* PAL debug hook */ |
231 | pal_dbg_page_fault( thread, vaddr, kr ); |
232 | |
233 | i386_exception(EXC_BAD_ACCESS, kr, vaddr); |
234 | /*NOTREACHED*/ |
235 | } |
236 | |
237 | /* |
238 | * Fault recovery in copyin/copyout routines. |
239 | */ |
240 | struct recovery { |
241 | uintptr_t fault_addr; |
242 | uintptr_t recover_addr; |
243 | }; |
244 | |
245 | extern struct recovery recover_table[]; |
246 | extern struct recovery recover_table_end[]; |
247 | |
248 | const char * trap_type[] = {TRAP_NAMES}; |
249 | unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]); |
250 | |
251 | extern void PE_incoming_interrupt(int interrupt); |
252 | |
253 | #if defined(__x86_64__) && DEBUG |
254 | void |
255 | kprint_state(x86_saved_state64_t *saved_state) |
256 | { |
257 | kprintf("current_cpu_datap() 0x%lx\n" , (uintptr_t)current_cpu_datap()); |
258 | kprintf("Current GS base MSR 0x%llx\n" , rdmsr64(MSR_IA32_GS_BASE)); |
259 | kprintf("Kernel GS base MSR 0x%llx\n" , rdmsr64(MSR_IA32_KERNEL_GS_BASE)); |
260 | kprintf("state at 0x%lx:\n" , (uintptr_t) saved_state); |
261 | |
262 | kprintf(" rdi 0x%llx\n" , saved_state->rdi); |
263 | kprintf(" rsi 0x%llx\n" , saved_state->rsi); |
264 | kprintf(" rdx 0x%llx\n" , saved_state->rdx); |
265 | kprintf(" r10 0x%llx\n" , saved_state->r10); |
266 | kprintf(" r8 0x%llx\n" , saved_state->r8); |
267 | kprintf(" r9 0x%llx\n" , saved_state->r9); |
268 | |
269 | kprintf(" cr2 0x%llx\n" , saved_state->cr2); |
270 | kprintf("real cr2 0x%lx\n" , get_cr2()); |
271 | kprintf(" r15 0x%llx\n" , saved_state->r15); |
272 | kprintf(" r14 0x%llx\n" , saved_state->r14); |
273 | kprintf(" r13 0x%llx\n" , saved_state->r13); |
274 | kprintf(" r12 0x%llx\n" , saved_state->r12); |
275 | kprintf(" r11 0x%llx\n" , saved_state->r11); |
276 | kprintf(" rbp 0x%llx\n" , saved_state->rbp); |
277 | kprintf(" rbx 0x%llx\n" , saved_state->rbx); |
278 | kprintf(" rcx 0x%llx\n" , saved_state->rcx); |
279 | kprintf(" rax 0x%llx\n" , saved_state->rax); |
280 | |
281 | kprintf(" gs 0x%x\n" , saved_state->gs); |
282 | kprintf(" fs 0x%x\n" , saved_state->fs); |
283 | |
284 | kprintf(" isf.trapno 0x%x\n" , saved_state->isf.trapno); |
285 | kprintf(" isf._pad 0x%x\n" , saved_state->isf._pad); |
286 | kprintf(" isf.trapfn 0x%llx\n" , saved_state->isf.trapfn); |
287 | kprintf(" isf.err 0x%llx\n" , saved_state->isf.err); |
288 | kprintf(" isf.rip 0x%llx\n" , saved_state->isf.rip); |
289 | kprintf(" isf.cs 0x%llx\n" , saved_state->isf.cs); |
290 | kprintf(" isf.rflags 0x%llx\n" , saved_state->isf.rflags); |
291 | kprintf(" isf.rsp 0x%llx\n" , saved_state->isf.rsp); |
292 | kprintf(" isf.ss 0x%llx\n" , saved_state->isf.ss); |
293 | } |
294 | #endif |
295 | |
296 | |
297 | /* |
298 | * Non-zero indicates latency assert is enabled and capped at valued |
299 | * absolute time units. |
300 | */ |
301 | |
302 | uint64_t interrupt_latency_cap = 0; |
303 | boolean_t ilat_assert = FALSE; |
304 | |
305 | void |
306 | interrupt_latency_tracker_setup(void) { |
307 | uint32_t ilat_cap_us; |
308 | if (PE_parse_boot_argn("interrupt_latency_cap_us" , &ilat_cap_us, sizeof(ilat_cap_us))) { |
309 | interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC; |
310 | nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap); |
311 | } else { |
312 | interrupt_latency_cap = LockTimeOut; |
313 | } |
314 | PE_parse_boot_argn("-interrupt_latency_assert_enable" , &ilat_assert, sizeof(ilat_assert)); |
315 | } |
316 | |
317 | void interrupt_reset_latency_stats(void) { |
318 | uint32_t i; |
319 | for (i = 0; i < real_ncpus; i++) { |
320 | cpu_data_ptr[i]->cpu_max_observed_int_latency = |
321 | cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0; |
322 | } |
323 | } |
324 | |
325 | void interrupt_populate_latency_stats(char *buf, unsigned bufsize) { |
326 | uint32_t i, tcpu = ~0; |
327 | uint64_t cur_max = 0; |
328 | |
329 | for (i = 0; i < real_ncpus; i++) { |
330 | if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) { |
331 | cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency; |
332 | tcpu = i; |
333 | } |
334 | } |
335 | |
336 | if (tcpu < real_ncpus) |
337 | snprintf(buf, bufsize, "0x%x 0x%x 0x%llx" , tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency); |
338 | } |
339 | |
340 | uint32_t interrupt_timer_coalescing_enabled = 1; |
341 | uint64_t interrupt_coalesced_timers; |
342 | |
343 | /* |
344 | * Handle interrupts: |
345 | * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel, |
346 | * - device interrupts go to the platform expert. |
347 | */ |
348 | void |
349 | interrupt(x86_saved_state_t *state) |
350 | { |
351 | uint64_t rip; |
352 | uint64_t rsp; |
353 | int interrupt_num; |
354 | boolean_t user_mode = FALSE; |
355 | int ipl; |
356 | int cnum = cpu_number(); |
357 | cpu_data_t *cdp = cpu_data_ptr[cnum]; |
358 | int itype = DBG_INTR_TYPE_UNKNOWN; |
359 | |
360 | x86_saved_state64_t *state64 = saved_state64(state); |
361 | rip = state64->isf.rip; |
362 | rsp = state64->isf.rsp; |
363 | interrupt_num = state64->isf.trapno; |
364 | if(state64->isf.cs & 0x03) |
365 | user_mode = TRUE; |
366 | |
367 | if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage) |
368 | cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++; |
369 | |
370 | if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT)) |
371 | itype = DBG_INTR_TYPE_IPI; |
372 | else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT)) |
373 | itype = DBG_INTR_TYPE_TIMER; |
374 | else |
375 | itype = DBG_INTR_TYPE_OTHER; |
376 | |
377 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
378 | MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START, |
379 | interrupt_num, |
380 | (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)), |
381 | user_mode, itype, 0); |
382 | |
383 | SCHED_STATS_INTERRUPT(current_processor()); |
384 | |
385 | #if CONFIG_TELEMETRY |
386 | if (telemetry_needs_record) { |
387 | telemetry_mark_curthread(user_mode, FALSE); |
388 | } |
389 | #endif |
390 | |
391 | ipl = get_preemption_level(); |
392 | |
393 | /* |
394 | * Handle local APIC interrupts |
395 | * else call platform expert for devices. |
396 | */ |
397 | if (!lapic_interrupt(interrupt_num, state)) { |
398 | PE_incoming_interrupt(interrupt_num); |
399 | } |
400 | |
401 | if (__improbable(get_preemption_level() != ipl)) { |
402 | panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n" , interrupt_num, ipl, get_preemption_level()); |
403 | } |
404 | |
405 | |
406 | if (__improbable(cdp->cpu_nested_istack)) { |
407 | cdp->cpu_nested_istack_events++; |
408 | } |
409 | else { |
410 | uint64_t ctime = mach_absolute_time(); |
411 | uint64_t int_latency = ctime - cdp->cpu_int_event_time; |
412 | uint64_t esdeadline, ehdeadline; |
413 | /* Attempt to process deferred timers in the context of |
414 | * this interrupt, unless interrupt time has already exceeded |
415 | * TCOAL_ILAT_THRESHOLD. |
416 | */ |
417 | #define TCOAL_ILAT_THRESHOLD (30000ULL) |
418 | |
419 | if ((int_latency < TCOAL_ILAT_THRESHOLD) && |
420 | interrupt_timer_coalescing_enabled) { |
421 | esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline; |
422 | ehdeadline = cdp->rtclock_timer.deadline; |
423 | if ((ctime >= esdeadline) && (ctime < ehdeadline)) { |
424 | interrupt_coalesced_timers++; |
425 | TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0); |
426 | rtclock_intr(state); |
427 | TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0); |
428 | } else { |
429 | TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0); |
430 | } |
431 | } |
432 | |
433 | if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) { |
434 | panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x" , interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals); |
435 | } |
436 | |
437 | if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) { |
438 | cdp->cpu_max_observed_int_latency = int_latency; |
439 | cdp->cpu_max_observed_int_latency_vector = interrupt_num; |
440 | } |
441 | } |
442 | |
443 | /* |
444 | * Having serviced the interrupt first, look at the interrupted stack depth. |
445 | */ |
446 | if (!user_mode) { |
447 | uint64_t depth = cdp->cpu_kernel_stack |
448 | + sizeof(struct thread_kernel_state) |
449 | + sizeof(struct i386_exception_link *) |
450 | - rsp; |
451 | if (__improbable(depth > kernel_stack_depth_max)) { |
452 | kernel_stack_depth_max = (vm_offset_t)depth; |
453 | KERNEL_DEBUG_CONSTANT( |
454 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH), |
455 | (long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0); |
456 | } |
457 | } |
458 | |
459 | if (cnum == master_cpu) |
460 | ml_entropy_collect(); |
461 | |
462 | #if KPERF |
463 | kperf_interrupt(); |
464 | #endif /* KPERF */ |
465 | |
466 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END, |
467 | interrupt_num); |
468 | |
469 | assert(ml_get_interrupts_enabled() == FALSE); |
470 | } |
471 | |
472 | static inline void |
473 | reset_dr7(void) |
474 | { |
475 | long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */ |
476 | __asm__ volatile("mov %0,%%dr7" : : "r" (dr7)); |
477 | } |
478 | #if MACH_KDP |
479 | unsigned kdp_has_active_watchpoints = 0; |
480 | #define NO_WATCHPOINTS (!kdp_has_active_watchpoints) |
481 | #else |
482 | #define NO_WATCHPOINTS 1 |
483 | #endif |
484 | /* |
485 | * Trap from kernel mode. Only page-fault errors are recoverable, |
486 | * and then only in special circumstances. All other errors are |
487 | * fatal. Return value indicates if trap was handled. |
488 | */ |
489 | |
490 | void |
491 | kernel_trap( |
492 | x86_saved_state_t *state, |
493 | uintptr_t *lo_spp) |
494 | { |
495 | x86_saved_state64_t *saved_state; |
496 | int code; |
497 | user_addr_t vaddr; |
498 | int type; |
499 | vm_map_t map = 0; /* protected by T_PAGE_FAULT */ |
500 | kern_return_t result = KERN_FAILURE; |
501 | kern_return_t fault_result = KERN_SUCCESS; |
502 | thread_t thread; |
503 | boolean_t intr; |
504 | vm_prot_t prot; |
505 | struct recovery *rp; |
506 | vm_offset_t kern_ip; |
507 | #if NCOPY_WINDOWS > 0 |
508 | int fault_in_copy_window = -1; |
509 | #endif |
510 | int is_user; |
511 | int trap_pl = get_preemption_level(); |
512 | |
513 | thread = current_thread(); |
514 | |
515 | if (__improbable(is_saved_state32(state))) |
516 | panic("kernel_trap(%p) with 32-bit state" , state); |
517 | saved_state = saved_state64(state); |
518 | |
519 | /* Record cpu where state was captured */ |
520 | saved_state->isf.cpu = cpu_number(); |
521 | |
522 | vaddr = (user_addr_t)saved_state->cr2; |
523 | type = saved_state->isf.trapno; |
524 | code = (int)(saved_state->isf.err & 0xffff); |
525 | intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */ |
526 | kern_ip = (vm_offset_t)saved_state->isf.rip; |
527 | |
528 | is_user = (vaddr < VM_MAX_USER_PAGE_ADDRESS); |
529 | |
530 | #if CONFIG_DTRACE |
531 | /* |
532 | * Is there a DTrace hook? |
533 | */ |
534 | if (__improbable(tempDTraceTrapHook != NULL)) { |
535 | if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) { |
536 | /* |
537 | * If it succeeds, we are done... |
538 | */ |
539 | return; |
540 | } |
541 | } |
542 | #endif /* CONFIG_DTRACE */ |
543 | |
544 | /* |
545 | * we come here with interrupts off as we don't want to recurse |
546 | * on preemption below. but we do want to re-enable interrupts |
547 | * as soon we possibly can to hold latency down |
548 | */ |
549 | if (__improbable(T_PREEMPT == type)) { |
550 | ast_taken_kernel(); |
551 | |
552 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
553 | (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE, |
554 | 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0); |
555 | return; |
556 | } |
557 | |
558 | user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr); |
559 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
560 | (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE, |
561 | (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user, |
562 | VM_KERNEL_UNSLIDE(kern_ip), 0); |
563 | |
564 | |
565 | if (T_PAGE_FAULT == type) { |
566 | /* |
567 | * assume we're faulting in the kernel map |
568 | */ |
569 | map = kernel_map; |
570 | |
571 | if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) { |
572 | #if NCOPY_WINDOWS > 0 |
573 | vm_offset_t copy_window_base; |
574 | vm_offset_t kvaddr; |
575 | int window_index; |
576 | |
577 | kvaddr = (vm_offset_t)vaddr; |
578 | /* |
579 | * must determine if fault occurred in |
580 | * the copy window while pre-emption is |
581 | * disabled for this processor so that |
582 | * we only need to look at the window |
583 | * associated with this processor |
584 | */ |
585 | copy_window_base = current_cpu_datap()->cpu_copywindow_base; |
586 | |
587 | if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) { |
588 | |
589 | window_index = (int)((kvaddr - copy_window_base) / NBPDE); |
590 | |
591 | if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) { |
592 | |
593 | kvaddr -= (copy_window_base + (NBPDE * window_index)); |
594 | vaddr = thread->machine.copy_window[window_index].user_base + kvaddr; |
595 | |
596 | map = thread->map; |
597 | fault_in_copy_window = window_index; |
598 | } |
599 | } |
600 | #else |
601 | if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) { |
602 | /* fault occurred in userspace */ |
603 | map = thread->map; |
604 | |
605 | /* Intercept a potential Supervisor Mode Execute |
606 | * Protection fault. These criteria identify |
607 | * both NX faults and SMEP faults, but both |
608 | * are fatal. We avoid checking PTEs (racy). |
609 | * (The VM could just redrive a SMEP fault, hence |
610 | * the intercept). |
611 | */ |
612 | if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) && |
613 | (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) { |
614 | goto debugger_entry; |
615 | } |
616 | |
617 | /* |
618 | * Additionally check for SMAP faults... |
619 | * which are characterized by page-present and |
620 | * the AC bit unset (i.e. not from copyin/out path). |
621 | */ |
622 | if (__improbable(code & T_PF_PROT && |
623 | pmap_smap_enabled && |
624 | (saved_state->isf.rflags & EFL_AC) == 0)) { |
625 | goto debugger_entry; |
626 | } |
627 | |
628 | /* |
629 | * If we're not sharing cr3 with the user |
630 | * and we faulted in copyio, |
631 | * then switch cr3 here and dismiss the fault. |
632 | */ |
633 | if (no_shared_cr3 && |
634 | (thread->machine.specFlags&CopyIOActive) && |
635 | map->pmap->pm_cr3 != get_cr3_base()) { |
636 | pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE); |
637 | set_cr3_raw(map->pmap->pm_cr3); |
638 | return; |
639 | } |
640 | if (__improbable(vaddr < PAGE_SIZE) && |
641 | ((thread->machine.specFlags & CopyIOActive) == 0)) { |
642 | goto debugger_entry; |
643 | } |
644 | } |
645 | #endif |
646 | } |
647 | } |
648 | |
649 | (void) ml_set_interrupts_enabled(intr); |
650 | |
651 | switch (type) { |
652 | |
653 | case T_NO_FPU: |
654 | fpnoextflt(); |
655 | return; |
656 | |
657 | case T_FPU_FAULT: |
658 | fpextovrflt(); |
659 | return; |
660 | |
661 | case T_FLOATING_POINT_ERROR: |
662 | fpexterrflt(); |
663 | return; |
664 | |
665 | case T_SSE_FLOAT_ERROR: |
666 | fpSSEexterrflt(); |
667 | return; |
668 | |
669 | case T_INVALID_OPCODE: |
670 | fpUDflt(kern_ip); |
671 | goto debugger_entry; |
672 | |
673 | case T_DEBUG: |
674 | if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS) |
675 | { |
676 | /* We've somehow encountered a debug |
677 | * register match that does not belong |
678 | * to the kernel debugger. |
679 | * This isn't supposed to happen. |
680 | */ |
681 | reset_dr7(); |
682 | return; |
683 | } |
684 | goto debugger_entry; |
685 | case T_INT3: |
686 | goto debugger_entry; |
687 | case T_PAGE_FAULT: |
688 | |
689 | #if CONFIG_DTRACE |
690 | if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */ |
691 | if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */ |
692 | /* |
693 | * DTrace has "anticipated" the possibility of this fault, and has |
694 | * established the suitable recovery state. Drop down now into the |
695 | * recovery handling code in "case T_GENERAL_PROTECTION:". |
696 | */ |
697 | goto FALL_THROUGH; |
698 | } |
699 | } |
700 | #endif /* CONFIG_DTRACE */ |
701 | |
702 | prot = VM_PROT_READ; |
703 | |
704 | if (code & T_PF_WRITE) |
705 | prot |= VM_PROT_WRITE; |
706 | if (code & T_PF_EXECUTE) |
707 | prot |= VM_PROT_EXECUTE; |
708 | |
709 | fault_result = result = vm_fault(map, |
710 | vaddr, |
711 | prot, |
712 | FALSE, VM_KERN_MEMORY_NONE, |
713 | THREAD_UNINT, NULL, 0); |
714 | |
715 | if (result == KERN_SUCCESS) { |
716 | #if NCOPY_WINDOWS > 0 |
717 | if (fault_in_copy_window != -1) { |
718 | ml_set_interrupts_enabled(FALSE); |
719 | copy_window_fault(thread, map, |
720 | fault_in_copy_window); |
721 | (void) ml_set_interrupts_enabled(intr); |
722 | } |
723 | #endif /* NCOPY_WINDOWS > 0 */ |
724 | return; |
725 | } |
726 | /* |
727 | * fall through |
728 | */ |
729 | #if CONFIG_DTRACE |
730 | FALL_THROUGH: |
731 | #endif /* CONFIG_DTRACE */ |
732 | |
733 | case T_GENERAL_PROTECTION: |
734 | /* |
735 | * If there is a failure recovery address |
736 | * for this fault, go there. |
737 | */ |
738 | for (rp = recover_table; rp < recover_table_end; rp++) { |
739 | if (kern_ip == rp->fault_addr) { |
740 | set_recovery_ip(saved_state, rp->recover_addr); |
741 | return; |
742 | } |
743 | } |
744 | |
745 | /* |
746 | * Check thread recovery address also. |
747 | */ |
748 | if (thread != THREAD_NULL && thread->recover) { |
749 | set_recovery_ip(saved_state, thread->recover); |
750 | thread->recover = 0; |
751 | return; |
752 | } |
753 | /* |
754 | * Unanticipated page-fault errors in kernel |
755 | * should not happen. |
756 | * |
757 | * fall through... |
758 | */ |
759 | default: |
760 | /* |
761 | * Exception 15 is reserved but some chips may generate it |
762 | * spuriously. Seen at startup on AMD Athlon-64. |
763 | */ |
764 | if (type == 15) { |
765 | kprintf("kernel_trap() ignoring spurious trap 15\n" ); |
766 | return; |
767 | } |
768 | debugger_entry: |
769 | /* Ensure that the i386_kernel_state at the base of the |
770 | * current thread's stack (if any) is synchronized with the |
771 | * context at the moment of the trap, to facilitate |
772 | * access through the debugger. |
773 | */ |
774 | sync_iss_to_iks(state); |
775 | #if MACH_KDP |
776 | if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr)) |
777 | return; |
778 | #endif |
779 | } |
780 | pal_cli(); |
781 | panic_trap(saved_state, trap_pl, fault_result); |
782 | /* |
783 | * NO RETURN |
784 | */ |
785 | } |
786 | |
787 | static void |
788 | set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip) |
789 | { |
790 | saved_state->isf.rip = ip; |
791 | } |
792 | |
793 | static void |
794 | panic_trap(x86_saved_state64_t *regs, uint32_t pl, kern_return_t fault_result) |
795 | { |
796 | const char *trapname = "Unknown" ; |
797 | pal_cr_t cr0, cr2, cr3, cr4; |
798 | boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE; |
799 | boolean_t potential_smap_fault = FALSE; |
800 | |
801 | pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 ); |
802 | assert(ml_get_interrupts_enabled() == FALSE); |
803 | current_cpu_datap()->cpu_fatal_trap_state = regs; |
804 | /* |
805 | * Issue an I/O port read if one has been requested - this is an |
806 | * event logic analyzers can use as a trigger point. |
807 | */ |
808 | panic_io_port_read(); |
809 | |
810 | kprintf("CPU %d panic trap number 0x%x, rip 0x%016llx\n" , |
811 | cpu_number(), regs->isf.trapno, regs->isf.rip); |
812 | kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n" , |
813 | cr0, cr2, cr3, cr4); |
814 | |
815 | if (regs->isf.trapno < TRAP_TYPES) |
816 | trapname = trap_type[regs->isf.trapno]; |
817 | |
818 | if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) { |
819 | if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) { |
820 | potential_smep_fault = TRUE; |
821 | } else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
822 | potential_kernel_NX_fault = TRUE; |
823 | } |
824 | } else if (pmap_smap_enabled && |
825 | regs->isf.trapno == T_PAGE_FAULT && |
826 | regs->isf.err & T_PF_PROT && |
827 | regs->cr2 < VM_MAX_USER_PAGE_ADDRESS && |
828 | regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
829 | potential_smap_fault = TRUE; |
830 | } |
831 | |
832 | #undef panic |
833 | panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n" |
834 | "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n" |
835 | "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n" |
836 | "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n" |
837 | "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n" |
838 | "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n" |
839 | "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n" |
840 | "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n" , |
841 | regs->isf.rip, regs->isf.trapno, trapname, |
842 | cr0, cr2, cr3, cr4, |
843 | regs->rax, regs->rbx, regs->rcx, regs->rdx, |
844 | regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi, |
845 | regs->r8, regs->r9, regs->r10, regs->r11, |
846 | regs->r12, regs->r13, regs->r14, regs->r15, |
847 | regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF, |
848 | regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu, |
849 | virtualized ? " VMM" : "" , |
850 | potential_kernel_NX_fault ? " Kernel NX fault" : "" , |
851 | potential_smep_fault ? " SMEP/User NX fault" : "" , |
852 | potential_smap_fault ? " SMAP fault" : "" , |
853 | pl, |
854 | fault_result); |
855 | /* |
856 | * This next statement is not executed, |
857 | * but it's needed to stop the compiler using tail call optimization |
858 | * for the panic call - which confuses the subsequent backtrace. |
859 | */ |
860 | cr0 = 0; |
861 | } |
862 | |
863 | #if CONFIG_DTRACE |
864 | extern kern_return_t dtrace_user_probe(x86_saved_state_t *); |
865 | #endif |
866 | |
867 | #if DEBUG |
868 | uint32_t fsigs[2]; |
869 | uint32_t fsigns, fsigcs; |
870 | #endif |
871 | |
872 | /* |
873 | * Trap from user mode. |
874 | */ |
875 | void |
876 | user_trap( |
877 | x86_saved_state_t *saved_state) |
878 | { |
879 | int exc; |
880 | int err; |
881 | mach_exception_code_t code; |
882 | mach_exception_subcode_t subcode; |
883 | int type; |
884 | user_addr_t vaddr; |
885 | vm_prot_t prot; |
886 | thread_t thread = current_thread(); |
887 | kern_return_t kret; |
888 | user_addr_t rip; |
889 | unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */ |
890 | |
891 | assert((is_saved_state32(saved_state) && !thread_is_64bit_addr(thread)) || |
892 | (is_saved_state64(saved_state) && thread_is_64bit_addr(thread))); |
893 | |
894 | if (is_saved_state64(saved_state)) { |
895 | x86_saved_state64_t *regs; |
896 | |
897 | regs = saved_state64(saved_state); |
898 | |
899 | /* Record cpu where state was captured */ |
900 | regs->isf.cpu = cpu_number(); |
901 | |
902 | type = regs->isf.trapno; |
903 | err = (int)regs->isf.err & 0xffff; |
904 | vaddr = (user_addr_t)regs->cr2; |
905 | rip = (user_addr_t)regs->isf.rip; |
906 | } else { |
907 | x86_saved_state32_t *regs; |
908 | |
909 | regs = saved_state32(saved_state); |
910 | |
911 | /* Record cpu where state was captured */ |
912 | regs->cpu = cpu_number(); |
913 | |
914 | type = regs->trapno; |
915 | err = regs->err & 0xffff; |
916 | vaddr = (user_addr_t)regs->cr2; |
917 | rip = (user_addr_t)regs->eip; |
918 | } |
919 | |
920 | if ((type == T_DEBUG) && thread->machine.ids) { |
921 | unsigned long clear = 0; |
922 | /* Stash and clear this processor's DR6 value, in the event |
923 | * this was a debug register match |
924 | */ |
925 | __asm__ volatile ("mov %%db6, %0" : "=r" (dr6)); |
926 | __asm__ volatile ("mov %0, %%db6" : : "r" (clear)); |
927 | } |
928 | |
929 | pal_sti(); |
930 | |
931 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
932 | (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE, |
933 | (unsigned)(vaddr>>32), (unsigned)vaddr, |
934 | (unsigned)(rip>>32), (unsigned)rip, 0); |
935 | |
936 | code = 0; |
937 | subcode = 0; |
938 | exc = 0; |
939 | |
940 | #if CONFIG_DTRACE |
941 | /* |
942 | * DTrace does not consume all user traps, only INT_3's for now. |
943 | * Avoid needlessly calling tempDTraceTrapHook here, and let the |
944 | * INT_3 case handle them. |
945 | */ |
946 | #endif |
947 | |
948 | DEBUG_KPRINT_SYSCALL_MASK(1, |
949 | "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n" , |
950 | type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip); |
951 | |
952 | switch (type) { |
953 | |
954 | case T_DIVIDE_ERROR: |
955 | exc = EXC_ARITHMETIC; |
956 | code = EXC_I386_DIV; |
957 | break; |
958 | |
959 | case T_DEBUG: |
960 | { |
961 | pcb_t pcb; |
962 | /* |
963 | * Update the PCB with this processor's DR6 value |
964 | * in the event this was a debug register match. |
965 | */ |
966 | pcb = THREAD_TO_PCB(thread); |
967 | if (pcb->ids) { |
968 | /* |
969 | * We can get and set the status register |
970 | * in 32-bit mode even on a 64-bit thread |
971 | * because the high order bits are not |
972 | * used on x86_64 |
973 | */ |
974 | if (thread_is_64bit_addr(thread)) { |
975 | x86_debug_state64_t *ids = pcb->ids; |
976 | ids->dr6 = dr6; |
977 | } else { /* 32 bit thread */ |
978 | x86_debug_state32_t *ids = pcb->ids; |
979 | ids->dr6 = (uint32_t) dr6; |
980 | } |
981 | } |
982 | exc = EXC_BREAKPOINT; |
983 | code = EXC_I386_SGL; |
984 | break; |
985 | } |
986 | case T_INT3: |
987 | #if CONFIG_DTRACE |
988 | if (dtrace_user_probe(saved_state) == KERN_SUCCESS) |
989 | return; /* If it succeeds, we are done... */ |
990 | #endif |
991 | exc = EXC_BREAKPOINT; |
992 | code = EXC_I386_BPT; |
993 | break; |
994 | |
995 | case T_OVERFLOW: |
996 | exc = EXC_ARITHMETIC; |
997 | code = EXC_I386_INTO; |
998 | break; |
999 | |
1000 | case T_OUT_OF_BOUNDS: |
1001 | exc = EXC_SOFTWARE; |
1002 | code = EXC_I386_BOUND; |
1003 | break; |
1004 | |
1005 | case T_INVALID_OPCODE: |
1006 | #if !defined(RC_HIDE_XNU_J137) |
1007 | fpUDflt(rip); /* May return from exception directly */ |
1008 | #endif |
1009 | exc = EXC_BAD_INSTRUCTION; |
1010 | code = EXC_I386_INVOP; |
1011 | break; |
1012 | |
1013 | case T_NO_FPU: |
1014 | fpnoextflt(); |
1015 | return; |
1016 | |
1017 | case T_FPU_FAULT: |
1018 | fpextovrflt(); /* Propagates exception directly, doesn't return */ |
1019 | return; |
1020 | |
1021 | case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */ |
1022 | exc = EXC_BAD_INSTRUCTION; |
1023 | code = EXC_I386_INVTSSFLT; |
1024 | subcode = err; |
1025 | break; |
1026 | |
1027 | case T_SEGMENT_NOT_PRESENT: |
1028 | exc = EXC_BAD_INSTRUCTION; |
1029 | code = EXC_I386_SEGNPFLT; |
1030 | subcode = err; |
1031 | break; |
1032 | |
1033 | case T_STACK_FAULT: |
1034 | exc = EXC_BAD_INSTRUCTION; |
1035 | code = EXC_I386_STKFLT; |
1036 | subcode = err; |
1037 | break; |
1038 | |
1039 | case T_GENERAL_PROTECTION: |
1040 | /* |
1041 | * There's a wide range of circumstances which generate this |
1042 | * class of exception. From user-space, many involve bad |
1043 | * addresses (such as a non-canonical 64-bit address). |
1044 | * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV). |
1045 | * The trouble is cr2 doesn't contain the faulting address; |
1046 | * we'd need to decode the faulting instruction to really |
1047 | * determine this. We'll leave that to debuggers. |
1048 | * However, attempted execution of privileged instructions |
1049 | * (e.g. cli) also generate GP faults and so we map these to |
1050 | * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than |
1051 | * EXC_BAD_INSTRUCTION which is more accurate. We just can't |
1052 | * win! |
1053 | */ |
1054 | exc = EXC_BAD_ACCESS; |
1055 | code = EXC_I386_GPFLT; |
1056 | subcode = err; |
1057 | break; |
1058 | |
1059 | case T_PAGE_FAULT: |
1060 | { |
1061 | prot = VM_PROT_READ; |
1062 | |
1063 | if (err & T_PF_WRITE) |
1064 | prot |= VM_PROT_WRITE; |
1065 | if (__improbable(err & T_PF_EXECUTE)) |
1066 | prot |= VM_PROT_EXECUTE; |
1067 | #if DEVELOPMENT || DEBUG |
1068 | uint32_t fsig = 0; |
1069 | fsig = thread_fpsimd_hash(thread); |
1070 | #if DEBUG |
1071 | fsigs[0] = fsig; |
1072 | #endif |
1073 | #endif |
1074 | kret = vm_fault(thread->map, |
1075 | vaddr, |
1076 | prot, FALSE, VM_KERN_MEMORY_NONE, |
1077 | THREAD_ABORTSAFE, NULL, 0); |
1078 | #if DEVELOPMENT || DEBUG |
1079 | if (fsig) { |
1080 | uint32_t fsig2 = thread_fpsimd_hash(thread); |
1081 | #if DEBUG |
1082 | fsigcs++; |
1083 | fsigs[1] = fsig2; |
1084 | #endif |
1085 | if (fsig != fsig2) { |
1086 | panic("FP/SIMD state hash mismatch across fault thread: %p 0x%x->0x%x" , thread, fsig, fsig2); |
1087 | } |
1088 | } else { |
1089 | #if DEBUG |
1090 | fsigns++; |
1091 | #endif |
1092 | } |
1093 | #endif |
1094 | if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) { |
1095 | thread_exception_return(); |
1096 | /*NOTREACHED*/ |
1097 | } |
1098 | |
1099 | user_page_fault_continue(kret); |
1100 | } /* NOTREACHED */ |
1101 | break; |
1102 | |
1103 | case T_SSE_FLOAT_ERROR: |
1104 | fpSSEexterrflt(); /* Propagates exception directly, doesn't return */ |
1105 | return; |
1106 | |
1107 | |
1108 | case T_FLOATING_POINT_ERROR: |
1109 | fpexterrflt(); /* Propagates exception directly, doesn't return */ |
1110 | return; |
1111 | |
1112 | case T_DTRACE_RET: |
1113 | #if CONFIG_DTRACE |
1114 | if (dtrace_user_probe(saved_state) == KERN_SUCCESS) |
1115 | return; /* If it succeeds, we are done... */ |
1116 | #endif |
1117 | /* |
1118 | * If we get an INT 0x7f when we do not expect to, |
1119 | * treat it as an illegal instruction |
1120 | */ |
1121 | exc = EXC_BAD_INSTRUCTION; |
1122 | code = EXC_I386_INVOP; |
1123 | break; |
1124 | |
1125 | default: |
1126 | panic("Unexpected user trap, type %d" , type); |
1127 | return; |
1128 | } |
1129 | /* Note: Codepaths that directly return from user_trap() have pending |
1130 | * ASTs processed in locore |
1131 | */ |
1132 | i386_exception(exc, code, subcode); |
1133 | /* NOTREACHED */ |
1134 | } |
1135 | |
1136 | /* |
1137 | * Handle exceptions for i386. |
1138 | * |
1139 | * If we are an AT bus machine, we must turn off the AST for a |
1140 | * delayed floating-point exception. |
1141 | * |
1142 | * If we are providing floating-point emulation, we may have |
1143 | * to retrieve the real register values from the floating point |
1144 | * emulator. |
1145 | */ |
1146 | void |
1147 | i386_exception( |
1148 | int exc, |
1149 | mach_exception_code_t code, |
1150 | mach_exception_subcode_t subcode) |
1151 | { |
1152 | mach_exception_data_type_t codes[EXCEPTION_CODE_MAX]; |
1153 | |
1154 | DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n" , |
1155 | exc, code, subcode); |
1156 | codes[0] = code; /* new exception interface */ |
1157 | codes[1] = subcode; |
1158 | exception_triage(exc, codes, 2); |
1159 | /*NOTREACHED*/ |
1160 | } |
1161 | |
1162 | |
1163 | /* Synchronize a thread's x86_kernel_state (if any) with the given |
1164 | * x86_saved_state_t obtained from the trap/IPI handler; called in |
1165 | * kernel_trap() prior to entering the debugger, and when receiving |
1166 | * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI |
1167 | * was detected from the kernel while spinning with interrupts masked. |
1168 | */ |
1169 | |
1170 | void |
1171 | sync_iss_to_iks(x86_saved_state_t *saved_state) |
1172 | { |
1173 | struct x86_kernel_state *iks = NULL; |
1174 | vm_offset_t kstack; |
1175 | boolean_t record_active_regs = FALSE; |
1176 | |
1177 | /* The PAL may have a special way to sync registers */ |
1178 | if (saved_state && saved_state->flavor == THREAD_STATE_NONE) |
1179 | pal_get_kern_regs( saved_state ); |
1180 | |
1181 | if (current_thread() != NULL && |
1182 | (kstack = current_thread()->kernel_stack) != 0) { |
1183 | x86_saved_state64_t *regs = saved_state64(saved_state); |
1184 | |
1185 | iks = STACK_IKS(kstack); |
1186 | |
1187 | /* Did we take the trap/interrupt in kernel mode? */ |
1188 | if (saved_state == NULL || /* NULL => polling in kernel */ |
1189 | regs == USER_REGS64(current_thread())) |
1190 | record_active_regs = TRUE; |
1191 | else { |
1192 | iks->k_rbx = regs->rbx; |
1193 | iks->k_rsp = regs->isf.rsp; |
1194 | iks->k_rbp = regs->rbp; |
1195 | iks->k_r12 = regs->r12; |
1196 | iks->k_r13 = regs->r13; |
1197 | iks->k_r14 = regs->r14; |
1198 | iks->k_r15 = regs->r15; |
1199 | iks->k_rip = regs->isf.rip; |
1200 | } |
1201 | } |
1202 | |
1203 | if (record_active_regs == TRUE) { |
1204 | /* Show the trap handler path */ |
1205 | __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx)); |
1206 | __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp)); |
1207 | __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp)); |
1208 | __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12)); |
1209 | __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13)); |
1210 | __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14)); |
1211 | __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15)); |
1212 | /* "Current" instruction pointer */ |
1213 | __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" |
1214 | : "=m" (iks->k_rip) |
1215 | : |
1216 | : "rax" ); |
1217 | } |
1218 | } |
1219 | |
1220 | /* |
1221 | * This is used by the NMI interrupt handler (from mp.c) to |
1222 | * uncondtionally sync the trap handler context to the IKS |
1223 | * irrespective of whether the NMI was fielded in kernel |
1224 | * or user space. |
1225 | */ |
1226 | void |
1227 | sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) { |
1228 | struct x86_kernel_state *iks; |
1229 | vm_offset_t kstack; |
1230 | |
1231 | if ((kstack = current_thread()->kernel_stack) != 0) { |
1232 | iks = STACK_IKS(kstack); |
1233 | /* Display the trap handler path */ |
1234 | __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx)); |
1235 | __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp)); |
1236 | __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp)); |
1237 | __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12)); |
1238 | __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13)); |
1239 | __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14)); |
1240 | __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15)); |
1241 | /* "Current" instruction pointer */ |
1242 | __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax" ); |
1243 | } |
1244 | } |
1245 | |
1246 | #if DEBUG |
1247 | #define TERI 1 |
1248 | #endif |
1249 | |
1250 | #if TERI |
1251 | extern void thread_exception_return_internal(void) __dead2; |
1252 | |
1253 | void thread_exception_return(void) { |
1254 | thread_t thread = current_thread(); |
1255 | ml_set_interrupts_enabled(FALSE); |
1256 | if (thread_is_64bit_addr(thread) != task_has_64Bit_addr(thread->task)) { |
1257 | panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d" , thread, thread->task, thread_is_64bit_addr(thread), task_has_64Bit_addr(thread->task)); |
1258 | } |
1259 | |
1260 | if (thread_is_64bit_addr(thread)) { |
1261 | if ((gdt_desc_p(USER64_CS)->access & ACC_PL_U) == 0) { |
1262 | panic("64-GDT mismatch %p, descriptor: %p" , thread, gdt_desc_p(USER64_CS)); |
1263 | } |
1264 | } else { |
1265 | if ((gdt_desc_p(USER_CS)->access & ACC_PL_U) == 0) { |
1266 | panic("32-GDT mismatch %p, descriptor: %p" , thread, gdt_desc_p(USER_CS)); |
1267 | |
1268 | } |
1269 | } |
1270 | thread_exception_return_internal(); |
1271 | } |
1272 | #endif |
1273 | |