| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | |
| 59 | /* |
| 60 | * Hardware trap/fault handler. |
| 61 | */ |
| 62 | |
| 63 | #include <mach_kdp.h> |
| 64 | #include <mach_ldebug.h> |
| 65 | |
| 66 | #include <types.h> |
| 67 | #include <i386/eflags.h> |
| 68 | #include <i386/trap.h> |
| 69 | #include <i386/pmap.h> |
| 70 | #include <i386/fpu.h> |
| 71 | #include <i386/misc_protos.h> /* panic_io_port_read() */ |
| 72 | #include <i386/lapic.h> |
| 73 | |
| 74 | #include <mach/exception.h> |
| 75 | #include <mach/kern_return.h> |
| 76 | #include <mach/vm_param.h> |
| 77 | #include <mach/i386/thread_status.h> |
| 78 | |
| 79 | #include <vm/vm_kern.h> |
| 80 | #include <vm/vm_fault.h> |
| 81 | |
| 82 | #include <kern/kern_types.h> |
| 83 | #include <kern/processor.h> |
| 84 | #include <kern/thread.h> |
| 85 | #include <kern/task.h> |
| 86 | #include <kern/sched.h> |
| 87 | #include <kern/sched_prim.h> |
| 88 | #include <kern/exception.h> |
| 89 | #include <kern/spl.h> |
| 90 | #include <kern/misc_protos.h> |
| 91 | #include <kern/debug.h> |
| 92 | #if CONFIG_TELEMETRY |
| 93 | #include <kern/telemetry.h> |
| 94 | #endif |
| 95 | #include <sys/kdebug.h> |
| 96 | #include <kperf/kperf.h> |
| 97 | #include <prng/random.h> |
| 98 | |
| 99 | #include <string.h> |
| 100 | |
| 101 | #include <i386/postcode.h> |
| 102 | #include <i386/mp_desc.h> |
| 103 | #include <i386/proc_reg.h> |
| 104 | #if CONFIG_MCA |
| 105 | #include <i386/machine_check.h> |
| 106 | #endif |
| 107 | #include <mach/i386/syscall_sw.h> |
| 108 | |
| 109 | #include <libkern/OSDebug.h> |
| 110 | #include <i386/cpu_threads.h> |
| 111 | #include <machine/pal_routines.h> |
| 112 | |
| 113 | extern void throttle_lowpri_io(int); |
| 114 | extern void kprint_state(x86_saved_state64_t *saved_state); |
| 115 | |
| 116 | /* |
| 117 | * Forward declarations |
| 118 | */ |
| 119 | static void user_page_fault_continue(kern_return_t kret); |
| 120 | static void panic_trap(x86_saved_state64_t *saved_state, uint32_t pl, kern_return_t fault_result); |
| 121 | static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip); |
| 122 | |
| 123 | #if CONFIG_DTRACE |
| 124 | /* See <rdar://problem/4613924> */ |
| 125 | perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */ |
| 126 | |
| 127 | extern boolean_t dtrace_tally_fault(user_addr_t); |
| 128 | #endif |
| 129 | |
| 130 | extern boolean_t pmap_smep_enabled; |
| 131 | extern boolean_t pmap_smap_enabled; |
| 132 | |
| 133 | __attribute__((noreturn)) |
| 134 | void |
| 135 | thread_syscall_return( |
| 136 | kern_return_t ret) |
| 137 | { |
| 138 | thread_t thr_act = current_thread(); |
| 139 | boolean_t is_mach; |
| 140 | int code; |
| 141 | |
| 142 | pal_register_cache_state(thr_act, DIRTY); |
| 143 | |
| 144 | if (thread_is_64bit_addr(thr_act)) { |
| 145 | x86_saved_state64_t *regs; |
| 146 | |
| 147 | regs = USER_REGS64(thr_act); |
| 148 | |
| 149 | code = (int) (regs->rax & SYSCALL_NUMBER_MASK); |
| 150 | is_mach = (regs->rax & SYSCALL_CLASS_MASK) |
| 151 | == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT); |
| 152 | if (kdebug_enable && is_mach) { |
| 153 | /* Mach trap */ |
| 154 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 155 | MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END, |
| 156 | ret, 0, 0, 0, 0); |
| 157 | } |
| 158 | regs->rax = ret; |
| 159 | #if DEBUG |
| 160 | if (is_mach) |
| 161 | DEBUG_KPRINT_SYSCALL_MACH( |
| 162 | "thread_syscall_return: 64-bit mach ret=%u\n" , |
| 163 | ret); |
| 164 | else |
| 165 | DEBUG_KPRINT_SYSCALL_UNIX( |
| 166 | "thread_syscall_return: 64-bit unix ret=%u\n" , |
| 167 | ret); |
| 168 | #endif |
| 169 | } else { |
| 170 | x86_saved_state32_t *regs; |
| 171 | |
| 172 | regs = USER_REGS32(thr_act); |
| 173 | |
| 174 | code = ((int) regs->eax); |
| 175 | is_mach = (code < 0); |
| 176 | if (kdebug_enable && is_mach) { |
| 177 | /* Mach trap */ |
| 178 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 179 | MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END, |
| 180 | ret, 0, 0, 0, 0); |
| 181 | } |
| 182 | regs->eax = ret; |
| 183 | #if DEBUG |
| 184 | if (is_mach) |
| 185 | DEBUG_KPRINT_SYSCALL_MACH( |
| 186 | "thread_syscall_return: 32-bit mach ret=%u\n" , |
| 187 | ret); |
| 188 | else |
| 189 | DEBUG_KPRINT_SYSCALL_UNIX( |
| 190 | "thread_syscall_return: 32-bit unix ret=%u\n" , |
| 191 | ret); |
| 192 | #endif |
| 193 | } |
| 194 | |
| 195 | #if DEBUG || DEVELOPMENT |
| 196 | kern_allocation_name_t |
| 197 | prior __assert_only = thread_get_kernel_state(thr_act)->allocation_name; |
| 198 | assertf(prior == NULL, "thread_set_allocation_name(\"%s\") not cleared" , kern_allocation_get_name(prior)); |
| 199 | #endif /* DEBUG || DEVELOPMENT */ |
| 200 | |
| 201 | throttle_lowpri_io(1); |
| 202 | |
| 203 | thread_exception_return(); |
| 204 | /*NOTREACHED*/ |
| 205 | } |
| 206 | |
| 207 | |
| 208 | static inline void |
| 209 | user_page_fault_continue( |
| 210 | kern_return_t kr) |
| 211 | { |
| 212 | thread_t thread = current_thread(); |
| 213 | user_addr_t vaddr; |
| 214 | |
| 215 | if (thread_is_64bit_addr(thread)) { |
| 216 | x86_saved_state64_t *uregs; |
| 217 | |
| 218 | uregs = USER_REGS64(thread); |
| 219 | |
| 220 | vaddr = (user_addr_t)uregs->cr2; |
| 221 | } else { |
| 222 | x86_saved_state32_t *uregs; |
| 223 | |
| 224 | uregs = USER_REGS32(thread); |
| 225 | |
| 226 | vaddr = uregs->cr2; |
| 227 | } |
| 228 | |
| 229 | |
| 230 | /* PAL debug hook */ |
| 231 | pal_dbg_page_fault( thread, vaddr, kr ); |
| 232 | |
| 233 | i386_exception(EXC_BAD_ACCESS, kr, vaddr); |
| 234 | /*NOTREACHED*/ |
| 235 | } |
| 236 | |
| 237 | /* |
| 238 | * Fault recovery in copyin/copyout routines. |
| 239 | */ |
| 240 | struct recovery { |
| 241 | uintptr_t fault_addr; |
| 242 | uintptr_t recover_addr; |
| 243 | }; |
| 244 | |
| 245 | extern struct recovery recover_table[]; |
| 246 | extern struct recovery recover_table_end[]; |
| 247 | |
| 248 | const char * trap_type[] = {TRAP_NAMES}; |
| 249 | unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]); |
| 250 | |
| 251 | extern void PE_incoming_interrupt(int interrupt); |
| 252 | |
| 253 | #if defined(__x86_64__) && DEBUG |
| 254 | void |
| 255 | kprint_state(x86_saved_state64_t *saved_state) |
| 256 | { |
| 257 | kprintf("current_cpu_datap() 0x%lx\n" , (uintptr_t)current_cpu_datap()); |
| 258 | kprintf("Current GS base MSR 0x%llx\n" , rdmsr64(MSR_IA32_GS_BASE)); |
| 259 | kprintf("Kernel GS base MSR 0x%llx\n" , rdmsr64(MSR_IA32_KERNEL_GS_BASE)); |
| 260 | kprintf("state at 0x%lx:\n" , (uintptr_t) saved_state); |
| 261 | |
| 262 | kprintf(" rdi 0x%llx\n" , saved_state->rdi); |
| 263 | kprintf(" rsi 0x%llx\n" , saved_state->rsi); |
| 264 | kprintf(" rdx 0x%llx\n" , saved_state->rdx); |
| 265 | kprintf(" r10 0x%llx\n" , saved_state->r10); |
| 266 | kprintf(" r8 0x%llx\n" , saved_state->r8); |
| 267 | kprintf(" r9 0x%llx\n" , saved_state->r9); |
| 268 | |
| 269 | kprintf(" cr2 0x%llx\n" , saved_state->cr2); |
| 270 | kprintf("real cr2 0x%lx\n" , get_cr2()); |
| 271 | kprintf(" r15 0x%llx\n" , saved_state->r15); |
| 272 | kprintf(" r14 0x%llx\n" , saved_state->r14); |
| 273 | kprintf(" r13 0x%llx\n" , saved_state->r13); |
| 274 | kprintf(" r12 0x%llx\n" , saved_state->r12); |
| 275 | kprintf(" r11 0x%llx\n" , saved_state->r11); |
| 276 | kprintf(" rbp 0x%llx\n" , saved_state->rbp); |
| 277 | kprintf(" rbx 0x%llx\n" , saved_state->rbx); |
| 278 | kprintf(" rcx 0x%llx\n" , saved_state->rcx); |
| 279 | kprintf(" rax 0x%llx\n" , saved_state->rax); |
| 280 | |
| 281 | kprintf(" gs 0x%x\n" , saved_state->gs); |
| 282 | kprintf(" fs 0x%x\n" , saved_state->fs); |
| 283 | |
| 284 | kprintf(" isf.trapno 0x%x\n" , saved_state->isf.trapno); |
| 285 | kprintf(" isf._pad 0x%x\n" , saved_state->isf._pad); |
| 286 | kprintf(" isf.trapfn 0x%llx\n" , saved_state->isf.trapfn); |
| 287 | kprintf(" isf.err 0x%llx\n" , saved_state->isf.err); |
| 288 | kprintf(" isf.rip 0x%llx\n" , saved_state->isf.rip); |
| 289 | kprintf(" isf.cs 0x%llx\n" , saved_state->isf.cs); |
| 290 | kprintf(" isf.rflags 0x%llx\n" , saved_state->isf.rflags); |
| 291 | kprintf(" isf.rsp 0x%llx\n" , saved_state->isf.rsp); |
| 292 | kprintf(" isf.ss 0x%llx\n" , saved_state->isf.ss); |
| 293 | } |
| 294 | #endif |
| 295 | |
| 296 | |
| 297 | /* |
| 298 | * Non-zero indicates latency assert is enabled and capped at valued |
| 299 | * absolute time units. |
| 300 | */ |
| 301 | |
| 302 | uint64_t interrupt_latency_cap = 0; |
| 303 | boolean_t ilat_assert = FALSE; |
| 304 | |
| 305 | void |
| 306 | interrupt_latency_tracker_setup(void) { |
| 307 | uint32_t ilat_cap_us; |
| 308 | if (PE_parse_boot_argn("interrupt_latency_cap_us" , &ilat_cap_us, sizeof(ilat_cap_us))) { |
| 309 | interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC; |
| 310 | nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap); |
| 311 | } else { |
| 312 | interrupt_latency_cap = LockTimeOut; |
| 313 | } |
| 314 | PE_parse_boot_argn("-interrupt_latency_assert_enable" , &ilat_assert, sizeof(ilat_assert)); |
| 315 | } |
| 316 | |
| 317 | void interrupt_reset_latency_stats(void) { |
| 318 | uint32_t i; |
| 319 | for (i = 0; i < real_ncpus; i++) { |
| 320 | cpu_data_ptr[i]->cpu_max_observed_int_latency = |
| 321 | cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | void interrupt_populate_latency_stats(char *buf, unsigned bufsize) { |
| 326 | uint32_t i, tcpu = ~0; |
| 327 | uint64_t cur_max = 0; |
| 328 | |
| 329 | for (i = 0; i < real_ncpus; i++) { |
| 330 | if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) { |
| 331 | cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency; |
| 332 | tcpu = i; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | if (tcpu < real_ncpus) |
| 337 | snprintf(buf, bufsize, "0x%x 0x%x 0x%llx" , tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency); |
| 338 | } |
| 339 | |
| 340 | uint32_t interrupt_timer_coalescing_enabled = 1; |
| 341 | uint64_t interrupt_coalesced_timers; |
| 342 | |
| 343 | /* |
| 344 | * Handle interrupts: |
| 345 | * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel, |
| 346 | * - device interrupts go to the platform expert. |
| 347 | */ |
| 348 | void |
| 349 | interrupt(x86_saved_state_t *state) |
| 350 | { |
| 351 | uint64_t rip; |
| 352 | uint64_t rsp; |
| 353 | int interrupt_num; |
| 354 | boolean_t user_mode = FALSE; |
| 355 | int ipl; |
| 356 | int cnum = cpu_number(); |
| 357 | cpu_data_t *cdp = cpu_data_ptr[cnum]; |
| 358 | int itype = DBG_INTR_TYPE_UNKNOWN; |
| 359 | |
| 360 | x86_saved_state64_t *state64 = saved_state64(state); |
| 361 | rip = state64->isf.rip; |
| 362 | rsp = state64->isf.rsp; |
| 363 | interrupt_num = state64->isf.trapno; |
| 364 | if(state64->isf.cs & 0x03) |
| 365 | user_mode = TRUE; |
| 366 | |
| 367 | if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage) |
| 368 | cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++; |
| 369 | |
| 370 | if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT)) |
| 371 | itype = DBG_INTR_TYPE_IPI; |
| 372 | else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT)) |
| 373 | itype = DBG_INTR_TYPE_TIMER; |
| 374 | else |
| 375 | itype = DBG_INTR_TYPE_OTHER; |
| 376 | |
| 377 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 378 | MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START, |
| 379 | interrupt_num, |
| 380 | (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)), |
| 381 | user_mode, itype, 0); |
| 382 | |
| 383 | SCHED_STATS_INTERRUPT(current_processor()); |
| 384 | |
| 385 | #if CONFIG_TELEMETRY |
| 386 | if (telemetry_needs_record) { |
| 387 | telemetry_mark_curthread(user_mode, FALSE); |
| 388 | } |
| 389 | #endif |
| 390 | |
| 391 | ipl = get_preemption_level(); |
| 392 | |
| 393 | /* |
| 394 | * Handle local APIC interrupts |
| 395 | * else call platform expert for devices. |
| 396 | */ |
| 397 | if (!lapic_interrupt(interrupt_num, state)) { |
| 398 | PE_incoming_interrupt(interrupt_num); |
| 399 | } |
| 400 | |
| 401 | if (__improbable(get_preemption_level() != ipl)) { |
| 402 | panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n" , interrupt_num, ipl, get_preemption_level()); |
| 403 | } |
| 404 | |
| 405 | |
| 406 | if (__improbable(cdp->cpu_nested_istack)) { |
| 407 | cdp->cpu_nested_istack_events++; |
| 408 | } |
| 409 | else { |
| 410 | uint64_t ctime = mach_absolute_time(); |
| 411 | uint64_t int_latency = ctime - cdp->cpu_int_event_time; |
| 412 | uint64_t esdeadline, ehdeadline; |
| 413 | /* Attempt to process deferred timers in the context of |
| 414 | * this interrupt, unless interrupt time has already exceeded |
| 415 | * TCOAL_ILAT_THRESHOLD. |
| 416 | */ |
| 417 | #define TCOAL_ILAT_THRESHOLD (30000ULL) |
| 418 | |
| 419 | if ((int_latency < TCOAL_ILAT_THRESHOLD) && |
| 420 | interrupt_timer_coalescing_enabled) { |
| 421 | esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline; |
| 422 | ehdeadline = cdp->rtclock_timer.deadline; |
| 423 | if ((ctime >= esdeadline) && (ctime < ehdeadline)) { |
| 424 | interrupt_coalesced_timers++; |
| 425 | TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0); |
| 426 | rtclock_intr(state); |
| 427 | TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0); |
| 428 | } else { |
| 429 | TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) { |
| 434 | panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x" , interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals); |
| 435 | } |
| 436 | |
| 437 | if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) { |
| 438 | cdp->cpu_max_observed_int_latency = int_latency; |
| 439 | cdp->cpu_max_observed_int_latency_vector = interrupt_num; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Having serviced the interrupt first, look at the interrupted stack depth. |
| 445 | */ |
| 446 | if (!user_mode) { |
| 447 | uint64_t depth = cdp->cpu_kernel_stack |
| 448 | + sizeof(struct thread_kernel_state) |
| 449 | + sizeof(struct i386_exception_link *) |
| 450 | - rsp; |
| 451 | if (__improbable(depth > kernel_stack_depth_max)) { |
| 452 | kernel_stack_depth_max = (vm_offset_t)depth; |
| 453 | KERNEL_DEBUG_CONSTANT( |
| 454 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH), |
| 455 | (long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | if (cnum == master_cpu) |
| 460 | ml_entropy_collect(); |
| 461 | |
| 462 | #if KPERF |
| 463 | kperf_interrupt(); |
| 464 | #endif /* KPERF */ |
| 465 | |
| 466 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END, |
| 467 | interrupt_num); |
| 468 | |
| 469 | assert(ml_get_interrupts_enabled() == FALSE); |
| 470 | } |
| 471 | |
| 472 | static inline void |
| 473 | reset_dr7(void) |
| 474 | { |
| 475 | long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */ |
| 476 | __asm__ volatile("mov %0,%%dr7" : : "r" (dr7)); |
| 477 | } |
| 478 | #if MACH_KDP |
| 479 | unsigned kdp_has_active_watchpoints = 0; |
| 480 | #define NO_WATCHPOINTS (!kdp_has_active_watchpoints) |
| 481 | #else |
| 482 | #define NO_WATCHPOINTS 1 |
| 483 | #endif |
| 484 | /* |
| 485 | * Trap from kernel mode. Only page-fault errors are recoverable, |
| 486 | * and then only in special circumstances. All other errors are |
| 487 | * fatal. Return value indicates if trap was handled. |
| 488 | */ |
| 489 | |
| 490 | void |
| 491 | kernel_trap( |
| 492 | x86_saved_state_t *state, |
| 493 | uintptr_t *lo_spp) |
| 494 | { |
| 495 | x86_saved_state64_t *saved_state; |
| 496 | int code; |
| 497 | user_addr_t vaddr; |
| 498 | int type; |
| 499 | vm_map_t map = 0; /* protected by T_PAGE_FAULT */ |
| 500 | kern_return_t result = KERN_FAILURE; |
| 501 | kern_return_t fault_result = KERN_SUCCESS; |
| 502 | thread_t thread; |
| 503 | boolean_t intr; |
| 504 | vm_prot_t prot; |
| 505 | struct recovery *rp; |
| 506 | vm_offset_t kern_ip; |
| 507 | #if NCOPY_WINDOWS > 0 |
| 508 | int fault_in_copy_window = -1; |
| 509 | #endif |
| 510 | int is_user; |
| 511 | int trap_pl = get_preemption_level(); |
| 512 | |
| 513 | thread = current_thread(); |
| 514 | |
| 515 | if (__improbable(is_saved_state32(state))) |
| 516 | panic("kernel_trap(%p) with 32-bit state" , state); |
| 517 | saved_state = saved_state64(state); |
| 518 | |
| 519 | /* Record cpu where state was captured */ |
| 520 | saved_state->isf.cpu = cpu_number(); |
| 521 | |
| 522 | vaddr = (user_addr_t)saved_state->cr2; |
| 523 | type = saved_state->isf.trapno; |
| 524 | code = (int)(saved_state->isf.err & 0xffff); |
| 525 | intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */ |
| 526 | kern_ip = (vm_offset_t)saved_state->isf.rip; |
| 527 | |
| 528 | is_user = (vaddr < VM_MAX_USER_PAGE_ADDRESS); |
| 529 | |
| 530 | #if CONFIG_DTRACE |
| 531 | /* |
| 532 | * Is there a DTrace hook? |
| 533 | */ |
| 534 | if (__improbable(tempDTraceTrapHook != NULL)) { |
| 535 | if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) { |
| 536 | /* |
| 537 | * If it succeeds, we are done... |
| 538 | */ |
| 539 | return; |
| 540 | } |
| 541 | } |
| 542 | #endif /* CONFIG_DTRACE */ |
| 543 | |
| 544 | /* |
| 545 | * we come here with interrupts off as we don't want to recurse |
| 546 | * on preemption below. but we do want to re-enable interrupts |
| 547 | * as soon we possibly can to hold latency down |
| 548 | */ |
| 549 | if (__improbable(T_PREEMPT == type)) { |
| 550 | ast_taken_kernel(); |
| 551 | |
| 552 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 553 | (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE, |
| 554 | 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0); |
| 555 | return; |
| 556 | } |
| 557 | |
| 558 | user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr); |
| 559 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 560 | (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE, |
| 561 | (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user, |
| 562 | VM_KERNEL_UNSLIDE(kern_ip), 0); |
| 563 | |
| 564 | |
| 565 | if (T_PAGE_FAULT == type) { |
| 566 | /* |
| 567 | * assume we're faulting in the kernel map |
| 568 | */ |
| 569 | map = kernel_map; |
| 570 | |
| 571 | if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) { |
| 572 | #if NCOPY_WINDOWS > 0 |
| 573 | vm_offset_t copy_window_base; |
| 574 | vm_offset_t kvaddr; |
| 575 | int window_index; |
| 576 | |
| 577 | kvaddr = (vm_offset_t)vaddr; |
| 578 | /* |
| 579 | * must determine if fault occurred in |
| 580 | * the copy window while pre-emption is |
| 581 | * disabled for this processor so that |
| 582 | * we only need to look at the window |
| 583 | * associated with this processor |
| 584 | */ |
| 585 | copy_window_base = current_cpu_datap()->cpu_copywindow_base; |
| 586 | |
| 587 | if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) { |
| 588 | |
| 589 | window_index = (int)((kvaddr - copy_window_base) / NBPDE); |
| 590 | |
| 591 | if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) { |
| 592 | |
| 593 | kvaddr -= (copy_window_base + (NBPDE * window_index)); |
| 594 | vaddr = thread->machine.copy_window[window_index].user_base + kvaddr; |
| 595 | |
| 596 | map = thread->map; |
| 597 | fault_in_copy_window = window_index; |
| 598 | } |
| 599 | } |
| 600 | #else |
| 601 | if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) { |
| 602 | /* fault occurred in userspace */ |
| 603 | map = thread->map; |
| 604 | |
| 605 | /* Intercept a potential Supervisor Mode Execute |
| 606 | * Protection fault. These criteria identify |
| 607 | * both NX faults and SMEP faults, but both |
| 608 | * are fatal. We avoid checking PTEs (racy). |
| 609 | * (The VM could just redrive a SMEP fault, hence |
| 610 | * the intercept). |
| 611 | */ |
| 612 | if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) && |
| 613 | (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) { |
| 614 | goto debugger_entry; |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * Additionally check for SMAP faults... |
| 619 | * which are characterized by page-present and |
| 620 | * the AC bit unset (i.e. not from copyin/out path). |
| 621 | */ |
| 622 | if (__improbable(code & T_PF_PROT && |
| 623 | pmap_smap_enabled && |
| 624 | (saved_state->isf.rflags & EFL_AC) == 0)) { |
| 625 | goto debugger_entry; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * If we're not sharing cr3 with the user |
| 630 | * and we faulted in copyio, |
| 631 | * then switch cr3 here and dismiss the fault. |
| 632 | */ |
| 633 | if (no_shared_cr3 && |
| 634 | (thread->machine.specFlags&CopyIOActive) && |
| 635 | map->pmap->pm_cr3 != get_cr3_base()) { |
| 636 | pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE); |
| 637 | set_cr3_raw(map->pmap->pm_cr3); |
| 638 | return; |
| 639 | } |
| 640 | if (__improbable(vaddr < PAGE_SIZE) && |
| 641 | ((thread->machine.specFlags & CopyIOActive) == 0)) { |
| 642 | goto debugger_entry; |
| 643 | } |
| 644 | } |
| 645 | #endif |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | (void) ml_set_interrupts_enabled(intr); |
| 650 | |
| 651 | switch (type) { |
| 652 | |
| 653 | case T_NO_FPU: |
| 654 | fpnoextflt(); |
| 655 | return; |
| 656 | |
| 657 | case T_FPU_FAULT: |
| 658 | fpextovrflt(); |
| 659 | return; |
| 660 | |
| 661 | case T_FLOATING_POINT_ERROR: |
| 662 | fpexterrflt(); |
| 663 | return; |
| 664 | |
| 665 | case T_SSE_FLOAT_ERROR: |
| 666 | fpSSEexterrflt(); |
| 667 | return; |
| 668 | |
| 669 | case T_INVALID_OPCODE: |
| 670 | fpUDflt(kern_ip); |
| 671 | goto debugger_entry; |
| 672 | |
| 673 | case T_DEBUG: |
| 674 | if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS) |
| 675 | { |
| 676 | /* We've somehow encountered a debug |
| 677 | * register match that does not belong |
| 678 | * to the kernel debugger. |
| 679 | * This isn't supposed to happen. |
| 680 | */ |
| 681 | reset_dr7(); |
| 682 | return; |
| 683 | } |
| 684 | goto debugger_entry; |
| 685 | case T_INT3: |
| 686 | goto debugger_entry; |
| 687 | case T_PAGE_FAULT: |
| 688 | |
| 689 | #if CONFIG_DTRACE |
| 690 | if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */ |
| 691 | if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */ |
| 692 | /* |
| 693 | * DTrace has "anticipated" the possibility of this fault, and has |
| 694 | * established the suitable recovery state. Drop down now into the |
| 695 | * recovery handling code in "case T_GENERAL_PROTECTION:". |
| 696 | */ |
| 697 | goto FALL_THROUGH; |
| 698 | } |
| 699 | } |
| 700 | #endif /* CONFIG_DTRACE */ |
| 701 | |
| 702 | prot = VM_PROT_READ; |
| 703 | |
| 704 | if (code & T_PF_WRITE) |
| 705 | prot |= VM_PROT_WRITE; |
| 706 | if (code & T_PF_EXECUTE) |
| 707 | prot |= VM_PROT_EXECUTE; |
| 708 | |
| 709 | fault_result = result = vm_fault(map, |
| 710 | vaddr, |
| 711 | prot, |
| 712 | FALSE, VM_KERN_MEMORY_NONE, |
| 713 | THREAD_UNINT, NULL, 0); |
| 714 | |
| 715 | if (result == KERN_SUCCESS) { |
| 716 | #if NCOPY_WINDOWS > 0 |
| 717 | if (fault_in_copy_window != -1) { |
| 718 | ml_set_interrupts_enabled(FALSE); |
| 719 | copy_window_fault(thread, map, |
| 720 | fault_in_copy_window); |
| 721 | (void) ml_set_interrupts_enabled(intr); |
| 722 | } |
| 723 | #endif /* NCOPY_WINDOWS > 0 */ |
| 724 | return; |
| 725 | } |
| 726 | /* |
| 727 | * fall through |
| 728 | */ |
| 729 | #if CONFIG_DTRACE |
| 730 | FALL_THROUGH: |
| 731 | #endif /* CONFIG_DTRACE */ |
| 732 | |
| 733 | case T_GENERAL_PROTECTION: |
| 734 | /* |
| 735 | * If there is a failure recovery address |
| 736 | * for this fault, go there. |
| 737 | */ |
| 738 | for (rp = recover_table; rp < recover_table_end; rp++) { |
| 739 | if (kern_ip == rp->fault_addr) { |
| 740 | set_recovery_ip(saved_state, rp->recover_addr); |
| 741 | return; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Check thread recovery address also. |
| 747 | */ |
| 748 | if (thread != THREAD_NULL && thread->recover) { |
| 749 | set_recovery_ip(saved_state, thread->recover); |
| 750 | thread->recover = 0; |
| 751 | return; |
| 752 | } |
| 753 | /* |
| 754 | * Unanticipated page-fault errors in kernel |
| 755 | * should not happen. |
| 756 | * |
| 757 | * fall through... |
| 758 | */ |
| 759 | default: |
| 760 | /* |
| 761 | * Exception 15 is reserved but some chips may generate it |
| 762 | * spuriously. Seen at startup on AMD Athlon-64. |
| 763 | */ |
| 764 | if (type == 15) { |
| 765 | kprintf("kernel_trap() ignoring spurious trap 15\n" ); |
| 766 | return; |
| 767 | } |
| 768 | debugger_entry: |
| 769 | /* Ensure that the i386_kernel_state at the base of the |
| 770 | * current thread's stack (if any) is synchronized with the |
| 771 | * context at the moment of the trap, to facilitate |
| 772 | * access through the debugger. |
| 773 | */ |
| 774 | sync_iss_to_iks(state); |
| 775 | #if MACH_KDP |
| 776 | if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr)) |
| 777 | return; |
| 778 | #endif |
| 779 | } |
| 780 | pal_cli(); |
| 781 | panic_trap(saved_state, trap_pl, fault_result); |
| 782 | /* |
| 783 | * NO RETURN |
| 784 | */ |
| 785 | } |
| 786 | |
| 787 | static void |
| 788 | set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip) |
| 789 | { |
| 790 | saved_state->isf.rip = ip; |
| 791 | } |
| 792 | |
| 793 | static void |
| 794 | panic_trap(x86_saved_state64_t *regs, uint32_t pl, kern_return_t fault_result) |
| 795 | { |
| 796 | const char *trapname = "Unknown" ; |
| 797 | pal_cr_t cr0, cr2, cr3, cr4; |
| 798 | boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE; |
| 799 | boolean_t potential_smap_fault = FALSE; |
| 800 | |
| 801 | pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 ); |
| 802 | assert(ml_get_interrupts_enabled() == FALSE); |
| 803 | current_cpu_datap()->cpu_fatal_trap_state = regs; |
| 804 | /* |
| 805 | * Issue an I/O port read if one has been requested - this is an |
| 806 | * event logic analyzers can use as a trigger point. |
| 807 | */ |
| 808 | panic_io_port_read(); |
| 809 | |
| 810 | kprintf("CPU %d panic trap number 0x%x, rip 0x%016llx\n" , |
| 811 | cpu_number(), regs->isf.trapno, regs->isf.rip); |
| 812 | kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n" , |
| 813 | cr0, cr2, cr3, cr4); |
| 814 | |
| 815 | if (regs->isf.trapno < TRAP_TYPES) |
| 816 | trapname = trap_type[regs->isf.trapno]; |
| 817 | |
| 818 | if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) { |
| 819 | if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) { |
| 820 | potential_smep_fault = TRUE; |
| 821 | } else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
| 822 | potential_kernel_NX_fault = TRUE; |
| 823 | } |
| 824 | } else if (pmap_smap_enabled && |
| 825 | regs->isf.trapno == T_PAGE_FAULT && |
| 826 | regs->isf.err & T_PF_PROT && |
| 827 | regs->cr2 < VM_MAX_USER_PAGE_ADDRESS && |
| 828 | regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
| 829 | potential_smap_fault = TRUE; |
| 830 | } |
| 831 | |
| 832 | #undef panic |
| 833 | panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n" |
| 834 | "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n" |
| 835 | "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n" |
| 836 | "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n" |
| 837 | "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n" |
| 838 | "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n" |
| 839 | "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n" |
| 840 | "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n" , |
| 841 | regs->isf.rip, regs->isf.trapno, trapname, |
| 842 | cr0, cr2, cr3, cr4, |
| 843 | regs->rax, regs->rbx, regs->rcx, regs->rdx, |
| 844 | regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi, |
| 845 | regs->r8, regs->r9, regs->r10, regs->r11, |
| 846 | regs->r12, regs->r13, regs->r14, regs->r15, |
| 847 | regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF, |
| 848 | regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu, |
| 849 | virtualized ? " VMM" : "" , |
| 850 | potential_kernel_NX_fault ? " Kernel NX fault" : "" , |
| 851 | potential_smep_fault ? " SMEP/User NX fault" : "" , |
| 852 | potential_smap_fault ? " SMAP fault" : "" , |
| 853 | pl, |
| 854 | fault_result); |
| 855 | /* |
| 856 | * This next statement is not executed, |
| 857 | * but it's needed to stop the compiler using tail call optimization |
| 858 | * for the panic call - which confuses the subsequent backtrace. |
| 859 | */ |
| 860 | cr0 = 0; |
| 861 | } |
| 862 | |
| 863 | #if CONFIG_DTRACE |
| 864 | extern kern_return_t dtrace_user_probe(x86_saved_state_t *); |
| 865 | #endif |
| 866 | |
| 867 | #if DEBUG |
| 868 | uint32_t fsigs[2]; |
| 869 | uint32_t fsigns, fsigcs; |
| 870 | #endif |
| 871 | |
| 872 | /* |
| 873 | * Trap from user mode. |
| 874 | */ |
| 875 | void |
| 876 | user_trap( |
| 877 | x86_saved_state_t *saved_state) |
| 878 | { |
| 879 | int exc; |
| 880 | int err; |
| 881 | mach_exception_code_t code; |
| 882 | mach_exception_subcode_t subcode; |
| 883 | int type; |
| 884 | user_addr_t vaddr; |
| 885 | vm_prot_t prot; |
| 886 | thread_t thread = current_thread(); |
| 887 | kern_return_t kret; |
| 888 | user_addr_t rip; |
| 889 | unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */ |
| 890 | |
| 891 | assert((is_saved_state32(saved_state) && !thread_is_64bit_addr(thread)) || |
| 892 | (is_saved_state64(saved_state) && thread_is_64bit_addr(thread))); |
| 893 | |
| 894 | if (is_saved_state64(saved_state)) { |
| 895 | x86_saved_state64_t *regs; |
| 896 | |
| 897 | regs = saved_state64(saved_state); |
| 898 | |
| 899 | /* Record cpu where state was captured */ |
| 900 | regs->isf.cpu = cpu_number(); |
| 901 | |
| 902 | type = regs->isf.trapno; |
| 903 | err = (int)regs->isf.err & 0xffff; |
| 904 | vaddr = (user_addr_t)regs->cr2; |
| 905 | rip = (user_addr_t)regs->isf.rip; |
| 906 | } else { |
| 907 | x86_saved_state32_t *regs; |
| 908 | |
| 909 | regs = saved_state32(saved_state); |
| 910 | |
| 911 | /* Record cpu where state was captured */ |
| 912 | regs->cpu = cpu_number(); |
| 913 | |
| 914 | type = regs->trapno; |
| 915 | err = regs->err & 0xffff; |
| 916 | vaddr = (user_addr_t)regs->cr2; |
| 917 | rip = (user_addr_t)regs->eip; |
| 918 | } |
| 919 | |
| 920 | if ((type == T_DEBUG) && thread->machine.ids) { |
| 921 | unsigned long clear = 0; |
| 922 | /* Stash and clear this processor's DR6 value, in the event |
| 923 | * this was a debug register match |
| 924 | */ |
| 925 | __asm__ volatile ("mov %%db6, %0" : "=r" (dr6)); |
| 926 | __asm__ volatile ("mov %0, %%db6" : : "r" (clear)); |
| 927 | } |
| 928 | |
| 929 | pal_sti(); |
| 930 | |
| 931 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 932 | (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE, |
| 933 | (unsigned)(vaddr>>32), (unsigned)vaddr, |
| 934 | (unsigned)(rip>>32), (unsigned)rip, 0); |
| 935 | |
| 936 | code = 0; |
| 937 | subcode = 0; |
| 938 | exc = 0; |
| 939 | |
| 940 | #if CONFIG_DTRACE |
| 941 | /* |
| 942 | * DTrace does not consume all user traps, only INT_3's for now. |
| 943 | * Avoid needlessly calling tempDTraceTrapHook here, and let the |
| 944 | * INT_3 case handle them. |
| 945 | */ |
| 946 | #endif |
| 947 | |
| 948 | DEBUG_KPRINT_SYSCALL_MASK(1, |
| 949 | "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n" , |
| 950 | type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip); |
| 951 | |
| 952 | switch (type) { |
| 953 | |
| 954 | case T_DIVIDE_ERROR: |
| 955 | exc = EXC_ARITHMETIC; |
| 956 | code = EXC_I386_DIV; |
| 957 | break; |
| 958 | |
| 959 | case T_DEBUG: |
| 960 | { |
| 961 | pcb_t pcb; |
| 962 | /* |
| 963 | * Update the PCB with this processor's DR6 value |
| 964 | * in the event this was a debug register match. |
| 965 | */ |
| 966 | pcb = THREAD_TO_PCB(thread); |
| 967 | if (pcb->ids) { |
| 968 | /* |
| 969 | * We can get and set the status register |
| 970 | * in 32-bit mode even on a 64-bit thread |
| 971 | * because the high order bits are not |
| 972 | * used on x86_64 |
| 973 | */ |
| 974 | if (thread_is_64bit_addr(thread)) { |
| 975 | x86_debug_state64_t *ids = pcb->ids; |
| 976 | ids->dr6 = dr6; |
| 977 | } else { /* 32 bit thread */ |
| 978 | x86_debug_state32_t *ids = pcb->ids; |
| 979 | ids->dr6 = (uint32_t) dr6; |
| 980 | } |
| 981 | } |
| 982 | exc = EXC_BREAKPOINT; |
| 983 | code = EXC_I386_SGL; |
| 984 | break; |
| 985 | } |
| 986 | case T_INT3: |
| 987 | #if CONFIG_DTRACE |
| 988 | if (dtrace_user_probe(saved_state) == KERN_SUCCESS) |
| 989 | return; /* If it succeeds, we are done... */ |
| 990 | #endif |
| 991 | exc = EXC_BREAKPOINT; |
| 992 | code = EXC_I386_BPT; |
| 993 | break; |
| 994 | |
| 995 | case T_OVERFLOW: |
| 996 | exc = EXC_ARITHMETIC; |
| 997 | code = EXC_I386_INTO; |
| 998 | break; |
| 999 | |
| 1000 | case T_OUT_OF_BOUNDS: |
| 1001 | exc = EXC_SOFTWARE; |
| 1002 | code = EXC_I386_BOUND; |
| 1003 | break; |
| 1004 | |
| 1005 | case T_INVALID_OPCODE: |
| 1006 | #if !defined(RC_HIDE_XNU_J137) |
| 1007 | fpUDflt(rip); /* May return from exception directly */ |
| 1008 | #endif |
| 1009 | exc = EXC_BAD_INSTRUCTION; |
| 1010 | code = EXC_I386_INVOP; |
| 1011 | break; |
| 1012 | |
| 1013 | case T_NO_FPU: |
| 1014 | fpnoextflt(); |
| 1015 | return; |
| 1016 | |
| 1017 | case T_FPU_FAULT: |
| 1018 | fpextovrflt(); /* Propagates exception directly, doesn't return */ |
| 1019 | return; |
| 1020 | |
| 1021 | case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */ |
| 1022 | exc = EXC_BAD_INSTRUCTION; |
| 1023 | code = EXC_I386_INVTSSFLT; |
| 1024 | subcode = err; |
| 1025 | break; |
| 1026 | |
| 1027 | case T_SEGMENT_NOT_PRESENT: |
| 1028 | exc = EXC_BAD_INSTRUCTION; |
| 1029 | code = EXC_I386_SEGNPFLT; |
| 1030 | subcode = err; |
| 1031 | break; |
| 1032 | |
| 1033 | case T_STACK_FAULT: |
| 1034 | exc = EXC_BAD_INSTRUCTION; |
| 1035 | code = EXC_I386_STKFLT; |
| 1036 | subcode = err; |
| 1037 | break; |
| 1038 | |
| 1039 | case T_GENERAL_PROTECTION: |
| 1040 | /* |
| 1041 | * There's a wide range of circumstances which generate this |
| 1042 | * class of exception. From user-space, many involve bad |
| 1043 | * addresses (such as a non-canonical 64-bit address). |
| 1044 | * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV). |
| 1045 | * The trouble is cr2 doesn't contain the faulting address; |
| 1046 | * we'd need to decode the faulting instruction to really |
| 1047 | * determine this. We'll leave that to debuggers. |
| 1048 | * However, attempted execution of privileged instructions |
| 1049 | * (e.g. cli) also generate GP faults and so we map these to |
| 1050 | * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than |
| 1051 | * EXC_BAD_INSTRUCTION which is more accurate. We just can't |
| 1052 | * win! |
| 1053 | */ |
| 1054 | exc = EXC_BAD_ACCESS; |
| 1055 | code = EXC_I386_GPFLT; |
| 1056 | subcode = err; |
| 1057 | break; |
| 1058 | |
| 1059 | case T_PAGE_FAULT: |
| 1060 | { |
| 1061 | prot = VM_PROT_READ; |
| 1062 | |
| 1063 | if (err & T_PF_WRITE) |
| 1064 | prot |= VM_PROT_WRITE; |
| 1065 | if (__improbable(err & T_PF_EXECUTE)) |
| 1066 | prot |= VM_PROT_EXECUTE; |
| 1067 | #if DEVELOPMENT || DEBUG |
| 1068 | uint32_t fsig = 0; |
| 1069 | fsig = thread_fpsimd_hash(thread); |
| 1070 | #if DEBUG |
| 1071 | fsigs[0] = fsig; |
| 1072 | #endif |
| 1073 | #endif |
| 1074 | kret = vm_fault(thread->map, |
| 1075 | vaddr, |
| 1076 | prot, FALSE, VM_KERN_MEMORY_NONE, |
| 1077 | THREAD_ABORTSAFE, NULL, 0); |
| 1078 | #if DEVELOPMENT || DEBUG |
| 1079 | if (fsig) { |
| 1080 | uint32_t fsig2 = thread_fpsimd_hash(thread); |
| 1081 | #if DEBUG |
| 1082 | fsigcs++; |
| 1083 | fsigs[1] = fsig2; |
| 1084 | #endif |
| 1085 | if (fsig != fsig2) { |
| 1086 | panic("FP/SIMD state hash mismatch across fault thread: %p 0x%x->0x%x" , thread, fsig, fsig2); |
| 1087 | } |
| 1088 | } else { |
| 1089 | #if DEBUG |
| 1090 | fsigns++; |
| 1091 | #endif |
| 1092 | } |
| 1093 | #endif |
| 1094 | if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) { |
| 1095 | thread_exception_return(); |
| 1096 | /*NOTREACHED*/ |
| 1097 | } |
| 1098 | |
| 1099 | user_page_fault_continue(kret); |
| 1100 | } /* NOTREACHED */ |
| 1101 | break; |
| 1102 | |
| 1103 | case T_SSE_FLOAT_ERROR: |
| 1104 | fpSSEexterrflt(); /* Propagates exception directly, doesn't return */ |
| 1105 | return; |
| 1106 | |
| 1107 | |
| 1108 | case T_FLOATING_POINT_ERROR: |
| 1109 | fpexterrflt(); /* Propagates exception directly, doesn't return */ |
| 1110 | return; |
| 1111 | |
| 1112 | case T_DTRACE_RET: |
| 1113 | #if CONFIG_DTRACE |
| 1114 | if (dtrace_user_probe(saved_state) == KERN_SUCCESS) |
| 1115 | return; /* If it succeeds, we are done... */ |
| 1116 | #endif |
| 1117 | /* |
| 1118 | * If we get an INT 0x7f when we do not expect to, |
| 1119 | * treat it as an illegal instruction |
| 1120 | */ |
| 1121 | exc = EXC_BAD_INSTRUCTION; |
| 1122 | code = EXC_I386_INVOP; |
| 1123 | break; |
| 1124 | |
| 1125 | default: |
| 1126 | panic("Unexpected user trap, type %d" , type); |
| 1127 | return; |
| 1128 | } |
| 1129 | /* Note: Codepaths that directly return from user_trap() have pending |
| 1130 | * ASTs processed in locore |
| 1131 | */ |
| 1132 | i386_exception(exc, code, subcode); |
| 1133 | /* NOTREACHED */ |
| 1134 | } |
| 1135 | |
| 1136 | /* |
| 1137 | * Handle exceptions for i386. |
| 1138 | * |
| 1139 | * If we are an AT bus machine, we must turn off the AST for a |
| 1140 | * delayed floating-point exception. |
| 1141 | * |
| 1142 | * If we are providing floating-point emulation, we may have |
| 1143 | * to retrieve the real register values from the floating point |
| 1144 | * emulator. |
| 1145 | */ |
| 1146 | void |
| 1147 | i386_exception( |
| 1148 | int exc, |
| 1149 | mach_exception_code_t code, |
| 1150 | mach_exception_subcode_t subcode) |
| 1151 | { |
| 1152 | mach_exception_data_type_t codes[EXCEPTION_CODE_MAX]; |
| 1153 | |
| 1154 | DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n" , |
| 1155 | exc, code, subcode); |
| 1156 | codes[0] = code; /* new exception interface */ |
| 1157 | codes[1] = subcode; |
| 1158 | exception_triage(exc, codes, 2); |
| 1159 | /*NOTREACHED*/ |
| 1160 | } |
| 1161 | |
| 1162 | |
| 1163 | /* Synchronize a thread's x86_kernel_state (if any) with the given |
| 1164 | * x86_saved_state_t obtained from the trap/IPI handler; called in |
| 1165 | * kernel_trap() prior to entering the debugger, and when receiving |
| 1166 | * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI |
| 1167 | * was detected from the kernel while spinning with interrupts masked. |
| 1168 | */ |
| 1169 | |
| 1170 | void |
| 1171 | sync_iss_to_iks(x86_saved_state_t *saved_state) |
| 1172 | { |
| 1173 | struct x86_kernel_state *iks = NULL; |
| 1174 | vm_offset_t kstack; |
| 1175 | boolean_t record_active_regs = FALSE; |
| 1176 | |
| 1177 | /* The PAL may have a special way to sync registers */ |
| 1178 | if (saved_state && saved_state->flavor == THREAD_STATE_NONE) |
| 1179 | pal_get_kern_regs( saved_state ); |
| 1180 | |
| 1181 | if (current_thread() != NULL && |
| 1182 | (kstack = current_thread()->kernel_stack) != 0) { |
| 1183 | x86_saved_state64_t *regs = saved_state64(saved_state); |
| 1184 | |
| 1185 | iks = STACK_IKS(kstack); |
| 1186 | |
| 1187 | /* Did we take the trap/interrupt in kernel mode? */ |
| 1188 | if (saved_state == NULL || /* NULL => polling in kernel */ |
| 1189 | regs == USER_REGS64(current_thread())) |
| 1190 | record_active_regs = TRUE; |
| 1191 | else { |
| 1192 | iks->k_rbx = regs->rbx; |
| 1193 | iks->k_rsp = regs->isf.rsp; |
| 1194 | iks->k_rbp = regs->rbp; |
| 1195 | iks->k_r12 = regs->r12; |
| 1196 | iks->k_r13 = regs->r13; |
| 1197 | iks->k_r14 = regs->r14; |
| 1198 | iks->k_r15 = regs->r15; |
| 1199 | iks->k_rip = regs->isf.rip; |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | if (record_active_regs == TRUE) { |
| 1204 | /* Show the trap handler path */ |
| 1205 | __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx)); |
| 1206 | __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp)); |
| 1207 | __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp)); |
| 1208 | __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12)); |
| 1209 | __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13)); |
| 1210 | __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14)); |
| 1211 | __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15)); |
| 1212 | /* "Current" instruction pointer */ |
| 1213 | __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" |
| 1214 | : "=m" (iks->k_rip) |
| 1215 | : |
| 1216 | : "rax" ); |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | /* |
| 1221 | * This is used by the NMI interrupt handler (from mp.c) to |
| 1222 | * uncondtionally sync the trap handler context to the IKS |
| 1223 | * irrespective of whether the NMI was fielded in kernel |
| 1224 | * or user space. |
| 1225 | */ |
| 1226 | void |
| 1227 | sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) { |
| 1228 | struct x86_kernel_state *iks; |
| 1229 | vm_offset_t kstack; |
| 1230 | |
| 1231 | if ((kstack = current_thread()->kernel_stack) != 0) { |
| 1232 | iks = STACK_IKS(kstack); |
| 1233 | /* Display the trap handler path */ |
| 1234 | __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx)); |
| 1235 | __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp)); |
| 1236 | __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp)); |
| 1237 | __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12)); |
| 1238 | __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13)); |
| 1239 | __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14)); |
| 1240 | __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15)); |
| 1241 | /* "Current" instruction pointer */ |
| 1242 | __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax" ); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | #if DEBUG |
| 1247 | #define TERI 1 |
| 1248 | #endif |
| 1249 | |
| 1250 | #if TERI |
| 1251 | extern void thread_exception_return_internal(void) __dead2; |
| 1252 | |
| 1253 | void thread_exception_return(void) { |
| 1254 | thread_t thread = current_thread(); |
| 1255 | ml_set_interrupts_enabled(FALSE); |
| 1256 | if (thread_is_64bit_addr(thread) != task_has_64Bit_addr(thread->task)) { |
| 1257 | panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d" , thread, thread->task, thread_is_64bit_addr(thread), task_has_64Bit_addr(thread->task)); |
| 1258 | } |
| 1259 | |
| 1260 | if (thread_is_64bit_addr(thread)) { |
| 1261 | if ((gdt_desc_p(USER64_CS)->access & ACC_PL_U) == 0) { |
| 1262 | panic("64-GDT mismatch %p, descriptor: %p" , thread, gdt_desc_p(USER64_CS)); |
| 1263 | } |
| 1264 | } else { |
| 1265 | if ((gdt_desc_p(USER_CS)->access & ACC_PL_U) == 0) { |
| 1266 | panic("32-GDT mismatch %p, descriptor: %p" , thread, gdt_desc_p(USER_CS)); |
| 1267 | |
| 1268 | } |
| 1269 | } |
| 1270 | thread_exception_return_internal(); |
| 1271 | } |
| 1272 | #endif |
| 1273 | |