| 1 | /* |
| 2 | * Copyright (c) 2004-2011 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * CPU-specific power management support. |
| 31 | * |
| 32 | * Implements the "wrappers" to the KEXT. |
| 33 | */ |
| 34 | #include <i386/asm.h> |
| 35 | #include <i386/machine_cpu.h> |
| 36 | #include <i386/mp.h> |
| 37 | #include <i386/machine_routines.h> |
| 38 | #include <i386/proc_reg.h> |
| 39 | #include <i386/pmap.h> |
| 40 | #include <i386/misc_protos.h> |
| 41 | #include <kern/machine.h> |
| 42 | #include <kern/pms.h> |
| 43 | #include <kern/processor.h> |
| 44 | #include <kern/timer_queue.h> |
| 45 | #include <i386/cpu_threads.h> |
| 46 | #include <i386/pmCPU.h> |
| 47 | #include <i386/cpuid.h> |
| 48 | #include <i386/rtclock_protos.h> |
| 49 | #include <kern/sched_prim.h> |
| 50 | #include <i386/lapic.h> |
| 51 | #include <i386/pal_routines.h> |
| 52 | #include <sys/kdebug.h> |
| 53 | #include <i386/tsc.h> |
| 54 | |
| 55 | extern int disableConsoleOutput; |
| 56 | |
| 57 | #define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL |
| 58 | |
| 59 | uint64_t cpu_itime_bins[CPU_ITIME_BINS] = {16* NSEC_PER_USEC, 32* NSEC_PER_USEC, 64* NSEC_PER_USEC, 128* NSEC_PER_USEC, 256* NSEC_PER_USEC, 512* NSEC_PER_USEC, 1024* NSEC_PER_USEC, 2048* NSEC_PER_USEC, 4096* NSEC_PER_USEC, 8192* NSEC_PER_USEC, 16384* NSEC_PER_USEC, 32768* NSEC_PER_USEC}; |
| 60 | uint64_t *cpu_rtime_bins = &cpu_itime_bins[0]; |
| 61 | |
| 62 | /* |
| 63 | * The following is set when the KEXT loads and initializes. |
| 64 | */ |
| 65 | pmDispatch_t *pmDispatch = NULL; |
| 66 | |
| 67 | uint32_t pmInitDone = 0; |
| 68 | static boolean_t earlyTopology = FALSE; |
| 69 | static uint64_t earlyMaxBusDelay = DELAY_UNSET; |
| 70 | static uint64_t earlyMaxIntDelay = DELAY_UNSET; |
| 71 | |
| 72 | /* |
| 73 | * Initialize the Cstate change code. |
| 74 | */ |
| 75 | void |
| 76 | power_management_init(void) |
| 77 | { |
| 78 | if (pmDispatch != NULL && pmDispatch->cstateInit != NULL) |
| 79 | (*pmDispatch->cstateInit)(); |
| 80 | } |
| 81 | |
| 82 | static inline void machine_classify_interval(uint64_t interval, uint64_t *bins, uint64_t *binvals, uint32_t nbins) { |
| 83 | uint32_t i; |
| 84 | for (i = 0; i < nbins; i++) { |
| 85 | if (interval < binvals[i]) { |
| 86 | bins[i]++; |
| 87 | break; |
| 88 | } |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | uint64_t idle_pending_timers_processed; |
| 93 | uint32_t idle_entry_timer_processing_hdeadline_threshold = 5000000; |
| 94 | |
| 95 | /* |
| 96 | * Called when the CPU is idle. It calls into the power management kext |
| 97 | * to determine the best way to idle the CPU. |
| 98 | */ |
| 99 | void |
| 100 | machine_idle(void) |
| 101 | { |
| 102 | cpu_data_t *my_cpu = current_cpu_datap(); |
| 103 | __unused uint32_t cnum = my_cpu->cpu_number; |
| 104 | uint64_t ctime, rtime, itime; |
| 105 | #if CST_DEMOTION_DEBUG |
| 106 | processor_t cproc = my_cpu->cpu_processor; |
| 107 | uint64_t cwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total); |
| 108 | #endif /* CST_DEMOTION_DEBUG */ |
| 109 | uint64_t esdeadline, ehdeadline; |
| 110 | boolean_t do_process_pending_timers = FALSE; |
| 111 | |
| 112 | ctime = mach_absolute_time(); |
| 113 | esdeadline = my_cpu->rtclock_timer.queue.earliest_soft_deadline; |
| 114 | ehdeadline = my_cpu->rtclock_timer.deadline; |
| 115 | /* Determine if pending timers exist */ |
| 116 | if ((ctime >= esdeadline) && (ctime < ehdeadline) && |
| 117 | ((ehdeadline - ctime) < idle_entry_timer_processing_hdeadline_threshold)) { |
| 118 | idle_pending_timers_processed++; |
| 119 | do_process_pending_timers = TRUE; |
| 120 | goto machine_idle_exit; |
| 121 | } else { |
| 122 | TCOAL_DEBUG(0xCCCC0000, ctime, my_cpu->rtclock_timer.queue.earliest_soft_deadline, my_cpu->rtclock_timer.deadline, idle_pending_timers_processed, 0); |
| 123 | } |
| 124 | |
| 125 | my_cpu->lcpu.state = LCPU_IDLE; |
| 126 | DBGLOG(cpu_handle, cpu_number(), MP_IDLE); |
| 127 | MARK_CPU_IDLE(cnum); |
| 128 | |
| 129 | rtime = ctime - my_cpu->cpu_ixtime; |
| 130 | |
| 131 | my_cpu->cpu_rtime_total += rtime; |
| 132 | machine_classify_interval(rtime, &my_cpu->cpu_rtimes[0], &cpu_rtime_bins[0], CPU_RTIME_BINS); |
| 133 | #if CST_DEMOTION_DEBUG |
| 134 | uint32_t cl = 0, ch = 0; |
| 135 | uint64_t c3res, c6res, c7res; |
| 136 | rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); |
| 137 | c3res = ((uint64_t)ch << 32) | cl; |
| 138 | rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); |
| 139 | c6res = ((uint64_t)ch << 32) | cl; |
| 140 | rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); |
| 141 | c7res = ((uint64_t)ch << 32) | cl; |
| 142 | #endif |
| 143 | |
| 144 | if (pmInitDone) { |
| 145 | /* |
| 146 | * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay() |
| 147 | * were called prior to the CPU PM kext being registered. We do |
| 148 | * this here since we know at this point the values will be first |
| 149 | * used since idle is where the decisions using these values is made. |
| 150 | */ |
| 151 | if (earlyMaxBusDelay != DELAY_UNSET) |
| 152 | ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF)); |
| 153 | if (earlyMaxIntDelay != DELAY_UNSET) |
| 154 | ml_set_maxintdelay(earlyMaxIntDelay); |
| 155 | } |
| 156 | |
| 157 | if (pmInitDone |
| 158 | && pmDispatch != NULL |
| 159 | && pmDispatch->MachineIdle != NULL) |
| 160 | (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL); |
| 161 | else { |
| 162 | /* |
| 163 | * If no power management, re-enable interrupts and halt. |
| 164 | * This will keep the CPU from spinning through the scheduler |
| 165 | * and will allow at least some minimal power savings (but it |
| 166 | * cause problems in some MP configurations w.r.t. the APIC |
| 167 | * stopping during a GV3 transition). |
| 168 | */ |
| 169 | pal_hlt(); |
| 170 | /* Once woken, re-disable interrupts. */ |
| 171 | pal_cli(); |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Mark the CPU as running again. |
| 176 | */ |
| 177 | MARK_CPU_ACTIVE(cnum); |
| 178 | DBGLOG(cpu_handle, cnum, MP_UNIDLE); |
| 179 | my_cpu->lcpu.state = LCPU_RUN; |
| 180 | uint64_t ixtime = my_cpu->cpu_ixtime = mach_absolute_time(); |
| 181 | itime = ixtime - ctime; |
| 182 | my_cpu->cpu_idle_exits++; |
| 183 | my_cpu->cpu_itime_total += itime; |
| 184 | machine_classify_interval(itime, &my_cpu->cpu_itimes[0], &cpu_itime_bins[0], CPU_ITIME_BINS); |
| 185 | #if CST_DEMOTION_DEBUG |
| 186 | cl = ch = 0; |
| 187 | rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); |
| 188 | c3res = (((uint64_t)ch << 32) | cl) - c3res; |
| 189 | rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); |
| 190 | c6res = (((uint64_t)ch << 32) | cl) - c6res; |
| 191 | rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); |
| 192 | c7res = (((uint64_t)ch << 32) | cl) - c7res; |
| 193 | |
| 194 | uint64_t ndelta = itime - tmrCvt(c3res + c6res + c7res, tscFCvtt2n); |
| 195 | KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta, itime, c7res, c6res, c3res); |
| 196 | if ((itime > 1000000) && (ndelta > 250000)) |
| 197 | KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta, itime, c7res, c6res, c3res); |
| 198 | #endif |
| 199 | |
| 200 | machine_idle_exit: |
| 201 | /* |
| 202 | * Re-enable interrupts. |
| 203 | */ |
| 204 | |
| 205 | pal_sti(); |
| 206 | |
| 207 | if (do_process_pending_timers) { |
| 208 | TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, idle_pending_timers_processed, 0); |
| 209 | |
| 210 | /* Adjust to reflect that this isn't truly a package idle exit */ |
| 211 | __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1); |
| 212 | lapic_timer_swi(); /* Trigger software timer interrupt */ |
| 213 | __sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1); |
| 214 | |
| 215 | TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END, ctime, esdeadline, idle_pending_timers_processed, 0, 0); |
| 216 | } |
| 217 | #if CST_DEMOTION_DEBUG |
| 218 | uint64_t nwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total); |
| 219 | |
| 220 | if ((nwakeups == cwakeups) && (topoParms.nLThreadsPerPackage == my_cpu->lcpu.package->num_idle)) { |
| 221 | KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups, 0, 0, 0, 0); |
| 222 | } |
| 223 | #endif |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Called when the CPU is to be halted. It will choose the best C-State |
| 228 | * to be in. |
| 229 | */ |
| 230 | void |
| 231 | pmCPUHalt(uint32_t reason) |
| 232 | { |
| 233 | cpu_data_t *cpup = current_cpu_datap(); |
| 234 | |
| 235 | switch (reason) { |
| 236 | case PM_HALT_DEBUG: |
| 237 | cpup->lcpu.state = LCPU_PAUSE; |
| 238 | pal_stop_cpu(FALSE); |
| 239 | break; |
| 240 | |
| 241 | case PM_HALT_PANIC: |
| 242 | cpup->lcpu.state = LCPU_PAUSE; |
| 243 | pal_stop_cpu(TRUE); |
| 244 | break; |
| 245 | |
| 246 | case PM_HALT_NORMAL: |
| 247 | case PM_HALT_SLEEP: |
| 248 | default: |
| 249 | pal_cli(); |
| 250 | |
| 251 | if (pmInitDone |
| 252 | && pmDispatch != NULL |
| 253 | && pmDispatch->pmCPUHalt != NULL) { |
| 254 | /* |
| 255 | * Halt the CPU (and put it in a low power state. |
| 256 | */ |
| 257 | (*pmDispatch->pmCPUHalt)(); |
| 258 | |
| 259 | /* |
| 260 | * We've exited halt, so get the CPU schedulable again. |
| 261 | * - by calling the fast init routine for a slave, or |
| 262 | * - by returning if we're the master processor. |
| 263 | */ |
| 264 | if (cpup->cpu_number != master_cpu) { |
| 265 | i386_init_slave_fast(); |
| 266 | panic("init_slave_fast returned" ); |
| 267 | } |
| 268 | } else |
| 269 | { |
| 270 | /* |
| 271 | * If no power managment and a processor is taken off-line, |
| 272 | * then invalidate the cache and halt it (it will not be able |
| 273 | * to be brought back on-line without resetting the CPU). |
| 274 | */ |
| 275 | __asm__ volatile ("wbinvd" ); |
| 276 | cpup->lcpu.state = LCPU_HALT; |
| 277 | pal_stop_cpu(FALSE); |
| 278 | |
| 279 | panic("back from Halt" ); |
| 280 | } |
| 281 | |
| 282 | break; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | void |
| 287 | pmMarkAllCPUsOff(void) |
| 288 | { |
| 289 | if (pmInitDone |
| 290 | && pmDispatch != NULL |
| 291 | && pmDispatch->markAllCPUsOff != NULL) |
| 292 | (*pmDispatch->markAllCPUsOff)(); |
| 293 | } |
| 294 | |
| 295 | static void |
| 296 | pmInitComplete(void) |
| 297 | { |
| 298 | if (earlyTopology |
| 299 | && pmDispatch != NULL |
| 300 | && pmDispatch->pmCPUStateInit != NULL) { |
| 301 | (*pmDispatch->pmCPUStateInit)(); |
| 302 | earlyTopology = FALSE; |
| 303 | } |
| 304 | pmInitDone = 1; |
| 305 | } |
| 306 | |
| 307 | x86_lcpu_t * |
| 308 | pmGetLogicalCPU(int cpu) |
| 309 | { |
| 310 | return(cpu_to_lcpu(cpu)); |
| 311 | } |
| 312 | |
| 313 | x86_lcpu_t * |
| 314 | pmGetMyLogicalCPU(void) |
| 315 | { |
| 316 | cpu_data_t *cpup = current_cpu_datap(); |
| 317 | |
| 318 | return(&cpup->lcpu); |
| 319 | } |
| 320 | |
| 321 | static x86_core_t * |
| 322 | pmGetCore(int cpu) |
| 323 | { |
| 324 | return(cpu_to_core(cpu)); |
| 325 | } |
| 326 | |
| 327 | static x86_core_t * |
| 328 | pmGetMyCore(void) |
| 329 | { |
| 330 | cpu_data_t *cpup = current_cpu_datap(); |
| 331 | |
| 332 | return(cpup->lcpu.core); |
| 333 | } |
| 334 | |
| 335 | static x86_die_t * |
| 336 | pmGetDie(int cpu) |
| 337 | { |
| 338 | return(cpu_to_die(cpu)); |
| 339 | } |
| 340 | |
| 341 | static x86_die_t * |
| 342 | pmGetMyDie(void) |
| 343 | { |
| 344 | cpu_data_t *cpup = current_cpu_datap(); |
| 345 | |
| 346 | return(cpup->lcpu.die); |
| 347 | } |
| 348 | |
| 349 | static x86_pkg_t * |
| 350 | pmGetPackage(int cpu) |
| 351 | { |
| 352 | return(cpu_to_package(cpu)); |
| 353 | } |
| 354 | |
| 355 | static x86_pkg_t * |
| 356 | pmGetMyPackage(void) |
| 357 | { |
| 358 | cpu_data_t *cpup = current_cpu_datap(); |
| 359 | |
| 360 | return(cpup->lcpu.package); |
| 361 | } |
| 362 | |
| 363 | static void |
| 364 | pmLockCPUTopology(int lock) |
| 365 | { |
| 366 | if (lock) { |
| 367 | mp_safe_spin_lock(&x86_topo_lock); |
| 368 | } else { |
| 369 | simple_unlock(&x86_topo_lock); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * Called to get the next deadline that has been set by the |
| 375 | * power management code. |
| 376 | * Note: a return of 0 from AICPM and this routine signifies |
| 377 | * that no deadline is set. |
| 378 | */ |
| 379 | uint64_t |
| 380 | pmCPUGetDeadline(cpu_data_t *cpu) |
| 381 | { |
| 382 | uint64_t deadline = 0; |
| 383 | |
| 384 | if (pmInitDone |
| 385 | && pmDispatch != NULL |
| 386 | && pmDispatch->GetDeadline != NULL) |
| 387 | deadline = (*pmDispatch->GetDeadline)(&cpu->lcpu); |
| 388 | |
| 389 | return(deadline); |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * Called to determine if the supplied deadline or the power management |
| 394 | * deadline is sooner. Returns which ever one is first. |
| 395 | */ |
| 396 | |
| 397 | uint64_t |
| 398 | pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline) |
| 399 | { |
| 400 | if (pmInitDone |
| 401 | && pmDispatch != NULL |
| 402 | && pmDispatch->SetDeadline != NULL) |
| 403 | deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline); |
| 404 | |
| 405 | return(deadline); |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * Called when a power management deadline expires. |
| 410 | */ |
| 411 | void |
| 412 | pmCPUDeadline(cpu_data_t *cpu) |
| 413 | { |
| 414 | if (pmInitDone |
| 415 | && pmDispatch != NULL |
| 416 | && pmDispatch->Deadline != NULL) |
| 417 | (*pmDispatch->Deadline)(&cpu->lcpu); |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Called to get a CPU out of idle. |
| 422 | */ |
| 423 | boolean_t |
| 424 | pmCPUExitIdle(cpu_data_t *cpu) |
| 425 | { |
| 426 | boolean_t do_ipi; |
| 427 | |
| 428 | if (pmInitDone |
| 429 | && pmDispatch != NULL |
| 430 | && pmDispatch->exitIdle != NULL) |
| 431 | do_ipi = (*pmDispatch->exitIdle)(&cpu->lcpu); |
| 432 | else |
| 433 | do_ipi = TRUE; |
| 434 | |
| 435 | return(do_ipi); |
| 436 | } |
| 437 | |
| 438 | kern_return_t |
| 439 | pmCPUExitHalt(int cpu) |
| 440 | { |
| 441 | kern_return_t rc = KERN_INVALID_ARGUMENT; |
| 442 | |
| 443 | if (pmInitDone |
| 444 | && pmDispatch != NULL |
| 445 | && pmDispatch->exitHalt != NULL) |
| 446 | rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu)); |
| 447 | |
| 448 | return(rc); |
| 449 | } |
| 450 | |
| 451 | kern_return_t |
| 452 | pmCPUExitHaltToOff(int cpu) |
| 453 | { |
| 454 | kern_return_t rc = KERN_SUCCESS; |
| 455 | |
| 456 | if (pmInitDone |
| 457 | && pmDispatch != NULL |
| 458 | && pmDispatch->exitHaltToOff != NULL) |
| 459 | rc = pmDispatch->exitHaltToOff(cpu_to_lcpu(cpu)); |
| 460 | |
| 461 | return(rc); |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * Called to initialize the power management structures for the CPUs. |
| 466 | */ |
| 467 | void |
| 468 | pmCPUStateInit(void) |
| 469 | { |
| 470 | if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL) |
| 471 | (*pmDispatch->pmCPUStateInit)(); |
| 472 | else |
| 473 | earlyTopology = TRUE; |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Called when a CPU is being restarted after being powered off (as in S3). |
| 478 | */ |
| 479 | void |
| 480 | pmCPUMarkRunning(cpu_data_t *cpu) |
| 481 | { |
| 482 | cpu_data_t *cpup = current_cpu_datap(); |
| 483 | |
| 484 | if (pmInitDone |
| 485 | && pmDispatch != NULL |
| 486 | && pmDispatch->markCPURunning != NULL) |
| 487 | (*pmDispatch->markCPURunning)(&cpu->lcpu); |
| 488 | else |
| 489 | cpup->lcpu.state = LCPU_RUN; |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * Called to get/set CPU power management state. |
| 494 | */ |
| 495 | int |
| 496 | pmCPUControl(uint32_t cmd, void *datap) |
| 497 | { |
| 498 | int rc = -1; |
| 499 | |
| 500 | if (pmDispatch != NULL |
| 501 | && pmDispatch->pmCPUControl != NULL) |
| 502 | rc = (*pmDispatch->pmCPUControl)(cmd, datap); |
| 503 | |
| 504 | return(rc); |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * Called to save the timer state used by power management prior |
| 509 | * to "sleeping". |
| 510 | */ |
| 511 | void |
| 512 | pmTimerSave(void) |
| 513 | { |
| 514 | if (pmDispatch != NULL |
| 515 | && pmDispatch->pmTimerStateSave != NULL) |
| 516 | (*pmDispatch->pmTimerStateSave)(); |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * Called to restore the timer state used by power management after |
| 521 | * waking from "sleep". |
| 522 | */ |
| 523 | void |
| 524 | pmTimerRestore(void) |
| 525 | { |
| 526 | if (pmDispatch != NULL |
| 527 | && pmDispatch->pmTimerStateRestore != NULL) |
| 528 | (*pmDispatch->pmTimerStateRestore)(); |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * Set the worst-case time for the C4 to C2 transition. |
| 533 | * No longer does anything. |
| 534 | */ |
| 535 | void |
| 536 | ml_set_maxsnoop(__unused uint32_t maxdelay) |
| 537 | { |
| 538 | } |
| 539 | |
| 540 | |
| 541 | /* |
| 542 | * Get the worst-case time for the C4 to C2 transition. Returns nanoseconds. |
| 543 | */ |
| 544 | unsigned |
| 545 | ml_get_maxsnoop(void) |
| 546 | { |
| 547 | uint64_t max_snoop = 0; |
| 548 | |
| 549 | if (pmInitDone |
| 550 | && pmDispatch != NULL |
| 551 | && pmDispatch->getMaxSnoop != NULL) |
| 552 | max_snoop = pmDispatch->getMaxSnoop(); |
| 553 | |
| 554 | return((unsigned)(max_snoop & 0xffffffff)); |
| 555 | } |
| 556 | |
| 557 | |
| 558 | uint32_t |
| 559 | ml_get_maxbusdelay(void) |
| 560 | { |
| 561 | uint64_t max_delay = 0; |
| 562 | |
| 563 | if (pmInitDone |
| 564 | && pmDispatch != NULL |
| 565 | && pmDispatch->getMaxBusDelay != NULL) |
| 566 | max_delay = pmDispatch->getMaxBusDelay(); |
| 567 | |
| 568 | return((uint32_t)(max_delay & 0xffffffff)); |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * Advertise a memory access latency tolerance of "mdelay" ns |
| 573 | */ |
| 574 | void |
| 575 | ml_set_maxbusdelay(uint32_t mdelay) |
| 576 | { |
| 577 | uint64_t maxdelay = mdelay; |
| 578 | |
| 579 | if (pmDispatch != NULL |
| 580 | && pmDispatch->setMaxBusDelay != NULL) { |
| 581 | earlyMaxBusDelay = DELAY_UNSET; |
| 582 | pmDispatch->setMaxBusDelay(maxdelay); |
| 583 | } else |
| 584 | earlyMaxBusDelay = maxdelay; |
| 585 | } |
| 586 | |
| 587 | uint64_t |
| 588 | ml_get_maxintdelay(void) |
| 589 | { |
| 590 | uint64_t max_delay = 0; |
| 591 | |
| 592 | if (pmDispatch != NULL |
| 593 | && pmDispatch->getMaxIntDelay != NULL) |
| 594 | max_delay = pmDispatch->getMaxIntDelay(); |
| 595 | |
| 596 | return(max_delay); |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * Set the maximum delay allowed for an interrupt. |
| 601 | */ |
| 602 | void |
| 603 | ml_set_maxintdelay(uint64_t mdelay) |
| 604 | { |
| 605 | if (pmDispatch != NULL |
| 606 | && pmDispatch->setMaxIntDelay != NULL) { |
| 607 | earlyMaxIntDelay = DELAY_UNSET; |
| 608 | pmDispatch->setMaxIntDelay(mdelay); |
| 609 | } else |
| 610 | earlyMaxIntDelay = mdelay; |
| 611 | } |
| 612 | |
| 613 | boolean_t |
| 614 | ml_get_interrupt_prewake_applicable() |
| 615 | { |
| 616 | boolean_t applicable = FALSE; |
| 617 | |
| 618 | if (pmInitDone |
| 619 | && pmDispatch != NULL |
| 620 | && pmDispatch->pmInterruptPrewakeApplicable != NULL) |
| 621 | applicable = pmDispatch->pmInterruptPrewakeApplicable(); |
| 622 | |
| 623 | return applicable; |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * Put a CPU into "safe" mode with respect to power. |
| 628 | * |
| 629 | * Some systems cannot operate at a continuous "normal" speed without |
| 630 | * exceeding the thermal design. This is called per-CPU to place the |
| 631 | * CPUs into a "safe" operating mode. |
| 632 | */ |
| 633 | void |
| 634 | pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags) |
| 635 | { |
| 636 | if (pmDispatch != NULL |
| 637 | && pmDispatch->pmCPUSafeMode != NULL) |
| 638 | pmDispatch->pmCPUSafeMode(lcpu, flags); |
| 639 | else { |
| 640 | /* |
| 641 | * Do something reasonable if the KEXT isn't present. |
| 642 | * |
| 643 | * We only look at the PAUSE and RESUME flags. The other flag(s) |
| 644 | * will not make any sense without the KEXT, so just ignore them. |
| 645 | * |
| 646 | * We set the CPU's state to indicate that it's halted. If this |
| 647 | * is the CPU we're currently running on, then spin until the |
| 648 | * state becomes non-halted. |
| 649 | */ |
| 650 | if (flags & PM_SAFE_FL_PAUSE) { |
| 651 | lcpu->state = LCPU_PAUSE; |
| 652 | if (lcpu == x86_lcpu()) { |
| 653 | while (lcpu->state == LCPU_PAUSE) |
| 654 | cpu_pause(); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | /* |
| 659 | * Clear the halted flag for the specified CPU, that will |
| 660 | * get it out of it's spin loop. |
| 661 | */ |
| 662 | if (flags & PM_SAFE_FL_RESUME) { |
| 663 | lcpu->state = LCPU_RUN; |
| 664 | } |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | static uint32_t saved_run_count = 0; |
| 669 | |
| 670 | void |
| 671 | machine_run_count(uint32_t count) |
| 672 | { |
| 673 | if (pmDispatch != NULL |
| 674 | && pmDispatch->pmSetRunCount != NULL) |
| 675 | pmDispatch->pmSetRunCount(count); |
| 676 | else |
| 677 | saved_run_count = count; |
| 678 | } |
| 679 | |
| 680 | processor_t |
| 681 | machine_choose_processor(processor_set_t pset, |
| 682 | processor_t preferred) |
| 683 | { |
| 684 | int startCPU; |
| 685 | int endCPU; |
| 686 | int preferredCPU; |
| 687 | int chosenCPU; |
| 688 | |
| 689 | if (!pmInitDone) |
| 690 | return(preferred); |
| 691 | |
| 692 | if (pset == NULL) { |
| 693 | startCPU = -1; |
| 694 | endCPU = -1; |
| 695 | } else { |
| 696 | startCPU = pset->cpu_set_low; |
| 697 | endCPU = pset->cpu_set_hi; |
| 698 | } |
| 699 | |
| 700 | if (preferred == NULL) |
| 701 | preferredCPU = -1; |
| 702 | else |
| 703 | preferredCPU = preferred->cpu_id; |
| 704 | |
| 705 | if (pmDispatch != NULL |
| 706 | && pmDispatch->pmChooseCPU != NULL) { |
| 707 | chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU); |
| 708 | |
| 709 | if (chosenCPU == -1) |
| 710 | return(NULL); |
| 711 | return(cpu_datap(chosenCPU)->cpu_processor); |
| 712 | } |
| 713 | |
| 714 | return(preferred); |
| 715 | } |
| 716 | |
| 717 | static int |
| 718 | pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline) |
| 719 | { |
| 720 | int urgency; |
| 721 | uint64_t arg1, arg2; |
| 722 | |
| 723 | urgency = thread_get_urgency(current_processor()->next_thread, &arg1, &arg2); |
| 724 | |
| 725 | if (urgency == THREAD_URGENCY_REAL_TIME) { |
| 726 | if (rt_period != NULL) |
| 727 | *rt_period = arg1; |
| 728 | |
| 729 | if (rt_deadline != NULL) |
| 730 | *rt_deadline = arg2; |
| 731 | } |
| 732 | |
| 733 | return(urgency); |
| 734 | } |
| 735 | |
| 736 | #if DEBUG |
| 737 | uint32_t urgency_stats[64][THREAD_URGENCY_MAX]; |
| 738 | #endif |
| 739 | |
| 740 | #define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000) |
| 741 | uint64_t urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded; |
| 742 | |
| 743 | void |
| 744 | thread_tell_urgency(int urgency, |
| 745 | uint64_t rt_period, |
| 746 | uint64_t rt_deadline, |
| 747 | uint64_t sched_latency, |
| 748 | thread_t nthread) |
| 749 | { |
| 750 | uint64_t urgency_notification_time_start = 0, delta; |
| 751 | boolean_t urgency_assert = (urgency_notification_assert_abstime_threshold != 0); |
| 752 | assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE); |
| 753 | #if DEBUG |
| 754 | urgency_stats[cpu_number() % 64][urgency]++; |
| 755 | #endif |
| 756 | if (!pmInitDone |
| 757 | || pmDispatch == NULL |
| 758 | || pmDispatch->pmThreadTellUrgency == NULL) |
| 759 | return; |
| 760 | |
| 761 | SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, sched_latency, 0); |
| 762 | |
| 763 | if (__improbable((urgency_assert == TRUE))) |
| 764 | urgency_notification_time_start = mach_absolute_time(); |
| 765 | |
| 766 | current_cpu_datap()->cpu_nthread = nthread; |
| 767 | pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline); |
| 768 | |
| 769 | if (__improbable((urgency_assert == TRUE))) { |
| 770 | delta = mach_absolute_time() - urgency_notification_time_start; |
| 771 | |
| 772 | if (__improbable(delta > urgency_notification_max_recorded)) { |
| 773 | /* This is not synchronized, but it doesn't matter |
| 774 | * if we (rarely) miss an event, as it is statistically |
| 775 | * unlikely that it will never recur. |
| 776 | */ |
| 777 | urgency_notification_max_recorded = delta; |
| 778 | |
| 779 | if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended())) |
| 780 | panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units" , pmDispatch->pmThreadTellUrgency, delta); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0); |
| 785 | } |
| 786 | |
| 787 | void |
| 788 | machine_thread_going_on_core(__unused thread_t new_thread, |
| 789 | __unused int urgency, |
| 790 | __unused uint64_t sched_latency, |
| 791 | __unused uint64_t same_pri_latency, |
| 792 | __unused uint64_t dispatch_time) |
| 793 | { |
| 794 | } |
| 795 | |
| 796 | void |
| 797 | machine_thread_going_off_core(__unused thread_t old_thread, __unused boolean_t thread_terminating, __unused uint64_t last_dispatch) |
| 798 | { |
| 799 | } |
| 800 | |
| 801 | void |
| 802 | machine_max_runnable_latency(__unused uint64_t bg_max_latency, |
| 803 | __unused uint64_t default_max_latency, |
| 804 | __unused uint64_t realtime_max_latency) |
| 805 | { |
| 806 | } |
| 807 | |
| 808 | void |
| 809 | machine_work_interval_notify(__unused thread_t thread, |
| 810 | __unused struct kern_work_interval_args* kwi_args) |
| 811 | { |
| 812 | } |
| 813 | |
| 814 | |
| 815 | void machine_switch_perfcontrol_context(__unused perfcontrol_event event, |
| 816 | __unused uint64_t timestamp, |
| 817 | __unused uint32_t flags, |
| 818 | __unused uint64_t new_thread_same_pri_latency, |
| 819 | __unused thread_t old, |
| 820 | __unused thread_t new) |
| 821 | { |
| 822 | } |
| 823 | |
| 824 | void machine_switch_perfcontrol_state_update(__unused perfcontrol_event event, |
| 825 | __unused uint64_t timestamp, |
| 826 | __unused uint32_t flags, |
| 827 | __unused thread_t thread) |
| 828 | { |
| 829 | } |
| 830 | |
| 831 | void |
| 832 | active_rt_threads(boolean_t active) |
| 833 | { |
| 834 | if (!pmInitDone |
| 835 | || pmDispatch == NULL |
| 836 | || pmDispatch->pmActiveRTThreads == NULL) |
| 837 | return; |
| 838 | |
| 839 | pmDispatch->pmActiveRTThreads(active); |
| 840 | } |
| 841 | |
| 842 | static uint32_t |
| 843 | pmGetSavedRunCount(void) |
| 844 | { |
| 845 | return(saved_run_count); |
| 846 | } |
| 847 | |
| 848 | /* |
| 849 | * Returns the root of the package tree. |
| 850 | */ |
| 851 | x86_pkg_t * |
| 852 | pmGetPkgRoot(void) |
| 853 | { |
| 854 | return(x86_pkgs); |
| 855 | } |
| 856 | |
| 857 | static boolean_t |
| 858 | pmCPUGetHibernate(int cpu) |
| 859 | { |
| 860 | return(cpu_datap(cpu)->cpu_hibernate); |
| 861 | } |
| 862 | |
| 863 | processor_t |
| 864 | pmLCPUtoProcessor(int lcpu) |
| 865 | { |
| 866 | return(cpu_datap(lcpu)->cpu_processor); |
| 867 | } |
| 868 | |
| 869 | static void |
| 870 | pmReSyncDeadlines(int cpu) |
| 871 | { |
| 872 | static boolean_t registered = FALSE; |
| 873 | |
| 874 | if (!registered) { |
| 875 | PM_interrupt_register(&timer_resync_deadlines); |
| 876 | registered = TRUE; |
| 877 | } |
| 878 | |
| 879 | if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num) |
| 880 | timer_resync_deadlines(); |
| 881 | else |
| 882 | cpu_PM_interrupt(cpu); |
| 883 | } |
| 884 | |
| 885 | static void |
| 886 | pmSendIPI(int cpu) |
| 887 | { |
| 888 | lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT); |
| 889 | } |
| 890 | |
| 891 | static void |
| 892 | pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime) |
| 893 | { |
| 894 | /* |
| 895 | * Make sure that nanotime didn't change while we were reading it. |
| 896 | */ |
| 897 | do { |
| 898 | rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */ |
| 899 | rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base; |
| 900 | rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base; |
| 901 | rtc_nanotime->scale = pal_rtc_nanotime_info.scale; |
| 902 | rtc_nanotime->shift = pal_rtc_nanotime_info.shift; |
| 903 | } while(pal_rtc_nanotime_info.generation != 0 |
| 904 | && rtc_nanotime->generation != pal_rtc_nanotime_info.generation); |
| 905 | } |
| 906 | |
| 907 | uint32_t |
| 908 | pmTimerQueueMigrate(int target_cpu) |
| 909 | { |
| 910 | /* Call the etimer code to do this. */ |
| 911 | return (target_cpu != cpu_number()) |
| 912 | ? timer_queue_migrate_cpu(target_cpu) |
| 913 | : 0; |
| 914 | } |
| 915 | |
| 916 | |
| 917 | /* |
| 918 | * Called by the power management kext to register itself and to get the |
| 919 | * callbacks it might need into other kernel functions. This interface |
| 920 | * is versioned to allow for slight mis-matches between the kext and the |
| 921 | * kernel. |
| 922 | */ |
| 923 | void |
| 924 | pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs, |
| 925 | pmCallBacks_t *callbacks) |
| 926 | { |
| 927 | if (callbacks != NULL && version == PM_DISPATCH_VERSION) { |
| 928 | callbacks->setRTCPop = setPop; |
| 929 | callbacks->resyncDeadlines = pmReSyncDeadlines; |
| 930 | callbacks->initComplete = pmInitComplete; |
| 931 | callbacks->GetLCPU = pmGetLogicalCPU; |
| 932 | callbacks->GetCore = pmGetCore; |
| 933 | callbacks->GetDie = pmGetDie; |
| 934 | callbacks->GetPackage = pmGetPackage; |
| 935 | callbacks->GetMyLCPU = pmGetMyLogicalCPU; |
| 936 | callbacks->GetMyCore = pmGetMyCore; |
| 937 | callbacks->GetMyDie = pmGetMyDie; |
| 938 | callbacks->GetMyPackage = pmGetMyPackage; |
| 939 | callbacks->GetPkgRoot = pmGetPkgRoot; |
| 940 | callbacks->LockCPUTopology = pmLockCPUTopology; |
| 941 | callbacks->GetHibernate = pmCPUGetHibernate; |
| 942 | callbacks->LCPUtoProcessor = pmLCPUtoProcessor; |
| 943 | callbacks->ThreadBind = thread_bind; |
| 944 | callbacks->GetSavedRunCount = pmGetSavedRunCount; |
| 945 | callbacks->GetNanotimeInfo = pmGetNanotimeInfo; |
| 946 | callbacks->ThreadGetUrgency = pmThreadGetUrgency; |
| 947 | callbacks->RTCClockAdjust = rtc_clock_adjust; |
| 948 | callbacks->timerQueueMigrate = pmTimerQueueMigrate; |
| 949 | callbacks->topoParms = &topoParms; |
| 950 | callbacks->pmSendIPI = pmSendIPI; |
| 951 | callbacks->InterruptPending = lapic_is_interrupt_pending; |
| 952 | callbacks->IsInterrupting = lapic_is_interrupting; |
| 953 | callbacks->InterruptStats = lapic_interrupt_counts; |
| 954 | callbacks->DisableApicTimer = lapic_disable_timer; |
| 955 | } else { |
| 956 | panic("Version mis-match between Kernel and CPU PM" ); |
| 957 | } |
| 958 | |
| 959 | if (cpuFuncs != NULL) { |
| 960 | if (pmDispatch) { |
| 961 | panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p" , pmDispatch, cpuFuncs); |
| 962 | } |
| 963 | |
| 964 | pmDispatch = cpuFuncs; |
| 965 | |
| 966 | if (earlyTopology |
| 967 | && pmDispatch->pmCPUStateInit != NULL) { |
| 968 | (*pmDispatch->pmCPUStateInit)(); |
| 969 | earlyTopology = FALSE; |
| 970 | } |
| 971 | |
| 972 | if (pmDispatch->pmIPIHandler != NULL) { |
| 973 | lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler); |
| 974 | } |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | /* |
| 979 | * Unregisters the power management functions from the kext. |
| 980 | */ |
| 981 | void |
| 982 | pmUnRegister(pmDispatch_t *cpuFuncs) |
| 983 | { |
| 984 | if (cpuFuncs != NULL && pmDispatch == cpuFuncs) { |
| 985 | pmDispatch = NULL; |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | void machine_track_platform_idle(boolean_t entry) { |
| 990 | cpu_data_t *my_cpu = current_cpu_datap(); |
| 991 | |
| 992 | if (entry) { |
| 993 | (void)__sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1); |
| 994 | } |
| 995 | else { |
| 996 | uint32_t nidle = __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1); |
| 997 | if (nidle == topoParms.nLThreadsPerPackage) { |
| 998 | my_cpu->lcpu.package->package_idle_exits++; |
| 999 | } |
| 1000 | } |
| 1001 | } |
| 1002 | |