1 | /* |
2 | * Copyright (c) 2004-2011 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* |
30 | * CPU-specific power management support. |
31 | * |
32 | * Implements the "wrappers" to the KEXT. |
33 | */ |
34 | #include <i386/asm.h> |
35 | #include <i386/machine_cpu.h> |
36 | #include <i386/mp.h> |
37 | #include <i386/machine_routines.h> |
38 | #include <i386/proc_reg.h> |
39 | #include <i386/pmap.h> |
40 | #include <i386/misc_protos.h> |
41 | #include <kern/machine.h> |
42 | #include <kern/pms.h> |
43 | #include <kern/processor.h> |
44 | #include <kern/timer_queue.h> |
45 | #include <i386/cpu_threads.h> |
46 | #include <i386/pmCPU.h> |
47 | #include <i386/cpuid.h> |
48 | #include <i386/rtclock_protos.h> |
49 | #include <kern/sched_prim.h> |
50 | #include <i386/lapic.h> |
51 | #include <i386/pal_routines.h> |
52 | #include <sys/kdebug.h> |
53 | #include <i386/tsc.h> |
54 | |
55 | extern int disableConsoleOutput; |
56 | |
57 | #define DELAY_UNSET 0xFFFFFFFFFFFFFFFFULL |
58 | |
59 | uint64_t cpu_itime_bins[CPU_ITIME_BINS] = {16* NSEC_PER_USEC, 32* NSEC_PER_USEC, 64* NSEC_PER_USEC, 128* NSEC_PER_USEC, 256* NSEC_PER_USEC, 512* NSEC_PER_USEC, 1024* NSEC_PER_USEC, 2048* NSEC_PER_USEC, 4096* NSEC_PER_USEC, 8192* NSEC_PER_USEC, 16384* NSEC_PER_USEC, 32768* NSEC_PER_USEC}; |
60 | uint64_t *cpu_rtime_bins = &cpu_itime_bins[0]; |
61 | |
62 | /* |
63 | * The following is set when the KEXT loads and initializes. |
64 | */ |
65 | pmDispatch_t *pmDispatch = NULL; |
66 | |
67 | uint32_t pmInitDone = 0; |
68 | static boolean_t earlyTopology = FALSE; |
69 | static uint64_t earlyMaxBusDelay = DELAY_UNSET; |
70 | static uint64_t earlyMaxIntDelay = DELAY_UNSET; |
71 | |
72 | /* |
73 | * Initialize the Cstate change code. |
74 | */ |
75 | void |
76 | power_management_init(void) |
77 | { |
78 | if (pmDispatch != NULL && pmDispatch->cstateInit != NULL) |
79 | (*pmDispatch->cstateInit)(); |
80 | } |
81 | |
82 | static inline void machine_classify_interval(uint64_t interval, uint64_t *bins, uint64_t *binvals, uint32_t nbins) { |
83 | uint32_t i; |
84 | for (i = 0; i < nbins; i++) { |
85 | if (interval < binvals[i]) { |
86 | bins[i]++; |
87 | break; |
88 | } |
89 | } |
90 | } |
91 | |
92 | uint64_t idle_pending_timers_processed; |
93 | uint32_t idle_entry_timer_processing_hdeadline_threshold = 5000000; |
94 | |
95 | /* |
96 | * Called when the CPU is idle. It calls into the power management kext |
97 | * to determine the best way to idle the CPU. |
98 | */ |
99 | void |
100 | machine_idle(void) |
101 | { |
102 | cpu_data_t *my_cpu = current_cpu_datap(); |
103 | __unused uint32_t cnum = my_cpu->cpu_number; |
104 | uint64_t ctime, rtime, itime; |
105 | #if CST_DEMOTION_DEBUG |
106 | processor_t cproc = my_cpu->cpu_processor; |
107 | uint64_t cwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total); |
108 | #endif /* CST_DEMOTION_DEBUG */ |
109 | uint64_t esdeadline, ehdeadline; |
110 | boolean_t do_process_pending_timers = FALSE; |
111 | |
112 | ctime = mach_absolute_time(); |
113 | esdeadline = my_cpu->rtclock_timer.queue.earliest_soft_deadline; |
114 | ehdeadline = my_cpu->rtclock_timer.deadline; |
115 | /* Determine if pending timers exist */ |
116 | if ((ctime >= esdeadline) && (ctime < ehdeadline) && |
117 | ((ehdeadline - ctime) < idle_entry_timer_processing_hdeadline_threshold)) { |
118 | idle_pending_timers_processed++; |
119 | do_process_pending_timers = TRUE; |
120 | goto machine_idle_exit; |
121 | } else { |
122 | TCOAL_DEBUG(0xCCCC0000, ctime, my_cpu->rtclock_timer.queue.earliest_soft_deadline, my_cpu->rtclock_timer.deadline, idle_pending_timers_processed, 0); |
123 | } |
124 | |
125 | my_cpu->lcpu.state = LCPU_IDLE; |
126 | DBGLOG(cpu_handle, cpu_number(), MP_IDLE); |
127 | MARK_CPU_IDLE(cnum); |
128 | |
129 | rtime = ctime - my_cpu->cpu_ixtime; |
130 | |
131 | my_cpu->cpu_rtime_total += rtime; |
132 | machine_classify_interval(rtime, &my_cpu->cpu_rtimes[0], &cpu_rtime_bins[0], CPU_RTIME_BINS); |
133 | #if CST_DEMOTION_DEBUG |
134 | uint32_t cl = 0, ch = 0; |
135 | uint64_t c3res, c6res, c7res; |
136 | rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); |
137 | c3res = ((uint64_t)ch << 32) | cl; |
138 | rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); |
139 | c6res = ((uint64_t)ch << 32) | cl; |
140 | rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); |
141 | c7res = ((uint64_t)ch << 32) | cl; |
142 | #endif |
143 | |
144 | if (pmInitDone) { |
145 | /* |
146 | * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay() |
147 | * were called prior to the CPU PM kext being registered. We do |
148 | * this here since we know at this point the values will be first |
149 | * used since idle is where the decisions using these values is made. |
150 | */ |
151 | if (earlyMaxBusDelay != DELAY_UNSET) |
152 | ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF)); |
153 | if (earlyMaxIntDelay != DELAY_UNSET) |
154 | ml_set_maxintdelay(earlyMaxIntDelay); |
155 | } |
156 | |
157 | if (pmInitDone |
158 | && pmDispatch != NULL |
159 | && pmDispatch->MachineIdle != NULL) |
160 | (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL); |
161 | else { |
162 | /* |
163 | * If no power management, re-enable interrupts and halt. |
164 | * This will keep the CPU from spinning through the scheduler |
165 | * and will allow at least some minimal power savings (but it |
166 | * cause problems in some MP configurations w.r.t. the APIC |
167 | * stopping during a GV3 transition). |
168 | */ |
169 | pal_hlt(); |
170 | /* Once woken, re-disable interrupts. */ |
171 | pal_cli(); |
172 | } |
173 | |
174 | /* |
175 | * Mark the CPU as running again. |
176 | */ |
177 | MARK_CPU_ACTIVE(cnum); |
178 | DBGLOG(cpu_handle, cnum, MP_UNIDLE); |
179 | my_cpu->lcpu.state = LCPU_RUN; |
180 | uint64_t ixtime = my_cpu->cpu_ixtime = mach_absolute_time(); |
181 | itime = ixtime - ctime; |
182 | my_cpu->cpu_idle_exits++; |
183 | my_cpu->cpu_itime_total += itime; |
184 | machine_classify_interval(itime, &my_cpu->cpu_itimes[0], &cpu_itime_bins[0], CPU_ITIME_BINS); |
185 | #if CST_DEMOTION_DEBUG |
186 | cl = ch = 0; |
187 | rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); |
188 | c3res = (((uint64_t)ch << 32) | cl) - c3res; |
189 | rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); |
190 | c6res = (((uint64_t)ch << 32) | cl) - c6res; |
191 | rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); |
192 | c7res = (((uint64_t)ch << 32) | cl) - c7res; |
193 | |
194 | uint64_t ndelta = itime - tmrCvt(c3res + c6res + c7res, tscFCvtt2n); |
195 | KERNEL_DEBUG_CONSTANT(0xcead0000, ndelta, itime, c7res, c6res, c3res); |
196 | if ((itime > 1000000) && (ndelta > 250000)) |
197 | KERNEL_DEBUG_CONSTANT(0xceae0000, ndelta, itime, c7res, c6res, c3res); |
198 | #endif |
199 | |
200 | machine_idle_exit: |
201 | /* |
202 | * Re-enable interrupts. |
203 | */ |
204 | |
205 | pal_sti(); |
206 | |
207 | if (do_process_pending_timers) { |
208 | TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, idle_pending_timers_processed, 0); |
209 | |
210 | /* Adjust to reflect that this isn't truly a package idle exit */ |
211 | __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1); |
212 | lapic_timer_swi(); /* Trigger software timer interrupt */ |
213 | __sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1); |
214 | |
215 | TCOAL_DEBUG(0xBBBB0000 | DBG_FUNC_END, ctime, esdeadline, idle_pending_timers_processed, 0, 0); |
216 | } |
217 | #if CST_DEMOTION_DEBUG |
218 | uint64_t nwakeups = PROCESSOR_DATA(cproc, wakeups_issued_total); |
219 | |
220 | if ((nwakeups == cwakeups) && (topoParms.nLThreadsPerPackage == my_cpu->lcpu.package->num_idle)) { |
221 | KERNEL_DEBUG_CONSTANT(0xceaa0000, cwakeups, 0, 0, 0, 0); |
222 | } |
223 | #endif |
224 | } |
225 | |
226 | /* |
227 | * Called when the CPU is to be halted. It will choose the best C-State |
228 | * to be in. |
229 | */ |
230 | void |
231 | pmCPUHalt(uint32_t reason) |
232 | { |
233 | cpu_data_t *cpup = current_cpu_datap(); |
234 | |
235 | switch (reason) { |
236 | case PM_HALT_DEBUG: |
237 | cpup->lcpu.state = LCPU_PAUSE; |
238 | pal_stop_cpu(FALSE); |
239 | break; |
240 | |
241 | case PM_HALT_PANIC: |
242 | cpup->lcpu.state = LCPU_PAUSE; |
243 | pal_stop_cpu(TRUE); |
244 | break; |
245 | |
246 | case PM_HALT_NORMAL: |
247 | case PM_HALT_SLEEP: |
248 | default: |
249 | pal_cli(); |
250 | |
251 | if (pmInitDone |
252 | && pmDispatch != NULL |
253 | && pmDispatch->pmCPUHalt != NULL) { |
254 | /* |
255 | * Halt the CPU (and put it in a low power state. |
256 | */ |
257 | (*pmDispatch->pmCPUHalt)(); |
258 | |
259 | /* |
260 | * We've exited halt, so get the CPU schedulable again. |
261 | * - by calling the fast init routine for a slave, or |
262 | * - by returning if we're the master processor. |
263 | */ |
264 | if (cpup->cpu_number != master_cpu) { |
265 | i386_init_slave_fast(); |
266 | panic("init_slave_fast returned" ); |
267 | } |
268 | } else |
269 | { |
270 | /* |
271 | * If no power managment and a processor is taken off-line, |
272 | * then invalidate the cache and halt it (it will not be able |
273 | * to be brought back on-line without resetting the CPU). |
274 | */ |
275 | __asm__ volatile ("wbinvd" ); |
276 | cpup->lcpu.state = LCPU_HALT; |
277 | pal_stop_cpu(FALSE); |
278 | |
279 | panic("back from Halt" ); |
280 | } |
281 | |
282 | break; |
283 | } |
284 | } |
285 | |
286 | void |
287 | pmMarkAllCPUsOff(void) |
288 | { |
289 | if (pmInitDone |
290 | && pmDispatch != NULL |
291 | && pmDispatch->markAllCPUsOff != NULL) |
292 | (*pmDispatch->markAllCPUsOff)(); |
293 | } |
294 | |
295 | static void |
296 | pmInitComplete(void) |
297 | { |
298 | if (earlyTopology |
299 | && pmDispatch != NULL |
300 | && pmDispatch->pmCPUStateInit != NULL) { |
301 | (*pmDispatch->pmCPUStateInit)(); |
302 | earlyTopology = FALSE; |
303 | } |
304 | pmInitDone = 1; |
305 | } |
306 | |
307 | x86_lcpu_t * |
308 | pmGetLogicalCPU(int cpu) |
309 | { |
310 | return(cpu_to_lcpu(cpu)); |
311 | } |
312 | |
313 | x86_lcpu_t * |
314 | pmGetMyLogicalCPU(void) |
315 | { |
316 | cpu_data_t *cpup = current_cpu_datap(); |
317 | |
318 | return(&cpup->lcpu); |
319 | } |
320 | |
321 | static x86_core_t * |
322 | pmGetCore(int cpu) |
323 | { |
324 | return(cpu_to_core(cpu)); |
325 | } |
326 | |
327 | static x86_core_t * |
328 | pmGetMyCore(void) |
329 | { |
330 | cpu_data_t *cpup = current_cpu_datap(); |
331 | |
332 | return(cpup->lcpu.core); |
333 | } |
334 | |
335 | static x86_die_t * |
336 | pmGetDie(int cpu) |
337 | { |
338 | return(cpu_to_die(cpu)); |
339 | } |
340 | |
341 | static x86_die_t * |
342 | pmGetMyDie(void) |
343 | { |
344 | cpu_data_t *cpup = current_cpu_datap(); |
345 | |
346 | return(cpup->lcpu.die); |
347 | } |
348 | |
349 | static x86_pkg_t * |
350 | pmGetPackage(int cpu) |
351 | { |
352 | return(cpu_to_package(cpu)); |
353 | } |
354 | |
355 | static x86_pkg_t * |
356 | pmGetMyPackage(void) |
357 | { |
358 | cpu_data_t *cpup = current_cpu_datap(); |
359 | |
360 | return(cpup->lcpu.package); |
361 | } |
362 | |
363 | static void |
364 | pmLockCPUTopology(int lock) |
365 | { |
366 | if (lock) { |
367 | mp_safe_spin_lock(&x86_topo_lock); |
368 | } else { |
369 | simple_unlock(&x86_topo_lock); |
370 | } |
371 | } |
372 | |
373 | /* |
374 | * Called to get the next deadline that has been set by the |
375 | * power management code. |
376 | * Note: a return of 0 from AICPM and this routine signifies |
377 | * that no deadline is set. |
378 | */ |
379 | uint64_t |
380 | pmCPUGetDeadline(cpu_data_t *cpu) |
381 | { |
382 | uint64_t deadline = 0; |
383 | |
384 | if (pmInitDone |
385 | && pmDispatch != NULL |
386 | && pmDispatch->GetDeadline != NULL) |
387 | deadline = (*pmDispatch->GetDeadline)(&cpu->lcpu); |
388 | |
389 | return(deadline); |
390 | } |
391 | |
392 | /* |
393 | * Called to determine if the supplied deadline or the power management |
394 | * deadline is sooner. Returns which ever one is first. |
395 | */ |
396 | |
397 | uint64_t |
398 | pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline) |
399 | { |
400 | if (pmInitDone |
401 | && pmDispatch != NULL |
402 | && pmDispatch->SetDeadline != NULL) |
403 | deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline); |
404 | |
405 | return(deadline); |
406 | } |
407 | |
408 | /* |
409 | * Called when a power management deadline expires. |
410 | */ |
411 | void |
412 | pmCPUDeadline(cpu_data_t *cpu) |
413 | { |
414 | if (pmInitDone |
415 | && pmDispatch != NULL |
416 | && pmDispatch->Deadline != NULL) |
417 | (*pmDispatch->Deadline)(&cpu->lcpu); |
418 | } |
419 | |
420 | /* |
421 | * Called to get a CPU out of idle. |
422 | */ |
423 | boolean_t |
424 | pmCPUExitIdle(cpu_data_t *cpu) |
425 | { |
426 | boolean_t do_ipi; |
427 | |
428 | if (pmInitDone |
429 | && pmDispatch != NULL |
430 | && pmDispatch->exitIdle != NULL) |
431 | do_ipi = (*pmDispatch->exitIdle)(&cpu->lcpu); |
432 | else |
433 | do_ipi = TRUE; |
434 | |
435 | return(do_ipi); |
436 | } |
437 | |
438 | kern_return_t |
439 | pmCPUExitHalt(int cpu) |
440 | { |
441 | kern_return_t rc = KERN_INVALID_ARGUMENT; |
442 | |
443 | if (pmInitDone |
444 | && pmDispatch != NULL |
445 | && pmDispatch->exitHalt != NULL) |
446 | rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu)); |
447 | |
448 | return(rc); |
449 | } |
450 | |
451 | kern_return_t |
452 | pmCPUExitHaltToOff(int cpu) |
453 | { |
454 | kern_return_t rc = KERN_SUCCESS; |
455 | |
456 | if (pmInitDone |
457 | && pmDispatch != NULL |
458 | && pmDispatch->exitHaltToOff != NULL) |
459 | rc = pmDispatch->exitHaltToOff(cpu_to_lcpu(cpu)); |
460 | |
461 | return(rc); |
462 | } |
463 | |
464 | /* |
465 | * Called to initialize the power management structures for the CPUs. |
466 | */ |
467 | void |
468 | pmCPUStateInit(void) |
469 | { |
470 | if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL) |
471 | (*pmDispatch->pmCPUStateInit)(); |
472 | else |
473 | earlyTopology = TRUE; |
474 | } |
475 | |
476 | /* |
477 | * Called when a CPU is being restarted after being powered off (as in S3). |
478 | */ |
479 | void |
480 | pmCPUMarkRunning(cpu_data_t *cpu) |
481 | { |
482 | cpu_data_t *cpup = current_cpu_datap(); |
483 | |
484 | if (pmInitDone |
485 | && pmDispatch != NULL |
486 | && pmDispatch->markCPURunning != NULL) |
487 | (*pmDispatch->markCPURunning)(&cpu->lcpu); |
488 | else |
489 | cpup->lcpu.state = LCPU_RUN; |
490 | } |
491 | |
492 | /* |
493 | * Called to get/set CPU power management state. |
494 | */ |
495 | int |
496 | pmCPUControl(uint32_t cmd, void *datap) |
497 | { |
498 | int rc = -1; |
499 | |
500 | if (pmDispatch != NULL |
501 | && pmDispatch->pmCPUControl != NULL) |
502 | rc = (*pmDispatch->pmCPUControl)(cmd, datap); |
503 | |
504 | return(rc); |
505 | } |
506 | |
507 | /* |
508 | * Called to save the timer state used by power management prior |
509 | * to "sleeping". |
510 | */ |
511 | void |
512 | pmTimerSave(void) |
513 | { |
514 | if (pmDispatch != NULL |
515 | && pmDispatch->pmTimerStateSave != NULL) |
516 | (*pmDispatch->pmTimerStateSave)(); |
517 | } |
518 | |
519 | /* |
520 | * Called to restore the timer state used by power management after |
521 | * waking from "sleep". |
522 | */ |
523 | void |
524 | pmTimerRestore(void) |
525 | { |
526 | if (pmDispatch != NULL |
527 | && pmDispatch->pmTimerStateRestore != NULL) |
528 | (*pmDispatch->pmTimerStateRestore)(); |
529 | } |
530 | |
531 | /* |
532 | * Set the worst-case time for the C4 to C2 transition. |
533 | * No longer does anything. |
534 | */ |
535 | void |
536 | ml_set_maxsnoop(__unused uint32_t maxdelay) |
537 | { |
538 | } |
539 | |
540 | |
541 | /* |
542 | * Get the worst-case time for the C4 to C2 transition. Returns nanoseconds. |
543 | */ |
544 | unsigned |
545 | ml_get_maxsnoop(void) |
546 | { |
547 | uint64_t max_snoop = 0; |
548 | |
549 | if (pmInitDone |
550 | && pmDispatch != NULL |
551 | && pmDispatch->getMaxSnoop != NULL) |
552 | max_snoop = pmDispatch->getMaxSnoop(); |
553 | |
554 | return((unsigned)(max_snoop & 0xffffffff)); |
555 | } |
556 | |
557 | |
558 | uint32_t |
559 | ml_get_maxbusdelay(void) |
560 | { |
561 | uint64_t max_delay = 0; |
562 | |
563 | if (pmInitDone |
564 | && pmDispatch != NULL |
565 | && pmDispatch->getMaxBusDelay != NULL) |
566 | max_delay = pmDispatch->getMaxBusDelay(); |
567 | |
568 | return((uint32_t)(max_delay & 0xffffffff)); |
569 | } |
570 | |
571 | /* |
572 | * Advertise a memory access latency tolerance of "mdelay" ns |
573 | */ |
574 | void |
575 | ml_set_maxbusdelay(uint32_t mdelay) |
576 | { |
577 | uint64_t maxdelay = mdelay; |
578 | |
579 | if (pmDispatch != NULL |
580 | && pmDispatch->setMaxBusDelay != NULL) { |
581 | earlyMaxBusDelay = DELAY_UNSET; |
582 | pmDispatch->setMaxBusDelay(maxdelay); |
583 | } else |
584 | earlyMaxBusDelay = maxdelay; |
585 | } |
586 | |
587 | uint64_t |
588 | ml_get_maxintdelay(void) |
589 | { |
590 | uint64_t max_delay = 0; |
591 | |
592 | if (pmDispatch != NULL |
593 | && pmDispatch->getMaxIntDelay != NULL) |
594 | max_delay = pmDispatch->getMaxIntDelay(); |
595 | |
596 | return(max_delay); |
597 | } |
598 | |
599 | /* |
600 | * Set the maximum delay allowed for an interrupt. |
601 | */ |
602 | void |
603 | ml_set_maxintdelay(uint64_t mdelay) |
604 | { |
605 | if (pmDispatch != NULL |
606 | && pmDispatch->setMaxIntDelay != NULL) { |
607 | earlyMaxIntDelay = DELAY_UNSET; |
608 | pmDispatch->setMaxIntDelay(mdelay); |
609 | } else |
610 | earlyMaxIntDelay = mdelay; |
611 | } |
612 | |
613 | boolean_t |
614 | ml_get_interrupt_prewake_applicable() |
615 | { |
616 | boolean_t applicable = FALSE; |
617 | |
618 | if (pmInitDone |
619 | && pmDispatch != NULL |
620 | && pmDispatch->pmInterruptPrewakeApplicable != NULL) |
621 | applicable = pmDispatch->pmInterruptPrewakeApplicable(); |
622 | |
623 | return applicable; |
624 | } |
625 | |
626 | /* |
627 | * Put a CPU into "safe" mode with respect to power. |
628 | * |
629 | * Some systems cannot operate at a continuous "normal" speed without |
630 | * exceeding the thermal design. This is called per-CPU to place the |
631 | * CPUs into a "safe" operating mode. |
632 | */ |
633 | void |
634 | pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags) |
635 | { |
636 | if (pmDispatch != NULL |
637 | && pmDispatch->pmCPUSafeMode != NULL) |
638 | pmDispatch->pmCPUSafeMode(lcpu, flags); |
639 | else { |
640 | /* |
641 | * Do something reasonable if the KEXT isn't present. |
642 | * |
643 | * We only look at the PAUSE and RESUME flags. The other flag(s) |
644 | * will not make any sense without the KEXT, so just ignore them. |
645 | * |
646 | * We set the CPU's state to indicate that it's halted. If this |
647 | * is the CPU we're currently running on, then spin until the |
648 | * state becomes non-halted. |
649 | */ |
650 | if (flags & PM_SAFE_FL_PAUSE) { |
651 | lcpu->state = LCPU_PAUSE; |
652 | if (lcpu == x86_lcpu()) { |
653 | while (lcpu->state == LCPU_PAUSE) |
654 | cpu_pause(); |
655 | } |
656 | } |
657 | |
658 | /* |
659 | * Clear the halted flag for the specified CPU, that will |
660 | * get it out of it's spin loop. |
661 | */ |
662 | if (flags & PM_SAFE_FL_RESUME) { |
663 | lcpu->state = LCPU_RUN; |
664 | } |
665 | } |
666 | } |
667 | |
668 | static uint32_t saved_run_count = 0; |
669 | |
670 | void |
671 | machine_run_count(uint32_t count) |
672 | { |
673 | if (pmDispatch != NULL |
674 | && pmDispatch->pmSetRunCount != NULL) |
675 | pmDispatch->pmSetRunCount(count); |
676 | else |
677 | saved_run_count = count; |
678 | } |
679 | |
680 | processor_t |
681 | machine_choose_processor(processor_set_t pset, |
682 | processor_t preferred) |
683 | { |
684 | int startCPU; |
685 | int endCPU; |
686 | int preferredCPU; |
687 | int chosenCPU; |
688 | |
689 | if (!pmInitDone) |
690 | return(preferred); |
691 | |
692 | if (pset == NULL) { |
693 | startCPU = -1; |
694 | endCPU = -1; |
695 | } else { |
696 | startCPU = pset->cpu_set_low; |
697 | endCPU = pset->cpu_set_hi; |
698 | } |
699 | |
700 | if (preferred == NULL) |
701 | preferredCPU = -1; |
702 | else |
703 | preferredCPU = preferred->cpu_id; |
704 | |
705 | if (pmDispatch != NULL |
706 | && pmDispatch->pmChooseCPU != NULL) { |
707 | chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU); |
708 | |
709 | if (chosenCPU == -1) |
710 | return(NULL); |
711 | return(cpu_datap(chosenCPU)->cpu_processor); |
712 | } |
713 | |
714 | return(preferred); |
715 | } |
716 | |
717 | static int |
718 | pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline) |
719 | { |
720 | int urgency; |
721 | uint64_t arg1, arg2; |
722 | |
723 | urgency = thread_get_urgency(current_processor()->next_thread, &arg1, &arg2); |
724 | |
725 | if (urgency == THREAD_URGENCY_REAL_TIME) { |
726 | if (rt_period != NULL) |
727 | *rt_period = arg1; |
728 | |
729 | if (rt_deadline != NULL) |
730 | *rt_deadline = arg2; |
731 | } |
732 | |
733 | return(urgency); |
734 | } |
735 | |
736 | #if DEBUG |
737 | uint32_t urgency_stats[64][THREAD_URGENCY_MAX]; |
738 | #endif |
739 | |
740 | #define URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000) |
741 | uint64_t urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded; |
742 | |
743 | void |
744 | thread_tell_urgency(int urgency, |
745 | uint64_t rt_period, |
746 | uint64_t rt_deadline, |
747 | uint64_t sched_latency, |
748 | thread_t nthread) |
749 | { |
750 | uint64_t urgency_notification_time_start = 0, delta; |
751 | boolean_t urgency_assert = (urgency_notification_assert_abstime_threshold != 0); |
752 | assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE); |
753 | #if DEBUG |
754 | urgency_stats[cpu_number() % 64][urgency]++; |
755 | #endif |
756 | if (!pmInitDone |
757 | || pmDispatch == NULL |
758 | || pmDispatch->pmThreadTellUrgency == NULL) |
759 | return; |
760 | |
761 | SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, sched_latency, 0); |
762 | |
763 | if (__improbable((urgency_assert == TRUE))) |
764 | urgency_notification_time_start = mach_absolute_time(); |
765 | |
766 | current_cpu_datap()->cpu_nthread = nthread; |
767 | pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline); |
768 | |
769 | if (__improbable((urgency_assert == TRUE))) { |
770 | delta = mach_absolute_time() - urgency_notification_time_start; |
771 | |
772 | if (__improbable(delta > urgency_notification_max_recorded)) { |
773 | /* This is not synchronized, but it doesn't matter |
774 | * if we (rarely) miss an event, as it is statistically |
775 | * unlikely that it will never recur. |
776 | */ |
777 | urgency_notification_max_recorded = delta; |
778 | |
779 | if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended())) |
780 | panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units" , pmDispatch->pmThreadTellUrgency, delta); |
781 | } |
782 | } |
783 | |
784 | SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0); |
785 | } |
786 | |
787 | void |
788 | machine_thread_going_on_core(__unused thread_t new_thread, |
789 | __unused int urgency, |
790 | __unused uint64_t sched_latency, |
791 | __unused uint64_t same_pri_latency, |
792 | __unused uint64_t dispatch_time) |
793 | { |
794 | } |
795 | |
796 | void |
797 | machine_thread_going_off_core(__unused thread_t old_thread, __unused boolean_t thread_terminating, __unused uint64_t last_dispatch) |
798 | { |
799 | } |
800 | |
801 | void |
802 | machine_max_runnable_latency(__unused uint64_t bg_max_latency, |
803 | __unused uint64_t default_max_latency, |
804 | __unused uint64_t realtime_max_latency) |
805 | { |
806 | } |
807 | |
808 | void |
809 | machine_work_interval_notify(__unused thread_t thread, |
810 | __unused struct kern_work_interval_args* kwi_args) |
811 | { |
812 | } |
813 | |
814 | |
815 | void machine_switch_perfcontrol_context(__unused perfcontrol_event event, |
816 | __unused uint64_t timestamp, |
817 | __unused uint32_t flags, |
818 | __unused uint64_t new_thread_same_pri_latency, |
819 | __unused thread_t old, |
820 | __unused thread_t new) |
821 | { |
822 | } |
823 | |
824 | void machine_switch_perfcontrol_state_update(__unused perfcontrol_event event, |
825 | __unused uint64_t timestamp, |
826 | __unused uint32_t flags, |
827 | __unused thread_t thread) |
828 | { |
829 | } |
830 | |
831 | void |
832 | active_rt_threads(boolean_t active) |
833 | { |
834 | if (!pmInitDone |
835 | || pmDispatch == NULL |
836 | || pmDispatch->pmActiveRTThreads == NULL) |
837 | return; |
838 | |
839 | pmDispatch->pmActiveRTThreads(active); |
840 | } |
841 | |
842 | static uint32_t |
843 | pmGetSavedRunCount(void) |
844 | { |
845 | return(saved_run_count); |
846 | } |
847 | |
848 | /* |
849 | * Returns the root of the package tree. |
850 | */ |
851 | x86_pkg_t * |
852 | pmGetPkgRoot(void) |
853 | { |
854 | return(x86_pkgs); |
855 | } |
856 | |
857 | static boolean_t |
858 | pmCPUGetHibernate(int cpu) |
859 | { |
860 | return(cpu_datap(cpu)->cpu_hibernate); |
861 | } |
862 | |
863 | processor_t |
864 | pmLCPUtoProcessor(int lcpu) |
865 | { |
866 | return(cpu_datap(lcpu)->cpu_processor); |
867 | } |
868 | |
869 | static void |
870 | pmReSyncDeadlines(int cpu) |
871 | { |
872 | static boolean_t registered = FALSE; |
873 | |
874 | if (!registered) { |
875 | PM_interrupt_register(&timer_resync_deadlines); |
876 | registered = TRUE; |
877 | } |
878 | |
879 | if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num) |
880 | timer_resync_deadlines(); |
881 | else |
882 | cpu_PM_interrupt(cpu); |
883 | } |
884 | |
885 | static void |
886 | pmSendIPI(int cpu) |
887 | { |
888 | lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT); |
889 | } |
890 | |
891 | static void |
892 | pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime) |
893 | { |
894 | /* |
895 | * Make sure that nanotime didn't change while we were reading it. |
896 | */ |
897 | do { |
898 | rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */ |
899 | rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base; |
900 | rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base; |
901 | rtc_nanotime->scale = pal_rtc_nanotime_info.scale; |
902 | rtc_nanotime->shift = pal_rtc_nanotime_info.shift; |
903 | } while(pal_rtc_nanotime_info.generation != 0 |
904 | && rtc_nanotime->generation != pal_rtc_nanotime_info.generation); |
905 | } |
906 | |
907 | uint32_t |
908 | pmTimerQueueMigrate(int target_cpu) |
909 | { |
910 | /* Call the etimer code to do this. */ |
911 | return (target_cpu != cpu_number()) |
912 | ? timer_queue_migrate_cpu(target_cpu) |
913 | : 0; |
914 | } |
915 | |
916 | |
917 | /* |
918 | * Called by the power management kext to register itself and to get the |
919 | * callbacks it might need into other kernel functions. This interface |
920 | * is versioned to allow for slight mis-matches between the kext and the |
921 | * kernel. |
922 | */ |
923 | void |
924 | pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs, |
925 | pmCallBacks_t *callbacks) |
926 | { |
927 | if (callbacks != NULL && version == PM_DISPATCH_VERSION) { |
928 | callbacks->setRTCPop = setPop; |
929 | callbacks->resyncDeadlines = pmReSyncDeadlines; |
930 | callbacks->initComplete = pmInitComplete; |
931 | callbacks->GetLCPU = pmGetLogicalCPU; |
932 | callbacks->GetCore = pmGetCore; |
933 | callbacks->GetDie = pmGetDie; |
934 | callbacks->GetPackage = pmGetPackage; |
935 | callbacks->GetMyLCPU = pmGetMyLogicalCPU; |
936 | callbacks->GetMyCore = pmGetMyCore; |
937 | callbacks->GetMyDie = pmGetMyDie; |
938 | callbacks->GetMyPackage = pmGetMyPackage; |
939 | callbacks->GetPkgRoot = pmGetPkgRoot; |
940 | callbacks->LockCPUTopology = pmLockCPUTopology; |
941 | callbacks->GetHibernate = pmCPUGetHibernate; |
942 | callbacks->LCPUtoProcessor = pmLCPUtoProcessor; |
943 | callbacks->ThreadBind = thread_bind; |
944 | callbacks->GetSavedRunCount = pmGetSavedRunCount; |
945 | callbacks->GetNanotimeInfo = pmGetNanotimeInfo; |
946 | callbacks->ThreadGetUrgency = pmThreadGetUrgency; |
947 | callbacks->RTCClockAdjust = rtc_clock_adjust; |
948 | callbacks->timerQueueMigrate = pmTimerQueueMigrate; |
949 | callbacks->topoParms = &topoParms; |
950 | callbacks->pmSendIPI = pmSendIPI; |
951 | callbacks->InterruptPending = lapic_is_interrupt_pending; |
952 | callbacks->IsInterrupting = lapic_is_interrupting; |
953 | callbacks->InterruptStats = lapic_interrupt_counts; |
954 | callbacks->DisableApicTimer = lapic_disable_timer; |
955 | } else { |
956 | panic("Version mis-match between Kernel and CPU PM" ); |
957 | } |
958 | |
959 | if (cpuFuncs != NULL) { |
960 | if (pmDispatch) { |
961 | panic("Attempt to re-register power management interface--AICPM present in xcpm mode? %p->%p" , pmDispatch, cpuFuncs); |
962 | } |
963 | |
964 | pmDispatch = cpuFuncs; |
965 | |
966 | if (earlyTopology |
967 | && pmDispatch->pmCPUStateInit != NULL) { |
968 | (*pmDispatch->pmCPUStateInit)(); |
969 | earlyTopology = FALSE; |
970 | } |
971 | |
972 | if (pmDispatch->pmIPIHandler != NULL) { |
973 | lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler); |
974 | } |
975 | } |
976 | } |
977 | |
978 | /* |
979 | * Unregisters the power management functions from the kext. |
980 | */ |
981 | void |
982 | pmUnRegister(pmDispatch_t *cpuFuncs) |
983 | { |
984 | if (cpuFuncs != NULL && pmDispatch == cpuFuncs) { |
985 | pmDispatch = NULL; |
986 | } |
987 | } |
988 | |
989 | void machine_track_platform_idle(boolean_t entry) { |
990 | cpu_data_t *my_cpu = current_cpu_datap(); |
991 | |
992 | if (entry) { |
993 | (void)__sync_fetch_and_add(&my_cpu->lcpu.package->num_idle, 1); |
994 | } |
995 | else { |
996 | uint32_t nidle = __sync_fetch_and_sub(&my_cpu->lcpu.package->num_idle, 1); |
997 | if (nidle == topoParms.nLThreadsPerPackage) { |
998 | my_cpu->lcpu.package->package_idle_exits++; |
999 | } |
1000 | } |
1001 | } |
1002 | |