| 1 | /* |
| 2 | * Copyright (c) 2000-2011 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <mach/kern_return.h> |
| 30 | #include <kern/kalloc.h> |
| 31 | #include <kern/cpu_number.h> |
| 32 | #include <kern/cpu_data.h> |
| 33 | #include <i386/cpuid.h> |
| 34 | #include <i386/mp.h> |
| 35 | #include <i386/proc_reg.h> |
| 36 | #include <i386/mtrr.h> |
| 37 | #include <i386/machine_check.h> |
| 38 | |
| 39 | struct mtrr_var_range { |
| 40 | uint64_t base; /* in IA32_MTRR_PHYSBASE format */ |
| 41 | uint64_t mask; /* in IA32_MTRR_PHYSMASK format */ |
| 42 | uint32_t refcnt; /* var ranges reference count */ |
| 43 | }; |
| 44 | |
| 45 | struct mtrr_fix_range { |
| 46 | uint64_t types; /* fixed-range type octet */ |
| 47 | }; |
| 48 | |
| 49 | typedef struct mtrr_var_range mtrr_var_range_t; |
| 50 | typedef struct mtrr_fix_range mtrr_fix_range_t; |
| 51 | |
| 52 | static struct { |
| 53 | uint64_t MTRRcap; |
| 54 | uint64_t MTRRdefType; |
| 55 | mtrr_var_range_t * var_range; |
| 56 | unsigned int var_count; |
| 57 | mtrr_fix_range_t fix_range[11]; |
| 58 | } mtrr_state; |
| 59 | |
| 60 | static boolean_t mtrr_initialized = FALSE; |
| 61 | |
| 62 | decl_simple_lock_data(static, mtrr_lock); |
| 63 | #define MTRR_LOCK() simple_lock(&mtrr_lock); |
| 64 | #define MTRR_UNLOCK() simple_unlock(&mtrr_lock); |
| 65 | |
| 66 | //#define MTRR_DEBUG 1 |
| 67 | #if MTRR_DEBUG |
| 68 | #define DBG(x...) kprintf(x) |
| 69 | #else |
| 70 | #define DBG(x...) |
| 71 | #endif |
| 72 | |
| 73 | /* Private functions */ |
| 74 | static void mtrr_get_var_ranges(mtrr_var_range_t * range, int count); |
| 75 | static void mtrr_set_var_ranges(const mtrr_var_range_t * range, int count); |
| 76 | static void mtrr_get_fix_ranges(mtrr_fix_range_t * range); |
| 77 | static void mtrr_set_fix_ranges(const mtrr_fix_range_t * range); |
| 78 | static void mtrr_update_setup(void * param); |
| 79 | static void mtrr_update_teardown(void * param); |
| 80 | static void mtrr_update_action(void * param); |
| 81 | static void var_range_encode(mtrr_var_range_t * range, addr64_t address, |
| 82 | uint64_t length, uint32_t type, int valid); |
| 83 | static int var_range_overlap(mtrr_var_range_t * range, addr64_t address, |
| 84 | uint64_t length, uint32_t type); |
| 85 | |
| 86 | #define CACHE_CONTROL_MTRR (NULL) |
| 87 | #define CACHE_CONTROL_PAT ((void *)1) |
| 88 | |
| 89 | /* |
| 90 | * MTRR MSR bit fields. |
| 91 | */ |
| 92 | #define IA32_MTRR_DEF_TYPE_MT 0x000000ff |
| 93 | #define IA32_MTRR_DEF_TYPE_FE 0x00000400 |
| 94 | #define IA32_MTRR_DEF_TYPE_E 0x00000800 |
| 95 | |
| 96 | #define IA32_MTRRCAP_VCNT 0x000000ff |
| 97 | #define IA32_MTRRCAP_FIX 0x00000100 |
| 98 | #define IA32_MTRRCAP_WC 0x00000400 |
| 99 | |
| 100 | /* 0 < bits <= 64 */ |
| 101 | #define PHYS_BITS_TO_MASK(bits) \ |
| 102 | ((((1ULL << (bits-1)) - 1) << 1) | 1) |
| 103 | |
| 104 | /* |
| 105 | * Default mask for 36 physical address bits, this can |
| 106 | * change depending on the cpu model. |
| 107 | */ |
| 108 | static uint64_t mtrr_phys_mask = PHYS_BITS_TO_MASK(36); |
| 109 | |
| 110 | #define IA32_MTRR_PHYMASK_VALID 0x0000000000000800ULL |
| 111 | #define IA32_MTRR_PHYSBASE_MASK (mtrr_phys_mask & ~0x0000000000000FFFULL) |
| 112 | #define IA32_MTRR_PHYSBASE_TYPE 0x00000000000000FFULL |
| 113 | |
| 114 | /* |
| 115 | * Variable-range mask to/from length conversions. |
| 116 | */ |
| 117 | #define MASK_TO_LEN(mask) \ |
| 118 | ((~((mask) & IA32_MTRR_PHYSBASE_MASK) & mtrr_phys_mask) + 1) |
| 119 | |
| 120 | #define LEN_TO_MASK(len) \ |
| 121 | (~((len) - 1) & IA32_MTRR_PHYSBASE_MASK) |
| 122 | |
| 123 | #define LSB(x) ((x) & (~((x) - 1))) |
| 124 | |
| 125 | /* |
| 126 | * Fetch variable-range MTRR register pairs. |
| 127 | */ |
| 128 | static void |
| 129 | mtrr_get_var_ranges(mtrr_var_range_t * range, int count) |
| 130 | { |
| 131 | int i; |
| 132 | |
| 133 | for (i = 0; i < count; i++) { |
| 134 | range[i].base = rdmsr64(MSR_IA32_MTRR_PHYSBASE(i)); |
| 135 | range[i].mask = rdmsr64(MSR_IA32_MTRR_PHYSMASK(i)); |
| 136 | |
| 137 | /* bump ref count for firmware configured ranges */ |
| 138 | if (range[i].mask & IA32_MTRR_PHYMASK_VALID) |
| 139 | range[i].refcnt = 1; |
| 140 | else |
| 141 | range[i].refcnt = 0; |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Update variable-range MTRR register pairs. |
| 147 | */ |
| 148 | static void |
| 149 | mtrr_set_var_ranges(const mtrr_var_range_t * range, int count) |
| 150 | { |
| 151 | int i; |
| 152 | |
| 153 | for (i = 0; i < count; i++) { |
| 154 | wrmsr64(MSR_IA32_MTRR_PHYSBASE(i), range[i].base); |
| 155 | wrmsr64(MSR_IA32_MTRR_PHYSMASK(i), range[i].mask); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Fetch all fixed-range MTRR's. Note MSR offsets are not consecutive. |
| 161 | */ |
| 162 | static void |
| 163 | mtrr_get_fix_ranges(mtrr_fix_range_t * range) |
| 164 | { |
| 165 | int i; |
| 166 | |
| 167 | /* assume 11 fix range registers */ |
| 168 | range[0].types = rdmsr64(MSR_IA32_MTRR_FIX64K_00000); |
| 169 | range[1].types = rdmsr64(MSR_IA32_MTRR_FIX16K_80000); |
| 170 | range[2].types = rdmsr64(MSR_IA32_MTRR_FIX16K_A0000); |
| 171 | for (i = 0; i < 8; i++) |
| 172 | range[3 + i].types = rdmsr64(MSR_IA32_MTRR_FIX4K_C0000 + i); |
| 173 | } |
| 174 | |
| 175 | /* |
| 176 | * Update all fixed-range MTRR's. |
| 177 | */ |
| 178 | static void |
| 179 | mtrr_set_fix_ranges(const struct mtrr_fix_range * range) |
| 180 | { |
| 181 | int i; |
| 182 | |
| 183 | /* assume 11 fix range registers */ |
| 184 | wrmsr64(MSR_IA32_MTRR_FIX64K_00000, range[0].types); |
| 185 | wrmsr64(MSR_IA32_MTRR_FIX16K_80000, range[1].types); |
| 186 | wrmsr64(MSR_IA32_MTRR_FIX16K_A0000, range[2].types); |
| 187 | for (i = 0; i < 8; i++) |
| 188 | wrmsr64(MSR_IA32_MTRR_FIX4K_C0000 + i, range[3 + i].types); |
| 189 | } |
| 190 | |
| 191 | static boolean_t |
| 192 | mtrr_check_fix_ranges(const struct mtrr_fix_range * range) |
| 193 | { |
| 194 | int i; |
| 195 | boolean_t match = TRUE; |
| 196 | |
| 197 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 198 | |
| 199 | /* assume 11 fix range registers */ |
| 200 | match = range[0].types == rdmsr64(MSR_IA32_MTRR_FIX64K_00000) && |
| 201 | range[1].types == rdmsr64(MSR_IA32_MTRR_FIX16K_80000) && |
| 202 | range[2].types == rdmsr64(MSR_IA32_MTRR_FIX16K_A0000); |
| 203 | for (i = 0; match && i < 8; i++) { |
| 204 | match = range[3 + i].types == |
| 205 | rdmsr64(MSR_IA32_MTRR_FIX4K_C0000 + i); |
| 206 | } |
| 207 | |
| 208 | return match; |
| 209 | } |
| 210 | |
| 211 | static boolean_t |
| 212 | mtrr_check_var_ranges(mtrr_var_range_t * range, int count) |
| 213 | { |
| 214 | int i; |
| 215 | boolean_t match = TRUE; |
| 216 | |
| 217 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 218 | |
| 219 | for (i = 0; match && i < count; i++) { |
| 220 | match = range[i].base == rdmsr64(MSR_IA32_MTRR_PHYSBASE(i)) && |
| 221 | range[i].mask == rdmsr64(MSR_IA32_MTRR_PHYSMASK(i)); |
| 222 | } |
| 223 | |
| 224 | return match; |
| 225 | } |
| 226 | |
| 227 | #if MTRR_DEBUG |
| 228 | static void |
| 229 | mtrr_msr_dump(void) |
| 230 | { |
| 231 | int i; |
| 232 | int count = rdmsr64(MSR_IA32_MTRRCAP) & IA32_MTRRCAP_VCNT; |
| 233 | |
| 234 | DBG("VAR -- BASE -------------- MASK -------------- SIZE\n" ); |
| 235 | for (i = 0; i < count; i++) { |
| 236 | DBG(" %02x 0x%016llx 0x%016llx 0x%llx\n" , i, |
| 237 | rdmsr64(MSR_IA32_MTRR_PHYSBASE(i)), |
| 238 | rdmsr64(MSR_IA32_MTRR_PHYSMASK(i)), |
| 239 | MASK_TO_LEN(rdmsr64(MSR_IA32_MTRR_PHYSMASK(i)))); |
| 240 | } |
| 241 | DBG("\n" ); |
| 242 | |
| 243 | DBG("FIX64K_00000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX64K_00000)); |
| 244 | DBG("FIX16K_80000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX16K_80000)); |
| 245 | DBG("FIX16K_A0000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX16K_A0000)); |
| 246 | DBG(" FIX4K_C0000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_C0000)); |
| 247 | DBG(" FIX4K_C8000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_C8000)); |
| 248 | DBG(" FIX4K_D0000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_D0000)); |
| 249 | DBG(" FIX4K_D8000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_D8000)); |
| 250 | DBG(" FIX4K_E0000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_E0000)); |
| 251 | DBG(" FIX4K_E8000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_E8000)); |
| 252 | DBG(" FIX4K_F0000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_F0000)); |
| 253 | DBG(" FIX4K_F8000: 0x%016llx\n" , rdmsr64(MSR_IA32_MTRR_FIX4K_F8000)); |
| 254 | |
| 255 | DBG("\nMTRRcap = 0x%llx MTRRdefType = 0x%llx\n" , |
| 256 | rdmsr64(MSR_IA32_MTRRCAP), rdmsr64(MSR_IA32_MTRR_DEF_TYPE)); |
| 257 | } |
| 258 | #endif /* MTRR_DEBUG */ |
| 259 | |
| 260 | /* |
| 261 | * Called by the boot processor (BP) early during boot to initialize MTRR |
| 262 | * support. The MTRR state on the BP is saved, any additional processors |
| 263 | * will have the same settings applied to ensure MTRR consistency. |
| 264 | */ |
| 265 | void |
| 266 | mtrr_init(void) |
| 267 | { |
| 268 | /* no reason to init more than once */ |
| 269 | if (mtrr_initialized == TRUE) |
| 270 | return; |
| 271 | |
| 272 | /* check for presence of MTRR feature on the processor */ |
| 273 | if ((cpuid_features() & CPUID_FEATURE_MTRR) == 0) |
| 274 | return; /* no MTRR feature */ |
| 275 | |
| 276 | /* use a lock to serialize MTRR changes */ |
| 277 | bzero((void *)&mtrr_state, sizeof(mtrr_state)); |
| 278 | simple_lock_init(&mtrr_lock, 0); |
| 279 | |
| 280 | mtrr_state.MTRRcap = rdmsr64(MSR_IA32_MTRRCAP); |
| 281 | mtrr_state.MTRRdefType = rdmsr64(MSR_IA32_MTRR_DEF_TYPE); |
| 282 | mtrr_state.var_count = (unsigned int)(mtrr_state.MTRRcap & IA32_MTRRCAP_VCNT); |
| 283 | |
| 284 | /* allocate storage for variable ranges (can block?) */ |
| 285 | if (mtrr_state.var_count) { |
| 286 | mtrr_state.var_range = (mtrr_var_range_t *) |
| 287 | kalloc(sizeof(mtrr_var_range_t) * |
| 288 | mtrr_state.var_count); |
| 289 | if (mtrr_state.var_range == NULL) |
| 290 | mtrr_state.var_count = 0; |
| 291 | } |
| 292 | |
| 293 | /* fetch the initial firmware configured variable ranges */ |
| 294 | if (mtrr_state.var_count) |
| 295 | mtrr_get_var_ranges(mtrr_state.var_range, |
| 296 | mtrr_state.var_count); |
| 297 | |
| 298 | /* fetch the initial firmware configured fixed ranges */ |
| 299 | if (mtrr_state.MTRRcap & IA32_MTRRCAP_FIX) |
| 300 | mtrr_get_fix_ranges(mtrr_state.fix_range); |
| 301 | |
| 302 | mtrr_initialized = TRUE; |
| 303 | |
| 304 | #if MTRR_DEBUG |
| 305 | mtrr_msr_dump(); /* dump firmware settings */ |
| 306 | #endif |
| 307 | |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * Performs the Intel recommended procedure for changing the MTRR |
| 312 | * in a MP system. Leverage rendezvous mechanism for the required |
| 313 | * barrier synchronization among all processors. This function is |
| 314 | * called from the rendezvous IPI handler, and mtrr_update_cpu(). |
| 315 | */ |
| 316 | static void |
| 317 | mtrr_update_action(void * cache_control_type) |
| 318 | { |
| 319 | uintptr_t cr0, cr4; |
| 320 | uintptr_t tmp; |
| 321 | |
| 322 | cr0 = get_cr0(); |
| 323 | cr4 = get_cr4(); |
| 324 | |
| 325 | /* enter no-fill cache mode */ |
| 326 | tmp = cr0 | CR0_CD; |
| 327 | tmp &= ~CR0_NW; |
| 328 | set_cr0(tmp); |
| 329 | |
| 330 | /* flush caches */ |
| 331 | wbinvd(); |
| 332 | |
| 333 | /* clear the PGE flag in CR4 */ |
| 334 | if (cr4 & CR4_PGE) |
| 335 | set_cr4(cr4 & ~CR4_PGE); |
| 336 | |
| 337 | /* flush TLBs */ |
| 338 | flush_tlb_raw(); |
| 339 | |
| 340 | if (CACHE_CONTROL_PAT == cache_control_type) { |
| 341 | /* Change PA6 attribute field to WC */ |
| 342 | uint64_t pat = rdmsr64(MSR_IA32_CR_PAT); |
| 343 | DBG("CPU%d PAT: was 0x%016llx\n" , get_cpu_number(), pat); |
| 344 | pat &= ~(0x0FULL << 48); |
| 345 | pat |= (0x01ULL << 48); |
| 346 | wrmsr64(MSR_IA32_CR_PAT, pat); |
| 347 | DBG("CPU%d PAT: is 0x%016llx\n" , |
| 348 | get_cpu_number(), rdmsr64(MSR_IA32_CR_PAT)); |
| 349 | } |
| 350 | else { |
| 351 | /* disable all MTRR ranges */ |
| 352 | wrmsr64(MSR_IA32_MTRR_DEF_TYPE, |
| 353 | mtrr_state.MTRRdefType & ~IA32_MTRR_DEF_TYPE_E); |
| 354 | |
| 355 | /* apply MTRR settings */ |
| 356 | if (mtrr_state.var_count) |
| 357 | mtrr_set_var_ranges(mtrr_state.var_range, |
| 358 | mtrr_state.var_count); |
| 359 | |
| 360 | if (mtrr_state.MTRRcap & IA32_MTRRCAP_FIX) |
| 361 | mtrr_set_fix_ranges(mtrr_state.fix_range); |
| 362 | |
| 363 | /* enable all MTRR range registers (what if E was not set?) */ |
| 364 | wrmsr64(MSR_IA32_MTRR_DEF_TYPE, |
| 365 | mtrr_state.MTRRdefType | IA32_MTRR_DEF_TYPE_E); |
| 366 | } |
| 367 | |
| 368 | /* flush all caches and TLBs a second time */ |
| 369 | wbinvd(); |
| 370 | flush_tlb_raw(); |
| 371 | |
| 372 | /* restore normal cache mode */ |
| 373 | set_cr0(cr0); |
| 374 | |
| 375 | /* restore PGE flag */ |
| 376 | if (cr4 & CR4_PGE) |
| 377 | set_cr4(cr4); |
| 378 | |
| 379 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 380 | } |
| 381 | |
| 382 | static void |
| 383 | mtrr_update_setup(__unused void * param_not_used) |
| 384 | { |
| 385 | /* disable interrupts before the first barrier */ |
| 386 | current_cpu_datap()->cpu_iflag = ml_set_interrupts_enabled(FALSE); |
| 387 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 388 | } |
| 389 | |
| 390 | static void |
| 391 | mtrr_update_teardown(__unused void * param_not_used) |
| 392 | { |
| 393 | /* restore interrupt flag following MTRR changes */ |
| 394 | ml_set_interrupts_enabled(current_cpu_datap()->cpu_iflag); |
| 395 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Update MTRR settings on all processors. |
| 400 | */ |
| 401 | kern_return_t |
| 402 | mtrr_update_all_cpus(void) |
| 403 | { |
| 404 | if (mtrr_initialized == FALSE) |
| 405 | return KERN_NOT_SUPPORTED; |
| 406 | |
| 407 | MTRR_LOCK(); |
| 408 | mp_rendezvous(mtrr_update_setup, |
| 409 | mtrr_update_action, |
| 410 | mtrr_update_teardown, NULL); |
| 411 | MTRR_UNLOCK(); |
| 412 | |
| 413 | return KERN_SUCCESS; |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Verify that a processor has been set with the BSP's MTRR settings. Called |
| 418 | * during slave processor initialization to check and set MTRR settings |
| 419 | * discovered on the boot processor by mtrr_init(). |
| 420 | */ |
| 421 | kern_return_t |
| 422 | mtrr_update_cpu(void) |
| 423 | { |
| 424 | boolean_t match = TRUE; |
| 425 | |
| 426 | if (mtrr_initialized == FALSE) |
| 427 | return KERN_NOT_SUPPORTED; |
| 428 | |
| 429 | DBG("CPU%d: %s\n" , get_cpu_number(), __FUNCTION__); |
| 430 | |
| 431 | MTRR_LOCK(); |
| 432 | |
| 433 | /* Check MSR_IA32_MTRR_DEF_TYPE MSR */ |
| 434 | match = mtrr_state.MTRRdefType == rdmsr64(MSR_IA32_MTRR_DEF_TYPE); |
| 435 | |
| 436 | /* Check MSR_IA32_MTRRCAP MSR */ |
| 437 | if (match) { |
| 438 | match = mtrr_state.MTRRcap == rdmsr64(MSR_IA32_MTRRCAP); |
| 439 | } |
| 440 | |
| 441 | /* Check variable ranges */ |
| 442 | if (match && mtrr_state.var_count) { |
| 443 | match = mtrr_check_var_ranges(mtrr_state.var_range, |
| 444 | mtrr_state.var_count); |
| 445 | } |
| 446 | |
| 447 | /* Check fixed ranges */ |
| 448 | if (match && (mtrr_state.MTRRcap & IA32_MTRRCAP_FIX)) { |
| 449 | match = mtrr_check_fix_ranges(mtrr_state.fix_range); |
| 450 | } |
| 451 | |
| 452 | #if MTRR_DEBUG |
| 453 | if (!match) |
| 454 | mtrr_msr_dump(); |
| 455 | #endif |
| 456 | if (!match) { |
| 457 | DBG("mtrr_update_cpu() setting MTRR for cpu %d\n" , |
| 458 | get_cpu_number()); |
| 459 | mtrr_update_action(NULL); |
| 460 | } |
| 461 | #if MTRR_DEBUG |
| 462 | if (!match) |
| 463 | mtrr_msr_dump(); |
| 464 | #endif |
| 465 | |
| 466 | MTRR_UNLOCK(); |
| 467 | |
| 468 | return KERN_SUCCESS; |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * Add a MTRR range to associate the physical memory range specified |
| 473 | * with a given memory caching type. |
| 474 | */ |
| 475 | kern_return_t |
| 476 | mtrr_range_add(addr64_t address, uint64_t length, uint32_t type) |
| 477 | { |
| 478 | mtrr_var_range_t * vr; |
| 479 | mtrr_var_range_t * free_range; |
| 480 | kern_return_t ret = KERN_NO_SPACE; |
| 481 | int overlap; |
| 482 | unsigned int i; |
| 483 | |
| 484 | DBG("mtrr_range_add base = 0x%llx, size = 0x%llx, type = %d\n" , |
| 485 | address, length, type); |
| 486 | |
| 487 | if (mtrr_initialized == FALSE) { |
| 488 | return KERN_NOT_SUPPORTED; |
| 489 | } |
| 490 | |
| 491 | /* check memory type (GPF exception for undefined types) */ |
| 492 | if ((type != MTRR_TYPE_UNCACHEABLE) && |
| 493 | (type != MTRR_TYPE_WRITECOMBINE) && |
| 494 | (type != MTRR_TYPE_WRITETHROUGH) && |
| 495 | (type != MTRR_TYPE_WRITEPROTECT) && |
| 496 | (type != MTRR_TYPE_WRITEBACK)) { |
| 497 | return KERN_INVALID_ARGUMENT; |
| 498 | } |
| 499 | |
| 500 | /* check WC support if requested */ |
| 501 | if ((type == MTRR_TYPE_WRITECOMBINE) && |
| 502 | (mtrr_state.MTRRcap & IA32_MTRRCAP_WC) == 0) { |
| 503 | return KERN_NOT_SUPPORTED; |
| 504 | } |
| 505 | |
| 506 | /* leave the fix range area below 1MB alone */ |
| 507 | if (address < 0x100000 || mtrr_state.var_count == 0) { |
| 508 | return KERN_NOT_SUPPORTED; |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * Length must be a power of 2 given by 2^n, where n >= 12. |
| 513 | * Base address alignment must be larger than or equal to length. |
| 514 | */ |
| 515 | if ((length < 0x1000) || |
| 516 | (LSB(length) != length) || |
| 517 | (address && (length > LSB(address)))) { |
| 518 | return KERN_INVALID_ARGUMENT; |
| 519 | } |
| 520 | |
| 521 | MTRR_LOCK(); |
| 522 | |
| 523 | /* |
| 524 | * Check for overlap and locate a free range. |
| 525 | */ |
| 526 | for (i = 0, free_range = NULL; i < mtrr_state.var_count; i++) |
| 527 | { |
| 528 | vr = &mtrr_state.var_range[i]; |
| 529 | |
| 530 | if (vr->refcnt == 0) { |
| 531 | /* free range candidate if no overlaps are found */ |
| 532 | free_range = vr; |
| 533 | continue; |
| 534 | } |
| 535 | |
| 536 | overlap = var_range_overlap(vr, address, length, type); |
| 537 | if (overlap > 0) { |
| 538 | /* |
| 539 | * identical overlap permitted, increment ref count. |
| 540 | * no hardware update required. |
| 541 | */ |
| 542 | free_range = vr; |
| 543 | break; |
| 544 | } |
| 545 | if (overlap < 0) { |
| 546 | /* unsupported overlapping of memory types */ |
| 547 | free_range = NULL; |
| 548 | break; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | if (free_range) { |
| 553 | if (free_range->refcnt++ == 0) { |
| 554 | var_range_encode(free_range, address, length, type, 1); |
| 555 | mp_rendezvous(mtrr_update_setup, |
| 556 | mtrr_update_action, |
| 557 | mtrr_update_teardown, NULL); |
| 558 | } |
| 559 | ret = KERN_SUCCESS; |
| 560 | } |
| 561 | |
| 562 | #if MTRR_DEBUG |
| 563 | mtrr_msr_dump(); |
| 564 | #endif |
| 565 | |
| 566 | MTRR_UNLOCK(); |
| 567 | |
| 568 | return ret; |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * Remove a previously added MTRR range. The same arguments used for adding |
| 573 | * the memory range must be supplied again. |
| 574 | */ |
| 575 | kern_return_t |
| 576 | mtrr_range_remove(addr64_t address, uint64_t length, uint32_t type) |
| 577 | { |
| 578 | mtrr_var_range_t * vr; |
| 579 | int result = KERN_FAILURE; |
| 580 | int cpu_update = 0; |
| 581 | unsigned int i; |
| 582 | |
| 583 | DBG("mtrr_range_remove base = 0x%llx, size = 0x%llx, type = %d\n" , |
| 584 | address, length, type); |
| 585 | |
| 586 | if (mtrr_initialized == FALSE) { |
| 587 | return KERN_NOT_SUPPORTED; |
| 588 | } |
| 589 | |
| 590 | MTRR_LOCK(); |
| 591 | |
| 592 | for (i = 0; i < mtrr_state.var_count; i++) { |
| 593 | vr = &mtrr_state.var_range[i]; |
| 594 | |
| 595 | if (vr->refcnt && |
| 596 | var_range_overlap(vr, address, length, type) > 0) { |
| 597 | /* found specified variable range */ |
| 598 | if (--mtrr_state.var_range[i].refcnt == 0) { |
| 599 | var_range_encode(vr, address, length, type, 0); |
| 600 | cpu_update = 1; |
| 601 | } |
| 602 | result = KERN_SUCCESS; |
| 603 | break; |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | if (cpu_update) { |
| 608 | mp_rendezvous(mtrr_update_setup, |
| 609 | mtrr_update_action, |
| 610 | mtrr_update_teardown, NULL); |
| 611 | result = KERN_SUCCESS; |
| 612 | } |
| 613 | |
| 614 | #if MTRR_DEBUG |
| 615 | mtrr_msr_dump(); |
| 616 | #endif |
| 617 | |
| 618 | MTRR_UNLOCK(); |
| 619 | |
| 620 | return result; |
| 621 | } |
| 622 | |
| 623 | /* |
| 624 | * Variable range helper routines |
| 625 | */ |
| 626 | static void |
| 627 | var_range_encode(mtrr_var_range_t * range, addr64_t address, |
| 628 | uint64_t length, uint32_t type, int valid) |
| 629 | { |
| 630 | range->base = (address & IA32_MTRR_PHYSBASE_MASK) | |
| 631 | (type & (uint32_t)IA32_MTRR_PHYSBASE_TYPE); |
| 632 | |
| 633 | range->mask = LEN_TO_MASK(length) | |
| 634 | (valid ? IA32_MTRR_PHYMASK_VALID : 0); |
| 635 | } |
| 636 | |
| 637 | static int |
| 638 | var_range_overlap(mtrr_var_range_t * range, addr64_t address, |
| 639 | uint64_t length, uint32_t type) |
| 640 | { |
| 641 | uint64_t v_address, v_length; |
| 642 | uint32_t v_type; |
| 643 | int result = 0; /* no overlap, or overlap ok */ |
| 644 | |
| 645 | v_address = range->base & IA32_MTRR_PHYSBASE_MASK; |
| 646 | v_type = (uint32_t)(range->base & IA32_MTRR_PHYSBASE_TYPE); |
| 647 | v_length = MASK_TO_LEN(range->mask); |
| 648 | |
| 649 | /* detect range overlap */ |
| 650 | if ((v_address >= address && v_address < (address + length)) || |
| 651 | (address >= v_address && address < (v_address + v_length))) { |
| 652 | |
| 653 | if (v_address == address && v_length == length && v_type == type) |
| 654 | result = 1; /* identical overlap ok */ |
| 655 | else if ( v_type == MTRR_TYPE_UNCACHEABLE && |
| 656 | type == MTRR_TYPE_UNCACHEABLE ) { |
| 657 | /* UC ranges can overlap */ |
| 658 | } |
| 659 | else if ((v_type == MTRR_TYPE_UNCACHEABLE && |
| 660 | type == MTRR_TYPE_WRITEBACK) || |
| 661 | (v_type == MTRR_TYPE_WRITEBACK && |
| 662 | type == MTRR_TYPE_UNCACHEABLE)) { |
| 663 | /* UC/WB can overlap - effective type becomes UC */ |
| 664 | } |
| 665 | else { |
| 666 | /* anything else may cause undefined behavior */ |
| 667 | result = -1; |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | return result; |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * Initialize PAT (Page Attribute Table) |
| 676 | */ |
| 677 | void |
| 678 | pat_init(void) |
| 679 | { |
| 680 | boolean_t istate; |
| 681 | uint64_t pat; |
| 682 | |
| 683 | if (!(cpuid_features() & CPUID_FEATURE_PAT)) |
| 684 | return; |
| 685 | |
| 686 | istate = ml_set_interrupts_enabled(FALSE); |
| 687 | |
| 688 | pat = rdmsr64(MSR_IA32_CR_PAT); |
| 689 | DBG("CPU%d PAT: was 0x%016llx\n" , get_cpu_number(), pat); |
| 690 | |
| 691 | /* Change PA6 attribute field to WC if required */ |
| 692 | if ((pat & ~(0x0FULL << 48)) != (0x01ULL << 48)) { |
| 693 | mtrr_update_action(CACHE_CONTROL_PAT); |
| 694 | } |
| 695 | ml_set_interrupts_enabled(istate); |
| 696 | } |
| 697 | |