1 | /* |
2 | * Copyright (c) 2003-2012 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | |
57 | |
58 | #include <mach/i386/vm_param.h> |
59 | |
60 | #include <string.h> |
61 | #include <mach/vm_param.h> |
62 | #include <mach/vm_prot.h> |
63 | #include <mach/machine.h> |
64 | #include <mach/time_value.h> |
65 | #include <kern/spl.h> |
66 | #include <kern/assert.h> |
67 | #include <kern/debug.h> |
68 | #include <kern/misc_protos.h> |
69 | #include <kern/cpu_data.h> |
70 | #include <kern/processor.h> |
71 | #include <vm/vm_page.h> |
72 | #include <vm/pmap.h> |
73 | #include <vm/vm_kern.h> |
74 | #include <i386/pmap.h> |
75 | #include <i386/misc_protos.h> |
76 | #include <i386/cpuid.h> |
77 | #include <mach/thread_status.h> |
78 | #include <pexpert/i386/efi.h> |
79 | #include <i386/i386_lowmem.h> |
80 | #include <x86_64/lowglobals.h> |
81 | #include <i386/pal_routines.h> |
82 | |
83 | #include <mach-o/loader.h> |
84 | #include <libkern/kernel_mach_header.h> |
85 | |
86 | |
87 | vm_size_t mem_size = 0; |
88 | pmap_paddr_t first_avail = 0;/* first after page tables */ |
89 | |
90 | uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */ |
91 | uint64_t mem_actual; |
92 | uint64_t sane_size = 0; /* Memory size for defaults calculations */ |
93 | |
94 | /* |
95 | * KASLR parameters |
96 | */ |
97 | ppnum_t vm_kernel_base_page; |
98 | vm_offset_t vm_kernel_base; |
99 | vm_offset_t vm_kernel_top; |
100 | vm_offset_t vm_kernel_stext; |
101 | vm_offset_t vm_kernel_etext; |
102 | vm_offset_t vm_kernel_slide; |
103 | vm_offset_t vm_kernel_slid_base; |
104 | vm_offset_t vm_kernel_slid_top; |
105 | vm_offset_t vm_hib_base; |
106 | vm_offset_t vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS; |
107 | vm_offset_t vm_kext_top = VM_MIN_KERNEL_ADDRESS; |
108 | |
109 | vm_offset_t vm_prelink_stext; |
110 | vm_offset_t vm_prelink_etext; |
111 | vm_offset_t vm_prelink_sinfo; |
112 | vm_offset_t vm_prelink_einfo; |
113 | vm_offset_t vm_slinkedit; |
114 | vm_offset_t vm_elinkedit; |
115 | |
116 | vm_offset_t vm_kernel_builtinkmod_text; |
117 | vm_offset_t vm_kernel_builtinkmod_text_end; |
118 | |
119 | #define MAXLORESERVE (32 * 1024 * 1024) |
120 | |
121 | ppnum_t max_ppnum = 0; |
122 | ppnum_t lowest_lo = 0; |
123 | ppnum_t lowest_hi = 0; |
124 | ppnum_t highest_hi = 0; |
125 | |
126 | enum {PMAP_MAX_RESERVED_RANGES = 32}; |
127 | uint32_t pmap_reserved_pages_allocated = 0; |
128 | uint32_t pmap_reserved_range_indices[PMAP_MAX_RESERVED_RANGES]; |
129 | uint32_t pmap_last_reserved_range_index = 0; |
130 | uint32_t pmap_reserved_ranges = 0; |
131 | |
132 | extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *); |
133 | |
134 | pmap_paddr_t avail_start, avail_end; |
135 | vm_offset_t virtual_avail, virtual_end; |
136 | static pmap_paddr_t avail_remaining; |
137 | vm_offset_t static_memory_end = 0; |
138 | |
139 | vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end, sconst, econst; |
140 | |
141 | /* |
142 | * _mh_execute_header is the mach_header for the currently executing kernel |
143 | */ |
144 | vm_offset_t segTEXTB; unsigned long segSizeTEXT; |
145 | vm_offset_t segDATAB; unsigned long segSizeDATA; |
146 | vm_offset_t segLINKB; unsigned long segSizeLINK; |
147 | vm_offset_t segPRELINKTEXTB; unsigned long segSizePRELINKTEXT; |
148 | vm_offset_t segPRELINKINFOB; unsigned long segSizePRELINKINFO; |
149 | vm_offset_t segHIBB; unsigned long segSizeHIB; |
150 | unsigned long segSizeConst; |
151 | |
152 | static kernel_segment_command_t *segTEXT, *segDATA; |
153 | static kernel_section_t *cursectTEXT, *lastsectTEXT; |
154 | static kernel_segment_command_t *segCONST; |
155 | |
156 | extern uint64_t firmware_Conventional_bytes; |
157 | extern uint64_t firmware_RuntimeServices_bytes; |
158 | extern uint64_t firmware_ACPIReclaim_bytes; |
159 | extern uint64_t firmware_ACPINVS_bytes; |
160 | extern uint64_t firmware_PalCode_bytes; |
161 | extern uint64_t firmware_Reserved_bytes; |
162 | extern uint64_t firmware_Unusable_bytes; |
163 | extern uint64_t firmware_other_bytes; |
164 | uint64_t firmware_MMIO_bytes; |
165 | |
166 | /* |
167 | * Linker magic to establish the highest address in the kernel. |
168 | */ |
169 | extern void *last_kernel_symbol; |
170 | |
171 | boolean_t memmap = FALSE; |
172 | #if DEBUG || DEVELOPMENT |
173 | static void |
174 | kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) { |
175 | unsigned int i; |
176 | unsigned int j; |
177 | pmap_memory_region_t *p = pmap_memory_regions; |
178 | EfiMemoryRange *mptr; |
179 | addr64_t region_start, region_end; |
180 | addr64_t efi_start, efi_end; |
181 | |
182 | for (j = 0; j < pmap_memory_region_count; j++, p++) { |
183 | kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n" , |
184 | j, p->type, |
185 | (addr64_t) p->base << I386_PGSHIFT, |
186 | (addr64_t) p->alloc_up << I386_PGSHIFT, |
187 | (addr64_t) p->alloc_down << I386_PGSHIFT, |
188 | (addr64_t) p->end << I386_PGSHIFT); |
189 | region_start = (addr64_t) p->base << I386_PGSHIFT; |
190 | region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1; |
191 | mptr = (EfiMemoryRange *) maddr; |
192 | for (i = 0; |
193 | i < mcount; |
194 | i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { |
195 | if (mptr->Type != kEfiLoaderCode && |
196 | mptr->Type != kEfiLoaderData && |
197 | mptr->Type != kEfiBootServicesCode && |
198 | mptr->Type != kEfiBootServicesData && |
199 | mptr->Type != kEfiConventionalMemory) { |
200 | efi_start = (addr64_t)mptr->PhysicalStart; |
201 | efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1; |
202 | if ((efi_start >= region_start && efi_start <= region_end) || |
203 | (efi_end >= region_start && efi_end <= region_end)) { |
204 | kprintf(" *** Overlapping region with EFI runtime region %d\n" , i); |
205 | } |
206 | } |
207 | } |
208 | } |
209 | } |
210 | #define DPRINTF(x...) do { if (memmap) kprintf(x); } while (0) |
211 | |
212 | #else |
213 | |
214 | static void |
215 | kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) { |
216 | #pragma unused(maddr, msize, mcount) |
217 | } |
218 | |
219 | #define DPRINTF(x...) |
220 | #endif /* DEBUG */ |
221 | |
222 | /* |
223 | * Basic VM initialization. |
224 | */ |
225 | void |
226 | i386_vm_init(uint64_t maxmem, |
227 | boolean_t IA32e, |
228 | boot_args *args) |
229 | { |
230 | pmap_memory_region_t *pmptr; |
231 | pmap_memory_region_t *prev_pmptr; |
232 | EfiMemoryRange *mptr; |
233 | unsigned int mcount; |
234 | unsigned int msize; |
235 | vm_offset_t maddr; |
236 | ppnum_t fap; |
237 | unsigned int i; |
238 | ppnum_t maxpg = 0; |
239 | uint32_t pmap_type; |
240 | uint32_t maxloreserve; |
241 | uint32_t maxdmaaddr; |
242 | uint32_t mbuf_reserve = 0; |
243 | boolean_t mbuf_override = FALSE; |
244 | boolean_t coalescing_permitted; |
245 | vm_kernel_base_page = i386_btop(args->kaddr); |
246 | vm_offset_t base_address; |
247 | vm_offset_t static_base_address; |
248 | |
249 | PE_parse_boot_argn("memmap" , &memmap, sizeof(memmap)); |
250 | |
251 | /* |
252 | * Establish the KASLR parameters. |
253 | */ |
254 | static_base_address = ml_static_ptovirt(KERNEL_BASE_OFFSET); |
255 | base_address = ml_static_ptovirt(args->kaddr); |
256 | vm_kernel_slide = base_address - static_base_address; |
257 | if (args->kslide) { |
258 | kprintf("KASLR slide: 0x%016lx dynamic\n" , vm_kernel_slide); |
259 | if (vm_kernel_slide != ((vm_offset_t)args->kslide)) |
260 | panic("Kernel base inconsistent with slide - rebased?" ); |
261 | } else { |
262 | /* No slide relative to on-disk symbols */ |
263 | kprintf("KASLR slide: 0x%016lx static and ignored\n" , |
264 | vm_kernel_slide); |
265 | vm_kernel_slide = 0; |
266 | } |
267 | |
268 | /* |
269 | * Zero out local relocations to avoid confusing kxld. |
270 | * TODO: might be better to move this code to OSKext::initialize |
271 | */ |
272 | if (_mh_execute_header.flags & MH_PIE) { |
273 | struct load_command *loadcmd; |
274 | uint32_t cmd; |
275 | |
276 | loadcmd = (struct load_command *)((uintptr_t)&_mh_execute_header + |
277 | sizeof (_mh_execute_header)); |
278 | |
279 | for (cmd = 0; cmd < _mh_execute_header.ncmds; cmd++) { |
280 | if (loadcmd->cmd == LC_DYSYMTAB) { |
281 | struct dysymtab_command *dysymtab; |
282 | |
283 | dysymtab = (struct dysymtab_command *)loadcmd; |
284 | dysymtab->nlocrel = 0; |
285 | dysymtab->locreloff = 0; |
286 | kprintf("Hiding local relocations\n" ); |
287 | break; |
288 | } |
289 | loadcmd = (struct load_command *)((uintptr_t)loadcmd + loadcmd->cmdsize); |
290 | } |
291 | } |
292 | |
293 | /* |
294 | * Now retrieve addresses for end, edata, and etext |
295 | * from MACH-O headers. |
296 | */ |
297 | segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, |
298 | "__TEXT" , &segSizeTEXT); |
299 | segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, |
300 | "__DATA" , &segSizeDATA); |
301 | segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, |
302 | "__LINKEDIT" , &segSizeLINK); |
303 | segHIBB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, |
304 | "__HIB" , &segSizeHIB); |
305 | segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, |
306 | "__PRELINK_TEXT" , &segSizePRELINKTEXT); |
307 | segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, |
308 | "__PRELINK_INFO" , &segSizePRELINKINFO); |
309 | segTEXT = getsegbynamefromheader(&_mh_execute_header, |
310 | "__TEXT" ); |
311 | segDATA = getsegbynamefromheader(&_mh_execute_header, |
312 | "__DATA" ); |
313 | segCONST = getsegbynamefromheader(&_mh_execute_header, |
314 | "__CONST" ); |
315 | cursectTEXT = lastsectTEXT = firstsect(segTEXT); |
316 | /* Discover the last TEXT section within the TEXT segment */ |
317 | while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) { |
318 | lastsectTEXT = cursectTEXT; |
319 | } |
320 | |
321 | sHIB = segHIBB; |
322 | eHIB = segHIBB + segSizeHIB; |
323 | vm_hib_base = sHIB; |
324 | /* Zero-padded from ehib to stext if text is 2M-aligned */ |
325 | stext = segTEXTB; |
326 | lowGlo.lgStext = stext; |
327 | etext = (vm_offset_t) round_page_64(lastsectTEXT->addr + lastsectTEXT->size); |
328 | /* Zero-padded from etext to sdata if text is 2M-aligned */ |
329 | sdata = segDATAB; |
330 | edata = segDATAB + segSizeDATA; |
331 | |
332 | sconst = segCONST->vmaddr; |
333 | segSizeConst = segCONST->vmsize; |
334 | econst = sconst + segSizeConst; |
335 | |
336 | assert(((sconst|econst) & PAGE_MASK) == 0); |
337 | |
338 | DPRINTF("segTEXTB = %p\n" , (void *) segTEXTB); |
339 | DPRINTF("segDATAB = %p\n" , (void *) segDATAB); |
340 | DPRINTF("segLINKB = %p\n" , (void *) segLINKB); |
341 | DPRINTF("segHIBB = %p\n" , (void *) segHIBB); |
342 | DPRINTF("segPRELINKTEXTB = %p\n" , (void *) segPRELINKTEXTB); |
343 | DPRINTF("segPRELINKINFOB = %p\n" , (void *) segPRELINKINFOB); |
344 | DPRINTF("sHIB = %p\n" , (void *) sHIB); |
345 | DPRINTF("eHIB = %p\n" , (void *) eHIB); |
346 | DPRINTF("stext = %p\n" , (void *) stext); |
347 | DPRINTF("etext = %p\n" , (void *) etext); |
348 | DPRINTF("sdata = %p\n" , (void *) sdata); |
349 | DPRINTF("edata = %p\n" , (void *) edata); |
350 | DPRINTF("sconst = %p\n" , (void *) sconst); |
351 | DPRINTF("econst = %p\n" , (void *) econst); |
352 | DPRINTF("kernel_top = %p\n" , (void *) &last_kernel_symbol); |
353 | |
354 | vm_kernel_base = sHIB; |
355 | vm_kernel_top = (vm_offset_t) &last_kernel_symbol; |
356 | vm_kernel_stext = stext; |
357 | vm_kernel_etext = etext; |
358 | vm_prelink_stext = segPRELINKTEXTB; |
359 | vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT; |
360 | vm_prelink_sinfo = segPRELINKINFOB; |
361 | vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO; |
362 | vm_slinkedit = segLINKB; |
363 | vm_elinkedit = segLINKB + segSizeLINK; |
364 | vm_kernel_slid_base = vm_kext_base + vm_kernel_slide; |
365 | vm_kernel_slid_top = vm_prelink_einfo; |
366 | |
367 | vm_set_page_size(); |
368 | |
369 | /* |
370 | * Compute the memory size. |
371 | */ |
372 | |
373 | avail_remaining = 0; |
374 | avail_end = 0; |
375 | pmptr = pmap_memory_regions; |
376 | prev_pmptr = 0; |
377 | pmap_memory_region_count = pmap_memory_region_current = 0; |
378 | fap = (ppnum_t) i386_btop(first_avail); |
379 | |
380 | maddr = ml_static_ptovirt((vm_offset_t)args->MemoryMap); |
381 | mptr = (EfiMemoryRange *)maddr; |
382 | if (args->MemoryMapDescriptorSize == 0) |
383 | panic("Invalid memory map descriptor size" ); |
384 | msize = args->MemoryMapDescriptorSize; |
385 | mcount = args->MemoryMapSize / msize; |
386 | |
387 | #define FOURGIG 0x0000000100000000ULL |
388 | #define ONEGIG 0x0000000040000000ULL |
389 | |
390 | for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { |
391 | ppnum_t base, top; |
392 | uint64_t region_bytes = 0; |
393 | |
394 | if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) { |
395 | kprintf("WARNING: truncating memory region count at %d\n" , pmap_memory_region_count); |
396 | break; |
397 | } |
398 | base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT); |
399 | top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1); |
400 | |
401 | if (base == 0) { |
402 | /* |
403 | * Avoid having to deal with the edge case of the |
404 | * very first possible physical page and the roll-over |
405 | * to -1; just ignore that page. |
406 | */ |
407 | kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n" , (uint64_t) base, (uint64_t) top); |
408 | base++; |
409 | } |
410 | if (top + 1 == 0) { |
411 | /* |
412 | * Avoid having to deal with the edge case of the |
413 | * very last possible physical page and the roll-over |
414 | * to 0; just ignore that page. |
415 | */ |
416 | kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n" , (uint64_t) base, (uint64_t) top); |
417 | top--; |
418 | } |
419 | if (top < base) { |
420 | /* |
421 | * That was the only page in that region, so |
422 | * ignore the whole region. |
423 | */ |
424 | continue; |
425 | } |
426 | |
427 | #if MR_RSV_TEST |
428 | static uint32_t nmr = 0; |
429 | if ((base > 0x20000) && (nmr++ < 4)) |
430 | mptr->Attribute |= EFI_MEMORY_KERN_RESERVED; |
431 | #endif |
432 | region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT); |
433 | pmap_type = mptr->Type; |
434 | |
435 | switch (mptr->Type) { |
436 | case kEfiLoaderCode: |
437 | case kEfiLoaderData: |
438 | case kEfiBootServicesCode: |
439 | case kEfiBootServicesData: |
440 | case kEfiConventionalMemory: |
441 | /* |
442 | * Consolidate usable memory types into one. |
443 | */ |
444 | pmap_type = kEfiConventionalMemory; |
445 | sane_size += region_bytes; |
446 | firmware_Conventional_bytes += region_bytes; |
447 | break; |
448 | /* |
449 | * sane_size should reflect the total amount of physical |
450 | * RAM in the system, not just the amount that is |
451 | * available for the OS to use. |
452 | * We now get this value from SMBIOS tables |
453 | * rather than reverse engineering the memory map. |
454 | * But the legacy computation of "sane_size" is kept |
455 | * for diagnostic information. |
456 | */ |
457 | |
458 | case kEfiRuntimeServicesCode: |
459 | case kEfiRuntimeServicesData: |
460 | firmware_RuntimeServices_bytes += region_bytes; |
461 | sane_size += region_bytes; |
462 | break; |
463 | case kEfiACPIReclaimMemory: |
464 | firmware_ACPIReclaim_bytes += region_bytes; |
465 | sane_size += region_bytes; |
466 | break; |
467 | case kEfiACPIMemoryNVS: |
468 | firmware_ACPINVS_bytes += region_bytes; |
469 | sane_size += region_bytes; |
470 | break; |
471 | case kEfiPalCode: |
472 | firmware_PalCode_bytes += region_bytes; |
473 | sane_size += region_bytes; |
474 | break; |
475 | |
476 | case kEfiReservedMemoryType: |
477 | firmware_Reserved_bytes += region_bytes; |
478 | break; |
479 | case kEfiUnusableMemory: |
480 | firmware_Unusable_bytes += region_bytes; |
481 | break; |
482 | case kEfiMemoryMappedIO: |
483 | case kEfiMemoryMappedIOPortSpace: |
484 | firmware_MMIO_bytes += region_bytes; |
485 | break; |
486 | default: |
487 | firmware_other_bytes += region_bytes; |
488 | break; |
489 | } |
490 | |
491 | DPRINTF("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n" , |
492 | i, mptr->Type, pmap_type, base, top, |
493 | (mptr->Attribute&EFI_MEMORY_KERN_RESERVED)? "RESERVED" : |
494 | (mptr->Attribute&EFI_MEMORY_RUNTIME)? "RUNTIME" : "" ); |
495 | |
496 | if (maxpg) { |
497 | if (base >= maxpg) |
498 | break; |
499 | top = (top > maxpg) ? maxpg : top; |
500 | } |
501 | |
502 | /* |
503 | * handle each region |
504 | */ |
505 | if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME || |
506 | pmap_type != kEfiConventionalMemory) { |
507 | prev_pmptr = 0; |
508 | continue; |
509 | } else { |
510 | /* |
511 | * Usable memory region |
512 | */ |
513 | if (top < I386_LOWMEM_RESERVED || |
514 | !pal_is_usable_memory(base, top)) { |
515 | prev_pmptr = 0; |
516 | continue; |
517 | } |
518 | /* |
519 | * A range may be marked with with the |
520 | * EFI_MEMORY_KERN_RESERVED attribute |
521 | * on some systems, to indicate that the range |
522 | * must not be made available to devices. |
523 | */ |
524 | |
525 | if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) { |
526 | if (++pmap_reserved_ranges > PMAP_MAX_RESERVED_RANGES) { |
527 | panic("Too many reserved ranges %u\n" , pmap_reserved_ranges); |
528 | } |
529 | } |
530 | |
531 | if (top < fap) { |
532 | /* |
533 | * entire range below first_avail |
534 | * salvage some low memory pages |
535 | * we use some very low memory at startup |
536 | * mark as already allocated here |
537 | */ |
538 | if (base >= I386_LOWMEM_RESERVED) |
539 | pmptr->base = base; |
540 | else |
541 | pmptr->base = I386_LOWMEM_RESERVED; |
542 | |
543 | pmptr->end = top; |
544 | |
545 | |
546 | if ((mptr->Attribute & EFI_MEMORY_KERN_RESERVED) && |
547 | (top < vm_kernel_base_page)) { |
548 | pmptr->alloc_up = pmptr->base; |
549 | pmptr->alloc_down = pmptr->end; |
550 | pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; |
551 | } |
552 | else { |
553 | /* |
554 | * mark as already mapped |
555 | */ |
556 | pmptr->alloc_up = top + 1; |
557 | pmptr->alloc_down = top; |
558 | } |
559 | pmptr->type = pmap_type; |
560 | pmptr->attribute = mptr->Attribute; |
561 | } |
562 | else if ( (base < fap) && (top > fap) ) { |
563 | /* |
564 | * spans first_avail |
565 | * put mem below first avail in table but |
566 | * mark already allocated |
567 | */ |
568 | pmptr->base = base; |
569 | pmptr->end = (fap - 1); |
570 | pmptr->alloc_up = pmptr->end + 1; |
571 | pmptr->alloc_down = pmptr->end; |
572 | pmptr->type = pmap_type; |
573 | pmptr->attribute = mptr->Attribute; |
574 | /* |
575 | * we bump these here inline so the accounting |
576 | * below works correctly |
577 | */ |
578 | pmptr++; |
579 | pmap_memory_region_count++; |
580 | |
581 | pmptr->alloc_up = pmptr->base = fap; |
582 | pmptr->type = pmap_type; |
583 | pmptr->attribute = mptr->Attribute; |
584 | pmptr->alloc_down = pmptr->end = top; |
585 | |
586 | if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) |
587 | pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; |
588 | } else { |
589 | /* |
590 | * entire range useable |
591 | */ |
592 | pmptr->alloc_up = pmptr->base = base; |
593 | pmptr->type = pmap_type; |
594 | pmptr->attribute = mptr->Attribute; |
595 | pmptr->alloc_down = pmptr->end = top; |
596 | if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) |
597 | pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; |
598 | } |
599 | |
600 | if (i386_ptob(pmptr->end) > avail_end ) |
601 | avail_end = i386_ptob(pmptr->end); |
602 | |
603 | avail_remaining += (pmptr->end - pmptr->base); |
604 | coalescing_permitted = (prev_pmptr && (pmptr->attribute == prev_pmptr->attribute) && ((pmptr->attribute & EFI_MEMORY_KERN_RESERVED) == 0)); |
605 | /* |
606 | * Consolidate contiguous memory regions, if possible |
607 | */ |
608 | if (prev_pmptr && |
609 | (pmptr->type == prev_pmptr->type) && |
610 | (coalescing_permitted) && |
611 | (pmptr->base == pmptr->alloc_up) && |
612 | (prev_pmptr->end == prev_pmptr->alloc_down) && |
613 | (pmptr->base == (prev_pmptr->end + 1))) |
614 | { |
615 | prev_pmptr->end = pmptr->end; |
616 | prev_pmptr->alloc_down = pmptr->alloc_down; |
617 | } else { |
618 | pmap_memory_region_count++; |
619 | prev_pmptr = pmptr; |
620 | pmptr++; |
621 | } |
622 | } |
623 | } |
624 | |
625 | if (memmap) { |
626 | kprint_memmap(maddr, msize, mcount); |
627 | } |
628 | |
629 | avail_start = first_avail; |
630 | mem_actual = args->PhysicalMemorySize; |
631 | |
632 | /* |
633 | * For user visible memory size, round up to 128 Mb |
634 | * - accounting for the various stolen memory not reported by EFI. |
635 | * This is maintained for historical, comparison purposes but |
636 | * we now use the memory size reported by EFI/Booter. |
637 | */ |
638 | sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1)); |
639 | if (sane_size != mem_actual) |
640 | printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n" , |
641 | mem_actual, sane_size); |
642 | sane_size = mem_actual; |
643 | |
644 | /* |
645 | * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64). |
646 | * Unless overriden by the maxmem= boot-arg |
647 | * -- which is a non-zero maxmem argument to this function. |
648 | */ |
649 | if (maxmem == 0 && sane_size > KERNEL_MAXMEM) { |
650 | maxmem = KERNEL_MAXMEM; |
651 | printf("Physical memory %lld bytes capped at %dGB\n" , |
652 | sane_size, (uint32_t) (KERNEL_MAXMEM/GB)); |
653 | } |
654 | |
655 | /* |
656 | * if user set maxmem, reduce memory sizes |
657 | */ |
658 | if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) { |
659 | ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT); |
660 | ppnum_t highest_pn = 0; |
661 | ppnum_t cur_end = 0; |
662 | uint64_t pages_to_use; |
663 | unsigned cur_region = 0; |
664 | |
665 | sane_size = maxmem; |
666 | |
667 | if (avail_remaining > discarded_pages) |
668 | avail_remaining -= discarded_pages; |
669 | else |
670 | avail_remaining = 0; |
671 | |
672 | pages_to_use = avail_remaining; |
673 | |
674 | while (cur_region < pmap_memory_region_count && pages_to_use) { |
675 | for (cur_end = pmap_memory_regions[cur_region].base; |
676 | cur_end < pmap_memory_regions[cur_region].end && pages_to_use; |
677 | cur_end++) { |
678 | if (cur_end > highest_pn) |
679 | highest_pn = cur_end; |
680 | pages_to_use--; |
681 | } |
682 | if (pages_to_use == 0) { |
683 | pmap_memory_regions[cur_region].end = cur_end; |
684 | pmap_memory_regions[cur_region].alloc_down = cur_end; |
685 | } |
686 | |
687 | cur_region++; |
688 | } |
689 | pmap_memory_region_count = cur_region; |
690 | |
691 | avail_end = i386_ptob(highest_pn + 1); |
692 | } |
693 | |
694 | /* |
695 | * mem_size is only a 32 bit container... follow the PPC route |
696 | * and pin it to a 2 Gbyte maximum |
697 | */ |
698 | if (sane_size > (FOURGIG >> 1)) |
699 | mem_size = (vm_size_t)(FOURGIG >> 1); |
700 | else |
701 | mem_size = (vm_size_t)sane_size; |
702 | max_mem = sane_size; |
703 | |
704 | kprintf("Physical memory %llu MB\n" , sane_size/MB); |
705 | |
706 | max_valid_low_ppnum = (2 * GB) / PAGE_SIZE; |
707 | |
708 | if (!PE_parse_boot_argn("max_valid_dma_addr" , &maxdmaaddr, sizeof (maxdmaaddr))) { |
709 | max_valid_dma_address = (uint64_t)4 * (uint64_t)GB; |
710 | } else { |
711 | max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB; |
712 | |
713 | if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum) |
714 | max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE); |
715 | } |
716 | if (avail_end >= max_valid_dma_address) { |
717 | |
718 | if (!PE_parse_boot_argn("maxloreserve" , &maxloreserve, sizeof (maxloreserve))) { |
719 | |
720 | if (sane_size >= (ONEGIG * 15)) |
721 | maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4; |
722 | else if (sane_size >= (ONEGIG * 7)) |
723 | maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2; |
724 | else |
725 | maxloreserve = MAXLORESERVE / PAGE_SIZE; |
726 | |
727 | #if SOCKETS |
728 | mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE; |
729 | #endif |
730 | } else |
731 | maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE; |
732 | |
733 | if (maxloreserve) { |
734 | vm_lopage_free_limit = maxloreserve; |
735 | |
736 | if (mbuf_override == TRUE) { |
737 | vm_lopage_free_limit += mbuf_reserve; |
738 | vm_lopage_lowater = 0; |
739 | } else |
740 | vm_lopage_lowater = vm_lopage_free_limit / 16; |
741 | |
742 | vm_lopage_refill = TRUE; |
743 | vm_lopage_needed = TRUE; |
744 | } |
745 | } |
746 | |
747 | /* |
748 | * Initialize kernel physical map. |
749 | * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS. |
750 | */ |
751 | kprintf("avail_remaining = 0x%lx\n" , (unsigned long)avail_remaining); |
752 | pmap_bootstrap(0, IA32e); |
753 | } |
754 | |
755 | |
756 | unsigned int |
757 | pmap_free_pages(void) |
758 | { |
759 | return (unsigned int)avail_remaining; |
760 | } |
761 | |
762 | |
763 | boolean_t pmap_next_page_reserved(ppnum_t *); |
764 | |
765 | /* |
766 | * Pick a page from a "kernel private" reserved range; works around |
767 | * errata on some hardware. |
768 | */ |
769 | boolean_t |
770 | pmap_next_page_reserved(ppnum_t *pn) { |
771 | if (pmap_reserved_ranges) { |
772 | uint32_t n; |
773 | pmap_memory_region_t *region; |
774 | for (n = 0; n < pmap_last_reserved_range_index; n++) { |
775 | uint32_t reserved_index = pmap_reserved_range_indices[n]; |
776 | region = &pmap_memory_regions[reserved_index]; |
777 | if (region->alloc_up <= region->alloc_down) { |
778 | *pn = region->alloc_up++; |
779 | avail_remaining--; |
780 | |
781 | if (*pn > max_ppnum) |
782 | max_ppnum = *pn; |
783 | |
784 | if (lowest_lo == 0 || *pn < lowest_lo) |
785 | lowest_lo = *pn; |
786 | |
787 | pmap_reserved_pages_allocated++; |
788 | #if DEBUG |
789 | if (region->alloc_up > region->alloc_down) { |
790 | kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n" , reserved_index, region->base, region->end, region->type, region->attribute); |
791 | } |
792 | #endif |
793 | return TRUE; |
794 | } |
795 | } |
796 | } |
797 | return FALSE; |
798 | } |
799 | |
800 | |
801 | boolean_t |
802 | pmap_next_page_hi( |
803 | ppnum_t *pn) |
804 | { |
805 | pmap_memory_region_t *region; |
806 | int n; |
807 | |
808 | if (pmap_next_page_reserved(pn)) |
809 | return TRUE; |
810 | |
811 | if (avail_remaining) { |
812 | for (n = pmap_memory_region_count - 1; n >= 0; n--) { |
813 | region = &pmap_memory_regions[n]; |
814 | |
815 | if (region->alloc_down >= region->alloc_up) { |
816 | *pn = region->alloc_down--; |
817 | avail_remaining--; |
818 | |
819 | if (*pn > max_ppnum) |
820 | max_ppnum = *pn; |
821 | |
822 | if (lowest_lo == 0 || *pn < lowest_lo) |
823 | lowest_lo = *pn; |
824 | |
825 | if (lowest_hi == 0 || *pn < lowest_hi) |
826 | lowest_hi = *pn; |
827 | |
828 | if (*pn > highest_hi) |
829 | highest_hi = *pn; |
830 | |
831 | return TRUE; |
832 | } |
833 | } |
834 | } |
835 | return FALSE; |
836 | } |
837 | |
838 | |
839 | boolean_t |
840 | pmap_next_page( |
841 | ppnum_t *pn) |
842 | { |
843 | if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) { |
844 | if (pmap_memory_regions[pmap_memory_region_current].alloc_up > |
845 | pmap_memory_regions[pmap_memory_region_current].alloc_down) { |
846 | pmap_memory_region_current++; |
847 | continue; |
848 | } |
849 | *pn = pmap_memory_regions[pmap_memory_region_current].alloc_up++; |
850 | avail_remaining--; |
851 | |
852 | if (*pn > max_ppnum) |
853 | max_ppnum = *pn; |
854 | |
855 | if (lowest_lo == 0 || *pn < lowest_lo) |
856 | lowest_lo = *pn; |
857 | |
858 | return TRUE; |
859 | } |
860 | return FALSE; |
861 | } |
862 | |
863 | |
864 | boolean_t |
865 | pmap_valid_page( |
866 | ppnum_t pn) |
867 | { |
868 | unsigned int i; |
869 | pmap_memory_region_t *pmptr = pmap_memory_regions; |
870 | |
871 | for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { |
872 | if ( (pn >= pmptr->base) && (pn <= pmptr->end) ) |
873 | return TRUE; |
874 | } |
875 | return FALSE; |
876 | } |
877 | |
878 | |