1 | /* |
2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1992-1990 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | |
57 | #include <mach/exception_types.h> |
58 | #include <mach/i386/thread_status.h> |
59 | #include <mach/i386/fp_reg.h> |
60 | |
61 | #include <kern/mach_param.h> |
62 | #include <kern/processor.h> |
63 | #include <kern/thread.h> |
64 | #include <kern/zalloc.h> |
65 | #include <kern/misc_protos.h> |
66 | #include <kern/spl.h> |
67 | #include <kern/assert.h> |
68 | |
69 | #include <libkern/OSAtomic.h> |
70 | |
71 | #include <architecture/i386/pio.h> |
72 | #include <i386/cpuid.h> |
73 | #include <i386/fpu.h> |
74 | #include <i386/proc_reg.h> |
75 | #include <i386/misc_protos.h> |
76 | #include <i386/thread.h> |
77 | #include <i386/trap.h> |
78 | |
79 | xstate_t fpu_capability = UNDEFINED; /* extended state capability */ |
80 | xstate_t fpu_default = UNDEFINED; /* default extended state */ |
81 | |
82 | #define ALIGNED(addr,size) (((uintptr_t)(addr)&((size)-1))==0) |
83 | |
84 | /* Forward */ |
85 | |
86 | extern void fpinit(void); |
87 | extern void fp_save( |
88 | thread_t thr_act); |
89 | extern void fp_load( |
90 | thread_t thr_act); |
91 | |
92 | static void configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps); |
93 | static xstate_t thread_xstate(thread_t); |
94 | |
95 | x86_ext_thread_state_t initial_fp_state __attribute((aligned(64))); |
96 | x86_ext_thread_state_t default_avx512_state __attribute((aligned(64))); |
97 | x86_ext_thread_state_t default_avx_state __attribute((aligned(64))); |
98 | x86_ext_thread_state_t default_fx_state __attribute((aligned(64))); |
99 | |
100 | /* Global MXCSR capability bitmask */ |
101 | static unsigned int mxcsr_capability_mask; |
102 | |
103 | #define fninit() \ |
104 | __asm__ volatile("fninit") |
105 | |
106 | #define fnstcw(control) \ |
107 | __asm__("fnstcw %0" : "=m" (*(unsigned short *)(control))) |
108 | |
109 | #define fldcw(control) \ |
110 | __asm__ volatile("fldcw %0" : : "m" (*(unsigned short *) &(control)) ) |
111 | |
112 | #define fnclex() \ |
113 | __asm__ volatile("fnclex") |
114 | |
115 | #define fnsave(state) \ |
116 | __asm__ volatile("fnsave %0" : "=m" (*state)) |
117 | |
118 | #define frstor(state) \ |
119 | __asm__ volatile("frstor %0" : : "m" (state)) |
120 | |
121 | #define fwait() \ |
122 | __asm__("fwait"); |
123 | |
124 | static inline void fxrstor(struct x86_fx_thread_state *a) { |
125 | __asm__ __volatile__("fxrstor %0" :: "m" (*a)); |
126 | } |
127 | |
128 | static inline void fxsave(struct x86_fx_thread_state *a) { |
129 | __asm__ __volatile__("fxsave %0" : "=m" (*a)); |
130 | } |
131 | |
132 | static inline void fxrstor64(struct x86_fx_thread_state *a) { |
133 | __asm__ __volatile__("fxrstor64 %0" :: "m" (*a)); |
134 | } |
135 | |
136 | static inline void fxsave64(struct x86_fx_thread_state *a) { |
137 | __asm__ __volatile__("fxsave64 %0" : "=m" (*a)); |
138 | } |
139 | |
140 | #if !defined(RC_HIDE_XNU_J137) |
141 | #define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX || (x) == AVX512) |
142 | #else |
143 | #define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX) |
144 | #endif |
145 | |
146 | zone_t ifps_zone[] = { |
147 | [FP] = NULL, |
148 | [AVX] = NULL, |
149 | #if !defined(RC_HIDE_XNU_J137) |
150 | [AVX512] = NULL |
151 | #endif |
152 | }; |
153 | static uint32_t fp_state_size[] = { |
154 | [FP] = sizeof(struct x86_fx_thread_state), |
155 | [AVX] = sizeof(struct x86_avx_thread_state), |
156 | #if !defined(RC_HIDE_XNU_J137) |
157 | [AVX512] = sizeof(struct x86_avx512_thread_state) |
158 | #endif |
159 | }; |
160 | |
161 | static const char *xstate_name[] = { |
162 | [UNDEFINED] = "UNDEFINED" , |
163 | [FP] = "FP" , |
164 | [AVX] = "AVX" , |
165 | #if !defined(RC_HIDE_XNU_J137) |
166 | [AVX512] = "AVX512" |
167 | #endif |
168 | }; |
169 | |
170 | #if !defined(RC_HIDE_XNU_J137) |
171 | #define fpu_ZMM_capable (fpu_capability == AVX512) |
172 | #define fpu_YMM_capable (fpu_capability == AVX || fpu_capability == AVX512) |
173 | /* |
174 | * On-demand AVX512 support |
175 | * ------------------------ |
176 | * On machines with AVX512 support, by default, threads are created with |
177 | * AVX512 masked off in XCR0 and an AVX-sized savearea is used. However, AVX512 |
178 | * capabilities are advertised in the commpage and via sysctl. If a thread |
179 | * opts to use AVX512 instructions, the first will result in a #UD exception. |
180 | * Faulting AVX512 intructions are recognizable by their unique prefix. |
181 | * This exception results in the thread being promoted to use an AVX512-sized |
182 | * savearea and for the AVX512 bit masks being set in its XCR0. The faulting |
183 | * instruction is re-driven and the thread can proceed to perform AVX512 |
184 | * operations. |
185 | * |
186 | * In addition to AVX512 instructions causing promotion, the thread_set_state() |
187 | * primitive with an AVX512 state flavor result in promotion. |
188 | * |
189 | * AVX512 promotion of the first thread in a task causes the default xstate |
190 | * of the task to be promoted so that any subsequently created or subsequently |
191 | * DNA-faulted thread will have AVX512 xstate and it will not need to fault-in |
192 | * a promoted xstate. |
193 | * |
194 | * Two savearea zones are used: the default pool of AVX-sized (832 byte) areas |
195 | * and a second pool of larger AVX512-sized (2688 byte) areas. |
196 | * |
197 | * Note the initial state value is an AVX512 object but that the AVX initial |
198 | * value is a subset of it. |
199 | */ |
200 | #else |
201 | #define fpu_YMM_capable (fpu_capability == AVX) |
202 | #endif |
203 | static uint32_t cpuid_reevaluated = 0; |
204 | |
205 | static void fpu_store_registers(void *, boolean_t); |
206 | static void fpu_load_registers(void *); |
207 | |
208 | #if !defined(RC_HIDE_XNU_J137) |
209 | static const uint32_t xstate_xmask[] = { |
210 | [FP] = FP_XMASK, |
211 | [AVX] = AVX_XMASK, |
212 | [AVX512] = AVX512_XMASK |
213 | }; |
214 | #else |
215 | static const uint32_t xstate_xmask[] = { |
216 | [FP] = FP_XMASK, |
217 | [AVX] = AVX_XMASK, |
218 | }; |
219 | #endif |
220 | |
221 | static inline void xsave(struct x86_fx_thread_state *a, uint32_t rfbm) { |
222 | __asm__ __volatile__("xsave %0" :"=m" (*a) : "a" (rfbm), "d" (0)); |
223 | } |
224 | |
225 | static inline void xsave64(struct x86_fx_thread_state *a, uint32_t rfbm) { |
226 | __asm__ __volatile__("xsave64 %0" :"=m" (*a) : "a" (rfbm), "d" (0)); |
227 | } |
228 | |
229 | static inline void xrstor(struct x86_fx_thread_state *a, uint32_t rfbm) { |
230 | __asm__ __volatile__("xrstor %0" :: "m" (*a), "a" (rfbm), "d" (0)); |
231 | } |
232 | |
233 | static inline void xrstor64(struct x86_fx_thread_state *a, uint32_t rfbm) { |
234 | __asm__ __volatile__("xrstor64 %0" :: "m" (*a), "a" (rfbm), "d" (0)); |
235 | } |
236 | |
237 | #if !defined(RC_HIDE_XNU_J137) |
238 | __unused static inline void vzeroupper(void) { |
239 | __asm__ __volatile__("vzeroupper" ::); |
240 | } |
241 | |
242 | static boolean_t fpu_thread_promote_avx512(thread_t); /* Forward */ |
243 | |
244 | /* |
245 | * Define a wrapper for bcopy to defeat destination size checka. |
246 | * This is needed to treat repeated objects such as |
247 | * _STRUCT_XMM_REG fpu_ymmh0; |
248 | * ... |
249 | * _STRUCT_XMM_REG fpu_ymmh7; |
250 | * as an array and to copy like so: |
251 | * bcopy_nockch(src,&dst->fpu_ymmh0,8*sizeof(_STRUCT_XMM_REG)); |
252 | * without the compiler throwing a __builtin__memmove_chk error. |
253 | */ |
254 | static inline void bcopy_nochk(void *_src, void *_dst, size_t _len) { |
255 | bcopy(_src, _dst, _len); |
256 | } |
257 | |
258 | /* |
259 | * Furthermore, make compile-time asserts that no padding creeps into structures |
260 | * for which we're doing this. |
261 | */ |
262 | #define ASSERT_PACKED(t, m1, m2, n, mt) \ |
263 | extern char assert_packed_ ## t ## _ ## m1 ## _ ## m2 \ |
264 | [(offsetof(t,m2) - offsetof(t,m1) == (n - 1)*sizeof(mt)) ? 1 : -1] |
265 | |
266 | ASSERT_PACKED(x86_avx_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG); |
267 | |
268 | ASSERT_PACKED(x86_avx_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG); |
269 | |
270 | ASSERT_PACKED(x86_avx512_state32_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG); |
271 | ASSERT_PACKED(x86_avx512_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG); |
272 | ASSERT_PACKED(x86_avx512_state32_t, fpu_zmmh0, fpu_zmmh7, 8, _STRUCT_YMM_REG); |
273 | |
274 | ASSERT_PACKED(x86_avx512_state64_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG); |
275 | ASSERT_PACKED(x86_avx512_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG); |
276 | ASSERT_PACKED(x86_avx512_state64_t, fpu_zmmh0, fpu_zmmh15, 16, _STRUCT_YMM_REG); |
277 | ASSERT_PACKED(x86_avx512_state64_t, fpu_zmm16, fpu_zmm31, 16, _STRUCT_ZMM_REG); |
278 | |
279 | #if defined(DEBUG_AVX512) |
280 | |
281 | #define DBG(x...) kprintf("DBG: " x) |
282 | |
283 | typedef struct { uint8_t byte[8]; } opmask_t; |
284 | typedef struct { uint8_t byte[16]; } xmm_t; |
285 | typedef struct { uint8_t byte[32]; } ymm_t; |
286 | typedef struct { uint8_t byte[64]; } zmm_t; |
287 | |
288 | static void |
289 | DBG_AVX512_STATE(struct x86_avx512_thread_state *sp) |
290 | { |
291 | int i, j; |
292 | xmm_t *xmm = (xmm_t *) &sp->fp.fx_XMM_reg; |
293 | xmm_t *ymmh = (xmm_t *) &sp->x_YMM_Hi128; |
294 | ymm_t *zmmh = (ymm_t *) &sp->x_ZMM_Hi256; |
295 | zmm_t *zmm = (zmm_t *) &sp->x_Hi16_ZMM; |
296 | opmask_t *k = (opmask_t *) &sp->x_Opmask; |
297 | |
298 | kprintf("x_YMM_Hi128: %lu\n" , offsetof(struct x86_avx512_thread_state, x_YMM_Hi128)); |
299 | kprintf("x_Opmask: %lu\n" , offsetof(struct x86_avx512_thread_state, x_Opmask)); |
300 | kprintf("x_ZMM_Hi256: %lu\n" , offsetof(struct x86_avx512_thread_state, x_ZMM_Hi256)); |
301 | kprintf("x_Hi16_ZMM: %lu\n" , offsetof(struct x86_avx512_thread_state, x_Hi16_ZMM)); |
302 | |
303 | kprintf("XCR0: 0x%016llx\n" , xgetbv(XCR0)); |
304 | kprintf("XINUSE: 0x%016llx\n" , xgetbv(1)); |
305 | |
306 | /* Print all ZMM registers */ |
307 | for (i = 0; i < 16; i++) { |
308 | kprintf("zmm%d:\t0x" , i); |
309 | for (j = 0; j < 16; j++) |
310 | kprintf("%02x" , xmm[i].byte[j]); |
311 | for (j = 0; j < 16; j++) |
312 | kprintf("%02x" , ymmh[i].byte[j]); |
313 | for (j = 0; j < 32; j++) |
314 | kprintf("%02x" , zmmh[i].byte[j]); |
315 | kprintf("\n" ); |
316 | } |
317 | for (i = 0; i < 16; i++) { |
318 | kprintf("zmm%d:\t0x" , 16+i); |
319 | for (j = 0; j < 64; j++) |
320 | kprintf("%02x" , zmm[i].byte[j]); |
321 | kprintf("\n" ); |
322 | } |
323 | for (i = 0; i < 8; i++) { |
324 | kprintf("k%d:\t0x" , i); |
325 | for (j = 0; j < 8; j++) |
326 | kprintf("%02x" , k[i].byte[j]); |
327 | kprintf("\n" ); |
328 | } |
329 | |
330 | kprintf("xstate_bv: 0x%016llx\n" , sp->_xh.xstate_bv); |
331 | kprintf("xcomp_bv: 0x%016llx\n" , sp->_xh.xcomp_bv); |
332 | } |
333 | #else |
334 | #define DBG(x...) |
335 | static void |
336 | DBG_AVX512_STATE(__unused struct x86_avx512_thread_state *sp) |
337 | { |
338 | return; |
339 | } |
340 | #endif /* DEBUG_AVX512 */ |
341 | |
342 | #endif |
343 | |
344 | #if DEBUG |
345 | static inline unsigned short |
346 | fnstsw(void) |
347 | { |
348 | unsigned short status; |
349 | __asm__ volatile("fnstsw %0" : "=ma" (status)); |
350 | return(status); |
351 | } |
352 | #endif |
353 | |
354 | /* |
355 | * Configure the initial FPU state presented to new threads. |
356 | * Determine the MXCSR capability mask, which allows us to mask off any |
357 | * potentially unsafe "reserved" bits before restoring the FPU context. |
358 | * *Not* per-cpu, assumes symmetry. |
359 | */ |
360 | |
361 | static void |
362 | configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps) |
363 | { |
364 | /* XSAVE requires a 64 byte aligned store */ |
365 | assert(ALIGNED(fps, 64)); |
366 | /* Clear, to prepare for the diagnostic FXSAVE */ |
367 | bzero(fps, sizeof(*fps)); |
368 | |
369 | fpinit(); |
370 | fpu_store_registers(fps, FALSE); |
371 | |
372 | mxcsr_capability_mask = fps->fx.fx_MXCSR_MASK; |
373 | |
374 | /* Set default mask value if necessary */ |
375 | if (mxcsr_capability_mask == 0) |
376 | mxcsr_capability_mask = 0xffbf; |
377 | |
378 | /* Clear vector register store */ |
379 | bzero(&fps->fx.fx_XMM_reg[0][0], sizeof(fps->fx.fx_XMM_reg)); |
380 | bzero(fps->avx.x_YMM_Hi128, sizeof(fps->avx.x_YMM_Hi128)); |
381 | #if !defined(RC_HIDE_XNU_J137) |
382 | if (fpu_ZMM_capable) { |
383 | bzero(fps->avx512.x_ZMM_Hi256, sizeof(fps->avx512.x_ZMM_Hi256)); |
384 | bzero(fps->avx512.x_Hi16_ZMM, sizeof(fps->avx512.x_Hi16_ZMM)); |
385 | bzero(fps->avx512.x_Opmask, sizeof(fps->avx512.x_Opmask)); |
386 | } |
387 | #endif |
388 | |
389 | fps->fx.fp_valid = TRUE; |
390 | fps->fx.fp_save_layout = fpu_YMM_capable ? XSAVE32: FXSAVE32; |
391 | fpu_load_registers(fps); |
392 | |
393 | if (fpu_ZMM_capable) { |
394 | xsave64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]); |
395 | } |
396 | if (fpu_YMM_capable) { |
397 | xsave64((struct x86_fx_thread_state *)&default_avx_state, xstate_xmask[AVX]); |
398 | } else { |
399 | fxsave64((struct x86_fx_thread_state *)&default_fx_state); |
400 | } |
401 | |
402 | /* Poison values to trap unsafe usage */ |
403 | fps->fx.fp_valid = 0xFFFFFFFF; |
404 | fps->fx.fp_save_layout = FP_UNUSED; |
405 | |
406 | /* Re-enable FPU/SSE DNA exceptions */ |
407 | set_ts(); |
408 | } |
409 | |
410 | int fpsimd_fault_popc = 0; |
411 | /* |
412 | * Look for FPU and initialize it. |
413 | * Called on each CPU. |
414 | */ |
415 | void |
416 | init_fpu(void) |
417 | { |
418 | #if DEBUG |
419 | unsigned short status; |
420 | unsigned short control; |
421 | #endif |
422 | /* |
423 | * Check for FPU by initializing it, |
424 | * then trying to read the correct bit patterns from |
425 | * the control and status registers. |
426 | */ |
427 | set_cr0((get_cr0() & ~(CR0_EM|CR0_TS)) | CR0_NE); /* allow use of FPU */ |
428 | fninit(); |
429 | #if DEBUG |
430 | status = fnstsw(); |
431 | fnstcw(&control); |
432 | |
433 | assert(((status & 0xff) == 0) && ((control & 0x103f) == 0x3f)); |
434 | #endif |
435 | /* Advertise SSE support */ |
436 | if (cpuid_features() & CPUID_FEATURE_FXSR) { |
437 | set_cr4(get_cr4() | CR4_OSFXS); |
438 | /* And allow SIMD exceptions if present */ |
439 | if (cpuid_features() & CPUID_FEATURE_SSE) { |
440 | set_cr4(get_cr4() | CR4_OSXMM); |
441 | } |
442 | } else |
443 | panic("fpu is not FP_FXSR" ); |
444 | |
445 | fpu_capability = fpu_default = FP; |
446 | |
447 | PE_parse_boot_argn("fpsimd_fault_popc" , &fpsimd_fault_popc, sizeof(fpsimd_fault_popc)); |
448 | |
449 | #if !defined(RC_HIDE_XNU_J137) |
450 | static boolean_t is_avx512_enabled = TRUE; |
451 | if (cpu_number() == master_cpu) { |
452 | if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_AVX512F) { |
453 | PE_parse_boot_argn("avx512" , &is_avx512_enabled, sizeof(boolean_t)); |
454 | kprintf("AVX512 supported %s\n" , |
455 | is_avx512_enabled ? "and enabled" : "but disabled" ); |
456 | } |
457 | } |
458 | #endif |
459 | |
460 | /* Configure the XSAVE context mechanism if the processor supports |
461 | * AVX/YMM registers |
462 | */ |
463 | if (cpuid_features() & CPUID_FEATURE_XSAVE) { |
464 | cpuid_xsave_leaf_t *xs0p = &cpuid_info()->cpuid_xsave_leaf[0]; |
465 | #if !defined(RC_HIDE_XNU_J137) |
466 | if (is_avx512_enabled && |
467 | (xs0p->extended_state[eax] & XFEM_ZMM) == XFEM_ZMM) { |
468 | assert(xs0p->extended_state[eax] & XFEM_SSE); |
469 | assert(xs0p->extended_state[eax] & XFEM_YMM); |
470 | fpu_capability = AVX512; |
471 | /* XSAVE container size for all features */ |
472 | set_cr4(get_cr4() | CR4_OSXSAVE); |
473 | xsetbv(0, AVX512_XMASK); |
474 | /* Re-evaluate CPUID, once, to reflect OSXSAVE */ |
475 | if (OSCompareAndSwap(0, 1, &cpuid_reevaluated)) |
476 | cpuid_set_info(); |
477 | /* Verify that now selected state can be accommodated */ |
478 | assert(xs0p->extended_state[ebx] == fp_state_size[AVX512]); |
479 | /* |
480 | * AVX set until AVX512 is used. |
481 | * See comment above about on-demand AVX512 support. |
482 | */ |
483 | xsetbv(0, AVX_XMASK); |
484 | fpu_default = AVX; |
485 | } else |
486 | #endif |
487 | if (xs0p->extended_state[eax] & XFEM_YMM) { |
488 | assert(xs0p->extended_state[eax] & XFEM_SSE); |
489 | fpu_capability = AVX; |
490 | fpu_default = AVX; |
491 | /* XSAVE container size for all features */ |
492 | set_cr4(get_cr4() | CR4_OSXSAVE); |
493 | xsetbv(0, AVX_XMASK); |
494 | /* Re-evaluate CPUID, once, to reflect OSXSAVE */ |
495 | if (OSCompareAndSwap(0, 1, &cpuid_reevaluated)) |
496 | cpuid_set_info(); |
497 | /* Verify that now selected state can be accommodated */ |
498 | assert(xs0p->extended_state[ebx] == fp_state_size[AVX]); |
499 | } |
500 | } |
501 | |
502 | if (cpu_number() == master_cpu) |
503 | kprintf("fpu_state: %s, state_size: %d\n" , |
504 | xstate_name[fpu_capability], |
505 | fp_state_size[fpu_capability]); |
506 | |
507 | fpinit(); |
508 | current_cpu_datap()->cpu_xstate = fpu_default; |
509 | |
510 | /* |
511 | * Trap wait instructions. Turn off FPU for now. |
512 | */ |
513 | set_cr0(get_cr0() | CR0_TS | CR0_MP); |
514 | } |
515 | |
516 | /* |
517 | * Allocate and initialize FP state for specified xstate. |
518 | * Don't load state. |
519 | */ |
520 | static void * |
521 | fp_state_alloc(xstate_t xs) |
522 | { |
523 | struct x86_fx_thread_state *ifps; |
524 | |
525 | assert(ifps_zone[xs] != NULL); |
526 | ifps = zalloc(ifps_zone[xs]); |
527 | |
528 | #if DEBUG |
529 | if (!(ALIGNED(ifps,64))) { |
530 | panic("fp_state_alloc: %p, %u, %p, %u" , |
531 | ifps, (unsigned) ifps_zone[xs]->elem_size, |
532 | (void *) ifps_zone[xs]->free_elements, |
533 | (unsigned) ifps_zone[xs]->alloc_size); |
534 | } |
535 | #endif |
536 | bzero(ifps, fp_state_size[xs]); |
537 | |
538 | return ifps; |
539 | } |
540 | |
541 | static inline void |
542 | fp_state_free(void *ifps, xstate_t xs) |
543 | { |
544 | assert(ifps_zone[xs] != NULL); |
545 | zfree(ifps_zone[xs], ifps); |
546 | } |
547 | |
548 | void clear_fpu(void) |
549 | { |
550 | set_ts(); |
551 | } |
552 | |
553 | |
554 | static void fpu_load_registers(void *fstate) { |
555 | struct x86_fx_thread_state *ifps = fstate; |
556 | fp_save_layout_t layout = ifps->fp_save_layout; |
557 | |
558 | assert(current_task() == NULL || \ |
559 | (thread_is_64bit_addr(current_thread()) ? \ |
560 | (layout == FXSAVE64 || layout == XSAVE64) : \ |
561 | (layout == FXSAVE32 || layout == XSAVE32))); |
562 | assert(ALIGNED(ifps, 64)); |
563 | assert(ml_get_interrupts_enabled() == FALSE); |
564 | |
565 | #if DEBUG |
566 | if (layout == XSAVE32 || layout == XSAVE64) { |
567 | struct x86_avx_thread_state *iavx = fstate; |
568 | unsigned i; |
569 | /* Verify reserved bits in the XSAVE header*/ |
570 | if (iavx->_xh.xstate_bv & ~xstate_xmask[current_xstate()]) |
571 | panic("iavx->_xh.xstate_bv: 0x%llx" , iavx->_xh.xstate_bv); |
572 | for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++) |
573 | if (iavx->_xh.xhrsvd[i]) |
574 | panic("Reserved bit set" ); |
575 | } |
576 | if (fpu_YMM_capable) { |
577 | if (layout != XSAVE32 && layout != XSAVE64) |
578 | panic("Inappropriate layout: %u\n" , layout); |
579 | } |
580 | #endif /* DEBUG */ |
581 | |
582 | switch (layout) { |
583 | case FXSAVE64: |
584 | fxrstor64(ifps); |
585 | break; |
586 | case FXSAVE32: |
587 | fxrstor(ifps); |
588 | break; |
589 | case XSAVE64: |
590 | xrstor64(ifps, xstate_xmask[current_xstate()]); |
591 | break; |
592 | case XSAVE32: |
593 | xrstor(ifps, xstate_xmask[current_xstate()]); |
594 | break; |
595 | default: |
596 | panic("fpu_load_registers() bad layout: %d\n" , layout); |
597 | } |
598 | } |
599 | |
600 | static void fpu_store_registers(void *fstate, boolean_t is64) { |
601 | struct x86_fx_thread_state *ifps = fstate; |
602 | assert(ALIGNED(ifps, 64)); |
603 | xstate_t xs = current_xstate(); |
604 | switch (xs) { |
605 | case FP: |
606 | if (is64) { |
607 | fxsave64(fstate); |
608 | ifps->fp_save_layout = FXSAVE64; |
609 | } else { |
610 | fxsave(fstate); |
611 | ifps->fp_save_layout = FXSAVE32; |
612 | } |
613 | break; |
614 | case AVX: |
615 | #if !defined(RC_HIDE_XNU_J137) |
616 | case AVX512: |
617 | #endif |
618 | if (is64) { |
619 | xsave64(ifps, xstate_xmask[xs]); |
620 | ifps->fp_save_layout = XSAVE64; |
621 | } else { |
622 | xsave(ifps, xstate_xmask[xs]); |
623 | ifps->fp_save_layout = XSAVE32; |
624 | } |
625 | break; |
626 | default: |
627 | panic("fpu_store_registers() bad xstate: %d\n" , xs); |
628 | } |
629 | } |
630 | |
631 | /* |
632 | * Initialize FP handling. |
633 | */ |
634 | |
635 | void |
636 | fpu_module_init(void) |
637 | { |
638 | if (!IS_VALID_XSTATE(fpu_default)) |
639 | panic("fpu_module_init: invalid extended state %u\n" , |
640 | fpu_default); |
641 | |
642 | /* We explicitly choose an allocation size of 13 pages = 64 * 832 |
643 | * to eliminate waste for the 832 byte sized |
644 | * AVX XSAVE register save area. |
645 | */ |
646 | ifps_zone[fpu_default] = zinit(fp_state_size[fpu_default], |
647 | thread_max * fp_state_size[fpu_default], |
648 | 64 * fp_state_size[fpu_default], |
649 | "x86 fpsave state" ); |
650 | |
651 | /* To maintain the required alignment, disable |
652 | * zone debugging for this zone as that appends |
653 | * 16 bytes to each element. |
654 | */ |
655 | zone_change(ifps_zone[fpu_default], Z_ALIGNMENT_REQUIRED, TRUE); |
656 | |
657 | #if !defined(RC_HIDE_XNU_J137) |
658 | /* |
659 | * If AVX512 is supported, create a separate savearea zone. |
660 | * with allocation size: 19 pages = 32 * 2668 |
661 | */ |
662 | if (fpu_capability == AVX512) { |
663 | ifps_zone[AVX512] = zinit(fp_state_size[AVX512], |
664 | thread_max * fp_state_size[AVX512], |
665 | 32 * fp_state_size[AVX512], |
666 | "x86 avx512 save state" ); |
667 | zone_change(ifps_zone[AVX512], Z_ALIGNMENT_REQUIRED, TRUE); |
668 | } |
669 | #endif |
670 | |
671 | /* Determine MXCSR reserved bits and configure initial FPU state*/ |
672 | configure_mxcsr_capability_mask(&initial_fp_state); |
673 | } |
674 | |
675 | /* |
676 | * Context switch fpu state. |
677 | * Always save old thread`s FPU context but don't load new .. allow that to fault-in. |
678 | * Switch to the new task's xstate. |
679 | */ |
680 | |
681 | void |
682 | fpu_switch_context(thread_t old, thread_t new) |
683 | { |
684 | struct x86_fx_thread_state *ifps; |
685 | cpu_data_t *cdp = current_cpu_datap(); |
686 | xstate_t new_xstate = new ? thread_xstate(new) : fpu_default; |
687 | |
688 | assert(ml_get_interrupts_enabled() == FALSE); |
689 | ifps = (old)->machine.ifps; |
690 | #if DEBUG |
691 | if (ifps && ((ifps->fp_valid != FALSE) && (ifps->fp_valid != TRUE))) { |
692 | panic("ifps->fp_valid: %u\n" , ifps->fp_valid); |
693 | } |
694 | #endif |
695 | if (ifps != 0 && (ifps->fp_valid == FALSE)) { |
696 | /* Clear CR0.TS in preparation for the FP context save. In |
697 | * theory, this shouldn't be necessary since a live FPU should |
698 | * indicate that TS is clear. However, various routines |
699 | * (such as sendsig & sigreturn) manipulate TS directly. |
700 | */ |
701 | clear_ts(); |
702 | /* registers are in FPU - save to memory */ |
703 | boolean_t is64 = (thread_is_64bit_addr(old) && |
704 | is_saved_state64(old->machine.iss)); |
705 | |
706 | fpu_store_registers(ifps, is64); |
707 | ifps->fp_valid = TRUE; |
708 | |
709 | if (fpu_ZMM_capable && (cdp->cpu_xstate == AVX512)) { |
710 | xrstor64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]); |
711 | } else if (fpu_YMM_capable) { |
712 | xrstor64((struct x86_fx_thread_state *) &default_avx_state, xstate_xmask[AVX]); |
713 | } else { |
714 | fxrstor64((struct x86_fx_thread_state *)&default_fx_state); |
715 | } |
716 | } |
717 | |
718 | assertf(fpu_YMM_capable ? (xgetbv(XCR0) == xstate_xmask[cdp->cpu_xstate]) : TRUE, "XCR0 mismatch: 0x%llx 0x%x 0x%x" , xgetbv(XCR0), cdp->cpu_xstate, xstate_xmask[cdp->cpu_xstate]); |
719 | if (new_xstate != cdp->cpu_xstate) { |
720 | DBG("fpu_switch_context(%p,%p) new xstate: %s\n" , |
721 | old, new, xstate_name[new_xstate]); |
722 | xsetbv(0, xstate_xmask[new_xstate]); |
723 | cdp->cpu_xstate = new_xstate; |
724 | } |
725 | set_ts(); |
726 | } |
727 | |
728 | |
729 | /* |
730 | * Free a FPU save area. |
731 | * Called only when thread terminating - no locking necessary. |
732 | */ |
733 | void |
734 | fpu_free(thread_t thread, void *fps) |
735 | { |
736 | pcb_t pcb = THREAD_TO_PCB(thread); |
737 | |
738 | fp_state_free(fps, pcb->xstate); |
739 | pcb->xstate = UNDEFINED; |
740 | } |
741 | |
742 | /* |
743 | * Set the floating-point state for a thread based |
744 | * on the FXSave formatted data. This is basically |
745 | * the same as fpu_set_state except it uses the |
746 | * expanded data structure. |
747 | * If the thread is not the current thread, it is |
748 | * not running (held). Locking needed against |
749 | * concurrent fpu_set_state or fpu_get_state. |
750 | */ |
751 | kern_return_t |
752 | fpu_set_fxstate( |
753 | thread_t thr_act, |
754 | thread_state_t tstate, |
755 | thread_flavor_t f) |
756 | { |
757 | struct x86_fx_thread_state *ifps; |
758 | struct x86_fx_thread_state *new_ifps; |
759 | x86_float_state64_t *state; |
760 | pcb_t pcb; |
761 | boolean_t old_valid, fresh_state = FALSE; |
762 | |
763 | if (fpu_capability == UNDEFINED) |
764 | return KERN_FAILURE; |
765 | |
766 | if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) && |
767 | fpu_capability < AVX) |
768 | return KERN_FAILURE; |
769 | |
770 | #if !defined(RC_HIDE_XNU_J137) |
771 | if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) && |
772 | thread_xstate(thr_act) == AVX) |
773 | if (!fpu_thread_promote_avx512(thr_act)) |
774 | return KERN_FAILURE; |
775 | #endif |
776 | |
777 | state = (x86_float_state64_t *)tstate; |
778 | |
779 | assert(thr_act != THREAD_NULL); |
780 | pcb = THREAD_TO_PCB(thr_act); |
781 | |
782 | if (state == NULL) { |
783 | /* |
784 | * new FPU state is 'invalid'. |
785 | * Deallocate the fp state if it exists. |
786 | */ |
787 | simple_lock(&pcb->lock); |
788 | |
789 | ifps = pcb->ifps; |
790 | pcb->ifps = 0; |
791 | |
792 | simple_unlock(&pcb->lock); |
793 | |
794 | if (ifps != 0) { |
795 | fp_state_free(ifps, thread_xstate(thr_act)); |
796 | } |
797 | } else { |
798 | /* |
799 | * Valid incoming state. Allocate the fp state if there is none. |
800 | */ |
801 | new_ifps = 0; |
802 | Retry: |
803 | simple_lock(&pcb->lock); |
804 | |
805 | ifps = pcb->ifps; |
806 | if (ifps == 0) { |
807 | if (new_ifps == 0) { |
808 | simple_unlock(&pcb->lock); |
809 | new_ifps = fp_state_alloc(thread_xstate(thr_act)); |
810 | goto Retry; |
811 | } |
812 | ifps = new_ifps; |
813 | new_ifps = 0; |
814 | pcb->ifps = ifps; |
815 | pcb->xstate = thread_xstate(thr_act); |
816 | fresh_state = TRUE; |
817 | } |
818 | |
819 | /* |
820 | * now copy over the new data. |
821 | */ |
822 | |
823 | old_valid = ifps->fp_valid; |
824 | |
825 | #if DEBUG || DEVELOPMENT |
826 | if ((fresh_state == FALSE) && (old_valid == FALSE) && (thr_act != current_thread())) { |
827 | panic("fpu_set_fxstate inconsistency, thread: %p not stopped" , thr_act); |
828 | } |
829 | #endif |
830 | /* |
831 | * Clear any reserved bits in the MXCSR to prevent a GPF |
832 | * when issuing an FXRSTOR. |
833 | */ |
834 | |
835 | state->fpu_mxcsr &= mxcsr_capability_mask; |
836 | |
837 | bcopy((char *)&state->fpu_fcw, (char *)ifps, fp_state_size[FP]); |
838 | |
839 | switch (thread_xstate(thr_act)) { |
840 | case UNDEFINED: |
841 | panic("fpu_set_fxstate() UNDEFINED xstate" ); |
842 | break; |
843 | case FP: |
844 | ifps->fp_save_layout = thread_is_64bit_addr(thr_act) ? FXSAVE64 : FXSAVE32; |
845 | break; |
846 | case AVX: { |
847 | struct x86_avx_thread_state *iavx = (void *) ifps; |
848 | x86_avx_state64_t *xs = (x86_avx_state64_t *) state; |
849 | |
850 | iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32; |
851 | |
852 | /* Sanitize XSAVE header */ |
853 | bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd)); |
854 | iavx->_xh.xstate_bv = AVX_XMASK; |
855 | iavx->_xh.xcomp_bv = 0; |
856 | |
857 | if (f == x86_AVX_STATE32) { |
858 | bcopy_nochk(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG)); |
859 | } else if (f == x86_AVX_STATE64) { |
860 | bcopy_nochk(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG)); |
861 | } else { |
862 | iavx->_xh.xstate_bv = (XFEM_SSE | XFEM_X87); |
863 | } |
864 | break; |
865 | } |
866 | #if !defined(RC_HIDE_XNU_J137) |
867 | case AVX512: { |
868 | struct x86_avx512_thread_state *iavx = (void *) ifps; |
869 | union { |
870 | thread_state_t ts; |
871 | x86_avx512_state32_t *s32; |
872 | x86_avx512_state64_t *s64; |
873 | } xs = { .ts = tstate }; |
874 | |
875 | iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32; |
876 | |
877 | /* Sanitize XSAVE header */ |
878 | bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd)); |
879 | iavx->_xh.xstate_bv = AVX512_XMASK; |
880 | iavx->_xh.xcomp_bv = 0; |
881 | |
882 | switch (f) { |
883 | case x86_AVX512_STATE32: |
884 | bcopy_nochk(&xs.s32->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG)); |
885 | bcopy_nochk(&xs.s32->fpu_zmmh0, iavx->x_ZMM_Hi256, 8 * sizeof(_STRUCT_YMM_REG)); |
886 | bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG)); |
887 | DBG_AVX512_STATE(iavx); |
888 | break; |
889 | case x86_AVX_STATE32: |
890 | bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG)); |
891 | break; |
892 | case x86_AVX512_STATE64: |
893 | bcopy_nochk(&xs.s64->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG)); |
894 | bcopy_nochk(&xs.s64->fpu_zmm16, iavx->x_Hi16_ZMM, 16 * sizeof(_STRUCT_ZMM_REG)); |
895 | bcopy_nochk(&xs.s64->fpu_zmmh0, iavx->x_ZMM_Hi256, 16 * sizeof(_STRUCT_YMM_REG)); |
896 | bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG)); |
897 | DBG_AVX512_STATE(iavx); |
898 | break; |
899 | case x86_AVX_STATE64: |
900 | bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG)); |
901 | break; |
902 | } |
903 | break; |
904 | } |
905 | #endif |
906 | } |
907 | |
908 | ifps->fp_valid = old_valid; |
909 | |
910 | if (old_valid == FALSE) { |
911 | boolean_t istate = ml_set_interrupts_enabled(FALSE); |
912 | ifps->fp_valid = TRUE; |
913 | /* If altering the current thread's state, disable FPU */ |
914 | if (thr_act == current_thread()) |
915 | set_ts(); |
916 | |
917 | ml_set_interrupts_enabled(istate); |
918 | } |
919 | |
920 | simple_unlock(&pcb->lock); |
921 | |
922 | if (new_ifps != 0) |
923 | fp_state_free(new_ifps, thread_xstate(thr_act)); |
924 | } |
925 | return KERN_SUCCESS; |
926 | } |
927 | |
928 | /* |
929 | * Get the floating-point state for a thread. |
930 | * If the thread is not the current thread, it is |
931 | * not running (held). Locking needed against |
932 | * concurrent fpu_set_state or fpu_get_state. |
933 | */ |
934 | kern_return_t |
935 | fpu_get_fxstate( |
936 | thread_t thr_act, |
937 | thread_state_t tstate, |
938 | thread_flavor_t f) |
939 | { |
940 | struct x86_fx_thread_state *ifps; |
941 | x86_float_state64_t *state; |
942 | kern_return_t ret = KERN_FAILURE; |
943 | pcb_t pcb; |
944 | |
945 | if (fpu_capability == UNDEFINED) |
946 | return KERN_FAILURE; |
947 | |
948 | if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) && |
949 | fpu_capability < AVX) |
950 | return KERN_FAILURE; |
951 | |
952 | #if !defined(RC_HIDE_XNU_J137) |
953 | if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) && |
954 | thread_xstate(thr_act) != AVX512) |
955 | return KERN_FAILURE; |
956 | #endif |
957 | |
958 | state = (x86_float_state64_t *)tstate; |
959 | |
960 | assert(thr_act != THREAD_NULL); |
961 | pcb = THREAD_TO_PCB(thr_act); |
962 | |
963 | simple_lock(&pcb->lock); |
964 | |
965 | ifps = pcb->ifps; |
966 | if (ifps == 0) { |
967 | /* |
968 | * No valid floating-point state. |
969 | */ |
970 | |
971 | bcopy((char *)&initial_fp_state, (char *)&state->fpu_fcw, |
972 | fp_state_size[FP]); |
973 | |
974 | simple_unlock(&pcb->lock); |
975 | |
976 | return KERN_SUCCESS; |
977 | } |
978 | /* |
979 | * Make sure we`ve got the latest fp state info |
980 | * If the live fpu state belongs to our target |
981 | */ |
982 | if (thr_act == current_thread()) { |
983 | boolean_t intr; |
984 | |
985 | intr = ml_set_interrupts_enabled(FALSE); |
986 | |
987 | clear_ts(); |
988 | fp_save(thr_act); |
989 | clear_fpu(); |
990 | |
991 | (void)ml_set_interrupts_enabled(intr); |
992 | } |
993 | if (ifps->fp_valid) { |
994 | bcopy((char *)ifps, (char *)&state->fpu_fcw, fp_state_size[FP]); |
995 | switch (thread_xstate(thr_act)) { |
996 | case UNDEFINED: |
997 | panic("fpu_get_fxstate() UNDEFINED xstate" ); |
998 | break; |
999 | case FP: |
1000 | break; /* already done */ |
1001 | case AVX: { |
1002 | struct x86_avx_thread_state *iavx = (void *) ifps; |
1003 | x86_avx_state64_t *xs = (x86_avx_state64_t *) state; |
1004 | if (f == x86_AVX_STATE32) { |
1005 | bcopy_nochk(iavx->x_YMM_Hi128, &xs->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG)); |
1006 | } else if (f == x86_AVX_STATE64) { |
1007 | bcopy_nochk(iavx->x_YMM_Hi128, &xs->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG)); |
1008 | } |
1009 | break; |
1010 | } |
1011 | #if !defined(RC_HIDE_XNU_J137) |
1012 | case AVX512: { |
1013 | struct x86_avx512_thread_state *iavx = (void *) ifps; |
1014 | union { |
1015 | thread_state_t ts; |
1016 | x86_avx512_state32_t *s32; |
1017 | x86_avx512_state64_t *s64; |
1018 | } xs = { .ts = tstate }; |
1019 | switch (f) { |
1020 | case x86_AVX512_STATE32: |
1021 | bcopy_nochk(iavx->x_Opmask, &xs.s32->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG)); |
1022 | bcopy_nochk(iavx->x_ZMM_Hi256, &xs.s32->fpu_zmmh0, 8 * sizeof(_STRUCT_YMM_REG)); |
1023 | bcopy_nochk(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG)); |
1024 | DBG_AVX512_STATE(iavx); |
1025 | break; |
1026 | case x86_AVX_STATE32: |
1027 | bcopy_nochk(iavx->x_YMM_Hi128, &xs.s32->fpu_ymmh0, 8 * sizeof(_STRUCT_XMM_REG)); |
1028 | break; |
1029 | case x86_AVX512_STATE64: |
1030 | bcopy_nochk(iavx->x_Opmask, &xs.s64->fpu_k0, 8 * sizeof(_STRUCT_OPMASK_REG)); |
1031 | bcopy_nochk(iavx->x_Hi16_ZMM, &xs.s64->fpu_zmm16, 16 * sizeof(_STRUCT_ZMM_REG)); |
1032 | bcopy_nochk(iavx->x_ZMM_Hi256, &xs.s64->fpu_zmmh0, 16 * sizeof(_STRUCT_YMM_REG)); |
1033 | bcopy_nochk(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG)); |
1034 | DBG_AVX512_STATE(iavx); |
1035 | break; |
1036 | case x86_AVX_STATE64: |
1037 | bcopy_nochk(iavx->x_YMM_Hi128, &xs.s64->fpu_ymmh0, 16 * sizeof(_STRUCT_XMM_REG)); |
1038 | break; |
1039 | } |
1040 | break; |
1041 | } |
1042 | #endif |
1043 | } |
1044 | |
1045 | ret = KERN_SUCCESS; |
1046 | } |
1047 | simple_unlock(&pcb->lock); |
1048 | |
1049 | return ret; |
1050 | } |
1051 | |
1052 | |
1053 | |
1054 | /* |
1055 | * the child thread is 'stopped' with the thread |
1056 | * mutex held and is currently not known by anyone |
1057 | * so no way for fpu state to get manipulated by an |
1058 | * outside agency -> no need for pcb lock |
1059 | */ |
1060 | |
1061 | void |
1062 | fpu_dup_fxstate( |
1063 | thread_t parent, |
1064 | thread_t child) |
1065 | { |
1066 | struct x86_fx_thread_state *new_ifps = NULL; |
1067 | boolean_t intr; |
1068 | pcb_t ppcb; |
1069 | xstate_t xstate = thread_xstate(parent); |
1070 | |
1071 | ppcb = THREAD_TO_PCB(parent); |
1072 | |
1073 | if (ppcb->ifps == NULL) |
1074 | return; |
1075 | |
1076 | if (child->machine.ifps) |
1077 | panic("fpu_dup_fxstate: child's ifps non-null" ); |
1078 | |
1079 | new_ifps = fp_state_alloc(xstate); |
1080 | |
1081 | simple_lock(&ppcb->lock); |
1082 | |
1083 | if (ppcb->ifps != NULL) { |
1084 | struct x86_fx_thread_state *ifps = ppcb->ifps; |
1085 | /* |
1086 | * Make sure we`ve got the latest fp state info |
1087 | */ |
1088 | if (current_thread() == parent) { |
1089 | intr = ml_set_interrupts_enabled(FALSE); |
1090 | assert(current_thread() == parent); |
1091 | clear_ts(); |
1092 | fp_save(parent); |
1093 | clear_fpu(); |
1094 | |
1095 | (void)ml_set_interrupts_enabled(intr); |
1096 | } |
1097 | |
1098 | if (ifps->fp_valid) { |
1099 | child->machine.ifps = new_ifps; |
1100 | child->machine.xstate = xstate; |
1101 | bcopy((char *)(ppcb->ifps), |
1102 | (char *)(child->machine.ifps), |
1103 | fp_state_size[xstate]); |
1104 | |
1105 | /* Mark the new fp saved state as non-live. */ |
1106 | /* Temporarily disabled: radar 4647827 |
1107 | * new_ifps->fp_valid = TRUE; |
1108 | */ |
1109 | |
1110 | /* |
1111 | * Clear any reserved bits in the MXCSR to prevent a GPF |
1112 | * when issuing an FXRSTOR. |
1113 | */ |
1114 | new_ifps->fx_MXCSR &= mxcsr_capability_mask; |
1115 | new_ifps = NULL; |
1116 | } |
1117 | } |
1118 | simple_unlock(&ppcb->lock); |
1119 | |
1120 | if (new_ifps != NULL) |
1121 | fp_state_free(new_ifps, xstate); |
1122 | } |
1123 | |
1124 | /* |
1125 | * Initialize FPU. |
1126 | * FNINIT programs the x87 control word to 0x37f, which matches |
1127 | * the desired default for macOS. |
1128 | */ |
1129 | |
1130 | void |
1131 | fpinit(void) { |
1132 | boolean_t istate = ml_set_interrupts_enabled(FALSE); |
1133 | clear_ts(); |
1134 | fninit(); |
1135 | #if DEBUG |
1136 | /* We skip this power-on-default verification sequence on |
1137 | * non-DEBUG, as dirtying the x87 control word may slow down |
1138 | * xsave/xrstor and affect energy use. |
1139 | */ |
1140 | unsigned short control, control2; |
1141 | fnstcw(&control); |
1142 | control2 = control; |
1143 | control &= ~(FPC_PC|FPC_RC); /* Clear precision & rounding control */ |
1144 | control |= (FPC_PC_64 | /* Set precision */ |
1145 | FPC_RC_RN | /* round-to-nearest */ |
1146 | FPC_ZE | /* Suppress zero-divide */ |
1147 | FPC_OE | /* and overflow */ |
1148 | FPC_UE | /* underflow */ |
1149 | FPC_IE | /* Allow NaNQs and +-INF */ |
1150 | FPC_DE | /* Allow denorms as operands */ |
1151 | FPC_PE); /* No trap for precision loss */ |
1152 | assert(control == control2); |
1153 | fldcw(control); |
1154 | #endif |
1155 | /* Initialize SSE/SSE2 */ |
1156 | __builtin_ia32_ldmxcsr(0x1f80); |
1157 | if (fpu_YMM_capable) { |
1158 | vzeroall(); |
1159 | } else { |
1160 | xmmzeroall(); |
1161 | } |
1162 | ml_set_interrupts_enabled(istate); |
1163 | } |
1164 | |
1165 | /* |
1166 | * Coprocessor not present. |
1167 | */ |
1168 | |
1169 | uint64_t x86_isr_fp_simd_use; |
1170 | |
1171 | void |
1172 | fpnoextflt(void) |
1173 | { |
1174 | boolean_t intr; |
1175 | thread_t thr_act; |
1176 | pcb_t pcb; |
1177 | struct x86_fx_thread_state *ifps = 0; |
1178 | xstate_t xstate = current_xstate(); |
1179 | |
1180 | thr_act = current_thread(); |
1181 | pcb = THREAD_TO_PCB(thr_act); |
1182 | |
1183 | if (pcb->ifps == 0 && !get_interrupt_level()) { |
1184 | ifps = fp_state_alloc(xstate); |
1185 | bcopy((char *)&initial_fp_state, (char *)ifps, |
1186 | fp_state_size[xstate]); |
1187 | if (!thread_is_64bit_addr(thr_act)) { |
1188 | ifps->fp_save_layout = fpu_YMM_capable ? XSAVE32 : FXSAVE32; |
1189 | } |
1190 | else |
1191 | ifps->fp_save_layout = fpu_YMM_capable ? XSAVE64 : FXSAVE64; |
1192 | ifps->fp_valid = TRUE; |
1193 | } |
1194 | intr = ml_set_interrupts_enabled(FALSE); |
1195 | |
1196 | clear_ts(); /* Enable FPU use */ |
1197 | |
1198 | if (__improbable(get_interrupt_level())) { |
1199 | /* Track number of #DNA traps at interrupt context, |
1200 | * which is likely suboptimal. Racy, but good enough. |
1201 | */ |
1202 | x86_isr_fp_simd_use++; |
1203 | /* |
1204 | * Save current FP/SIMD context if valid |
1205 | * Initialize live FP/SIMD registers |
1206 | */ |
1207 | if (pcb->ifps) { |
1208 | fp_save(thr_act); |
1209 | } |
1210 | fpinit(); |
1211 | } else { |
1212 | if (pcb->ifps == 0) { |
1213 | pcb->ifps = ifps; |
1214 | pcb->xstate = xstate; |
1215 | ifps = 0; |
1216 | } |
1217 | /* |
1218 | * Load this thread`s state into coprocessor live context. |
1219 | */ |
1220 | fp_load(thr_act); |
1221 | } |
1222 | (void)ml_set_interrupts_enabled(intr); |
1223 | |
1224 | if (ifps) |
1225 | fp_state_free(ifps, xstate); |
1226 | } |
1227 | |
1228 | /* |
1229 | * FPU overran end of segment. |
1230 | * Re-initialize FPU. Floating point state is not valid. |
1231 | */ |
1232 | |
1233 | void |
1234 | fpextovrflt(void) |
1235 | { |
1236 | thread_t thr_act = current_thread(); |
1237 | pcb_t pcb; |
1238 | struct x86_fx_thread_state *ifps; |
1239 | boolean_t intr; |
1240 | xstate_t xstate = current_xstate(); |
1241 | |
1242 | intr = ml_set_interrupts_enabled(FALSE); |
1243 | |
1244 | if (get_interrupt_level()) |
1245 | panic("FPU segment overrun exception at interrupt context\n" ); |
1246 | if (current_task() == kernel_task) |
1247 | panic("FPU segment overrun exception in kernel thread context\n" ); |
1248 | |
1249 | /* |
1250 | * This is a non-recoverable error. |
1251 | * Invalidate the thread`s FPU state. |
1252 | */ |
1253 | pcb = THREAD_TO_PCB(thr_act); |
1254 | simple_lock(&pcb->lock); |
1255 | ifps = pcb->ifps; |
1256 | pcb->ifps = 0; |
1257 | simple_unlock(&pcb->lock); |
1258 | |
1259 | /* |
1260 | * Re-initialize the FPU. |
1261 | */ |
1262 | clear_ts(); |
1263 | fninit(); |
1264 | |
1265 | /* |
1266 | * And disable access. |
1267 | */ |
1268 | clear_fpu(); |
1269 | |
1270 | (void)ml_set_interrupts_enabled(intr); |
1271 | |
1272 | if (ifps) |
1273 | fp_state_free(ifps, xstate); |
1274 | |
1275 | /* |
1276 | * Raise exception. |
1277 | */ |
1278 | i386_exception(EXC_BAD_ACCESS, VM_PROT_READ|VM_PROT_EXECUTE, 0); |
1279 | /*NOTREACHED*/ |
1280 | } |
1281 | |
1282 | extern void fpxlog(int, uint32_t, uint32_t, uint32_t); |
1283 | |
1284 | /* |
1285 | * FPU error. Called by AST. |
1286 | */ |
1287 | |
1288 | void |
1289 | fpexterrflt(void) |
1290 | { |
1291 | thread_t thr_act = current_thread(); |
1292 | struct x86_fx_thread_state *ifps = thr_act->machine.ifps; |
1293 | boolean_t intr; |
1294 | |
1295 | intr = ml_set_interrupts_enabled(FALSE); |
1296 | |
1297 | if (get_interrupt_level()) |
1298 | panic("FPU error exception at interrupt context\n" ); |
1299 | if (current_task() == kernel_task) |
1300 | panic("FPU error exception in kernel thread context\n" ); |
1301 | |
1302 | /* |
1303 | * Save the FPU state and turn off the FPU. |
1304 | */ |
1305 | fp_save(thr_act); |
1306 | |
1307 | (void)ml_set_interrupts_enabled(intr); |
1308 | |
1309 | const uint32_t mask = ifps->fx_control & |
1310 | (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE); |
1311 | const uint32_t xcpt = ~mask & (ifps->fx_status & |
1312 | (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE)); |
1313 | fpxlog(EXC_I386_EXTERR, ifps->fx_status, ifps->fx_control, xcpt); |
1314 | /* |
1315 | * Raise FPU exception. |
1316 | * Locking not needed on pcb->ifps, |
1317 | * since thread is running. |
1318 | */ |
1319 | i386_exception(EXC_ARITHMETIC, |
1320 | EXC_I386_EXTERR, |
1321 | ifps->fx_status); |
1322 | |
1323 | /*NOTREACHED*/ |
1324 | } |
1325 | |
1326 | /* |
1327 | * Save FPU state. |
1328 | * |
1329 | * Locking not needed: |
1330 | * . if called from fpu_get_state, pcb already locked. |
1331 | * . if called from fpnoextflt or fp_intr, we are single-cpu |
1332 | * . otherwise, thread is running. |
1333 | * N.B.: Must be called with interrupts disabled |
1334 | */ |
1335 | |
1336 | void |
1337 | fp_save( |
1338 | thread_t thr_act) |
1339 | { |
1340 | pcb_t pcb = THREAD_TO_PCB(thr_act); |
1341 | struct x86_fx_thread_state *ifps = pcb->ifps; |
1342 | |
1343 | assert(ifps != 0); |
1344 | if (ifps != 0 && !ifps->fp_valid) { |
1345 | assert((get_cr0() & CR0_TS) == 0); |
1346 | /* registers are in FPU */ |
1347 | ifps->fp_valid = TRUE; |
1348 | fpu_store_registers(ifps, thread_is_64bit_addr(thr_act)); |
1349 | } |
1350 | } |
1351 | |
1352 | /* |
1353 | * Restore FPU state from PCB. |
1354 | * |
1355 | * Locking not needed; always called on the current thread. |
1356 | */ |
1357 | |
1358 | void |
1359 | fp_load( |
1360 | thread_t thr_act) |
1361 | { |
1362 | pcb_t pcb = THREAD_TO_PCB(thr_act); |
1363 | struct x86_fx_thread_state *ifps = pcb->ifps; |
1364 | |
1365 | assert(ifps); |
1366 | #if DEBUG |
1367 | if (ifps->fp_valid != FALSE && ifps->fp_valid != TRUE) { |
1368 | panic("fp_load() invalid fp_valid: %u, fp_save_layout: %u\n" , |
1369 | ifps->fp_valid, ifps->fp_save_layout); |
1370 | } |
1371 | #endif |
1372 | |
1373 | if (ifps->fp_valid == FALSE) { |
1374 | fpinit(); |
1375 | } else { |
1376 | fpu_load_registers(ifps); |
1377 | } |
1378 | ifps->fp_valid = FALSE; /* in FPU */ |
1379 | } |
1380 | |
1381 | /* |
1382 | * SSE arithmetic exception handling code. |
1383 | * Basically the same as the x87 exception handler with a different subtype |
1384 | */ |
1385 | |
1386 | void |
1387 | fpSSEexterrflt(void) |
1388 | { |
1389 | thread_t thr_act = current_thread(); |
1390 | struct x86_fx_thread_state *ifps = thr_act->machine.ifps; |
1391 | boolean_t intr; |
1392 | |
1393 | intr = ml_set_interrupts_enabled(FALSE); |
1394 | |
1395 | if (get_interrupt_level()) |
1396 | panic("SSE exception at interrupt context\n" ); |
1397 | if (current_task() == kernel_task) |
1398 | panic("SSE exception in kernel thread context\n" ); |
1399 | |
1400 | /* |
1401 | * Save the FPU state and turn off the FPU. |
1402 | */ |
1403 | fp_save(thr_act); |
1404 | |
1405 | (void)ml_set_interrupts_enabled(intr); |
1406 | /* |
1407 | * Raise FPU exception. |
1408 | * Locking not needed on pcb->ifps, |
1409 | * since thread is running. |
1410 | */ |
1411 | const uint32_t mask = (ifps->fx_MXCSR >> 7) & |
1412 | (FPC_IM | FPC_DM | FPC_ZM | FPC_OM | FPC_UE | FPC_PE); |
1413 | const uint32_t xcpt = ~mask & (ifps->fx_MXCSR & |
1414 | (FPS_IE | FPS_DE | FPS_ZE | FPS_OE | FPS_UE | FPS_PE)); |
1415 | fpxlog(EXC_I386_SSEEXTERR, ifps->fx_MXCSR, ifps->fx_MXCSR, xcpt); |
1416 | |
1417 | i386_exception(EXC_ARITHMETIC, |
1418 | EXC_I386_SSEEXTERR, |
1419 | ifps->fx_MXCSR); |
1420 | /*NOTREACHED*/ |
1421 | } |
1422 | |
1423 | |
1424 | #if !defined(RC_HIDE_XNU_J137) |
1425 | /* |
1426 | * If a thread is using an AVX-sized savearea: |
1427 | * - allocate a new AVX512-sized area, |
1428 | * - copy the 256-bit state into the 512-bit area, |
1429 | * - deallocate the smaller area |
1430 | */ |
1431 | static void |
1432 | fpu_savearea_promote_avx512(thread_t thread) |
1433 | { |
1434 | struct x86_avx_thread_state *ifps = NULL; |
1435 | struct x86_avx512_thread_state *ifps512 = NULL; |
1436 | pcb_t pcb = THREAD_TO_PCB(thread); |
1437 | boolean_t do_avx512_alloc = FALSE; |
1438 | |
1439 | DBG("fpu_upgrade_savearea(%p)\n" , thread); |
1440 | |
1441 | simple_lock(&pcb->lock); |
1442 | |
1443 | ifps = pcb->ifps; |
1444 | if (ifps == NULL) { |
1445 | pcb->xstate = AVX512; |
1446 | simple_unlock(&pcb->lock); |
1447 | if (thread != current_thread()) { |
1448 | /* nothing to be done */ |
1449 | |
1450 | return; |
1451 | } |
1452 | fpnoextflt(); |
1453 | return; |
1454 | } |
1455 | |
1456 | if (pcb->xstate != AVX512) { |
1457 | do_avx512_alloc = TRUE; |
1458 | } |
1459 | simple_unlock(&pcb->lock); |
1460 | |
1461 | if (do_avx512_alloc == TRUE) { |
1462 | ifps512 = fp_state_alloc(AVX512); |
1463 | } |
1464 | |
1465 | simple_lock(&pcb->lock); |
1466 | if (thread == current_thread()) { |
1467 | boolean_t intr; |
1468 | |
1469 | intr = ml_set_interrupts_enabled(FALSE); |
1470 | |
1471 | clear_ts(); |
1472 | fp_save(thread); |
1473 | clear_fpu(); |
1474 | |
1475 | xsetbv(0, AVX512_XMASK); |
1476 | current_cpu_datap()->cpu_xstate = AVX512; |
1477 | (void)ml_set_interrupts_enabled(intr); |
1478 | } |
1479 | assert(ifps->fp.fp_valid); |
1480 | |
1481 | /* Allocate an AVX512 savearea and copy AVX state into it */ |
1482 | if (pcb->xstate != AVX512) { |
1483 | bcopy(ifps, ifps512, fp_state_size[AVX]); |
1484 | pcb->ifps = ifps512; |
1485 | pcb->xstate = AVX512; |
1486 | ifps512 = NULL; |
1487 | } else { |
1488 | ifps = NULL; |
1489 | } |
1490 | /* The PCB lock is redundant in some scenarios given the higher level |
1491 | * thread mutex, but its pre-emption disablement is relied upon here |
1492 | */ |
1493 | simple_unlock(&pcb->lock); |
1494 | |
1495 | if (ifps) { |
1496 | fp_state_free(ifps, AVX); |
1497 | } |
1498 | if (ifps512) { |
1499 | fp_state_free(ifps, AVX512); |
1500 | } |
1501 | } |
1502 | |
1503 | /* |
1504 | * Upgrade the calling thread to AVX512. |
1505 | */ |
1506 | boolean_t |
1507 | fpu_thread_promote_avx512(thread_t thread) |
1508 | { |
1509 | task_t task = current_task(); |
1510 | |
1511 | if (thread != current_thread()) |
1512 | return FALSE; |
1513 | if (!ml_fpu_avx512_enabled()) |
1514 | return FALSE; |
1515 | |
1516 | fpu_savearea_promote_avx512(thread); |
1517 | |
1518 | /* Racy but the task's xstate is only a hint */ |
1519 | task->xstate = AVX512; |
1520 | |
1521 | return TRUE; |
1522 | } |
1523 | |
1524 | |
1525 | /* |
1526 | * Called from user_trap() when an invalid opcode fault is taken. |
1527 | * If the user is attempting an AVX512 instruction on a machine |
1528 | * that supports this, we switch the calling thread to use |
1529 | * a larger savearea, set its XCR0 bit mask to enable AVX512 and |
1530 | * return directly via thread_exception_return(). |
1531 | * Otherwise simply return. |
1532 | */ |
1533 | #define MAX_X86_INSN_LENGTH (16) |
1534 | void |
1535 | fpUDflt(user_addr_t rip) |
1536 | { |
1537 | uint8_t instruction_prefix; |
1538 | boolean_t is_AVX512_instruction = FALSE; |
1539 | user_addr_t original_rip = rip; |
1540 | do { |
1541 | /* TODO: as an optimisation, copy up to the lesser of the |
1542 | * next page boundary or maximal prefix length in one pass |
1543 | * rather than issue multiple copyins |
1544 | */ |
1545 | if (copyin(rip, (char *) &instruction_prefix, 1)) { |
1546 | return; |
1547 | } |
1548 | DBG("fpUDflt(0x%016llx) prefix: 0x%x\n" , |
1549 | rip, instruction_prefix); |
1550 | /* TODO: determine more specifically which prefixes |
1551 | * are sane possibilities for AVX512 insns |
1552 | */ |
1553 | switch (instruction_prefix) { |
1554 | case 0x2E: /* CS segment override */ |
1555 | case 0x36: /* SS segment override */ |
1556 | case 0x3E: /* DS segment override */ |
1557 | case 0x26: /* ES segment override */ |
1558 | case 0x64: /* FS segment override */ |
1559 | case 0x65: /* GS segment override */ |
1560 | case 0x66: /* Operand-size override */ |
1561 | case 0x67: /* address-size override */ |
1562 | /* Skip optional prefixes */ |
1563 | rip++; |
1564 | if ((rip - original_rip) > MAX_X86_INSN_LENGTH) { |
1565 | return; |
1566 | } |
1567 | break; |
1568 | case 0x62: /* EVEX */ |
1569 | case 0xC5: /* VEX 2-byte */ |
1570 | case 0xC4: /* VEX 3-byte */ |
1571 | is_AVX512_instruction = TRUE; |
1572 | break; |
1573 | default: |
1574 | return; |
1575 | } |
1576 | } while (!is_AVX512_instruction); |
1577 | |
1578 | /* Here if we detect attempted execution of an AVX512 instruction */ |
1579 | |
1580 | /* |
1581 | * Fail if this machine doesn't support AVX512 |
1582 | */ |
1583 | if (fpu_capability != AVX512) |
1584 | return; |
1585 | |
1586 | assert(xgetbv(XCR0) == AVX_XMASK); |
1587 | |
1588 | DBG("fpUDflt() switching xstate to AVX512\n" ); |
1589 | (void) fpu_thread_promote_avx512(current_thread()); |
1590 | |
1591 | thread_exception_return(); |
1592 | /* NOT REACHED */ |
1593 | } |
1594 | #endif /* !defined(RC_HIDE_XNU_J137) */ |
1595 | |
1596 | void |
1597 | fp_setvalid(boolean_t value) { |
1598 | thread_t thr_act = current_thread(); |
1599 | struct x86_fx_thread_state *ifps = thr_act->machine.ifps; |
1600 | |
1601 | if (ifps) { |
1602 | ifps->fp_valid = value; |
1603 | |
1604 | if (value == TRUE) { |
1605 | boolean_t istate = ml_set_interrupts_enabled(FALSE); |
1606 | clear_fpu(); |
1607 | ml_set_interrupts_enabled(istate); |
1608 | } |
1609 | } |
1610 | } |
1611 | |
1612 | boolean_t |
1613 | ml_fpu_avx_enabled(void) { |
1614 | return (fpu_capability >= AVX); |
1615 | } |
1616 | |
1617 | #if !defined(RC_HIDE_XNU_J137) |
1618 | boolean_t |
1619 | ml_fpu_avx512_enabled(void) { |
1620 | return (fpu_capability == AVX512); |
1621 | } |
1622 | #endif |
1623 | |
1624 | static xstate_t |
1625 | task_xstate(task_t task) |
1626 | { |
1627 | if (task == TASK_NULL) |
1628 | return fpu_default; |
1629 | else |
1630 | return task->xstate; |
1631 | } |
1632 | |
1633 | static xstate_t |
1634 | thread_xstate(thread_t thread) |
1635 | { |
1636 | xstate_t xs = THREAD_TO_PCB(thread)->xstate; |
1637 | if (xs == UNDEFINED) |
1638 | return task_xstate(thread->task); |
1639 | else |
1640 | return xs; |
1641 | } |
1642 | |
1643 | xstate_t |
1644 | current_xstate(void) |
1645 | { |
1646 | return thread_xstate(current_thread()); |
1647 | } |
1648 | |
1649 | /* |
1650 | * Called when exec'ing between bitnesses. |
1651 | * If valid FPU state exists, adjust the layout. |
1652 | */ |
1653 | void |
1654 | fpu_switch_addrmode(thread_t thread, boolean_t is_64bit) |
1655 | { |
1656 | struct x86_fx_thread_state *ifps = thread->machine.ifps; |
1657 | mp_disable_preemption(); |
1658 | |
1659 | if (ifps && ifps->fp_valid) { |
1660 | if (thread_xstate(thread) == FP) { |
1661 | ifps->fp_save_layout = is_64bit ? FXSAVE64 : FXSAVE32; |
1662 | } else { |
1663 | ifps->fp_save_layout = is_64bit ? XSAVE64 : XSAVE32; |
1664 | } |
1665 | } |
1666 | mp_enable_preemption(); |
1667 | } |
1668 | |
1669 | static inline uint32_t fpsimd_pop(uintptr_t ins, int sz) { |
1670 | uint32_t rv = 0; |
1671 | |
1672 | |
1673 | while (sz >= 16) { |
1674 | uint32_t rv1, rv2; |
1675 | uint64_t *ins64 = (uint64_t *) ins; |
1676 | uint64_t *ins642 = (uint64_t *) (ins + 8); |
1677 | rv1 = __builtin_popcountll(*ins64); |
1678 | rv2 = __builtin_popcountll(*ins642); |
1679 | rv += rv1 + rv2; |
1680 | sz -= 16; |
1681 | ins += 16; |
1682 | } |
1683 | |
1684 | while (sz >= 4) { |
1685 | uint32_t *ins32 = (uint32_t *) ins; |
1686 | rv += __builtin_popcount(*ins32); |
1687 | sz -= 4; |
1688 | ins += 4; |
1689 | } |
1690 | |
1691 | while (sz > 0) { |
1692 | char *ins8 = (char *)ins; |
1693 | rv += __builtin_popcount(*ins8); |
1694 | sz--; |
1695 | ins++; |
1696 | } |
1697 | return rv; |
1698 | } |
1699 | |
1700 | uint32_t thread_fpsimd_hash(thread_t ft) { |
1701 | if (fpsimd_fault_popc == 0) |
1702 | return 0; |
1703 | |
1704 | uint32_t prv = 0; |
1705 | boolean_t istate = ml_set_interrupts_enabled(FALSE); |
1706 | struct x86_fx_thread_state *pifps = THREAD_TO_PCB(ft)->ifps; |
1707 | |
1708 | if (pifps) { |
1709 | if (pifps->fp_valid) { |
1710 | prv = fpsimd_pop((uintptr_t) &pifps->fx_XMM_reg[0][0], |
1711 | sizeof(pifps->fx_XMM_reg)); |
1712 | } else { |
1713 | uintptr_t cr0 = get_cr0(); |
1714 | clear_ts(); |
1715 | fp_save(ft); |
1716 | prv = fpsimd_pop((uintptr_t) &pifps->fx_XMM_reg[0][0], |
1717 | sizeof(pifps->fx_XMM_reg)); |
1718 | pifps->fp_valid = FALSE; |
1719 | if (cr0 & CR0_TS) { |
1720 | set_cr0(cr0); |
1721 | } |
1722 | } |
1723 | } |
1724 | ml_set_interrupts_enabled(istate); |
1725 | return prv; |
1726 | } |
1727 | |