| 1 | /* |
| 2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | #include <vm/vm_page.h> |
| 32 | #include <pexpert/pexpert.h> |
| 33 | |
| 34 | #include <i386/cpuid.h> |
| 35 | |
| 36 | static boolean_t cpuid_dbg |
| 37 | #if DEBUG |
| 38 | = TRUE; |
| 39 | #else |
| 40 | = FALSE; |
| 41 | #endif |
| 42 | #define DBG(x...) \ |
| 43 | do { \ |
| 44 | if (cpuid_dbg) \ |
| 45 | kprintf(x); \ |
| 46 | } while (0) \ |
| 47 | |
| 48 | #define min(a,b) ((a) < (b) ? (a) : (b)) |
| 49 | #define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo)) |
| 50 | |
| 51 | /* Only for 32bit values */ |
| 52 | #define bit32(n) (1U << (n)) |
| 53 | #define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1)) |
| 54 | #define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l)) |
| 55 | |
| 56 | /* |
| 57 | * Leaf 2 cache descriptor encodings. |
| 58 | */ |
| 59 | typedef enum { |
| 60 | _NULL_, /* NULL (empty) descriptor */ |
| 61 | CACHE, /* Cache */ |
| 62 | TLB, /* TLB */ |
| 63 | STLB, /* Shared second-level unified TLB */ |
| 64 | PREFETCH /* Prefetch size */ |
| 65 | } cpuid_leaf2_desc_type_t; |
| 66 | |
| 67 | typedef enum { |
| 68 | NA, /* Not Applicable */ |
| 69 | FULLY, /* Fully-associative */ |
| 70 | TRACE, /* Trace Cache (P4 only) */ |
| 71 | INST, /* Instruction TLB */ |
| 72 | DATA, /* Data TLB */ |
| 73 | DATA0, /* Data TLB, 1st level */ |
| 74 | DATA1, /* Data TLB, 2nd level */ |
| 75 | L1, /* L1 (unified) cache */ |
| 76 | L1_INST, /* L1 Instruction cache */ |
| 77 | L1_DATA, /* L1 Data cache */ |
| 78 | L2, /* L2 (unified) cache */ |
| 79 | L3, /* L3 (unified) cache */ |
| 80 | L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */ |
| 81 | L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */ |
| 82 | SMALL, /* Small page TLB */ |
| 83 | LARGE, /* Large page TLB */ |
| 84 | BOTH /* Small and Large page TLB */ |
| 85 | } cpuid_leaf2_qualifier_t; |
| 86 | |
| 87 | typedef struct cpuid_cache_descriptor { |
| 88 | uint8_t value; /* descriptor code */ |
| 89 | uint8_t type; /* cpuid_leaf2_desc_type_t */ |
| 90 | uint8_t level; /* level of cache/TLB hierachy */ |
| 91 | uint8_t ways; /* wayness of cache */ |
| 92 | uint16_t size; /* cachesize or TLB pagesize */ |
| 93 | uint16_t entries; /* number of TLB entries or linesize */ |
| 94 | } cpuid_cache_descriptor_t; |
| 95 | |
| 96 | /* |
| 97 | * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field |
| 98 | */ |
| 99 | #define K (1) |
| 100 | #define M (1024) |
| 101 | |
| 102 | /* |
| 103 | * Intel cache descriptor table: |
| 104 | */ |
| 105 | static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = { |
| 106 | // ------------------------------------------------------- |
| 107 | // value type level ways size entries |
| 108 | // ------------------------------------------------------- |
| 109 | { 0x00, _NULL_, NA, NA, NA, NA }, |
| 110 | { 0x01, TLB, INST, 4, SMALL, 32 }, |
| 111 | { 0x02, TLB, INST, FULLY, LARGE, 2 }, |
| 112 | { 0x03, TLB, DATA, 4, SMALL, 64 }, |
| 113 | { 0x04, TLB, DATA, 4, LARGE, 8 }, |
| 114 | { 0x05, TLB, DATA1, 4, LARGE, 32 }, |
| 115 | { 0x06, CACHE, L1_INST, 4, 8*K, 32 }, |
| 116 | { 0x08, CACHE, L1_INST, 4, 16*K, 32 }, |
| 117 | { 0x09, CACHE, L1_INST, 4, 32*K, 64 }, |
| 118 | { 0x0A, CACHE, L1_DATA, 2, 8*K, 32 }, |
| 119 | { 0x0B, TLB, INST, 4, LARGE, 4 }, |
| 120 | { 0x0C, CACHE, L1_DATA, 4, 16*K, 32 }, |
| 121 | { 0x0D, CACHE, L1_DATA, 4, 16*K, 64 }, |
| 122 | { 0x0E, CACHE, L1_DATA, 6, 24*K, 64 }, |
| 123 | { 0x21, CACHE, L2, 8, 256*K, 64 }, |
| 124 | { 0x22, CACHE, L3_2LINESECTOR, 4, 512*K, 64 }, |
| 125 | { 0x23, CACHE, L3_2LINESECTOR, 8, 1*M, 64 }, |
| 126 | { 0x25, CACHE, L3_2LINESECTOR, 8, 2*M, 64 }, |
| 127 | { 0x29, CACHE, L3_2LINESECTOR, 8, 4*M, 64 }, |
| 128 | { 0x2C, CACHE, L1_DATA, 8, 32*K, 64 }, |
| 129 | { 0x30, CACHE, L1_INST, 8, 32*K, 64 }, |
| 130 | { 0x40, CACHE, L2, NA, 0, NA }, |
| 131 | { 0x41, CACHE, L2, 4, 128*K, 32 }, |
| 132 | { 0x42, CACHE, L2, 4, 256*K, 32 }, |
| 133 | { 0x43, CACHE, L2, 4, 512*K, 32 }, |
| 134 | { 0x44, CACHE, L2, 4, 1*M, 32 }, |
| 135 | { 0x45, CACHE, L2, 4, 2*M, 32 }, |
| 136 | { 0x46, CACHE, L3, 4, 4*M, 64 }, |
| 137 | { 0x47, CACHE, L3, 8, 8*M, 64 }, |
| 138 | { 0x48, CACHE, L2, 12, 3*M, 64 }, |
| 139 | { 0x49, CACHE, L2, 16, 4*M, 64 }, |
| 140 | { 0x4A, CACHE, L3, 12, 6*M, 64 }, |
| 141 | { 0x4B, CACHE, L3, 16, 8*M, 64 }, |
| 142 | { 0x4C, CACHE, L3, 12, 12*M, 64 }, |
| 143 | { 0x4D, CACHE, L3, 16, 16*M, 64 }, |
| 144 | { 0x4E, CACHE, L2, 24, 6*M, 64 }, |
| 145 | { 0x4F, TLB, INST, NA, SMALL, 32 }, |
| 146 | { 0x50, TLB, INST, NA, BOTH, 64 }, |
| 147 | { 0x51, TLB, INST, NA, BOTH, 128 }, |
| 148 | { 0x52, TLB, INST, NA, BOTH, 256 }, |
| 149 | { 0x55, TLB, INST, FULLY, BOTH, 7 }, |
| 150 | { 0x56, TLB, DATA0, 4, LARGE, 16 }, |
| 151 | { 0x57, TLB, DATA0, 4, SMALL, 16 }, |
| 152 | { 0x59, TLB, DATA0, FULLY, SMALL, 16 }, |
| 153 | { 0x5A, TLB, DATA0, 4, LARGE, 32 }, |
| 154 | { 0x5B, TLB, DATA, NA, BOTH, 64 }, |
| 155 | { 0x5C, TLB, DATA, NA, BOTH, 128 }, |
| 156 | { 0x5D, TLB, DATA, NA, BOTH, 256 }, |
| 157 | { 0x60, CACHE, L1, 16*K, 8, 64 }, |
| 158 | { 0x61, CACHE, L1, 4, 8*K, 64 }, |
| 159 | { 0x62, CACHE, L1, 4, 16*K, 64 }, |
| 160 | { 0x63, CACHE, L1, 4, 32*K, 64 }, |
| 161 | { 0x70, CACHE, TRACE, 8, 12*K, NA }, |
| 162 | { 0x71, CACHE, TRACE, 8, 16*K, NA }, |
| 163 | { 0x72, CACHE, TRACE, 8, 32*K, NA }, |
| 164 | { 0x76, TLB, INST, NA, BOTH, 8 }, |
| 165 | { 0x78, CACHE, L2, 4, 1*M, 64 }, |
| 166 | { 0x79, CACHE, L2_2LINESECTOR, 8, 128*K, 64 }, |
| 167 | { 0x7A, CACHE, L2_2LINESECTOR, 8, 256*K, 64 }, |
| 168 | { 0x7B, CACHE, L2_2LINESECTOR, 8, 512*K, 64 }, |
| 169 | { 0x7C, CACHE, L2_2LINESECTOR, 8, 1*M, 64 }, |
| 170 | { 0x7D, CACHE, L2, 8, 2*M, 64 }, |
| 171 | { 0x7F, CACHE, L2, 2, 512*K, 64 }, |
| 172 | { 0x80, CACHE, L2, 8, 512*K, 64 }, |
| 173 | { 0x82, CACHE, L2, 8, 256*K, 32 }, |
| 174 | { 0x83, CACHE, L2, 8, 512*K, 32 }, |
| 175 | { 0x84, CACHE, L2, 8, 1*M, 32 }, |
| 176 | { 0x85, CACHE, L2, 8, 2*M, 32 }, |
| 177 | { 0x86, CACHE, L2, 4, 512*K, 64 }, |
| 178 | { 0x87, CACHE, L2, 8, 1*M, 64 }, |
| 179 | { 0xB0, TLB, INST, 4, SMALL, 128 }, |
| 180 | { 0xB1, TLB, INST, 4, LARGE, 8 }, |
| 181 | { 0xB2, TLB, INST, 4, SMALL, 64 }, |
| 182 | { 0xB3, TLB, DATA, 4, SMALL, 128 }, |
| 183 | { 0xB4, TLB, DATA1, 4, SMALL, 256 }, |
| 184 | { 0xB5, TLB, DATA1, 8, SMALL, 64 }, |
| 185 | { 0xB6, TLB, DATA1, 8, SMALL, 128 }, |
| 186 | { 0xBA, TLB, DATA1, 4, BOTH, 64 }, |
| 187 | { 0xC1, STLB, DATA1, 8, SMALL, 1024}, |
| 188 | { 0xCA, STLB, DATA1, 4, SMALL, 512 }, |
| 189 | { 0xD0, CACHE, L3, 4, 512*K, 64 }, |
| 190 | { 0xD1, CACHE, L3, 4, 1*M, 64 }, |
| 191 | { 0xD2, CACHE, L3, 4, 2*M, 64 }, |
| 192 | { 0xD3, CACHE, L3, 4, 4*M, 64 }, |
| 193 | { 0xD4, CACHE, L3, 4, 8*M, 64 }, |
| 194 | { 0xD6, CACHE, L3, 8, 1*M, 64 }, |
| 195 | { 0xD7, CACHE, L3, 8, 2*M, 64 }, |
| 196 | { 0xD8, CACHE, L3, 8, 4*M, 64 }, |
| 197 | { 0xD9, CACHE, L3, 8, 8*M, 64 }, |
| 198 | { 0xDA, CACHE, L3, 8, 12*M, 64 }, |
| 199 | { 0xDC, CACHE, L3, 12, 1536*K, 64 }, |
| 200 | { 0xDD, CACHE, L3, 12, 3*M, 64 }, |
| 201 | { 0xDE, CACHE, L3, 12, 6*M, 64 }, |
| 202 | { 0xDF, CACHE, L3, 12, 12*M, 64 }, |
| 203 | { 0xE0, CACHE, L3, 12, 18*M, 64 }, |
| 204 | { 0xE2, CACHE, L3, 16, 2*M, 64 }, |
| 205 | { 0xE3, CACHE, L3, 16, 4*M, 64 }, |
| 206 | { 0xE4, CACHE, L3, 16, 8*M, 64 }, |
| 207 | { 0xE5, CACHE, L3, 16, 16*M, 64 }, |
| 208 | { 0xE6, CACHE, L3, 16, 24*M, 64 }, |
| 209 | { 0xF0, PREFETCH, NA, NA, 64, NA }, |
| 210 | { 0xF1, PREFETCH, NA, NA, 128, NA }, |
| 211 | { 0xFF, CACHE, NA, NA, 0, NA } |
| 212 | }; |
| 213 | #define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \ |
| 214 | sizeof(cpuid_cache_descriptor_t)) |
| 215 | |
| 216 | static inline cpuid_cache_descriptor_t * |
| 217 | cpuid_leaf2_find(uint8_t value) |
| 218 | { |
| 219 | unsigned int i; |
| 220 | |
| 221 | for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++) |
| 222 | if (intel_cpuid_leaf2_descriptor_table[i].value == value) |
| 223 | return &intel_cpuid_leaf2_descriptor_table[i]; |
| 224 | return NULL; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * CPU identification routines. |
| 229 | */ |
| 230 | |
| 231 | static i386_cpu_info_t cpuid_cpu_info; |
| 232 | static i386_cpu_info_t *cpuid_cpu_infop = NULL; |
| 233 | |
| 234 | static void cpuid_fn(uint32_t selector, uint32_t *result) |
| 235 | { |
| 236 | do_cpuid(selector, result); |
| 237 | DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n" , |
| 238 | selector, result[0], result[1], result[2], result[3]); |
| 239 | } |
| 240 | |
| 241 | static const char *cache_type_str[LCACHE_MAX] = { |
| 242 | "Lnone" , "L1I" , "L1D" , "L2U" , "L3U" |
| 243 | }; |
| 244 | |
| 245 | /* this function is Intel-specific */ |
| 246 | static void |
| 247 | cpuid_set_cache_info( i386_cpu_info_t * info_p ) |
| 248 | { |
| 249 | uint32_t cpuid_result[4]; |
| 250 | uint32_t reg[4]; |
| 251 | uint32_t index; |
| 252 | uint32_t linesizes[LCACHE_MAX]; |
| 253 | unsigned int i; |
| 254 | unsigned int j; |
| 255 | boolean_t cpuid_deterministic_supported = FALSE; |
| 256 | |
| 257 | DBG("cpuid_set_cache_info(%p)\n" , info_p); |
| 258 | |
| 259 | bzero( linesizes, sizeof(linesizes) ); |
| 260 | |
| 261 | /* Get processor cache descriptor info using leaf 2. We don't use |
| 262 | * this internally, but must publish it for KEXTs. |
| 263 | */ |
| 264 | cpuid_fn(2, cpuid_result); |
| 265 | for (j = 0; j < 4; j++) { |
| 266 | if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */ |
| 267 | continue; |
| 268 | ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j]; |
| 269 | } |
| 270 | /* first byte gives number of cpuid calls to get all descriptors */ |
| 271 | for (i = 1; i < info_p->cache_info[0]; i++) { |
| 272 | if (i*16 > sizeof(info_p->cache_info)) |
| 273 | break; |
| 274 | cpuid_fn(2, cpuid_result); |
| 275 | for (j = 0; j < 4; j++) { |
| 276 | if ((cpuid_result[j] >> 31) == 1) |
| 277 | continue; |
| 278 | ((uint32_t *) info_p->cache_info)[4*i+j] = |
| 279 | cpuid_result[j]; |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Get cache info using leaf 4, the "deterministic cache parameters." |
| 285 | * Most processors Mac OS X supports implement this flavor of CPUID. |
| 286 | * Loop over each cache on the processor. |
| 287 | */ |
| 288 | cpuid_fn(0, cpuid_result); |
| 289 | if (cpuid_result[eax] >= 4) |
| 290 | cpuid_deterministic_supported = TRUE; |
| 291 | |
| 292 | for (index = 0; cpuid_deterministic_supported; index++) { |
| 293 | cache_type_t type = Lnone; |
| 294 | uint32_t cache_type; |
| 295 | uint32_t cache_level; |
| 296 | uint32_t cache_sharing; |
| 297 | uint32_t cache_linesize; |
| 298 | uint32_t cache_sets; |
| 299 | uint32_t cache_associativity; |
| 300 | uint32_t cache_size; |
| 301 | uint32_t cache_partitions; |
| 302 | uint32_t colors; |
| 303 | |
| 304 | reg[eax] = 4; /* cpuid request 4 */ |
| 305 | reg[ecx] = index; /* index starting at 0 */ |
| 306 | cpuid(reg); |
| 307 | DBG("cpuid(4) index=%d eax=0x%x\n" , index, reg[eax]); |
| 308 | cache_type = bitfield32(reg[eax], 4, 0); |
| 309 | if (cache_type == 0) |
| 310 | break; /* no more caches */ |
| 311 | cache_level = bitfield32(reg[eax], 7, 5); |
| 312 | cache_sharing = bitfield32(reg[eax], 25, 14) + 1; |
| 313 | info_p->cpuid_cores_per_package |
| 314 | = bitfield32(reg[eax], 31, 26) + 1; |
| 315 | cache_linesize = bitfield32(reg[ebx], 11, 0) + 1; |
| 316 | cache_partitions = bitfield32(reg[ebx], 21, 12) + 1; |
| 317 | cache_associativity = bitfield32(reg[ebx], 31, 22) + 1; |
| 318 | cache_sets = bitfield32(reg[ecx], 31, 0) + 1; |
| 319 | |
| 320 | /* Map type/levels returned by CPUID into cache_type_t */ |
| 321 | switch (cache_level) { |
| 322 | case 1: |
| 323 | type = cache_type == 1 ? L1D : |
| 324 | cache_type == 2 ? L1I : |
| 325 | Lnone; |
| 326 | break; |
| 327 | case 2: |
| 328 | type = cache_type == 3 ? L2U : |
| 329 | Lnone; |
| 330 | break; |
| 331 | case 3: |
| 332 | type = cache_type == 3 ? L3U : |
| 333 | Lnone; |
| 334 | break; |
| 335 | default: |
| 336 | type = Lnone; |
| 337 | } |
| 338 | |
| 339 | /* The total size of a cache is: |
| 340 | * ( linesize * sets * associativity * partitions ) |
| 341 | */ |
| 342 | if (type != Lnone) { |
| 343 | cache_size = cache_linesize * cache_sets * |
| 344 | cache_associativity * cache_partitions; |
| 345 | info_p->cache_size[type] = cache_size; |
| 346 | info_p->cache_sharing[type] = cache_sharing; |
| 347 | info_p->cache_partitions[type] = cache_partitions; |
| 348 | linesizes[type] = cache_linesize; |
| 349 | |
| 350 | DBG(" cache_size[%s] : %d\n" , |
| 351 | cache_type_str[type], cache_size); |
| 352 | DBG(" cache_sharing[%s] : %d\n" , |
| 353 | cache_type_str[type], cache_sharing); |
| 354 | DBG(" cache_partitions[%s]: %d\n" , |
| 355 | cache_type_str[type], cache_partitions); |
| 356 | |
| 357 | /* |
| 358 | * Overwrite associativity determined via |
| 359 | * CPUID.0x80000006 -- this leaf is more |
| 360 | * accurate |
| 361 | */ |
| 362 | if (type == L2U) |
| 363 | info_p->cpuid_cache_L2_associativity = cache_associativity; |
| 364 | /* |
| 365 | * Adjust #sets to account for the N CBos |
| 366 | * This is because addresses are hashed across CBos |
| 367 | */ |
| 368 | if (type == L3U && info_p->core_count) |
| 369 | cache_sets = cache_sets / info_p->core_count; |
| 370 | |
| 371 | /* Compute the number of page colors for this cache, |
| 372 | * which is: |
| 373 | * ( linesize * sets ) / page_size |
| 374 | * |
| 375 | * To help visualize this, consider two views of a |
| 376 | * physical address. To the cache, it is composed |
| 377 | * of a line offset, a set selector, and a tag. |
| 378 | * To VM, it is composed of a page offset, a page |
| 379 | * color, and other bits in the pageframe number: |
| 380 | * |
| 381 | * +-----------------+---------+--------+ |
| 382 | * cache: | tag | set | offset | |
| 383 | * +-----------------+---------+--------+ |
| 384 | * |
| 385 | * +-----------------+-------+----------+ |
| 386 | * VM: | don't care | color | pg offset| |
| 387 | * +-----------------+-------+----------+ |
| 388 | * |
| 389 | * The color is those bits in (set+offset) not covered |
| 390 | * by the page offset. |
| 391 | */ |
| 392 | colors = ( cache_linesize * cache_sets ) >> 12; |
| 393 | |
| 394 | if ( colors > vm_cache_geometry_colors ) |
| 395 | vm_cache_geometry_colors = colors; |
| 396 | } |
| 397 | } |
| 398 | DBG(" vm_cache_geometry_colors: %d\n" , vm_cache_geometry_colors); |
| 399 | |
| 400 | /* |
| 401 | * If deterministic cache parameters are not available, use |
| 402 | * something else |
| 403 | */ |
| 404 | if (info_p->cpuid_cores_per_package == 0) { |
| 405 | info_p->cpuid_cores_per_package = 1; |
| 406 | |
| 407 | /* cpuid define in 1024 quantities */ |
| 408 | info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024; |
| 409 | info_p->cache_sharing[L2U] = 1; |
| 410 | info_p->cache_partitions[L2U] = 1; |
| 411 | |
| 412 | linesizes[L2U] = info_p->cpuid_cache_linesize; |
| 413 | |
| 414 | DBG(" cache_size[L2U] : %d\n" , |
| 415 | info_p->cache_size[L2U]); |
| 416 | DBG(" cache_sharing[L2U] : 1\n" ); |
| 417 | DBG(" cache_partitions[L2U]: 1\n" ); |
| 418 | DBG(" linesizes[L2U] : %d\n" , |
| 419 | info_p->cpuid_cache_linesize); |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * What linesize to publish? We use the L2 linesize if any, |
| 424 | * else the L1D. |
| 425 | */ |
| 426 | if ( linesizes[L2U] ) |
| 427 | info_p->cache_linesize = linesizes[L2U]; |
| 428 | else if (linesizes[L1D]) |
| 429 | info_p->cache_linesize = linesizes[L1D]; |
| 430 | else panic("no linesize" ); |
| 431 | DBG(" cache_linesize : %d\n" , info_p->cache_linesize); |
| 432 | |
| 433 | /* |
| 434 | * Extract and publish TLB information from Leaf 2 descriptors. |
| 435 | */ |
| 436 | DBG(" %ld leaf2 descriptors:\n" , sizeof(info_p->cache_info)); |
| 437 | for (i = 1; i < sizeof(info_p->cache_info); i++) { |
| 438 | cpuid_cache_descriptor_t *descp; |
| 439 | int id; |
| 440 | int level; |
| 441 | int page; |
| 442 | |
| 443 | DBG(" 0x%02x" , info_p->cache_info[i]); |
| 444 | descp = cpuid_leaf2_find(info_p->cache_info[i]); |
| 445 | if (descp == NULL) |
| 446 | continue; |
| 447 | |
| 448 | switch (descp->type) { |
| 449 | case TLB: |
| 450 | page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE; |
| 451 | /* determine I or D: */ |
| 452 | switch (descp->level) { |
| 453 | case INST: |
| 454 | id = TLB_INST; |
| 455 | break; |
| 456 | case DATA: |
| 457 | case DATA0: |
| 458 | case DATA1: |
| 459 | id = TLB_DATA; |
| 460 | break; |
| 461 | default: |
| 462 | continue; |
| 463 | } |
| 464 | /* determine level: */ |
| 465 | switch (descp->level) { |
| 466 | case DATA1: |
| 467 | level = 1; |
| 468 | break; |
| 469 | default: |
| 470 | level = 0; |
| 471 | } |
| 472 | info_p->cpuid_tlb[id][page][level] = descp->entries; |
| 473 | break; |
| 474 | case STLB: |
| 475 | info_p->cpuid_stlb = descp->entries; |
| 476 | } |
| 477 | } |
| 478 | DBG("\n" ); |
| 479 | } |
| 480 | |
| 481 | static void |
| 482 | cpuid_set_generic_info(i386_cpu_info_t *info_p) |
| 483 | { |
| 484 | uint32_t reg[4]; |
| 485 | char str[128], *p; |
| 486 | |
| 487 | DBG("cpuid_set_generic_info(%p)\n" , info_p); |
| 488 | |
| 489 | /* do cpuid 0 to get vendor */ |
| 490 | cpuid_fn(0, reg); |
| 491 | info_p->cpuid_max_basic = reg[eax]; |
| 492 | bcopy((char *)®[ebx], &info_p->cpuid_vendor[0], 4); /* ug */ |
| 493 | bcopy((char *)®[ecx], &info_p->cpuid_vendor[8], 4); |
| 494 | bcopy((char *)®[edx], &info_p->cpuid_vendor[4], 4); |
| 495 | info_p->cpuid_vendor[12] = 0; |
| 496 | |
| 497 | /* get extended cpuid results */ |
| 498 | cpuid_fn(0x80000000, reg); |
| 499 | info_p->cpuid_max_ext = reg[eax]; |
| 500 | |
| 501 | /* check to see if we can get brand string */ |
| 502 | if (info_p->cpuid_max_ext >= 0x80000004) { |
| 503 | /* |
| 504 | * The brand string 48 bytes (max), guaranteed to |
| 505 | * be NUL terminated. |
| 506 | */ |
| 507 | cpuid_fn(0x80000002, reg); |
| 508 | bcopy((char *)reg, &str[0], 16); |
| 509 | cpuid_fn(0x80000003, reg); |
| 510 | bcopy((char *)reg, &str[16], 16); |
| 511 | cpuid_fn(0x80000004, reg); |
| 512 | bcopy((char *)reg, &str[32], 16); |
| 513 | for (p = str; *p != '\0'; p++) { |
| 514 | if (*p != ' ') break; |
| 515 | } |
| 516 | strlcpy(info_p->cpuid_brand_string, |
| 517 | p, sizeof(info_p->cpuid_brand_string)); |
| 518 | |
| 519 | if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN, |
| 520 | min(sizeof(info_p->cpuid_brand_string), |
| 521 | strlen(CPUID_STRING_UNKNOWN) + 1))) { |
| 522 | /* |
| 523 | * This string means we have a firmware-programmable brand string, |
| 524 | * and the firmware couldn't figure out what sort of CPU we have. |
| 525 | */ |
| 526 | info_p->cpuid_brand_string[0] = '\0'; |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | /* Get cache and addressing info. */ |
| 531 | if (info_p->cpuid_max_ext >= 0x80000006) { |
| 532 | uint32_t assoc; |
| 533 | cpuid_fn(0x80000006, reg); |
| 534 | info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0); |
| 535 | assoc = bitfield32(reg[ecx],15,12); |
| 536 | /* |
| 537 | * L2 associativity is encoded, though in an insufficiently |
| 538 | * descriptive fashion, e.g. 24-way is mapped to 16-way. |
| 539 | * Represent a fully associative cache as 0xFFFF. |
| 540 | * Overwritten by associativity as determined via CPUID.4 |
| 541 | * if available. |
| 542 | */ |
| 543 | if (assoc == 6) |
| 544 | assoc = 8; |
| 545 | else if (assoc == 8) |
| 546 | assoc = 16; |
| 547 | else if (assoc == 0xF) |
| 548 | assoc = 0xFFFF; |
| 549 | info_p->cpuid_cache_L2_associativity = assoc; |
| 550 | info_p->cpuid_cache_size = bitfield32(reg[ecx],31,16); |
| 551 | cpuid_fn(0x80000008, reg); |
| 552 | info_p->cpuid_address_bits_physical = |
| 553 | bitfield32(reg[eax], 7, 0); |
| 554 | info_p->cpuid_address_bits_virtual = |
| 555 | bitfield32(reg[eax],15, 8); |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | * Get processor signature and decode |
| 560 | * and bracket this with the approved procedure for reading the |
| 561 | * the microcode version number a.k.a. signature a.k.a. BIOS ID |
| 562 | */ |
| 563 | wrmsr64(MSR_IA32_BIOS_SIGN_ID, 0); |
| 564 | cpuid_fn(1, reg); |
| 565 | info_p->cpuid_microcode_version = |
| 566 | (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32); |
| 567 | info_p->cpuid_signature = reg[eax]; |
| 568 | info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0); |
| 569 | info_p->cpuid_model = bitfield32(reg[eax], 7, 4); |
| 570 | info_p->cpuid_family = bitfield32(reg[eax], 11, 8); |
| 571 | info_p->cpuid_type = bitfield32(reg[eax], 13, 12); |
| 572 | info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16); |
| 573 | info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20); |
| 574 | info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0); |
| 575 | info_p->cpuid_features = quad(reg[ecx], reg[edx]); |
| 576 | |
| 577 | /* Get "processor flag"; necessary for microcode update matching */ |
| 578 | info_p->cpuid_processor_flag = (rdmsr64(MSR_IA32_PLATFORM_ID)>> 50) & 0x7; |
| 579 | |
| 580 | /* Fold extensions into family/model */ |
| 581 | if (info_p->cpuid_family == 0x0f) |
| 582 | info_p->cpuid_family += info_p->cpuid_extfamily; |
| 583 | if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06) |
| 584 | info_p->cpuid_model += (info_p->cpuid_extmodel << 4); |
| 585 | |
| 586 | if (info_p->cpuid_features & CPUID_FEATURE_HTT) |
| 587 | info_p->cpuid_logical_per_package = |
| 588 | bitfield32(reg[ebx], 23, 16); |
| 589 | else |
| 590 | info_p->cpuid_logical_per_package = 1; |
| 591 | |
| 592 | if (info_p->cpuid_max_ext >= 0x80000001) { |
| 593 | cpuid_fn(0x80000001, reg); |
| 594 | info_p->cpuid_extfeatures = |
| 595 | quad(reg[ecx], reg[edx]); |
| 596 | } |
| 597 | |
| 598 | DBG(" max_basic : %d\n" , info_p->cpuid_max_basic); |
| 599 | DBG(" max_ext : 0x%08x\n" , info_p->cpuid_max_ext); |
| 600 | DBG(" vendor : %s\n" , info_p->cpuid_vendor); |
| 601 | DBG(" brand_string : %s\n" , info_p->cpuid_brand_string); |
| 602 | DBG(" signature : 0x%08x\n" , info_p->cpuid_signature); |
| 603 | DBG(" stepping : %d\n" , info_p->cpuid_stepping); |
| 604 | DBG(" model : %d\n" , info_p->cpuid_model); |
| 605 | DBG(" family : %d\n" , info_p->cpuid_family); |
| 606 | DBG(" type : %d\n" , info_p->cpuid_type); |
| 607 | DBG(" extmodel : %d\n" , info_p->cpuid_extmodel); |
| 608 | DBG(" extfamily : %d\n" , info_p->cpuid_extfamily); |
| 609 | DBG(" brand : %d\n" , info_p->cpuid_brand); |
| 610 | DBG(" features : 0x%016llx\n" , info_p->cpuid_features); |
| 611 | DBG(" extfeatures : 0x%016llx\n" , info_p->cpuid_extfeatures); |
| 612 | DBG(" logical_per_package : %d\n" , info_p->cpuid_logical_per_package); |
| 613 | DBG(" microcode_version : 0x%08x\n" , info_p->cpuid_microcode_version); |
| 614 | |
| 615 | /* Fold in the Invariant TSC feature bit, if present */ |
| 616 | if (info_p->cpuid_max_ext >= 0x80000007) { |
| 617 | cpuid_fn(0x80000007, reg); |
| 618 | info_p->cpuid_extfeatures |= |
| 619 | reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI; |
| 620 | DBG(" extfeatures : 0x%016llx\n" , |
| 621 | info_p->cpuid_extfeatures); |
| 622 | } |
| 623 | |
| 624 | if (info_p->cpuid_max_basic >= 0x5) { |
| 625 | cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf; |
| 626 | |
| 627 | /* |
| 628 | * Extract the Monitor/Mwait Leaf info: |
| 629 | */ |
| 630 | cpuid_fn(5, reg); |
| 631 | cmp->linesize_min = reg[eax]; |
| 632 | cmp->linesize_max = reg[ebx]; |
| 633 | cmp->extensions = reg[ecx]; |
| 634 | cmp->sub_Cstates = reg[edx]; |
| 635 | info_p->cpuid_mwait_leafp = cmp; |
| 636 | |
| 637 | DBG(" Monitor/Mwait Leaf:\n" ); |
| 638 | DBG(" linesize_min : %d\n" , cmp->linesize_min); |
| 639 | DBG(" linesize_max : %d\n" , cmp->linesize_max); |
| 640 | DBG(" extensions : %d\n" , cmp->extensions); |
| 641 | DBG(" sub_Cstates : 0x%08x\n" , cmp->sub_Cstates); |
| 642 | } |
| 643 | |
| 644 | if (info_p->cpuid_max_basic >= 0x6) { |
| 645 | cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf; |
| 646 | |
| 647 | /* |
| 648 | * The thermal and Power Leaf: |
| 649 | */ |
| 650 | cpuid_fn(6, reg); |
| 651 | ctp->sensor = bitfield32(reg[eax], 0, 0); |
| 652 | ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1); |
| 653 | ctp->invariant_APIC_timer = bitfield32(reg[eax], 2, 2); |
| 654 | ctp->core_power_limits = bitfield32(reg[eax], 4, 4); |
| 655 | ctp->fine_grain_clock_mod = bitfield32(reg[eax], 5, 5); |
| 656 | ctp->package_thermal_intr = bitfield32(reg[eax], 6, 6); |
| 657 | ctp->thresholds = bitfield32(reg[ebx], 3, 0); |
| 658 | ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0); |
| 659 | ctp->hardware_feedback = bitfield32(reg[ecx], 1, 1); |
| 660 | ctp->energy_policy = bitfield32(reg[ecx], 3, 3); |
| 661 | info_p->cpuid_thermal_leafp = ctp; |
| 662 | |
| 663 | DBG(" Thermal/Power Leaf:\n" ); |
| 664 | DBG(" sensor : %d\n" , ctp->sensor); |
| 665 | DBG(" dynamic_acceleration : %d\n" , ctp->dynamic_acceleration); |
| 666 | DBG(" invariant_APIC_timer : %d\n" , ctp->invariant_APIC_timer); |
| 667 | DBG(" core_power_limits : %d\n" , ctp->core_power_limits); |
| 668 | DBG(" fine_grain_clock_mod : %d\n" , ctp->fine_grain_clock_mod); |
| 669 | DBG(" package_thermal_intr : %d\n" , ctp->package_thermal_intr); |
| 670 | DBG(" thresholds : %d\n" , ctp->thresholds); |
| 671 | DBG(" ACNT_MCNT : %d\n" , ctp->ACNT_MCNT); |
| 672 | DBG(" ACNT2 : %d\n" , ctp->hardware_feedback); |
| 673 | DBG(" energy_policy : %d\n" , ctp->energy_policy); |
| 674 | } |
| 675 | |
| 676 | if (info_p->cpuid_max_basic >= 0xa) { |
| 677 | cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf; |
| 678 | |
| 679 | /* |
| 680 | * Architectural Performance Monitoring Leaf: |
| 681 | */ |
| 682 | cpuid_fn(0xa, reg); |
| 683 | capp->version = bitfield32(reg[eax], 7, 0); |
| 684 | capp->number = bitfield32(reg[eax], 15, 8); |
| 685 | capp->width = bitfield32(reg[eax], 23, 16); |
| 686 | capp->events_number = bitfield32(reg[eax], 31, 24); |
| 687 | capp->events = reg[ebx]; |
| 688 | capp->fixed_number = bitfield32(reg[edx], 4, 0); |
| 689 | capp->fixed_width = bitfield32(reg[edx], 12, 5); |
| 690 | info_p->cpuid_arch_perf_leafp = capp; |
| 691 | |
| 692 | DBG(" Architectural Performance Monitoring Leaf:\n" ); |
| 693 | DBG(" version : %d\n" , capp->version); |
| 694 | DBG(" number : %d\n" , capp->number); |
| 695 | DBG(" width : %d\n" , capp->width); |
| 696 | DBG(" events_number : %d\n" , capp->events_number); |
| 697 | DBG(" events : %d\n" , capp->events); |
| 698 | DBG(" fixed_number : %d\n" , capp->fixed_number); |
| 699 | DBG(" fixed_width : %d\n" , capp->fixed_width); |
| 700 | } |
| 701 | |
| 702 | if (info_p->cpuid_max_basic >= 0xd) { |
| 703 | cpuid_xsave_leaf_t *xsp; |
| 704 | /* |
| 705 | * XSAVE Features: |
| 706 | */ |
| 707 | xsp = &info_p->cpuid_xsave_leaf[0]; |
| 708 | info_p->cpuid_xsave_leafp = xsp; |
| 709 | xsp->extended_state[eax] = 0xd; |
| 710 | xsp->extended_state[ecx] = 0; |
| 711 | cpuid(xsp->extended_state); |
| 712 | DBG(" XSAVE Main leaf:\n" ); |
| 713 | DBG(" EAX : 0x%x\n" , xsp->extended_state[eax]); |
| 714 | DBG(" EBX : 0x%x\n" , xsp->extended_state[ebx]); |
| 715 | DBG(" ECX : 0x%x\n" , xsp->extended_state[ecx]); |
| 716 | DBG(" EDX : 0x%x\n" , xsp->extended_state[edx]); |
| 717 | |
| 718 | xsp = &info_p->cpuid_xsave_leaf[1]; |
| 719 | xsp->extended_state[eax] = 0xd; |
| 720 | xsp->extended_state[ecx] = 1; |
| 721 | cpuid(xsp->extended_state); |
| 722 | DBG(" XSAVE Sub-leaf1:\n" ); |
| 723 | DBG(" EAX : 0x%x\n" , xsp->extended_state[eax]); |
| 724 | DBG(" EBX : 0x%x\n" , xsp->extended_state[ebx]); |
| 725 | DBG(" ECX : 0x%x\n" , xsp->extended_state[ecx]); |
| 726 | DBG(" EDX : 0x%x\n" , xsp->extended_state[edx]); |
| 727 | |
| 728 | } |
| 729 | |
| 730 | if (info_p->cpuid_model >= CPUID_MODEL_IVYBRIDGE) { |
| 731 | /* |
| 732 | * Leaf7 Features: |
| 733 | */ |
| 734 | cpuid_fn(0x7, reg); |
| 735 | info_p->cpuid_leaf7_features = quad(reg[ecx], reg[ebx]); |
| 736 | |
| 737 | DBG(" Feature Leaf7:\n" ); |
| 738 | DBG(" EBX : 0x%x\n" , reg[ebx]); |
| 739 | DBG(" ECX : 0x%x\n" , reg[ecx]); |
| 740 | } |
| 741 | |
| 742 | if (info_p->cpuid_max_basic >= 0x15) { |
| 743 | /* |
| 744 | * TCS/CCC frequency leaf: |
| 745 | */ |
| 746 | cpuid_fn(0x15, reg); |
| 747 | info_p->cpuid_tsc_leaf.denominator = reg[eax]; |
| 748 | info_p->cpuid_tsc_leaf.numerator = reg[ebx]; |
| 749 | |
| 750 | DBG(" TSC/CCC Information Leaf:\n" ); |
| 751 | DBG(" numerator : 0x%x\n" , reg[ebx]); |
| 752 | DBG(" denominator : 0x%x\n" , reg[eax]); |
| 753 | } |
| 754 | |
| 755 | return; |
| 756 | } |
| 757 | |
| 758 | static uint32_t |
| 759 | cpuid_set_cpufamily(i386_cpu_info_t *info_p) |
| 760 | { |
| 761 | uint32_t cpufamily = CPUFAMILY_UNKNOWN; |
| 762 | |
| 763 | switch (info_p->cpuid_family) { |
| 764 | case 6: |
| 765 | switch (info_p->cpuid_model) { |
| 766 | case 23: |
| 767 | cpufamily = CPUFAMILY_INTEL_PENRYN; |
| 768 | break; |
| 769 | case CPUID_MODEL_NEHALEM: |
| 770 | case CPUID_MODEL_FIELDS: |
| 771 | case CPUID_MODEL_DALES: |
| 772 | case CPUID_MODEL_NEHALEM_EX: |
| 773 | cpufamily = CPUFAMILY_INTEL_NEHALEM; |
| 774 | break; |
| 775 | case CPUID_MODEL_DALES_32NM: |
| 776 | case CPUID_MODEL_WESTMERE: |
| 777 | case CPUID_MODEL_WESTMERE_EX: |
| 778 | cpufamily = CPUFAMILY_INTEL_WESTMERE; |
| 779 | break; |
| 780 | case CPUID_MODEL_SANDYBRIDGE: |
| 781 | case CPUID_MODEL_JAKETOWN: |
| 782 | cpufamily = CPUFAMILY_INTEL_SANDYBRIDGE; |
| 783 | break; |
| 784 | case CPUID_MODEL_IVYBRIDGE: |
| 785 | case CPUID_MODEL_IVYBRIDGE_EP: |
| 786 | cpufamily = CPUFAMILY_INTEL_IVYBRIDGE; |
| 787 | break; |
| 788 | case CPUID_MODEL_HASWELL: |
| 789 | case CPUID_MODEL_HASWELL_EP: |
| 790 | case CPUID_MODEL_HASWELL_ULT: |
| 791 | case CPUID_MODEL_CRYSTALWELL: |
| 792 | cpufamily = CPUFAMILY_INTEL_HASWELL; |
| 793 | break; |
| 794 | case CPUID_MODEL_BROADWELL: |
| 795 | case CPUID_MODEL_BRYSTALWELL: |
| 796 | cpufamily = CPUFAMILY_INTEL_BROADWELL; |
| 797 | break; |
| 798 | case CPUID_MODEL_SKYLAKE: |
| 799 | case CPUID_MODEL_SKYLAKE_DT: |
| 800 | #if !defined(RC_HIDE_XNU_J137) |
| 801 | case CPUID_MODEL_SKYLAKE_W: |
| 802 | #endif |
| 803 | cpufamily = CPUFAMILY_INTEL_SKYLAKE; |
| 804 | break; |
| 805 | case CPUID_MODEL_KABYLAKE: |
| 806 | case CPUID_MODEL_KABYLAKE_DT: |
| 807 | cpufamily = CPUFAMILY_INTEL_KABYLAKE; |
| 808 | break; |
| 809 | } |
| 810 | break; |
| 811 | } |
| 812 | |
| 813 | info_p->cpuid_cpufamily = cpufamily; |
| 814 | DBG("cpuid_set_cpufamily(%p) returning 0x%x\n" , info_p, cpufamily); |
| 815 | return cpufamily; |
| 816 | } |
| 817 | /* |
| 818 | * Must be invoked either when executing single threaded, or with |
| 819 | * independent synchronization. |
| 820 | */ |
| 821 | void |
| 822 | cpuid_set_info(void) |
| 823 | { |
| 824 | i386_cpu_info_t *info_p = &cpuid_cpu_info; |
| 825 | boolean_t enable_x86_64h = TRUE; |
| 826 | |
| 827 | cpuid_set_generic_info(info_p); |
| 828 | |
| 829 | /* verify we are running on a supported CPU */ |
| 830 | if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor, |
| 831 | min(strlen(CPUID_STRING_UNKNOWN) + 1, |
| 832 | sizeof(info_p->cpuid_vendor)))) || |
| 833 | (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN)) |
| 834 | panic("Unsupported CPU" ); |
| 835 | |
| 836 | info_p->cpuid_cpu_type = CPU_TYPE_X86; |
| 837 | |
| 838 | if (!PE_parse_boot_argn("-enable_x86_64h" , &enable_x86_64h, sizeof(enable_x86_64h))) { |
| 839 | boolean_t disable_x86_64h = FALSE; |
| 840 | |
| 841 | if (PE_parse_boot_argn("-disable_x86_64h" , &disable_x86_64h, sizeof(disable_x86_64h))) { |
| 842 | enable_x86_64h = FALSE; |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | if (enable_x86_64h && |
| 847 | ((info_p->cpuid_features & CPUID_X86_64_H_FEATURE_SUBSET) == CPUID_X86_64_H_FEATURE_SUBSET) && |
| 848 | ((info_p->cpuid_extfeatures & CPUID_X86_64_H_EXTFEATURE_SUBSET) == CPUID_X86_64_H_EXTFEATURE_SUBSET) && |
| 849 | ((info_p->cpuid_leaf7_features & CPUID_X86_64_H_LEAF7_FEATURE_SUBSET) == CPUID_X86_64_H_LEAF7_FEATURE_SUBSET)) { |
| 850 | info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_64_H; |
| 851 | } else { |
| 852 | info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1; |
| 853 | } |
| 854 | /* cpuid_set_cache_info must be invoked after set_generic_info */ |
| 855 | |
| 856 | if (info_p->cpuid_cpufamily == CPUFAMILY_INTEL_PENRYN) |
| 857 | cpuid_set_cache_info(info_p); |
| 858 | |
| 859 | /* |
| 860 | * Find the number of enabled cores and threads |
| 861 | * (which determines whether SMT/Hyperthreading is active). |
| 862 | */ |
| 863 | switch (info_p->cpuid_cpufamily) { |
| 864 | case CPUFAMILY_INTEL_PENRYN: |
| 865 | info_p->core_count = info_p->cpuid_cores_per_package; |
| 866 | info_p->thread_count = info_p->cpuid_logical_per_package; |
| 867 | break; |
| 868 | case CPUFAMILY_INTEL_WESTMERE: { |
| 869 | uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT); |
| 870 | info_p->core_count = bitfield32((uint32_t)msr, 19, 16); |
| 871 | info_p->thread_count = bitfield32((uint32_t)msr, 15, 0); |
| 872 | break; |
| 873 | } |
| 874 | default: { |
| 875 | uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT); |
| 876 | if (msr == 0) |
| 877 | /* Provide a non-zero default for some VMMs */ |
| 878 | msr = (1 << 16) + 1; |
| 879 | info_p->core_count = bitfield32((uint32_t)msr, 31, 16); |
| 880 | info_p->thread_count = bitfield32((uint32_t)msr, 15, 0); |
| 881 | break; |
| 882 | } |
| 883 | } |
| 884 | if (info_p->core_count == 0) { |
| 885 | info_p->core_count = info_p->cpuid_cores_per_package; |
| 886 | info_p->thread_count = info_p->cpuid_logical_per_package; |
| 887 | } |
| 888 | |
| 889 | if (info_p->cpuid_cpufamily != CPUFAMILY_INTEL_PENRYN) |
| 890 | cpuid_set_cache_info(info_p); |
| 891 | |
| 892 | DBG("cpuid_set_info():\n" ); |
| 893 | DBG(" core_count : %d\n" , info_p->core_count); |
| 894 | DBG(" thread_count : %d\n" , info_p->thread_count); |
| 895 | DBG(" cpu_type: 0x%08x\n" , info_p->cpuid_cpu_type); |
| 896 | DBG(" cpu_subtype: 0x%08x\n" , info_p->cpuid_cpu_subtype); |
| 897 | |
| 898 | info_p->cpuid_model_string = "" ; /* deprecated */ |
| 899 | } |
| 900 | |
| 901 | static struct table { |
| 902 | uint64_t mask; |
| 903 | const char *name; |
| 904 | } feature_map[] = { |
| 905 | {CPUID_FEATURE_FPU, "FPU" }, |
| 906 | {CPUID_FEATURE_VME, "VME" }, |
| 907 | {CPUID_FEATURE_DE, "DE" }, |
| 908 | {CPUID_FEATURE_PSE, "PSE" }, |
| 909 | {CPUID_FEATURE_TSC, "TSC" }, |
| 910 | {CPUID_FEATURE_MSR, "MSR" }, |
| 911 | {CPUID_FEATURE_PAE, "PAE" }, |
| 912 | {CPUID_FEATURE_MCE, "MCE" }, |
| 913 | {CPUID_FEATURE_CX8, "CX8" }, |
| 914 | {CPUID_FEATURE_APIC, "APIC" }, |
| 915 | {CPUID_FEATURE_SEP, "SEP" }, |
| 916 | {CPUID_FEATURE_MTRR, "MTRR" }, |
| 917 | {CPUID_FEATURE_PGE, "PGE" }, |
| 918 | {CPUID_FEATURE_MCA, "MCA" }, |
| 919 | {CPUID_FEATURE_CMOV, "CMOV" }, |
| 920 | {CPUID_FEATURE_PAT, "PAT" }, |
| 921 | {CPUID_FEATURE_PSE36, "PSE36" }, |
| 922 | {CPUID_FEATURE_PSN, "PSN" }, |
| 923 | {CPUID_FEATURE_CLFSH, "CLFSH" }, |
| 924 | {CPUID_FEATURE_DS, "DS" }, |
| 925 | {CPUID_FEATURE_ACPI, "ACPI" }, |
| 926 | {CPUID_FEATURE_MMX, "MMX" }, |
| 927 | {CPUID_FEATURE_FXSR, "FXSR" }, |
| 928 | {CPUID_FEATURE_SSE, "SSE" }, |
| 929 | {CPUID_FEATURE_SSE2, "SSE2" }, |
| 930 | {CPUID_FEATURE_SS, "SS" }, |
| 931 | {CPUID_FEATURE_HTT, "HTT" }, |
| 932 | {CPUID_FEATURE_TM, "TM" }, |
| 933 | {CPUID_FEATURE_PBE, "PBE" }, |
| 934 | {CPUID_FEATURE_SSE3, "SSE3" }, |
| 935 | {CPUID_FEATURE_PCLMULQDQ, "PCLMULQDQ" }, |
| 936 | {CPUID_FEATURE_DTES64, "DTES64" }, |
| 937 | {CPUID_FEATURE_MONITOR, "MON" }, |
| 938 | {CPUID_FEATURE_DSCPL, "DSCPL" }, |
| 939 | {CPUID_FEATURE_VMX, "VMX" }, |
| 940 | {CPUID_FEATURE_SMX, "SMX" }, |
| 941 | {CPUID_FEATURE_EST, "EST" }, |
| 942 | {CPUID_FEATURE_TM2, "TM2" }, |
| 943 | {CPUID_FEATURE_SSSE3, "SSSE3" }, |
| 944 | {CPUID_FEATURE_CID, "CID" }, |
| 945 | {CPUID_FEATURE_FMA, "FMA" }, |
| 946 | {CPUID_FEATURE_CX16, "CX16" }, |
| 947 | {CPUID_FEATURE_xTPR, "TPR" }, |
| 948 | {CPUID_FEATURE_PDCM, "PDCM" }, |
| 949 | {CPUID_FEATURE_SSE4_1, "SSE4.1" }, |
| 950 | {CPUID_FEATURE_SSE4_2, "SSE4.2" }, |
| 951 | {CPUID_FEATURE_x2APIC, "x2APIC" }, |
| 952 | {CPUID_FEATURE_MOVBE, "MOVBE" }, |
| 953 | {CPUID_FEATURE_POPCNT, "POPCNT" }, |
| 954 | {CPUID_FEATURE_AES, "AES" }, |
| 955 | {CPUID_FEATURE_VMM, "VMM" }, |
| 956 | {CPUID_FEATURE_PCID, "PCID" }, |
| 957 | {CPUID_FEATURE_XSAVE, "XSAVE" }, |
| 958 | {CPUID_FEATURE_OSXSAVE, "OSXSAVE" }, |
| 959 | {CPUID_FEATURE_SEGLIM64, "SEGLIM64" }, |
| 960 | {CPUID_FEATURE_TSCTMR, "TSCTMR" }, |
| 961 | {CPUID_FEATURE_AVX1_0, "AVX1.0" }, |
| 962 | {CPUID_FEATURE_RDRAND, "RDRAND" }, |
| 963 | {CPUID_FEATURE_F16C, "F16C" }, |
| 964 | {0, 0} |
| 965 | }, |
| 966 | extfeature_map[] = { |
| 967 | {CPUID_EXTFEATURE_SYSCALL, "SYSCALL" }, |
| 968 | {CPUID_EXTFEATURE_XD, "XD" }, |
| 969 | {CPUID_EXTFEATURE_1GBPAGE, "1GBPAGE" }, |
| 970 | {CPUID_EXTFEATURE_EM64T, "EM64T" }, |
| 971 | {CPUID_EXTFEATURE_LAHF, "LAHF" }, |
| 972 | {CPUID_EXTFEATURE_LZCNT, "LZCNT" }, |
| 973 | {CPUID_EXTFEATURE_PREFETCHW, "PREFETCHW" }, |
| 974 | {CPUID_EXTFEATURE_RDTSCP, "RDTSCP" }, |
| 975 | {CPUID_EXTFEATURE_TSCI, "TSCI" }, |
| 976 | {0, 0} |
| 977 | |
| 978 | }, |
| 979 | leaf7_feature_map[] = { |
| 980 | {CPUID_LEAF7_FEATURE_SMEP, "SMEP" }, |
| 981 | {CPUID_LEAF7_FEATURE_ERMS, "ERMS" }, |
| 982 | {CPUID_LEAF7_FEATURE_RDWRFSGS, "RDWRFSGS" }, |
| 983 | {CPUID_LEAF7_FEATURE_TSCOFF, "TSC_THREAD_OFFSET" }, |
| 984 | {CPUID_LEAF7_FEATURE_BMI1, "BMI1" }, |
| 985 | {CPUID_LEAF7_FEATURE_HLE, "HLE" }, |
| 986 | {CPUID_LEAF7_FEATURE_AVX2, "AVX2" }, |
| 987 | {CPUID_LEAF7_FEATURE_BMI2, "BMI2" }, |
| 988 | {CPUID_LEAF7_FEATURE_INVPCID, "INVPCID" }, |
| 989 | {CPUID_LEAF7_FEATURE_RTM, "RTM" }, |
| 990 | {CPUID_LEAF7_FEATURE_SMAP, "SMAP" }, |
| 991 | {CPUID_LEAF7_FEATURE_RDSEED, "RDSEED" }, |
| 992 | {CPUID_LEAF7_FEATURE_ADX, "ADX" }, |
| 993 | {CPUID_LEAF7_FEATURE_IPT, "IPT" }, |
| 994 | #if !defined(RC_HIDE_XNU_J137) |
| 995 | {CPUID_LEAF7_FEATURE_AVX512F, "AVX512F" }, |
| 996 | {CPUID_LEAF7_FEATURE_AVX512CD, "AVX512CD" }, |
| 997 | {CPUID_LEAF7_FEATURE_AVX512DQ, "AVX512DQ" }, |
| 998 | {CPUID_LEAF7_FEATURE_AVX512BW, "AVX512BW" }, |
| 999 | {CPUID_LEAF7_FEATURE_AVX512VL, "AVX512VL" }, |
| 1000 | {CPUID_LEAF7_FEATURE_AVX512IFMA, "AVX512IFMA" }, |
| 1001 | {CPUID_LEAF7_FEATURE_AVX512VBMI, "AVX512VBMI" }, |
| 1002 | #endif /* not RC_HIDE_XNU_J137 */ |
| 1003 | {CPUID_LEAF7_FEATURE_SGX, "SGX" }, |
| 1004 | {CPUID_LEAF7_FEATURE_PQM, "PQM" }, |
| 1005 | {CPUID_LEAF7_FEATURE_FPU_CSDS, "FPU_CSDS" }, |
| 1006 | {CPUID_LEAF7_FEATURE_MPX, "MPX" }, |
| 1007 | {CPUID_LEAF7_FEATURE_PQE, "PQE" }, |
| 1008 | {CPUID_LEAF7_FEATURE_CLFSOPT, "CLFSOPT" }, |
| 1009 | {CPUID_LEAF7_FEATURE_SHA, "SHA" }, |
| 1010 | {0, 0} |
| 1011 | }; |
| 1012 | |
| 1013 | static char * |
| 1014 | cpuid_get_names(struct table *map, uint64_t bits, char *buf, unsigned buf_len) |
| 1015 | { |
| 1016 | size_t len = 0; |
| 1017 | char *p = buf; |
| 1018 | int i; |
| 1019 | |
| 1020 | for (i = 0; map[i].mask != 0; i++) { |
| 1021 | if ((bits & map[i].mask) == 0) |
| 1022 | continue; |
| 1023 | if (len && ((size_t) (p - buf) < (buf_len - 1))) |
| 1024 | *p++ = ' '; |
| 1025 | len = min(strlen(map[i].name), (size_t)((buf_len-1)-(p-buf))); |
| 1026 | if (len == 0) |
| 1027 | break; |
| 1028 | bcopy(map[i].name, p, len); |
| 1029 | p += len; |
| 1030 | } |
| 1031 | *p = '\0'; |
| 1032 | return buf; |
| 1033 | } |
| 1034 | |
| 1035 | i386_cpu_info_t * |
| 1036 | cpuid_info(void) |
| 1037 | { |
| 1038 | /* Set-up the cpuid_info stucture lazily */ |
| 1039 | if (cpuid_cpu_infop == NULL) { |
| 1040 | PE_parse_boot_argn("-cpuid" , &cpuid_dbg, sizeof(cpuid_dbg)); |
| 1041 | cpuid_set_info(); |
| 1042 | cpuid_cpu_infop = &cpuid_cpu_info; |
| 1043 | } |
| 1044 | return cpuid_cpu_infop; |
| 1045 | } |
| 1046 | |
| 1047 | char * |
| 1048 | cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len) |
| 1049 | { |
| 1050 | return cpuid_get_names(feature_map, features, buf, buf_len); |
| 1051 | } |
| 1052 | |
| 1053 | char * |
| 1054 | cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len) |
| 1055 | { |
| 1056 | return cpuid_get_names(extfeature_map, extfeatures, buf, buf_len); |
| 1057 | } |
| 1058 | |
| 1059 | char * |
| 1060 | cpuid_get_leaf7_feature_names(uint64_t features, char *buf, unsigned buf_len) |
| 1061 | { |
| 1062 | return cpuid_get_names(leaf7_feature_map, features, buf, buf_len); |
| 1063 | } |
| 1064 | |
| 1065 | void |
| 1066 | cpuid_feature_display( |
| 1067 | const char *) |
| 1068 | { |
| 1069 | char buf[320]; |
| 1070 | |
| 1071 | kprintf("%s: %s" , header, |
| 1072 | cpuid_get_feature_names(cpuid_features(), buf, sizeof(buf))); |
| 1073 | if (cpuid_leaf7_features()) |
| 1074 | kprintf(" %s" , cpuid_get_leaf7_feature_names( |
| 1075 | cpuid_leaf7_features(), buf, sizeof(buf))); |
| 1076 | kprintf("\n" ); |
| 1077 | if (cpuid_features() & CPUID_FEATURE_HTT) { |
| 1078 | #define s_if_plural(n) ((n > 1) ? "s" : "") |
| 1079 | kprintf(" HTT: %d core%s per package;" |
| 1080 | " %d logical cpu%s per package\n" , |
| 1081 | cpuid_cpu_infop->cpuid_cores_per_package, |
| 1082 | s_if_plural(cpuid_cpu_infop->cpuid_cores_per_package), |
| 1083 | cpuid_cpu_infop->cpuid_logical_per_package, |
| 1084 | s_if_plural(cpuid_cpu_infop->cpuid_logical_per_package)); |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | void |
| 1089 | cpuid_extfeature_display( |
| 1090 | const char *) |
| 1091 | { |
| 1092 | char buf[256]; |
| 1093 | |
| 1094 | kprintf("%s: %s\n" , header, |
| 1095 | cpuid_get_extfeature_names(cpuid_extfeatures(), |
| 1096 | buf, sizeof(buf))); |
| 1097 | } |
| 1098 | |
| 1099 | void |
| 1100 | cpuid_cpu_display( |
| 1101 | const char *) |
| 1102 | { |
| 1103 | if (cpuid_cpu_infop->cpuid_brand_string[0] != '\0') { |
| 1104 | kprintf("%s: %s\n" , header, cpuid_cpu_infop->cpuid_brand_string); |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | unsigned int |
| 1109 | cpuid_family(void) |
| 1110 | { |
| 1111 | return cpuid_info()->cpuid_family; |
| 1112 | } |
| 1113 | |
| 1114 | uint32_t |
| 1115 | cpuid_cpufamily(void) |
| 1116 | { |
| 1117 | return cpuid_info()->cpuid_cpufamily; |
| 1118 | } |
| 1119 | |
| 1120 | cpu_type_t |
| 1121 | cpuid_cputype(void) |
| 1122 | { |
| 1123 | return cpuid_info()->cpuid_cpu_type; |
| 1124 | } |
| 1125 | |
| 1126 | cpu_subtype_t |
| 1127 | cpuid_cpusubtype(void) |
| 1128 | { |
| 1129 | return cpuid_info()->cpuid_cpu_subtype; |
| 1130 | } |
| 1131 | |
| 1132 | uint64_t |
| 1133 | cpuid_features(void) |
| 1134 | { |
| 1135 | static int checked = 0; |
| 1136 | char fpu_arg[20] = { 0 }; |
| 1137 | |
| 1138 | (void) cpuid_info(); |
| 1139 | if (!checked) { |
| 1140 | /* check for boot-time fpu limitations */ |
| 1141 | if (PE_parse_boot_argn("_fpu" , &fpu_arg[0], sizeof (fpu_arg))) { |
| 1142 | printf("limiting fpu features to: %s\n" , fpu_arg); |
| 1143 | if (!strncmp("387" , fpu_arg, sizeof("387" )) || !strncmp("mmx" , fpu_arg, sizeof("mmx" ))) { |
| 1144 | printf("no sse or sse2\n" ); |
| 1145 | cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR); |
| 1146 | } else if (!strncmp("sse" , fpu_arg, sizeof("sse" ))) { |
| 1147 | printf("no sse2\n" ); |
| 1148 | cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE2); |
| 1149 | } |
| 1150 | } |
| 1151 | checked = 1; |
| 1152 | } |
| 1153 | return cpuid_cpu_infop->cpuid_features; |
| 1154 | } |
| 1155 | |
| 1156 | uint64_t |
| 1157 | cpuid_extfeatures(void) |
| 1158 | { |
| 1159 | return cpuid_info()->cpuid_extfeatures; |
| 1160 | } |
| 1161 | |
| 1162 | uint64_t |
| 1163 | cpuid_leaf7_features(void) |
| 1164 | { |
| 1165 | return cpuid_info()->cpuid_leaf7_features; |
| 1166 | } |
| 1167 | |
| 1168 | static i386_vmm_info_t *_cpuid_vmm_infop = NULL; |
| 1169 | static i386_vmm_info_t _cpuid_vmm_info; |
| 1170 | |
| 1171 | static void |
| 1172 | cpuid_init_vmm_info(i386_vmm_info_t *info_p) |
| 1173 | { |
| 1174 | uint32_t reg[4]; |
| 1175 | uint32_t max_vmm_leaf; |
| 1176 | |
| 1177 | bzero(info_p, sizeof(*info_p)); |
| 1178 | |
| 1179 | if (!cpuid_vmm_present()) |
| 1180 | return; |
| 1181 | |
| 1182 | DBG("cpuid_init_vmm_info(%p)\n" , info_p); |
| 1183 | |
| 1184 | /* do cpuid 0x40000000 to get VMM vendor */ |
| 1185 | cpuid_fn(0x40000000, reg); |
| 1186 | max_vmm_leaf = reg[eax]; |
| 1187 | bcopy((char *)®[ebx], &info_p->cpuid_vmm_vendor[0], 4); |
| 1188 | bcopy((char *)®[ecx], &info_p->cpuid_vmm_vendor[4], 4); |
| 1189 | bcopy((char *)®[edx], &info_p->cpuid_vmm_vendor[8], 4); |
| 1190 | info_p->cpuid_vmm_vendor[12] = '\0'; |
| 1191 | |
| 1192 | if (0 == strcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_VMWARE)) { |
| 1193 | /* VMware identification string: kb.vmware.com/kb/1009458 */ |
| 1194 | info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_VMWARE; |
| 1195 | } else if (0 == strcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_PARALLELS)) { |
| 1196 | /* Parallels identification string */ |
| 1197 | info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_PARALLELS; |
| 1198 | } else { |
| 1199 | info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_UNKNOWN; |
| 1200 | } |
| 1201 | |
| 1202 | /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */ |
| 1203 | if (max_vmm_leaf >= 0x40000010) { |
| 1204 | cpuid_fn(0x40000010, reg); |
| 1205 | |
| 1206 | info_p->cpuid_vmm_tsc_frequency = reg[eax]; |
| 1207 | info_p->cpuid_vmm_bus_frequency = reg[ebx]; |
| 1208 | } |
| 1209 | |
| 1210 | DBG(" vmm_vendor : %s\n" , info_p->cpuid_vmm_vendor); |
| 1211 | DBG(" vmm_family : %u\n" , info_p->cpuid_vmm_family); |
| 1212 | DBG(" vmm_bus_frequency : %u\n" , info_p->cpuid_vmm_bus_frequency); |
| 1213 | DBG(" vmm_tsc_frequency : %u\n" , info_p->cpuid_vmm_tsc_frequency); |
| 1214 | } |
| 1215 | |
| 1216 | boolean_t |
| 1217 | cpuid_vmm_present(void) |
| 1218 | { |
| 1219 | return (cpuid_features() & CPUID_FEATURE_VMM) ? TRUE : FALSE; |
| 1220 | } |
| 1221 | |
| 1222 | i386_vmm_info_t * |
| 1223 | cpuid_vmm_info(void) |
| 1224 | { |
| 1225 | if (_cpuid_vmm_infop == NULL) { |
| 1226 | cpuid_init_vmm_info(&_cpuid_vmm_info); |
| 1227 | _cpuid_vmm_infop = &_cpuid_vmm_info; |
| 1228 | } |
| 1229 | return _cpuid_vmm_infop; |
| 1230 | } |
| 1231 | |
| 1232 | uint32_t |
| 1233 | cpuid_vmm_family(void) |
| 1234 | { |
| 1235 | return cpuid_vmm_info()->cpuid_vmm_family; |
| 1236 | } |
| 1237 | |
| 1238 | |