1 | /* |
2 | * Copyright (c) 2007-2010 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | #include <mach/machine.h> |
30 | #include <mach/processor.h> |
31 | #include <kern/kalloc.h> |
32 | #include <i386/cpu_affinity.h> |
33 | #include <i386/cpu_topology.h> |
34 | #include <i386/cpu_threads.h> |
35 | #include <i386/machine_cpu.h> |
36 | #include <i386/bit_routines.h> |
37 | #include <i386/cpu_data.h> |
38 | #include <i386/lapic.h> |
39 | #include <i386/machine_routines.h> |
40 | #include <stddef.h> |
41 | |
42 | __private_extern__ void qsort( |
43 | void * array, |
44 | size_t nmembers, |
45 | size_t member_size, |
46 | int (*)(const void *, const void *)); |
47 | |
48 | static int lapicid_cmp(const void *x, const void *y); |
49 | static x86_affinity_set_t *find_cache_affinity(x86_cpu_cache_t *L2_cachep); |
50 | |
51 | x86_affinity_set_t *x86_affinities = NULL; |
52 | static int x86_affinity_count = 0; |
53 | |
54 | extern cpu_data_t cpshadows[]; |
55 | /* Re-sort double-mapped CPU data shadows after topology discovery sorts the |
56 | * primary CPU data structures by physical/APIC CPU ID. |
57 | */ |
58 | static void cpu_shadow_sort(int ncpus) { |
59 | for (int i = 0; i < ncpus; i++) { |
60 | cpu_data_t *cpup = cpu_datap(i); |
61 | ptrdiff_t coff = cpup - cpu_datap(0); |
62 | |
63 | cpup->cd_shadow = &cpshadows[coff]; |
64 | } |
65 | } |
66 | |
67 | /* |
68 | * cpu_topology_sort() is called after all processors have been registered but |
69 | * before any non-boot processor id started. We establish canonical logical |
70 | * processor numbering - logical cpus must be contiguous, zero-based and |
71 | * assigned in physical (local apic id) order. This step is required because |
72 | * the discovery/registration order is non-deterministic - cores are registered |
73 | * in differing orders over boots. Enforcing canonical numbering simplifies |
74 | * identification of processors. |
75 | */ |
76 | void |
77 | cpu_topology_sort(int ncpus) |
78 | { |
79 | int i; |
80 | boolean_t istate; |
81 | processor_t lprim = NULL; |
82 | |
83 | assert(machine_info.physical_cpu == 1); |
84 | assert(machine_info.logical_cpu == 1); |
85 | assert(master_cpu == 0); |
86 | assert(cpu_number() == 0); |
87 | assert(cpu_datap(0)->cpu_number == 0); |
88 | |
89 | /* Lights out for this */ |
90 | istate = ml_set_interrupts_enabled(FALSE); |
91 | |
92 | if (topo_dbg) { |
93 | TOPO_DBG("cpu_topology_start() %d cpu%s registered\n" , |
94 | ncpus, (ncpus > 1) ? "s" : "" ); |
95 | for (i = 0; i < ncpus; i++) { |
96 | cpu_data_t *cpup = cpu_datap(i); |
97 | TOPO_DBG("\tcpu_data[%d]:%p local apic 0x%x\n" , |
98 | i, (void *) cpup, cpup->cpu_phys_number); |
99 | } |
100 | } |
101 | |
102 | /* |
103 | * Re-order the cpu_data_ptr vector sorting by physical id. |
104 | * Skip the boot processor, it's required to be correct. |
105 | */ |
106 | if (ncpus > 1) { |
107 | qsort((void *) &cpu_data_ptr[1], |
108 | ncpus - 1, |
109 | sizeof(cpu_data_t *), |
110 | lapicid_cmp); |
111 | } |
112 | if (topo_dbg) { |
113 | TOPO_DBG("cpu_topology_start() after sorting:\n" ); |
114 | for (i = 0; i < ncpus; i++) { |
115 | cpu_data_t *cpup = cpu_datap(i); |
116 | TOPO_DBG("\tcpu_data[%d]:%p local apic 0x%x\n" , |
117 | i, (void *) cpup, cpup->cpu_phys_number); |
118 | } |
119 | } |
120 | |
121 | /* |
122 | * Finalize logical numbers and map kept by the lapic code. |
123 | */ |
124 | for (i = 0; i < ncpus; i++) { |
125 | cpu_data_t *cpup = cpu_datap(i); |
126 | |
127 | if (cpup->cpu_number != i) { |
128 | kprintf("cpu_datap(%d):%p local apic id 0x%x " |
129 | "remapped from %d\n" , |
130 | i, cpup, cpup->cpu_phys_number, |
131 | cpup->cpu_number); |
132 | } |
133 | cpup->cpu_number = i; |
134 | lapic_cpu_map(cpup->cpu_phys_number, i); |
135 | x86_set_logical_topology(&cpup->lcpu, cpup->cpu_phys_number, i); |
136 | } |
137 | |
138 | cpu_shadow_sort(ncpus); |
139 | x86_validate_topology(); |
140 | |
141 | ml_set_interrupts_enabled(istate); |
142 | TOPO_DBG("cpu_topology_start() LLC is L%d\n" , topoParms.LLCDepth + 1); |
143 | |
144 | /* |
145 | * Let the CPU Power Management know that the topology is stable. |
146 | */ |
147 | topoParms.stable = TRUE; |
148 | pmCPUStateInit(); |
149 | |
150 | /* |
151 | * Iterate over all logical cpus finding or creating the affinity set |
152 | * for their LLC cache. Each affinity set possesses a processor set |
153 | * into which each logical processor is added. |
154 | */ |
155 | TOPO_DBG("cpu_topology_start() creating affinity sets:\n" ); |
156 | for (i = 0; i < ncpus; i++) { |
157 | cpu_data_t *cpup = cpu_datap(i); |
158 | x86_lcpu_t *lcpup = cpu_to_lcpu(i); |
159 | x86_cpu_cache_t *LLC_cachep; |
160 | x86_affinity_set_t *aset; |
161 | |
162 | LLC_cachep = lcpup->caches[topoParms.LLCDepth]; |
163 | assert(LLC_cachep->type == CPU_CACHE_TYPE_UNIF); |
164 | aset = find_cache_affinity(LLC_cachep); |
165 | if (aset == NULL) { |
166 | aset = (x86_affinity_set_t *) kalloc(sizeof(*aset)); |
167 | if (aset == NULL) |
168 | panic("cpu_topology_start() failed aset alloc" ); |
169 | aset->next = x86_affinities; |
170 | x86_affinities = aset; |
171 | aset->num = x86_affinity_count++; |
172 | aset->cache = LLC_cachep; |
173 | aset->pset = (i == master_cpu) ? |
174 | processor_pset(master_processor) : |
175 | pset_create(pset_node_root()); |
176 | if (aset->pset == PROCESSOR_SET_NULL) |
177 | panic("cpu_topology_start: pset_create" ); |
178 | TOPO_DBG("\tnew set %p(%d) pset %p for cache %p\n" , |
179 | aset, aset->num, aset->pset, aset->cache); |
180 | } |
181 | |
182 | TOPO_DBG("\tprocessor_init set %p(%d) lcpup %p(%d) cpu %p processor %p\n" , |
183 | aset, aset->num, lcpup, lcpup->cpu_num, cpup, cpup->cpu_processor); |
184 | |
185 | if (i != master_cpu) |
186 | processor_init(cpup->cpu_processor, i, aset->pset); |
187 | |
188 | if (lcpup->core->num_lcpus > 1) { |
189 | if (lcpup->lnum == 0) |
190 | lprim = cpup->cpu_processor; |
191 | |
192 | processor_set_primary(cpup->cpu_processor, lprim); |
193 | } |
194 | } |
195 | } |
196 | |
197 | /* We got a request to start a CPU. Check that this CPU is within the |
198 | * max cpu limit set before we do. |
199 | */ |
200 | kern_return_t |
201 | cpu_topology_start_cpu( int cpunum ) |
202 | { |
203 | int ncpus = machine_info.max_cpus; |
204 | int i = cpunum; |
205 | |
206 | /* Decide whether to start a CPU, and actually start it */ |
207 | TOPO_DBG("cpu_topology_start() processor_start():\n" ); |
208 | if( i < ncpus) |
209 | { |
210 | TOPO_DBG("\tlcpu %d\n" , cpu_datap(i)->cpu_number); |
211 | processor_start(cpu_datap(i)->cpu_processor); |
212 | return KERN_SUCCESS; |
213 | } |
214 | else |
215 | return KERN_FAILURE; |
216 | } |
217 | |
218 | static int |
219 | lapicid_cmp(const void *x, const void *y) |
220 | { |
221 | cpu_data_t *cpu_x = *((cpu_data_t **)(uintptr_t)x); |
222 | cpu_data_t *cpu_y = *((cpu_data_t **)(uintptr_t)y); |
223 | |
224 | TOPO_DBG("lapicid_cmp(%p,%p) (%d,%d)\n" , |
225 | x, y, cpu_x->cpu_phys_number, cpu_y->cpu_phys_number); |
226 | if (cpu_x->cpu_phys_number < cpu_y->cpu_phys_number) |
227 | return -1; |
228 | if (cpu_x->cpu_phys_number == cpu_y->cpu_phys_number) |
229 | return 0; |
230 | return 1; |
231 | } |
232 | |
233 | static x86_affinity_set_t * |
234 | find_cache_affinity(x86_cpu_cache_t *l2_cachep) |
235 | { |
236 | x86_affinity_set_t *aset; |
237 | |
238 | for (aset = x86_affinities; aset != NULL; aset = aset->next) { |
239 | if (l2_cachep == aset->cache) |
240 | break; |
241 | } |
242 | return aset; |
243 | } |
244 | |
245 | int |
246 | ml_get_max_affinity_sets(void) |
247 | { |
248 | return x86_affinity_count; |
249 | } |
250 | |
251 | processor_set_t |
252 | ml_affinity_to_pset(uint32_t affinity_num) |
253 | { |
254 | x86_affinity_set_t *aset; |
255 | |
256 | for (aset = x86_affinities; aset != NULL; aset = aset->next) { |
257 | if (affinity_num == aset->num) |
258 | break; |
259 | } |
260 | return (aset == NULL) ? PROCESSOR_SET_NULL : aset->pset; |
261 | } |
262 | |
263 | uint64_t |
264 | ml_cpu_cache_size(unsigned int level) |
265 | { |
266 | x86_cpu_cache_t *cachep; |
267 | |
268 | if (level == 0) { |
269 | return machine_info.max_mem; |
270 | } else if ( 1 <= level && level <= MAX_CACHE_DEPTH) { |
271 | cachep = current_cpu_datap()->lcpu.caches[level-1]; |
272 | return cachep ? cachep->cache_size : 0; |
273 | } else { |
274 | return 0; |
275 | } |
276 | } |
277 | |
278 | uint64_t |
279 | ml_cpu_cache_sharing(unsigned int level) |
280 | { |
281 | x86_cpu_cache_t *cachep; |
282 | |
283 | if (level == 0) { |
284 | return machine_info.max_cpus; |
285 | } else if ( 1 <= level && level <= MAX_CACHE_DEPTH) { |
286 | cachep = current_cpu_datap()->lcpu.caches[level-1]; |
287 | return cachep ? cachep->nlcpus : 0; |
288 | } else { |
289 | return 0; |
290 | } |
291 | } |
292 | |
293 | |