1 | /* |
2 | * Copyright (c) 2003-2010 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* |
30 | * Here's what to do if you want to add a new routine to the comm page: |
31 | * |
32 | * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h, |
33 | * being careful to reserve room for future expansion. |
34 | * |
35 | * 2. Write one or more versions of the routine, each with it's own |
36 | * commpage_descriptor. The tricky part is getting the "special", |
37 | * "musthave", and "canthave" fields right, so that exactly one |
38 | * version of the routine is selected for every machine. |
39 | * The source files should be in osfmk/i386/commpage/. |
40 | * |
41 | * 3. Add a ptr to your new commpage_descriptor(s) in the "routines" |
42 | * array in osfmk/i386/commpage/commpage_asm.s. There are two |
43 | * arrays, one for the 32-bit and one for the 64-bit commpage. |
44 | * |
45 | * 4. Write the code in Libc to use the new routine. |
46 | */ |
47 | |
48 | #include <mach/mach_types.h> |
49 | #include <mach/machine.h> |
50 | #include <mach/vm_map.h> |
51 | #include <mach/mach_vm.h> |
52 | #include <mach/machine.h> |
53 | #include <i386/cpuid.h> |
54 | #include <i386/tsc.h> |
55 | #include <i386/rtclock_protos.h> |
56 | #include <i386/cpu_data.h> |
57 | #include <i386/machine_routines.h> |
58 | #include <i386/misc_protos.h> |
59 | #include <i386/cpuid.h> |
60 | #include <machine/cpu_capabilities.h> |
61 | #include <machine/commpage.h> |
62 | #include <machine/pmap.h> |
63 | #include <vm/vm_kern.h> |
64 | #include <vm/vm_map.h> |
65 | #include <stdatomic.h> |
66 | |
67 | #include <ipc/ipc_port.h> |
68 | |
69 | #include <kern/page_decrypt.h> |
70 | #include <kern/processor.h> |
71 | |
72 | #include <sys/kdebug.h> |
73 | |
74 | #if CONFIG_ATM |
75 | #include <atm/atm_internal.h> |
76 | #endif |
77 | |
78 | /* the lists of commpage routines are in commpage_asm.s */ |
79 | extern commpage_descriptor* commpage_32_routines[]; |
80 | extern commpage_descriptor* commpage_64_routines[]; |
81 | |
82 | extern vm_map_t commpage32_map; // the shared submap, set up in vm init |
83 | extern vm_map_t commpage64_map; // the shared submap, set up in vm init |
84 | extern vm_map_t commpage_text32_map; // the shared submap, set up in vm init |
85 | extern vm_map_t commpage_text64_map; // the shared submap, set up in vm init |
86 | |
87 | |
88 | char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage |
89 | char *commPagePtr64 = NULL; // ...and of 64-bit commpage |
90 | char *commPageTextPtr32 = NULL; // virtual addr in kernel map of 32-bit commpage |
91 | char *commPageTextPtr64 = NULL; // ...and of 64-bit commpage |
92 | |
93 | uint64_t _cpu_capabilities = 0; // define the capability vector |
94 | |
95 | typedef uint32_t commpage_address_t; |
96 | |
97 | static commpage_address_t next; // next available address in comm page |
98 | |
99 | static char *commPagePtr; // virtual addr in kernel map of commpage we are working on |
100 | static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map |
101 | |
102 | static commpage_time_data *time_data32 = NULL; |
103 | static commpage_time_data *time_data64 = NULL; |
104 | static new_commpage_timeofday_data_t *gtod_time_data32 = NULL; |
105 | static new_commpage_timeofday_data_t *gtod_time_data64 = NULL; |
106 | |
107 | |
108 | decl_simple_lock_data(static,commpage_active_cpus_lock); |
109 | |
110 | /* Allocate the commpage and add to the shared submap created by vm: |
111 | * 1. allocate a page in the kernel map (RW) |
112 | * 2. wire it down |
113 | * 3. make a memory entry out of it |
114 | * 4. map that entry into the shared comm region map (R-only) |
115 | */ |
116 | |
117 | static void* |
118 | commpage_allocate( |
119 | vm_map_t submap, // commpage32_map or commpage_map64 |
120 | size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED |
121 | vm_prot_t uperm) |
122 | { |
123 | vm_offset_t kernel_addr = 0; // address of commpage in kernel map |
124 | vm_offset_t zero = 0; |
125 | vm_size_t size = area_used; // size actually populated |
126 | vm_map_entry_t entry; |
127 | ipc_port_t handle; |
128 | kern_return_t kr; |
129 | vm_map_kernel_flags_t vmk_flags; |
130 | |
131 | if (submap == NULL) |
132 | panic("commpage submap is null" ); |
133 | |
134 | kr = vm_map_kernel(kernel_map, |
135 | &kernel_addr, |
136 | area_used, |
137 | 0, |
138 | VM_FLAGS_ANYWHERE, |
139 | VM_MAP_KERNEL_FLAGS_NONE, |
140 | VM_KERN_MEMORY_OSFMK, |
141 | NULL, |
142 | 0, |
143 | FALSE, |
144 | VM_PROT_ALL, |
145 | VM_PROT_ALL, |
146 | VM_INHERIT_NONE); |
147 | if (kr != KERN_SUCCESS) |
148 | panic("cannot allocate commpage %d" , kr); |
149 | |
150 | if ((kr = vm_map_wire_kernel(kernel_map, |
151 | kernel_addr, |
152 | kernel_addr+area_used, |
153 | VM_PROT_DEFAULT, VM_KERN_MEMORY_OSFMK, |
154 | FALSE))) |
155 | panic("cannot wire commpage: %d" , kr); |
156 | |
157 | /* |
158 | * Now that the object is created and wired into the kernel map, mark it so that no delay |
159 | * copy-on-write will ever be performed on it as a result of mapping it into user-space. |
160 | * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and |
161 | * that would be a real disaster. |
162 | * |
163 | * JMM - What we really need is a way to create it like this in the first place. |
164 | */ |
165 | if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr, VM_MAP_PAGE_MASK(kernel_map)), &entry) || entry->is_sub_map)) |
166 | panic("cannot find commpage entry %d" , kr); |
167 | VME_OBJECT(entry)->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
168 | |
169 | if ((kr = mach_make_memory_entry( kernel_map, // target map |
170 | &size, // size |
171 | kernel_addr, // offset (address in kernel map) |
172 | uperm, // protections as specified |
173 | &handle, // this is the object handle we get |
174 | NULL ))) // parent_entry (what is this?) |
175 | panic("cannot make entry for commpage %d" , kr); |
176 | |
177 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
178 | if (uperm == (VM_PROT_READ | VM_PROT_EXECUTE)) { |
179 | /* |
180 | * Mark this unsigned executable mapping as "jit" to avoid |
181 | * code-signing violations when attempting to execute unsigned |
182 | * code. |
183 | */ |
184 | vmk_flags.vmkf_map_jit = TRUE; |
185 | } |
186 | |
187 | kr = vm_map_64_kernel( |
188 | submap, // target map (shared submap) |
189 | &zero, // address (map into 1st page in submap) |
190 | area_used, // size |
191 | 0, // mask |
192 | VM_FLAGS_FIXED, // flags (it must be 1st page in submap) |
193 | vmk_flags, |
194 | VM_KERN_MEMORY_NONE, |
195 | handle, // port is the memory entry we just made |
196 | 0, // offset (map 1st page in memory entry) |
197 | FALSE, // copy |
198 | uperm, // cur_protection (R-only in user map) |
199 | uperm, // max_protection |
200 | VM_INHERIT_SHARE); // inheritance |
201 | if (kr != KERN_SUCCESS) |
202 | panic("cannot map commpage %d" , kr); |
203 | |
204 | ipc_port_release(handle); |
205 | /* Make the kernel mapping non-executable. This cannot be done |
206 | * at the time of map entry creation as mach_make_memory_entry |
207 | * cannot handle disjoint permissions at this time. |
208 | */ |
209 | kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE); |
210 | assert (kr == KERN_SUCCESS); |
211 | |
212 | return (void*)(intptr_t)kernel_addr; // return address in kernel map |
213 | } |
214 | |
215 | /* Get address (in kernel map) of a commpage field. */ |
216 | |
217 | static void* |
218 | commpage_addr_of( |
219 | commpage_address_t addr_at_runtime ) |
220 | { |
221 | return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset)); |
222 | } |
223 | |
224 | /* Determine number of CPUs on this system. We cannot rely on |
225 | * machine_info.max_cpus this early in the boot. |
226 | */ |
227 | static int |
228 | commpage_cpus( void ) |
229 | { |
230 | int cpus; |
231 | |
232 | cpus = ml_get_max_cpus(); // NB: this call can block |
233 | |
234 | if (cpus == 0) |
235 | panic("commpage cpus==0" ); |
236 | if (cpus > 0xFF) |
237 | cpus = 0xFF; |
238 | |
239 | return cpus; |
240 | } |
241 | |
242 | /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */ |
243 | |
244 | static void |
245 | commpage_init_cpu_capabilities( void ) |
246 | { |
247 | uint64_t bits; |
248 | int cpus; |
249 | ml_cpu_info_t cpu_info; |
250 | |
251 | bits = 0; |
252 | ml_cpu_get_info(&cpu_info); |
253 | |
254 | switch (cpu_info.vector_unit) { |
255 | case 9: |
256 | bits |= kHasAVX1_0; |
257 | /* fall thru */ |
258 | case 8: |
259 | bits |= kHasSSE4_2; |
260 | /* fall thru */ |
261 | case 7: |
262 | bits |= kHasSSE4_1; |
263 | /* fall thru */ |
264 | case 6: |
265 | bits |= kHasSupplementalSSE3; |
266 | /* fall thru */ |
267 | case 5: |
268 | bits |= kHasSSE3; |
269 | /* fall thru */ |
270 | case 4: |
271 | bits |= kHasSSE2; |
272 | /* fall thru */ |
273 | case 3: |
274 | bits |= kHasSSE; |
275 | /* fall thru */ |
276 | case 2: |
277 | bits |= kHasMMX; |
278 | default: |
279 | break; |
280 | } |
281 | switch (cpu_info.cache_line_size) { |
282 | case 128: |
283 | bits |= kCache128; |
284 | break; |
285 | case 64: |
286 | bits |= kCache64; |
287 | break; |
288 | case 32: |
289 | bits |= kCache32; |
290 | break; |
291 | default: |
292 | break; |
293 | } |
294 | cpus = commpage_cpus(); // how many CPUs do we have |
295 | |
296 | bits |= (cpus << kNumCPUsShift); |
297 | |
298 | bits |= kFastThreadLocalStorage; // we use %gs for TLS |
299 | |
300 | #define setif(_bits, _bit, _condition) \ |
301 | if (_condition) _bits |= _bit |
302 | |
303 | setif(bits, kUP, cpus == 1); |
304 | setif(bits, k64Bit, cpu_mode_is64bit()); |
305 | setif(bits, kSlow, tscFreq <= SLOW_TSC_THRESHOLD); |
306 | |
307 | setif(bits, kHasAES, cpuid_features() & |
308 | CPUID_FEATURE_AES); |
309 | setif(bits, kHasF16C, cpuid_features() & |
310 | CPUID_FEATURE_F16C); |
311 | setif(bits, kHasRDRAND, cpuid_features() & |
312 | CPUID_FEATURE_RDRAND); |
313 | setif(bits, kHasFMA, cpuid_features() & |
314 | CPUID_FEATURE_FMA); |
315 | |
316 | setif(bits, kHasBMI1, cpuid_leaf7_features() & |
317 | CPUID_LEAF7_FEATURE_BMI1); |
318 | setif(bits, kHasBMI2, cpuid_leaf7_features() & |
319 | CPUID_LEAF7_FEATURE_BMI2); |
320 | setif(bits, kHasRTM, cpuid_leaf7_features() & |
321 | CPUID_LEAF7_FEATURE_RTM); |
322 | setif(bits, kHasHLE, cpuid_leaf7_features() & |
323 | CPUID_LEAF7_FEATURE_HLE); |
324 | setif(bits, kHasAVX2_0, cpuid_leaf7_features() & |
325 | CPUID_LEAF7_FEATURE_AVX2); |
326 | setif(bits, kHasRDSEED, cpuid_leaf7_features() & |
327 | CPUID_LEAF7_FEATURE_RDSEED); |
328 | setif(bits, kHasADX, cpuid_leaf7_features() & |
329 | CPUID_LEAF7_FEATURE_ADX); |
330 | |
331 | #if 0 /* The kernel doesn't support MPX or SGX */ |
332 | setif(bits, kHasMPX, cpuid_leaf7_features() & |
333 | CPUID_LEAF7_FEATURE_MPX); |
334 | setif(bits, kHasSGX, cpuid_leaf7_features() & |
335 | CPUID_LEAF7_FEATURE_SGX); |
336 | #endif |
337 | |
338 | #if !defined(RC_HIDE_XNU_J137) |
339 | if (ml_fpu_avx512_enabled()) { |
340 | setif(bits, kHasAVX512F, cpuid_leaf7_features() & |
341 | CPUID_LEAF7_FEATURE_AVX512F); |
342 | setif(bits, kHasAVX512CD, cpuid_leaf7_features() & |
343 | CPUID_LEAF7_FEATURE_AVX512CD); |
344 | setif(bits, kHasAVX512DQ, cpuid_leaf7_features() & |
345 | CPUID_LEAF7_FEATURE_AVX512DQ); |
346 | setif(bits, kHasAVX512BW, cpuid_leaf7_features() & |
347 | CPUID_LEAF7_FEATURE_AVX512BW); |
348 | setif(bits, kHasAVX512VL, cpuid_leaf7_features() & |
349 | CPUID_LEAF7_FEATURE_AVX512VL); |
350 | setif(bits, kHasAVX512IFMA, cpuid_leaf7_features() & |
351 | CPUID_LEAF7_FEATURE_AVX512IFMA); |
352 | setif(bits, kHasAVX512VBMI, cpuid_leaf7_features() & |
353 | CPUID_LEAF7_FEATURE_AVX512VBMI); |
354 | } |
355 | |
356 | #endif /* not RC_HIDE_XNU_J137 */ |
357 | uint64_t misc_enable = rdmsr64(MSR_IA32_MISC_ENABLE); |
358 | setif(bits, kHasENFSTRG, (misc_enable & 1ULL) && |
359 | (cpuid_leaf7_features() & |
360 | CPUID_LEAF7_FEATURE_ERMS)); |
361 | |
362 | _cpu_capabilities = bits; // set kernel version for use by drivers etc |
363 | } |
364 | |
365 | /* initialize the approx_time_supported flag and set the approx time to 0. |
366 | * Called during initial commpage population. |
367 | */ |
368 | static void |
369 | commpage_mach_approximate_time_init(void) |
370 | { |
371 | char *cp = commPagePtr32; |
372 | uint8_t supported; |
373 | |
374 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
375 | supported = 1; |
376 | #else |
377 | supported = 0; |
378 | #endif |
379 | if ( cp ) { |
380 | cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_BASE_ADDRESS); |
381 | *(boolean_t *)cp = supported; |
382 | } |
383 | |
384 | cp = commPagePtr64; |
385 | if ( cp ) { |
386 | cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_START_ADDRESS); |
387 | *(boolean_t *)cp = supported; |
388 | } |
389 | commpage_update_mach_approximate_time(0); |
390 | } |
391 | |
392 | static void |
393 | commpage_mach_continuous_time_init(void) |
394 | { |
395 | commpage_update_mach_continuous_time(0); |
396 | } |
397 | |
398 | static void |
399 | commpage_boottime_init(void) |
400 | { |
401 | clock_sec_t secs; |
402 | clock_usec_t microsecs; |
403 | clock_get_boottime_microtime(&secs, µsecs); |
404 | commpage_update_boottime(secs * USEC_PER_SEC + microsecs); |
405 | } |
406 | |
407 | uint64_t |
408 | _get_cpu_capabilities(void) |
409 | { |
410 | return _cpu_capabilities; |
411 | } |
412 | |
413 | /* Copy data into commpage. */ |
414 | |
415 | static void |
416 | commpage_stuff( |
417 | commpage_address_t address, |
418 | const void *source, |
419 | int length ) |
420 | { |
421 | void *dest = commpage_addr_of(address); |
422 | |
423 | if (address < next) |
424 | panic("commpage overlap at address 0x%p, 0x%x < 0x%x" , dest, address, next); |
425 | |
426 | bcopy(source,dest,length); |
427 | |
428 | next = address + length; |
429 | } |
430 | |
431 | /* Copy a routine into comm page if it matches running machine. |
432 | */ |
433 | static void |
434 | commpage_stuff_routine( |
435 | commpage_descriptor *rd ) |
436 | { |
437 | commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length); |
438 | } |
439 | |
440 | /* Fill in the 32- or 64-bit commpage. Called once for each. |
441 | */ |
442 | |
443 | static void |
444 | commpage_populate_one( |
445 | vm_map_t submap, // commpage32_map or compage64_map |
446 | char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64 |
447 | size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED |
448 | commpage_address_t base_offset, // will become commPageBaseOffset |
449 | commpage_time_data** time_data, // &time_data32 or &time_data64 |
450 | new_commpage_timeofday_data_t** gtod_time_data, // >od_time_data32 or >od_time_data64 |
451 | const char* signature, // "commpage 32-bit" or "commpage 64-bit" |
452 | vm_prot_t uperm) |
453 | { |
454 | uint8_t c1; |
455 | uint16_t c2; |
456 | int c4; |
457 | uint64_t c8; |
458 | uint32_t cfamily; |
459 | short version = _COMM_PAGE_THIS_VERSION; |
460 | |
461 | next = 0; |
462 | commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm ); |
463 | *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64 |
464 | commPageBaseOffset = base_offset; |
465 | |
466 | *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START ); |
467 | *gtod_time_data = commpage_addr_of( _COMM_PAGE_NEWTIMEOFDAY_DATA ); |
468 | |
469 | /* Stuff in the constants. We move things into the comm page in strictly |
470 | * ascending order, so we can check for overlap and panic if so. |
471 | * Note: the 32-bit cpu_capabilities vector is retained in addition to |
472 | * the expanded 64-bit vector. |
473 | */ |
474 | commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)MIN(_COMM_PAGE_SIGNATURELEN, strlen(signature))); |
475 | commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64,&_cpu_capabilities,sizeof(_cpu_capabilities)); |
476 | commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short)); |
477 | commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(uint32_t)); |
478 | |
479 | c2 = 32; // default |
480 | if (_cpu_capabilities & kCache64) |
481 | c2 = 64; |
482 | else if (_cpu_capabilities & kCache128) |
483 | c2 = 128; |
484 | commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2); |
485 | |
486 | c4 = MP_SPIN_TRIES; |
487 | commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4); |
488 | |
489 | /* machine_info valid after ml_get_max_cpus() */ |
490 | c1 = machine_info.physical_cpu_max; |
491 | commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1); |
492 | c1 = machine_info.logical_cpu_max; |
493 | commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1); |
494 | |
495 | c8 = ml_cpu_cache_size(0); |
496 | commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8); |
497 | |
498 | cfamily = cpuid_info()->cpuid_cpufamily; |
499 | commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4); |
500 | |
501 | if (next > _COMM_PAGE_END) |
502 | panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p" , next, commPagePtr); |
503 | |
504 | } |
505 | |
506 | |
507 | /* Fill in commpages: called once, during kernel initialization, from the |
508 | * startup thread before user-mode code is running. |
509 | * |
510 | * See the top of this file for a list of what you have to do to add |
511 | * a new routine to the commpage. |
512 | */ |
513 | |
514 | void |
515 | commpage_populate( void ) |
516 | { |
517 | commpage_init_cpu_capabilities(); |
518 | |
519 | commpage_populate_one( commpage32_map, |
520 | &commPagePtr32, |
521 | _COMM_PAGE32_AREA_USED, |
522 | _COMM_PAGE32_BASE_ADDRESS, |
523 | &time_data32, |
524 | >od_time_data32, |
525 | "commpage 32-bit" , |
526 | VM_PROT_READ); |
527 | #ifndef __LP64__ |
528 | pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS, |
529 | _COMM_PAGE32_AREA_USED/INTEL_PGBYTES); |
530 | #endif |
531 | time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */ |
532 | gtod_time_data64 = gtod_time_data32; |
533 | |
534 | if (_cpu_capabilities & k64Bit) { |
535 | commpage_populate_one( commpage64_map, |
536 | &commPagePtr64, |
537 | _COMM_PAGE64_AREA_USED, |
538 | _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */ |
539 | &time_data64, |
540 | >od_time_data64, |
541 | "commpage 64-bit" , |
542 | VM_PROT_READ); |
543 | #ifndef __LP64__ |
544 | pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS, |
545 | _COMM_PAGE64_AREA_USED/INTEL_PGBYTES); |
546 | #endif |
547 | } |
548 | |
549 | simple_lock_init(&commpage_active_cpus_lock, 0); |
550 | |
551 | commpage_update_active_cpus(); |
552 | commpage_mach_approximate_time_init(); |
553 | commpage_mach_continuous_time_init(); |
554 | commpage_boottime_init(); |
555 | rtc_nanotime_init_commpage(); |
556 | commpage_update_kdebug_state(); |
557 | #if CONFIG_ATM |
558 | commpage_update_atm_diagnostic_config(atm_get_diagnostic_config()); |
559 | #endif |
560 | } |
561 | |
562 | /* Fill in the common routines during kernel initialization. |
563 | * This is called before user-mode code is running. |
564 | */ |
565 | void commpage_text_populate( void ){ |
566 | commpage_descriptor **rd; |
567 | |
568 | next = 0; |
569 | commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE); |
570 | commPageTextPtr32 = commPagePtr; |
571 | |
572 | char *cptr = commPagePtr; |
573 | int i=0; |
574 | for(; i< _COMM_PAGE_TEXT_AREA_USED; i++){ |
575 | cptr[i]=0xCC; |
576 | } |
577 | |
578 | commPageBaseOffset = _COMM_PAGE_TEXT_START; |
579 | for (rd = commpage_32_routines; *rd != NULL; rd++) { |
580 | commpage_stuff_routine(*rd); |
581 | } |
582 | |
583 | #ifndef __LP64__ |
584 | pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START, |
585 | _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES); |
586 | #endif |
587 | |
588 | if (_cpu_capabilities & k64Bit) { |
589 | next = 0; |
590 | commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE); |
591 | commPageTextPtr64 = commPagePtr; |
592 | |
593 | cptr=commPagePtr; |
594 | for(i=0; i<_COMM_PAGE_TEXT_AREA_USED; i++){ |
595 | cptr[i]=0xCC; |
596 | } |
597 | |
598 | for (rd = commpage_64_routines; *rd !=NULL; rd++) { |
599 | commpage_stuff_routine(*rd); |
600 | } |
601 | |
602 | #ifndef __LP64__ |
603 | pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START, |
604 | _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES); |
605 | #endif |
606 | } |
607 | |
608 | if (next > _COMM_PAGE_TEXT_END) |
609 | panic("commpage text overflow: next=0x%08x, commPagePtr=%p" , next, commPagePtr); |
610 | |
611 | } |
612 | |
613 | /* Update commpage nanotime information. |
614 | * |
615 | * This routine must be serialized by some external means, ie a lock. |
616 | */ |
617 | |
618 | void |
619 | commpage_set_nanotime( |
620 | uint64_t tsc_base, |
621 | uint64_t ns_base, |
622 | uint32_t scale, |
623 | uint32_t shift ) |
624 | { |
625 | commpage_time_data *p32 = time_data32; |
626 | commpage_time_data *p64 = time_data64; |
627 | static uint32_t generation = 0; |
628 | uint32_t next_gen; |
629 | |
630 | if (p32 == NULL) /* have commpages been allocated yet? */ |
631 | return; |
632 | |
633 | if ( generation != p32->nt_generation ) |
634 | panic("nanotime trouble 1" ); /* possibly not serialized */ |
635 | if ( ns_base < p32->nt_ns_base ) |
636 | panic("nanotime trouble 2" ); |
637 | if ((shift != 0) && ((_cpu_capabilities & kSlow)==0) ) |
638 | panic("nanotime trouble 3" ); |
639 | |
640 | next_gen = ++generation; |
641 | if (next_gen == 0) |
642 | next_gen = ++generation; |
643 | |
644 | p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */ |
645 | p64->nt_generation = 0; |
646 | |
647 | p32->nt_tsc_base = tsc_base; |
648 | p64->nt_tsc_base = tsc_base; |
649 | |
650 | p32->nt_ns_base = ns_base; |
651 | p64->nt_ns_base = ns_base; |
652 | |
653 | p32->nt_scale = scale; |
654 | p64->nt_scale = scale; |
655 | |
656 | p32->nt_shift = shift; |
657 | p64->nt_shift = shift; |
658 | |
659 | p32->nt_generation = next_gen; /* mark data as valid */ |
660 | p64->nt_generation = next_gen; |
661 | } |
662 | |
663 | /* Update commpage gettimeofday() information. As with nanotime(), we interleave |
664 | * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync |
665 | * between the two environments. |
666 | * |
667 | * This routine must be serializeed by some external means, ie a lock. |
668 | */ |
669 | |
670 | void |
671 | commpage_set_timestamp( |
672 | uint64_t abstime, |
673 | uint64_t sec, |
674 | uint64_t frac, |
675 | uint64_t scale, |
676 | uint64_t tick_per_sec) |
677 | { |
678 | new_commpage_timeofday_data_t *p32 = gtod_time_data32; |
679 | new_commpage_timeofday_data_t *p64 = gtod_time_data64; |
680 | |
681 | p32->TimeStamp_tick = 0x0ULL; |
682 | p64->TimeStamp_tick = 0x0ULL; |
683 | |
684 | p32->TimeStamp_sec = sec; |
685 | p64->TimeStamp_sec = sec; |
686 | |
687 | p32->TimeStamp_frac = frac; |
688 | p64->TimeStamp_frac = frac; |
689 | |
690 | p32->Ticks_scale = scale; |
691 | p64->Ticks_scale = scale; |
692 | |
693 | p32->Ticks_per_sec = tick_per_sec; |
694 | p64->Ticks_per_sec = tick_per_sec; |
695 | |
696 | p32->TimeStamp_tick = abstime; |
697 | p64->TimeStamp_tick = abstime; |
698 | } |
699 | |
700 | /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */ |
701 | |
702 | void |
703 | commpage_set_memory_pressure( |
704 | unsigned int pressure ) |
705 | { |
706 | char *cp; |
707 | uint32_t *ip; |
708 | |
709 | cp = commPagePtr32; |
710 | if ( cp ) { |
711 | cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS); |
712 | ip = (uint32_t*) (void *) cp; |
713 | *ip = (uint32_t) pressure; |
714 | } |
715 | |
716 | cp = commPagePtr64; |
717 | if ( cp ) { |
718 | cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS); |
719 | ip = (uint32_t*) (void *) cp; |
720 | *ip = (uint32_t) pressure; |
721 | } |
722 | |
723 | } |
724 | |
725 | |
726 | /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */ |
727 | |
728 | void |
729 | commpage_set_spin_count( |
730 | unsigned int count ) |
731 | { |
732 | char *cp; |
733 | uint32_t *ip; |
734 | |
735 | if (count == 0) /* we test for 0 after decrement, not before */ |
736 | count = 1; |
737 | |
738 | cp = commPagePtr32; |
739 | if ( cp ) { |
740 | cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS); |
741 | ip = (uint32_t*) (void *) cp; |
742 | *ip = (uint32_t) count; |
743 | } |
744 | |
745 | cp = commPagePtr64; |
746 | if ( cp ) { |
747 | cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS); |
748 | ip = (uint32_t*) (void *) cp; |
749 | *ip = (uint32_t) count; |
750 | } |
751 | |
752 | } |
753 | |
754 | /* Updated every time a logical CPU goes offline/online */ |
755 | void |
756 | commpage_update_active_cpus(void) |
757 | { |
758 | char *cp; |
759 | volatile uint8_t *ip; |
760 | |
761 | /* At least 32-bit commpage must be initialized */ |
762 | if (!commPagePtr32) |
763 | return; |
764 | |
765 | simple_lock(&commpage_active_cpus_lock); |
766 | |
767 | cp = commPagePtr32; |
768 | cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS); |
769 | ip = (volatile uint8_t*) cp; |
770 | *ip = (uint8_t) processor_avail_count; |
771 | |
772 | cp = commPagePtr64; |
773 | if ( cp ) { |
774 | cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS); |
775 | ip = (volatile uint8_t*) cp; |
776 | *ip = (uint8_t) processor_avail_count; |
777 | } |
778 | |
779 | simple_unlock(&commpage_active_cpus_lock); |
780 | } |
781 | |
782 | /* |
783 | * Update the commpage with current kdebug state. This currently has bits for |
784 | * global trace state, and typefilter enablement. It is likely additional state |
785 | * will be tracked in the future. |
786 | * |
787 | * INVARIANT: This value will always be 0 if global tracing is disabled. This |
788 | * allows simple guard tests of "if (*_COMM_PAGE_KDEBUG_ENABLE) { ... }" |
789 | */ |
790 | void |
791 | commpage_update_kdebug_state(void) |
792 | { |
793 | volatile uint32_t *saved_data_ptr; |
794 | char *cp; |
795 | |
796 | cp = commPagePtr32; |
797 | if (cp) { |
798 | cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_BASE_ADDRESS); |
799 | saved_data_ptr = (volatile uint32_t *)cp; |
800 | *saved_data_ptr = kdebug_commpage_state(); |
801 | } |
802 | |
803 | cp = commPagePtr64; |
804 | if (cp) { |
805 | cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_START_ADDRESS); |
806 | saved_data_ptr = (volatile uint32_t *)cp; |
807 | *saved_data_ptr = kdebug_commpage_state(); |
808 | } |
809 | } |
810 | |
811 | /* Ditto for atm_diagnostic_config */ |
812 | void |
813 | commpage_update_atm_diagnostic_config(uint32_t diagnostic_config) |
814 | { |
815 | volatile uint32_t *saved_data_ptr; |
816 | char *cp; |
817 | |
818 | cp = commPagePtr32; |
819 | if (cp) { |
820 | cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_BASE_ADDRESS); |
821 | saved_data_ptr = (volatile uint32_t *)cp; |
822 | *saved_data_ptr = diagnostic_config; |
823 | } |
824 | |
825 | cp = commPagePtr64; |
826 | if ( cp ) { |
827 | cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_START_ADDRESS); |
828 | saved_data_ptr = (volatile uint32_t *)cp; |
829 | *saved_data_ptr = diagnostic_config; |
830 | } |
831 | } |
832 | |
833 | /* |
834 | * update the commpage data for last known value of mach_absolute_time() |
835 | */ |
836 | |
837 | void |
838 | commpage_update_mach_approximate_time(uint64_t abstime) |
839 | { |
840 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
841 | uint64_t saved_data; |
842 | char *cp; |
843 | |
844 | cp = commPagePtr32; |
845 | if ( cp ) { |
846 | cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_BASE_ADDRESS); |
847 | saved_data = atomic_load_explicit((_Atomic uint64_t *)(uintptr_t)cp, memory_order_relaxed); |
848 | if (saved_data < abstime) { |
849 | /* ignoring the success/fail return value assuming that |
850 | * if the value has been updated since we last read it, |
851 | * "someone" has a newer timestamp than us and ours is |
852 | * now invalid. */ |
853 | atomic_compare_exchange_strong_explicit((_Atomic uint64_t *)(uintptr_t)cp, |
854 | &saved_data, abstime, memory_order_relaxed, memory_order_relaxed); |
855 | } |
856 | } |
857 | cp = commPagePtr64; |
858 | if ( cp ) { |
859 | cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_START_ADDRESS); |
860 | saved_data = atomic_load_explicit((_Atomic uint64_t *)(uintptr_t)cp, memory_order_relaxed); |
861 | if (saved_data < abstime) { |
862 | /* ignoring the success/fail return value assuming that |
863 | * if the value has been updated since we last read it, |
864 | * "someone" has a newer timestamp than us and ours is |
865 | * now invalid. */ |
866 | atomic_compare_exchange_strong_explicit((_Atomic uint64_t *)(uintptr_t)cp, |
867 | &saved_data, abstime, memory_order_relaxed, memory_order_relaxed); |
868 | } |
869 | } |
870 | #else |
871 | #pragma unused (abstime) |
872 | #endif |
873 | } |
874 | |
875 | void |
876 | commpage_update_mach_continuous_time(uint64_t sleeptime) |
877 | { |
878 | char *cp; |
879 | cp = commPagePtr32; |
880 | if (cp) { |
881 | cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS); |
882 | *(uint64_t *)cp = sleeptime; |
883 | } |
884 | |
885 | cp = commPagePtr64; |
886 | if (cp) { |
887 | cp += (_COMM_PAGE_CONT_TIMEBASE - _COMM_PAGE32_START_ADDRESS); |
888 | *(uint64_t *)cp = sleeptime; |
889 | } |
890 | } |
891 | |
892 | void |
893 | commpage_update_boottime(uint64_t boottime) |
894 | { |
895 | char *cp; |
896 | cp = commPagePtr32; |
897 | if (cp) { |
898 | cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS); |
899 | *(uint64_t *)cp = boottime; |
900 | } |
901 | |
902 | cp = commPagePtr64; |
903 | if (cp) { |
904 | cp += (_COMM_PAGE_BOOTTIME_USEC - _COMM_PAGE32_START_ADDRESS); |
905 | *(uint64_t *)cp = boottime; |
906 | } |
907 | } |
908 | |
909 | |
910 | extern user32_addr_t commpage_text32_location; |
911 | extern user64_addr_t commpage_text64_location; |
912 | |
913 | /* Check to see if a given address is in the Preemption Free Zone (PFZ) */ |
914 | |
915 | uint32_t |
916 | commpage_is_in_pfz32(uint32_t addr32) |
917 | { |
918 | if ( (addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET)) |
919 | && (addr32 < (commpage_text32_location+_COMM_TEXT_PFZ_END_OFFSET))) { |
920 | return 1; |
921 | } |
922 | else |
923 | return 0; |
924 | } |
925 | |
926 | uint32_t |
927 | commpage_is_in_pfz64(addr64_t addr64) |
928 | { |
929 | if ( (addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET)) |
930 | && (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) { |
931 | return 1; |
932 | } |
933 | else |
934 | return 0; |
935 | } |
936 | |
937 | |