| 1 | /* |
| 2 | * Copyright (c) 2005-2008 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * @APPLE_FREE_COPYRIGHT@ |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | * Author: Bill Angell, Apple |
| 37 | * Date: 10/auht-five |
| 38 | * |
| 39 | * Random diagnostics, augmented Derek Kumar 2011 |
| 40 | * |
| 41 | * |
| 42 | */ |
| 43 | |
| 44 | |
| 45 | #include <kern/machine.h> |
| 46 | #include <kern/processor.h> |
| 47 | #include <mach/machine.h> |
| 48 | #include <mach/processor_info.h> |
| 49 | #include <mach/mach_types.h> |
| 50 | #include <mach/boolean.h> |
| 51 | #include <kern/thread.h> |
| 52 | #include <kern/task.h> |
| 53 | #include <kern/ipc_kobject.h> |
| 54 | #include <mach/vm_param.h> |
| 55 | #include <ipc/port.h> |
| 56 | #include <ipc/ipc_entry.h> |
| 57 | #include <ipc/ipc_space.h> |
| 58 | #include <ipc/ipc_object.h> |
| 59 | #include <ipc/ipc_port.h> |
| 60 | #include <vm/vm_kern.h> |
| 61 | #include <vm/vm_map.h> |
| 62 | #include <vm/vm_page.h> |
| 63 | #include <vm/pmap.h> |
| 64 | #include <pexpert/pexpert.h> |
| 65 | #include <console/video_console.h> |
| 66 | #include <i386/cpu_data.h> |
| 67 | #include <i386/Diagnostics.h> |
| 68 | #include <i386/mp.h> |
| 69 | #include <i386/pmCPU.h> |
| 70 | #include <i386/tsc.h> |
| 71 | #include <mach/i386/syscall_sw.h> |
| 72 | #include <kern/kalloc.h> |
| 73 | #include <sys/kdebug.h> |
| 74 | #include <i386/machine_cpu.h> |
| 75 | #include <i386/misc_protos.h> |
| 76 | #include <i386/cpuid.h> |
| 77 | |
| 78 | #if MONOTONIC |
| 79 | #include <kern/monotonic.h> |
| 80 | #endif /* MONOTONIC */ |
| 81 | |
| 82 | #define PERMIT_PERMCHECK (0) |
| 83 | |
| 84 | diagWork dgWork; |
| 85 | uint64_t lastRuptClear = 0ULL; |
| 86 | boolean_t diag_pmc_enabled = FALSE; |
| 87 | void cpu_powerstats(void *); |
| 88 | |
| 89 | typedef struct { |
| 90 | uint64_t caperf; |
| 91 | uint64_t cmperf; |
| 92 | uint64_t ccres[6]; |
| 93 | uint64_t crtimes[CPU_RTIME_BINS]; |
| 94 | uint64_t citimes[CPU_ITIME_BINS]; |
| 95 | uint64_t crtime_total; |
| 96 | uint64_t citime_total; |
| 97 | uint64_t cpu_idle_exits; |
| 98 | uint64_t cpu_insns; |
| 99 | uint64_t cpu_ucc; |
| 100 | uint64_t cpu_urc; |
| 101 | #if DIAG_ALL_PMCS |
| 102 | uint64_t gpmcs[4]; |
| 103 | #endif /* DIAG_ALL_PMCS */ |
| 104 | } core_energy_stat_t; |
| 105 | |
| 106 | typedef struct { |
| 107 | uint64_t pkes_version; |
| 108 | uint64_t pkg_cres[2][7]; |
| 109 | uint64_t pkg_power_unit; |
| 110 | uint64_t pkg_energy; |
| 111 | uint64_t pp0_energy; |
| 112 | uint64_t pp1_energy; |
| 113 | uint64_t ddr_energy; |
| 114 | uint64_t llc_flushed_cycles; |
| 115 | uint64_t ring_ratio_instantaneous; |
| 116 | uint64_t IA_frequency_clipping_cause; |
| 117 | uint64_t GT_frequency_clipping_cause; |
| 118 | uint64_t pkg_idle_exits; |
| 119 | uint64_t pkg_rtimes[CPU_RTIME_BINS]; |
| 120 | uint64_t pkg_itimes[CPU_ITIME_BINS]; |
| 121 | uint64_t mbus_delay_time; |
| 122 | uint64_t mint_delay_time; |
| 123 | uint32_t ncpus; |
| 124 | core_energy_stat_t cest[]; |
| 125 | } pkg_energy_statistics_t; |
| 126 | |
| 127 | |
| 128 | int |
| 129 | diagCall64(x86_saved_state_t * state) |
| 130 | { |
| 131 | uint64_t curpos, i, j; |
| 132 | uint64_t selector, data; |
| 133 | uint64_t currNap, durNap; |
| 134 | x86_saved_state64_t *regs; |
| 135 | boolean_t diagflag; |
| 136 | uint32_t rval = 0; |
| 137 | |
| 138 | assert(is_saved_state64(state)); |
| 139 | regs = saved_state64(state); |
| 140 | |
| 141 | diagflag = ((dgWork.dgFlags & enaDiagSCs) != 0); |
| 142 | selector = regs->rdi; |
| 143 | |
| 144 | switch (selector) { /* Select the routine */ |
| 145 | case dgRuptStat: /* Suck Interruption statistics */ |
| 146 | (void) ml_set_interrupts_enabled(TRUE); |
| 147 | data = regs->rsi; /* Get the number of processors */ |
| 148 | |
| 149 | if (data == 0) { /* If no location is specified for data, clear all |
| 150 | * counts |
| 151 | */ |
| 152 | for (i = 0; i < real_ncpus; i++) { /* Cycle through |
| 153 | * processors */ |
| 154 | for (j = 0; j < 256; j++) |
| 155 | cpu_data_ptr[i]->cpu_hwIntCnt[j] = 0; |
| 156 | } |
| 157 | |
| 158 | lastRuptClear = mach_absolute_time(); /* Get the time of clear */ |
| 159 | rval = 1; /* Normal return */ |
| 160 | (void) ml_set_interrupts_enabled(FALSE); |
| 161 | break; |
| 162 | } |
| 163 | |
| 164 | (void) copyout((char *) &real_ncpus, data, sizeof(real_ncpus)); /* Copy out number of |
| 165 | * processors */ |
| 166 | currNap = mach_absolute_time(); /* Get the time now */ |
| 167 | durNap = currNap - lastRuptClear; /* Get the last interval |
| 168 | * duration */ |
| 169 | if (durNap == 0) |
| 170 | durNap = 1; /* This is a very short time, make it |
| 171 | * bigger */ |
| 172 | |
| 173 | curpos = data + sizeof(real_ncpus); /* Point to the next |
| 174 | * available spot */ |
| 175 | |
| 176 | for (i = 0; i < real_ncpus; i++) { /* Move 'em all out */ |
| 177 | (void) copyout((char *) &durNap, curpos, 8); /* Copy out the time |
| 178 | * since last clear */ |
| 179 | (void) copyout((char *) &cpu_data_ptr[i]->cpu_hwIntCnt, curpos + 8, 256 * sizeof(uint32_t)); /* Copy out interrupt |
| 180 | * data for this |
| 181 | * processor */ |
| 182 | curpos = curpos + (256 * sizeof(uint32_t) + 8); /* Point to next out put |
| 183 | * slot */ |
| 184 | } |
| 185 | rval = 1; |
| 186 | (void) ml_set_interrupts_enabled(FALSE); |
| 187 | break; |
| 188 | |
| 189 | case dgPowerStat: |
| 190 | { |
| 191 | uint32_t c2l = 0, c2h = 0, c3l = 0, c3h = 0, c6l = 0, c6h = 0, c7l = 0, c7h = 0; |
| 192 | uint32_t pkg_unit_l = 0, pkg_unit_h = 0, pkg_ecl = 0, pkg_ech = 0; |
| 193 | |
| 194 | pkg_energy_statistics_t pkes; |
| 195 | core_energy_stat_t cest; |
| 196 | |
| 197 | bzero(&pkes, sizeof(pkes)); |
| 198 | bzero(&cest, sizeof(cest)); |
| 199 | |
| 200 | pkes.pkes_version = 1ULL; |
| 201 | rdmsr_carefully(MSR_IA32_PKG_C2_RESIDENCY, &c2l, &c2h); |
| 202 | rdmsr_carefully(MSR_IA32_PKG_C3_RESIDENCY, &c3l, &c3h); |
| 203 | rdmsr_carefully(MSR_IA32_PKG_C6_RESIDENCY, &c6l, &c6h); |
| 204 | rdmsr_carefully(MSR_IA32_PKG_C7_RESIDENCY, &c7l, &c7h); |
| 205 | |
| 206 | pkes.pkg_cres[0][0] = ((uint64_t)c2h << 32) | c2l; |
| 207 | pkes.pkg_cres[0][1] = ((uint64_t)c3h << 32) | c3l; |
| 208 | pkes.pkg_cres[0][2] = ((uint64_t)c6h << 32) | c6l; |
| 209 | pkes.pkg_cres[0][3] = ((uint64_t)c7h << 32) | c7l; |
| 210 | |
| 211 | uint64_t c8r = ~0ULL, c9r = ~0ULL, c10r = ~0ULL; |
| 212 | |
| 213 | rdmsr64_carefully(MSR_IA32_PKG_C8_RESIDENCY, &c8r); |
| 214 | rdmsr64_carefully(MSR_IA32_PKG_C9_RESIDENCY, &c9r); |
| 215 | rdmsr64_carefully(MSR_IA32_PKG_C10_RESIDENCY, &c10r); |
| 216 | |
| 217 | pkes.pkg_cres[0][4] = c8r; |
| 218 | pkes.pkg_cres[0][5] = c9r; |
| 219 | pkes.pkg_cres[0][6] = c10r; |
| 220 | |
| 221 | pkes.ddr_energy = ~0ULL; |
| 222 | rdmsr64_carefully(MSR_IA32_DDR_ENERGY_STATUS, &pkes.ddr_energy); |
| 223 | pkes.llc_flushed_cycles = ~0ULL; |
| 224 | rdmsr64_carefully(MSR_IA32_LLC_FLUSHED_RESIDENCY_TIMER, &pkes.llc_flushed_cycles); |
| 225 | |
| 226 | pkes.ring_ratio_instantaneous = ~0ULL; |
| 227 | rdmsr64_carefully(MSR_IA32_RING_PERF_STATUS, &pkes.ring_ratio_instantaneous); |
| 228 | |
| 229 | pkes.IA_frequency_clipping_cause = ~0ULL; |
| 230 | |
| 231 | uint32_t ia_perf_limits = MSR_IA32_IA_PERF_LIMIT_REASONS; |
| 232 | /* Should perhaps be a generic register map module for these |
| 233 | * registers with identical functionality that were renumbered. |
| 234 | */ |
| 235 | switch (cpuid_cpufamily()) { |
| 236 | case CPUFAMILY_INTEL_SKYLAKE: |
| 237 | case CPUFAMILY_INTEL_KABYLAKE: |
| 238 | ia_perf_limits = MSR_IA32_IA_PERF_LIMIT_REASONS_SKL; |
| 239 | break; |
| 240 | default: |
| 241 | break; |
| 242 | } |
| 243 | |
| 244 | rdmsr64_carefully(ia_perf_limits, &pkes.IA_frequency_clipping_cause); |
| 245 | |
| 246 | pkes.GT_frequency_clipping_cause = ~0ULL; |
| 247 | rdmsr64_carefully(MSR_IA32_GT_PERF_LIMIT_REASONS, &pkes.GT_frequency_clipping_cause); |
| 248 | |
| 249 | rdmsr_carefully(MSR_IA32_PKG_POWER_SKU_UNIT, &pkg_unit_l, &pkg_unit_h); |
| 250 | rdmsr_carefully(MSR_IA32_PKG_ENERGY_STATUS, &pkg_ecl, &pkg_ech); |
| 251 | pkes.pkg_power_unit = ((uint64_t)pkg_unit_h << 32) | pkg_unit_l; |
| 252 | pkes.pkg_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl; |
| 253 | |
| 254 | rdmsr_carefully(MSR_IA32_PP0_ENERGY_STATUS, &pkg_ecl, &pkg_ech); |
| 255 | pkes.pp0_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl; |
| 256 | |
| 257 | rdmsr_carefully(MSR_IA32_PP1_ENERGY_STATUS, &pkg_ecl, &pkg_ech); |
| 258 | pkes.pp1_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl; |
| 259 | |
| 260 | pkes.pkg_idle_exits = current_cpu_datap()->lcpu.package->package_idle_exits; |
| 261 | pkes.ncpus = real_ncpus; |
| 262 | |
| 263 | (void) ml_set_interrupts_enabled(TRUE); |
| 264 | |
| 265 | copyout(&pkes, regs->rsi, sizeof(pkes)); |
| 266 | curpos = regs->rsi + sizeof(pkes); |
| 267 | |
| 268 | mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_powerstats, NULL); |
| 269 | |
| 270 | for (i = 0; i < real_ncpus; i++) { |
| 271 | (void) ml_set_interrupts_enabled(FALSE); |
| 272 | |
| 273 | cest.caperf = cpu_data_ptr[i]->cpu_aperf; |
| 274 | cest.cmperf = cpu_data_ptr[i]->cpu_mperf; |
| 275 | cest.ccres[0] = cpu_data_ptr[i]->cpu_c3res; |
| 276 | cest.ccres[1] = cpu_data_ptr[i]->cpu_c6res; |
| 277 | cest.ccres[2] = cpu_data_ptr[i]->cpu_c7res; |
| 278 | |
| 279 | bcopy(&cpu_data_ptr[i]->cpu_rtimes[0], &cest.crtimes[0], sizeof(cest.crtimes)); |
| 280 | bcopy(&cpu_data_ptr[i]->cpu_itimes[0], &cest.citimes[0], sizeof(cest.citimes)); |
| 281 | |
| 282 | cest.citime_total = cpu_data_ptr[i]->cpu_itime_total; |
| 283 | cest.crtime_total = cpu_data_ptr[i]->cpu_rtime_total; |
| 284 | cest.cpu_idle_exits = cpu_data_ptr[i]->cpu_idle_exits; |
| 285 | #if MONOTONIC |
| 286 | cest.cpu_insns = cpu_data_ptr[i]->cpu_monotonic.mtc_counts[MT_CORE_INSTRS]; |
| 287 | cest.cpu_ucc = cpu_data_ptr[i]->cpu_monotonic.mtc_counts[MT_CORE_CYCLES]; |
| 288 | cest.cpu_urc = cpu_data_ptr[i]->cpu_monotonic.mtc_counts[MT_CORE_REFCYCLES]; |
| 289 | #endif /* MONOTONIC */ |
| 290 | #if DIAG_ALL_PMCS |
| 291 | bcopy(&cpu_data_ptr[i]->cpu_gpmcs[0], &cest.gpmcs[0], sizeof(cest.gpmcs)); |
| 292 | #endif /* DIAG_ALL_PMCS */ |
| 293 | (void) ml_set_interrupts_enabled(TRUE); |
| 294 | |
| 295 | copyout(&cest, curpos, sizeof(cest)); |
| 296 | curpos += sizeof(cest); |
| 297 | } |
| 298 | rval = 1; |
| 299 | (void) ml_set_interrupts_enabled(FALSE); |
| 300 | } |
| 301 | break; |
| 302 | case dgEnaPMC: |
| 303 | { |
| 304 | boolean_t enable = TRUE; |
| 305 | uint32_t cpuinfo[4]; |
| 306 | /* Require architectural PMC v2 or higher, corresponding to |
| 307 | * Merom+, or equivalent virtualised facility. |
| 308 | */ |
| 309 | do_cpuid(0xA, &cpuinfo[0]); |
| 310 | if ((cpuinfo[0] & 0xFF) >= 2) { |
| 311 | mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_pmc_control, &enable); |
| 312 | diag_pmc_enabled = TRUE; |
| 313 | } |
| 314 | rval = 1; |
| 315 | } |
| 316 | break; |
| 317 | #if DEVELOPMENT || DEBUG |
| 318 | case dgGzallocTest: |
| 319 | { |
| 320 | (void) ml_set_interrupts_enabled(TRUE); |
| 321 | if (diagflag) { |
| 322 | unsigned *ptr = (unsigned *)kalloc(1024); |
| 323 | kfree(ptr, 1024); |
| 324 | *ptr = 0x42; |
| 325 | } |
| 326 | (void) ml_set_interrupts_enabled(FALSE); |
| 327 | } |
| 328 | break; |
| 329 | #endif |
| 330 | |
| 331 | #if DEVELOPMENT || DEBUG |
| 332 | case dgPermCheck: |
| 333 | { |
| 334 | (void) ml_set_interrupts_enabled(TRUE); |
| 335 | if (diagflag) |
| 336 | rval = pmap_permissions_verify(kernel_pmap, kernel_map, 0, ~0ULL); |
| 337 | (void) ml_set_interrupts_enabled(FALSE); |
| 338 | } |
| 339 | break; |
| 340 | #endif /* DEVELOPMENT || DEBUG */ |
| 341 | default: /* Handle invalid ones */ |
| 342 | rval = 0; /* Return an exception */ |
| 343 | } |
| 344 | |
| 345 | regs->rax = rval; |
| 346 | |
| 347 | assert(ml_get_interrupts_enabled() == FALSE); |
| 348 | return rval; |
| 349 | } |
| 350 | |
| 351 | void cpu_powerstats(__unused void *arg) { |
| 352 | cpu_data_t *cdp = current_cpu_datap(); |
| 353 | __unused int cnum = cdp->cpu_number; |
| 354 | uint32_t cl = 0, ch = 0, mpl = 0, mph = 0, apl = 0, aph = 0; |
| 355 | |
| 356 | rdmsr_carefully(MSR_IA32_MPERF, &mpl, &mph); |
| 357 | rdmsr_carefully(MSR_IA32_APERF, &apl, &aph); |
| 358 | |
| 359 | cdp->cpu_mperf = ((uint64_t)mph << 32) | mpl; |
| 360 | cdp->cpu_aperf = ((uint64_t)aph << 32) | apl; |
| 361 | |
| 362 | uint64_t ctime = mach_absolute_time(); |
| 363 | cdp->cpu_rtime_total += ctime - cdp->cpu_ixtime; |
| 364 | cdp->cpu_ixtime = ctime; |
| 365 | |
| 366 | rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch); |
| 367 | cdp->cpu_c3res = ((uint64_t)ch << 32) | cl; |
| 368 | |
| 369 | rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch); |
| 370 | cdp->cpu_c6res = ((uint64_t)ch << 32) | cl; |
| 371 | |
| 372 | rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch); |
| 373 | cdp->cpu_c7res = ((uint64_t)ch << 32) | cl; |
| 374 | |
| 375 | if (diag_pmc_enabled) { |
| 376 | #if MONOTONIC |
| 377 | mt_update_fixed_counts(); |
| 378 | #else /* MONOTONIC */ |
| 379 | uint64_t insns = read_pmc(FIXED_PMC0); |
| 380 | uint64_t ucc = read_pmc(FIXED_PMC1); |
| 381 | uint64_t urc = read_pmc(FIXED_PMC2); |
| 382 | #endif /* !MONOTONIC */ |
| 383 | #if DIAG_ALL_PMCS |
| 384 | int i; |
| 385 | |
| 386 | for (i = 0; i < 4; i++) { |
| 387 | cdp->cpu_gpmcs[i] = read_pmc(i); |
| 388 | } |
| 389 | #endif /* DIAG_ALL_PMCS */ |
| 390 | #if !MONOTONIC |
| 391 | cdp->cpu_cur_insns = insns; |
| 392 | cdp->cpu_cur_ucc = ucc; |
| 393 | cdp->cpu_cur_urc = urc; |
| 394 | #endif /* !MONOTONIC */ |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | void cpu_pmc_control(void *enablep) { |
| 399 | #if !MONOTONIC |
| 400 | boolean_t enable = *(boolean_t *)enablep; |
| 401 | cpu_data_t *cdp = current_cpu_datap(); |
| 402 | |
| 403 | if (enable) { |
| 404 | wrmsr64(0x38F, 0x70000000FULL); |
| 405 | wrmsr64(0x38D, 0x333); |
| 406 | set_cr4(get_cr4() | CR4_PCE); |
| 407 | |
| 408 | } else { |
| 409 | wrmsr64(0x38F, 0); |
| 410 | wrmsr64(0x38D, 0); |
| 411 | set_cr4((get_cr4() & ~CR4_PCE)); |
| 412 | } |
| 413 | cdp->cpu_fixed_pmcs_enabled = enable; |
| 414 | #else /* !MONOTONIC */ |
| 415 | #pragma unused(enablep) |
| 416 | #endif /* MONOTONIC */ |
| 417 | } |
| 418 | |