| 1 | /* |
| 2 | * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #ifdef __x86_64__ |
| 30 | #include <i386/mp.h> |
| 31 | #include <i386/cpu_data.h> |
| 32 | #include <i386/bit_routines.h> |
| 33 | #include <i386/machine_cpu.h> |
| 34 | #include <i386/machine_routines.h> |
| 35 | #include <i386/misc_protos.h> |
| 36 | #include <i386/serial_io.h> |
| 37 | #endif /* __x86_64__ */ |
| 38 | |
| 39 | #include <libkern/OSAtomic.h> |
| 40 | #include <vm/vm_kern.h> |
| 41 | #include <vm/vm_map.h> |
| 42 | #include <console/video_console.h> |
| 43 | #include <console/serial_protos.h> |
| 44 | #include <kern/kalloc.h> |
| 45 | #include <kern/thread.h> |
| 46 | #include <kern/cpu_data.h> |
| 47 | #include <libkern/section_keywords.h> |
| 48 | |
| 49 | #if __arm__ || __arm64__ |
| 50 | #include <machine/machine_routines.h> |
| 51 | #include <arm/cpu_data_internal.h> |
| 52 | #endif |
| 53 | |
| 54 | #ifdef CONFIG_XNUPOST |
| 55 | #include <tests/xnupost.h> |
| 56 | kern_return_t console_serial_test(void); |
| 57 | kern_return_t console_serial_alloc_rel_tests(void); |
| 58 | kern_return_t console_serial_parallel_log_tests(void); |
| 59 | #define MAX_CPU_SLOTS (MAX_CPUS + 2) |
| 60 | #endif |
| 61 | |
| 62 | #ifndef MAX_CPU_SLOTS |
| 63 | #define MAX_CPU_SLOTS (MAX_CPUS) |
| 64 | #endif |
| 65 | |
| 66 | static struct { |
| 67 | char * buffer; |
| 68 | int len; |
| 69 | int used; |
| 70 | char * write_ptr; |
| 71 | char * read_ptr; |
| 72 | decl_simple_lock_data(, read_lock); |
| 73 | decl_simple_lock_data(, write_lock); |
| 74 | } console_ring; |
| 75 | |
| 76 | hw_lock_data_t cnputc_lock; |
| 77 | static volatile uint32_t console_output = 0; |
| 78 | |
| 79 | /* |
| 80 | * New allocation mechanism for console buffers |
| 81 | * Total allocation: 1 * PAGE_SIZE |
| 82 | * - Each cpu gets CPU_CONS_BUF_SIZE buffer |
| 83 | * - Kernel wide console ring gets PAGE_SIZE - MAX_CPU_SLOTS * CPU_CONS_BUF_SIZE |
| 84 | * |
| 85 | * At the return from console_init() the memory is setup as follows: |
| 86 | * +----------------------------+-------------+-------------+-------------+-------------+ |
| 87 | * |console ring buffer---------|f2eec075-----|f2eec075-----|f2eec075-----|f2eec075-----| |
| 88 | * +----------------------------+-------------+-------------+-------------+-------------+ |
| 89 | * Each cpu allocation will find the first (f2eec075) and use that buffer. |
| 90 | * |
| 91 | */ |
| 92 | |
| 93 | #define CPU_CONS_BUF_SIZE 256 |
| 94 | #define CPU_BUF_FREE_HEX 0xf2eec075 |
| 95 | |
| 96 | #define KERN_CONSOLE_BUF_SIZE vm_map_round_page(CPU_CONS_BUF_SIZE *(MAX_CPU_SLOTS + 1), PAGE_SIZE - 1) |
| 97 | #define KERN_CONSOLE_RING_SIZE (KERN_CONSOLE_BUF_SIZE - (CPU_CONS_BUF_SIZE * MAX_CPU_SLOTS)) |
| 98 | |
| 99 | /* |
| 100 | * A serial line running at 115200 bps can output ~11.5 characters per millisecond. |
| 101 | * Synchronous serial logging with preemption+interrupts disabled fundamentally prevents us |
| 102 | * from hitting expected scheduling deadlines, but we can at least tone it down a bit. |
| 103 | * |
| 104 | * TODO: IOLog should use asynchronous serial logging instead of the synchronous serial console. (26555148) |
| 105 | * |
| 106 | * Keep interrupt disabled periods shorter than 1ms |
| 107 | */ |
| 108 | #define MAX_INT_DISABLED_FLUSH_SIZE 8 |
| 109 | #define MAX_TOTAL_FLUSH_SIZE (MAX(2, MAX_CPU_SLOTS) * CPU_CONS_BUF_SIZE) |
| 110 | |
| 111 | typedef struct console_buf { |
| 112 | char * buf_base; |
| 113 | char * buf_end; |
| 114 | char * buf_ptr; |
| 115 | #define CPU_BUFFER_LEN (CPU_CONS_BUF_SIZE - 3 * (sizeof(char *))) |
| 116 | char buf[CPU_BUFFER_LEN]; |
| 117 | } console_buf_t; |
| 118 | |
| 119 | extern int serial_getc(void); |
| 120 | extern void serial_putc(char); |
| 121 | |
| 122 | static void _serial_putc(int, int, int); |
| 123 | |
| 124 | SECURITY_READ_ONLY_EARLY(struct console_ops) cons_ops[] = { |
| 125 | { |
| 126 | .putc = _serial_putc, .getc = _serial_getc, |
| 127 | }, |
| 128 | { |
| 129 | .putc = vcputc, .getc = vcgetc, |
| 130 | }, |
| 131 | }; |
| 132 | |
| 133 | SECURITY_READ_ONLY_EARLY(uint32_t) nconsops = (sizeof cons_ops / sizeof cons_ops[0]); |
| 134 | |
| 135 | uint32_t cons_ops_index = VC_CONS_OPS; |
| 136 | |
| 137 | #if defined(__x86_64__) || defined(__arm__) |
| 138 | // NMI static variables |
| 139 | #define NMI_STRING_SIZE 32 |
| 140 | char nmi_string[NMI_STRING_SIZE] = "afDIGHr84A84jh19Kphgp428DNPdnapq" ; |
| 141 | static int nmi_counter = 0; |
| 142 | #endif /* __arm__ */ |
| 143 | |
| 144 | static bool console_suspended = false; |
| 145 | |
| 146 | /* Wrapper for ml_set_interrupts_enabled */ |
| 147 | static void |
| 148 | console_restore_interrupts_state(boolean_t state) |
| 149 | { |
| 150 | #if INTERRUPT_MASKED_DEBUG |
| 151 | /* |
| 152 | * Serial console holds interrupts disabled for far too long |
| 153 | * and would trip the spin-debugger. If we are about to reenable |
| 154 | * interrupts then clear the timer and avoid panicking on the delay. |
| 155 | * Otherwise, let the code that printed with interrupt disabled |
| 156 | * take the panic when it reenables interrupts. |
| 157 | * Hopefully one day this is fixed so that this workaround is unnecessary. |
| 158 | */ |
| 159 | if (state == TRUE) |
| 160 | ml_spin_debug_clear_self(); |
| 161 | #endif /* INTERRUPT_MASKED_DEBUG */ |
| 162 | ml_set_interrupts_enabled(state); |
| 163 | } |
| 164 | |
| 165 | static void |
| 166 | console_ring_lock_init(void) |
| 167 | { |
| 168 | simple_lock_init(&console_ring.read_lock, 0); |
| 169 | simple_lock_init(&console_ring.write_lock, 0); |
| 170 | } |
| 171 | |
| 172 | void |
| 173 | console_init(void) |
| 174 | { |
| 175 | int ret, i; |
| 176 | uint32_t * p; |
| 177 | |
| 178 | if (!OSCompareAndSwap(0, KERN_CONSOLE_RING_SIZE, (UInt32 *)&console_ring.len)) |
| 179 | return; |
| 180 | |
| 181 | assert(console_ring.len > 0); |
| 182 | |
| 183 | ret = kmem_alloc(kernel_map, (vm_offset_t *)&console_ring.buffer, KERN_CONSOLE_BUF_SIZE, VM_KERN_MEMORY_OSFMK); |
| 184 | if (ret != KERN_SUCCESS) { |
| 185 | panic("console_ring_init() failed to allocate ring buffer, error %d\n" , ret); |
| 186 | } |
| 187 | |
| 188 | /* setup memory for per cpu console buffers */ |
| 189 | for (i = 0; i < MAX_CPU_SLOTS; i++) { |
| 190 | p = (uint32_t *)((uintptr_t)console_ring.buffer + console_ring.len + (i * sizeof(console_buf_t))); |
| 191 | *p = CPU_BUF_FREE_HEX; |
| 192 | } |
| 193 | |
| 194 | console_ring.used = 0; |
| 195 | console_ring.read_ptr = console_ring.buffer; |
| 196 | console_ring.write_ptr = console_ring.buffer; |
| 197 | console_ring_lock_init(); |
| 198 | hw_lock_init(&cnputc_lock); |
| 199 | } |
| 200 | |
| 201 | void * |
| 202 | console_cpu_alloc(__unused boolean_t boot_processor) |
| 203 | { |
| 204 | console_buf_t * cbp; |
| 205 | int i; |
| 206 | uint32_t * p = NULL; |
| 207 | |
| 208 | console_init(); |
| 209 | assert(console_ring.buffer != NULL); |
| 210 | |
| 211 | /* select the next slot from the per cpu buffers at end of console_ring.buffer */ |
| 212 | for (i = 0; i < MAX_CPU_SLOTS; i++) { |
| 213 | p = (uint32_t *)((uintptr_t)console_ring.buffer + console_ring.len + (i * sizeof(console_buf_t))); |
| 214 | if (OSCompareAndSwap(CPU_BUF_FREE_HEX, 0, (UInt32 *)p)) |
| 215 | break; |
| 216 | } |
| 217 | assert(i < MAX_CPU_SLOTS); |
| 218 | |
| 219 | cbp = (console_buf_t *)(uintptr_t)p; |
| 220 | if ((uintptr_t)cbp >= (uintptr_t)console_ring.buffer + KERN_CONSOLE_BUF_SIZE) { |
| 221 | printf("console_cpu_alloc() failed to allocate cpu buffer\n" ); |
| 222 | return NULL; |
| 223 | } |
| 224 | |
| 225 | cbp->buf_base = (char *)&cbp->buf; |
| 226 | cbp->buf_ptr = cbp->buf_base; |
| 227 | cbp->buf_end = cbp->buf_base + CPU_BUFFER_LEN; |
| 228 | return (void *)cbp; |
| 229 | } |
| 230 | |
| 231 | void |
| 232 | console_cpu_free(void * buf) |
| 233 | { |
| 234 | assert((uintptr_t)buf > (uintptr_t)console_ring.buffer); |
| 235 | assert((uintptr_t)buf < (uintptr_t)console_ring.buffer + KERN_CONSOLE_BUF_SIZE); |
| 236 | if (buf != NULL) |
| 237 | *(uint32_t *)buf = CPU_BUF_FREE_HEX; |
| 238 | } |
| 239 | |
| 240 | static inline int |
| 241 | console_ring_space(void) |
| 242 | { |
| 243 | return console_ring.len - console_ring.used; |
| 244 | } |
| 245 | |
| 246 | static boolean_t |
| 247 | console_ring_put(char ch) |
| 248 | { |
| 249 | if (console_ring.used < console_ring.len) { |
| 250 | console_ring.used++; |
| 251 | *console_ring.write_ptr++ = ch; |
| 252 | if (console_ring.write_ptr - console_ring.buffer == console_ring.len) |
| 253 | console_ring.write_ptr = console_ring.buffer; |
| 254 | return TRUE; |
| 255 | } else { |
| 256 | return FALSE; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | static inline boolean_t |
| 261 | cpu_buffer_put(console_buf_t * cbp, char ch) |
| 262 | { |
| 263 | if (ch != '\0' && cbp->buf_ptr < cbp->buf_end) { |
| 264 | *(cbp->buf_ptr++) = ch; |
| 265 | return TRUE; |
| 266 | } else { |
| 267 | return FALSE; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | static inline int |
| 272 | cpu_buffer_size(console_buf_t * cbp) |
| 273 | { |
| 274 | return (int)(cbp->buf_ptr - cbp->buf_base); |
| 275 | } |
| 276 | |
| 277 | static inline void |
| 278 | _cnputs(char * c, int size) |
| 279 | { |
| 280 | /* The console device output routines are assumed to be |
| 281 | * non-reentrant. |
| 282 | */ |
| 283 | #ifdef __x86_64__ |
| 284 | uint32_t lock_timeout_ticks = UINT32_MAX; |
| 285 | #else |
| 286 | uint32_t lock_timeout_ticks = LockTimeOut; |
| 287 | #endif |
| 288 | |
| 289 | mp_disable_preemption(); |
| 290 | if (!hw_lock_to(&cnputc_lock, lock_timeout_ticks)) { |
| 291 | /* If we timed out on the lock, and we're in the debugger, |
| 292 | * copy lock data for debugging and break the lock. |
| 293 | */ |
| 294 | hw_lock_data_t _shadow_lock; |
| 295 | memcpy(&_shadow_lock, &cnputc_lock, sizeof(cnputc_lock)); |
| 296 | if (kernel_debugger_entry_count) { |
| 297 | /* Since hw_lock_to takes a pre-emption count...*/ |
| 298 | mp_enable_preemption(); |
| 299 | hw_lock_init(&cnputc_lock); |
| 300 | hw_lock_lock(&cnputc_lock); |
| 301 | } else { |
| 302 | panic("Lock acquire timeout in _cnputs() lock=%p, lock owner thread=0x%lx, current_thread: %p\n" , &_shadow_lock, |
| 303 | _shadow_lock.lock_data, current_thread()); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | while (size-- > 0) { |
| 308 | cons_ops[cons_ops_index].putc(0, 0, *c); |
| 309 | if (*c == '\n') |
| 310 | cons_ops[cons_ops_index].putc(0, 0, '\r'); |
| 311 | c++; |
| 312 | } |
| 313 | |
| 314 | hw_lock_unlock(&cnputc_lock); |
| 315 | mp_enable_preemption(); |
| 316 | } |
| 317 | |
| 318 | void |
| 319 | cnputc_unbuffered(char c) |
| 320 | { |
| 321 | _cnputs(&c, 1); |
| 322 | } |
| 323 | |
| 324 | |
| 325 | void cnputcusr(char c) |
| 326 | { |
| 327 | cnputsusr(&c, 1); |
| 328 | } |
| 329 | |
| 330 | void |
| 331 | cnputsusr(char *s, int size) |
| 332 | { |
| 333 | |
| 334 | if (size > 1) { |
| 335 | console_write(s, size); |
| 336 | return; |
| 337 | } |
| 338 | |
| 339 | boolean_t state; |
| 340 | |
| 341 | /* Spin (with pre-emption enabled) waiting for console_ring_try_empty() |
| 342 | * to complete output. There is a small window here where we could |
| 343 | * end up with a stale value of console_output, but it's unlikely, |
| 344 | * and _cnputs(), which outputs to the console device, is internally |
| 345 | * synchronized. There's something of a conflict between the |
| 346 | * character-at-a-time (with pre-emption enabled) unbuffered |
| 347 | * output model here, and the buffered output from cnputc(), |
| 348 | * whose consumers include printf() ( which outputs a sequence |
| 349 | * with pre-emption disabled, and should be safe to call with |
| 350 | * interrupts off); we don't want to disable pre-emption indefinitely |
| 351 | * here, and spinlocks and mutexes are inappropriate. |
| 352 | */ |
| 353 | while (console_output != 0) { |
| 354 | delay(1); |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * We disable interrupts to avoid issues caused by rendevous IPIs |
| 359 | * and an interruptible core holding the lock while an uninterruptible |
| 360 | * core wants it. Stackshot is the prime example of this. |
| 361 | */ |
| 362 | state = ml_set_interrupts_enabled(FALSE); |
| 363 | _cnputs(s, 1); |
| 364 | console_restore_interrupts_state(state); |
| 365 | } |
| 366 | |
| 367 | static void |
| 368 | console_ring_try_empty(void) |
| 369 | { |
| 370 | #ifdef __x86_64__ |
| 371 | boolean_t handle_tlb_flushes = (ml_get_interrupts_enabled() == FALSE); |
| 372 | #endif /* __x86_64__ */ |
| 373 | |
| 374 | int nchars_out = 0; |
| 375 | int total_chars_out = 0; |
| 376 | int size_before_wrap = 0; |
| 377 | |
| 378 | do { |
| 379 | #ifdef __x86_64__ |
| 380 | if (handle_tlb_flushes) |
| 381 | handle_pending_TLB_flushes(); |
| 382 | #endif /* __x86_64__ */ |
| 383 | |
| 384 | /* |
| 385 | * Try to get the read lock on the ring buffer to empty it. |
| 386 | * If this fails someone else is already emptying... |
| 387 | */ |
| 388 | if (!simple_lock_try(&console_ring.read_lock)) { |
| 389 | /* |
| 390 | * If multiple cores are spinning trying to empty the buffer, |
| 391 | * we may suffer lock starvation (get the read lock, but |
| 392 | * never the write lock, with other cores unable to get the |
| 393 | * read lock). As a result, insert a delay on failure, to |
| 394 | * let other cores have a turn. |
| 395 | */ |
| 396 | delay(1); |
| 397 | return; |
| 398 | } |
| 399 | |
| 400 | boolean_t state = ml_set_interrupts_enabled(FALSE); |
| 401 | |
| 402 | /* Indicate that we're in the process of writing a block of data to the console. */ |
| 403 | (void)hw_atomic_add(&console_output, 1); |
| 404 | |
| 405 | simple_lock_try_lock_loop(&console_ring.write_lock); |
| 406 | |
| 407 | /* try small chunk at a time, so we allow writes from other cpus into the buffer */ |
| 408 | nchars_out = MIN(console_ring.used, MAX_INT_DISABLED_FLUSH_SIZE); |
| 409 | |
| 410 | /* account for data to be read before wrap around */ |
| 411 | size_before_wrap = (int)((console_ring.buffer + console_ring.len) - console_ring.read_ptr); |
| 412 | if (nchars_out > size_before_wrap) |
| 413 | nchars_out = size_before_wrap; |
| 414 | |
| 415 | if (nchars_out > 0) { |
| 416 | _cnputs(console_ring.read_ptr, nchars_out); |
| 417 | console_ring.read_ptr = |
| 418 | console_ring.buffer + ((console_ring.read_ptr - console_ring.buffer + nchars_out) % console_ring.len); |
| 419 | console_ring.used -= nchars_out; |
| 420 | total_chars_out += nchars_out; |
| 421 | } |
| 422 | |
| 423 | simple_unlock(&console_ring.write_lock); |
| 424 | |
| 425 | (void)hw_atomic_sub(&console_output, 1); |
| 426 | |
| 427 | simple_unlock(&console_ring.read_lock); |
| 428 | |
| 429 | console_restore_interrupts_state(state); |
| 430 | |
| 431 | /* |
| 432 | * In case we end up being the console drain thread |
| 433 | * for far too long, break out. Except in panic/suspend cases |
| 434 | * where we should clear out full buffer. |
| 435 | */ |
| 436 | if (!kernel_debugger_entry_count && !console_suspended && (total_chars_out >= MAX_TOTAL_FLUSH_SIZE)) |
| 437 | break; |
| 438 | |
| 439 | } while (nchars_out > 0); |
| 440 | } |
| 441 | |
| 442 | |
| 443 | void |
| 444 | console_suspend() |
| 445 | { |
| 446 | console_suspended = true; |
| 447 | console_ring_try_empty(); |
| 448 | } |
| 449 | |
| 450 | void |
| 451 | console_resume() |
| 452 | { |
| 453 | console_suspended = false; |
| 454 | } |
| 455 | |
| 456 | void |
| 457 | console_write(char * str, int size) |
| 458 | { |
| 459 | console_init(); |
| 460 | int chunk_size = size; |
| 461 | int i = 0; |
| 462 | |
| 463 | if (size > console_ring.len) |
| 464 | chunk_size = CPU_CONS_BUF_SIZE; |
| 465 | |
| 466 | while (size > 0) { |
| 467 | boolean_t state = ml_set_interrupts_enabled(FALSE); |
| 468 | |
| 469 | simple_lock_try_lock_loop(&console_ring.write_lock); |
| 470 | while (chunk_size > console_ring_space()) { |
| 471 | simple_unlock(&console_ring.write_lock); |
| 472 | console_restore_interrupts_state(state); |
| 473 | |
| 474 | console_ring_try_empty(); |
| 475 | |
| 476 | state = ml_set_interrupts_enabled(FALSE); |
| 477 | simple_lock_try_lock_loop(&console_ring.write_lock); |
| 478 | } |
| 479 | |
| 480 | for (i = 0; i < chunk_size; i++) |
| 481 | console_ring_put(str[i]); |
| 482 | |
| 483 | str = &str[i]; |
| 484 | size -= chunk_size; |
| 485 | simple_unlock(&console_ring.write_lock); |
| 486 | console_restore_interrupts_state(state); |
| 487 | } |
| 488 | |
| 489 | console_ring_try_empty(); |
| 490 | } |
| 491 | |
| 492 | void |
| 493 | cnputc(char c) |
| 494 | { |
| 495 | console_buf_t * cbp; |
| 496 | cpu_data_t * cpu_data_p; |
| 497 | boolean_t state; |
| 498 | boolean_t needs_print = TRUE; |
| 499 | char * cp; |
| 500 | |
| 501 | restart: |
| 502 | mp_disable_preemption(); |
| 503 | cpu_data_p = current_cpu_datap(); |
| 504 | cbp = (console_buf_t *)cpu_data_p->cpu_console_buf; |
| 505 | if (console_suspended || cbp == NULL) { |
| 506 | mp_enable_preemption(); |
| 507 | /* Put directly if console ring is not initialized or we're heading into suspend */ |
| 508 | _cnputs(&c, 1); |
| 509 | return; |
| 510 | } |
| 511 | |
| 512 | #ifndef __x86_64__ |
| 513 | /* Is there a panic backtrace going on? */ |
| 514 | if (cpu_data_p->PAB_active) { |
| 515 | /* If another processor was in the process of emptying the |
| 516 | * console ring buffer when it received the panic backtrace |
| 517 | * signal, that processor will be spinning in DebugXCall() |
| 518 | * waiting for the panicking processor to finish printing |
| 519 | * the backtrace. But panicking processor will never |
| 520 | * be able to obtain the ring buffer lock since it is |
| 521 | * owned by a processor that's spinning in DebugXCall(). |
| 522 | * Blow away any locks that other processors may have on |
| 523 | * the console ring buffer so that the backtrace can |
| 524 | * complete. |
| 525 | */ |
| 526 | console_ring_lock_init(); |
| 527 | } |
| 528 | #endif /* __x86_64__ */ |
| 529 | |
| 530 | state = ml_set_interrupts_enabled(FALSE); |
| 531 | |
| 532 | /* |
| 533 | * add to stack buf |
| 534 | * If the cpu buffer is full, we'll flush, then try |
| 535 | * another put. If it fails a second time... screw |
| 536 | * it. |
| 537 | */ |
| 538 | if (needs_print && !cpu_buffer_put(cbp, c)) { |
| 539 | simple_lock_try_lock_loop(&console_ring.write_lock); |
| 540 | |
| 541 | if (cpu_buffer_size(cbp) > console_ring_space()) { |
| 542 | simple_unlock(&console_ring.write_lock); |
| 543 | console_restore_interrupts_state(state); |
| 544 | mp_enable_preemption(); |
| 545 | |
| 546 | console_ring_try_empty(); |
| 547 | goto restart; |
| 548 | } |
| 549 | |
| 550 | for (cp = cbp->buf_base; cp < cbp->buf_ptr; cp++) |
| 551 | console_ring_put(*cp); |
| 552 | cbp->buf_ptr = cbp->buf_base; |
| 553 | simple_unlock(&console_ring.write_lock); |
| 554 | |
| 555 | cpu_buffer_put(cbp, c); |
| 556 | } |
| 557 | |
| 558 | needs_print = FALSE; |
| 559 | |
| 560 | if (c != '\n') { |
| 561 | console_restore_interrupts_state(state); |
| 562 | mp_enable_preemption(); |
| 563 | return; |
| 564 | } |
| 565 | |
| 566 | /* We printed a newline, time to flush the CPU buffer to the global buffer */ |
| 567 | simple_lock_try_lock_loop(&console_ring.write_lock); |
| 568 | |
| 569 | /* |
| 570 | * Is there enough space in the shared ring buffer? |
| 571 | * Try to empty if not. |
| 572 | * Note, we want the entire local buffer to fit to |
| 573 | * avoid another cpu interjecting. |
| 574 | */ |
| 575 | |
| 576 | if (cpu_buffer_size(cbp) > console_ring_space()) { |
| 577 | simple_unlock(&console_ring.write_lock); |
| 578 | console_restore_interrupts_state(state); |
| 579 | mp_enable_preemption(); |
| 580 | |
| 581 | console_ring_try_empty(); |
| 582 | |
| 583 | goto restart; |
| 584 | } |
| 585 | |
| 586 | for (cp = cbp->buf_base; cp < cbp->buf_ptr; cp++) |
| 587 | console_ring_put(*cp); |
| 588 | |
| 589 | cbp->buf_ptr = cbp->buf_base; |
| 590 | simple_unlock(&console_ring.write_lock); |
| 591 | |
| 592 | console_restore_interrupts_state(state); |
| 593 | mp_enable_preemption(); |
| 594 | |
| 595 | console_ring_try_empty(); |
| 596 | |
| 597 | return; |
| 598 | } |
| 599 | |
| 600 | int |
| 601 | _serial_getc(__unused int a, __unused int b, boolean_t wait, __unused boolean_t raw) |
| 602 | { |
| 603 | int c; |
| 604 | do { |
| 605 | c = serial_getc(); |
| 606 | } while (wait && c < 0); |
| 607 | |
| 608 | #if defined(__x86_64__) || defined(__arm__) |
| 609 | // Check for the NMI string |
| 610 | if (c == nmi_string[nmi_counter]) { |
| 611 | nmi_counter++; |
| 612 | if (nmi_counter == NMI_STRING_SIZE) { |
| 613 | // We've got the NMI string, now do an NMI |
| 614 | Debugger("Automatic NMI" ); |
| 615 | nmi_counter = 0; |
| 616 | return '\n'; |
| 617 | } |
| 618 | } else if (c != -1) { |
| 619 | nmi_counter = 0; |
| 620 | } |
| 621 | #endif |
| 622 | |
| 623 | return c; |
| 624 | } |
| 625 | |
| 626 | static void |
| 627 | _serial_putc(__unused int a, __unused int b, int c) |
| 628 | { |
| 629 | serial_putc(c); |
| 630 | } |
| 631 | |
| 632 | int |
| 633 | cngetc(void) |
| 634 | { |
| 635 | return cons_ops[cons_ops_index].getc(0, 0, TRUE, FALSE); |
| 636 | } |
| 637 | |
| 638 | int |
| 639 | cnmaygetc(void) |
| 640 | { |
| 641 | return cons_ops[cons_ops_index].getc(0, 0, FALSE, FALSE); |
| 642 | } |
| 643 | |
| 644 | int |
| 645 | vcgetc(__unused int l, __unused int u, __unused boolean_t wait, __unused boolean_t raw) |
| 646 | { |
| 647 | char c; |
| 648 | |
| 649 | if (0 == (*PE_poll_input)(0, &c)) |
| 650 | return c; |
| 651 | else |
| 652 | return 0; |
| 653 | } |
| 654 | |
| 655 | #ifdef CONFIG_XNUPOST |
| 656 | static uint32_t cons_test_ops_count = 0; |
| 657 | |
| 658 | /* |
| 659 | * Try to do multiple cpu buffer allocs and free and intentionally |
| 660 | * allow for pre-emption. |
| 661 | */ |
| 662 | static void |
| 663 | alloc_free_func(void * arg, wait_result_t wres __unused) |
| 664 | { |
| 665 | console_buf_t * cbp = NULL; |
| 666 | int count = (int)arg; |
| 667 | |
| 668 | T_LOG("Doing %d iterations of console cpu alloc and free." , count); |
| 669 | |
| 670 | while (count-- > 0) { |
| 671 | (void)hw_atomic_add(&cons_test_ops_count, 1); |
| 672 | cbp = (console_buf_t *)console_cpu_alloc(0); |
| 673 | if (cbp == NULL) { |
| 674 | T_ASSERT_NOTNULL(cbp, "cpu allocation failed" ); |
| 675 | } |
| 676 | console_cpu_free(cbp); |
| 677 | cbp = NULL; |
| 678 | /* give chance to another thread to come in */ |
| 679 | delay(10); |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * Log to console by multiple methods - printf, unbuffered write, console_write() |
| 685 | */ |
| 686 | static void |
| 687 | log_to_console_func(void * arg __unused, wait_result_t wres __unused) |
| 688 | { |
| 689 | uint64_t thread_id = current_thread()->thread_id; |
| 690 | char somedata[10] = "123456789" ; |
| 691 | for (int i = 0; i < 26; i++) { |
| 692 | (void)hw_atomic_add(&cons_test_ops_count, 1); |
| 693 | printf(" thid: %llu printf iteration %d\n" , thread_id, i); |
| 694 | cnputc_unbuffered((char)('A' + i)); |
| 695 | cnputc_unbuffered('\n'); |
| 696 | console_write((char *)somedata, sizeof(somedata)); |
| 697 | delay(10); |
| 698 | } |
| 699 | printf("finished the log_to_console_func operations\n\n" ); |
| 700 | } |
| 701 | |
| 702 | kern_return_t |
| 703 | console_serial_parallel_log_tests(void) |
| 704 | { |
| 705 | thread_t thread; |
| 706 | kern_return_t kr; |
| 707 | cons_test_ops_count = 0; |
| 708 | |
| 709 | kr = kernel_thread_start(log_to_console_func, NULL, &thread); |
| 710 | T_ASSERT_EQ_INT(kr, KERN_SUCCESS, "kernel_thread_start returned successfully" ); |
| 711 | |
| 712 | delay(100); |
| 713 | |
| 714 | log_to_console_func(NULL, 0); |
| 715 | |
| 716 | /* wait until other thread has also finished */ |
| 717 | while (cons_test_ops_count < 52) { |
| 718 | delay(1000); |
| 719 | } |
| 720 | |
| 721 | thread_deallocate(thread); |
| 722 | T_LOG("parallel_logging tests is now complete. From this point forward we expect full lines\n" ); |
| 723 | return KERN_SUCCESS; |
| 724 | } |
| 725 | |
| 726 | kern_return_t |
| 727 | console_serial_alloc_rel_tests(void) |
| 728 | { |
| 729 | unsigned long i, free_buf_count = 0; |
| 730 | uint32_t * p; |
| 731 | console_buf_t * cbp; |
| 732 | thread_t thread; |
| 733 | kern_return_t kr; |
| 734 | |
| 735 | T_LOG("doing alloc/release tests" ); |
| 736 | |
| 737 | for (i = 0; i < MAX_CPU_SLOTS; i++) { |
| 738 | p = (uint32_t *)((uintptr_t)console_ring.buffer + console_ring.len + (i * sizeof(console_buf_t))); |
| 739 | cbp = (console_buf_t *)(void *)p; |
| 740 | /* p should either be allocated cpu buffer or have CPU_BUF_FREE_HEX in it */ |
| 741 | T_ASSERT(*p == CPU_BUF_FREE_HEX || cbp->buf_base == &cbp->buf[0], "" ); |
| 742 | if (*p == CPU_BUF_FREE_HEX) { |
| 743 | free_buf_count++; |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | T_ASSERT_GE_ULONG(free_buf_count, 2, "At least 2 buffers should be free" ); |
| 748 | cons_test_ops_count = 0; |
| 749 | |
| 750 | kr = kernel_thread_start(alloc_free_func, (void *)1000, &thread); |
| 751 | T_ASSERT_EQ_INT(kr, KERN_SUCCESS, "kernel_thread_start returned successfully" ); |
| 752 | |
| 753 | /* yeild cpu to give other thread chance to get on-core */ |
| 754 | delay(100); |
| 755 | |
| 756 | alloc_free_func((void *)1000, 0); |
| 757 | |
| 758 | /* wait until other thread finishes its tasks */ |
| 759 | while (cons_test_ops_count < 2000) { |
| 760 | delay(1000); |
| 761 | } |
| 762 | |
| 763 | thread_deallocate(thread); |
| 764 | /* verify again that atleast 2 slots are free */ |
| 765 | free_buf_count = 0; |
| 766 | for (i = 0; i < MAX_CPU_SLOTS; i++) { |
| 767 | p = (uint32_t *)((uintptr_t)console_ring.buffer + console_ring.len + (i * sizeof(console_buf_t))); |
| 768 | cbp = (console_buf_t *)(void *)p; |
| 769 | /* p should either be allocated cpu buffer or have CPU_BUF_FREE_HEX in it */ |
| 770 | T_ASSERT(*p == CPU_BUF_FREE_HEX || cbp->buf_base == &cbp->buf[0], "" ); |
| 771 | if (*p == CPU_BUF_FREE_HEX) { |
| 772 | free_buf_count++; |
| 773 | } |
| 774 | } |
| 775 | T_ASSERT_GE_ULONG(free_buf_count, 2, "At least 2 buffers should be free after alloc free tests" ); |
| 776 | |
| 777 | return KERN_SUCCESS; |
| 778 | } |
| 779 | |
| 780 | kern_return_t |
| 781 | console_serial_test(void) |
| 782 | { |
| 783 | unsigned long i; |
| 784 | char buffer[CPU_BUFFER_LEN]; |
| 785 | uint32_t * p; |
| 786 | console_buf_t * cbp; |
| 787 | |
| 788 | T_LOG("Checking console_ring status." ); |
| 789 | T_ASSERT_EQ_INT(console_ring.len, KERN_CONSOLE_RING_SIZE, "Console ring size is not correct." ); |
| 790 | T_ASSERT_GT_INT(KERN_CONSOLE_BUF_SIZE, KERN_CONSOLE_RING_SIZE, "kernel console buffer size is < allocation." ); |
| 791 | |
| 792 | /* select the next slot from the per cpu buffers at end of console_ring.buffer */ |
| 793 | for (i = 0; i < MAX_CPU_SLOTS; i++) { |
| 794 | p = (uint32_t *)((uintptr_t)console_ring.buffer + console_ring.len + (i * sizeof(console_buf_t))); |
| 795 | cbp = (console_buf_t *)(void *)p; |
| 796 | /* p should either be allocated cpu buffer or have CPU_BUF_FREE_HEX in it */ |
| 797 | T_ASSERT(*p == CPU_BUF_FREE_HEX || cbp->buf_base == &cbp->buf[0], "verified initialization of cpu buffers p=%p" , (void *)p); |
| 798 | } |
| 799 | |
| 800 | /* setup buffer to be chars */ |
| 801 | for (i = 0; i < CPU_BUFFER_LEN; i++) { |
| 802 | buffer[i] = (char)('0' + (i % 10)); |
| 803 | } |
| 804 | buffer[CPU_BUFFER_LEN - 1] = '\0'; |
| 805 | |
| 806 | T_LOG("Printing %d char string to serial one char at a time." , CPU_BUFFER_LEN); |
| 807 | for (i = 0; i < CPU_BUFFER_LEN; i++) { |
| 808 | printf("%c" , buffer[i]); |
| 809 | } |
| 810 | printf("End\n" ); |
| 811 | T_LOG("Printing %d char string to serial as a whole" , CPU_BUFFER_LEN); |
| 812 | printf("%s\n" , buffer); |
| 813 | |
| 814 | T_LOG("Using console_write call repeatedly for 100 iterations" ); |
| 815 | for (i = 0; i < 100; i++) { |
| 816 | console_write(&buffer[0], 14); |
| 817 | if ((i % 6) == 0) |
| 818 | printf("\n" ); |
| 819 | } |
| 820 | printf("\n" ); |
| 821 | |
| 822 | T_LOG("Using T_LOG to print buffer %s" , buffer); |
| 823 | return KERN_SUCCESS; |
| 824 | } |
| 825 | #endif |
| 826 | |