| 1 | /* |
| 2 | * Copyright (c) 2008 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <string.h> |
| 29 | #include <mach-o/loader.h> |
| 30 | #include <sys/types.h> |
| 31 | |
| 32 | #if KERNEL |
| 33 | #ifdef MACH_ASSERT |
| 34 | #undef MACH_ASSERT |
| 35 | #endif |
| 36 | #define MACH_ASSERT 1 |
| 37 | #include <kern/assert.h> |
| 38 | #else |
| 39 | #include <assert.h> |
| 40 | #endif |
| 41 | |
| 42 | #define DEBUG_ASSERT_COMPONENT_NAME_STRING "kxld" |
| 43 | #include <AssertMacros.h> |
| 44 | |
| 45 | #include "kxld_demangle.h" |
| 46 | #include "kxld_dict.h" |
| 47 | #include "kxld_object.h" |
| 48 | #include "kxld_reloc.h" |
| 49 | #include "kxld_sect.h" |
| 50 | #include "kxld_sym.h" |
| 51 | #include "kxld_symtab.h" |
| 52 | #include "kxld_util.h" |
| 53 | #include "kxld_vtable.h" |
| 54 | |
| 55 | #define VTABLE_ENTRY_SIZE_32 4 |
| 56 | #define 2 |
| 57 | #define (VTABLE_HEADER_LEN_32 * VTABLE_ENTRY_SIZE_32) |
| 58 | |
| 59 | #define VTABLE_ENTRY_SIZE_64 8 |
| 60 | #define 2 |
| 61 | #define (VTABLE_HEADER_LEN_64 * VTABLE_ENTRY_SIZE_64) |
| 62 | |
| 63 | static void get_vtable_base_sizes(boolean_t is_32_bit, u_int *vtable_entry_size, |
| 64 | u_int *); |
| 65 | |
| 66 | static kern_return_t init_by_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
| 67 | const KXLDSect *sect, const KXLDRelocator *relocator); |
| 68 | |
| 69 | static kern_return_t init_by_entries_and_relocs(KXLDVTable *vtable, |
| 70 | const KXLDSym *vtable_sym, const KXLDRelocator *relocator, |
| 71 | const KXLDArray *relocs, const KXLDDict *defined_cxx_symbols); |
| 72 | |
| 73 | static kern_return_t init_by_entries(KXLDVTable *vtable, |
| 74 | const KXLDRelocator *relocator, const KXLDDict *defined_cxx_symbols); |
| 75 | |
| 76 | /******************************************************************************* |
| 77 | *******************************************************************************/ |
| 78 | kern_return_t |
| 79 | kxld_vtable_init(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
| 80 | const KXLDObject *object, const KXLDDict *defined_cxx_symbols) |
| 81 | { |
| 82 | kern_return_t rval = KERN_FAILURE; |
| 83 | const KXLDArray *extrelocs = NULL; |
| 84 | const KXLDRelocator *relocator = NULL; |
| 85 | const KXLDSect *vtable_sect = NULL; |
| 86 | char *demangled_name = NULL; |
| 87 | size_t demangled_length = 0; |
| 88 | |
| 89 | check(vtable); |
| 90 | check(vtable_sym); |
| 91 | check(object); |
| 92 | |
| 93 | relocator = kxld_object_get_relocator(object); |
| 94 | |
| 95 | vtable_sect = kxld_object_get_section_by_index(object, |
| 96 | vtable_sym->sectnum); |
| 97 | require_action(vtable_sect, finish, rval=KERN_FAILURE); |
| 98 | |
| 99 | vtable->name = vtable_sym->name; |
| 100 | vtable->vtable = vtable_sect->data + |
| 101 | kxld_sym_get_section_offset(vtable_sym, vtable_sect); |
| 102 | |
| 103 | if (kxld_object_is_linked(object)) { |
| 104 | rval = init_by_entries(vtable, relocator, defined_cxx_symbols); |
| 105 | require_noerr(rval, finish); |
| 106 | |
| 107 | vtable->is_patched = TRUE; |
| 108 | } else { |
| 109 | if (kxld_object_is_final_image(object)) { |
| 110 | extrelocs = kxld_object_get_extrelocs(object); |
| 111 | |
| 112 | require_action(extrelocs, finish, |
| 113 | rval=KERN_FAILURE; |
| 114 | kxld_log(kKxldLogPatching, kKxldLogErr, |
| 115 | kKxldLogMalformedVTable, |
| 116 | kxld_demangle(vtable->name, |
| 117 | &demangled_name, &demangled_length))); |
| 118 | |
| 119 | rval = init_by_entries_and_relocs(vtable, vtable_sym, |
| 120 | relocator, extrelocs, defined_cxx_symbols); |
| 121 | require_noerr(rval, finish); |
| 122 | } else { |
| 123 | |
| 124 | require_action(kxld_sect_get_num_relocs(vtable_sect) > 0, finish, |
| 125 | rval=KERN_FAILURE; |
| 126 | kxld_log(kKxldLogPatching, kKxldLogErr, |
| 127 | kKxldLogMalformedVTable, |
| 128 | kxld_demangle(vtable->name, |
| 129 | &demangled_name, &demangled_length))); |
| 130 | |
| 131 | rval = init_by_relocs(vtable, vtable_sym, vtable_sect, relocator); |
| 132 | require_noerr(rval, finish); |
| 133 | } |
| 134 | |
| 135 | vtable->is_patched = FALSE; |
| 136 | } |
| 137 | |
| 138 | rval = KERN_SUCCESS; |
| 139 | finish: |
| 140 | |
| 141 | if (demangled_name) kxld_free(demangled_name, demangled_length); |
| 142 | |
| 143 | return rval; |
| 144 | } |
| 145 | |
| 146 | /******************************************************************************* |
| 147 | *******************************************************************************/ |
| 148 | static void |
| 149 | get_vtable_base_sizes(boolean_t is_32_bit, u_int *vtable_entry_size, |
| 150 | u_int *) |
| 151 | { |
| 152 | check(vtable_entry_size); |
| 153 | check(vtable_header_size); |
| 154 | |
| 155 | if (is_32_bit) { |
| 156 | *vtable_entry_size = VTABLE_ENTRY_SIZE_32; |
| 157 | *vtable_header_size = VTABLE_HEADER_SIZE_32; |
| 158 | } else { |
| 159 | *vtable_entry_size = VTABLE_ENTRY_SIZE_64; |
| 160 | *vtable_header_size = VTABLE_HEADER_SIZE_64; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | /******************************************************************************* |
| 165 | * Initializes a vtable object by matching up relocation entries to the vtable's |
| 166 | * entries and finding the corresponding symbols. |
| 167 | *******************************************************************************/ |
| 168 | static kern_return_t |
| 169 | init_by_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
| 170 | const KXLDSect *sect, const KXLDRelocator *relocator) |
| 171 | { |
| 172 | kern_return_t rval = KERN_FAILURE; |
| 173 | KXLDReloc *reloc = NULL; |
| 174 | KXLDVTableEntry *entry = NULL; |
| 175 | KXLDSym *sym = NULL; |
| 176 | kxld_addr_t vtable_base_offset = 0; |
| 177 | kxld_addr_t entry_offset = 0; |
| 178 | u_int i = 0; |
| 179 | u_int nentries = 0; |
| 180 | u_int vtable_entry_size = 0; |
| 181 | u_int = 0; |
| 182 | u_int base_reloc_index = 0; |
| 183 | u_int reloc_index = 0; |
| 184 | |
| 185 | check(vtable); |
| 186 | check(vtable_sym); |
| 187 | check(sect); |
| 188 | check(relocator); |
| 189 | |
| 190 | /* Find the first entry past the vtable padding */ |
| 191 | |
| 192 | (void) get_vtable_base_sizes(relocator->is_32_bit, |
| 193 | &vtable_entry_size, &vtable_header_size); |
| 194 | |
| 195 | vtable_base_offset = kxld_sym_get_section_offset(vtable_sym, sect) + |
| 196 | vtable_header_size; |
| 197 | |
| 198 | /* Find the relocation entry at the start of the vtable */ |
| 199 | |
| 200 | rval = kxld_reloc_get_reloc_index_by_offset(§->relocs, |
| 201 | vtable_base_offset, &base_reloc_index); |
| 202 | require_noerr(rval, finish); |
| 203 | |
| 204 | /* Count the number of consecutive relocation entries to find the number of |
| 205 | * vtable entries. For some reason, the __TEXT,__const relocations are |
| 206 | * sorted in descending order, so we have to walk backwards. Also, make |
| 207 | * sure we don't run off the end of the section's relocs. |
| 208 | */ |
| 209 | |
| 210 | reloc_index = base_reloc_index; |
| 211 | entry_offset = vtable_base_offset; |
| 212 | reloc = kxld_array_get_item(§->relocs, reloc_index); |
| 213 | while (reloc->address == entry_offset) { |
| 214 | ++nentries; |
| 215 | if (!reloc_index) break; |
| 216 | |
| 217 | --reloc_index; |
| 218 | |
| 219 | reloc = kxld_array_get_item(§->relocs, reloc_index); |
| 220 | entry_offset += vtable_entry_size; |
| 221 | } |
| 222 | |
| 223 | /* Allocate the symbol index */ |
| 224 | |
| 225 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); |
| 226 | require_noerr(rval, finish); |
| 227 | |
| 228 | /* Find the symbols for each vtable entry */ |
| 229 | |
| 230 | for (i = 0; i < vtable->entries.nitems; ++i) { |
| 231 | reloc = kxld_array_get_item(§->relocs, base_reloc_index - i); |
| 232 | entry = kxld_array_get_item(&vtable->entries, i); |
| 233 | |
| 234 | /* If we can't find a symbol, it means it is a locally-defined, |
| 235 | * non-external symbol that has been stripped. We don't patch over |
| 236 | * locally-defined symbols, so we leave the symbol as NULL and just |
| 237 | * skip it. We won't be able to patch subclasses with this symbol, |
| 238 | * but there isn't much we can do about that. |
| 239 | */ |
| 240 | sym = kxld_reloc_get_symbol(relocator, reloc, sect->data); |
| 241 | |
| 242 | entry->unpatched.sym = sym; |
| 243 | entry->unpatched.reloc = reloc; |
| 244 | } |
| 245 | |
| 246 | rval = KERN_SUCCESS; |
| 247 | finish: |
| 248 | return rval; |
| 249 | } |
| 250 | |
| 251 | /******************************************************************************* |
| 252 | * Initializes a vtable object by reading the symbol values out of the vtable |
| 253 | * entries and performing reverse symbol lookups on those values. |
| 254 | *******************************************************************************/ |
| 255 | static kern_return_t |
| 256 | init_by_entries(KXLDVTable *vtable, const KXLDRelocator *relocator, |
| 257 | const KXLDDict *defined_cxx_symbols) |
| 258 | { |
| 259 | kern_return_t rval = KERN_FAILURE; |
| 260 | KXLDVTableEntry *tmpentry = NULL; |
| 261 | KXLDSym *sym = NULL; |
| 262 | kxld_addr_t entry_value = 0; |
| 263 | u_long entry_offset; |
| 264 | u_int vtable_entry_size = 0; |
| 265 | u_int = 0; |
| 266 | u_int nentries = 0; |
| 267 | u_int i = 0; |
| 268 | |
| 269 | check(vtable); |
| 270 | check(relocator); |
| 271 | |
| 272 | (void) get_vtable_base_sizes(relocator->is_32_bit, |
| 273 | &vtable_entry_size, &vtable_header_size); |
| 274 | |
| 275 | /* Count the number of entries (the vtable is null-terminated) */ |
| 276 | |
| 277 | entry_offset = vtable_header_size; |
| 278 | while (1) { |
| 279 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, |
| 280 | vtable->vtable, entry_offset); |
| 281 | if (!entry_value) break; |
| 282 | |
| 283 | entry_offset += vtable_entry_size; |
| 284 | ++nentries; |
| 285 | } |
| 286 | |
| 287 | /* Allocate the symbol index */ |
| 288 | |
| 289 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); |
| 290 | require_noerr(rval, finish); |
| 291 | |
| 292 | /* Look up the symbols for each entry */ |
| 293 | |
| 294 | for (i = 0, entry_offset = vtable_header_size; |
| 295 | i < vtable->entries.nitems; |
| 296 | ++i, entry_offset += vtable_entry_size) |
| 297 | { |
| 298 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, |
| 299 | vtable->vtable, entry_offset); |
| 300 | |
| 301 | /* If we can't find the symbol, it means that the virtual function was |
| 302 | * defined inline. There's not much I can do about this; it just means |
| 303 | * I can't patch this function. |
| 304 | */ |
| 305 | tmpentry = kxld_array_get_item(&vtable->entries, i); |
| 306 | sym = kxld_dict_find(defined_cxx_symbols, &entry_value); |
| 307 | |
| 308 | if (sym) { |
| 309 | tmpentry->patched.name = sym->name; |
| 310 | tmpentry->patched.addr = sym->link_addr; |
| 311 | } else { |
| 312 | tmpentry->patched.name = NULL; |
| 313 | tmpentry->patched.addr = 0; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | rval = KERN_SUCCESS; |
| 318 | finish: |
| 319 | return rval; |
| 320 | } |
| 321 | |
| 322 | /******************************************************************************* |
| 323 | * Initializes vtables by performing a reverse lookup on symbol values when |
| 324 | * they exist in the vtable entry, and by looking through a matching relocation |
| 325 | * entry when the vtable entry is NULL. |
| 326 | * |
| 327 | * Final linked images require this hybrid vtable initialization approach |
| 328 | * because they are already internally resolved. This means that the vtables |
| 329 | * contain valid entries to local symbols, but still have relocation entries for |
| 330 | * external symbols. |
| 331 | *******************************************************************************/ |
| 332 | static kern_return_t |
| 333 | init_by_entries_and_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
| 334 | const KXLDRelocator *relocator, const KXLDArray *relocs, |
| 335 | const KXLDDict *defined_cxx_symbols) |
| 336 | { |
| 337 | kern_return_t rval = KERN_FAILURE; |
| 338 | KXLDReloc *reloc = NULL; |
| 339 | KXLDVTableEntry *tmpentry = NULL; |
| 340 | KXLDSym *sym = NULL; |
| 341 | u_int vtable_entry_size = 0; |
| 342 | u_int = 0; |
| 343 | kxld_addr_t entry_value = 0; |
| 344 | u_long entry_offset = 0; |
| 345 | u_int nentries = 0; |
| 346 | u_int i = 0; |
| 347 | char *demangled_name1 = NULL; |
| 348 | size_t demangled_length1 = 0; |
| 349 | |
| 350 | check(vtable); |
| 351 | check(vtable_sym); |
| 352 | check(relocator); |
| 353 | check(relocs); |
| 354 | |
| 355 | /* Find the first entry and its offset past the vtable padding */ |
| 356 | |
| 357 | (void) get_vtable_base_sizes(relocator->is_32_bit, |
| 358 | &vtable_entry_size, &vtable_header_size); |
| 359 | |
| 360 | /* In a final linked image, a vtable slot is valid if it is nonzero |
| 361 | * (meaning the userspace linker has already resolved it) or if it has |
| 362 | * a relocation entry. We'll know the end of the vtable when we find a |
| 363 | * slot that meets neither of these conditions. |
| 364 | */ |
| 365 | entry_offset = vtable_header_size; |
| 366 | while (1) { |
| 367 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, |
| 368 | vtable->vtable, entry_offset); |
| 369 | if (!entry_value) { |
| 370 | reloc = kxld_reloc_get_reloc_by_offset(relocs, |
| 371 | vtable_sym->base_addr + entry_offset); |
| 372 | if (!reloc) break; |
| 373 | } |
| 374 | |
| 375 | ++nentries; |
| 376 | entry_offset += vtable_entry_size; |
| 377 | } |
| 378 | |
| 379 | /* Allocate the symbol index */ |
| 380 | |
| 381 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); |
| 382 | require_noerr(rval, finish); |
| 383 | |
| 384 | /* Find the symbols for each vtable entry */ |
| 385 | |
| 386 | for (i = 0, entry_offset = vtable_header_size; |
| 387 | i < vtable->entries.nitems; |
| 388 | ++i, entry_offset += vtable_entry_size) |
| 389 | { |
| 390 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, |
| 391 | vtable->vtable, entry_offset); |
| 392 | |
| 393 | /* If we can't find a symbol, it means it is a locally-defined, |
| 394 | * non-external symbol that has been stripped. We don't patch over |
| 395 | * locally-defined symbols, so we leave the symbol as NULL and just |
| 396 | * skip it. We won't be able to patch subclasses with this symbol, |
| 397 | * but there isn't much we can do about that. |
| 398 | */ |
| 399 | if (entry_value) { |
| 400 | reloc = NULL; |
| 401 | sym = kxld_dict_find(defined_cxx_symbols, &entry_value); |
| 402 | } else { |
| 403 | reloc = kxld_reloc_get_reloc_by_offset(relocs, |
| 404 | vtable_sym->base_addr + entry_offset); |
| 405 | |
| 406 | require_action(reloc, finish, |
| 407 | rval=KERN_FAILURE; |
| 408 | kxld_log(kKxldLogPatching, kKxldLogErr, |
| 409 | kKxldLogMalformedVTable, |
| 410 | kxld_demangle(vtable->name, &demangled_name1, |
| 411 | &demangled_length1))); |
| 412 | |
| 413 | sym = kxld_reloc_get_symbol(relocator, reloc, /* data */ NULL); |
| 414 | } |
| 415 | |
| 416 | tmpentry = kxld_array_get_item(&vtable->entries, i); |
| 417 | tmpentry->unpatched.reloc = reloc; |
| 418 | tmpentry->unpatched.sym = sym; |
| 419 | } |
| 420 | |
| 421 | rval = KERN_SUCCESS; |
| 422 | finish: |
| 423 | return rval; |
| 424 | } |
| 425 | |
| 426 | /******************************************************************************* |
| 427 | *******************************************************************************/ |
| 428 | void |
| 429 | kxld_vtable_clear(KXLDVTable *vtable) |
| 430 | { |
| 431 | check(vtable); |
| 432 | |
| 433 | vtable->vtable = NULL; |
| 434 | vtable->name = NULL; |
| 435 | vtable->is_patched = FALSE; |
| 436 | kxld_array_clear(&vtable->entries); |
| 437 | } |
| 438 | |
| 439 | /******************************************************************************* |
| 440 | *******************************************************************************/ |
| 441 | void |
| 442 | kxld_vtable_deinit(KXLDVTable *vtable) |
| 443 | { |
| 444 | check(vtable); |
| 445 | |
| 446 | kxld_array_deinit(&vtable->entries); |
| 447 | bzero(vtable, sizeof(*vtable)); |
| 448 | } |
| 449 | |
| 450 | /******************************************************************************* |
| 451 | *******************************************************************************/ |
| 452 | KXLDVTableEntry * |
| 453 | kxld_vtable_get_entry_for_offset(const KXLDVTable *vtable, u_long offset, |
| 454 | boolean_t is_32_bit) |
| 455 | { |
| 456 | KXLDVTableEntry *rval = NULL; |
| 457 | u_int vtable_entry_size = 0; |
| 458 | u_int = 0; |
| 459 | u_int vtable_entry_idx = 0; |
| 460 | |
| 461 | (void) get_vtable_base_sizes(is_32_bit, |
| 462 | &vtable_entry_size, &vtable_header_size); |
| 463 | |
| 464 | if (offset % vtable_entry_size) { |
| 465 | goto finish; |
| 466 | } |
| 467 | |
| 468 | vtable_entry_idx = (u_int) ((offset - vtable_header_size) / vtable_entry_size); |
| 469 | rval = kxld_array_get_item(&vtable->entries, vtable_entry_idx); |
| 470 | finish: |
| 471 | return rval; |
| 472 | } |
| 473 | |
| 474 | /******************************************************************************* |
| 475 | * Patching vtables allows us to preserve binary compatibility across releases. |
| 476 | *******************************************************************************/ |
| 477 | kern_return_t |
| 478 | kxld_vtable_patch(KXLDVTable *vtable, const KXLDVTable *super_vtable, |
| 479 | KXLDObject *object) |
| 480 | { |
| 481 | kern_return_t rval = KERN_FAILURE; |
| 482 | const KXLDSymtab *symtab = NULL; |
| 483 | const KXLDSym *sym = NULL; |
| 484 | KXLDVTableEntry *child_entry = NULL; |
| 485 | KXLDVTableEntry *parent_entry = NULL; |
| 486 | u_int symindex = 0; |
| 487 | u_int i = 0; |
| 488 | char *demangled_name1 = NULL; |
| 489 | char *demangled_name2 = NULL; |
| 490 | char *demangled_name3 = NULL; |
| 491 | size_t demangled_length1 = 0; |
| 492 | size_t demangled_length2 = 0; |
| 493 | size_t demangled_length3 = 0; |
| 494 | boolean_t failure = FALSE; |
| 495 | |
| 496 | check(vtable); |
| 497 | check(super_vtable); |
| 498 | |
| 499 | symtab = kxld_object_get_symtab(object); |
| 500 | |
| 501 | require_action(!vtable->is_patched, finish, rval=KERN_SUCCESS); |
| 502 | require_action(super_vtable->is_patched, finish, rval=KERN_FAILURE); |
| 503 | require_action(vtable->entries.nitems >= super_vtable->entries.nitems, finish, |
| 504 | rval=KERN_FAILURE; |
| 505 | kxld_log(kKxldLogPatching, kKxldLogErr, kKxldLogMalformedVTable, |
| 506 | kxld_demangle(vtable->name, &demangled_name1, &demangled_length1))); |
| 507 | |
| 508 | for (i = 0; i < super_vtable->entries.nitems; ++i) { |
| 509 | child_entry = kxld_array_get_item(&vtable->entries, i); |
| 510 | parent_entry = kxld_array_get_item(&super_vtable->entries, i); |
| 511 | |
| 512 | /* The child entry can be NULL when a locally-defined, non-external |
| 513 | * symbol is stripped. We wouldn't patch this entry anyway, so we |
| 514 | * just skip it. |
| 515 | */ |
| 516 | |
| 517 | if (!child_entry->unpatched.sym) continue; |
| 518 | |
| 519 | /* It's possible for the patched parent entry not to have a symbol |
| 520 | * (e.g. when the definition is inlined). We can't patch this entry no |
| 521 | * matter what, so we'll just skip it and die later if it's a problem |
| 522 | * (which is not likely). |
| 523 | */ |
| 524 | |
| 525 | if (!parent_entry->patched.name) continue; |
| 526 | |
| 527 | /* 1) If the symbol is defined locally, do not patch */ |
| 528 | |
| 529 | if (kxld_sym_is_defined_locally(child_entry->unpatched.sym)) continue; |
| 530 | |
| 531 | /* 2) If the child is a pure virtual function, do not patch. |
| 532 | * In general, we want to proceed with patching when the symbol is |
| 533 | * externally defined because pad slots fall into this category. |
| 534 | * The pure virtual function symbol is special case, as the pure |
| 535 | * virtual property itself overrides the parent's implementation. |
| 536 | */ |
| 537 | |
| 538 | if (kxld_sym_is_pure_virtual(child_entry->unpatched.sym)) continue; |
| 539 | |
| 540 | /* 3) If the symbols are the same, do not patch */ |
| 541 | |
| 542 | if (streq(child_entry->unpatched.sym->name, |
| 543 | parent_entry->patched.name)) |
| 544 | { |
| 545 | continue; |
| 546 | } |
| 547 | |
| 548 | /* 4) If the parent vtable entry is a pad slot, and the child does not |
| 549 | * match it, then the child was built against a newer version of the |
| 550 | * libraries, so it is binary-incompatible. |
| 551 | */ |
| 552 | |
| 553 | require_action(!kxld_sym_name_is_padslot(parent_entry->patched.name), |
| 554 | finish, rval=KERN_FAILURE; |
| 555 | kxld_log(kKxldLogPatching, kKxldLogErr, |
| 556 | kKxldLogParentOutOfDate, |
| 557 | kxld_demangle(super_vtable->name, &demangled_name1, |
| 558 | &demangled_length1), |
| 559 | kxld_demangle(vtable->name, &demangled_name2, |
| 560 | &demangled_length2))); |
| 561 | |
| 562 | #if KXLD_USER_OR_STRICT_PATCHING |
| 563 | /* 5) If we are doing strict patching, we prevent kexts from declaring |
| 564 | * virtual functions and not implementing them. We can tell if a |
| 565 | * virtual function is declared but not implemented because we resolve |
| 566 | * symbols before patching; an unimplemented function will still be |
| 567 | * undefined at this point. We then look at whether the symbol has |
| 568 | * the same class prefix as the vtable. If it does, the symbol was |
| 569 | * declared as part of the class and not inherited, which means we |
| 570 | * should not patch it. |
| 571 | */ |
| 572 | |
| 573 | if (kxld_object_target_supports_strict_patching(object) && |
| 574 | !kxld_sym_is_defined(child_entry->unpatched.sym)) |
| 575 | { |
| 576 | char class_name[KXLD_MAX_NAME_LEN]; |
| 577 | char function_prefix[KXLD_MAX_NAME_LEN]; |
| 578 | u_long function_prefix_len = 0; |
| 579 | |
| 580 | rval = kxld_sym_get_class_name_from_vtable_name(vtable->name, |
| 581 | class_name, sizeof(class_name)); |
| 582 | require_noerr(rval, finish); |
| 583 | |
| 584 | function_prefix_len = |
| 585 | kxld_sym_get_function_prefix_from_class_name(class_name, |
| 586 | function_prefix, sizeof(function_prefix)); |
| 587 | require(function_prefix_len, finish); |
| 588 | |
| 589 | if (!strncmp(child_entry->unpatched.sym->name, |
| 590 | function_prefix, function_prefix_len)) |
| 591 | { |
| 592 | failure = TRUE; |
| 593 | kxld_log(kKxldLogPatching, kKxldLogErr, |
| 594 | "The %s is unpatchable because its class declares the " |
| 595 | "method '%s' without providing an implementation." , |
| 596 | kxld_demangle(vtable->name, |
| 597 | &demangled_name1, &demangled_length1), |
| 598 | kxld_demangle(child_entry->unpatched.sym->name, |
| 599 | &demangled_name2, &demangled_length2)); |
| 600 | continue; |
| 601 | } |
| 602 | } |
| 603 | #endif /* KXLD_USER_OR_STRICT_PATCHING */ |
| 604 | |
| 605 | /* 6) The child symbol is unresolved and different from its parent, so |
| 606 | * we need to patch it up. We do this by modifying the relocation |
| 607 | * entry of the vtable entry to point to the symbol of the parent |
| 608 | * vtable entry. If that symbol does not exist (i.e. we got the data |
| 609 | * from a link state object's vtable representation), then we create a |
| 610 | * new symbol in the symbol table and point the relocation entry to |
| 611 | * that. |
| 612 | */ |
| 613 | |
| 614 | sym = kxld_symtab_get_locally_defined_symbol_by_name(symtab, |
| 615 | parent_entry->patched.name); |
| 616 | if (!sym) { |
| 617 | rval = kxld_object_add_symbol(object, parent_entry->patched.name, |
| 618 | parent_entry->patched.addr, &sym); |
| 619 | require_noerr(rval, finish); |
| 620 | } |
| 621 | require_action(sym, finish, rval=KERN_FAILURE); |
| 622 | |
| 623 | rval = kxld_symtab_get_sym_index(symtab, sym, &symindex); |
| 624 | require_noerr(rval, finish); |
| 625 | |
| 626 | rval = kxld_reloc_update_symindex(child_entry->unpatched.reloc, symindex); |
| 627 | require_noerr(rval, finish); |
| 628 | |
| 629 | kxld_log(kKxldLogPatching, kKxldLogDetail, |
| 630 | "In vtable '%s', patching '%s' with '%s'." , |
| 631 | kxld_demangle(vtable->name, &demangled_name1, &demangled_length1), |
| 632 | kxld_demangle(child_entry->unpatched.sym->name, |
| 633 | &demangled_name2, &demangled_length2), |
| 634 | kxld_demangle(sym->name, &demangled_name3, &demangled_length3)); |
| 635 | |
| 636 | rval = kxld_object_patch_symbol(object, child_entry->unpatched.sym); |
| 637 | require_noerr(rval, finish); |
| 638 | |
| 639 | child_entry->unpatched.sym = sym; |
| 640 | |
| 641 | /* |
| 642 | * The C++ ABI requires that functions be aligned on a 2-byte boundary: |
| 643 | * http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers |
| 644 | * If the LSB of any virtual function's link address is 1, then the |
| 645 | * compiler has violated that part of the ABI, and we're going to panic |
| 646 | * in _ptmf2ptf() (in OSMetaClass.h). Better to panic here with some |
| 647 | * context. |
| 648 | */ |
| 649 | assert(kxld_sym_is_pure_virtual(sym) || !(sym->link_addr & 1)); |
| 650 | } |
| 651 | |
| 652 | require_action(!failure, finish, rval=KERN_FAILURE); |
| 653 | |
| 654 | /* Change the vtable representation from the unpatched layout to the |
| 655 | * patched layout. |
| 656 | */ |
| 657 | |
| 658 | for (i = 0; i < vtable->entries.nitems; ++i) { |
| 659 | char *name; |
| 660 | kxld_addr_t addr; |
| 661 | |
| 662 | child_entry = kxld_array_get_item(&vtable->entries, i); |
| 663 | if (child_entry->unpatched.sym) { |
| 664 | name = child_entry->unpatched.sym->name; |
| 665 | addr = child_entry->unpatched.sym->link_addr; |
| 666 | } else { |
| 667 | name = NULL; |
| 668 | addr = 0; |
| 669 | } |
| 670 | |
| 671 | child_entry->patched.name = name; |
| 672 | child_entry->patched.addr = addr; |
| 673 | } |
| 674 | |
| 675 | vtable->is_patched = TRUE; |
| 676 | rval = KERN_SUCCESS; |
| 677 | |
| 678 | finish: |
| 679 | if (demangled_name1) kxld_free(demangled_name1, demangled_length1); |
| 680 | if (demangled_name2) kxld_free(demangled_name2, demangled_length2); |
| 681 | if (demangled_name3) kxld_free(demangled_name3, demangled_length3); |
| 682 | |
| 683 | return rval; |
| 684 | } |
| 685 | |
| 686 | |