| 1 | /* |
| 2 | * Copyright (c) 1998-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | |
| 30 | #include <sys/cdefs.h> |
| 31 | |
| 32 | #include <IOKit/assert.h> |
| 33 | #include <IOKit/system.h> |
| 34 | #include <IOKit/IOLib.h> |
| 35 | #include <IOKit/IOMemoryDescriptor.h> |
| 36 | #include <IOKit/IOMapper.h> |
| 37 | #include <IOKit/IODMACommand.h> |
| 38 | #include <IOKit/IOKitKeysPrivate.h> |
| 39 | |
| 40 | #include <IOKit/IOSubMemoryDescriptor.h> |
| 41 | #include <IOKit/IOMultiMemoryDescriptor.h> |
| 42 | |
| 43 | #include <IOKit/IOKitDebug.h> |
| 44 | #include <libkern/OSDebug.h> |
| 45 | #include <libkern/OSKextLibPrivate.h> |
| 46 | |
| 47 | #include "IOKitKernelInternal.h" |
| 48 | |
| 49 | #include <libkern/c++/OSContainers.h> |
| 50 | #include <libkern/c++/OSDictionary.h> |
| 51 | #include <libkern/c++/OSArray.h> |
| 52 | #include <libkern/c++/OSSymbol.h> |
| 53 | #include <libkern/c++/OSNumber.h> |
| 54 | #include <os/overflow.h> |
| 55 | |
| 56 | #include <sys/uio.h> |
| 57 | |
| 58 | __BEGIN_DECLS |
| 59 | #include <vm/pmap.h> |
| 60 | #include <vm/vm_pageout.h> |
| 61 | #include <mach/memory_object_types.h> |
| 62 | #include <device/device_port.h> |
| 63 | |
| 64 | #include <mach/vm_prot.h> |
| 65 | #include <mach/mach_vm.h> |
| 66 | #include <vm/vm_fault.h> |
| 67 | #include <vm/vm_protos.h> |
| 68 | |
| 69 | extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va); |
| 70 | extern void ipc_port_release_send(ipc_port_t port); |
| 71 | |
| 72 | __END_DECLS |
| 73 | |
| 74 | #define kIOMapperWaitSystem ((IOMapper *) 1) |
| 75 | |
| 76 | static IOMapper * gIOSystemMapper = NULL; |
| 77 | |
| 78 | ppnum_t gIOLastPage; |
| 79 | |
| 80 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 81 | |
| 82 | OSDefineMetaClassAndAbstractStructors( IOMemoryDescriptor, OSObject ) |
| 83 | |
| 84 | #define super IOMemoryDescriptor |
| 85 | |
| 86 | OSDefineMetaClassAndStructors(IOGeneralMemoryDescriptor, IOMemoryDescriptor) |
| 87 | |
| 88 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 89 | |
| 90 | static IORecursiveLock * gIOMemoryLock; |
| 91 | |
| 92 | #define LOCK IORecursiveLockLock( gIOMemoryLock) |
| 93 | #define UNLOCK IORecursiveLockUnlock( gIOMemoryLock) |
| 94 | #define SLEEP IORecursiveLockSleep( gIOMemoryLock, (void *)this, THREAD_UNINT) |
| 95 | #define WAKEUP \ |
| 96 | IORecursiveLockWakeup( gIOMemoryLock, (void *)this, /* one-thread */ false) |
| 97 | |
| 98 | #if 0 |
| 99 | #define DEBG(fmt, args...) { kprintf(fmt, ## args); } |
| 100 | #else |
| 101 | #define DEBG(fmt, args...) {} |
| 102 | #endif |
| 103 | |
| 104 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 105 | |
| 106 | // Some data structures and accessor macros used by the initWithOptions |
| 107 | // Function |
| 108 | |
| 109 | enum ioPLBlockFlags { |
| 110 | kIOPLOnDevice = 0x00000001, |
| 111 | kIOPLExternUPL = 0x00000002, |
| 112 | }; |
| 113 | |
| 114 | struct IOMDPersistentInitData |
| 115 | { |
| 116 | const IOGeneralMemoryDescriptor * fMD; |
| 117 | IOMemoryReference * fMemRef; |
| 118 | }; |
| 119 | |
| 120 | struct ioPLBlock { |
| 121 | upl_t fIOPL; |
| 122 | vm_address_t fPageInfo; // Pointer to page list or index into it |
| 123 | uint32_t fIOMDOffset; // The offset of this iopl in descriptor |
| 124 | ppnum_t fMappedPage; // Page number of first page in this iopl |
| 125 | unsigned int fPageOffset; // Offset within first page of iopl |
| 126 | unsigned int fFlags; // Flags |
| 127 | }; |
| 128 | |
| 129 | enum { kMaxWireTags = 6 }; |
| 130 | |
| 131 | struct ioGMDData |
| 132 | { |
| 133 | IOMapper * fMapper; |
| 134 | uint64_t fDMAMapAlignment; |
| 135 | uint64_t fMappedBase; |
| 136 | uint64_t fMappedLength; |
| 137 | uint64_t fPreparationID; |
| 138 | #if IOTRACKING |
| 139 | IOTracking fWireTracking; |
| 140 | #endif /* IOTRACKING */ |
| 141 | unsigned int fPageCnt; |
| 142 | uint8_t fDMAMapNumAddressBits; |
| 143 | unsigned char fDiscontig:1; |
| 144 | unsigned char fCompletionError:1; |
| 145 | unsigned char fMappedBaseValid:1; |
| 146 | unsigned char _resv:3; |
| 147 | unsigned char fDMAAccess:2; |
| 148 | |
| 149 | /* variable length arrays */ |
| 150 | upl_page_info_t fPageList[1] |
| 151 | #if __LP64__ |
| 152 | // align fPageList as for ioPLBlock |
| 153 | __attribute__((aligned(sizeof(upl_t)))) |
| 154 | #endif |
| 155 | ; |
| 156 | ioPLBlock fBlocks[1]; |
| 157 | }; |
| 158 | |
| 159 | #define getDataP(osd) ((ioGMDData *) (osd)->getBytesNoCopy()) |
| 160 | #define getIOPLList(d) ((ioPLBlock *) (void *)&(d->fPageList[d->fPageCnt])) |
| 161 | #define getNumIOPL(osd, d) \ |
| 162 | (((osd)->getLength() - ((char *) getIOPLList(d) - (char *) d)) / sizeof(ioPLBlock)) |
| 163 | #define getPageList(d) (&(d->fPageList[0])) |
| 164 | #define computeDataSize(p, u) \ |
| 165 | (offsetof(ioGMDData, fPageList) + p * sizeof(upl_page_info_t) + u * sizeof(ioPLBlock)) |
| 166 | |
| 167 | enum { kIOMemoryHostOrRemote = kIOMemoryHostOnly | kIOMemoryRemote }; |
| 168 | |
| 169 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 170 | |
| 171 | #define next_page(a) ( trunc_page(a) + PAGE_SIZE ) |
| 172 | |
| 173 | extern "C" { |
| 174 | |
| 175 | kern_return_t device_data_action( |
| 176 | uintptr_t device_handle, |
| 177 | ipc_port_t , |
| 178 | vm_prot_t protection, |
| 179 | vm_object_offset_t offset, |
| 180 | vm_size_t size) |
| 181 | { |
| 182 | kern_return_t kr; |
| 183 | IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle; |
| 184 | IOMemoryDescriptor * memDesc; |
| 185 | |
| 186 | LOCK; |
| 187 | memDesc = ref->dp.memory; |
| 188 | if( memDesc) |
| 189 | { |
| 190 | memDesc->retain(); |
| 191 | kr = memDesc->handleFault(device_pager, offset, size); |
| 192 | memDesc->release(); |
| 193 | } |
| 194 | else |
| 195 | kr = KERN_ABORTED; |
| 196 | UNLOCK; |
| 197 | |
| 198 | return( kr ); |
| 199 | } |
| 200 | |
| 201 | kern_return_t device_close( |
| 202 | uintptr_t device_handle) |
| 203 | { |
| 204 | IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle; |
| 205 | |
| 206 | IODelete( ref, IOMemoryDescriptorReserved, 1 ); |
| 207 | |
| 208 | return( kIOReturnSuccess ); |
| 209 | } |
| 210 | }; // end extern "C" |
| 211 | |
| 212 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 213 | |
| 214 | // Note this inline function uses C++ reference arguments to return values |
| 215 | // This means that pointers are not passed and NULLs don't have to be |
| 216 | // checked for as a NULL reference is illegal. |
| 217 | static inline void |
| 218 | getAddrLenForInd(mach_vm_address_t &addr, mach_vm_size_t &len, // Output variables |
| 219 | UInt32 type, IOGeneralMemoryDescriptor::Ranges r, UInt32 ind) |
| 220 | { |
| 221 | assert(kIOMemoryTypeUIO == type |
| 222 | || kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type |
| 223 | || kIOMemoryTypePhysical == type || kIOMemoryTypePhysical64 == type); |
| 224 | if (kIOMemoryTypeUIO == type) { |
| 225 | user_size_t us; |
| 226 | user_addr_t ad; |
| 227 | uio_getiov((uio_t) r.uio, ind, &ad, &us); addr = ad; len = us; |
| 228 | } |
| 229 | #ifndef __LP64__ |
| 230 | else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) { |
| 231 | IOAddressRange cur = r.v64[ind]; |
| 232 | addr = cur.address; |
| 233 | len = cur.length; |
| 234 | } |
| 235 | #endif /* !__LP64__ */ |
| 236 | else { |
| 237 | IOVirtualRange cur = r.v[ind]; |
| 238 | addr = cur.address; |
| 239 | len = cur.length; |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 244 | |
| 245 | static IOReturn |
| 246 | purgeableControlBits(IOOptionBits newState, vm_purgable_t * control, int * state) |
| 247 | { |
| 248 | IOReturn err = kIOReturnSuccess; |
| 249 | |
| 250 | *control = VM_PURGABLE_SET_STATE; |
| 251 | |
| 252 | enum { kIOMemoryPurgeableControlMask = 15 }; |
| 253 | |
| 254 | switch (kIOMemoryPurgeableControlMask & newState) |
| 255 | { |
| 256 | case kIOMemoryPurgeableKeepCurrent: |
| 257 | *control = VM_PURGABLE_GET_STATE; |
| 258 | break; |
| 259 | |
| 260 | case kIOMemoryPurgeableNonVolatile: |
| 261 | *state = VM_PURGABLE_NONVOLATILE; |
| 262 | break; |
| 263 | case kIOMemoryPurgeableVolatile: |
| 264 | *state = VM_PURGABLE_VOLATILE | (newState & ~kIOMemoryPurgeableControlMask); |
| 265 | break; |
| 266 | case kIOMemoryPurgeableEmpty: |
| 267 | *state = VM_PURGABLE_EMPTY | (newState & ~kIOMemoryPurgeableControlMask); |
| 268 | break; |
| 269 | default: |
| 270 | err = kIOReturnBadArgument; |
| 271 | break; |
| 272 | } |
| 273 | |
| 274 | if (*control == VM_PURGABLE_SET_STATE) { |
| 275 | // let VM know this call is from the kernel and is allowed to alter |
| 276 | // the volatility of the memory entry even if it was created with |
| 277 | // MAP_MEM_PURGABLE_KERNEL_ONLY |
| 278 | *control = VM_PURGABLE_SET_STATE_FROM_KERNEL; |
| 279 | } |
| 280 | |
| 281 | return (err); |
| 282 | } |
| 283 | |
| 284 | static IOReturn |
| 285 | purgeableStateBits(int * state) |
| 286 | { |
| 287 | IOReturn err = kIOReturnSuccess; |
| 288 | |
| 289 | switch (VM_PURGABLE_STATE_MASK & *state) |
| 290 | { |
| 291 | case VM_PURGABLE_NONVOLATILE: |
| 292 | *state = kIOMemoryPurgeableNonVolatile; |
| 293 | break; |
| 294 | case VM_PURGABLE_VOLATILE: |
| 295 | *state = kIOMemoryPurgeableVolatile; |
| 296 | break; |
| 297 | case VM_PURGABLE_EMPTY: |
| 298 | *state = kIOMemoryPurgeableEmpty; |
| 299 | break; |
| 300 | default: |
| 301 | *state = kIOMemoryPurgeableNonVolatile; |
| 302 | err = kIOReturnNotReady; |
| 303 | break; |
| 304 | } |
| 305 | return (err); |
| 306 | } |
| 307 | |
| 308 | |
| 309 | static vm_prot_t |
| 310 | vmProtForCacheMode(IOOptionBits cacheMode) |
| 311 | { |
| 312 | vm_prot_t prot = 0; |
| 313 | switch (cacheMode) |
| 314 | { |
| 315 | case kIOInhibitCache: |
| 316 | SET_MAP_MEM(MAP_MEM_IO, prot); |
| 317 | break; |
| 318 | |
| 319 | case kIOWriteThruCache: |
| 320 | SET_MAP_MEM(MAP_MEM_WTHRU, prot); |
| 321 | break; |
| 322 | |
| 323 | case kIOWriteCombineCache: |
| 324 | SET_MAP_MEM(MAP_MEM_WCOMB, prot); |
| 325 | break; |
| 326 | |
| 327 | case kIOCopybackCache: |
| 328 | SET_MAP_MEM(MAP_MEM_COPYBACK, prot); |
| 329 | break; |
| 330 | |
| 331 | case kIOCopybackInnerCache: |
| 332 | SET_MAP_MEM(MAP_MEM_INNERWBACK, prot); |
| 333 | break; |
| 334 | |
| 335 | case kIOPostedWrite: |
| 336 | SET_MAP_MEM(MAP_MEM_POSTED, prot); |
| 337 | break; |
| 338 | |
| 339 | case kIODefaultCache: |
| 340 | default: |
| 341 | SET_MAP_MEM(MAP_MEM_NOOP, prot); |
| 342 | break; |
| 343 | } |
| 344 | |
| 345 | return (prot); |
| 346 | } |
| 347 | |
| 348 | static unsigned int |
| 349 | (IOOptionBits cacheMode) |
| 350 | { |
| 351 | unsigned int = 0; |
| 352 | switch (cacheMode) |
| 353 | { |
| 354 | case kIOInhibitCache: |
| 355 | pagerFlags = DEVICE_PAGER_CACHE_INHIB | DEVICE_PAGER_COHERENT | DEVICE_PAGER_GUARDED; |
| 356 | break; |
| 357 | |
| 358 | case kIOWriteThruCache: |
| 359 | pagerFlags = DEVICE_PAGER_WRITE_THROUGH | DEVICE_PAGER_COHERENT | DEVICE_PAGER_GUARDED; |
| 360 | break; |
| 361 | |
| 362 | case kIOWriteCombineCache: |
| 363 | pagerFlags = DEVICE_PAGER_CACHE_INHIB | DEVICE_PAGER_COHERENT; |
| 364 | break; |
| 365 | |
| 366 | case kIOCopybackCache: |
| 367 | pagerFlags = DEVICE_PAGER_COHERENT; |
| 368 | break; |
| 369 | |
| 370 | case kIOCopybackInnerCache: |
| 371 | pagerFlags = DEVICE_PAGER_COHERENT; |
| 372 | break; |
| 373 | |
| 374 | case kIOPostedWrite: |
| 375 | pagerFlags = DEVICE_PAGER_CACHE_INHIB | DEVICE_PAGER_COHERENT | DEVICE_PAGER_GUARDED | DEVICE_PAGER_EARLY_ACK; |
| 376 | break; |
| 377 | |
| 378 | case kIODefaultCache: |
| 379 | default: |
| 380 | pagerFlags = -1U; |
| 381 | break; |
| 382 | } |
| 383 | return (pagerFlags); |
| 384 | } |
| 385 | |
| 386 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 387 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 388 | |
| 389 | struct IOMemoryEntry |
| 390 | { |
| 391 | ipc_port_t entry; |
| 392 | int64_t offset; |
| 393 | uint64_t size; |
| 394 | }; |
| 395 | |
| 396 | struct IOMemoryReference |
| 397 | { |
| 398 | volatile SInt32 refCount; |
| 399 | vm_prot_t prot; |
| 400 | uint32_t capacity; |
| 401 | uint32_t count; |
| 402 | struct IOMemoryReference * mapRef; |
| 403 | IOMemoryEntry entries[0]; |
| 404 | }; |
| 405 | |
| 406 | enum |
| 407 | { |
| 408 | kIOMemoryReferenceReuse = 0x00000001, |
| 409 | kIOMemoryReferenceWrite = 0x00000002, |
| 410 | kIOMemoryReferenceCOW = 0x00000004, |
| 411 | }; |
| 412 | |
| 413 | SInt32 gIOMemoryReferenceCount; |
| 414 | |
| 415 | IOMemoryReference * |
| 416 | IOGeneralMemoryDescriptor::memoryReferenceAlloc(uint32_t capacity, IOMemoryReference * realloc) |
| 417 | { |
| 418 | IOMemoryReference * ref; |
| 419 | size_t newSize, oldSize, copySize; |
| 420 | |
| 421 | newSize = (sizeof(IOMemoryReference) |
| 422 | - sizeof(ref->entries) |
| 423 | + capacity * sizeof(ref->entries[0])); |
| 424 | ref = (typeof(ref)) IOMalloc(newSize); |
| 425 | if (realloc) |
| 426 | { |
| 427 | oldSize = (sizeof(IOMemoryReference) |
| 428 | - sizeof(realloc->entries) |
| 429 | + realloc->capacity * sizeof(realloc->entries[0])); |
| 430 | copySize = oldSize; |
| 431 | if (copySize > newSize) copySize = newSize; |
| 432 | if (ref) bcopy(realloc, ref, copySize); |
| 433 | IOFree(realloc, oldSize); |
| 434 | } |
| 435 | else if (ref) |
| 436 | { |
| 437 | bzero(ref, sizeof(*ref)); |
| 438 | ref->refCount = 1; |
| 439 | OSIncrementAtomic(&gIOMemoryReferenceCount); |
| 440 | } |
| 441 | if (!ref) return (0); |
| 442 | ref->capacity = capacity; |
| 443 | return (ref); |
| 444 | } |
| 445 | |
| 446 | void |
| 447 | IOGeneralMemoryDescriptor::memoryReferenceFree(IOMemoryReference * ref) |
| 448 | { |
| 449 | IOMemoryEntry * entries; |
| 450 | size_t size; |
| 451 | |
| 452 | if (ref->mapRef) |
| 453 | { |
| 454 | memoryReferenceFree(ref->mapRef); |
| 455 | ref->mapRef = 0; |
| 456 | } |
| 457 | |
| 458 | entries = ref->entries + ref->count; |
| 459 | while (entries > &ref->entries[0]) |
| 460 | { |
| 461 | entries--; |
| 462 | ipc_port_release_send(entries->entry); |
| 463 | } |
| 464 | size = (sizeof(IOMemoryReference) |
| 465 | - sizeof(ref->entries) |
| 466 | + ref->capacity * sizeof(ref->entries[0])); |
| 467 | IOFree(ref, size); |
| 468 | |
| 469 | OSDecrementAtomic(&gIOMemoryReferenceCount); |
| 470 | } |
| 471 | |
| 472 | void |
| 473 | IOGeneralMemoryDescriptor::memoryReferenceRelease(IOMemoryReference * ref) |
| 474 | { |
| 475 | if (1 == OSDecrementAtomic(&ref->refCount)) memoryReferenceFree(ref); |
| 476 | } |
| 477 | |
| 478 | |
| 479 | IOReturn |
| 480 | IOGeneralMemoryDescriptor::memoryReferenceCreate( |
| 481 | IOOptionBits options, |
| 482 | IOMemoryReference ** reference) |
| 483 | { |
| 484 | enum { kCapacity = 4, kCapacityInc = 4 }; |
| 485 | |
| 486 | kern_return_t err; |
| 487 | IOMemoryReference * ref; |
| 488 | IOMemoryEntry * entries; |
| 489 | IOMemoryEntry * cloneEntries; |
| 490 | vm_map_t map; |
| 491 | ipc_port_t entry, cloneEntry; |
| 492 | vm_prot_t prot; |
| 493 | memory_object_size_t actualSize; |
| 494 | uint32_t rangeIdx; |
| 495 | uint32_t count; |
| 496 | mach_vm_address_t entryAddr, endAddr, entrySize; |
| 497 | mach_vm_size_t srcAddr, srcLen; |
| 498 | mach_vm_size_t nextAddr, nextLen; |
| 499 | mach_vm_size_t offset, remain; |
| 500 | IOByteCount physLen; |
| 501 | IOOptionBits type = (_flags & kIOMemoryTypeMask); |
| 502 | IOOptionBits cacheMode; |
| 503 | unsigned int ; |
| 504 | vm_tag_t tag; |
| 505 | |
| 506 | ref = memoryReferenceAlloc(kCapacity, NULL); |
| 507 | if (!ref) return (kIOReturnNoMemory); |
| 508 | |
| 509 | tag = getVMTag(kernel_map); |
| 510 | entries = &ref->entries[0]; |
| 511 | count = 0; |
| 512 | err = KERN_SUCCESS; |
| 513 | |
| 514 | offset = 0; |
| 515 | rangeIdx = 0; |
| 516 | if (_task) |
| 517 | { |
| 518 | getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx); |
| 519 | } |
| 520 | else |
| 521 | { |
| 522 | nextAddr = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone); |
| 523 | nextLen = physLen; |
| 524 | |
| 525 | // default cache mode for physical |
| 526 | if (kIODefaultCache == ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift)) |
| 527 | { |
| 528 | IOOptionBits mode; |
| 529 | pagerFlags = IODefaultCacheBits(nextAddr); |
| 530 | if (DEVICE_PAGER_CACHE_INHIB & pagerFlags) |
| 531 | { |
| 532 | if (DEVICE_PAGER_EARLY_ACK & pagerFlags) |
| 533 | mode = kIOPostedWrite; |
| 534 | else if (DEVICE_PAGER_GUARDED & pagerFlags) |
| 535 | mode = kIOInhibitCache; |
| 536 | else |
| 537 | mode = kIOWriteCombineCache; |
| 538 | } |
| 539 | else if (DEVICE_PAGER_WRITE_THROUGH & pagerFlags) |
| 540 | mode = kIOWriteThruCache; |
| 541 | else |
| 542 | mode = kIOCopybackCache; |
| 543 | _flags |= (mode << kIOMemoryBufferCacheShift); |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | // cache mode & vm_prot |
| 548 | prot = VM_PROT_READ; |
| 549 | cacheMode = ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift); |
| 550 | prot |= vmProtForCacheMode(cacheMode); |
| 551 | // VM system requires write access to change cache mode |
| 552 | if (kIODefaultCache != cacheMode) prot |= VM_PROT_WRITE; |
| 553 | if (kIODirectionOut != (kIODirectionOutIn & _flags)) prot |= VM_PROT_WRITE; |
| 554 | if (kIOMemoryReferenceWrite & options) prot |= VM_PROT_WRITE; |
| 555 | if (kIOMemoryReferenceCOW & options) prot |= MAP_MEM_VM_COPY; |
| 556 | |
| 557 | if ((kIOMemoryReferenceReuse & options) && _memRef) |
| 558 | { |
| 559 | cloneEntries = &_memRef->entries[0]; |
| 560 | prot |= MAP_MEM_NAMED_REUSE; |
| 561 | } |
| 562 | |
| 563 | if (_task) |
| 564 | { |
| 565 | // virtual ranges |
| 566 | |
| 567 | if (kIOMemoryBufferPageable & _flags) |
| 568 | { |
| 569 | // IOBufferMemoryDescriptor alloc - set flags for entry + object create |
| 570 | prot |= MAP_MEM_NAMED_CREATE; |
| 571 | if (kIOMemoryBufferPurgeable & _flags) |
| 572 | { |
| 573 | prot |= (MAP_MEM_PURGABLE | MAP_MEM_PURGABLE_KERNEL_ONLY); |
| 574 | if (VM_KERN_MEMORY_SKYWALK == tag) |
| 575 | { |
| 576 | prot |= MAP_MEM_LEDGER_TAG_NETWORK; |
| 577 | } |
| 578 | } |
| 579 | if (kIOMemoryUseReserve & _flags) prot |= MAP_MEM_GRAB_SECLUDED; |
| 580 | |
| 581 | prot |= VM_PROT_WRITE; |
| 582 | map = NULL; |
| 583 | } |
| 584 | else map = get_task_map(_task); |
| 585 | |
| 586 | remain = _length; |
| 587 | while (remain) |
| 588 | { |
| 589 | srcAddr = nextAddr; |
| 590 | srcLen = nextLen; |
| 591 | nextAddr = 0; |
| 592 | nextLen = 0; |
| 593 | // coalesce addr range |
| 594 | for (++rangeIdx; rangeIdx < _rangesCount; rangeIdx++) |
| 595 | { |
| 596 | getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx); |
| 597 | if ((srcAddr + srcLen) != nextAddr) break; |
| 598 | srcLen += nextLen; |
| 599 | } |
| 600 | entryAddr = trunc_page_64(srcAddr); |
| 601 | endAddr = round_page_64(srcAddr + srcLen); |
| 602 | do |
| 603 | { |
| 604 | entrySize = (endAddr - entryAddr); |
| 605 | if (!entrySize) break; |
| 606 | actualSize = entrySize; |
| 607 | |
| 608 | cloneEntry = MACH_PORT_NULL; |
| 609 | if (MAP_MEM_NAMED_REUSE & prot) |
| 610 | { |
| 611 | if (cloneEntries < &_memRef->entries[_memRef->count]) cloneEntry = cloneEntries->entry; |
| 612 | else prot &= ~MAP_MEM_NAMED_REUSE; |
| 613 | } |
| 614 | |
| 615 | err = mach_make_memory_entry_internal(map, |
| 616 | &actualSize, entryAddr, prot, &entry, cloneEntry); |
| 617 | |
| 618 | if (KERN_SUCCESS != err) break; |
| 619 | if (actualSize > entrySize) panic("mach_make_memory_entry_64 actualSize" ); |
| 620 | |
| 621 | if (count >= ref->capacity) |
| 622 | { |
| 623 | ref = memoryReferenceAlloc(ref->capacity + kCapacityInc, ref); |
| 624 | entries = &ref->entries[count]; |
| 625 | } |
| 626 | entries->entry = entry; |
| 627 | entries->size = actualSize; |
| 628 | entries->offset = offset + (entryAddr - srcAddr); |
| 629 | entryAddr += actualSize; |
| 630 | if (MAP_MEM_NAMED_REUSE & prot) |
| 631 | { |
| 632 | if ((cloneEntries->entry == entries->entry) |
| 633 | && (cloneEntries->size == entries->size) |
| 634 | && (cloneEntries->offset == entries->offset)) cloneEntries++; |
| 635 | else prot &= ~MAP_MEM_NAMED_REUSE; |
| 636 | } |
| 637 | entries++; |
| 638 | count++; |
| 639 | } |
| 640 | while (true); |
| 641 | offset += srcLen; |
| 642 | remain -= srcLen; |
| 643 | } |
| 644 | } |
| 645 | else |
| 646 | { |
| 647 | // _task == 0, physical or kIOMemoryTypeUPL |
| 648 | memory_object_t ; |
| 649 | vm_size_t size = ptoa_32(_pages); |
| 650 | |
| 651 | if (!getKernelReserved()) panic("getKernelReserved" ); |
| 652 | |
| 653 | reserved->dp.pagerContig = (1 == _rangesCount); |
| 654 | reserved->dp.memory = this; |
| 655 | |
| 656 | pagerFlags = pagerFlagsForCacheMode(cacheMode); |
| 657 | if (-1U == pagerFlags) panic("phys is kIODefaultCache" ); |
| 658 | if (reserved->dp.pagerContig) pagerFlags |= DEVICE_PAGER_CONTIGUOUS; |
| 659 | |
| 660 | pager = device_pager_setup((memory_object_t) 0, (uintptr_t) reserved, |
| 661 | size, pagerFlags); |
| 662 | assert (pager); |
| 663 | if (!pager) err = kIOReturnVMError; |
| 664 | else |
| 665 | { |
| 666 | srcAddr = nextAddr; |
| 667 | entryAddr = trunc_page_64(srcAddr); |
| 668 | err = mach_memory_object_memory_entry_64((host_t) 1, false /*internal*/, |
| 669 | size, VM_PROT_READ | VM_PROT_WRITE, pager, &entry); |
| 670 | assert (KERN_SUCCESS == err); |
| 671 | if (KERN_SUCCESS != err) device_pager_deallocate(pager); |
| 672 | else |
| 673 | { |
| 674 | reserved->dp.devicePager = pager; |
| 675 | entries->entry = entry; |
| 676 | entries->size = size; |
| 677 | entries->offset = offset + (entryAddr - srcAddr); |
| 678 | entries++; |
| 679 | count++; |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | ref->count = count; |
| 685 | ref->prot = prot; |
| 686 | |
| 687 | if (_task && (KERN_SUCCESS == err) |
| 688 | && (kIOMemoryMapCopyOnWrite & _flags) |
| 689 | && !(kIOMemoryReferenceCOW & options)) |
| 690 | { |
| 691 | err = memoryReferenceCreate(options | kIOMemoryReferenceCOW, &ref->mapRef); |
| 692 | } |
| 693 | |
| 694 | if (KERN_SUCCESS == err) |
| 695 | { |
| 696 | if (MAP_MEM_NAMED_REUSE & prot) |
| 697 | { |
| 698 | memoryReferenceFree(ref); |
| 699 | OSIncrementAtomic(&_memRef->refCount); |
| 700 | ref = _memRef; |
| 701 | } |
| 702 | } |
| 703 | else |
| 704 | { |
| 705 | memoryReferenceFree(ref); |
| 706 | ref = NULL; |
| 707 | } |
| 708 | |
| 709 | *reference = ref; |
| 710 | |
| 711 | return (err); |
| 712 | } |
| 713 | |
| 714 | kern_return_t |
| 715 | IOMemoryDescriptorMapAlloc(vm_map_t map, void * _ref) |
| 716 | { |
| 717 | IOMemoryDescriptorMapAllocRef * ref = (typeof(ref))_ref; |
| 718 | IOReturn err; |
| 719 | vm_map_offset_t addr; |
| 720 | |
| 721 | addr = ref->mapped; |
| 722 | |
| 723 | err = vm_map_enter_mem_object(map, &addr, ref->size, |
| 724 | (vm_map_offset_t) 0, |
| 725 | (((ref->options & kIOMapAnywhere) |
| 726 | ? VM_FLAGS_ANYWHERE |
| 727 | : VM_FLAGS_FIXED)), |
| 728 | VM_MAP_KERNEL_FLAGS_NONE, |
| 729 | ref->tag, |
| 730 | IPC_PORT_NULL, |
| 731 | (memory_object_offset_t) 0, |
| 732 | false, /* copy */ |
| 733 | ref->prot, |
| 734 | ref->prot, |
| 735 | VM_INHERIT_NONE); |
| 736 | if (KERN_SUCCESS == err) |
| 737 | { |
| 738 | ref->mapped = (mach_vm_address_t) addr; |
| 739 | ref->map = map; |
| 740 | } |
| 741 | |
| 742 | return( err ); |
| 743 | } |
| 744 | |
| 745 | IOReturn |
| 746 | IOGeneralMemoryDescriptor::memoryReferenceMap( |
| 747 | IOMemoryReference * ref, |
| 748 | vm_map_t map, |
| 749 | mach_vm_size_t inoffset, |
| 750 | mach_vm_size_t size, |
| 751 | IOOptionBits options, |
| 752 | mach_vm_address_t * inaddr) |
| 753 | { |
| 754 | IOReturn err; |
| 755 | int64_t offset = inoffset; |
| 756 | uint32_t rangeIdx, entryIdx; |
| 757 | vm_map_offset_t addr, mapAddr; |
| 758 | vm_map_offset_t pageOffset, entryOffset, remain, chunk; |
| 759 | |
| 760 | mach_vm_address_t nextAddr; |
| 761 | mach_vm_size_t nextLen; |
| 762 | IOByteCount physLen; |
| 763 | IOMemoryEntry * entry; |
| 764 | vm_prot_t prot, memEntryCacheMode; |
| 765 | IOOptionBits type; |
| 766 | IOOptionBits cacheMode; |
| 767 | vm_tag_t tag; |
| 768 | // for the kIOMapPrefault option. |
| 769 | upl_page_info_t * pageList = NULL; |
| 770 | UInt currentPageIndex = 0; |
| 771 | bool didAlloc; |
| 772 | |
| 773 | if (ref->mapRef) |
| 774 | { |
| 775 | err = memoryReferenceMap(ref->mapRef, map, inoffset, size, options, inaddr); |
| 776 | return (err); |
| 777 | } |
| 778 | |
| 779 | type = _flags & kIOMemoryTypeMask; |
| 780 | |
| 781 | prot = VM_PROT_READ; |
| 782 | if (!(kIOMapReadOnly & options)) prot |= VM_PROT_WRITE; |
| 783 | prot &= ref->prot; |
| 784 | |
| 785 | cacheMode = ((options & kIOMapCacheMask) >> kIOMapCacheShift); |
| 786 | if (kIODefaultCache != cacheMode) |
| 787 | { |
| 788 | // VM system requires write access to update named entry cache mode |
| 789 | memEntryCacheMode = (MAP_MEM_ONLY | VM_PROT_WRITE | prot | vmProtForCacheMode(cacheMode)); |
| 790 | } |
| 791 | |
| 792 | tag = getVMTag(map); |
| 793 | |
| 794 | if (_task) |
| 795 | { |
| 796 | // Find first range for offset |
| 797 | if (!_rangesCount) return (kIOReturnBadArgument); |
| 798 | for (remain = offset, rangeIdx = 0; rangeIdx < _rangesCount; rangeIdx++) |
| 799 | { |
| 800 | getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx); |
| 801 | if (remain < nextLen) break; |
| 802 | remain -= nextLen; |
| 803 | } |
| 804 | } |
| 805 | else |
| 806 | { |
| 807 | rangeIdx = 0; |
| 808 | remain = 0; |
| 809 | nextAddr = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone); |
| 810 | nextLen = size; |
| 811 | } |
| 812 | |
| 813 | assert(remain < nextLen); |
| 814 | if (remain >= nextLen) return (kIOReturnBadArgument); |
| 815 | |
| 816 | nextAddr += remain; |
| 817 | nextLen -= remain; |
| 818 | pageOffset = (page_mask & nextAddr); |
| 819 | addr = 0; |
| 820 | didAlloc = false; |
| 821 | |
| 822 | if (!(options & kIOMapAnywhere)) |
| 823 | { |
| 824 | addr = *inaddr; |
| 825 | if (pageOffset != (page_mask & addr)) return (kIOReturnNotAligned); |
| 826 | addr -= pageOffset; |
| 827 | } |
| 828 | |
| 829 | // find first entry for offset |
| 830 | for (entryIdx = 0; |
| 831 | (entryIdx < ref->count) && (offset >= ref->entries[entryIdx].offset); |
| 832 | entryIdx++) {} |
| 833 | entryIdx--; |
| 834 | entry = &ref->entries[entryIdx]; |
| 835 | |
| 836 | // allocate VM |
| 837 | size = round_page_64(size + pageOffset); |
| 838 | if (kIOMapOverwrite & options) |
| 839 | { |
| 840 | if ((map == kernel_map) && (kIOMemoryBufferPageable & _flags)) |
| 841 | { |
| 842 | map = IOPageableMapForAddress(addr); |
| 843 | } |
| 844 | err = KERN_SUCCESS; |
| 845 | } |
| 846 | else |
| 847 | { |
| 848 | IOMemoryDescriptorMapAllocRef ref; |
| 849 | ref.map = map; |
| 850 | ref.tag = tag; |
| 851 | ref.options = options; |
| 852 | ref.size = size; |
| 853 | ref.prot = prot; |
| 854 | if (options & kIOMapAnywhere) |
| 855 | // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE |
| 856 | ref.mapped = 0; |
| 857 | else |
| 858 | ref.mapped = addr; |
| 859 | if ((ref.map == kernel_map) && (kIOMemoryBufferPageable & _flags)) |
| 860 | err = IOIteratePageableMaps( ref.size, &IOMemoryDescriptorMapAlloc, &ref ); |
| 861 | else |
| 862 | err = IOMemoryDescriptorMapAlloc(ref.map, &ref); |
| 863 | if (KERN_SUCCESS == err) |
| 864 | { |
| 865 | addr = ref.mapped; |
| 866 | map = ref.map; |
| 867 | didAlloc = true; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * If the memory is associated with a device pager but doesn't have a UPL, |
| 873 | * it will be immediately faulted in through the pager via populateDevicePager(). |
| 874 | * kIOMapPrefault is redundant in that case, so don't try to use it for UPL |
| 875 | * operations. |
| 876 | */ |
| 877 | if ((reserved != NULL) && (reserved->dp.devicePager) && (_wireCount != 0)) |
| 878 | options &= ~kIOMapPrefault; |
| 879 | |
| 880 | /* |
| 881 | * Prefaulting is only possible if we wired the memory earlier. Check the |
| 882 | * memory type, and the underlying data. |
| 883 | */ |
| 884 | if (options & kIOMapPrefault) |
| 885 | { |
| 886 | /* |
| 887 | * The memory must have been wired by calling ::prepare(), otherwise |
| 888 | * we don't have the UPL. Without UPLs, pages cannot be pre-faulted |
| 889 | */ |
| 890 | assert(_wireCount != 0); |
| 891 | assert(_memoryEntries != NULL); |
| 892 | if ((_wireCount == 0) || |
| 893 | (_memoryEntries == NULL)) |
| 894 | { |
| 895 | return kIOReturnBadArgument; |
| 896 | } |
| 897 | |
| 898 | // Get the page list. |
| 899 | ioGMDData* dataP = getDataP(_memoryEntries); |
| 900 | ioPLBlock const* ioplList = getIOPLList(dataP); |
| 901 | pageList = getPageList(dataP); |
| 902 | |
| 903 | // Get the number of IOPLs. |
| 904 | UInt numIOPLs = getNumIOPL(_memoryEntries, dataP); |
| 905 | |
| 906 | /* |
| 907 | * Scan through the IOPL Info Blocks, looking for the first block containing |
| 908 | * the offset. The research will go past it, so we'll need to go back to the |
| 909 | * right range at the end. |
| 910 | */ |
| 911 | UInt ioplIndex = 0; |
| 912 | while (ioplIndex < numIOPLs && offset >= ioplList[ioplIndex].fIOMDOffset) |
| 913 | ioplIndex++; |
| 914 | ioplIndex--; |
| 915 | |
| 916 | // Retrieve the IOPL info block. |
| 917 | ioPLBlock ioplInfo = ioplList[ioplIndex]; |
| 918 | |
| 919 | /* |
| 920 | * For external UPLs, the fPageInfo points directly to the UPL's page_info_t |
| 921 | * array. |
| 922 | */ |
| 923 | if (ioplInfo.fFlags & kIOPLExternUPL) |
| 924 | pageList = (upl_page_info_t*) ioplInfo.fPageInfo; |
| 925 | else |
| 926 | pageList = &pageList[ioplInfo.fPageInfo]; |
| 927 | |
| 928 | // Rebase [offset] into the IOPL in order to looks for the first page index. |
| 929 | mach_vm_size_t offsetInIOPL = offset - ioplInfo.fIOMDOffset + ioplInfo.fPageOffset; |
| 930 | |
| 931 | // Retrieve the index of the first page corresponding to the offset. |
| 932 | currentPageIndex = atop_32(offsetInIOPL); |
| 933 | } |
| 934 | |
| 935 | // enter mappings |
| 936 | remain = size; |
| 937 | mapAddr = addr; |
| 938 | addr += pageOffset; |
| 939 | |
| 940 | while (remain && (KERN_SUCCESS == err)) |
| 941 | { |
| 942 | entryOffset = offset - entry->offset; |
| 943 | if ((page_mask & entryOffset) != pageOffset) |
| 944 | { |
| 945 | err = kIOReturnNotAligned; |
| 946 | break; |
| 947 | } |
| 948 | |
| 949 | if (kIODefaultCache != cacheMode) |
| 950 | { |
| 951 | vm_size_t unused = 0; |
| 952 | err = mach_make_memory_entry(NULL /*unused*/, &unused, 0 /*unused*/, |
| 953 | memEntryCacheMode, NULL, entry->entry); |
| 954 | assert (KERN_SUCCESS == err); |
| 955 | } |
| 956 | |
| 957 | entryOffset -= pageOffset; |
| 958 | if (entryOffset >= entry->size) panic("entryOffset" ); |
| 959 | chunk = entry->size - entryOffset; |
| 960 | if (chunk) |
| 961 | { |
| 962 | vm_map_kernel_flags_t vmk_flags; |
| 963 | |
| 964 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 965 | vmk_flags.vmkf_iokit_acct = TRUE; /* iokit accounting */ |
| 966 | |
| 967 | if (chunk > remain) chunk = remain; |
| 968 | if (options & kIOMapPrefault) |
| 969 | { |
| 970 | UInt nb_pages = round_page(chunk) / PAGE_SIZE; |
| 971 | |
| 972 | err = vm_map_enter_mem_object_prefault(map, |
| 973 | &mapAddr, |
| 974 | chunk, 0 /* mask */, |
| 975 | (VM_FLAGS_FIXED |
| 976 | | VM_FLAGS_OVERWRITE), |
| 977 | vmk_flags, |
| 978 | tag, |
| 979 | entry->entry, |
| 980 | entryOffset, |
| 981 | prot, // cur |
| 982 | prot, // max |
| 983 | &pageList[currentPageIndex], |
| 984 | nb_pages); |
| 985 | |
| 986 | // Compute the next index in the page list. |
| 987 | currentPageIndex += nb_pages; |
| 988 | assert(currentPageIndex <= _pages); |
| 989 | } |
| 990 | else |
| 991 | { |
| 992 | err = vm_map_enter_mem_object(map, |
| 993 | &mapAddr, |
| 994 | chunk, 0 /* mask */, |
| 995 | (VM_FLAGS_FIXED |
| 996 | | VM_FLAGS_OVERWRITE), |
| 997 | vmk_flags, |
| 998 | tag, |
| 999 | entry->entry, |
| 1000 | entryOffset, |
| 1001 | false, // copy |
| 1002 | prot, // cur |
| 1003 | prot, // max |
| 1004 | VM_INHERIT_NONE); |
| 1005 | } |
| 1006 | if (KERN_SUCCESS != err) break; |
| 1007 | remain -= chunk; |
| 1008 | if (!remain) break; |
| 1009 | mapAddr += chunk; |
| 1010 | offset += chunk - pageOffset; |
| 1011 | } |
| 1012 | pageOffset = 0; |
| 1013 | entry++; |
| 1014 | entryIdx++; |
| 1015 | if (entryIdx >= ref->count) |
| 1016 | { |
| 1017 | err = kIOReturnOverrun; |
| 1018 | break; |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | if ((KERN_SUCCESS != err) && didAlloc) |
| 1023 | { |
| 1024 | (void) mach_vm_deallocate(map, trunc_page_64(addr), size); |
| 1025 | addr = 0; |
| 1026 | } |
| 1027 | *inaddr = addr; |
| 1028 | |
| 1029 | return (err); |
| 1030 | } |
| 1031 | |
| 1032 | IOReturn |
| 1033 | IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts( |
| 1034 | IOMemoryReference * ref, |
| 1035 | IOByteCount * residentPageCount, |
| 1036 | IOByteCount * dirtyPageCount) |
| 1037 | { |
| 1038 | IOReturn err; |
| 1039 | IOMemoryEntry * entries; |
| 1040 | unsigned int resident, dirty; |
| 1041 | unsigned int totalResident, totalDirty; |
| 1042 | |
| 1043 | totalResident = totalDirty = 0; |
| 1044 | err = kIOReturnSuccess; |
| 1045 | entries = ref->entries + ref->count; |
| 1046 | while (entries > &ref->entries[0]) |
| 1047 | { |
| 1048 | entries--; |
| 1049 | err = mach_memory_entry_get_page_counts(entries->entry, &resident, &dirty); |
| 1050 | if (KERN_SUCCESS != err) break; |
| 1051 | totalResident += resident; |
| 1052 | totalDirty += dirty; |
| 1053 | } |
| 1054 | |
| 1055 | if (residentPageCount) *residentPageCount = totalResident; |
| 1056 | if (dirtyPageCount) *dirtyPageCount = totalDirty; |
| 1057 | return (err); |
| 1058 | } |
| 1059 | |
| 1060 | IOReturn |
| 1061 | IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable( |
| 1062 | IOMemoryReference * ref, |
| 1063 | IOOptionBits newState, |
| 1064 | IOOptionBits * oldState) |
| 1065 | { |
| 1066 | IOReturn err; |
| 1067 | IOMemoryEntry * entries; |
| 1068 | vm_purgable_t control; |
| 1069 | int totalState, state; |
| 1070 | |
| 1071 | totalState = kIOMemoryPurgeableNonVolatile; |
| 1072 | err = kIOReturnSuccess; |
| 1073 | entries = ref->entries + ref->count; |
| 1074 | while (entries > &ref->entries[0]) |
| 1075 | { |
| 1076 | entries--; |
| 1077 | |
| 1078 | err = purgeableControlBits(newState, &control, &state); |
| 1079 | if (KERN_SUCCESS != err) break; |
| 1080 | err = memory_entry_purgeable_control_internal(entries->entry, control, &state); |
| 1081 | if (KERN_SUCCESS != err) break; |
| 1082 | err = purgeableStateBits(&state); |
| 1083 | if (KERN_SUCCESS != err) break; |
| 1084 | |
| 1085 | if (kIOMemoryPurgeableEmpty == state) totalState = kIOMemoryPurgeableEmpty; |
| 1086 | else if (kIOMemoryPurgeableEmpty == totalState) continue; |
| 1087 | else if (kIOMemoryPurgeableVolatile == totalState) continue; |
| 1088 | else if (kIOMemoryPurgeableVolatile == state) totalState = kIOMemoryPurgeableVolatile; |
| 1089 | else totalState = kIOMemoryPurgeableNonVolatile; |
| 1090 | } |
| 1091 | |
| 1092 | if (oldState) *oldState = totalState; |
| 1093 | return (err); |
| 1094 | } |
| 1095 | |
| 1096 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 1097 | |
| 1098 | IOMemoryDescriptor * |
| 1099 | IOMemoryDescriptor::withAddress(void * address, |
| 1100 | IOByteCount length, |
| 1101 | IODirection direction) |
| 1102 | { |
| 1103 | return IOMemoryDescriptor:: |
| 1104 | withAddressRange((IOVirtualAddress) address, length, direction | kIOMemoryAutoPrepare, kernel_task); |
| 1105 | } |
| 1106 | |
| 1107 | #ifndef __LP64__ |
| 1108 | IOMemoryDescriptor * |
| 1109 | IOMemoryDescriptor::withAddress(IOVirtualAddress address, |
| 1110 | IOByteCount length, |
| 1111 | IODirection direction, |
| 1112 | task_t task) |
| 1113 | { |
| 1114 | IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor; |
| 1115 | if (that) |
| 1116 | { |
| 1117 | if (that->initWithAddress(address, length, direction, task)) |
| 1118 | return that; |
| 1119 | |
| 1120 | that->release(); |
| 1121 | } |
| 1122 | return 0; |
| 1123 | } |
| 1124 | #endif /* !__LP64__ */ |
| 1125 | |
| 1126 | IOMemoryDescriptor * |
| 1127 | IOMemoryDescriptor::withPhysicalAddress( |
| 1128 | IOPhysicalAddress address, |
| 1129 | IOByteCount length, |
| 1130 | IODirection direction ) |
| 1131 | { |
| 1132 | return (IOMemoryDescriptor::withAddressRange(address, length, direction, TASK_NULL)); |
| 1133 | } |
| 1134 | |
| 1135 | #ifndef __LP64__ |
| 1136 | IOMemoryDescriptor * |
| 1137 | IOMemoryDescriptor::withRanges( IOVirtualRange * ranges, |
| 1138 | UInt32 withCount, |
| 1139 | IODirection direction, |
| 1140 | task_t task, |
| 1141 | bool asReference) |
| 1142 | { |
| 1143 | IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor; |
| 1144 | if (that) |
| 1145 | { |
| 1146 | if (that->initWithRanges(ranges, withCount, direction, task, asReference)) |
| 1147 | return that; |
| 1148 | |
| 1149 | that->release(); |
| 1150 | } |
| 1151 | return 0; |
| 1152 | } |
| 1153 | #endif /* !__LP64__ */ |
| 1154 | |
| 1155 | IOMemoryDescriptor * |
| 1156 | IOMemoryDescriptor::withAddressRange(mach_vm_address_t address, |
| 1157 | mach_vm_size_t length, |
| 1158 | IOOptionBits options, |
| 1159 | task_t task) |
| 1160 | { |
| 1161 | IOAddressRange range = { address, length }; |
| 1162 | return (IOMemoryDescriptor::withAddressRanges(&range, 1, options, task)); |
| 1163 | } |
| 1164 | |
| 1165 | IOMemoryDescriptor * |
| 1166 | IOMemoryDescriptor::withAddressRanges(IOAddressRange * ranges, |
| 1167 | UInt32 rangeCount, |
| 1168 | IOOptionBits options, |
| 1169 | task_t task) |
| 1170 | { |
| 1171 | IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor; |
| 1172 | if (that) |
| 1173 | { |
| 1174 | if (task) |
| 1175 | options |= kIOMemoryTypeVirtual64; |
| 1176 | else |
| 1177 | options |= kIOMemoryTypePhysical64; |
| 1178 | |
| 1179 | if (that->initWithOptions(ranges, rangeCount, 0, task, options, /* mapper */ 0)) |
| 1180 | return that; |
| 1181 | |
| 1182 | that->release(); |
| 1183 | } |
| 1184 | |
| 1185 | return 0; |
| 1186 | } |
| 1187 | |
| 1188 | |
| 1189 | /* |
| 1190 | * withOptions: |
| 1191 | * |
| 1192 | * Create a new IOMemoryDescriptor. The buffer is made up of several |
| 1193 | * virtual address ranges, from a given task. |
| 1194 | * |
| 1195 | * Passing the ranges as a reference will avoid an extra allocation. |
| 1196 | */ |
| 1197 | IOMemoryDescriptor * |
| 1198 | IOMemoryDescriptor::withOptions(void * buffers, |
| 1199 | UInt32 count, |
| 1200 | UInt32 offset, |
| 1201 | task_t task, |
| 1202 | IOOptionBits opts, |
| 1203 | IOMapper * mapper) |
| 1204 | { |
| 1205 | IOGeneralMemoryDescriptor *self = new IOGeneralMemoryDescriptor; |
| 1206 | |
| 1207 | if (self |
| 1208 | && !self->initWithOptions(buffers, count, offset, task, opts, mapper)) |
| 1209 | { |
| 1210 | self->release(); |
| 1211 | return 0; |
| 1212 | } |
| 1213 | |
| 1214 | return self; |
| 1215 | } |
| 1216 | |
| 1217 | bool IOMemoryDescriptor::initWithOptions(void * buffers, |
| 1218 | UInt32 count, |
| 1219 | UInt32 offset, |
| 1220 | task_t task, |
| 1221 | IOOptionBits options, |
| 1222 | IOMapper * mapper) |
| 1223 | { |
| 1224 | return( false ); |
| 1225 | } |
| 1226 | |
| 1227 | #ifndef __LP64__ |
| 1228 | IOMemoryDescriptor * |
| 1229 | IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange * ranges, |
| 1230 | UInt32 withCount, |
| 1231 | IODirection direction, |
| 1232 | bool asReference) |
| 1233 | { |
| 1234 | IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor; |
| 1235 | if (that) |
| 1236 | { |
| 1237 | if (that->initWithPhysicalRanges(ranges, withCount, direction, asReference)) |
| 1238 | return that; |
| 1239 | |
| 1240 | that->release(); |
| 1241 | } |
| 1242 | return 0; |
| 1243 | } |
| 1244 | |
| 1245 | IOMemoryDescriptor * |
| 1246 | IOMemoryDescriptor::withSubRange(IOMemoryDescriptor * of, |
| 1247 | IOByteCount offset, |
| 1248 | IOByteCount length, |
| 1249 | IODirection direction) |
| 1250 | { |
| 1251 | return (IOSubMemoryDescriptor::withSubRange(of, offset, length, direction)); |
| 1252 | } |
| 1253 | #endif /* !__LP64__ */ |
| 1254 | |
| 1255 | IOMemoryDescriptor * |
| 1256 | IOMemoryDescriptor::withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD) |
| 1257 | { |
| 1258 | IOGeneralMemoryDescriptor *origGenMD = |
| 1259 | OSDynamicCast(IOGeneralMemoryDescriptor, originalMD); |
| 1260 | |
| 1261 | if (origGenMD) |
| 1262 | return IOGeneralMemoryDescriptor:: |
| 1263 | withPersistentMemoryDescriptor(origGenMD); |
| 1264 | else |
| 1265 | return 0; |
| 1266 | } |
| 1267 | |
| 1268 | IOMemoryDescriptor * |
| 1269 | IOGeneralMemoryDescriptor::withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD) |
| 1270 | { |
| 1271 | IOMemoryReference * memRef; |
| 1272 | |
| 1273 | if (kIOReturnSuccess != originalMD->memoryReferenceCreate(kIOMemoryReferenceReuse, &memRef)) return (0); |
| 1274 | |
| 1275 | if (memRef == originalMD->_memRef) |
| 1276 | { |
| 1277 | originalMD->retain(); // Add a new reference to ourselves |
| 1278 | originalMD->memoryReferenceRelease(memRef); |
| 1279 | return originalMD; |
| 1280 | } |
| 1281 | |
| 1282 | IOGeneralMemoryDescriptor * self = new IOGeneralMemoryDescriptor; |
| 1283 | IOMDPersistentInitData initData = { originalMD, memRef }; |
| 1284 | |
| 1285 | if (self |
| 1286 | && !self->initWithOptions(&initData, 1, 0, 0, kIOMemoryTypePersistentMD, 0)) { |
| 1287 | self->release(); |
| 1288 | self = 0; |
| 1289 | } |
| 1290 | return self; |
| 1291 | } |
| 1292 | |
| 1293 | #ifndef __LP64__ |
| 1294 | bool |
| 1295 | IOGeneralMemoryDescriptor::initWithAddress(void * address, |
| 1296 | IOByteCount withLength, |
| 1297 | IODirection withDirection) |
| 1298 | { |
| 1299 | _singleRange.v.address = (vm_offset_t) address; |
| 1300 | _singleRange.v.length = withLength; |
| 1301 | |
| 1302 | return initWithRanges(&_singleRange.v, 1, withDirection, kernel_task, true); |
| 1303 | } |
| 1304 | |
| 1305 | bool |
| 1306 | IOGeneralMemoryDescriptor::initWithAddress(IOVirtualAddress address, |
| 1307 | IOByteCount withLength, |
| 1308 | IODirection withDirection, |
| 1309 | task_t withTask) |
| 1310 | { |
| 1311 | _singleRange.v.address = address; |
| 1312 | _singleRange.v.length = withLength; |
| 1313 | |
| 1314 | return initWithRanges(&_singleRange.v, 1, withDirection, withTask, true); |
| 1315 | } |
| 1316 | |
| 1317 | bool |
| 1318 | IOGeneralMemoryDescriptor::initWithPhysicalAddress( |
| 1319 | IOPhysicalAddress address, |
| 1320 | IOByteCount withLength, |
| 1321 | IODirection withDirection ) |
| 1322 | { |
| 1323 | _singleRange.p.address = address; |
| 1324 | _singleRange.p.length = withLength; |
| 1325 | |
| 1326 | return initWithPhysicalRanges( &_singleRange.p, 1, withDirection, true); |
| 1327 | } |
| 1328 | |
| 1329 | bool |
| 1330 | IOGeneralMemoryDescriptor::initWithPhysicalRanges( |
| 1331 | IOPhysicalRange * ranges, |
| 1332 | UInt32 count, |
| 1333 | IODirection direction, |
| 1334 | bool reference) |
| 1335 | { |
| 1336 | IOOptionBits mdOpts = direction | kIOMemoryTypePhysical; |
| 1337 | |
| 1338 | if (reference) |
| 1339 | mdOpts |= kIOMemoryAsReference; |
| 1340 | |
| 1341 | return initWithOptions(ranges, count, 0, 0, mdOpts, /* mapper */ 0); |
| 1342 | } |
| 1343 | |
| 1344 | bool |
| 1345 | IOGeneralMemoryDescriptor::initWithRanges( |
| 1346 | IOVirtualRange * ranges, |
| 1347 | UInt32 count, |
| 1348 | IODirection direction, |
| 1349 | task_t task, |
| 1350 | bool reference) |
| 1351 | { |
| 1352 | IOOptionBits mdOpts = direction; |
| 1353 | |
| 1354 | if (reference) |
| 1355 | mdOpts |= kIOMemoryAsReference; |
| 1356 | |
| 1357 | if (task) { |
| 1358 | mdOpts |= kIOMemoryTypeVirtual; |
| 1359 | |
| 1360 | // Auto-prepare if this is a kernel memory descriptor as very few |
| 1361 | // clients bother to prepare() kernel memory. |
| 1362 | // But it was not enforced so what are you going to do? |
| 1363 | if (task == kernel_task) |
| 1364 | mdOpts |= kIOMemoryAutoPrepare; |
| 1365 | } |
| 1366 | else |
| 1367 | mdOpts |= kIOMemoryTypePhysical; |
| 1368 | |
| 1369 | return initWithOptions(ranges, count, 0, task, mdOpts, /* mapper */ 0); |
| 1370 | } |
| 1371 | #endif /* !__LP64__ */ |
| 1372 | |
| 1373 | /* |
| 1374 | * initWithOptions: |
| 1375 | * |
| 1376 | * IOMemoryDescriptor. The buffer is made up of several virtual address ranges, |
| 1377 | * from a given task, several physical ranges, an UPL from the ubc |
| 1378 | * system or a uio (may be 64bit) from the BSD subsystem. |
| 1379 | * |
| 1380 | * Passing the ranges as a reference will avoid an extra allocation. |
| 1381 | * |
| 1382 | * An IOMemoryDescriptor can be re-used by calling initWithOptions again on an |
| 1383 | * existing instance -- note this behavior is not commonly supported in other |
| 1384 | * I/O Kit classes, although it is supported here. |
| 1385 | */ |
| 1386 | |
| 1387 | bool |
| 1388 | IOGeneralMemoryDescriptor::initWithOptions(void * buffers, |
| 1389 | UInt32 count, |
| 1390 | UInt32 offset, |
| 1391 | task_t task, |
| 1392 | IOOptionBits options, |
| 1393 | IOMapper * mapper) |
| 1394 | { |
| 1395 | IOOptionBits type = options & kIOMemoryTypeMask; |
| 1396 | |
| 1397 | #ifndef __LP64__ |
| 1398 | if (task |
| 1399 | && (kIOMemoryTypeVirtual == type) |
| 1400 | && vm_map_is_64bit(get_task_map(task)) |
| 1401 | && ((IOVirtualRange *) buffers)->address) |
| 1402 | { |
| 1403 | OSReportWithBacktrace("IOMemoryDescriptor: attempt to create 32b virtual in 64b task, use ::withAddressRange()" ); |
| 1404 | return false; |
| 1405 | } |
| 1406 | #endif /* !__LP64__ */ |
| 1407 | |
| 1408 | // Grab the original MD's configuation data to initialse the |
| 1409 | // arguments to this function. |
| 1410 | if (kIOMemoryTypePersistentMD == type) { |
| 1411 | |
| 1412 | IOMDPersistentInitData *initData = (typeof(initData)) buffers; |
| 1413 | const IOGeneralMemoryDescriptor *orig = initData->fMD; |
| 1414 | ioGMDData *dataP = getDataP(orig->_memoryEntries); |
| 1415 | |
| 1416 | // Only accept persistent memory descriptors with valid dataP data. |
| 1417 | assert(orig->_rangesCount == 1); |
| 1418 | if ( !(orig->_flags & kIOMemoryPersistent) || !dataP) |
| 1419 | return false; |
| 1420 | |
| 1421 | _memRef = initData->fMemRef; // Grab the new named entry |
| 1422 | options = orig->_flags & ~kIOMemoryAsReference; |
| 1423 | type = options & kIOMemoryTypeMask; |
| 1424 | buffers = orig->_ranges.v; |
| 1425 | count = orig->_rangesCount; |
| 1426 | |
| 1427 | // Now grab the original task and whatever mapper was previously used |
| 1428 | task = orig->_task; |
| 1429 | mapper = dataP->fMapper; |
| 1430 | |
| 1431 | // We are ready to go through the original initialisation now |
| 1432 | } |
| 1433 | |
| 1434 | switch (type) { |
| 1435 | case kIOMemoryTypeUIO: |
| 1436 | case kIOMemoryTypeVirtual: |
| 1437 | #ifndef __LP64__ |
| 1438 | case kIOMemoryTypeVirtual64: |
| 1439 | #endif /* !__LP64__ */ |
| 1440 | assert(task); |
| 1441 | if (!task) |
| 1442 | return false; |
| 1443 | break; |
| 1444 | |
| 1445 | case kIOMemoryTypePhysical: // Neither Physical nor UPL should have a task |
| 1446 | #ifndef __LP64__ |
| 1447 | case kIOMemoryTypePhysical64: |
| 1448 | #endif /* !__LP64__ */ |
| 1449 | case kIOMemoryTypeUPL: |
| 1450 | assert(!task); |
| 1451 | break; |
| 1452 | default: |
| 1453 | return false; /* bad argument */ |
| 1454 | } |
| 1455 | |
| 1456 | assert(buffers); |
| 1457 | assert(count); |
| 1458 | |
| 1459 | /* |
| 1460 | * We can check the _initialized instance variable before having ever set |
| 1461 | * it to an initial value because I/O Kit guarantees that all our instance |
| 1462 | * variables are zeroed on an object's allocation. |
| 1463 | */ |
| 1464 | |
| 1465 | if (_initialized) { |
| 1466 | /* |
| 1467 | * An existing memory descriptor is being retargeted to point to |
| 1468 | * somewhere else. Clean up our present state. |
| 1469 | */ |
| 1470 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 1471 | if ((kIOMemoryTypePhysical != type) && (kIOMemoryTypePhysical64 != type)) |
| 1472 | { |
| 1473 | while (_wireCount) |
| 1474 | complete(); |
| 1475 | } |
| 1476 | if (_ranges.v && !(kIOMemoryAsReference & _flags)) |
| 1477 | { |
| 1478 | if (kIOMemoryTypeUIO == type) |
| 1479 | uio_free((uio_t) _ranges.v); |
| 1480 | #ifndef __LP64__ |
| 1481 | else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) |
| 1482 | IODelete(_ranges.v64, IOAddressRange, _rangesCount); |
| 1483 | #endif /* !__LP64__ */ |
| 1484 | else |
| 1485 | IODelete(_ranges.v, IOVirtualRange, _rangesCount); |
| 1486 | } |
| 1487 | |
| 1488 | options |= (kIOMemoryRedirected & _flags); |
| 1489 | if (!(kIOMemoryRedirected & options)) |
| 1490 | { |
| 1491 | if (_memRef) |
| 1492 | { |
| 1493 | memoryReferenceRelease(_memRef); |
| 1494 | _memRef = 0; |
| 1495 | } |
| 1496 | if (_mappings) |
| 1497 | _mappings->flushCollection(); |
| 1498 | } |
| 1499 | } |
| 1500 | else { |
| 1501 | if (!super::init()) |
| 1502 | return false; |
| 1503 | _initialized = true; |
| 1504 | } |
| 1505 | |
| 1506 | // Grab the appropriate mapper |
| 1507 | if (kIOMemoryHostOrRemote & options) options |= kIOMemoryMapperNone; |
| 1508 | if (kIOMemoryMapperNone & options) |
| 1509 | mapper = 0; // No Mapper |
| 1510 | else if (mapper == kIOMapperSystem) { |
| 1511 | IOMapper::checkForSystemMapper(); |
| 1512 | gIOSystemMapper = mapper = IOMapper::gSystem; |
| 1513 | } |
| 1514 | |
| 1515 | // Remove the dynamic internal use flags from the initial setting |
| 1516 | options &= ~(kIOMemoryPreparedReadOnly); |
| 1517 | _flags = options; |
| 1518 | _task = task; |
| 1519 | |
| 1520 | #ifndef __LP64__ |
| 1521 | _direction = (IODirection) (_flags & kIOMemoryDirectionMask); |
| 1522 | #endif /* !__LP64__ */ |
| 1523 | |
| 1524 | _dmaReferences = 0; |
| 1525 | __iomd_reservedA = 0; |
| 1526 | __iomd_reservedB = 0; |
| 1527 | _highestPage = 0; |
| 1528 | |
| 1529 | if (kIOMemoryThreadSafe & options) |
| 1530 | { |
| 1531 | if (!_prepareLock) |
| 1532 | _prepareLock = IOLockAlloc(); |
| 1533 | } |
| 1534 | else if (_prepareLock) |
| 1535 | { |
| 1536 | IOLockFree(_prepareLock); |
| 1537 | _prepareLock = NULL; |
| 1538 | } |
| 1539 | |
| 1540 | if (kIOMemoryTypeUPL == type) { |
| 1541 | |
| 1542 | ioGMDData *dataP; |
| 1543 | unsigned int dataSize = computeDataSize(/* pages */ 0, /* upls */ 1); |
| 1544 | |
| 1545 | if (!initMemoryEntries(dataSize, mapper)) return (false); |
| 1546 | dataP = getDataP(_memoryEntries); |
| 1547 | dataP->fPageCnt = 0; |
| 1548 | switch (kIOMemoryDirectionMask & options) |
| 1549 | { |
| 1550 | case kIODirectionOut: |
| 1551 | dataP->fDMAAccess = kIODMAMapReadAccess; |
| 1552 | break; |
| 1553 | case kIODirectionIn: |
| 1554 | dataP->fDMAAccess = kIODMAMapWriteAccess; |
| 1555 | break; |
| 1556 | case kIODirectionNone: |
| 1557 | case kIODirectionOutIn: |
| 1558 | default: |
| 1559 | panic("bad dir for upl 0x%x\n" , (int) options); |
| 1560 | break; |
| 1561 | } |
| 1562 | // _wireCount++; // UPLs start out life wired |
| 1563 | |
| 1564 | _length = count; |
| 1565 | _pages += atop_32(offset + count + PAGE_MASK) - atop_32(offset); |
| 1566 | |
| 1567 | ioPLBlock iopl; |
| 1568 | iopl.fIOPL = (upl_t) buffers; |
| 1569 | upl_set_referenced(iopl.fIOPL, true); |
| 1570 | upl_page_info_t *pageList = UPL_GET_INTERNAL_PAGE_LIST(iopl.fIOPL); |
| 1571 | |
| 1572 | if (upl_get_size(iopl.fIOPL) < (count + offset)) |
| 1573 | panic("short external upl" ); |
| 1574 | |
| 1575 | _highestPage = upl_get_highest_page(iopl.fIOPL); |
| 1576 | |
| 1577 | // Set the flag kIOPLOnDevice convieniently equal to 1 |
| 1578 | iopl.fFlags = pageList->device | kIOPLExternUPL; |
| 1579 | if (!pageList->device) { |
| 1580 | // Pre-compute the offset into the UPL's page list |
| 1581 | pageList = &pageList[atop_32(offset)]; |
| 1582 | offset &= PAGE_MASK; |
| 1583 | } |
| 1584 | iopl.fIOMDOffset = 0; |
| 1585 | iopl.fMappedPage = 0; |
| 1586 | iopl.fPageInfo = (vm_address_t) pageList; |
| 1587 | iopl.fPageOffset = offset; |
| 1588 | _memoryEntries->appendBytes(&iopl, sizeof(iopl)); |
| 1589 | } |
| 1590 | else { |
| 1591 | // kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO |
| 1592 | // kIOMemoryTypePhysical | kIOMemoryTypePhysical64 |
| 1593 | |
| 1594 | // Initialize the memory descriptor |
| 1595 | if (options & kIOMemoryAsReference) { |
| 1596 | #ifndef __LP64__ |
| 1597 | _rangesIsAllocated = false; |
| 1598 | #endif /* !__LP64__ */ |
| 1599 | |
| 1600 | // Hack assignment to get the buffer arg into _ranges. |
| 1601 | // I'd prefer to do _ranges = (Ranges) buffers, but that doesn't |
| 1602 | // work, C++ sigh. |
| 1603 | // This also initialises the uio & physical ranges. |
| 1604 | _ranges.v = (IOVirtualRange *) buffers; |
| 1605 | } |
| 1606 | else { |
| 1607 | #ifndef __LP64__ |
| 1608 | _rangesIsAllocated = true; |
| 1609 | #endif /* !__LP64__ */ |
| 1610 | switch (type) |
| 1611 | { |
| 1612 | case kIOMemoryTypeUIO: |
| 1613 | _ranges.v = (IOVirtualRange *) uio_duplicate((uio_t) buffers); |
| 1614 | break; |
| 1615 | |
| 1616 | #ifndef __LP64__ |
| 1617 | case kIOMemoryTypeVirtual64: |
| 1618 | case kIOMemoryTypePhysical64: |
| 1619 | if (count == 1 |
| 1620 | #ifndef __arm__ |
| 1621 | && (((IOAddressRange *) buffers)->address + ((IOAddressRange *) buffers)->length) <= 0x100000000ULL |
| 1622 | #endif |
| 1623 | ) { |
| 1624 | if (kIOMemoryTypeVirtual64 == type) |
| 1625 | type = kIOMemoryTypeVirtual; |
| 1626 | else |
| 1627 | type = kIOMemoryTypePhysical; |
| 1628 | _flags = (_flags & ~kIOMemoryTypeMask) | type | kIOMemoryAsReference; |
| 1629 | _rangesIsAllocated = false; |
| 1630 | _ranges.v = &_singleRange.v; |
| 1631 | _singleRange.v.address = ((IOAddressRange *) buffers)->address; |
| 1632 | _singleRange.v.length = ((IOAddressRange *) buffers)->length; |
| 1633 | break; |
| 1634 | } |
| 1635 | _ranges.v64 = IONew(IOAddressRange, count); |
| 1636 | if (!_ranges.v64) |
| 1637 | return false; |
| 1638 | bcopy(buffers, _ranges.v, count * sizeof(IOAddressRange)); |
| 1639 | break; |
| 1640 | #endif /* !__LP64__ */ |
| 1641 | case kIOMemoryTypeVirtual: |
| 1642 | case kIOMemoryTypePhysical: |
| 1643 | if (count == 1) { |
| 1644 | _flags |= kIOMemoryAsReference; |
| 1645 | #ifndef __LP64__ |
| 1646 | _rangesIsAllocated = false; |
| 1647 | #endif /* !__LP64__ */ |
| 1648 | _ranges.v = &_singleRange.v; |
| 1649 | } else { |
| 1650 | _ranges.v = IONew(IOVirtualRange, count); |
| 1651 | if (!_ranges.v) |
| 1652 | return false; |
| 1653 | } |
| 1654 | bcopy(buffers, _ranges.v, count * sizeof(IOVirtualRange)); |
| 1655 | break; |
| 1656 | } |
| 1657 | } |
| 1658 | _rangesCount = count; |
| 1659 | |
| 1660 | // Find starting address within the vector of ranges |
| 1661 | Ranges vec = _ranges; |
| 1662 | mach_vm_size_t totalLength = 0; |
| 1663 | unsigned int ind, pages = 0; |
| 1664 | for (ind = 0; ind < count; ind++) { |
| 1665 | mach_vm_address_t addr; |
| 1666 | mach_vm_address_t endAddr; |
| 1667 | mach_vm_size_t len; |
| 1668 | |
| 1669 | // addr & len are returned by this function |
| 1670 | getAddrLenForInd(addr, len, type, vec, ind); |
| 1671 | if (os_add3_overflow(addr, len, PAGE_MASK, &endAddr)) break; |
| 1672 | if (os_add_overflow(pages, (atop_64(endAddr) - atop_64(addr)), &pages)) break; |
| 1673 | if (os_add_overflow(totalLength, len, &totalLength)) break; |
| 1674 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) |
| 1675 | { |
| 1676 | ppnum_t highPage = atop_64(addr + len - 1); |
| 1677 | if (highPage > _highestPage) |
| 1678 | _highestPage = highPage; |
| 1679 | } |
| 1680 | } |
| 1681 | if ((ind < count) |
| 1682 | || (totalLength != ((IOByteCount) totalLength))) return (false); /* overflow */ |
| 1683 | |
| 1684 | _length = totalLength; |
| 1685 | _pages = pages; |
| 1686 | |
| 1687 | // Auto-prepare memory at creation time. |
| 1688 | // Implied completion when descriptor is free-ed |
| 1689 | |
| 1690 | |
| 1691 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) |
| 1692 | _wireCount++; // Physical MDs are, by definition, wired |
| 1693 | else { /* kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO */ |
| 1694 | ioGMDData *dataP; |
| 1695 | unsigned dataSize; |
| 1696 | |
| 1697 | if (_pages > atop_64(max_mem)) return false; |
| 1698 | |
| 1699 | dataSize = computeDataSize(_pages, /* upls */ count * 2); |
| 1700 | if (!initMemoryEntries(dataSize, mapper)) return false; |
| 1701 | dataP = getDataP(_memoryEntries); |
| 1702 | dataP->fPageCnt = _pages; |
| 1703 | |
| 1704 | if (((_task != kernel_task) || (kIOMemoryBufferPageable & _flags)) |
| 1705 | && (VM_KERN_MEMORY_NONE == _kernelTag)) |
| 1706 | { |
| 1707 | _kernelTag = IOMemoryTag(kernel_map); |
| 1708 | if (_kernelTag == gIOSurfaceTag) _userTag = VM_MEMORY_IOSURFACE; |
| 1709 | } |
| 1710 | |
| 1711 | if ( (kIOMemoryPersistent & _flags) && !_memRef) |
| 1712 | { |
| 1713 | IOReturn |
| 1714 | err = memoryReferenceCreate(0, &_memRef); |
| 1715 | if (kIOReturnSuccess != err) return false; |
| 1716 | } |
| 1717 | |
| 1718 | if ((_flags & kIOMemoryAutoPrepare) |
| 1719 | && prepare() != kIOReturnSuccess) |
| 1720 | return false; |
| 1721 | } |
| 1722 | } |
| 1723 | |
| 1724 | return true; |
| 1725 | } |
| 1726 | |
| 1727 | /* |
| 1728 | * free |
| 1729 | * |
| 1730 | * Free resources. |
| 1731 | */ |
| 1732 | void IOGeneralMemoryDescriptor::free() |
| 1733 | { |
| 1734 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 1735 | |
| 1736 | if( reserved) |
| 1737 | { |
| 1738 | LOCK; |
| 1739 | reserved->dp.memory = 0; |
| 1740 | UNLOCK; |
| 1741 | } |
| 1742 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) |
| 1743 | { |
| 1744 | ioGMDData * dataP; |
| 1745 | if (_memoryEntries && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBaseValid) |
| 1746 | { |
| 1747 | dmaUnmap(dataP->fMapper, NULL, 0, dataP->fMappedBase, dataP->fMappedLength); |
| 1748 | dataP->fMappedBaseValid = dataP->fMappedBase = 0; |
| 1749 | } |
| 1750 | } |
| 1751 | else |
| 1752 | { |
| 1753 | while (_wireCount) complete(); |
| 1754 | } |
| 1755 | |
| 1756 | if (_memoryEntries) _memoryEntries->release(); |
| 1757 | |
| 1758 | if (_ranges.v && !(kIOMemoryAsReference & _flags)) |
| 1759 | { |
| 1760 | if (kIOMemoryTypeUIO == type) |
| 1761 | uio_free((uio_t) _ranges.v); |
| 1762 | #ifndef __LP64__ |
| 1763 | else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) |
| 1764 | IODelete(_ranges.v64, IOAddressRange, _rangesCount); |
| 1765 | #endif /* !__LP64__ */ |
| 1766 | else |
| 1767 | IODelete(_ranges.v, IOVirtualRange, _rangesCount); |
| 1768 | |
| 1769 | _ranges.v = NULL; |
| 1770 | } |
| 1771 | |
| 1772 | if (reserved) |
| 1773 | { |
| 1774 | if (reserved->dp.devicePager) |
| 1775 | { |
| 1776 | // memEntry holds a ref on the device pager which owns reserved |
| 1777 | // (IOMemoryDescriptorReserved) so no reserved access after this point |
| 1778 | device_pager_deallocate( (memory_object_t) reserved->dp.devicePager ); |
| 1779 | } |
| 1780 | else |
| 1781 | IODelete(reserved, IOMemoryDescriptorReserved, 1); |
| 1782 | reserved = NULL; |
| 1783 | } |
| 1784 | |
| 1785 | if (_memRef) memoryReferenceRelease(_memRef); |
| 1786 | if (_prepareLock) IOLockFree(_prepareLock); |
| 1787 | |
| 1788 | super::free(); |
| 1789 | } |
| 1790 | |
| 1791 | #ifndef __LP64__ |
| 1792 | void IOGeneralMemoryDescriptor::unmapFromKernel() |
| 1793 | { |
| 1794 | panic("IOGMD::unmapFromKernel deprecated" ); |
| 1795 | } |
| 1796 | |
| 1797 | void IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex) |
| 1798 | { |
| 1799 | panic("IOGMD::mapIntoKernel deprecated" ); |
| 1800 | } |
| 1801 | #endif /* !__LP64__ */ |
| 1802 | |
| 1803 | /* |
| 1804 | * getDirection: |
| 1805 | * |
| 1806 | * Get the direction of the transfer. |
| 1807 | */ |
| 1808 | IODirection IOMemoryDescriptor::getDirection() const |
| 1809 | { |
| 1810 | #ifndef __LP64__ |
| 1811 | if (_direction) |
| 1812 | return _direction; |
| 1813 | #endif /* !__LP64__ */ |
| 1814 | return (IODirection) (_flags & kIOMemoryDirectionMask); |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * getLength: |
| 1819 | * |
| 1820 | * Get the length of the transfer (over all ranges). |
| 1821 | */ |
| 1822 | IOByteCount IOMemoryDescriptor::getLength() const |
| 1823 | { |
| 1824 | return _length; |
| 1825 | } |
| 1826 | |
| 1827 | void IOMemoryDescriptor::setTag( IOOptionBits tag ) |
| 1828 | { |
| 1829 | _tag = tag; |
| 1830 | } |
| 1831 | |
| 1832 | IOOptionBits IOMemoryDescriptor::getTag( void ) |
| 1833 | { |
| 1834 | return( _tag); |
| 1835 | } |
| 1836 | |
| 1837 | uint64_t IOMemoryDescriptor::getFlags(void) |
| 1838 | { |
| 1839 | return (_flags); |
| 1840 | } |
| 1841 | |
| 1842 | #ifndef __LP64__ |
| 1843 | #pragma clang diagnostic push |
| 1844 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 1845 | |
| 1846 | // @@@ gvdl: who is using this API? Seems like a wierd thing to implement. |
| 1847 | IOPhysicalAddress |
| 1848 | IOMemoryDescriptor::getSourceSegment( IOByteCount offset, IOByteCount * length ) |
| 1849 | { |
| 1850 | addr64_t physAddr = 0; |
| 1851 | |
| 1852 | if( prepare() == kIOReturnSuccess) { |
| 1853 | physAddr = getPhysicalSegment64( offset, length ); |
| 1854 | complete(); |
| 1855 | } |
| 1856 | |
| 1857 | return( (IOPhysicalAddress) physAddr ); // truncated but only page offset is used |
| 1858 | } |
| 1859 | |
| 1860 | #pragma clang diagnostic pop |
| 1861 | |
| 1862 | #endif /* !__LP64__ */ |
| 1863 | |
| 1864 | IOByteCount IOMemoryDescriptor::readBytes |
| 1865 | (IOByteCount offset, void *bytes, IOByteCount length) |
| 1866 | { |
| 1867 | addr64_t dstAddr = CAST_DOWN(addr64_t, bytes); |
| 1868 | IOByteCount remaining; |
| 1869 | |
| 1870 | // Assert that this entire I/O is withing the available range |
| 1871 | assert(offset <= _length); |
| 1872 | assert(offset + length <= _length); |
| 1873 | if ((offset >= _length) |
| 1874 | || ((offset + length) > _length)) { |
| 1875 | return 0; |
| 1876 | } |
| 1877 | |
| 1878 | assert (!(kIOMemoryRemote & _flags)); |
| 1879 | if (kIOMemoryRemote & _flags) return (0); |
| 1880 | |
| 1881 | if (kIOMemoryThreadSafe & _flags) |
| 1882 | LOCK; |
| 1883 | |
| 1884 | remaining = length = min(length, _length - offset); |
| 1885 | while (remaining) { // (process another target segment?) |
| 1886 | addr64_t srcAddr64; |
| 1887 | IOByteCount srcLen; |
| 1888 | |
| 1889 | srcAddr64 = getPhysicalSegment(offset, &srcLen, kIOMemoryMapperNone); |
| 1890 | if (!srcAddr64) |
| 1891 | break; |
| 1892 | |
| 1893 | // Clip segment length to remaining |
| 1894 | if (srcLen > remaining) |
| 1895 | srcLen = remaining; |
| 1896 | |
| 1897 | copypv(srcAddr64, dstAddr, srcLen, |
| 1898 | cppvPsrc | cppvNoRefSrc | cppvFsnk | cppvKmap); |
| 1899 | |
| 1900 | dstAddr += srcLen; |
| 1901 | offset += srcLen; |
| 1902 | remaining -= srcLen; |
| 1903 | } |
| 1904 | |
| 1905 | if (kIOMemoryThreadSafe & _flags) |
| 1906 | UNLOCK; |
| 1907 | |
| 1908 | assert(!remaining); |
| 1909 | |
| 1910 | return length - remaining; |
| 1911 | } |
| 1912 | |
| 1913 | IOByteCount IOMemoryDescriptor::writeBytes |
| 1914 | (IOByteCount inoffset, const void *bytes, IOByteCount length) |
| 1915 | { |
| 1916 | addr64_t srcAddr = CAST_DOWN(addr64_t, bytes); |
| 1917 | IOByteCount remaining; |
| 1918 | IOByteCount offset = inoffset; |
| 1919 | |
| 1920 | // Assert that this entire I/O is withing the available range |
| 1921 | assert(offset <= _length); |
| 1922 | assert(offset + length <= _length); |
| 1923 | |
| 1924 | assert( !(kIOMemoryPreparedReadOnly & _flags) ); |
| 1925 | |
| 1926 | if ( (kIOMemoryPreparedReadOnly & _flags) |
| 1927 | || (offset >= _length) |
| 1928 | || ((offset + length) > _length)) { |
| 1929 | return 0; |
| 1930 | } |
| 1931 | |
| 1932 | assert (!(kIOMemoryRemote & _flags)); |
| 1933 | if (kIOMemoryRemote & _flags) return (0); |
| 1934 | |
| 1935 | if (kIOMemoryThreadSafe & _flags) |
| 1936 | LOCK; |
| 1937 | |
| 1938 | remaining = length = min(length, _length - offset); |
| 1939 | while (remaining) { // (process another target segment?) |
| 1940 | addr64_t dstAddr64; |
| 1941 | IOByteCount dstLen; |
| 1942 | |
| 1943 | dstAddr64 = getPhysicalSegment(offset, &dstLen, kIOMemoryMapperNone); |
| 1944 | if (!dstAddr64) |
| 1945 | break; |
| 1946 | |
| 1947 | // Clip segment length to remaining |
| 1948 | if (dstLen > remaining) |
| 1949 | dstLen = remaining; |
| 1950 | |
| 1951 | if (!srcAddr) bzero_phys(dstAddr64, dstLen); |
| 1952 | else |
| 1953 | { |
| 1954 | copypv(srcAddr, (addr64_t) dstAddr64, dstLen, |
| 1955 | cppvPsnk | cppvFsnk | cppvNoRefSrc | cppvNoModSnk | cppvKmap); |
| 1956 | srcAddr += dstLen; |
| 1957 | } |
| 1958 | offset += dstLen; |
| 1959 | remaining -= dstLen; |
| 1960 | } |
| 1961 | |
| 1962 | if (kIOMemoryThreadSafe & _flags) |
| 1963 | UNLOCK; |
| 1964 | |
| 1965 | assert(!remaining); |
| 1966 | |
| 1967 | #if defined(__x86_64__) |
| 1968 | // copypv does not cppvFsnk on intel |
| 1969 | #else |
| 1970 | if (!srcAddr) performOperation(kIOMemoryIncoherentIOFlush, inoffset, length); |
| 1971 | #endif |
| 1972 | |
| 1973 | return length - remaining; |
| 1974 | } |
| 1975 | |
| 1976 | #ifndef __LP64__ |
| 1977 | void IOGeneralMemoryDescriptor::setPosition(IOByteCount position) |
| 1978 | { |
| 1979 | panic("IOGMD::setPosition deprecated" ); |
| 1980 | } |
| 1981 | #endif /* !__LP64__ */ |
| 1982 | |
| 1983 | static volatile SInt64 gIOMDPreparationID __attribute__((aligned(8))) = (1ULL << 32); |
| 1984 | |
| 1985 | uint64_t |
| 1986 | IOGeneralMemoryDescriptor::getPreparationID( void ) |
| 1987 | { |
| 1988 | ioGMDData *dataP; |
| 1989 | |
| 1990 | if (!_wireCount) |
| 1991 | return (kIOPreparationIDUnprepared); |
| 1992 | |
| 1993 | if (((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical) |
| 1994 | || ((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical64)) |
| 1995 | { |
| 1996 | IOMemoryDescriptor::setPreparationID(); |
| 1997 | return (IOMemoryDescriptor::getPreparationID()); |
| 1998 | } |
| 1999 | |
| 2000 | if (!_memoryEntries || !(dataP = getDataP(_memoryEntries))) |
| 2001 | return (kIOPreparationIDUnprepared); |
| 2002 | |
| 2003 | if (kIOPreparationIDUnprepared == dataP->fPreparationID) |
| 2004 | { |
| 2005 | dataP->fPreparationID = OSIncrementAtomic64(&gIOMDPreparationID); |
| 2006 | } |
| 2007 | return (dataP->fPreparationID); |
| 2008 | } |
| 2009 | |
| 2010 | IOMemoryDescriptorReserved * IOMemoryDescriptor::getKernelReserved( void ) |
| 2011 | { |
| 2012 | if (!reserved) |
| 2013 | { |
| 2014 | reserved = IONew(IOMemoryDescriptorReserved, 1); |
| 2015 | if (reserved) |
| 2016 | bzero(reserved, sizeof(IOMemoryDescriptorReserved)); |
| 2017 | } |
| 2018 | return (reserved); |
| 2019 | } |
| 2020 | |
| 2021 | void IOMemoryDescriptor::setPreparationID( void ) |
| 2022 | { |
| 2023 | if (getKernelReserved() && (kIOPreparationIDUnprepared == reserved->preparationID)) |
| 2024 | { |
| 2025 | reserved->preparationID = OSIncrementAtomic64(&gIOMDPreparationID); |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | uint64_t IOMemoryDescriptor::getPreparationID( void ) |
| 2030 | { |
| 2031 | if (reserved) |
| 2032 | return (reserved->preparationID); |
| 2033 | else |
| 2034 | return (kIOPreparationIDUnsupported); |
| 2035 | } |
| 2036 | |
| 2037 | void IOMemoryDescriptor::setVMTags(vm_tag_t kernelTag, vm_tag_t userTag) |
| 2038 | { |
| 2039 | _kernelTag = kernelTag; |
| 2040 | _userTag = userTag; |
| 2041 | } |
| 2042 | |
| 2043 | vm_tag_t IOMemoryDescriptor::getVMTag(vm_map_t map) |
| 2044 | { |
| 2045 | if (vm_kernel_map_is_kernel(map)) |
| 2046 | { |
| 2047 | if (VM_KERN_MEMORY_NONE != _kernelTag) return (_kernelTag); |
| 2048 | } |
| 2049 | else |
| 2050 | { |
| 2051 | if (VM_KERN_MEMORY_NONE != _userTag) return (_userTag); |
| 2052 | } |
| 2053 | return (IOMemoryTag(map)); |
| 2054 | } |
| 2055 | |
| 2056 | IOReturn IOGeneralMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const |
| 2057 | { |
| 2058 | IOReturn err = kIOReturnSuccess; |
| 2059 | DMACommandOps params; |
| 2060 | IOGeneralMemoryDescriptor * md = const_cast<IOGeneralMemoryDescriptor *>(this); |
| 2061 | ioGMDData *dataP; |
| 2062 | |
| 2063 | params = (op & ~kIOMDDMACommandOperationMask & op); |
| 2064 | op &= kIOMDDMACommandOperationMask; |
| 2065 | |
| 2066 | if (kIOMDDMAMap == op) |
| 2067 | { |
| 2068 | if (dataSize < sizeof(IOMDDMAMapArgs)) |
| 2069 | return kIOReturnUnderrun; |
| 2070 | |
| 2071 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
| 2072 | |
| 2073 | if (!_memoryEntries |
| 2074 | && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory); |
| 2075 | |
| 2076 | if (_memoryEntries && data->fMapper) |
| 2077 | { |
| 2078 | bool remap, keepMap; |
| 2079 | dataP = getDataP(_memoryEntries); |
| 2080 | |
| 2081 | if (data->fMapSpec.numAddressBits < dataP->fDMAMapNumAddressBits) dataP->fDMAMapNumAddressBits = data->fMapSpec.numAddressBits; |
| 2082 | if (data->fMapSpec.alignment > dataP->fDMAMapAlignment) dataP->fDMAMapAlignment = data->fMapSpec.alignment; |
| 2083 | |
| 2084 | keepMap = (data->fMapper == gIOSystemMapper); |
| 2085 | keepMap &= ((data->fOffset == 0) && (data->fLength == _length)); |
| 2086 | |
| 2087 | if ((data->fMapper == gIOSystemMapper) && _prepareLock) IOLockLock(_prepareLock); |
| 2088 | |
| 2089 | remap = (!keepMap); |
| 2090 | remap |= (dataP->fDMAMapNumAddressBits < 64) |
| 2091 | && ((dataP->fMappedBase + _length) > (1ULL << dataP->fDMAMapNumAddressBits)); |
| 2092 | remap |= (dataP->fDMAMapAlignment > page_size); |
| 2093 | |
| 2094 | if (remap || !dataP->fMappedBaseValid) |
| 2095 | { |
| 2096 | // if (dataP->fMappedBaseValid) OSReportWithBacktrace("kIOMDDMAMap whole %d remap %d params %d\n", whole, remap, params); |
| 2097 | err = md->dmaMap(data->fMapper, data->fCommand, &data->fMapSpec, data->fOffset, data->fLength, &data->fAlloc, &data->fAllocLength); |
| 2098 | if (keepMap && (kIOReturnSuccess == err) && !dataP->fMappedBaseValid) |
| 2099 | { |
| 2100 | dataP->fMappedBase = data->fAlloc; |
| 2101 | dataP->fMappedBaseValid = true; |
| 2102 | dataP->fMappedLength = data->fAllocLength; |
| 2103 | data->fAllocLength = 0; // IOMD owns the alloc now |
| 2104 | } |
| 2105 | } |
| 2106 | else |
| 2107 | { |
| 2108 | data->fAlloc = dataP->fMappedBase; |
| 2109 | data->fAllocLength = 0; // give out IOMD map |
| 2110 | md->dmaMapRecord(data->fMapper, data->fCommand, dataP->fMappedLength); |
| 2111 | } |
| 2112 | data->fMapContig = !dataP->fDiscontig; |
| 2113 | |
| 2114 | if ((data->fMapper == gIOSystemMapper) && _prepareLock) IOLockUnlock(_prepareLock); |
| 2115 | } |
| 2116 | return (err); |
| 2117 | } |
| 2118 | if (kIOMDDMAUnmap == op) |
| 2119 | { |
| 2120 | if (dataSize < sizeof(IOMDDMAMapArgs)) |
| 2121 | return kIOReturnUnderrun; |
| 2122 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
| 2123 | |
| 2124 | err = md->dmaUnmap(data->fMapper, data->fCommand, data->fOffset, data->fAlloc, data->fAllocLength); |
| 2125 | |
| 2126 | return kIOReturnSuccess; |
| 2127 | } |
| 2128 | |
| 2129 | if (kIOMDAddDMAMapSpec == op) |
| 2130 | { |
| 2131 | if (dataSize < sizeof(IODMAMapSpecification)) |
| 2132 | return kIOReturnUnderrun; |
| 2133 | |
| 2134 | IODMAMapSpecification * data = (IODMAMapSpecification *) vData; |
| 2135 | |
| 2136 | if (!_memoryEntries |
| 2137 | && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory); |
| 2138 | |
| 2139 | if (_memoryEntries) |
| 2140 | { |
| 2141 | dataP = getDataP(_memoryEntries); |
| 2142 | if (data->numAddressBits < dataP->fDMAMapNumAddressBits) |
| 2143 | dataP->fDMAMapNumAddressBits = data->numAddressBits; |
| 2144 | if (data->alignment > dataP->fDMAMapAlignment) |
| 2145 | dataP->fDMAMapAlignment = data->alignment; |
| 2146 | } |
| 2147 | return kIOReturnSuccess; |
| 2148 | } |
| 2149 | |
| 2150 | if (kIOMDGetCharacteristics == op) { |
| 2151 | |
| 2152 | if (dataSize < sizeof(IOMDDMACharacteristics)) |
| 2153 | return kIOReturnUnderrun; |
| 2154 | |
| 2155 | IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData; |
| 2156 | data->fLength = _length; |
| 2157 | data->fSGCount = _rangesCount; |
| 2158 | data->fPages = _pages; |
| 2159 | data->fDirection = getDirection(); |
| 2160 | if (!_wireCount) |
| 2161 | data->fIsPrepared = false; |
| 2162 | else { |
| 2163 | data->fIsPrepared = true; |
| 2164 | data->fHighestPage = _highestPage; |
| 2165 | if (_memoryEntries) |
| 2166 | { |
| 2167 | dataP = getDataP(_memoryEntries); |
| 2168 | ioPLBlock *ioplList = getIOPLList(dataP); |
| 2169 | UInt count = getNumIOPL(_memoryEntries, dataP); |
| 2170 | if (count == 1) |
| 2171 | data->fPageAlign = (ioplList[0].fPageOffset & PAGE_MASK) | ~PAGE_MASK; |
| 2172 | } |
| 2173 | } |
| 2174 | |
| 2175 | return kIOReturnSuccess; |
| 2176 | } |
| 2177 | |
| 2178 | else if (kIOMDDMAActive == op) |
| 2179 | { |
| 2180 | if (params) |
| 2181 | { |
| 2182 | int16_t prior; |
| 2183 | prior = OSAddAtomic16(1, &md->_dmaReferences); |
| 2184 | if (!prior) md->_mapName = NULL; |
| 2185 | } |
| 2186 | else |
| 2187 | { |
| 2188 | if (md->_dmaReferences) OSAddAtomic16(-1, &md->_dmaReferences); |
| 2189 | else panic("_dmaReferences underflow" ); |
| 2190 | } |
| 2191 | } |
| 2192 | else if (kIOMDWalkSegments != op) |
| 2193 | return kIOReturnBadArgument; |
| 2194 | |
| 2195 | // Get the next segment |
| 2196 | struct InternalState { |
| 2197 | IOMDDMAWalkSegmentArgs fIO; |
| 2198 | UInt fOffset2Index; |
| 2199 | UInt fIndex; |
| 2200 | UInt fNextOffset; |
| 2201 | } *isP; |
| 2202 | |
| 2203 | // Find the next segment |
| 2204 | if (dataSize < sizeof(*isP)) |
| 2205 | return kIOReturnUnderrun; |
| 2206 | |
| 2207 | isP = (InternalState *) vData; |
| 2208 | UInt offset = isP->fIO.fOffset; |
| 2209 | uint8_t mapped = isP->fIO.fMapped; |
| 2210 | uint64_t mappedBase; |
| 2211 | |
| 2212 | if (mapped && (kIOMemoryRemote & _flags)) return (kIOReturnNotAttached); |
| 2213 | |
| 2214 | if (IOMapper::gSystem && mapped |
| 2215 | && (!(kIOMemoryHostOnly & _flags)) |
| 2216 | && (!_memoryEntries || !getDataP(_memoryEntries)->fMappedBaseValid)) |
| 2217 | // && (_memoryEntries && !getDataP(_memoryEntries)->fMappedBaseValid)) |
| 2218 | { |
| 2219 | if (!_memoryEntries |
| 2220 | && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory); |
| 2221 | |
| 2222 | dataP = getDataP(_memoryEntries); |
| 2223 | if (dataP->fMapper) |
| 2224 | { |
| 2225 | IODMAMapSpecification mapSpec; |
| 2226 | bzero(&mapSpec, sizeof(mapSpec)); |
| 2227 | mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits; |
| 2228 | mapSpec.alignment = dataP->fDMAMapAlignment; |
| 2229 | err = md->dmaMap(dataP->fMapper, NULL, &mapSpec, 0, _length, &dataP->fMappedBase, &dataP->fMappedLength); |
| 2230 | if (kIOReturnSuccess != err) return (err); |
| 2231 | dataP->fMappedBaseValid = true; |
| 2232 | } |
| 2233 | } |
| 2234 | |
| 2235 | if (kIOMDDMAWalkMappedLocal == mapped) mappedBase = isP->fIO.fMappedBase; |
| 2236 | else if (mapped) |
| 2237 | { |
| 2238 | if (IOMapper::gSystem |
| 2239 | && (!(kIOMemoryHostOnly & _flags)) |
| 2240 | && _memoryEntries |
| 2241 | && (dataP = getDataP(_memoryEntries)) |
| 2242 | && dataP->fMappedBaseValid) |
| 2243 | { |
| 2244 | mappedBase = dataP->fMappedBase; |
| 2245 | } |
| 2246 | else mapped = 0; |
| 2247 | } |
| 2248 | |
| 2249 | if (offset >= _length) |
| 2250 | return (offset == _length)? kIOReturnOverrun : kIOReturnInternalError; |
| 2251 | |
| 2252 | // Validate the previous offset |
| 2253 | UInt ind, off2Ind = isP->fOffset2Index; |
| 2254 | if (!params |
| 2255 | && offset |
| 2256 | && (offset == isP->fNextOffset || off2Ind <= offset)) |
| 2257 | ind = isP->fIndex; |
| 2258 | else |
| 2259 | ind = off2Ind = 0; // Start from beginning |
| 2260 | |
| 2261 | UInt length; |
| 2262 | UInt64 address; |
| 2263 | |
| 2264 | if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) { |
| 2265 | |
| 2266 | // Physical address based memory descriptor |
| 2267 | const IOPhysicalRange *physP = (IOPhysicalRange *) &_ranges.p[0]; |
| 2268 | |
| 2269 | // Find the range after the one that contains the offset |
| 2270 | mach_vm_size_t len; |
| 2271 | for (len = 0; off2Ind <= offset; ind++) { |
| 2272 | len = physP[ind].length; |
| 2273 | off2Ind += len; |
| 2274 | } |
| 2275 | |
| 2276 | // Calculate length within range and starting address |
| 2277 | length = off2Ind - offset; |
| 2278 | address = physP[ind - 1].address + len - length; |
| 2279 | |
| 2280 | if (true && mapped) |
| 2281 | { |
| 2282 | address = mappedBase + offset; |
| 2283 | } |
| 2284 | else |
| 2285 | { |
| 2286 | // see how far we can coalesce ranges |
| 2287 | while (ind < _rangesCount && address + length == physP[ind].address) { |
| 2288 | len = physP[ind].length; |
| 2289 | length += len; |
| 2290 | off2Ind += len; |
| 2291 | ind++; |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | // correct contiguous check overshoot |
| 2296 | ind--; |
| 2297 | off2Ind -= len; |
| 2298 | } |
| 2299 | #ifndef __LP64__ |
| 2300 | else if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64) { |
| 2301 | |
| 2302 | // Physical address based memory descriptor |
| 2303 | const IOAddressRange *physP = (IOAddressRange *) &_ranges.v64[0]; |
| 2304 | |
| 2305 | // Find the range after the one that contains the offset |
| 2306 | mach_vm_size_t len; |
| 2307 | for (len = 0; off2Ind <= offset; ind++) { |
| 2308 | len = physP[ind].length; |
| 2309 | off2Ind += len; |
| 2310 | } |
| 2311 | |
| 2312 | // Calculate length within range and starting address |
| 2313 | length = off2Ind - offset; |
| 2314 | address = physP[ind - 1].address + len - length; |
| 2315 | |
| 2316 | if (true && mapped) |
| 2317 | { |
| 2318 | address = mappedBase + offset; |
| 2319 | } |
| 2320 | else |
| 2321 | { |
| 2322 | // see how far we can coalesce ranges |
| 2323 | while (ind < _rangesCount && address + length == physP[ind].address) { |
| 2324 | len = physP[ind].length; |
| 2325 | length += len; |
| 2326 | off2Ind += len; |
| 2327 | ind++; |
| 2328 | } |
| 2329 | } |
| 2330 | // correct contiguous check overshoot |
| 2331 | ind--; |
| 2332 | off2Ind -= len; |
| 2333 | } |
| 2334 | #endif /* !__LP64__ */ |
| 2335 | else do { |
| 2336 | if (!_wireCount) |
| 2337 | panic("IOGMD: not wired for the IODMACommand" ); |
| 2338 | |
| 2339 | assert(_memoryEntries); |
| 2340 | |
| 2341 | dataP = getDataP(_memoryEntries); |
| 2342 | const ioPLBlock *ioplList = getIOPLList(dataP); |
| 2343 | UInt numIOPLs = getNumIOPL(_memoryEntries, dataP); |
| 2344 | upl_page_info_t *pageList = getPageList(dataP); |
| 2345 | |
| 2346 | assert(numIOPLs > 0); |
| 2347 | |
| 2348 | // Scan through iopl info blocks looking for block containing offset |
| 2349 | while (ind < numIOPLs && offset >= ioplList[ind].fIOMDOffset) |
| 2350 | ind++; |
| 2351 | |
| 2352 | // Go back to actual range as search goes past it |
| 2353 | ioPLBlock ioplInfo = ioplList[ind - 1]; |
| 2354 | off2Ind = ioplInfo.fIOMDOffset; |
| 2355 | |
| 2356 | if (ind < numIOPLs) |
| 2357 | length = ioplList[ind].fIOMDOffset; |
| 2358 | else |
| 2359 | length = _length; |
| 2360 | length -= offset; // Remainder within iopl |
| 2361 | |
| 2362 | // Subtract offset till this iopl in total list |
| 2363 | offset -= off2Ind; |
| 2364 | |
| 2365 | // If a mapped address is requested and this is a pre-mapped IOPL |
| 2366 | // then just need to compute an offset relative to the mapped base. |
| 2367 | if (mapped) { |
| 2368 | offset += (ioplInfo.fPageOffset & PAGE_MASK); |
| 2369 | address = trunc_page_64(mappedBase) + ptoa_64(ioplInfo.fMappedPage) + offset; |
| 2370 | continue; // Done leave do/while(false) now |
| 2371 | } |
| 2372 | |
| 2373 | // The offset is rebased into the current iopl. |
| 2374 | // Now add the iopl 1st page offset. |
| 2375 | offset += ioplInfo.fPageOffset; |
| 2376 | |
| 2377 | // For external UPLs the fPageInfo field points directly to |
| 2378 | // the upl's upl_page_info_t array. |
| 2379 | if (ioplInfo.fFlags & kIOPLExternUPL) |
| 2380 | pageList = (upl_page_info_t *) ioplInfo.fPageInfo; |
| 2381 | else |
| 2382 | pageList = &pageList[ioplInfo.fPageInfo]; |
| 2383 | |
| 2384 | // Check for direct device non-paged memory |
| 2385 | if ( ioplInfo.fFlags & kIOPLOnDevice ) { |
| 2386 | address = ptoa_64(pageList->phys_addr) + offset; |
| 2387 | continue; // Done leave do/while(false) now |
| 2388 | } |
| 2389 | |
| 2390 | // Now we need compute the index into the pageList |
| 2391 | UInt pageInd = atop_32(offset); |
| 2392 | offset &= PAGE_MASK; |
| 2393 | |
| 2394 | // Compute the starting address of this segment |
| 2395 | IOPhysicalAddress pageAddr = pageList[pageInd].phys_addr; |
| 2396 | if (!pageAddr) { |
| 2397 | panic("!pageList phys_addr" ); |
| 2398 | } |
| 2399 | |
| 2400 | address = ptoa_64(pageAddr) + offset; |
| 2401 | |
| 2402 | // length is currently set to the length of the remainider of the iopl. |
| 2403 | // We need to check that the remainder of the iopl is contiguous. |
| 2404 | // This is indicated by pageList[ind].phys_addr being sequential. |
| 2405 | IOByteCount contigLength = PAGE_SIZE - offset; |
| 2406 | while (contigLength < length |
| 2407 | && ++pageAddr == pageList[++pageInd].phys_addr) |
| 2408 | { |
| 2409 | contigLength += PAGE_SIZE; |
| 2410 | } |
| 2411 | |
| 2412 | if (contigLength < length) |
| 2413 | length = contigLength; |
| 2414 | |
| 2415 | |
| 2416 | assert(address); |
| 2417 | assert(length); |
| 2418 | |
| 2419 | } while (false); |
| 2420 | |
| 2421 | // Update return values and state |
| 2422 | isP->fIO.fIOVMAddr = address; |
| 2423 | isP->fIO.fLength = length; |
| 2424 | isP->fIndex = ind; |
| 2425 | isP->fOffset2Index = off2Ind; |
| 2426 | isP->fNextOffset = isP->fIO.fOffset + length; |
| 2427 | |
| 2428 | return kIOReturnSuccess; |
| 2429 | } |
| 2430 | |
| 2431 | addr64_t |
| 2432 | IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options) |
| 2433 | { |
| 2434 | IOReturn ret; |
| 2435 | mach_vm_address_t address = 0; |
| 2436 | mach_vm_size_t length = 0; |
| 2437 | IOMapper * mapper = gIOSystemMapper; |
| 2438 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 2439 | |
| 2440 | if (lengthOfSegment) |
| 2441 | *lengthOfSegment = 0; |
| 2442 | |
| 2443 | if (offset >= _length) |
| 2444 | return 0; |
| 2445 | |
| 2446 | // IOMemoryDescriptor::doMap() cannot use getPhysicalSegment() to obtain the page offset, since it must |
| 2447 | // support the unwired memory case in IOGeneralMemoryDescriptor, and hibernate_write_image() cannot use |
| 2448 | // map()->getVirtualAddress() to obtain the kernel pointer, since it must prevent the memory allocation |
| 2449 | // due to IOMemoryMap, so _kIOMemorySourceSegment is a necessary evil until all of this gets cleaned up |
| 2450 | |
| 2451 | if ((options & _kIOMemorySourceSegment) && (kIOMemoryTypeUPL != type)) |
| 2452 | { |
| 2453 | unsigned rangesIndex = 0; |
| 2454 | Ranges vec = _ranges; |
| 2455 | mach_vm_address_t addr; |
| 2456 | |
| 2457 | // Find starting address within the vector of ranges |
| 2458 | for (;;) { |
| 2459 | getAddrLenForInd(addr, length, type, vec, rangesIndex); |
| 2460 | if (offset < length) |
| 2461 | break; |
| 2462 | offset -= length; // (make offset relative) |
| 2463 | rangesIndex++; |
| 2464 | } |
| 2465 | |
| 2466 | // Now that we have the starting range, |
| 2467 | // lets find the last contiguous range |
| 2468 | addr += offset; |
| 2469 | length -= offset; |
| 2470 | |
| 2471 | for ( ++rangesIndex; rangesIndex < _rangesCount; rangesIndex++ ) { |
| 2472 | mach_vm_address_t newAddr; |
| 2473 | mach_vm_size_t newLen; |
| 2474 | |
| 2475 | getAddrLenForInd(newAddr, newLen, type, vec, rangesIndex); |
| 2476 | if (addr + length != newAddr) |
| 2477 | break; |
| 2478 | length += newLen; |
| 2479 | } |
| 2480 | if (addr) |
| 2481 | address = (IOPhysicalAddress) addr; // Truncate address to 32bit |
| 2482 | } |
| 2483 | else |
| 2484 | { |
| 2485 | IOMDDMAWalkSegmentState _state; |
| 2486 | IOMDDMAWalkSegmentArgs * state = (IOMDDMAWalkSegmentArgs *) (void *)&_state; |
| 2487 | |
| 2488 | state->fOffset = offset; |
| 2489 | state->fLength = _length - offset; |
| 2490 | state->fMapped = (0 == (options & kIOMemoryMapperNone)) && !(_flags & kIOMemoryHostOrRemote); |
| 2491 | |
| 2492 | ret = dmaCommandOperation(kIOMDFirstSegment, _state, sizeof(_state)); |
| 2493 | |
| 2494 | if ((kIOReturnSuccess != ret) && (kIOReturnOverrun != ret)) |
| 2495 | DEBG("getPhysicalSegment dmaCommandOperation(%lx), %p, offset %qx, addr %qx, len %qx\n" , |
| 2496 | ret, this, state->fOffset, |
| 2497 | state->fIOVMAddr, state->fLength); |
| 2498 | if (kIOReturnSuccess == ret) |
| 2499 | { |
| 2500 | address = state->fIOVMAddr; |
| 2501 | length = state->fLength; |
| 2502 | } |
| 2503 | |
| 2504 | // dmaCommandOperation() does not distinguish between "mapped" and "unmapped" physical memory, even |
| 2505 | // with fMapped set correctly, so we must handle the transformation here until this gets cleaned up |
| 2506 | |
| 2507 | if (mapper && ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))) |
| 2508 | { |
| 2509 | if ((options & kIOMemoryMapperNone) && !(_flags & kIOMemoryMapperNone)) |
| 2510 | { |
| 2511 | addr64_t origAddr = address; |
| 2512 | IOByteCount origLen = length; |
| 2513 | |
| 2514 | address = mapper->mapToPhysicalAddress(origAddr); |
| 2515 | length = page_size - (address & (page_size - 1)); |
| 2516 | while ((length < origLen) |
| 2517 | && ((address + length) == mapper->mapToPhysicalAddress(origAddr + length))) |
| 2518 | length += page_size; |
| 2519 | if (length > origLen) |
| 2520 | length = origLen; |
| 2521 | } |
| 2522 | } |
| 2523 | } |
| 2524 | |
| 2525 | if (!address) |
| 2526 | length = 0; |
| 2527 | |
| 2528 | if (lengthOfSegment) |
| 2529 | *lengthOfSegment = length; |
| 2530 | |
| 2531 | return (address); |
| 2532 | } |
| 2533 | |
| 2534 | #ifndef __LP64__ |
| 2535 | #pragma clang diagnostic push |
| 2536 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 2537 | |
| 2538 | addr64_t |
| 2539 | IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options) |
| 2540 | { |
| 2541 | addr64_t address = 0; |
| 2542 | |
| 2543 | if (options & _kIOMemorySourceSegment) |
| 2544 | { |
| 2545 | address = getSourceSegment(offset, lengthOfSegment); |
| 2546 | } |
| 2547 | else if (options & kIOMemoryMapperNone) |
| 2548 | { |
| 2549 | address = getPhysicalSegment64(offset, lengthOfSegment); |
| 2550 | } |
| 2551 | else |
| 2552 | { |
| 2553 | address = getPhysicalSegment(offset, lengthOfSegment); |
| 2554 | } |
| 2555 | |
| 2556 | return (address); |
| 2557 | } |
| 2558 | #pragma clang diagnostic pop |
| 2559 | |
| 2560 | addr64_t |
| 2561 | IOGeneralMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment) |
| 2562 | { |
| 2563 | return (getPhysicalSegment(offset, lengthOfSegment, kIOMemoryMapperNone)); |
| 2564 | } |
| 2565 | |
| 2566 | IOPhysicalAddress |
| 2567 | IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment) |
| 2568 | { |
| 2569 | addr64_t address = 0; |
| 2570 | IOByteCount length = 0; |
| 2571 | |
| 2572 | address = getPhysicalSegment(offset, lengthOfSegment, 0); |
| 2573 | |
| 2574 | if (lengthOfSegment) |
| 2575 | length = *lengthOfSegment; |
| 2576 | |
| 2577 | if ((address + length) > 0x100000000ULL) |
| 2578 | { |
| 2579 | panic("getPhysicalSegment() out of 32b range 0x%qx, len 0x%lx, class %s" , |
| 2580 | address, (long) length, (getMetaClass())->getClassName()); |
| 2581 | } |
| 2582 | |
| 2583 | return ((IOPhysicalAddress) address); |
| 2584 | } |
| 2585 | |
| 2586 | addr64_t |
| 2587 | IOMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment) |
| 2588 | { |
| 2589 | IOPhysicalAddress phys32; |
| 2590 | IOByteCount length; |
| 2591 | addr64_t phys64; |
| 2592 | IOMapper * mapper = 0; |
| 2593 | |
| 2594 | phys32 = getPhysicalSegment(offset, lengthOfSegment); |
| 2595 | if (!phys32) |
| 2596 | return 0; |
| 2597 | |
| 2598 | if (gIOSystemMapper) |
| 2599 | mapper = gIOSystemMapper; |
| 2600 | |
| 2601 | if (mapper) |
| 2602 | { |
| 2603 | IOByteCount origLen; |
| 2604 | |
| 2605 | phys64 = mapper->mapToPhysicalAddress(phys32); |
| 2606 | origLen = *lengthOfSegment; |
| 2607 | length = page_size - (phys64 & (page_size - 1)); |
| 2608 | while ((length < origLen) |
| 2609 | && ((phys64 + length) == mapper->mapToPhysicalAddress(phys32 + length))) |
| 2610 | length += page_size; |
| 2611 | if (length > origLen) |
| 2612 | length = origLen; |
| 2613 | |
| 2614 | *lengthOfSegment = length; |
| 2615 | } |
| 2616 | else |
| 2617 | phys64 = (addr64_t) phys32; |
| 2618 | |
| 2619 | return phys64; |
| 2620 | } |
| 2621 | |
| 2622 | IOPhysicalAddress |
| 2623 | IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment) |
| 2624 | { |
| 2625 | return ((IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, 0)); |
| 2626 | } |
| 2627 | |
| 2628 | IOPhysicalAddress |
| 2629 | IOGeneralMemoryDescriptor::getSourceSegment(IOByteCount offset, IOByteCount *lengthOfSegment) |
| 2630 | { |
| 2631 | return ((IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, _kIOMemorySourceSegment)); |
| 2632 | } |
| 2633 | |
| 2634 | #pragma clang diagnostic push |
| 2635 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 2636 | |
| 2637 | void * IOGeneralMemoryDescriptor::getVirtualSegment(IOByteCount offset, |
| 2638 | IOByteCount * lengthOfSegment) |
| 2639 | { |
| 2640 | if (_task == kernel_task) |
| 2641 | return (void *) getSourceSegment(offset, lengthOfSegment); |
| 2642 | else |
| 2643 | panic("IOGMD::getVirtualSegment deprecated" ); |
| 2644 | |
| 2645 | return 0; |
| 2646 | } |
| 2647 | #pragma clang diagnostic pop |
| 2648 | #endif /* !__LP64__ */ |
| 2649 | |
| 2650 | IOReturn |
| 2651 | IOMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const |
| 2652 | { |
| 2653 | IOMemoryDescriptor *md = const_cast<IOMemoryDescriptor *>(this); |
| 2654 | DMACommandOps params; |
| 2655 | IOReturn err; |
| 2656 | |
| 2657 | params = (op & ~kIOMDDMACommandOperationMask & op); |
| 2658 | op &= kIOMDDMACommandOperationMask; |
| 2659 | |
| 2660 | if (kIOMDGetCharacteristics == op) { |
| 2661 | if (dataSize < sizeof(IOMDDMACharacteristics)) |
| 2662 | return kIOReturnUnderrun; |
| 2663 | |
| 2664 | IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData; |
| 2665 | data->fLength = getLength(); |
| 2666 | data->fSGCount = 0; |
| 2667 | data->fDirection = getDirection(); |
| 2668 | data->fIsPrepared = true; // Assume prepared - fails safe |
| 2669 | } |
| 2670 | else if (kIOMDWalkSegments == op) { |
| 2671 | if (dataSize < sizeof(IOMDDMAWalkSegmentArgs)) |
| 2672 | return kIOReturnUnderrun; |
| 2673 | |
| 2674 | IOMDDMAWalkSegmentArgs *data = (IOMDDMAWalkSegmentArgs *) vData; |
| 2675 | IOByteCount offset = (IOByteCount) data->fOffset; |
| 2676 | |
| 2677 | IOPhysicalLength length; |
| 2678 | if (data->fMapped && IOMapper::gSystem) |
| 2679 | data->fIOVMAddr = md->getPhysicalSegment(offset, &length); |
| 2680 | else |
| 2681 | data->fIOVMAddr = md->getPhysicalSegment(offset, &length, kIOMemoryMapperNone); |
| 2682 | data->fLength = length; |
| 2683 | } |
| 2684 | else if (kIOMDAddDMAMapSpec == op) return kIOReturnUnsupported; |
| 2685 | else if (kIOMDDMAMap == op) |
| 2686 | { |
| 2687 | if (dataSize < sizeof(IOMDDMAMapArgs)) |
| 2688 | return kIOReturnUnderrun; |
| 2689 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
| 2690 | |
| 2691 | if (params) panic("class %s does not support IODMACommand::kIterateOnly" , getMetaClass()->getClassName()); |
| 2692 | |
| 2693 | data->fMapContig = true; |
| 2694 | err = md->dmaMap(data->fMapper, data->fCommand, &data->fMapSpec, data->fOffset, data->fLength, &data->fAlloc, &data->fAllocLength); |
| 2695 | |
| 2696 | return (err); |
| 2697 | } |
| 2698 | else if (kIOMDDMAUnmap == op) |
| 2699 | { |
| 2700 | if (dataSize < sizeof(IOMDDMAMapArgs)) |
| 2701 | return kIOReturnUnderrun; |
| 2702 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
| 2703 | |
| 2704 | err = md->dmaUnmap(data->fMapper, data->fCommand, data->fOffset, data->fAlloc, data->fAllocLength); |
| 2705 | |
| 2706 | return (kIOReturnSuccess); |
| 2707 | } |
| 2708 | else return kIOReturnBadArgument; |
| 2709 | |
| 2710 | return kIOReturnSuccess; |
| 2711 | } |
| 2712 | |
| 2713 | IOReturn |
| 2714 | IOGeneralMemoryDescriptor::setPurgeable( IOOptionBits newState, |
| 2715 | IOOptionBits * oldState ) |
| 2716 | { |
| 2717 | IOReturn err = kIOReturnSuccess; |
| 2718 | |
| 2719 | vm_purgable_t control; |
| 2720 | int state; |
| 2721 | |
| 2722 | assert (!(kIOMemoryRemote & _flags)); |
| 2723 | if (kIOMemoryRemote & _flags) return (kIOReturnNotAttached); |
| 2724 | |
| 2725 | if (_memRef) |
| 2726 | { |
| 2727 | err = super::setPurgeable(newState, oldState); |
| 2728 | } |
| 2729 | else |
| 2730 | { |
| 2731 | if (kIOMemoryThreadSafe & _flags) |
| 2732 | LOCK; |
| 2733 | do |
| 2734 | { |
| 2735 | // Find the appropriate vm_map for the given task |
| 2736 | vm_map_t curMap; |
| 2737 | if (_task == kernel_task && (kIOMemoryBufferPageable & _flags)) |
| 2738 | { |
| 2739 | err = kIOReturnNotReady; |
| 2740 | break; |
| 2741 | } |
| 2742 | else if (!_task) |
| 2743 | { |
| 2744 | err = kIOReturnUnsupported; |
| 2745 | break; |
| 2746 | } |
| 2747 | else |
| 2748 | { |
| 2749 | curMap = get_task_map(_task); |
| 2750 | if (NULL == curMap) |
| 2751 | { |
| 2752 | err = KERN_INVALID_ARGUMENT; |
| 2753 | break; |
| 2754 | } |
| 2755 | } |
| 2756 | |
| 2757 | // can only do one range |
| 2758 | Ranges vec = _ranges; |
| 2759 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 2760 | mach_vm_address_t addr; |
| 2761 | mach_vm_size_t len; |
| 2762 | getAddrLenForInd(addr, len, type, vec, 0); |
| 2763 | |
| 2764 | err = purgeableControlBits(newState, &control, &state); |
| 2765 | if (kIOReturnSuccess != err) |
| 2766 | break; |
| 2767 | err = vm_map_purgable_control(curMap, addr, control, &state); |
| 2768 | if (oldState) |
| 2769 | { |
| 2770 | if (kIOReturnSuccess == err) |
| 2771 | { |
| 2772 | err = purgeableStateBits(&state); |
| 2773 | *oldState = state; |
| 2774 | } |
| 2775 | } |
| 2776 | } |
| 2777 | while (false); |
| 2778 | if (kIOMemoryThreadSafe & _flags) |
| 2779 | UNLOCK; |
| 2780 | } |
| 2781 | |
| 2782 | return (err); |
| 2783 | } |
| 2784 | |
| 2785 | IOReturn IOMemoryDescriptor::setPurgeable( IOOptionBits newState, |
| 2786 | IOOptionBits * oldState ) |
| 2787 | { |
| 2788 | IOReturn err = kIOReturnNotReady; |
| 2789 | |
| 2790 | if (kIOMemoryThreadSafe & _flags) LOCK; |
| 2791 | if (_memRef) err = IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(_memRef, newState, oldState); |
| 2792 | if (kIOMemoryThreadSafe & _flags) UNLOCK; |
| 2793 | |
| 2794 | return (err); |
| 2795 | } |
| 2796 | |
| 2797 | IOReturn IOMemoryDescriptor::getPageCounts( IOByteCount * residentPageCount, |
| 2798 | IOByteCount * dirtyPageCount ) |
| 2799 | { |
| 2800 | IOReturn err = kIOReturnNotReady; |
| 2801 | |
| 2802 | assert (!(kIOMemoryRemote & _flags)); |
| 2803 | if (kIOMemoryRemote & _flags) return (kIOReturnNotAttached); |
| 2804 | |
| 2805 | if (kIOMemoryThreadSafe & _flags) LOCK; |
| 2806 | if (_memRef) err = IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(_memRef, residentPageCount, dirtyPageCount); |
| 2807 | else |
| 2808 | { |
| 2809 | IOMultiMemoryDescriptor * mmd; |
| 2810 | IOSubMemoryDescriptor * smd; |
| 2811 | if ((smd = OSDynamicCast(IOSubMemoryDescriptor, this))) |
| 2812 | { |
| 2813 | err = smd->getPageCounts(residentPageCount, dirtyPageCount); |
| 2814 | } |
| 2815 | else if ((mmd = OSDynamicCast(IOMultiMemoryDescriptor, this))) |
| 2816 | { |
| 2817 | err = mmd->getPageCounts(residentPageCount, dirtyPageCount); |
| 2818 | } |
| 2819 | } |
| 2820 | if (kIOMemoryThreadSafe & _flags) UNLOCK; |
| 2821 | |
| 2822 | return (err); |
| 2823 | } |
| 2824 | |
| 2825 | |
| 2826 | #if defined(__arm__) || defined(__arm64__) |
| 2827 | extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *res); |
| 2828 | extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *res); |
| 2829 | #else /* defined(__arm__) || defined(__arm64__) */ |
| 2830 | extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count); |
| 2831 | extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count); |
| 2832 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 2833 | |
| 2834 | static void SetEncryptOp(addr64_t pa, unsigned int count) |
| 2835 | { |
| 2836 | ppnum_t page, end; |
| 2837 | |
| 2838 | page = atop_64(round_page_64(pa)); |
| 2839 | end = atop_64(trunc_page_64(pa + count)); |
| 2840 | for (; page < end; page++) |
| 2841 | { |
| 2842 | pmap_clear_noencrypt(page); |
| 2843 | } |
| 2844 | } |
| 2845 | |
| 2846 | static void ClearEncryptOp(addr64_t pa, unsigned int count) |
| 2847 | { |
| 2848 | ppnum_t page, end; |
| 2849 | |
| 2850 | page = atop_64(round_page_64(pa)); |
| 2851 | end = atop_64(trunc_page_64(pa + count)); |
| 2852 | for (; page < end; page++) |
| 2853 | { |
| 2854 | pmap_set_noencrypt(page); |
| 2855 | } |
| 2856 | } |
| 2857 | |
| 2858 | IOReturn IOMemoryDescriptor::performOperation( IOOptionBits options, |
| 2859 | IOByteCount offset, IOByteCount length ) |
| 2860 | { |
| 2861 | IOByteCount remaining; |
| 2862 | unsigned int res; |
| 2863 | void (*func)(addr64_t pa, unsigned int count) = 0; |
| 2864 | #if defined(__arm__) || defined(__arm64__) |
| 2865 | void (*func_ext)(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *result) = 0; |
| 2866 | #endif |
| 2867 | |
| 2868 | assert (!(kIOMemoryRemote & _flags)); |
| 2869 | if (kIOMemoryRemote & _flags) return (kIOReturnNotAttached); |
| 2870 | |
| 2871 | switch (options) |
| 2872 | { |
| 2873 | case kIOMemoryIncoherentIOFlush: |
| 2874 | #if defined(__arm__) || defined(__arm64__) |
| 2875 | func_ext = &dcache_incoherent_io_flush64; |
| 2876 | #if __ARM_COHERENT_IO__ |
| 2877 | func_ext(0, 0, 0, &res); |
| 2878 | return kIOReturnSuccess; |
| 2879 | #else /* __ARM_COHERENT_IO__ */ |
| 2880 | break; |
| 2881 | #endif /* __ARM_COHERENT_IO__ */ |
| 2882 | #else /* defined(__arm__) || defined(__arm64__) */ |
| 2883 | func = &dcache_incoherent_io_flush64; |
| 2884 | break; |
| 2885 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 2886 | case kIOMemoryIncoherentIOStore: |
| 2887 | #if defined(__arm__) || defined(__arm64__) |
| 2888 | func_ext = &dcache_incoherent_io_store64; |
| 2889 | #if __ARM_COHERENT_IO__ |
| 2890 | func_ext(0, 0, 0, &res); |
| 2891 | return kIOReturnSuccess; |
| 2892 | #else /* __ARM_COHERENT_IO__ */ |
| 2893 | break; |
| 2894 | #endif /* __ARM_COHERENT_IO__ */ |
| 2895 | #else /* defined(__arm__) || defined(__arm64__) */ |
| 2896 | func = &dcache_incoherent_io_store64; |
| 2897 | break; |
| 2898 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 2899 | |
| 2900 | case kIOMemorySetEncrypted: |
| 2901 | func = &SetEncryptOp; |
| 2902 | break; |
| 2903 | case kIOMemoryClearEncrypted: |
| 2904 | func = &ClearEncryptOp; |
| 2905 | break; |
| 2906 | } |
| 2907 | |
| 2908 | #if defined(__arm__) || defined(__arm64__) |
| 2909 | if ((func == 0) && (func_ext == 0)) |
| 2910 | return (kIOReturnUnsupported); |
| 2911 | #else /* defined(__arm__) || defined(__arm64__) */ |
| 2912 | if (!func) |
| 2913 | return (kIOReturnUnsupported); |
| 2914 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 2915 | |
| 2916 | if (kIOMemoryThreadSafe & _flags) |
| 2917 | LOCK; |
| 2918 | |
| 2919 | res = 0x0UL; |
| 2920 | remaining = length = min(length, getLength() - offset); |
| 2921 | while (remaining) |
| 2922 | // (process another target segment?) |
| 2923 | { |
| 2924 | addr64_t dstAddr64; |
| 2925 | IOByteCount dstLen; |
| 2926 | |
| 2927 | dstAddr64 = getPhysicalSegment(offset, &dstLen, kIOMemoryMapperNone); |
| 2928 | if (!dstAddr64) |
| 2929 | break; |
| 2930 | |
| 2931 | // Clip segment length to remaining |
| 2932 | if (dstLen > remaining) |
| 2933 | dstLen = remaining; |
| 2934 | |
| 2935 | #if defined(__arm__) || defined(__arm64__) |
| 2936 | if (func) |
| 2937 | (*func)(dstAddr64, dstLen); |
| 2938 | if (func_ext) { |
| 2939 | (*func_ext)(dstAddr64, dstLen, remaining, &res); |
| 2940 | if (res != 0x0UL) { |
| 2941 | remaining = 0; |
| 2942 | break; |
| 2943 | } |
| 2944 | } |
| 2945 | #else /* defined(__arm__) || defined(__arm64__) */ |
| 2946 | (*func)(dstAddr64, dstLen); |
| 2947 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 2948 | |
| 2949 | offset += dstLen; |
| 2950 | remaining -= dstLen; |
| 2951 | } |
| 2952 | |
| 2953 | if (kIOMemoryThreadSafe & _flags) |
| 2954 | UNLOCK; |
| 2955 | |
| 2956 | return (remaining ? kIOReturnUnderrun : kIOReturnSuccess); |
| 2957 | } |
| 2958 | |
| 2959 | /* |
| 2960 | * |
| 2961 | */ |
| 2962 | |
| 2963 | #if defined(__i386__) || defined(__x86_64__) |
| 2964 | |
| 2965 | #define io_kernel_static_start vm_kernel_stext |
| 2966 | #define io_kernel_static_end vm_kernel_etext |
| 2967 | |
| 2968 | #elif defined(__arm__) || defined(__arm64__) |
| 2969 | |
| 2970 | extern vm_offset_t static_memory_end; |
| 2971 | |
| 2972 | #if defined(__arm64__) |
| 2973 | #define io_kernel_static_start vm_kext_base |
| 2974 | #else /* defined(__arm64__) */ |
| 2975 | #define io_kernel_static_start vm_kernel_stext |
| 2976 | #endif /* defined(__arm64__) */ |
| 2977 | |
| 2978 | #define io_kernel_static_end static_memory_end |
| 2979 | |
| 2980 | #else |
| 2981 | #error io_kernel_static_end is undefined for this architecture |
| 2982 | #endif |
| 2983 | |
| 2984 | static kern_return_t |
| 2985 | io_get_kernel_static_upl( |
| 2986 | vm_map_t /* map */, |
| 2987 | uintptr_t offset, |
| 2988 | upl_size_t *upl_size, |
| 2989 | upl_t *upl, |
| 2990 | upl_page_info_array_t page_list, |
| 2991 | unsigned int *count, |
| 2992 | ppnum_t *highest_page) |
| 2993 | { |
| 2994 | unsigned int pageCount, page; |
| 2995 | ppnum_t phys; |
| 2996 | ppnum_t highestPage = 0; |
| 2997 | |
| 2998 | pageCount = atop_32(*upl_size); |
| 2999 | if (pageCount > *count) |
| 3000 | pageCount = *count; |
| 3001 | |
| 3002 | *upl = NULL; |
| 3003 | |
| 3004 | for (page = 0; page < pageCount; page++) |
| 3005 | { |
| 3006 | phys = pmap_find_phys(kernel_pmap, ((addr64_t)offset) + ptoa_64(page)); |
| 3007 | if (!phys) |
| 3008 | break; |
| 3009 | page_list[page].phys_addr = phys; |
| 3010 | page_list[page].free_when_done = 0; |
| 3011 | page_list[page].absent = 0; |
| 3012 | page_list[page].dirty = 0; |
| 3013 | page_list[page].precious = 0; |
| 3014 | page_list[page].device = 0; |
| 3015 | if (phys > highestPage) |
| 3016 | highestPage = phys; |
| 3017 | } |
| 3018 | |
| 3019 | *highest_page = highestPage; |
| 3020 | |
| 3021 | return ((page >= pageCount) ? kIOReturnSuccess : kIOReturnVMError); |
| 3022 | } |
| 3023 | |
| 3024 | IOReturn IOGeneralMemoryDescriptor::wireVirtual(IODirection forDirection) |
| 3025 | { |
| 3026 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 3027 | IOReturn error = kIOReturnSuccess; |
| 3028 | ioGMDData *dataP; |
| 3029 | upl_page_info_array_t pageInfo; |
| 3030 | ppnum_t mapBase; |
| 3031 | vm_tag_t tag = VM_KERN_MEMORY_NONE; |
| 3032 | |
| 3033 | assert(kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type); |
| 3034 | |
| 3035 | if ((kIODirectionOutIn & forDirection) == kIODirectionNone) |
| 3036 | forDirection = (IODirection) (forDirection | getDirection()); |
| 3037 | |
| 3038 | dataP = getDataP(_memoryEntries); |
| 3039 | upl_control_flags_t uplFlags; // This Mem Desc's default flags for upl creation |
| 3040 | switch (kIODirectionOutIn & forDirection) |
| 3041 | { |
| 3042 | case kIODirectionOut: |
| 3043 | // Pages do not need to be marked as dirty on commit |
| 3044 | uplFlags = UPL_COPYOUT_FROM; |
| 3045 | dataP->fDMAAccess = kIODMAMapReadAccess; |
| 3046 | break; |
| 3047 | |
| 3048 | case kIODirectionIn: |
| 3049 | dataP->fDMAAccess = kIODMAMapWriteAccess; |
| 3050 | uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM |
| 3051 | break; |
| 3052 | |
| 3053 | default: |
| 3054 | dataP->fDMAAccess = kIODMAMapReadAccess | kIODMAMapWriteAccess; |
| 3055 | uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM |
| 3056 | break; |
| 3057 | } |
| 3058 | |
| 3059 | if (_wireCount) |
| 3060 | { |
| 3061 | if ((kIOMemoryPreparedReadOnly & _flags) && !(UPL_COPYOUT_FROM & uplFlags)) |
| 3062 | { |
| 3063 | OSReportWithBacktrace("IOMemoryDescriptor 0x%lx prepared read only" , VM_KERNEL_ADDRPERM(this)); |
| 3064 | error = kIOReturnNotWritable; |
| 3065 | } |
| 3066 | } |
| 3067 | else |
| 3068 | { |
| 3069 | IOMapper *mapper; |
| 3070 | |
| 3071 | mapper = dataP->fMapper; |
| 3072 | dataP->fMappedBaseValid = dataP->fMappedBase = 0; |
| 3073 | |
| 3074 | uplFlags |= UPL_SET_IO_WIRE | UPL_SET_LITE; |
| 3075 | tag = _kernelTag; |
| 3076 | if (VM_KERN_MEMORY_NONE == tag) tag = IOMemoryTag(kernel_map); |
| 3077 | |
| 3078 | if (kIODirectionPrepareToPhys32 & forDirection) |
| 3079 | { |
| 3080 | if (!mapper) uplFlags |= UPL_NEED_32BIT_ADDR; |
| 3081 | if (dataP->fDMAMapNumAddressBits > 32) dataP->fDMAMapNumAddressBits = 32; |
| 3082 | } |
| 3083 | if (kIODirectionPrepareNoFault & forDirection) uplFlags |= UPL_REQUEST_NO_FAULT; |
| 3084 | if (kIODirectionPrepareNoZeroFill & forDirection) uplFlags |= UPL_NOZEROFILLIO; |
| 3085 | if (kIODirectionPrepareNonCoherent & forDirection) uplFlags |= UPL_REQUEST_FORCE_COHERENCY; |
| 3086 | |
| 3087 | mapBase = 0; |
| 3088 | |
| 3089 | // Note that appendBytes(NULL) zeros the data up to the desired length |
| 3090 | // and the length parameter is an unsigned int |
| 3091 | size_t uplPageSize = dataP->fPageCnt * sizeof(upl_page_info_t); |
| 3092 | if (uplPageSize > ((unsigned int)uplPageSize)) return (kIOReturnNoMemory); |
| 3093 | if (!_memoryEntries->appendBytes(0, uplPageSize)) return (kIOReturnNoMemory); |
| 3094 | dataP = 0; |
| 3095 | |
| 3096 | // Find the appropriate vm_map for the given task |
| 3097 | vm_map_t curMap; |
| 3098 | if (_task == kernel_task && (kIOMemoryBufferPageable & _flags)) curMap = 0; |
| 3099 | else curMap = get_task_map(_task); |
| 3100 | |
| 3101 | // Iterate over the vector of virtual ranges |
| 3102 | Ranges vec = _ranges; |
| 3103 | unsigned int pageIndex = 0; |
| 3104 | IOByteCount mdOffset = 0; |
| 3105 | ppnum_t highestPage = 0; |
| 3106 | |
| 3107 | IOMemoryEntry * memRefEntry = 0; |
| 3108 | if (_memRef) memRefEntry = &_memRef->entries[0]; |
| 3109 | |
| 3110 | for (UInt range = 0; range < _rangesCount; range++) { |
| 3111 | ioPLBlock iopl; |
| 3112 | mach_vm_address_t startPage, startPageOffset; |
| 3113 | mach_vm_size_t numBytes; |
| 3114 | ppnum_t highPage = 0; |
| 3115 | |
| 3116 | // Get the startPage address and length of vec[range] |
| 3117 | getAddrLenForInd(startPage, numBytes, type, vec, range); |
| 3118 | startPageOffset = startPage & PAGE_MASK; |
| 3119 | iopl.fPageOffset = startPageOffset; |
| 3120 | numBytes += startPageOffset; |
| 3121 | startPage = trunc_page_64(startPage); |
| 3122 | |
| 3123 | if (mapper) |
| 3124 | iopl.fMappedPage = mapBase + pageIndex; |
| 3125 | else |
| 3126 | iopl.fMappedPage = 0; |
| 3127 | |
| 3128 | // Iterate over the current range, creating UPLs |
| 3129 | while (numBytes) { |
| 3130 | vm_address_t kernelStart = (vm_address_t) startPage; |
| 3131 | vm_map_t theMap; |
| 3132 | if (curMap) theMap = curMap; |
| 3133 | else if (_memRef) |
| 3134 | { |
| 3135 | theMap = NULL; |
| 3136 | } |
| 3137 | else |
| 3138 | { |
| 3139 | assert(_task == kernel_task); |
| 3140 | theMap = IOPageableMapForAddress(kernelStart); |
| 3141 | } |
| 3142 | |
| 3143 | // ioplFlags is an in/out parameter |
| 3144 | upl_control_flags_t ioplFlags = uplFlags; |
| 3145 | dataP = getDataP(_memoryEntries); |
| 3146 | pageInfo = getPageList(dataP); |
| 3147 | upl_page_list_ptr_t baseInfo = &pageInfo[pageIndex]; |
| 3148 | |
| 3149 | mach_vm_size_t _ioplSize = round_page(numBytes); |
| 3150 | upl_size_t ioplSize = (_ioplSize <= MAX_UPL_SIZE_BYTES) ? _ioplSize : MAX_UPL_SIZE_BYTES; |
| 3151 | unsigned int numPageInfo = atop_32(ioplSize); |
| 3152 | |
| 3153 | if ((theMap == kernel_map) |
| 3154 | && (kernelStart >= io_kernel_static_start) |
| 3155 | && (kernelStart < io_kernel_static_end)) { |
| 3156 | error = io_get_kernel_static_upl(theMap, |
| 3157 | kernelStart, |
| 3158 | &ioplSize, |
| 3159 | &iopl.fIOPL, |
| 3160 | baseInfo, |
| 3161 | &numPageInfo, |
| 3162 | &highPage); |
| 3163 | } |
| 3164 | else if (_memRef) { |
| 3165 | memory_object_offset_t entryOffset; |
| 3166 | |
| 3167 | entryOffset = mdOffset; |
| 3168 | entryOffset = (entryOffset - iopl.fPageOffset - memRefEntry->offset); |
| 3169 | if (entryOffset >= memRefEntry->size) { |
| 3170 | memRefEntry++; |
| 3171 | if (memRefEntry >= &_memRef->entries[_memRef->count]) panic("memRefEntry" ); |
| 3172 | entryOffset = 0; |
| 3173 | } |
| 3174 | if (ioplSize > (memRefEntry->size - entryOffset)) ioplSize = (memRefEntry->size - entryOffset); |
| 3175 | error = memory_object_iopl_request(memRefEntry->entry, |
| 3176 | entryOffset, |
| 3177 | &ioplSize, |
| 3178 | &iopl.fIOPL, |
| 3179 | baseInfo, |
| 3180 | &numPageInfo, |
| 3181 | &ioplFlags, |
| 3182 | tag); |
| 3183 | } |
| 3184 | else { |
| 3185 | assert(theMap); |
| 3186 | error = vm_map_create_upl(theMap, |
| 3187 | startPage, |
| 3188 | (upl_size_t*)&ioplSize, |
| 3189 | &iopl.fIOPL, |
| 3190 | baseInfo, |
| 3191 | &numPageInfo, |
| 3192 | &ioplFlags, |
| 3193 | tag); |
| 3194 | } |
| 3195 | |
| 3196 | if (error != KERN_SUCCESS) goto abortExit; |
| 3197 | |
| 3198 | assert(ioplSize); |
| 3199 | |
| 3200 | if (iopl.fIOPL) |
| 3201 | highPage = upl_get_highest_page(iopl.fIOPL); |
| 3202 | if (highPage > highestPage) |
| 3203 | highestPage = highPage; |
| 3204 | |
| 3205 | if (baseInfo->device) { |
| 3206 | numPageInfo = 1; |
| 3207 | iopl.fFlags = kIOPLOnDevice; |
| 3208 | } |
| 3209 | else { |
| 3210 | iopl.fFlags = 0; |
| 3211 | } |
| 3212 | |
| 3213 | iopl.fIOMDOffset = mdOffset; |
| 3214 | iopl.fPageInfo = pageIndex; |
| 3215 | if (mapper && pageIndex && (page_mask & (mdOffset + startPageOffset))) dataP->fDiscontig = true; |
| 3216 | |
| 3217 | if (!_memoryEntries->appendBytes(&iopl, sizeof(iopl))) { |
| 3218 | // Clean up partial created and unsaved iopl |
| 3219 | if (iopl.fIOPL) { |
| 3220 | upl_abort(iopl.fIOPL, 0); |
| 3221 | upl_deallocate(iopl.fIOPL); |
| 3222 | } |
| 3223 | goto abortExit; |
| 3224 | } |
| 3225 | dataP = 0; |
| 3226 | |
| 3227 | // Check for a multiple iopl's in one virtual range |
| 3228 | pageIndex += numPageInfo; |
| 3229 | mdOffset -= iopl.fPageOffset; |
| 3230 | if (ioplSize < numBytes) { |
| 3231 | numBytes -= ioplSize; |
| 3232 | startPage += ioplSize; |
| 3233 | mdOffset += ioplSize; |
| 3234 | iopl.fPageOffset = 0; |
| 3235 | if (mapper) iopl.fMappedPage = mapBase + pageIndex; |
| 3236 | } |
| 3237 | else { |
| 3238 | mdOffset += numBytes; |
| 3239 | break; |
| 3240 | } |
| 3241 | } |
| 3242 | } |
| 3243 | |
| 3244 | _highestPage = highestPage; |
| 3245 | |
| 3246 | if (UPL_COPYOUT_FROM & uplFlags) _flags |= kIOMemoryPreparedReadOnly; |
| 3247 | } |
| 3248 | |
| 3249 | #if IOTRACKING |
| 3250 | if (!(_flags & kIOMemoryAutoPrepare) && (kIOReturnSuccess == error)) |
| 3251 | { |
| 3252 | dataP = getDataP(_memoryEntries); |
| 3253 | if (!dataP->fWireTracking.link.next) |
| 3254 | { |
| 3255 | IOTrackingAdd(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages), false, tag); |
| 3256 | } |
| 3257 | } |
| 3258 | #endif /* IOTRACKING */ |
| 3259 | |
| 3260 | return (error); |
| 3261 | |
| 3262 | abortExit: |
| 3263 | { |
| 3264 | dataP = getDataP(_memoryEntries); |
| 3265 | UInt done = getNumIOPL(_memoryEntries, dataP); |
| 3266 | ioPLBlock *ioplList = getIOPLList(dataP); |
| 3267 | |
| 3268 | for (UInt range = 0; range < done; range++) |
| 3269 | { |
| 3270 | if (ioplList[range].fIOPL) { |
| 3271 | upl_abort(ioplList[range].fIOPL, 0); |
| 3272 | upl_deallocate(ioplList[range].fIOPL); |
| 3273 | } |
| 3274 | } |
| 3275 | (void) _memoryEntries->initWithBytes(dataP, computeDataSize(0, 0)); // == setLength() |
| 3276 | } |
| 3277 | |
| 3278 | if (error == KERN_FAILURE) |
| 3279 | error = kIOReturnCannotWire; |
| 3280 | else if (error == KERN_MEMORY_ERROR) |
| 3281 | error = kIOReturnNoResources; |
| 3282 | |
| 3283 | return error; |
| 3284 | } |
| 3285 | |
| 3286 | bool IOGeneralMemoryDescriptor::initMemoryEntries(size_t size, IOMapper * mapper) |
| 3287 | { |
| 3288 | ioGMDData * dataP; |
| 3289 | unsigned dataSize = size; |
| 3290 | |
| 3291 | if (!_memoryEntries) { |
| 3292 | _memoryEntries = OSData::withCapacity(dataSize); |
| 3293 | if (!_memoryEntries) |
| 3294 | return false; |
| 3295 | } |
| 3296 | else if (!_memoryEntries->initWithCapacity(dataSize)) |
| 3297 | return false; |
| 3298 | |
| 3299 | _memoryEntries->appendBytes(0, computeDataSize(0, 0)); |
| 3300 | dataP = getDataP(_memoryEntries); |
| 3301 | |
| 3302 | if (mapper == kIOMapperWaitSystem) { |
| 3303 | IOMapper::checkForSystemMapper(); |
| 3304 | mapper = IOMapper::gSystem; |
| 3305 | } |
| 3306 | dataP->fMapper = mapper; |
| 3307 | dataP->fPageCnt = 0; |
| 3308 | dataP->fMappedBase = 0; |
| 3309 | dataP->fDMAMapNumAddressBits = 64; |
| 3310 | dataP->fDMAMapAlignment = 0; |
| 3311 | dataP->fPreparationID = kIOPreparationIDUnprepared; |
| 3312 | dataP->fDiscontig = false; |
| 3313 | dataP->fCompletionError = false; |
| 3314 | dataP->fMappedBaseValid = false; |
| 3315 | |
| 3316 | return (true); |
| 3317 | } |
| 3318 | |
| 3319 | IOReturn IOMemoryDescriptor::dmaMap( |
| 3320 | IOMapper * mapper, |
| 3321 | IODMACommand * command, |
| 3322 | const IODMAMapSpecification * mapSpec, |
| 3323 | uint64_t offset, |
| 3324 | uint64_t length, |
| 3325 | uint64_t * mapAddress, |
| 3326 | uint64_t * mapLength) |
| 3327 | { |
| 3328 | IOReturn err; |
| 3329 | uint32_t mapOptions; |
| 3330 | |
| 3331 | mapOptions = 0; |
| 3332 | mapOptions |= kIODMAMapReadAccess; |
| 3333 | if (!(kIOMemoryPreparedReadOnly & _flags)) mapOptions |= kIODMAMapWriteAccess; |
| 3334 | |
| 3335 | err = mapper->iovmMapMemory(this, offset, length, mapOptions, |
| 3336 | mapSpec, command, NULL, mapAddress, mapLength); |
| 3337 | |
| 3338 | if (kIOReturnSuccess == err) dmaMapRecord(mapper, command, *mapLength); |
| 3339 | |
| 3340 | return (err); |
| 3341 | } |
| 3342 | |
| 3343 | void IOMemoryDescriptor::dmaMapRecord( |
| 3344 | IOMapper * mapper, |
| 3345 | IODMACommand * command, |
| 3346 | uint64_t mapLength) |
| 3347 | { |
| 3348 | kern_allocation_name_t alloc; |
| 3349 | int16_t prior; |
| 3350 | |
| 3351 | if ((alloc = mapper->fAllocName) /* && mapper != IOMapper::gSystem */) |
| 3352 | { |
| 3353 | kern_allocation_update_size(mapper->fAllocName, mapLength); |
| 3354 | } |
| 3355 | |
| 3356 | if (!command) return; |
| 3357 | prior = OSAddAtomic16(1, &_dmaReferences); |
| 3358 | if (!prior) |
| 3359 | { |
| 3360 | if (alloc && (VM_KERN_MEMORY_NONE != _kernelTag)) |
| 3361 | { |
| 3362 | _mapName = alloc; |
| 3363 | mapLength = _length; |
| 3364 | kern_allocation_update_subtotal(alloc, _kernelTag, mapLength); |
| 3365 | } |
| 3366 | else _mapName = NULL; |
| 3367 | } |
| 3368 | } |
| 3369 | |
| 3370 | IOReturn IOMemoryDescriptor::dmaUnmap( |
| 3371 | IOMapper * mapper, |
| 3372 | IODMACommand * command, |
| 3373 | uint64_t offset, |
| 3374 | uint64_t mapAddress, |
| 3375 | uint64_t mapLength) |
| 3376 | { |
| 3377 | IOReturn ret; |
| 3378 | kern_allocation_name_t alloc; |
| 3379 | kern_allocation_name_t mapName; |
| 3380 | int16_t prior; |
| 3381 | |
| 3382 | mapName = 0; |
| 3383 | prior = 0; |
| 3384 | if (command) |
| 3385 | { |
| 3386 | mapName = _mapName; |
| 3387 | if (_dmaReferences) prior = OSAddAtomic16(-1, &_dmaReferences); |
| 3388 | else panic("_dmaReferences underflow" ); |
| 3389 | } |
| 3390 | |
| 3391 | if (!mapLength) return (kIOReturnSuccess); |
| 3392 | |
| 3393 | ret = mapper->iovmUnmapMemory(this, command, mapAddress, mapLength); |
| 3394 | |
| 3395 | if ((alloc = mapper->fAllocName)) |
| 3396 | { |
| 3397 | kern_allocation_update_size(alloc, -mapLength); |
| 3398 | if ((1 == prior) && mapName && (VM_KERN_MEMORY_NONE != _kernelTag)) |
| 3399 | { |
| 3400 | mapLength = _length; |
| 3401 | kern_allocation_update_subtotal(mapName, _kernelTag, -mapLength); |
| 3402 | } |
| 3403 | } |
| 3404 | |
| 3405 | return (ret); |
| 3406 | } |
| 3407 | |
| 3408 | IOReturn IOGeneralMemoryDescriptor::dmaMap( |
| 3409 | IOMapper * mapper, |
| 3410 | IODMACommand * command, |
| 3411 | const IODMAMapSpecification * mapSpec, |
| 3412 | uint64_t offset, |
| 3413 | uint64_t length, |
| 3414 | uint64_t * mapAddress, |
| 3415 | uint64_t * mapLength) |
| 3416 | { |
| 3417 | IOReturn err = kIOReturnSuccess; |
| 3418 | ioGMDData * dataP; |
| 3419 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 3420 | |
| 3421 | *mapAddress = 0; |
| 3422 | if (kIOMemoryHostOnly & _flags) return (kIOReturnSuccess); |
| 3423 | if (kIOMemoryRemote & _flags) return (kIOReturnNotAttached); |
| 3424 | |
| 3425 | if ((type == kIOMemoryTypePhysical) || (type == kIOMemoryTypePhysical64) |
| 3426 | || offset || (length != _length)) |
| 3427 | { |
| 3428 | err = super::dmaMap(mapper, command, mapSpec, offset, length, mapAddress, mapLength); |
| 3429 | } |
| 3430 | else if (_memoryEntries && _pages && (dataP = getDataP(_memoryEntries))) |
| 3431 | { |
| 3432 | const ioPLBlock * ioplList = getIOPLList(dataP); |
| 3433 | upl_page_info_t * pageList; |
| 3434 | uint32_t mapOptions = 0; |
| 3435 | |
| 3436 | IODMAMapSpecification mapSpec; |
| 3437 | bzero(&mapSpec, sizeof(mapSpec)); |
| 3438 | mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits; |
| 3439 | mapSpec.alignment = dataP->fDMAMapAlignment; |
| 3440 | |
| 3441 | // For external UPLs the fPageInfo field points directly to |
| 3442 | // the upl's upl_page_info_t array. |
| 3443 | if (ioplList->fFlags & kIOPLExternUPL) |
| 3444 | { |
| 3445 | pageList = (upl_page_info_t *) ioplList->fPageInfo; |
| 3446 | mapOptions |= kIODMAMapPagingPath; |
| 3447 | } |
| 3448 | else pageList = getPageList(dataP); |
| 3449 | |
| 3450 | if ((_length == ptoa_64(_pages)) && !(page_mask & ioplList->fPageOffset)) |
| 3451 | { |
| 3452 | mapOptions |= kIODMAMapPageListFullyOccupied; |
| 3453 | } |
| 3454 | |
| 3455 | assert(dataP->fDMAAccess); |
| 3456 | mapOptions |= dataP->fDMAAccess; |
| 3457 | |
| 3458 | // Check for direct device non-paged memory |
| 3459 | if (ioplList->fFlags & kIOPLOnDevice) mapOptions |= kIODMAMapPhysicallyContiguous; |
| 3460 | |
| 3461 | IODMAMapPageList dmaPageList = |
| 3462 | { |
| 3463 | .pageOffset = (uint32_t)(ioplList->fPageOffset & page_mask), |
| 3464 | .pageListCount = _pages, |
| 3465 | .pageList = &pageList[0] |
| 3466 | }; |
| 3467 | err = mapper->iovmMapMemory(this, offset, length, mapOptions, &mapSpec, |
| 3468 | command, &dmaPageList, mapAddress, mapLength); |
| 3469 | |
| 3470 | if (kIOReturnSuccess == err) dmaMapRecord(mapper, command, *mapLength); |
| 3471 | } |
| 3472 | |
| 3473 | return (err); |
| 3474 | } |
| 3475 | |
| 3476 | /* |
| 3477 | * prepare |
| 3478 | * |
| 3479 | * Prepare the memory for an I/O transfer. This involves paging in |
| 3480 | * the memory, if necessary, and wiring it down for the duration of |
| 3481 | * the transfer. The complete() method completes the processing of |
| 3482 | * the memory after the I/O transfer finishes. This method needn't |
| 3483 | * called for non-pageable memory. |
| 3484 | */ |
| 3485 | |
| 3486 | IOReturn IOGeneralMemoryDescriptor::prepare(IODirection forDirection) |
| 3487 | { |
| 3488 | IOReturn error = kIOReturnSuccess; |
| 3489 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 3490 | |
| 3491 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) |
| 3492 | return kIOReturnSuccess; |
| 3493 | |
| 3494 | assert (!(kIOMemoryRemote & _flags)); |
| 3495 | if (kIOMemoryRemote & _flags) return (kIOReturnNotAttached); |
| 3496 | |
| 3497 | if (_prepareLock) IOLockLock(_prepareLock); |
| 3498 | |
| 3499 | if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) |
| 3500 | { |
| 3501 | error = wireVirtual(forDirection); |
| 3502 | } |
| 3503 | |
| 3504 | if (kIOReturnSuccess == error) |
| 3505 | { |
| 3506 | if (1 == ++_wireCount) |
| 3507 | { |
| 3508 | if (kIOMemoryClearEncrypt & _flags) |
| 3509 | { |
| 3510 | performOperation(kIOMemoryClearEncrypted, 0, _length); |
| 3511 | } |
| 3512 | } |
| 3513 | } |
| 3514 | |
| 3515 | if (_prepareLock) IOLockUnlock(_prepareLock); |
| 3516 | |
| 3517 | return error; |
| 3518 | } |
| 3519 | |
| 3520 | /* |
| 3521 | * complete |
| 3522 | * |
| 3523 | * Complete processing of the memory after an I/O transfer finishes. |
| 3524 | * This method should not be called unless a prepare was previously |
| 3525 | * issued; the prepare() and complete() must occur in pairs, before |
| 3526 | * before and after an I/O transfer involving pageable memory. |
| 3527 | */ |
| 3528 | |
| 3529 | IOReturn IOGeneralMemoryDescriptor::complete(IODirection forDirection) |
| 3530 | { |
| 3531 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 3532 | ioGMDData * dataP; |
| 3533 | |
| 3534 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) |
| 3535 | return kIOReturnSuccess; |
| 3536 | |
| 3537 | assert (!(kIOMemoryRemote & _flags)); |
| 3538 | if (kIOMemoryRemote & _flags) return (kIOReturnNotAttached); |
| 3539 | |
| 3540 | if (_prepareLock) IOLockLock(_prepareLock); |
| 3541 | do |
| 3542 | { |
| 3543 | assert(_wireCount); |
| 3544 | if (!_wireCount) break; |
| 3545 | dataP = getDataP(_memoryEntries); |
| 3546 | if (!dataP) break; |
| 3547 | |
| 3548 | if (kIODirectionCompleteWithError & forDirection) dataP->fCompletionError = true; |
| 3549 | |
| 3550 | if ((kIOMemoryClearEncrypt & _flags) && (1 == _wireCount)) |
| 3551 | { |
| 3552 | performOperation(kIOMemorySetEncrypted, 0, _length); |
| 3553 | } |
| 3554 | |
| 3555 | _wireCount--; |
| 3556 | if (!_wireCount || (kIODirectionCompleteWithDataValid & forDirection)) |
| 3557 | { |
| 3558 | ioPLBlock *ioplList = getIOPLList(dataP); |
| 3559 | UInt ind, count = getNumIOPL(_memoryEntries, dataP); |
| 3560 | |
| 3561 | if (_wireCount) |
| 3562 | { |
| 3563 | // kIODirectionCompleteWithDataValid & forDirection |
| 3564 | if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) |
| 3565 | { |
| 3566 | vm_tag_t tag; |
| 3567 | tag = getVMTag(kernel_map); |
| 3568 | for (ind = 0; ind < count; ind++) |
| 3569 | { |
| 3570 | if (ioplList[ind].fIOPL) iopl_valid_data(ioplList[ind].fIOPL, tag); |
| 3571 | } |
| 3572 | } |
| 3573 | } |
| 3574 | else |
| 3575 | { |
| 3576 | if (_dmaReferences) panic("complete() while dma active" ); |
| 3577 | |
| 3578 | if (dataP->fMappedBaseValid) { |
| 3579 | dmaUnmap(dataP->fMapper, NULL, 0, dataP->fMappedBase, dataP->fMappedLength); |
| 3580 | dataP->fMappedBaseValid = dataP->fMappedBase = 0; |
| 3581 | } |
| 3582 | #if IOTRACKING |
| 3583 | if (dataP->fWireTracking.link.next) IOTrackingRemove(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages)); |
| 3584 | #endif /* IOTRACKING */ |
| 3585 | // Only complete iopls that we created which are for TypeVirtual |
| 3586 | if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) |
| 3587 | { |
| 3588 | for (ind = 0; ind < count; ind++) |
| 3589 | if (ioplList[ind].fIOPL) { |
| 3590 | if (dataP->fCompletionError) |
| 3591 | upl_abort(ioplList[ind].fIOPL, 0 /*!UPL_ABORT_DUMP_PAGES*/); |
| 3592 | else |
| 3593 | upl_commit(ioplList[ind].fIOPL, 0, 0); |
| 3594 | upl_deallocate(ioplList[ind].fIOPL); |
| 3595 | } |
| 3596 | } else if (kIOMemoryTypeUPL == type) { |
| 3597 | upl_set_referenced(ioplList[0].fIOPL, false); |
| 3598 | } |
| 3599 | |
| 3600 | (void) _memoryEntries->initWithBytes(dataP, computeDataSize(0, 0)); // == setLength() |
| 3601 | |
| 3602 | dataP->fPreparationID = kIOPreparationIDUnprepared; |
| 3603 | _flags &= ~kIOMemoryPreparedReadOnly; |
| 3604 | } |
| 3605 | } |
| 3606 | } |
| 3607 | while (false); |
| 3608 | |
| 3609 | if (_prepareLock) IOLockUnlock(_prepareLock); |
| 3610 | |
| 3611 | return kIOReturnSuccess; |
| 3612 | } |
| 3613 | |
| 3614 | IOReturn IOGeneralMemoryDescriptor::doMap( |
| 3615 | vm_map_t __addressMap, |
| 3616 | IOVirtualAddress * __address, |
| 3617 | IOOptionBits options, |
| 3618 | IOByteCount __offset, |
| 3619 | IOByteCount __length ) |
| 3620 | { |
| 3621 | #ifndef __LP64__ |
| 3622 | if (!(kIOMap64Bit & options)) panic("IOGeneralMemoryDescriptor::doMap !64bit" ); |
| 3623 | #endif /* !__LP64__ */ |
| 3624 | |
| 3625 | kern_return_t err; |
| 3626 | |
| 3627 | IOMemoryMap * mapping = (IOMemoryMap *) *__address; |
| 3628 | mach_vm_size_t offset = mapping->fOffset + __offset; |
| 3629 | mach_vm_size_t length = mapping->fLength; |
| 3630 | |
| 3631 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 3632 | Ranges vec = _ranges; |
| 3633 | |
| 3634 | mach_vm_address_t range0Addr = 0; |
| 3635 | mach_vm_size_t range0Len = 0; |
| 3636 | |
| 3637 | if ((offset >= _length) || ((offset + length) > _length)) |
| 3638 | return( kIOReturnBadArgument ); |
| 3639 | |
| 3640 | assert (!(kIOMemoryRemote & _flags)); |
| 3641 | if (kIOMemoryRemote & _flags) return (0); |
| 3642 | |
| 3643 | if (vec.v) |
| 3644 | getAddrLenForInd(range0Addr, range0Len, type, vec, 0); |
| 3645 | |
| 3646 | // mapping source == dest? (could be much better) |
| 3647 | if (_task |
| 3648 | && (mapping->fAddressTask == _task) |
| 3649 | && (mapping->fAddressMap == get_task_map(_task)) |
| 3650 | && (options & kIOMapAnywhere) |
| 3651 | && (!(kIOMapUnique & options)) |
| 3652 | && (1 == _rangesCount) |
| 3653 | && (0 == offset) |
| 3654 | && range0Addr |
| 3655 | && (length <= range0Len)) |
| 3656 | { |
| 3657 | mapping->fAddress = range0Addr; |
| 3658 | mapping->fOptions |= kIOMapStatic; |
| 3659 | |
| 3660 | return( kIOReturnSuccess ); |
| 3661 | } |
| 3662 | |
| 3663 | if (!_memRef) |
| 3664 | { |
| 3665 | IOOptionBits createOptions = 0; |
| 3666 | if (!(kIOMapReadOnly & options)) |
| 3667 | { |
| 3668 | createOptions |= kIOMemoryReferenceWrite; |
| 3669 | #if DEVELOPMENT || DEBUG |
| 3670 | if (kIODirectionOut == (kIODirectionOutIn & _flags)) |
| 3671 | { |
| 3672 | OSReportWithBacktrace("warning: creating writable mapping from IOMemoryDescriptor(kIODirectionOut) - use kIOMapReadOnly or change direction" ); |
| 3673 | } |
| 3674 | #endif |
| 3675 | } |
| 3676 | err = memoryReferenceCreate(createOptions, &_memRef); |
| 3677 | if (kIOReturnSuccess != err) return (err); |
| 3678 | } |
| 3679 | |
| 3680 | memory_object_t ; |
| 3681 | pager = (memory_object_t) (reserved ? reserved->dp.devicePager : 0); |
| 3682 | |
| 3683 | // <upl_transpose // |
| 3684 | if ((kIOMapReference|kIOMapUnique) == ((kIOMapReference|kIOMapUnique) & options)) |
| 3685 | { |
| 3686 | do |
| 3687 | { |
| 3688 | upl_t redirUPL2; |
| 3689 | upl_size_t size; |
| 3690 | upl_control_flags_t flags; |
| 3691 | unsigned int lock_count; |
| 3692 | |
| 3693 | if (!_memRef || (1 != _memRef->count)) |
| 3694 | { |
| 3695 | err = kIOReturnNotReadable; |
| 3696 | break; |
| 3697 | } |
| 3698 | |
| 3699 | size = round_page(mapping->fLength); |
| 3700 | flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL |
| 3701 | | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS; |
| 3702 | |
| 3703 | if (KERN_SUCCESS != memory_object_iopl_request(_memRef->entries[0].entry, 0, &size, &redirUPL2, |
| 3704 | NULL, NULL, |
| 3705 | &flags, getVMTag(kernel_map))) |
| 3706 | redirUPL2 = NULL; |
| 3707 | |
| 3708 | for (lock_count = 0; |
| 3709 | IORecursiveLockHaveLock(gIOMemoryLock); |
| 3710 | lock_count++) { |
| 3711 | UNLOCK; |
| 3712 | } |
| 3713 | err = upl_transpose(redirUPL2, mapping->fRedirUPL); |
| 3714 | for (; |
| 3715 | lock_count; |
| 3716 | lock_count--) { |
| 3717 | LOCK; |
| 3718 | } |
| 3719 | |
| 3720 | if (kIOReturnSuccess != err) |
| 3721 | { |
| 3722 | IOLog("upl_transpose(%x)\n" , err); |
| 3723 | err = kIOReturnSuccess; |
| 3724 | } |
| 3725 | |
| 3726 | if (redirUPL2) |
| 3727 | { |
| 3728 | upl_commit(redirUPL2, NULL, 0); |
| 3729 | upl_deallocate(redirUPL2); |
| 3730 | redirUPL2 = 0; |
| 3731 | } |
| 3732 | { |
| 3733 | // swap the memEntries since they now refer to different vm_objects |
| 3734 | IOMemoryReference * me = _memRef; |
| 3735 | _memRef = mapping->fMemory->_memRef; |
| 3736 | mapping->fMemory->_memRef = me; |
| 3737 | } |
| 3738 | if (pager) |
| 3739 | err = populateDevicePager( pager, mapping->fAddressMap, mapping->fAddress, offset, length, options ); |
| 3740 | } |
| 3741 | while (false); |
| 3742 | } |
| 3743 | // upl_transpose> // |
| 3744 | else |
| 3745 | { |
| 3746 | err = memoryReferenceMap(_memRef, mapping->fAddressMap, offset, length, options, &mapping->fAddress); |
| 3747 | #if IOTRACKING |
| 3748 | if ((err == KERN_SUCCESS) && ((kIOTracking & gIOKitDebug) || _task)) |
| 3749 | { |
| 3750 | // only dram maps in the default on developement case |
| 3751 | IOTrackingAddUser(gIOMapTracking, &mapping->fTracking, mapping->fLength); |
| 3752 | } |
| 3753 | #endif /* IOTRACKING */ |
| 3754 | if ((err == KERN_SUCCESS) && pager) |
| 3755 | { |
| 3756 | err = populateDevicePager(pager, mapping->fAddressMap, mapping->fAddress, offset, length, options); |
| 3757 | |
| 3758 | if (err != KERN_SUCCESS) doUnmap(mapping->fAddressMap, (IOVirtualAddress) mapping, 0); |
| 3759 | else if (kIOMapDefaultCache == (options & kIOMapCacheMask)) |
| 3760 | { |
| 3761 | mapping->fOptions |= ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift); |
| 3762 | } |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | return (err); |
| 3767 | } |
| 3768 | |
| 3769 | #if IOTRACKING |
| 3770 | IOReturn |
| 3771 | IOMemoryMapTracking(IOTrackingUser * tracking, task_t * task, |
| 3772 | mach_vm_address_t * address, mach_vm_size_t * size) |
| 3773 | { |
| 3774 | #define iomap_offsetof(type, field) ((size_t)(&((type *)0)->field)) |
| 3775 | |
| 3776 | IOMemoryMap * map = (typeof(map)) (((uintptr_t) tracking) - iomap_offsetof(IOMemoryMap, fTracking)); |
| 3777 | |
| 3778 | if (!map->fAddressMap || (map->fAddressMap != get_task_map(map->fAddressTask))) return (kIOReturnNotReady); |
| 3779 | |
| 3780 | *task = map->fAddressTask; |
| 3781 | *address = map->fAddress; |
| 3782 | *size = map->fLength; |
| 3783 | |
| 3784 | return (kIOReturnSuccess); |
| 3785 | } |
| 3786 | #endif /* IOTRACKING */ |
| 3787 | |
| 3788 | IOReturn IOGeneralMemoryDescriptor::doUnmap( |
| 3789 | vm_map_t addressMap, |
| 3790 | IOVirtualAddress __address, |
| 3791 | IOByteCount __length ) |
| 3792 | { |
| 3793 | return (super::doUnmap(addressMap, __address, __length)); |
| 3794 | } |
| 3795 | |
| 3796 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 3797 | |
| 3798 | #undef super |
| 3799 | #define super OSObject |
| 3800 | |
| 3801 | OSDefineMetaClassAndStructors( IOMemoryMap, OSObject ) |
| 3802 | |
| 3803 | OSMetaClassDefineReservedUnused(IOMemoryMap, 0); |
| 3804 | OSMetaClassDefineReservedUnused(IOMemoryMap, 1); |
| 3805 | OSMetaClassDefineReservedUnused(IOMemoryMap, 2); |
| 3806 | OSMetaClassDefineReservedUnused(IOMemoryMap, 3); |
| 3807 | OSMetaClassDefineReservedUnused(IOMemoryMap, 4); |
| 3808 | OSMetaClassDefineReservedUnused(IOMemoryMap, 5); |
| 3809 | OSMetaClassDefineReservedUnused(IOMemoryMap, 6); |
| 3810 | OSMetaClassDefineReservedUnused(IOMemoryMap, 7); |
| 3811 | |
| 3812 | /* ex-inline function implementation */ |
| 3813 | IOPhysicalAddress IOMemoryMap::getPhysicalAddress() |
| 3814 | { return( getPhysicalSegment( 0, 0 )); } |
| 3815 | |
| 3816 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 3817 | |
| 3818 | bool IOMemoryMap::init( |
| 3819 | task_t intoTask, |
| 3820 | mach_vm_address_t toAddress, |
| 3821 | IOOptionBits _options, |
| 3822 | mach_vm_size_t _offset, |
| 3823 | mach_vm_size_t _length ) |
| 3824 | { |
| 3825 | if (!intoTask) |
| 3826 | return( false); |
| 3827 | |
| 3828 | if (!super::init()) |
| 3829 | return(false); |
| 3830 | |
| 3831 | fAddressMap = get_task_map(intoTask); |
| 3832 | if (!fAddressMap) |
| 3833 | return(false); |
| 3834 | vm_map_reference(fAddressMap); |
| 3835 | |
| 3836 | fAddressTask = intoTask; |
| 3837 | fOptions = _options; |
| 3838 | fLength = _length; |
| 3839 | fOffset = _offset; |
| 3840 | fAddress = toAddress; |
| 3841 | |
| 3842 | return (true); |
| 3843 | } |
| 3844 | |
| 3845 | bool IOMemoryMap::setMemoryDescriptor(IOMemoryDescriptor * _memory, mach_vm_size_t _offset) |
| 3846 | { |
| 3847 | if (!_memory) |
| 3848 | return(false); |
| 3849 | |
| 3850 | if (!fSuperMap) |
| 3851 | { |
| 3852 | if( (_offset + fLength) > _memory->getLength()) |
| 3853 | return( false); |
| 3854 | fOffset = _offset; |
| 3855 | } |
| 3856 | |
| 3857 | _memory->retain(); |
| 3858 | if (fMemory) |
| 3859 | { |
| 3860 | if (fMemory != _memory) |
| 3861 | fMemory->removeMapping(this); |
| 3862 | fMemory->release(); |
| 3863 | } |
| 3864 | fMemory = _memory; |
| 3865 | |
| 3866 | return( true ); |
| 3867 | } |
| 3868 | |
| 3869 | IOReturn IOMemoryDescriptor::doMap( |
| 3870 | vm_map_t __addressMap, |
| 3871 | IOVirtualAddress * __address, |
| 3872 | IOOptionBits options, |
| 3873 | IOByteCount __offset, |
| 3874 | IOByteCount __length ) |
| 3875 | { |
| 3876 | return (kIOReturnUnsupported); |
| 3877 | } |
| 3878 | |
| 3879 | IOReturn IOMemoryDescriptor::handleFault( |
| 3880 | void * , |
| 3881 | mach_vm_size_t sourceOffset, |
| 3882 | mach_vm_size_t length) |
| 3883 | { |
| 3884 | if( kIOMemoryRedirected & _flags) |
| 3885 | { |
| 3886 | #if DEBUG |
| 3887 | IOLog("sleep mem redirect %p, %qx\n" , this, sourceOffset); |
| 3888 | #endif |
| 3889 | do { |
| 3890 | SLEEP; |
| 3891 | } while( kIOMemoryRedirected & _flags ); |
| 3892 | } |
| 3893 | return (kIOReturnSuccess); |
| 3894 | } |
| 3895 | |
| 3896 | IOReturn IOMemoryDescriptor::( |
| 3897 | void * , |
| 3898 | vm_map_t addressMap, |
| 3899 | mach_vm_address_t address, |
| 3900 | mach_vm_size_t sourceOffset, |
| 3901 | mach_vm_size_t length, |
| 3902 | IOOptionBits options ) |
| 3903 | { |
| 3904 | IOReturn err = kIOReturnSuccess; |
| 3905 | memory_object_t = (memory_object_t) _pager; |
| 3906 | mach_vm_size_t size; |
| 3907 | mach_vm_size_t bytes; |
| 3908 | mach_vm_size_t page; |
| 3909 | mach_vm_size_t pageOffset; |
| 3910 | mach_vm_size_t ; |
| 3911 | IOPhysicalLength segLen, chunk; |
| 3912 | addr64_t physAddr; |
| 3913 | IOOptionBits type; |
| 3914 | |
| 3915 | type = _flags & kIOMemoryTypeMask; |
| 3916 | |
| 3917 | if (reserved->dp.pagerContig) |
| 3918 | { |
| 3919 | sourceOffset = 0; |
| 3920 | pagerOffset = 0; |
| 3921 | } |
| 3922 | |
| 3923 | physAddr = getPhysicalSegment( sourceOffset, &segLen, kIOMemoryMapperNone ); |
| 3924 | assert( physAddr ); |
| 3925 | pageOffset = physAddr - trunc_page_64( physAddr ); |
| 3926 | pagerOffset = sourceOffset; |
| 3927 | |
| 3928 | size = length + pageOffset; |
| 3929 | physAddr -= pageOffset; |
| 3930 | |
| 3931 | segLen += pageOffset; |
| 3932 | bytes = size; |
| 3933 | do |
| 3934 | { |
| 3935 | // in the middle of the loop only map whole pages |
| 3936 | if( segLen >= bytes) segLen = bytes; |
| 3937 | else if (segLen != trunc_page(segLen)) err = kIOReturnVMError; |
| 3938 | if (physAddr != trunc_page_64(physAddr)) err = kIOReturnBadArgument; |
| 3939 | |
| 3940 | if (kIOReturnSuccess != err) break; |
| 3941 | |
| 3942 | #if DEBUG || DEVELOPMENT |
| 3943 | if ((kIOMemoryTypeUPL != type) |
| 3944 | && pmap_has_managed_page(atop_64(physAddr), atop_64(physAddr + segLen - 1))) |
| 3945 | { |
| 3946 | OSReportWithBacktrace("IOMemoryDescriptor physical with managed page 0x%qx:0x%qx" , physAddr, segLen); |
| 3947 | } |
| 3948 | #endif /* DEBUG || DEVELOPMENT */ |
| 3949 | |
| 3950 | chunk = (reserved->dp.pagerContig ? round_page(segLen) : page_size); |
| 3951 | for (page = 0; |
| 3952 | (page < segLen) && (KERN_SUCCESS == err); |
| 3953 | page += chunk) |
| 3954 | { |
| 3955 | err = device_pager_populate_object(pager, pagerOffset, |
| 3956 | (ppnum_t)(atop_64(physAddr + page)), chunk); |
| 3957 | pagerOffset += chunk; |
| 3958 | } |
| 3959 | |
| 3960 | assert (KERN_SUCCESS == err); |
| 3961 | if (err) break; |
| 3962 | |
| 3963 | // This call to vm_fault causes an early pmap level resolution |
| 3964 | // of the mappings created above for kernel mappings, since |
| 3965 | // faulting in later can't take place from interrupt level. |
| 3966 | if ((addressMap == kernel_map) && !(kIOMemoryRedirected & _flags)) |
| 3967 | { |
| 3968 | err = vm_fault(addressMap, |
| 3969 | (vm_map_offset_t)trunc_page_64(address), |
| 3970 | options & kIOMapReadOnly ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE, |
| 3971 | FALSE, VM_KERN_MEMORY_NONE, |
| 3972 | THREAD_UNINT, NULL, |
| 3973 | (vm_map_offset_t)0); |
| 3974 | |
| 3975 | if (KERN_SUCCESS != err) break; |
| 3976 | } |
| 3977 | |
| 3978 | sourceOffset += segLen - pageOffset; |
| 3979 | address += segLen; |
| 3980 | bytes -= segLen; |
| 3981 | pageOffset = 0; |
| 3982 | } |
| 3983 | while (bytes && (physAddr = getPhysicalSegment( sourceOffset, &segLen, kIOMemoryMapperNone ))); |
| 3984 | |
| 3985 | if (bytes) |
| 3986 | err = kIOReturnBadArgument; |
| 3987 | |
| 3988 | return (err); |
| 3989 | } |
| 3990 | |
| 3991 | IOReturn IOMemoryDescriptor::doUnmap( |
| 3992 | vm_map_t addressMap, |
| 3993 | IOVirtualAddress __address, |
| 3994 | IOByteCount __length ) |
| 3995 | { |
| 3996 | IOReturn err; |
| 3997 | IOMemoryMap * mapping; |
| 3998 | mach_vm_address_t address; |
| 3999 | mach_vm_size_t length; |
| 4000 | |
| 4001 | if (__length) panic("doUnmap" ); |
| 4002 | |
| 4003 | mapping = (IOMemoryMap *) __address; |
| 4004 | addressMap = mapping->fAddressMap; |
| 4005 | address = mapping->fAddress; |
| 4006 | length = mapping->fLength; |
| 4007 | |
| 4008 | if (kIOMapOverwrite & mapping->fOptions) err = KERN_SUCCESS; |
| 4009 | else |
| 4010 | { |
| 4011 | if ((addressMap == kernel_map) && (kIOMemoryBufferPageable & _flags)) |
| 4012 | addressMap = IOPageableMapForAddress( address ); |
| 4013 | #if DEBUG |
| 4014 | if( kIOLogMapping & gIOKitDebug) IOLog("IOMemoryDescriptor::doUnmap map %p, 0x%qx:0x%qx\n" , |
| 4015 | addressMap, address, length ); |
| 4016 | #endif |
| 4017 | err = mach_vm_deallocate( addressMap, address, length ); |
| 4018 | } |
| 4019 | |
| 4020 | #if IOTRACKING |
| 4021 | IOTrackingRemoveUser(gIOMapTracking, &mapping->fTracking); |
| 4022 | #endif /* IOTRACKING */ |
| 4023 | |
| 4024 | return (err); |
| 4025 | } |
| 4026 | |
| 4027 | IOReturn IOMemoryDescriptor::redirect( task_t safeTask, bool doRedirect ) |
| 4028 | { |
| 4029 | IOReturn err = kIOReturnSuccess; |
| 4030 | IOMemoryMap * mapping = 0; |
| 4031 | OSIterator * iter; |
| 4032 | |
| 4033 | LOCK; |
| 4034 | |
| 4035 | if( doRedirect) |
| 4036 | _flags |= kIOMemoryRedirected; |
| 4037 | else |
| 4038 | _flags &= ~kIOMemoryRedirected; |
| 4039 | |
| 4040 | do { |
| 4041 | if( (iter = OSCollectionIterator::withCollection( _mappings))) { |
| 4042 | |
| 4043 | memory_object_t ; |
| 4044 | |
| 4045 | if( reserved) |
| 4046 | pager = (memory_object_t) reserved->dp.devicePager; |
| 4047 | else |
| 4048 | pager = MACH_PORT_NULL; |
| 4049 | |
| 4050 | while( (mapping = (IOMemoryMap *) iter->getNextObject())) |
| 4051 | { |
| 4052 | mapping->redirect( safeTask, doRedirect ); |
| 4053 | if (!doRedirect && !safeTask && pager && (kernel_map == mapping->fAddressMap)) |
| 4054 | { |
| 4055 | err = populateDevicePager(pager, mapping->fAddressMap, mapping->fAddress, mapping->fOffset, mapping->fLength, kIOMapDefaultCache ); |
| 4056 | } |
| 4057 | } |
| 4058 | |
| 4059 | iter->release(); |
| 4060 | } |
| 4061 | } while( false ); |
| 4062 | |
| 4063 | if (!doRedirect) |
| 4064 | { |
| 4065 | WAKEUP; |
| 4066 | } |
| 4067 | |
| 4068 | UNLOCK; |
| 4069 | |
| 4070 | #ifndef __LP64__ |
| 4071 | // temporary binary compatibility |
| 4072 | IOSubMemoryDescriptor * subMem; |
| 4073 | if( (subMem = OSDynamicCast( IOSubMemoryDescriptor, this))) |
| 4074 | err = subMem->redirect( safeTask, doRedirect ); |
| 4075 | else |
| 4076 | err = kIOReturnSuccess; |
| 4077 | #endif /* !__LP64__ */ |
| 4078 | |
| 4079 | return( err ); |
| 4080 | } |
| 4081 | |
| 4082 | IOReturn IOMemoryMap::redirect( task_t safeTask, bool doRedirect ) |
| 4083 | { |
| 4084 | IOReturn err = kIOReturnSuccess; |
| 4085 | |
| 4086 | if( fSuperMap) { |
| 4087 | // err = ((IOMemoryMap *)superMap)->redirect( safeTask, doRedirect ); |
| 4088 | } else { |
| 4089 | |
| 4090 | LOCK; |
| 4091 | |
| 4092 | do |
| 4093 | { |
| 4094 | if (!fAddress) |
| 4095 | break; |
| 4096 | if (!fAddressMap) |
| 4097 | break; |
| 4098 | |
| 4099 | if ((!safeTask || (get_task_map(safeTask) != fAddressMap)) |
| 4100 | && (0 == (fOptions & kIOMapStatic))) |
| 4101 | { |
| 4102 | IOUnmapPages( fAddressMap, fAddress, fLength ); |
| 4103 | err = kIOReturnSuccess; |
| 4104 | #if DEBUG |
| 4105 | IOLog("IOMemoryMap::redirect(%d, %p) 0x%qx:0x%qx from %p\n" , doRedirect, this, fAddress, fLength, fAddressMap); |
| 4106 | #endif |
| 4107 | } |
| 4108 | else if (kIOMapWriteCombineCache == (fOptions & kIOMapCacheMask)) |
| 4109 | { |
| 4110 | IOOptionBits newMode; |
| 4111 | newMode = (fOptions & ~kIOMapCacheMask) | (doRedirect ? kIOMapInhibitCache : kIOMapWriteCombineCache); |
| 4112 | IOProtectCacheMode(fAddressMap, fAddress, fLength, newMode); |
| 4113 | } |
| 4114 | } |
| 4115 | while (false); |
| 4116 | UNLOCK; |
| 4117 | } |
| 4118 | |
| 4119 | if ((((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) |
| 4120 | || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) |
| 4121 | && safeTask |
| 4122 | && (doRedirect != (0 != (fMemory->_flags & kIOMemoryRedirected)))) |
| 4123 | fMemory->redirect(safeTask, doRedirect); |
| 4124 | |
| 4125 | return( err ); |
| 4126 | } |
| 4127 | |
| 4128 | IOReturn IOMemoryMap::unmap( void ) |
| 4129 | { |
| 4130 | IOReturn err; |
| 4131 | |
| 4132 | LOCK; |
| 4133 | |
| 4134 | if( fAddress && fAddressMap && (0 == fSuperMap) && fMemory |
| 4135 | && (0 == (kIOMapStatic & fOptions))) { |
| 4136 | |
| 4137 | err = fMemory->doUnmap(fAddressMap, (IOVirtualAddress) this, 0); |
| 4138 | |
| 4139 | } else |
| 4140 | err = kIOReturnSuccess; |
| 4141 | |
| 4142 | if (fAddressMap) |
| 4143 | { |
| 4144 | vm_map_deallocate(fAddressMap); |
| 4145 | fAddressMap = 0; |
| 4146 | } |
| 4147 | |
| 4148 | fAddress = 0; |
| 4149 | |
| 4150 | UNLOCK; |
| 4151 | |
| 4152 | return( err ); |
| 4153 | } |
| 4154 | |
| 4155 | void IOMemoryMap::taskDied( void ) |
| 4156 | { |
| 4157 | LOCK; |
| 4158 | if (fUserClientUnmap) unmap(); |
| 4159 | #if IOTRACKING |
| 4160 | else IOTrackingRemoveUser(gIOMapTracking, &fTracking); |
| 4161 | #endif /* IOTRACKING */ |
| 4162 | |
| 4163 | if( fAddressMap) { |
| 4164 | vm_map_deallocate(fAddressMap); |
| 4165 | fAddressMap = 0; |
| 4166 | } |
| 4167 | fAddressTask = 0; |
| 4168 | fAddress = 0; |
| 4169 | UNLOCK; |
| 4170 | } |
| 4171 | |
| 4172 | IOReturn IOMemoryMap::userClientUnmap( void ) |
| 4173 | { |
| 4174 | fUserClientUnmap = true; |
| 4175 | return (kIOReturnSuccess); |
| 4176 | } |
| 4177 | |
| 4178 | // Overload the release mechanism. All mappings must be a member |
| 4179 | // of a memory descriptors _mappings set. This means that we |
| 4180 | // always have 2 references on a mapping. When either of these mappings |
| 4181 | // are released we need to free ourselves. |
| 4182 | void IOMemoryMap::taggedRelease(const void *tag) const |
| 4183 | { |
| 4184 | LOCK; |
| 4185 | super::taggedRelease(tag, 2); |
| 4186 | UNLOCK; |
| 4187 | } |
| 4188 | |
| 4189 | void IOMemoryMap::free() |
| 4190 | { |
| 4191 | unmap(); |
| 4192 | |
| 4193 | if (fMemory) |
| 4194 | { |
| 4195 | LOCK; |
| 4196 | fMemory->removeMapping(this); |
| 4197 | UNLOCK; |
| 4198 | fMemory->release(); |
| 4199 | } |
| 4200 | |
| 4201 | if (fOwner && (fOwner != fMemory)) |
| 4202 | { |
| 4203 | LOCK; |
| 4204 | fOwner->removeMapping(this); |
| 4205 | UNLOCK; |
| 4206 | } |
| 4207 | |
| 4208 | if (fSuperMap) |
| 4209 | fSuperMap->release(); |
| 4210 | |
| 4211 | if (fRedirUPL) { |
| 4212 | upl_commit(fRedirUPL, NULL, 0); |
| 4213 | upl_deallocate(fRedirUPL); |
| 4214 | } |
| 4215 | |
| 4216 | super::free(); |
| 4217 | } |
| 4218 | |
| 4219 | IOByteCount IOMemoryMap::getLength() |
| 4220 | { |
| 4221 | return( fLength ); |
| 4222 | } |
| 4223 | |
| 4224 | IOVirtualAddress IOMemoryMap::getVirtualAddress() |
| 4225 | { |
| 4226 | #ifndef __LP64__ |
| 4227 | if (fSuperMap) |
| 4228 | fSuperMap->getVirtualAddress(); |
| 4229 | else if (fAddressMap |
| 4230 | && vm_map_is_64bit(fAddressMap) |
| 4231 | && (sizeof(IOVirtualAddress) < 8)) |
| 4232 | { |
| 4233 | OSReportWithBacktrace("IOMemoryMap::getVirtualAddress(0x%qx) called on 64b map; use ::getAddress()" , fAddress); |
| 4234 | } |
| 4235 | #endif /* !__LP64__ */ |
| 4236 | |
| 4237 | return (fAddress); |
| 4238 | } |
| 4239 | |
| 4240 | #ifndef __LP64__ |
| 4241 | mach_vm_address_t IOMemoryMap::getAddress() |
| 4242 | { |
| 4243 | return( fAddress); |
| 4244 | } |
| 4245 | |
| 4246 | mach_vm_size_t IOMemoryMap::getSize() |
| 4247 | { |
| 4248 | return( fLength ); |
| 4249 | } |
| 4250 | #endif /* !__LP64__ */ |
| 4251 | |
| 4252 | |
| 4253 | task_t IOMemoryMap::getAddressTask() |
| 4254 | { |
| 4255 | if( fSuperMap) |
| 4256 | return( fSuperMap->getAddressTask()); |
| 4257 | else |
| 4258 | return( fAddressTask); |
| 4259 | } |
| 4260 | |
| 4261 | IOOptionBits IOMemoryMap::getMapOptions() |
| 4262 | { |
| 4263 | return( fOptions); |
| 4264 | } |
| 4265 | |
| 4266 | IOMemoryDescriptor * IOMemoryMap::getMemoryDescriptor() |
| 4267 | { |
| 4268 | return( fMemory ); |
| 4269 | } |
| 4270 | |
| 4271 | IOMemoryMap * IOMemoryMap::copyCompatible( |
| 4272 | IOMemoryMap * newMapping ) |
| 4273 | { |
| 4274 | task_t task = newMapping->getAddressTask(); |
| 4275 | mach_vm_address_t toAddress = newMapping->fAddress; |
| 4276 | IOOptionBits _options = newMapping->fOptions; |
| 4277 | mach_vm_size_t _offset = newMapping->fOffset; |
| 4278 | mach_vm_size_t _length = newMapping->fLength; |
| 4279 | |
| 4280 | if( (!task) || (!fAddressMap) || (fAddressMap != get_task_map(task))) |
| 4281 | return( 0 ); |
| 4282 | if( (fOptions ^ _options) & kIOMapReadOnly) |
| 4283 | return( 0 ); |
| 4284 | if( (kIOMapDefaultCache != (_options & kIOMapCacheMask)) |
| 4285 | && ((fOptions ^ _options) & kIOMapCacheMask)) |
| 4286 | return( 0 ); |
| 4287 | |
| 4288 | if( (0 == (_options & kIOMapAnywhere)) && (fAddress != toAddress)) |
| 4289 | return( 0 ); |
| 4290 | |
| 4291 | if( _offset < fOffset) |
| 4292 | return( 0 ); |
| 4293 | |
| 4294 | _offset -= fOffset; |
| 4295 | |
| 4296 | if( (_offset + _length) > fLength) |
| 4297 | return( 0 ); |
| 4298 | |
| 4299 | retain(); |
| 4300 | if( (fLength == _length) && (!_offset)) |
| 4301 | { |
| 4302 | newMapping = this; |
| 4303 | } |
| 4304 | else |
| 4305 | { |
| 4306 | newMapping->fSuperMap = this; |
| 4307 | newMapping->fOffset = fOffset + _offset; |
| 4308 | newMapping->fAddress = fAddress + _offset; |
| 4309 | } |
| 4310 | |
| 4311 | return( newMapping ); |
| 4312 | } |
| 4313 | |
| 4314 | IOReturn IOMemoryMap::wireRange( |
| 4315 | uint32_t options, |
| 4316 | mach_vm_size_t offset, |
| 4317 | mach_vm_size_t length) |
| 4318 | { |
| 4319 | IOReturn kr; |
| 4320 | mach_vm_address_t start = trunc_page_64(fAddress + offset); |
| 4321 | mach_vm_address_t end = round_page_64(fAddress + offset + length); |
| 4322 | vm_prot_t prot; |
| 4323 | |
| 4324 | prot = (kIODirectionOutIn & options); |
| 4325 | if (prot) |
| 4326 | { |
| 4327 | kr = vm_map_wire_kernel(fAddressMap, start, end, prot, fMemory->getVMTag(kernel_map), FALSE); |
| 4328 | } |
| 4329 | else |
| 4330 | { |
| 4331 | kr = vm_map_unwire(fAddressMap, start, end, FALSE); |
| 4332 | } |
| 4333 | |
| 4334 | return (kr); |
| 4335 | } |
| 4336 | |
| 4337 | |
| 4338 | IOPhysicalAddress |
| 4339 | #ifdef __LP64__ |
| 4340 | IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length, IOOptionBits _options) |
| 4341 | #else /* !__LP64__ */ |
| 4342 | IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length) |
| 4343 | #endif /* !__LP64__ */ |
| 4344 | { |
| 4345 | IOPhysicalAddress address; |
| 4346 | |
| 4347 | LOCK; |
| 4348 | #ifdef __LP64__ |
| 4349 | address = fMemory->getPhysicalSegment( fOffset + _offset, _length, _options ); |
| 4350 | #else /* !__LP64__ */ |
| 4351 | address = fMemory->getPhysicalSegment( fOffset + _offset, _length ); |
| 4352 | #endif /* !__LP64__ */ |
| 4353 | UNLOCK; |
| 4354 | |
| 4355 | return( address ); |
| 4356 | } |
| 4357 | |
| 4358 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 4359 | |
| 4360 | #undef super |
| 4361 | #define super OSObject |
| 4362 | |
| 4363 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 4364 | |
| 4365 | void IOMemoryDescriptor::initialize( void ) |
| 4366 | { |
| 4367 | if( 0 == gIOMemoryLock) |
| 4368 | gIOMemoryLock = IORecursiveLockAlloc(); |
| 4369 | |
| 4370 | gIOLastPage = IOGetLastPageNumber(); |
| 4371 | } |
| 4372 | |
| 4373 | void IOMemoryDescriptor::free( void ) |
| 4374 | { |
| 4375 | if( _mappings) _mappings->release(); |
| 4376 | |
| 4377 | if (reserved) |
| 4378 | { |
| 4379 | IODelete(reserved, IOMemoryDescriptorReserved, 1); |
| 4380 | reserved = NULL; |
| 4381 | } |
| 4382 | super::free(); |
| 4383 | } |
| 4384 | |
| 4385 | IOMemoryMap * IOMemoryDescriptor::setMapping( |
| 4386 | task_t intoTask, |
| 4387 | IOVirtualAddress mapAddress, |
| 4388 | IOOptionBits options ) |
| 4389 | { |
| 4390 | return (createMappingInTask( intoTask, mapAddress, |
| 4391 | options | kIOMapStatic, |
| 4392 | 0, getLength() )); |
| 4393 | } |
| 4394 | |
| 4395 | IOMemoryMap * IOMemoryDescriptor::map( |
| 4396 | IOOptionBits options ) |
| 4397 | { |
| 4398 | return (createMappingInTask( kernel_task, 0, |
| 4399 | options | kIOMapAnywhere, |
| 4400 | 0, getLength() )); |
| 4401 | } |
| 4402 | |
| 4403 | #ifndef __LP64__ |
| 4404 | IOMemoryMap * IOMemoryDescriptor::map( |
| 4405 | task_t intoTask, |
| 4406 | IOVirtualAddress atAddress, |
| 4407 | IOOptionBits options, |
| 4408 | IOByteCount offset, |
| 4409 | IOByteCount length ) |
| 4410 | { |
| 4411 | if ((!(kIOMapAnywhere & options)) && vm_map_is_64bit(get_task_map(intoTask))) |
| 4412 | { |
| 4413 | OSReportWithBacktrace("IOMemoryDescriptor::map() in 64b task, use ::createMappingInTask()" ); |
| 4414 | return (0); |
| 4415 | } |
| 4416 | |
| 4417 | return (createMappingInTask(intoTask, atAddress, |
| 4418 | options, offset, length)); |
| 4419 | } |
| 4420 | #endif /* !__LP64__ */ |
| 4421 | |
| 4422 | IOMemoryMap * IOMemoryDescriptor::createMappingInTask( |
| 4423 | task_t intoTask, |
| 4424 | mach_vm_address_t atAddress, |
| 4425 | IOOptionBits options, |
| 4426 | mach_vm_size_t offset, |
| 4427 | mach_vm_size_t length) |
| 4428 | { |
| 4429 | IOMemoryMap * result; |
| 4430 | IOMemoryMap * mapping; |
| 4431 | |
| 4432 | if (0 == length) |
| 4433 | length = getLength(); |
| 4434 | |
| 4435 | mapping = new IOMemoryMap; |
| 4436 | |
| 4437 | if( mapping |
| 4438 | && !mapping->init( intoTask, atAddress, |
| 4439 | options, offset, length )) { |
| 4440 | mapping->release(); |
| 4441 | mapping = 0; |
| 4442 | } |
| 4443 | |
| 4444 | if (mapping) |
| 4445 | result = makeMapping(this, intoTask, (IOVirtualAddress) mapping, options | kIOMap64Bit, 0, 0); |
| 4446 | else |
| 4447 | result = 0; |
| 4448 | |
| 4449 | #if DEBUG |
| 4450 | if (!result) |
| 4451 | IOLog("createMappingInTask failed desc %p, addr %qx, options %x, offset %qx, length %llx\n" , |
| 4452 | this, atAddress, (uint32_t) options, offset, length); |
| 4453 | #endif |
| 4454 | |
| 4455 | return (result); |
| 4456 | } |
| 4457 | |
| 4458 | #ifndef __LP64__ // there is only a 64 bit version for LP64 |
| 4459 | IOReturn IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory, |
| 4460 | IOOptionBits options, |
| 4461 | IOByteCount offset) |
| 4462 | { |
| 4463 | return (redirect(newBackingMemory, options, (mach_vm_size_t)offset)); |
| 4464 | } |
| 4465 | #endif |
| 4466 | |
| 4467 | IOReturn IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory, |
| 4468 | IOOptionBits options, |
| 4469 | mach_vm_size_t offset) |
| 4470 | { |
| 4471 | IOReturn err = kIOReturnSuccess; |
| 4472 | IOMemoryDescriptor * physMem = 0; |
| 4473 | |
| 4474 | LOCK; |
| 4475 | |
| 4476 | if (fAddress && fAddressMap) do |
| 4477 | { |
| 4478 | if (((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) |
| 4479 | || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) |
| 4480 | { |
| 4481 | physMem = fMemory; |
| 4482 | physMem->retain(); |
| 4483 | } |
| 4484 | |
| 4485 | if (!fRedirUPL && fMemory->_memRef && (1 == fMemory->_memRef->count)) |
| 4486 | { |
| 4487 | upl_size_t size = round_page(fLength); |
| 4488 | upl_control_flags_t flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL |
| 4489 | | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS; |
| 4490 | if (KERN_SUCCESS != memory_object_iopl_request(fMemory->_memRef->entries[0].entry, 0, &size, &fRedirUPL, |
| 4491 | NULL, NULL, |
| 4492 | &flags, fMemory->getVMTag(kernel_map))) |
| 4493 | fRedirUPL = 0; |
| 4494 | |
| 4495 | if (physMem) |
| 4496 | { |
| 4497 | IOUnmapPages( fAddressMap, fAddress, fLength ); |
| 4498 | if ((false)) |
| 4499 | physMem->redirect(0, true); |
| 4500 | } |
| 4501 | } |
| 4502 | |
| 4503 | if (newBackingMemory) |
| 4504 | { |
| 4505 | if (newBackingMemory != fMemory) |
| 4506 | { |
| 4507 | fOffset = 0; |
| 4508 | if (this != newBackingMemory->makeMapping(newBackingMemory, fAddressTask, (IOVirtualAddress) this, |
| 4509 | options | kIOMapUnique | kIOMapReference | kIOMap64Bit, |
| 4510 | offset, fLength)) |
| 4511 | err = kIOReturnError; |
| 4512 | } |
| 4513 | if (fRedirUPL) |
| 4514 | { |
| 4515 | upl_commit(fRedirUPL, NULL, 0); |
| 4516 | upl_deallocate(fRedirUPL); |
| 4517 | fRedirUPL = 0; |
| 4518 | } |
| 4519 | if ((false) && physMem) |
| 4520 | physMem->redirect(0, false); |
| 4521 | } |
| 4522 | } |
| 4523 | while (false); |
| 4524 | |
| 4525 | UNLOCK; |
| 4526 | |
| 4527 | if (physMem) |
| 4528 | physMem->release(); |
| 4529 | |
| 4530 | return (err); |
| 4531 | } |
| 4532 | |
| 4533 | IOMemoryMap * IOMemoryDescriptor::makeMapping( |
| 4534 | IOMemoryDescriptor * owner, |
| 4535 | task_t __intoTask, |
| 4536 | IOVirtualAddress __address, |
| 4537 | IOOptionBits options, |
| 4538 | IOByteCount __offset, |
| 4539 | IOByteCount __length ) |
| 4540 | { |
| 4541 | #ifndef __LP64__ |
| 4542 | if (!(kIOMap64Bit & options)) panic("IOMemoryDescriptor::makeMapping !64bit" ); |
| 4543 | #endif /* !__LP64__ */ |
| 4544 | |
| 4545 | IOMemoryDescriptor * mapDesc = 0; |
| 4546 | __block IOMemoryMap * result = 0; |
| 4547 | |
| 4548 | IOMemoryMap * mapping = (IOMemoryMap *) __address; |
| 4549 | mach_vm_size_t offset = mapping->fOffset + __offset; |
| 4550 | mach_vm_size_t length = mapping->fLength; |
| 4551 | |
| 4552 | mapping->fOffset = offset; |
| 4553 | |
| 4554 | LOCK; |
| 4555 | |
| 4556 | do |
| 4557 | { |
| 4558 | if (kIOMapStatic & options) |
| 4559 | { |
| 4560 | result = mapping; |
| 4561 | addMapping(mapping); |
| 4562 | mapping->setMemoryDescriptor(this, 0); |
| 4563 | continue; |
| 4564 | } |
| 4565 | |
| 4566 | if (kIOMapUnique & options) |
| 4567 | { |
| 4568 | addr64_t phys; |
| 4569 | IOByteCount physLen; |
| 4570 | |
| 4571 | // if (owner != this) continue; |
| 4572 | |
| 4573 | if (((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) |
| 4574 | || ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) |
| 4575 | { |
| 4576 | phys = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone); |
| 4577 | if (!phys || (physLen < length)) |
| 4578 | continue; |
| 4579 | |
| 4580 | mapDesc = IOMemoryDescriptor::withAddressRange( |
| 4581 | phys, length, getDirection() | kIOMemoryMapperNone, NULL); |
| 4582 | if (!mapDesc) |
| 4583 | continue; |
| 4584 | offset = 0; |
| 4585 | mapping->fOffset = offset; |
| 4586 | } |
| 4587 | } |
| 4588 | else |
| 4589 | { |
| 4590 | // look for a compatible existing mapping |
| 4591 | if (_mappings) _mappings->iterateObjects(^(OSObject * object) |
| 4592 | { |
| 4593 | IOMemoryMap * lookMapping = (IOMemoryMap *) object; |
| 4594 | if ((result = lookMapping->copyCompatible(mapping))) |
| 4595 | { |
| 4596 | addMapping(result); |
| 4597 | result->setMemoryDescriptor(this, offset); |
| 4598 | return (true); |
| 4599 | } |
| 4600 | return (false); |
| 4601 | }); |
| 4602 | if (result || (options & kIOMapReference)) |
| 4603 | { |
| 4604 | if (result != mapping) |
| 4605 | { |
| 4606 | mapping->release(); |
| 4607 | mapping = NULL; |
| 4608 | } |
| 4609 | continue; |
| 4610 | } |
| 4611 | } |
| 4612 | |
| 4613 | if (!mapDesc) |
| 4614 | { |
| 4615 | mapDesc = this; |
| 4616 | mapDesc->retain(); |
| 4617 | } |
| 4618 | IOReturn |
| 4619 | kr = mapDesc->doMap( 0, (IOVirtualAddress *) &mapping, options, 0, 0 ); |
| 4620 | if (kIOReturnSuccess == kr) |
| 4621 | { |
| 4622 | result = mapping; |
| 4623 | mapDesc->addMapping(result); |
| 4624 | result->setMemoryDescriptor(mapDesc, offset); |
| 4625 | } |
| 4626 | else |
| 4627 | { |
| 4628 | mapping->release(); |
| 4629 | mapping = NULL; |
| 4630 | } |
| 4631 | } |
| 4632 | while( false ); |
| 4633 | |
| 4634 | UNLOCK; |
| 4635 | |
| 4636 | if (mapDesc) |
| 4637 | mapDesc->release(); |
| 4638 | |
| 4639 | return (result); |
| 4640 | } |
| 4641 | |
| 4642 | void IOMemoryDescriptor::addMapping( |
| 4643 | IOMemoryMap * mapping ) |
| 4644 | { |
| 4645 | if( mapping) |
| 4646 | { |
| 4647 | if( 0 == _mappings) |
| 4648 | _mappings = OSSet::withCapacity(1); |
| 4649 | if( _mappings ) |
| 4650 | _mappings->setObject( mapping ); |
| 4651 | } |
| 4652 | } |
| 4653 | |
| 4654 | void IOMemoryDescriptor::removeMapping( |
| 4655 | IOMemoryMap * mapping ) |
| 4656 | { |
| 4657 | if( _mappings) |
| 4658 | _mappings->removeObject( mapping); |
| 4659 | } |
| 4660 | |
| 4661 | #ifndef __LP64__ |
| 4662 | // obsolete initializers |
| 4663 | // - initWithOptions is the designated initializer |
| 4664 | bool |
| 4665 | IOMemoryDescriptor::initWithAddress(void * address, |
| 4666 | IOByteCount length, |
| 4667 | IODirection direction) |
| 4668 | { |
| 4669 | return( false ); |
| 4670 | } |
| 4671 | |
| 4672 | bool |
| 4673 | IOMemoryDescriptor::initWithAddress(IOVirtualAddress address, |
| 4674 | IOByteCount length, |
| 4675 | IODirection direction, |
| 4676 | task_t task) |
| 4677 | { |
| 4678 | return( false ); |
| 4679 | } |
| 4680 | |
| 4681 | bool |
| 4682 | IOMemoryDescriptor::initWithPhysicalAddress( |
| 4683 | IOPhysicalAddress address, |
| 4684 | IOByteCount length, |
| 4685 | IODirection direction ) |
| 4686 | { |
| 4687 | return( false ); |
| 4688 | } |
| 4689 | |
| 4690 | bool |
| 4691 | IOMemoryDescriptor::initWithRanges( |
| 4692 | IOVirtualRange * ranges, |
| 4693 | UInt32 withCount, |
| 4694 | IODirection direction, |
| 4695 | task_t task, |
| 4696 | bool asReference) |
| 4697 | { |
| 4698 | return( false ); |
| 4699 | } |
| 4700 | |
| 4701 | bool |
| 4702 | IOMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * ranges, |
| 4703 | UInt32 withCount, |
| 4704 | IODirection direction, |
| 4705 | bool asReference) |
| 4706 | { |
| 4707 | return( false ); |
| 4708 | } |
| 4709 | |
| 4710 | void * IOMemoryDescriptor::getVirtualSegment(IOByteCount offset, |
| 4711 | IOByteCount * lengthOfSegment) |
| 4712 | { |
| 4713 | return( 0 ); |
| 4714 | } |
| 4715 | #endif /* !__LP64__ */ |
| 4716 | |
| 4717 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 4718 | |
| 4719 | bool IOGeneralMemoryDescriptor::serialize(OSSerialize * s) const |
| 4720 | { |
| 4721 | OSSymbol const *keys[2] = {0}; |
| 4722 | OSObject *values[2] = {0}; |
| 4723 | OSArray * array; |
| 4724 | vm_size_t vcopy_size; |
| 4725 | |
| 4726 | struct SerData { |
| 4727 | user_addr_t address; |
| 4728 | user_size_t length; |
| 4729 | } *vcopy = NULL; |
| 4730 | unsigned int index, nRanges; |
| 4731 | bool result = false; |
| 4732 | |
| 4733 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
| 4734 | |
| 4735 | if (s == NULL) return false; |
| 4736 | |
| 4737 | array = OSArray::withCapacity(4); |
| 4738 | if (!array) return (false); |
| 4739 | |
| 4740 | nRanges = _rangesCount; |
| 4741 | if (os_mul_overflow(sizeof(SerData), nRanges, &vcopy_size)) { |
| 4742 | result = false; |
| 4743 | goto bail; |
| 4744 | } |
| 4745 | vcopy = (SerData *) IOMalloc(vcopy_size); |
| 4746 | if (vcopy == 0) { |
| 4747 | result = false; |
| 4748 | goto bail; |
| 4749 | } |
| 4750 | |
| 4751 | keys[0] = OSSymbol::withCString("address" ); |
| 4752 | keys[1] = OSSymbol::withCString("length" ); |
| 4753 | |
| 4754 | // Copy the volatile data so we don't have to allocate memory |
| 4755 | // while the lock is held. |
| 4756 | LOCK; |
| 4757 | if (nRanges == _rangesCount) { |
| 4758 | Ranges vec = _ranges; |
| 4759 | for (index = 0; index < nRanges; index++) { |
| 4760 | mach_vm_address_t addr; mach_vm_size_t len; |
| 4761 | getAddrLenForInd(addr, len, type, vec, index); |
| 4762 | vcopy[index].address = addr; |
| 4763 | vcopy[index].length = len; |
| 4764 | } |
| 4765 | } else { |
| 4766 | // The descriptor changed out from under us. Give up. |
| 4767 | UNLOCK; |
| 4768 | result = false; |
| 4769 | goto bail; |
| 4770 | } |
| 4771 | UNLOCK; |
| 4772 | |
| 4773 | for (index = 0; index < nRanges; index++) |
| 4774 | { |
| 4775 | user_addr_t addr = vcopy[index].address; |
| 4776 | IOByteCount len = (IOByteCount) vcopy[index].length; |
| 4777 | values[0] = OSNumber::withNumber(addr, sizeof(addr) * 8); |
| 4778 | if (values[0] == 0) { |
| 4779 | result = false; |
| 4780 | goto bail; |
| 4781 | } |
| 4782 | values[1] = OSNumber::withNumber(len, sizeof(len) * 8); |
| 4783 | if (values[1] == 0) { |
| 4784 | result = false; |
| 4785 | goto bail; |
| 4786 | } |
| 4787 | OSDictionary *dict = OSDictionary::withObjects((const OSObject **)values, (const OSSymbol **)keys, 2); |
| 4788 | if (dict == 0) { |
| 4789 | result = false; |
| 4790 | goto bail; |
| 4791 | } |
| 4792 | array->setObject(dict); |
| 4793 | dict->release(); |
| 4794 | values[0]->release(); |
| 4795 | values[1]->release(); |
| 4796 | values[0] = values[1] = 0; |
| 4797 | } |
| 4798 | |
| 4799 | result = array->serialize(s); |
| 4800 | |
| 4801 | bail: |
| 4802 | if (array) |
| 4803 | array->release(); |
| 4804 | if (values[0]) |
| 4805 | values[0]->release(); |
| 4806 | if (values[1]) |
| 4807 | values[1]->release(); |
| 4808 | if (keys[0]) |
| 4809 | keys[0]->release(); |
| 4810 | if (keys[1]) |
| 4811 | keys[1]->release(); |
| 4812 | if (vcopy) |
| 4813 | IOFree(vcopy, vcopy_size); |
| 4814 | |
| 4815 | return result; |
| 4816 | } |
| 4817 | |
| 4818 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 4819 | |
| 4820 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 0); |
| 4821 | #ifdef __LP64__ |
| 4822 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 1); |
| 4823 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 2); |
| 4824 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 3); |
| 4825 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 4); |
| 4826 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 5); |
| 4827 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 6); |
| 4828 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 7); |
| 4829 | #else /* !__LP64__ */ |
| 4830 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 1); |
| 4831 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 2); |
| 4832 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 3); |
| 4833 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 4); |
| 4834 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 5); |
| 4835 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 6); |
| 4836 | OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 7); |
| 4837 | #endif /* !__LP64__ */ |
| 4838 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 8); |
| 4839 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 9); |
| 4840 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 10); |
| 4841 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 11); |
| 4842 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 12); |
| 4843 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 13); |
| 4844 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 14); |
| 4845 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 15); |
| 4846 | |
| 4847 | /* ex-inline function implementation */ |
| 4848 | IOPhysicalAddress |
| 4849 | IOMemoryDescriptor::getPhysicalAddress() |
| 4850 | { return( getPhysicalSegment( 0, 0 )); } |
| 4851 | |