| 1 | /*- |
| 2 | * Copyright (c) 2008-2010 Apple Inc. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in the |
| 13 | * documentation and/or other materials provided with the distribution. |
| 14 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 15 | * its contributors may be used to endorse or promote products derived |
| 16 | * from this software without specific prior written permission. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 19 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 20 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 21 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 22 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 23 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 24 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 25 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 | */ |
| 29 | |
| 30 | #include <string.h> |
| 31 | |
| 32 | #include <sys/kernel.h> |
| 33 | #include <sys/proc.h> |
| 34 | #include <sys/systm.h> |
| 35 | |
| 36 | #include <kern/host.h> |
| 37 | #include <kern/kalloc.h> |
| 38 | #include <kern/locks.h> |
| 39 | #include <kern/sched_prim.h> |
| 40 | |
| 41 | #include <libkern/OSAtomic.h> |
| 42 | |
| 43 | #include <bsm/audit.h> |
| 44 | #include <bsm/audit_internal.h> |
| 45 | |
| 46 | #include <security/audit/audit_bsd.h> |
| 47 | #include <security/audit/audit.h> |
| 48 | #include <security/audit/audit_private.h> |
| 49 | |
| 50 | #include <mach/host_priv.h> |
| 51 | #include <mach/host_special_ports.h> |
| 52 | #include <mach/audit_triggers_server.h> |
| 53 | |
| 54 | #include <os/overflow.h> |
| 55 | |
| 56 | extern void ipc_port_release_send(ipc_port_t port); |
| 57 | |
| 58 | #if CONFIG_AUDIT |
| 59 | struct mhdr { |
| 60 | size_t mh_size; |
| 61 | au_malloc_type_t *mh_type; |
| 62 | u_long mh_magic; |
| 63 | char mh_data[0]; |
| 64 | }; |
| 65 | |
| 66 | /* |
| 67 | * The lock group for the audit subsystem. |
| 68 | */ |
| 69 | static lck_grp_t *audit_lck_grp = NULL; |
| 70 | |
| 71 | #define AUDIT_MHMAGIC 0x4D656C53 |
| 72 | |
| 73 | #if AUDIT_MALLOC_DEBUG |
| 74 | #define AU_MAX_SHORTDESC 20 |
| 75 | #define AU_MAX_LASTCALLER 20 |
| 76 | struct au_malloc_debug_info { |
| 77 | SInt64 md_size; |
| 78 | SInt64 md_maxsize; |
| 79 | SInt32 md_inuse; |
| 80 | SInt32 md_maxused; |
| 81 | unsigned md_type; |
| 82 | unsigned md_magic; |
| 83 | char md_shortdesc[AU_MAX_SHORTDESC]; |
| 84 | char md_lastcaller[AU_MAX_LASTCALLER]; |
| 85 | }; |
| 86 | typedef struct au_malloc_debug_info au_malloc_debug_info_t; |
| 87 | |
| 88 | au_malloc_type_t *audit_malloc_types[NUM_MALLOC_TYPES]; |
| 89 | |
| 90 | static int audit_sysctl_malloc_debug(struct sysctl_oid *oidp, void *arg1, |
| 91 | int arg2, struct sysctl_req *req); |
| 92 | |
| 93 | SYSCTL_PROC(_kern, OID_AUTO, audit_malloc_debug, CTLFLAG_RD, NULL, 0, |
| 94 | audit_sysctl_malloc_debug, "S,audit_malloc_debug" , |
| 95 | "Current malloc debug info for auditing." ); |
| 96 | |
| 97 | #define AU_MALLOC_DBINFO_SZ \ |
| 98 | (NUM_MALLOC_TYPES * sizeof(au_malloc_debug_info_t)) |
| 99 | |
| 100 | /* |
| 101 | * Copy out the malloc debug info via the sysctl interface. The userland code |
| 102 | * is something like the following: |
| 103 | * |
| 104 | * error = sysctlbyname("kern.audit_malloc_debug", buffer_ptr, &buffer_len, |
| 105 | * NULL, 0); |
| 106 | */ |
| 107 | static int |
| 108 | audit_sysctl_malloc_debug(__unused struct sysctl_oid *oidp, __unused void *arg1, |
| 109 | __unused int arg2, struct sysctl_req *req) |
| 110 | { |
| 111 | int i; |
| 112 | size_t sz; |
| 113 | au_malloc_debug_info_t *amdi_ptr, *nxt_ptr; |
| 114 | int err; |
| 115 | |
| 116 | /* |
| 117 | * This provides a read-only node. |
| 118 | */ |
| 119 | if (req->newptr != USER_ADDR_NULL) |
| 120 | return (EPERM); |
| 121 | |
| 122 | /* |
| 123 | * If just querying then return the space required. |
| 124 | */ |
| 125 | if (req->oldptr == USER_ADDR_NULL) { |
| 126 | req->oldidx = AU_MALLOC_DBINFO_SZ; |
| 127 | return (0); |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * Alloc a temporary buffer. |
| 132 | */ |
| 133 | if (req->oldlen < AU_MALLOC_DBINFO_SZ) |
| 134 | return (ENOMEM); |
| 135 | amdi_ptr = (au_malloc_debug_info_t *)kalloc(AU_MALLOC_DBINFO_SZ); |
| 136 | if (amdi_ptr == NULL) |
| 137 | return (ENOMEM); |
| 138 | bzero(amdi_ptr, AU_MALLOC_DBINFO_SZ); |
| 139 | |
| 140 | /* |
| 141 | * Build the record array. |
| 142 | */ |
| 143 | sz = 0; |
| 144 | nxt_ptr = amdi_ptr; |
| 145 | for(i = 0; i < NUM_MALLOC_TYPES; i++) { |
| 146 | if (audit_malloc_types[i] == NULL) |
| 147 | continue; |
| 148 | if (audit_malloc_types[i]->mt_magic != M_MAGIC) { |
| 149 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; |
| 150 | continue; |
| 151 | } |
| 152 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; |
| 153 | nxt_ptr->md_size = audit_malloc_types[i]->mt_size; |
| 154 | nxt_ptr->md_maxsize = audit_malloc_types[i]->mt_maxsize; |
| 155 | nxt_ptr->md_inuse = (int)audit_malloc_types[i]->mt_inuse; |
| 156 | nxt_ptr->md_maxused = (int)audit_malloc_types[i]->mt_maxused; |
| 157 | strlcpy(nxt_ptr->md_shortdesc, |
| 158 | audit_malloc_types[i]->mt_shortdesc, AU_MAX_SHORTDESC - 1); |
| 159 | strlcpy(nxt_ptr->md_lastcaller, |
| 160 | audit_malloc_types[i]->mt_lastcaller, AU_MAX_LASTCALLER-1); |
| 161 | sz += sizeof(au_malloc_debug_info_t); |
| 162 | nxt_ptr++; |
| 163 | } |
| 164 | |
| 165 | req->oldlen = sz; |
| 166 | err = SYSCTL_OUT(req, amdi_ptr, sz); |
| 167 | kfree(amdi_ptr, AU_MALLOC_DBINFO_SZ); |
| 168 | |
| 169 | return (err); |
| 170 | } |
| 171 | #endif /* AUDIT_MALLOC_DEBUG */ |
| 172 | |
| 173 | /* |
| 174 | * BSD malloc() |
| 175 | * |
| 176 | * If the M_NOWAIT flag is set then it may not block and return NULL. |
| 177 | * If the M_ZERO flag is set then zero out the buffer. |
| 178 | */ |
| 179 | void * |
| 180 | #if AUDIT_MALLOC_DEBUG |
| 181 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags, const char *fn) |
| 182 | #else |
| 183 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags) |
| 184 | #endif |
| 185 | { |
| 186 | struct mhdr *hdr; |
| 187 | size_t memsize; |
| 188 | if (os_add_overflow(sizeof(*hdr), size, &memsize)) { |
| 189 | return (NULL); |
| 190 | } |
| 191 | |
| 192 | if (size == 0) |
| 193 | return (NULL); |
| 194 | if (flags & M_NOWAIT) { |
| 195 | hdr = (void *)kalloc_noblock(memsize); |
| 196 | } else { |
| 197 | hdr = (void *)kalloc(memsize); |
| 198 | if (hdr == NULL) |
| 199 | panic("_audit_malloc: kernel memory exhausted" ); |
| 200 | } |
| 201 | if (hdr == NULL) |
| 202 | return (NULL); |
| 203 | hdr->mh_size = memsize; |
| 204 | hdr->mh_type = type; |
| 205 | hdr->mh_magic = AUDIT_MHMAGIC; |
| 206 | if (flags & M_ZERO) |
| 207 | memset(hdr->mh_data, 0, size); |
| 208 | #if AUDIT_MALLOC_DEBUG |
| 209 | if (type != NULL && type->mt_type < NUM_MALLOC_TYPES) { |
| 210 | OSAddAtomic64(memsize, &type->mt_size); |
| 211 | type->mt_maxsize = max(type->mt_size, type->mt_maxsize); |
| 212 | OSAddAtomic(1, &type->mt_inuse); |
| 213 | type->mt_maxused = max(type->mt_inuse, type->mt_maxused); |
| 214 | type->mt_lastcaller = fn; |
| 215 | audit_malloc_types[type->mt_type] = type; |
| 216 | } |
| 217 | #endif /* AUDIT_MALLOC_DEBUG */ |
| 218 | return (hdr->mh_data); |
| 219 | } |
| 220 | |
| 221 | /* |
| 222 | * BSD free() |
| 223 | */ |
| 224 | void |
| 225 | #if AUDIT_MALLOC_DEBUG |
| 226 | _audit_free(void *addr, au_malloc_type_t *type) |
| 227 | #else |
| 228 | _audit_free(void *addr, __unused au_malloc_type_t *type) |
| 229 | #endif |
| 230 | { |
| 231 | struct mhdr *hdr; |
| 232 | |
| 233 | if (addr == NULL) |
| 234 | return; |
| 235 | hdr = addr; hdr--; |
| 236 | |
| 237 | if (hdr->mh_magic != AUDIT_MHMAGIC) { |
| 238 | panic("_audit_free(): hdr->mh_magic (%lx) != AUDIT_MHMAGIC" , hdr->mh_magic); |
| 239 | } |
| 240 | |
| 241 | #if AUDIT_MALLOC_DEBUG |
| 242 | if (type != NULL) { |
| 243 | OSAddAtomic64(-hdr->mh_size, &type->mt_size); |
| 244 | OSAddAtomic(-1, &type->mt_inuse); |
| 245 | } |
| 246 | #endif /* AUDIT_MALLOC_DEBUG */ |
| 247 | kfree(hdr, hdr->mh_size); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * Initialize a condition variable. Must be called before use. |
| 252 | */ |
| 253 | void |
| 254 | _audit_cv_init(struct cv *cvp, const char *desc) |
| 255 | { |
| 256 | |
| 257 | if (desc == NULL) |
| 258 | cvp->cv_description = "UNKNOWN" ; |
| 259 | else |
| 260 | cvp->cv_description = desc; |
| 261 | cvp->cv_waiters = 0; |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * Destory a condition variable. |
| 266 | */ |
| 267 | void |
| 268 | _audit_cv_destroy(struct cv *cvp) |
| 269 | { |
| 270 | |
| 271 | cvp->cv_description = NULL; |
| 272 | cvp->cv_waiters = 0; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Signal a condition variable, wakes up one waiting thread. |
| 277 | */ |
| 278 | void |
| 279 | _audit_cv_signal(struct cv *cvp) |
| 280 | { |
| 281 | |
| 282 | if (cvp->cv_waiters > 0) { |
| 283 | wakeup_one((caddr_t)cvp); |
| 284 | cvp->cv_waiters--; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Broadcast a signal to a condition variable. |
| 290 | */ |
| 291 | void |
| 292 | _audit_cv_broadcast(struct cv *cvp) |
| 293 | { |
| 294 | |
| 295 | if (cvp->cv_waiters > 0) { |
| 296 | wakeup((caddr_t)cvp); |
| 297 | cvp->cv_waiters = 0; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * Wait on a condition variable. A cv_signal or cv_broadcast on the same |
| 303 | * condition variable will resume the thread. It is recommended that the mutex |
| 304 | * be held when cv_signal or cv_broadcast are called. |
| 305 | */ |
| 306 | void |
| 307 | _audit_cv_wait(struct cv *cvp, lck_mtx_t *mp, const char *desc) |
| 308 | { |
| 309 | |
| 310 | cvp->cv_waiters++; |
| 311 | (void) msleep(cvp, mp, PZERO, desc, 0); |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Wait on a condition variable, allowing interruption by signals. Return 0 |
| 316 | * if the thread was resumed with cv_signal or cv_broadcast, EINTR or |
| 317 | * ERESTART if a signal was caught. If ERESTART is returned the system call |
| 318 | * should be restarted if possible. |
| 319 | */ |
| 320 | int |
| 321 | _audit_cv_wait_sig(struct cv *cvp, lck_mtx_t *mp, const char *desc) |
| 322 | { |
| 323 | |
| 324 | cvp->cv_waiters++; |
| 325 | return (msleep(cvp, mp, PSOCK | PCATCH, desc, 0)); |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * BSD Mutexes. |
| 330 | */ |
| 331 | void |
| 332 | #if DIAGNOSTIC |
| 333 | _audit_mtx_init(struct mtx *mp, const char *lckname) |
| 334 | #else |
| 335 | _audit_mtx_init(struct mtx *mp, __unused const char *lckname) |
| 336 | #endif |
| 337 | { |
| 338 | mp->mtx_lock = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
| 339 | KASSERT(mp->mtx_lock != NULL, |
| 340 | ("_audit_mtx_init: Could not allocate a mutex." )); |
| 341 | #if DIAGNOSTIC |
| 342 | strlcpy(mp->mtx_name, lckname, AU_MAX_LCK_NAME); |
| 343 | #endif |
| 344 | } |
| 345 | |
| 346 | void |
| 347 | _audit_mtx_destroy(struct mtx *mp) |
| 348 | { |
| 349 | |
| 350 | if (mp->mtx_lock) { |
| 351 | lck_mtx_free(mp->mtx_lock, audit_lck_grp); |
| 352 | mp->mtx_lock = NULL; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * BSD rw locks. |
| 358 | */ |
| 359 | void |
| 360 | #if DIAGNOSTIC |
| 361 | _audit_rw_init(struct rwlock *lp, const char *lckname) |
| 362 | #else |
| 363 | _audit_rw_init(struct rwlock *lp, __unused const char *lckname) |
| 364 | #endif |
| 365 | { |
| 366 | lp->rw_lock = lck_rw_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
| 367 | KASSERT(lp->rw_lock != NULL, |
| 368 | ("_audit_rw_init: Could not allocate a rw lock." )); |
| 369 | #if DIAGNOSTIC |
| 370 | strlcpy(lp->rw_name, lckname, AU_MAX_LCK_NAME); |
| 371 | #endif |
| 372 | } |
| 373 | |
| 374 | void |
| 375 | _audit_rw_destroy(struct rwlock *lp) |
| 376 | { |
| 377 | |
| 378 | if (lp->rw_lock) { |
| 379 | lck_rw_free(lp->rw_lock, audit_lck_grp); |
| 380 | lp->rw_lock = NULL; |
| 381 | } |
| 382 | } |
| 383 | /* |
| 384 | * Wait on a condition variable in a continuation (i.e. yield kernel stack). |
| 385 | * A cv_signal or cv_broadcast on the same condition variable will cause |
| 386 | * the thread to be scheduled. |
| 387 | */ |
| 388 | int |
| 389 | _audit_cv_wait_continuation(struct cv *cvp, lck_mtx_t *mp, thread_continue_t function) |
| 390 | { |
| 391 | int status = KERN_SUCCESS; |
| 392 | |
| 393 | cvp->cv_waiters++; |
| 394 | assert_wait(cvp, THREAD_UNINT); |
| 395 | lck_mtx_unlock(mp); |
| 396 | |
| 397 | status = thread_block(function); |
| 398 | |
| 399 | /* should not be reached, but just in case, re-lock */ |
| 400 | lck_mtx_lock(mp); |
| 401 | |
| 402 | return status; |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Simple recursive lock. |
| 407 | */ |
| 408 | void |
| 409 | #if DIAGNOSTIC |
| 410 | _audit_rlck_init(struct rlck *lp, const char *lckname) |
| 411 | #else |
| 412 | _audit_rlck_init(struct rlck *lp, __unused const char *lckname) |
| 413 | #endif |
| 414 | { |
| 415 | |
| 416 | lp->rl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
| 417 | KASSERT(lp->rl_mtx != NULL, |
| 418 | ("_audit_rlck_init: Could not allocate a recursive lock." )); |
| 419 | #if DIAGNOSTIC |
| 420 | strlcpy(lp->rl_name, lckname, AU_MAX_LCK_NAME); |
| 421 | #endif |
| 422 | lp->rl_thread = 0; |
| 423 | lp->rl_recurse = 0; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * Recursive lock. Allow same thread to recursively lock the same lock. |
| 428 | */ |
| 429 | void |
| 430 | _audit_rlck_lock(struct rlck *lp) |
| 431 | { |
| 432 | |
| 433 | if (lp->rl_thread == current_thread()) { |
| 434 | OSAddAtomic(1, &lp->rl_recurse); |
| 435 | KASSERT(lp->rl_recurse < 10000, |
| 436 | ("_audit_rlck_lock: lock nested too deep." )); |
| 437 | } else { |
| 438 | lck_mtx_lock(lp->rl_mtx); |
| 439 | lp->rl_thread = current_thread(); |
| 440 | lp->rl_recurse = 1; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * Recursive unlock. It should be the same thread that does the unlock. |
| 446 | */ |
| 447 | void |
| 448 | _audit_rlck_unlock(struct rlck *lp) |
| 449 | { |
| 450 | KASSERT(lp->rl_thread == current_thread(), |
| 451 | ("_audit_rlck_unlock(): Don't own lock." )); |
| 452 | |
| 453 | /* Note: OSAddAtomic returns old value. */ |
| 454 | if (OSAddAtomic(-1, &lp->rl_recurse) == 1) { |
| 455 | lp->rl_thread = 0; |
| 456 | lck_mtx_unlock(lp->rl_mtx); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | void |
| 461 | _audit_rlck_destroy(struct rlck *lp) |
| 462 | { |
| 463 | |
| 464 | if (lp->rl_mtx) { |
| 465 | lck_mtx_free(lp->rl_mtx, audit_lck_grp); |
| 466 | lp->rl_mtx = NULL; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * Recursive lock assert. |
| 472 | */ |
| 473 | void |
| 474 | _audit_rlck_assert(struct rlck *lp, u_int assert) |
| 475 | { |
| 476 | thread_t cthd = current_thread(); |
| 477 | |
| 478 | if (assert == LCK_MTX_ASSERT_OWNED && lp->rl_thread == cthd) |
| 479 | panic("recursive lock (%p) not held by this thread (%p)." , |
| 480 | lp, cthd); |
| 481 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->rl_thread != 0) |
| 482 | panic("recursive lock (%p) held by thread (%p)." , |
| 483 | lp, cthd); |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Simple sleep lock. |
| 488 | */ |
| 489 | void |
| 490 | #if DIAGNOSTIC |
| 491 | _audit_slck_init(struct slck *lp, const char *lckname) |
| 492 | #else |
| 493 | _audit_slck_init(struct slck *lp, __unused const char *lckname) |
| 494 | #endif |
| 495 | { |
| 496 | |
| 497 | lp->sl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
| 498 | KASSERT(lp->sl_mtx != NULL, |
| 499 | ("_audit_slck_init: Could not allocate a sleep lock." )); |
| 500 | #if DIAGNOSTIC |
| 501 | strlcpy(lp->sl_name, lckname, AU_MAX_LCK_NAME); |
| 502 | #endif |
| 503 | lp->sl_locked = 0; |
| 504 | lp->sl_waiting = 0; |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * Sleep lock lock. The 'intr' flag determines if the lock is interruptible. |
| 509 | * If 'intr' is true then signals or other events can interrupt the sleep lock. |
| 510 | */ |
| 511 | wait_result_t |
| 512 | _audit_slck_lock(struct slck *lp, int intr) |
| 513 | { |
| 514 | wait_result_t res = THREAD_AWAKENED; |
| 515 | |
| 516 | lck_mtx_lock(lp->sl_mtx); |
| 517 | while (lp->sl_locked && res == THREAD_AWAKENED) { |
| 518 | lp->sl_waiting = 1; |
| 519 | res = lck_mtx_sleep(lp->sl_mtx, LCK_SLEEP_DEFAULT, |
| 520 | (event_t) lp, (intr) ? THREAD_INTERRUPTIBLE : THREAD_UNINT); |
| 521 | } |
| 522 | if (res == THREAD_AWAKENED) |
| 523 | lp->sl_locked = 1; |
| 524 | lck_mtx_unlock(lp->sl_mtx); |
| 525 | |
| 526 | return (res); |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * Sleep lock unlock. Wake up all the threads waiting for this lock. |
| 531 | */ |
| 532 | void |
| 533 | _audit_slck_unlock(struct slck *lp) |
| 534 | { |
| 535 | |
| 536 | lck_mtx_lock(lp->sl_mtx); |
| 537 | lp->sl_locked = 0; |
| 538 | if (lp->sl_waiting) { |
| 539 | lp->sl_waiting = 0; |
| 540 | |
| 541 | /* Wake up *all* sleeping threads. */ |
| 542 | wakeup((event_t) lp); |
| 543 | } |
| 544 | lck_mtx_unlock(lp->sl_mtx); |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * Sleep lock try. Don't sleep if it doesn't get the lock. |
| 549 | */ |
| 550 | int |
| 551 | _audit_slck_trylock(struct slck *lp) |
| 552 | { |
| 553 | int result; |
| 554 | |
| 555 | lck_mtx_lock(lp->sl_mtx); |
| 556 | result = !lp->sl_locked; |
| 557 | if (result) |
| 558 | lp->sl_locked = 1; |
| 559 | lck_mtx_unlock(lp->sl_mtx); |
| 560 | |
| 561 | return (result); |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * Sleep lock assert. |
| 566 | */ |
| 567 | void |
| 568 | _audit_slck_assert(struct slck *lp, u_int assert) |
| 569 | { |
| 570 | |
| 571 | if (assert == LCK_MTX_ASSERT_OWNED && lp->sl_locked == 0) |
| 572 | panic("sleep lock (%p) not held." , lp); |
| 573 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->sl_locked == 1) |
| 574 | panic("sleep lock (%p) held." , lp); |
| 575 | } |
| 576 | |
| 577 | void |
| 578 | _audit_slck_destroy(struct slck *lp) |
| 579 | { |
| 580 | |
| 581 | if (lp->sl_mtx) { |
| 582 | lck_mtx_free(lp->sl_mtx, audit_lck_grp); |
| 583 | lp->sl_mtx = NULL; |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * XXXss - This code was taken from bsd/netinet6/icmp6.c. Maybe ppsratecheck() |
| 589 | * should be made global in icmp6.c. |
| 590 | */ |
| 591 | #ifndef timersub |
| 592 | #define timersub(tvp, uvp, vvp) \ |
| 593 | do { \ |
| 594 | (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ |
| 595 | (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ |
| 596 | if ((vvp)->tv_usec < 0) { \ |
| 597 | (vvp)->tv_sec--; \ |
| 598 | (vvp)->tv_usec += 1000000; \ |
| 599 | } \ |
| 600 | } while (0) |
| 601 | #endif |
| 602 | |
| 603 | /* |
| 604 | * Packets (or events) per second limitation. |
| 605 | */ |
| 606 | int |
| 607 | _audit_ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) |
| 608 | { |
| 609 | struct timeval tv, delta; |
| 610 | int rv; |
| 611 | |
| 612 | microtime(&tv); |
| 613 | |
| 614 | timersub(&tv, lasttime, &delta); |
| 615 | |
| 616 | /* |
| 617 | * Check for 0,0 so that the message will be seen at least once. |
| 618 | * If more than one second has passed since the last update of |
| 619 | * lasttime, reset the counter. |
| 620 | * |
| 621 | * we do increment *curpps even in *curpps < maxpps case, as some may |
| 622 | * try to use *curpps for stat purposes as well. |
| 623 | */ |
| 624 | if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || |
| 625 | delta.tv_sec >= 1) { |
| 626 | *lasttime = tv; |
| 627 | *curpps = 0; |
| 628 | rv = 1; |
| 629 | } else if (maxpps < 0) |
| 630 | rv = 1; |
| 631 | else if (*curpps < maxpps) |
| 632 | rv = 1; |
| 633 | else |
| 634 | rv = 0; |
| 635 | if (*curpps + 1 > 0) |
| 636 | *curpps = *curpps + 1; |
| 637 | |
| 638 | return (rv); |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * Initialize lock group for audit related locks/mutexes. |
| 643 | */ |
| 644 | void |
| 645 | _audit_lck_grp_init(void) |
| 646 | { |
| 647 | audit_lck_grp = lck_grp_alloc_init("Audit" , LCK_GRP_ATTR_NULL); |
| 648 | |
| 649 | KASSERT(audit_lck_grp != NULL, |
| 650 | ("audit_get_lck_grp: Could not allocate the audit lock group." )); |
| 651 | } |
| 652 | |
| 653 | int |
| 654 | audit_send_trigger(unsigned int trigger) |
| 655 | { |
| 656 | mach_port_t audit_port; |
| 657 | int error; |
| 658 | |
| 659 | error = host_get_audit_control_port(host_priv_self(), &audit_port); |
| 660 | if (error == KERN_SUCCESS && audit_port != MACH_PORT_NULL) { |
| 661 | (void)audit_triggers(audit_port, trigger); |
| 662 | ipc_port_release_send(audit_port); |
| 663 | return (0); |
| 664 | } else { |
| 665 | printf("Cannot get audit control port\n" ); |
| 666 | return (error); |
| 667 | } |
| 668 | } |
| 669 | #endif /* CONFIG_AUDIT */ |
| 670 | |