1 | /*- |
2 | * Copyright (c) 2008-2010 Apple Inc. |
3 | * All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in the |
13 | * documentation and/or other materials provided with the distribution. |
14 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
15 | * its contributors may be used to endorse or promote products derived |
16 | * from this software without specific prior written permission. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
19 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
20 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
22 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
23 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
24 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
25 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | */ |
29 | |
30 | #include <string.h> |
31 | |
32 | #include <sys/kernel.h> |
33 | #include <sys/proc.h> |
34 | #include <sys/systm.h> |
35 | |
36 | #include <kern/host.h> |
37 | #include <kern/kalloc.h> |
38 | #include <kern/locks.h> |
39 | #include <kern/sched_prim.h> |
40 | |
41 | #include <libkern/OSAtomic.h> |
42 | |
43 | #include <bsm/audit.h> |
44 | #include <bsm/audit_internal.h> |
45 | |
46 | #include <security/audit/audit_bsd.h> |
47 | #include <security/audit/audit.h> |
48 | #include <security/audit/audit_private.h> |
49 | |
50 | #include <mach/host_priv.h> |
51 | #include <mach/host_special_ports.h> |
52 | #include <mach/audit_triggers_server.h> |
53 | |
54 | #include <os/overflow.h> |
55 | |
56 | extern void ipc_port_release_send(ipc_port_t port); |
57 | |
58 | #if CONFIG_AUDIT |
59 | struct mhdr { |
60 | size_t mh_size; |
61 | au_malloc_type_t *mh_type; |
62 | u_long mh_magic; |
63 | char mh_data[0]; |
64 | }; |
65 | |
66 | /* |
67 | * The lock group for the audit subsystem. |
68 | */ |
69 | static lck_grp_t *audit_lck_grp = NULL; |
70 | |
71 | #define AUDIT_MHMAGIC 0x4D656C53 |
72 | |
73 | #if AUDIT_MALLOC_DEBUG |
74 | #define AU_MAX_SHORTDESC 20 |
75 | #define AU_MAX_LASTCALLER 20 |
76 | struct au_malloc_debug_info { |
77 | SInt64 md_size; |
78 | SInt64 md_maxsize; |
79 | SInt32 md_inuse; |
80 | SInt32 md_maxused; |
81 | unsigned md_type; |
82 | unsigned md_magic; |
83 | char md_shortdesc[AU_MAX_SHORTDESC]; |
84 | char md_lastcaller[AU_MAX_LASTCALLER]; |
85 | }; |
86 | typedef struct au_malloc_debug_info au_malloc_debug_info_t; |
87 | |
88 | au_malloc_type_t *audit_malloc_types[NUM_MALLOC_TYPES]; |
89 | |
90 | static int audit_sysctl_malloc_debug(struct sysctl_oid *oidp, void *arg1, |
91 | int arg2, struct sysctl_req *req); |
92 | |
93 | SYSCTL_PROC(_kern, OID_AUTO, audit_malloc_debug, CTLFLAG_RD, NULL, 0, |
94 | audit_sysctl_malloc_debug, "S,audit_malloc_debug" , |
95 | "Current malloc debug info for auditing." ); |
96 | |
97 | #define AU_MALLOC_DBINFO_SZ \ |
98 | (NUM_MALLOC_TYPES * sizeof(au_malloc_debug_info_t)) |
99 | |
100 | /* |
101 | * Copy out the malloc debug info via the sysctl interface. The userland code |
102 | * is something like the following: |
103 | * |
104 | * error = sysctlbyname("kern.audit_malloc_debug", buffer_ptr, &buffer_len, |
105 | * NULL, 0); |
106 | */ |
107 | static int |
108 | audit_sysctl_malloc_debug(__unused struct sysctl_oid *oidp, __unused void *arg1, |
109 | __unused int arg2, struct sysctl_req *req) |
110 | { |
111 | int i; |
112 | size_t sz; |
113 | au_malloc_debug_info_t *amdi_ptr, *nxt_ptr; |
114 | int err; |
115 | |
116 | /* |
117 | * This provides a read-only node. |
118 | */ |
119 | if (req->newptr != USER_ADDR_NULL) |
120 | return (EPERM); |
121 | |
122 | /* |
123 | * If just querying then return the space required. |
124 | */ |
125 | if (req->oldptr == USER_ADDR_NULL) { |
126 | req->oldidx = AU_MALLOC_DBINFO_SZ; |
127 | return (0); |
128 | } |
129 | |
130 | /* |
131 | * Alloc a temporary buffer. |
132 | */ |
133 | if (req->oldlen < AU_MALLOC_DBINFO_SZ) |
134 | return (ENOMEM); |
135 | amdi_ptr = (au_malloc_debug_info_t *)kalloc(AU_MALLOC_DBINFO_SZ); |
136 | if (amdi_ptr == NULL) |
137 | return (ENOMEM); |
138 | bzero(amdi_ptr, AU_MALLOC_DBINFO_SZ); |
139 | |
140 | /* |
141 | * Build the record array. |
142 | */ |
143 | sz = 0; |
144 | nxt_ptr = amdi_ptr; |
145 | for(i = 0; i < NUM_MALLOC_TYPES; i++) { |
146 | if (audit_malloc_types[i] == NULL) |
147 | continue; |
148 | if (audit_malloc_types[i]->mt_magic != M_MAGIC) { |
149 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; |
150 | continue; |
151 | } |
152 | nxt_ptr->md_magic = audit_malloc_types[i]->mt_magic; |
153 | nxt_ptr->md_size = audit_malloc_types[i]->mt_size; |
154 | nxt_ptr->md_maxsize = audit_malloc_types[i]->mt_maxsize; |
155 | nxt_ptr->md_inuse = (int)audit_malloc_types[i]->mt_inuse; |
156 | nxt_ptr->md_maxused = (int)audit_malloc_types[i]->mt_maxused; |
157 | strlcpy(nxt_ptr->md_shortdesc, |
158 | audit_malloc_types[i]->mt_shortdesc, AU_MAX_SHORTDESC - 1); |
159 | strlcpy(nxt_ptr->md_lastcaller, |
160 | audit_malloc_types[i]->mt_lastcaller, AU_MAX_LASTCALLER-1); |
161 | sz += sizeof(au_malloc_debug_info_t); |
162 | nxt_ptr++; |
163 | } |
164 | |
165 | req->oldlen = sz; |
166 | err = SYSCTL_OUT(req, amdi_ptr, sz); |
167 | kfree(amdi_ptr, AU_MALLOC_DBINFO_SZ); |
168 | |
169 | return (err); |
170 | } |
171 | #endif /* AUDIT_MALLOC_DEBUG */ |
172 | |
173 | /* |
174 | * BSD malloc() |
175 | * |
176 | * If the M_NOWAIT flag is set then it may not block and return NULL. |
177 | * If the M_ZERO flag is set then zero out the buffer. |
178 | */ |
179 | void * |
180 | #if AUDIT_MALLOC_DEBUG |
181 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags, const char *fn) |
182 | #else |
183 | _audit_malloc(size_t size, au_malloc_type_t *type, int flags) |
184 | #endif |
185 | { |
186 | struct mhdr *hdr; |
187 | size_t memsize; |
188 | if (os_add_overflow(sizeof(*hdr), size, &memsize)) { |
189 | return (NULL); |
190 | } |
191 | |
192 | if (size == 0) |
193 | return (NULL); |
194 | if (flags & M_NOWAIT) { |
195 | hdr = (void *)kalloc_noblock(memsize); |
196 | } else { |
197 | hdr = (void *)kalloc(memsize); |
198 | if (hdr == NULL) |
199 | panic("_audit_malloc: kernel memory exhausted" ); |
200 | } |
201 | if (hdr == NULL) |
202 | return (NULL); |
203 | hdr->mh_size = memsize; |
204 | hdr->mh_type = type; |
205 | hdr->mh_magic = AUDIT_MHMAGIC; |
206 | if (flags & M_ZERO) |
207 | memset(hdr->mh_data, 0, size); |
208 | #if AUDIT_MALLOC_DEBUG |
209 | if (type != NULL && type->mt_type < NUM_MALLOC_TYPES) { |
210 | OSAddAtomic64(memsize, &type->mt_size); |
211 | type->mt_maxsize = max(type->mt_size, type->mt_maxsize); |
212 | OSAddAtomic(1, &type->mt_inuse); |
213 | type->mt_maxused = max(type->mt_inuse, type->mt_maxused); |
214 | type->mt_lastcaller = fn; |
215 | audit_malloc_types[type->mt_type] = type; |
216 | } |
217 | #endif /* AUDIT_MALLOC_DEBUG */ |
218 | return (hdr->mh_data); |
219 | } |
220 | |
221 | /* |
222 | * BSD free() |
223 | */ |
224 | void |
225 | #if AUDIT_MALLOC_DEBUG |
226 | _audit_free(void *addr, au_malloc_type_t *type) |
227 | #else |
228 | _audit_free(void *addr, __unused au_malloc_type_t *type) |
229 | #endif |
230 | { |
231 | struct mhdr *hdr; |
232 | |
233 | if (addr == NULL) |
234 | return; |
235 | hdr = addr; hdr--; |
236 | |
237 | if (hdr->mh_magic != AUDIT_MHMAGIC) { |
238 | panic("_audit_free(): hdr->mh_magic (%lx) != AUDIT_MHMAGIC" , hdr->mh_magic); |
239 | } |
240 | |
241 | #if AUDIT_MALLOC_DEBUG |
242 | if (type != NULL) { |
243 | OSAddAtomic64(-hdr->mh_size, &type->mt_size); |
244 | OSAddAtomic(-1, &type->mt_inuse); |
245 | } |
246 | #endif /* AUDIT_MALLOC_DEBUG */ |
247 | kfree(hdr, hdr->mh_size); |
248 | } |
249 | |
250 | /* |
251 | * Initialize a condition variable. Must be called before use. |
252 | */ |
253 | void |
254 | _audit_cv_init(struct cv *cvp, const char *desc) |
255 | { |
256 | |
257 | if (desc == NULL) |
258 | cvp->cv_description = "UNKNOWN" ; |
259 | else |
260 | cvp->cv_description = desc; |
261 | cvp->cv_waiters = 0; |
262 | } |
263 | |
264 | /* |
265 | * Destory a condition variable. |
266 | */ |
267 | void |
268 | _audit_cv_destroy(struct cv *cvp) |
269 | { |
270 | |
271 | cvp->cv_description = NULL; |
272 | cvp->cv_waiters = 0; |
273 | } |
274 | |
275 | /* |
276 | * Signal a condition variable, wakes up one waiting thread. |
277 | */ |
278 | void |
279 | _audit_cv_signal(struct cv *cvp) |
280 | { |
281 | |
282 | if (cvp->cv_waiters > 0) { |
283 | wakeup_one((caddr_t)cvp); |
284 | cvp->cv_waiters--; |
285 | } |
286 | } |
287 | |
288 | /* |
289 | * Broadcast a signal to a condition variable. |
290 | */ |
291 | void |
292 | _audit_cv_broadcast(struct cv *cvp) |
293 | { |
294 | |
295 | if (cvp->cv_waiters > 0) { |
296 | wakeup((caddr_t)cvp); |
297 | cvp->cv_waiters = 0; |
298 | } |
299 | } |
300 | |
301 | /* |
302 | * Wait on a condition variable. A cv_signal or cv_broadcast on the same |
303 | * condition variable will resume the thread. It is recommended that the mutex |
304 | * be held when cv_signal or cv_broadcast are called. |
305 | */ |
306 | void |
307 | _audit_cv_wait(struct cv *cvp, lck_mtx_t *mp, const char *desc) |
308 | { |
309 | |
310 | cvp->cv_waiters++; |
311 | (void) msleep(cvp, mp, PZERO, desc, 0); |
312 | } |
313 | |
314 | /* |
315 | * Wait on a condition variable, allowing interruption by signals. Return 0 |
316 | * if the thread was resumed with cv_signal or cv_broadcast, EINTR or |
317 | * ERESTART if a signal was caught. If ERESTART is returned the system call |
318 | * should be restarted if possible. |
319 | */ |
320 | int |
321 | _audit_cv_wait_sig(struct cv *cvp, lck_mtx_t *mp, const char *desc) |
322 | { |
323 | |
324 | cvp->cv_waiters++; |
325 | return (msleep(cvp, mp, PSOCK | PCATCH, desc, 0)); |
326 | } |
327 | |
328 | /* |
329 | * BSD Mutexes. |
330 | */ |
331 | void |
332 | #if DIAGNOSTIC |
333 | _audit_mtx_init(struct mtx *mp, const char *lckname) |
334 | #else |
335 | _audit_mtx_init(struct mtx *mp, __unused const char *lckname) |
336 | #endif |
337 | { |
338 | mp->mtx_lock = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
339 | KASSERT(mp->mtx_lock != NULL, |
340 | ("_audit_mtx_init: Could not allocate a mutex." )); |
341 | #if DIAGNOSTIC |
342 | strlcpy(mp->mtx_name, lckname, AU_MAX_LCK_NAME); |
343 | #endif |
344 | } |
345 | |
346 | void |
347 | _audit_mtx_destroy(struct mtx *mp) |
348 | { |
349 | |
350 | if (mp->mtx_lock) { |
351 | lck_mtx_free(mp->mtx_lock, audit_lck_grp); |
352 | mp->mtx_lock = NULL; |
353 | } |
354 | } |
355 | |
356 | /* |
357 | * BSD rw locks. |
358 | */ |
359 | void |
360 | #if DIAGNOSTIC |
361 | _audit_rw_init(struct rwlock *lp, const char *lckname) |
362 | #else |
363 | _audit_rw_init(struct rwlock *lp, __unused const char *lckname) |
364 | #endif |
365 | { |
366 | lp->rw_lock = lck_rw_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
367 | KASSERT(lp->rw_lock != NULL, |
368 | ("_audit_rw_init: Could not allocate a rw lock." )); |
369 | #if DIAGNOSTIC |
370 | strlcpy(lp->rw_name, lckname, AU_MAX_LCK_NAME); |
371 | #endif |
372 | } |
373 | |
374 | void |
375 | _audit_rw_destroy(struct rwlock *lp) |
376 | { |
377 | |
378 | if (lp->rw_lock) { |
379 | lck_rw_free(lp->rw_lock, audit_lck_grp); |
380 | lp->rw_lock = NULL; |
381 | } |
382 | } |
383 | /* |
384 | * Wait on a condition variable in a continuation (i.e. yield kernel stack). |
385 | * A cv_signal or cv_broadcast on the same condition variable will cause |
386 | * the thread to be scheduled. |
387 | */ |
388 | int |
389 | _audit_cv_wait_continuation(struct cv *cvp, lck_mtx_t *mp, thread_continue_t function) |
390 | { |
391 | int status = KERN_SUCCESS; |
392 | |
393 | cvp->cv_waiters++; |
394 | assert_wait(cvp, THREAD_UNINT); |
395 | lck_mtx_unlock(mp); |
396 | |
397 | status = thread_block(function); |
398 | |
399 | /* should not be reached, but just in case, re-lock */ |
400 | lck_mtx_lock(mp); |
401 | |
402 | return status; |
403 | } |
404 | |
405 | /* |
406 | * Simple recursive lock. |
407 | */ |
408 | void |
409 | #if DIAGNOSTIC |
410 | _audit_rlck_init(struct rlck *lp, const char *lckname) |
411 | #else |
412 | _audit_rlck_init(struct rlck *lp, __unused const char *lckname) |
413 | #endif |
414 | { |
415 | |
416 | lp->rl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
417 | KASSERT(lp->rl_mtx != NULL, |
418 | ("_audit_rlck_init: Could not allocate a recursive lock." )); |
419 | #if DIAGNOSTIC |
420 | strlcpy(lp->rl_name, lckname, AU_MAX_LCK_NAME); |
421 | #endif |
422 | lp->rl_thread = 0; |
423 | lp->rl_recurse = 0; |
424 | } |
425 | |
426 | /* |
427 | * Recursive lock. Allow same thread to recursively lock the same lock. |
428 | */ |
429 | void |
430 | _audit_rlck_lock(struct rlck *lp) |
431 | { |
432 | |
433 | if (lp->rl_thread == current_thread()) { |
434 | OSAddAtomic(1, &lp->rl_recurse); |
435 | KASSERT(lp->rl_recurse < 10000, |
436 | ("_audit_rlck_lock: lock nested too deep." )); |
437 | } else { |
438 | lck_mtx_lock(lp->rl_mtx); |
439 | lp->rl_thread = current_thread(); |
440 | lp->rl_recurse = 1; |
441 | } |
442 | } |
443 | |
444 | /* |
445 | * Recursive unlock. It should be the same thread that does the unlock. |
446 | */ |
447 | void |
448 | _audit_rlck_unlock(struct rlck *lp) |
449 | { |
450 | KASSERT(lp->rl_thread == current_thread(), |
451 | ("_audit_rlck_unlock(): Don't own lock." )); |
452 | |
453 | /* Note: OSAddAtomic returns old value. */ |
454 | if (OSAddAtomic(-1, &lp->rl_recurse) == 1) { |
455 | lp->rl_thread = 0; |
456 | lck_mtx_unlock(lp->rl_mtx); |
457 | } |
458 | } |
459 | |
460 | void |
461 | _audit_rlck_destroy(struct rlck *lp) |
462 | { |
463 | |
464 | if (lp->rl_mtx) { |
465 | lck_mtx_free(lp->rl_mtx, audit_lck_grp); |
466 | lp->rl_mtx = NULL; |
467 | } |
468 | } |
469 | |
470 | /* |
471 | * Recursive lock assert. |
472 | */ |
473 | void |
474 | _audit_rlck_assert(struct rlck *lp, u_int assert) |
475 | { |
476 | thread_t cthd = current_thread(); |
477 | |
478 | if (assert == LCK_MTX_ASSERT_OWNED && lp->rl_thread == cthd) |
479 | panic("recursive lock (%p) not held by this thread (%p)." , |
480 | lp, cthd); |
481 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->rl_thread != 0) |
482 | panic("recursive lock (%p) held by thread (%p)." , |
483 | lp, cthd); |
484 | } |
485 | |
486 | /* |
487 | * Simple sleep lock. |
488 | */ |
489 | void |
490 | #if DIAGNOSTIC |
491 | _audit_slck_init(struct slck *lp, const char *lckname) |
492 | #else |
493 | _audit_slck_init(struct slck *lp, __unused const char *lckname) |
494 | #endif |
495 | { |
496 | |
497 | lp->sl_mtx = lck_mtx_alloc_init(audit_lck_grp, LCK_ATTR_NULL); |
498 | KASSERT(lp->sl_mtx != NULL, |
499 | ("_audit_slck_init: Could not allocate a sleep lock." )); |
500 | #if DIAGNOSTIC |
501 | strlcpy(lp->sl_name, lckname, AU_MAX_LCK_NAME); |
502 | #endif |
503 | lp->sl_locked = 0; |
504 | lp->sl_waiting = 0; |
505 | } |
506 | |
507 | /* |
508 | * Sleep lock lock. The 'intr' flag determines if the lock is interruptible. |
509 | * If 'intr' is true then signals or other events can interrupt the sleep lock. |
510 | */ |
511 | wait_result_t |
512 | _audit_slck_lock(struct slck *lp, int intr) |
513 | { |
514 | wait_result_t res = THREAD_AWAKENED; |
515 | |
516 | lck_mtx_lock(lp->sl_mtx); |
517 | while (lp->sl_locked && res == THREAD_AWAKENED) { |
518 | lp->sl_waiting = 1; |
519 | res = lck_mtx_sleep(lp->sl_mtx, LCK_SLEEP_DEFAULT, |
520 | (event_t) lp, (intr) ? THREAD_INTERRUPTIBLE : THREAD_UNINT); |
521 | } |
522 | if (res == THREAD_AWAKENED) |
523 | lp->sl_locked = 1; |
524 | lck_mtx_unlock(lp->sl_mtx); |
525 | |
526 | return (res); |
527 | } |
528 | |
529 | /* |
530 | * Sleep lock unlock. Wake up all the threads waiting for this lock. |
531 | */ |
532 | void |
533 | _audit_slck_unlock(struct slck *lp) |
534 | { |
535 | |
536 | lck_mtx_lock(lp->sl_mtx); |
537 | lp->sl_locked = 0; |
538 | if (lp->sl_waiting) { |
539 | lp->sl_waiting = 0; |
540 | |
541 | /* Wake up *all* sleeping threads. */ |
542 | wakeup((event_t) lp); |
543 | } |
544 | lck_mtx_unlock(lp->sl_mtx); |
545 | } |
546 | |
547 | /* |
548 | * Sleep lock try. Don't sleep if it doesn't get the lock. |
549 | */ |
550 | int |
551 | _audit_slck_trylock(struct slck *lp) |
552 | { |
553 | int result; |
554 | |
555 | lck_mtx_lock(lp->sl_mtx); |
556 | result = !lp->sl_locked; |
557 | if (result) |
558 | lp->sl_locked = 1; |
559 | lck_mtx_unlock(lp->sl_mtx); |
560 | |
561 | return (result); |
562 | } |
563 | |
564 | /* |
565 | * Sleep lock assert. |
566 | */ |
567 | void |
568 | _audit_slck_assert(struct slck *lp, u_int assert) |
569 | { |
570 | |
571 | if (assert == LCK_MTX_ASSERT_OWNED && lp->sl_locked == 0) |
572 | panic("sleep lock (%p) not held." , lp); |
573 | if (assert == LCK_MTX_ASSERT_NOTOWNED && lp->sl_locked == 1) |
574 | panic("sleep lock (%p) held." , lp); |
575 | } |
576 | |
577 | void |
578 | _audit_slck_destroy(struct slck *lp) |
579 | { |
580 | |
581 | if (lp->sl_mtx) { |
582 | lck_mtx_free(lp->sl_mtx, audit_lck_grp); |
583 | lp->sl_mtx = NULL; |
584 | } |
585 | } |
586 | |
587 | /* |
588 | * XXXss - This code was taken from bsd/netinet6/icmp6.c. Maybe ppsratecheck() |
589 | * should be made global in icmp6.c. |
590 | */ |
591 | #ifndef timersub |
592 | #define timersub(tvp, uvp, vvp) \ |
593 | do { \ |
594 | (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ |
595 | (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ |
596 | if ((vvp)->tv_usec < 0) { \ |
597 | (vvp)->tv_sec--; \ |
598 | (vvp)->tv_usec += 1000000; \ |
599 | } \ |
600 | } while (0) |
601 | #endif |
602 | |
603 | /* |
604 | * Packets (or events) per second limitation. |
605 | */ |
606 | int |
607 | _audit_ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) |
608 | { |
609 | struct timeval tv, delta; |
610 | int rv; |
611 | |
612 | microtime(&tv); |
613 | |
614 | timersub(&tv, lasttime, &delta); |
615 | |
616 | /* |
617 | * Check for 0,0 so that the message will be seen at least once. |
618 | * If more than one second has passed since the last update of |
619 | * lasttime, reset the counter. |
620 | * |
621 | * we do increment *curpps even in *curpps < maxpps case, as some may |
622 | * try to use *curpps for stat purposes as well. |
623 | */ |
624 | if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || |
625 | delta.tv_sec >= 1) { |
626 | *lasttime = tv; |
627 | *curpps = 0; |
628 | rv = 1; |
629 | } else if (maxpps < 0) |
630 | rv = 1; |
631 | else if (*curpps < maxpps) |
632 | rv = 1; |
633 | else |
634 | rv = 0; |
635 | if (*curpps + 1 > 0) |
636 | *curpps = *curpps + 1; |
637 | |
638 | return (rv); |
639 | } |
640 | |
641 | /* |
642 | * Initialize lock group for audit related locks/mutexes. |
643 | */ |
644 | void |
645 | _audit_lck_grp_init(void) |
646 | { |
647 | audit_lck_grp = lck_grp_alloc_init("Audit" , LCK_GRP_ATTR_NULL); |
648 | |
649 | KASSERT(audit_lck_grp != NULL, |
650 | ("audit_get_lck_grp: Could not allocate the audit lock group." )); |
651 | } |
652 | |
653 | int |
654 | audit_send_trigger(unsigned int trigger) |
655 | { |
656 | mach_port_t audit_port; |
657 | int error; |
658 | |
659 | error = host_get_audit_control_port(host_priv_self(), &audit_port); |
660 | if (error == KERN_SUCCESS && audit_port != MACH_PORT_NULL) { |
661 | (void)audit_triggers(audit_port, trigger); |
662 | ipc_port_release_send(audit_port); |
663 | return (0); |
664 | } else { |
665 | printf("Cannot get audit control port\n" ); |
666 | return (error); |
667 | } |
668 | } |
669 | #endif /* CONFIG_AUDIT */ |
670 | |