| 1 | /*- |
| 2 | * Copyright (c) 1999-2016 Apple Inc. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 14 | * its contributors may be used to endorse or promote products derived |
| 15 | * from this software without specific prior written permission. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND |
| 18 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR |
| 21 | * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 22 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 23 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 25 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| 26 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | * POSSIBILITY OF SUCH DAMAGE. |
| 28 | * |
| 29 | */ |
| 30 | /* |
| 31 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
| 32 | * support for mandatory and extensible security protections. This notice |
| 33 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 34 | * Version 2.0. |
| 35 | */ |
| 36 | |
| 37 | #include <sys/param.h> |
| 38 | #include <sys/fcntl.h> |
| 39 | #include <sys/kernel.h> |
| 40 | #include <sys/lock.h> |
| 41 | #include <sys/namei.h> |
| 42 | #include <sys/proc_internal.h> |
| 43 | #include <sys/kauth.h> |
| 44 | #include <sys/queue.h> |
| 45 | #include <sys/systm.h> |
| 46 | #include <sys/time.h> |
| 47 | #include <sys/ucred.h> |
| 48 | #include <sys/uio.h> |
| 49 | #include <sys/unistd.h> |
| 50 | #include <sys/file_internal.h> |
| 51 | #include <sys/vnode_internal.h> |
| 52 | #include <sys/user.h> |
| 53 | #include <sys/syscall.h> |
| 54 | #include <sys/malloc.h> |
| 55 | #include <sys/un.h> |
| 56 | #include <sys/sysent.h> |
| 57 | #include <sys/sysproto.h> |
| 58 | #include <sys/vfs_context.h> |
| 59 | #include <sys/domain.h> |
| 60 | #include <sys/protosw.h> |
| 61 | #include <sys/socketvar.h> |
| 62 | #include <sys/codesign.h> |
| 63 | #include <sys/ubc.h> |
| 64 | |
| 65 | #include <bsm/audit.h> |
| 66 | #include <bsm/audit_internal.h> |
| 67 | #include <bsm/audit_kevents.h> |
| 68 | |
| 69 | #include <security/audit/audit.h> |
| 70 | #include <security/audit/audit_bsd.h> |
| 71 | #include <security/audit/audit_private.h> |
| 72 | |
| 73 | #include <mach/host_priv.h> |
| 74 | #include <mach/host_special_ports.h> |
| 75 | #include <mach/audit_triggers_server.h> |
| 76 | |
| 77 | #include <kern/host.h> |
| 78 | #include <kern/kalloc.h> |
| 79 | #include <kern/zalloc.h> |
| 80 | #include <kern/sched_prim.h> |
| 81 | |
| 82 | #if CONFIG_MACF |
| 83 | #include <bsm/audit_record.h> |
| 84 | #include <security/mac.h> |
| 85 | #include <security/mac_framework.h> |
| 86 | #include <security/mac_policy.h> |
| 87 | extern zone_t audit_mac_label_zone; |
| 88 | #endif |
| 89 | |
| 90 | #include <net/route.h> |
| 91 | |
| 92 | #include <netinet/in.h> |
| 93 | #include <netinet/in_pcb.h> |
| 94 | |
| 95 | #if CONFIG_AUDIT |
| 96 | /* |
| 97 | * Calls to manipulate elements of the audit record structure from system |
| 98 | * call code. Macro wrappers will prevent this functions from being entered |
| 99 | * if auditing is disabled, avoiding the function call cost. We check the |
| 100 | * thread audit record pointer anyway, as the audit condition could change, |
| 101 | * and pre-selection may not have allocated an audit record for this event. |
| 102 | * |
| 103 | * XXXAUDIT: Should we assert, in each case, that this field of the record |
| 104 | * hasn't already been filled in? |
| 105 | */ |
| 106 | void |
| 107 | audit_arg_addr(struct kaudit_record *ar, user_addr_t addr) |
| 108 | { |
| 109 | struct proc *p = current_proc(); |
| 110 | |
| 111 | ar->k_ar.ar_arg_addr = addr; |
| 112 | |
| 113 | /* |
| 114 | * If the process is 64-bit then flag the address as such. |
| 115 | */ |
| 116 | if (proc_is64bit(p)) |
| 117 | ARG_SET_VALID(ar, ARG_ADDR64); |
| 118 | else |
| 119 | ARG_SET_VALID(ar, ARG_ADDR32); |
| 120 | } |
| 121 | |
| 122 | void |
| 123 | audit_arg_exit(struct kaudit_record *ar, int status, int retval) |
| 124 | { |
| 125 | |
| 126 | ar->k_ar.ar_arg_exitstatus = status; |
| 127 | ar->k_ar.ar_arg_exitretval = retval; |
| 128 | ARG_SET_VALID(ar, ARG_EXIT); |
| 129 | } |
| 130 | |
| 131 | void |
| 132 | audit_arg_len(struct kaudit_record *ar, user_size_t len) |
| 133 | { |
| 134 | |
| 135 | ar->k_ar.ar_arg_len = len; |
| 136 | ARG_SET_VALID(ar, ARG_LEN); |
| 137 | } |
| 138 | |
| 139 | void |
| 140 | audit_arg_fd2(struct kaudit_record *ar, int fd) |
| 141 | { |
| 142 | |
| 143 | ar->k_ar.ar_arg_fd2 = fd; |
| 144 | ARG_SET_VALID(ar, ARG_FD2); |
| 145 | } |
| 146 | |
| 147 | void |
| 148 | audit_arg_fd(struct kaudit_record *ar, int fd) |
| 149 | { |
| 150 | |
| 151 | ar->k_ar.ar_arg_fd = fd; |
| 152 | ARG_SET_VALID(ar, ARG_FD); |
| 153 | } |
| 154 | |
| 155 | void |
| 156 | audit_arg_fflags(struct kaudit_record *ar, int fflags) |
| 157 | { |
| 158 | |
| 159 | ar->k_ar.ar_arg_fflags = fflags; |
| 160 | ARG_SET_VALID(ar, ARG_FFLAGS); |
| 161 | } |
| 162 | |
| 163 | void |
| 164 | audit_arg_gid(struct kaudit_record *ar, gid_t gid) |
| 165 | { |
| 166 | |
| 167 | ar->k_ar.ar_arg_gid = gid; |
| 168 | ARG_SET_VALID(ar, ARG_GID); |
| 169 | } |
| 170 | |
| 171 | void |
| 172 | audit_arg_uid(struct kaudit_record *ar, uid_t uid) |
| 173 | { |
| 174 | |
| 175 | ar->k_ar.ar_arg_uid = uid; |
| 176 | ARG_SET_VALID(ar, ARG_UID); |
| 177 | } |
| 178 | |
| 179 | void |
| 180 | audit_arg_egid(struct kaudit_record *ar, gid_t egid) |
| 181 | { |
| 182 | |
| 183 | ar->k_ar.ar_arg_egid = egid; |
| 184 | ARG_SET_VALID(ar, ARG_EGID); |
| 185 | } |
| 186 | |
| 187 | void |
| 188 | audit_arg_euid(struct kaudit_record *ar, uid_t euid) |
| 189 | { |
| 190 | |
| 191 | ar->k_ar.ar_arg_euid = euid; |
| 192 | ARG_SET_VALID(ar, ARG_EUID); |
| 193 | } |
| 194 | |
| 195 | void |
| 196 | audit_arg_rgid(struct kaudit_record *ar, gid_t rgid) |
| 197 | { |
| 198 | |
| 199 | ar->k_ar.ar_arg_rgid = rgid; |
| 200 | ARG_SET_VALID(ar, ARG_RGID); |
| 201 | } |
| 202 | |
| 203 | void |
| 204 | audit_arg_ruid(struct kaudit_record *ar, uid_t ruid) |
| 205 | { |
| 206 | |
| 207 | ar->k_ar.ar_arg_ruid = ruid; |
| 208 | ARG_SET_VALID(ar, ARG_RUID); |
| 209 | } |
| 210 | |
| 211 | void |
| 212 | audit_arg_sgid(struct kaudit_record *ar, gid_t sgid) |
| 213 | { |
| 214 | |
| 215 | ar->k_ar.ar_arg_sgid = sgid; |
| 216 | ARG_SET_VALID(ar, ARG_SGID); |
| 217 | } |
| 218 | |
| 219 | void |
| 220 | audit_arg_suid(struct kaudit_record *ar, uid_t suid) |
| 221 | { |
| 222 | |
| 223 | ar->k_ar.ar_arg_suid = suid; |
| 224 | ARG_SET_VALID(ar, ARG_SUID); |
| 225 | } |
| 226 | |
| 227 | void |
| 228 | audit_arg_groupset(struct kaudit_record *ar, gid_t *gidset, u_int gidset_size) |
| 229 | { |
| 230 | u_int i; |
| 231 | |
| 232 | for (i = 0; i < gidset_size; i++) |
| 233 | ar->k_ar.ar_arg_groups.gidset[i] = gidset[i]; |
| 234 | ar->k_ar.ar_arg_groups.gidset_size = gidset_size; |
| 235 | ARG_SET_VALID(ar, ARG_GROUPSET); |
| 236 | } |
| 237 | |
| 238 | void |
| 239 | audit_arg_login(struct kaudit_record *ar, char *login) |
| 240 | { |
| 241 | |
| 242 | strlcpy(ar->k_ar.ar_arg_login, login, MAXLOGNAME); |
| 243 | ARG_SET_VALID(ar, ARG_LOGIN); |
| 244 | } |
| 245 | |
| 246 | void |
| 247 | audit_arg_ctlname(struct kaudit_record *ar, int *name, int namelen) |
| 248 | { |
| 249 | |
| 250 | bcopy(name, &ar->k_ar.ar_arg_ctlname, namelen * sizeof(int)); |
| 251 | ar->k_ar.ar_arg_len = namelen; |
| 252 | ARG_SET_VALID(ar, ARG_CTLNAME | ARG_LEN); |
| 253 | } |
| 254 | |
| 255 | void |
| 256 | audit_arg_mask(struct kaudit_record *ar, int mask) |
| 257 | { |
| 258 | |
| 259 | ar->k_ar.ar_arg_mask = mask; |
| 260 | ARG_SET_VALID(ar, ARG_MASK); |
| 261 | } |
| 262 | |
| 263 | void |
| 264 | audit_arg_mode(struct kaudit_record *ar, mode_t mode) |
| 265 | { |
| 266 | |
| 267 | ar->k_ar.ar_arg_mode = mode; |
| 268 | ARG_SET_VALID(ar, ARG_MODE); |
| 269 | } |
| 270 | |
| 271 | void |
| 272 | audit_arg_value32(struct kaudit_record *ar, uint32_t value32) |
| 273 | { |
| 274 | |
| 275 | ar->k_ar.ar_arg_value32 = value32; |
| 276 | ARG_SET_VALID(ar, ARG_VALUE32); |
| 277 | } |
| 278 | |
| 279 | void |
| 280 | audit_arg_value64(struct kaudit_record *ar, uint64_t value64) |
| 281 | { |
| 282 | |
| 283 | ar->k_ar.ar_arg_value64 = value64; |
| 284 | ARG_SET_VALID(ar, ARG_VALUE64); |
| 285 | } |
| 286 | |
| 287 | void |
| 288 | audit_arg_owner(struct kaudit_record *ar, uid_t uid, gid_t gid) |
| 289 | { |
| 290 | |
| 291 | ar->k_ar.ar_arg_uid = uid; |
| 292 | ar->k_ar.ar_arg_gid = gid; |
| 293 | ARG_SET_VALID(ar, ARG_UID | ARG_GID); |
| 294 | } |
| 295 | |
| 296 | void |
| 297 | audit_arg_pid(struct kaudit_record *ar, pid_t pid) |
| 298 | { |
| 299 | |
| 300 | ar->k_ar.ar_arg_pid = pid; |
| 301 | ARG_SET_VALID(ar, ARG_PID); |
| 302 | } |
| 303 | |
| 304 | void |
| 305 | audit_arg_process(struct kaudit_record *ar, proc_t p) |
| 306 | { |
| 307 | kauth_cred_t my_cred; |
| 308 | |
| 309 | KASSERT(p != NULL, ("audit_arg_process: p == NULL" )); |
| 310 | |
| 311 | if ( p == NULL) |
| 312 | return; |
| 313 | |
| 314 | my_cred = kauth_cred_proc_ref(p); |
| 315 | ar->k_ar.ar_arg_auid = my_cred->cr_audit.as_aia_p->ai_auid; |
| 316 | ar->k_ar.ar_arg_asid = my_cred->cr_audit.as_aia_p->ai_asid; |
| 317 | bcopy(&my_cred->cr_audit.as_aia_p->ai_termid, |
| 318 | &ar->k_ar.ar_arg_termid_addr, sizeof(au_tid_addr_t)); |
| 319 | ar->k_ar.ar_arg_euid = kauth_cred_getuid(my_cred); |
| 320 | ar->k_ar.ar_arg_egid = kauth_cred_getgid(my_cred); |
| 321 | ar->k_ar.ar_arg_ruid = kauth_cred_getruid(my_cred); |
| 322 | ar->k_ar.ar_arg_rgid = kauth_cred_getrgid(my_cred); |
| 323 | kauth_cred_unref(&my_cred); |
| 324 | ar->k_ar.ar_arg_pid = p->p_pid; |
| 325 | ARG_SET_VALID(ar, ARG_AUID | ARG_EUID | ARG_EGID | ARG_RUID | |
| 326 | ARG_RGID | ARG_ASID | ARG_TERMID_ADDR | ARG_PID | ARG_PROCESS); |
| 327 | } |
| 328 | |
| 329 | void |
| 330 | audit_arg_signum(struct kaudit_record *ar, u_int signum) |
| 331 | { |
| 332 | |
| 333 | ar->k_ar.ar_arg_signum = signum; |
| 334 | ARG_SET_VALID(ar, ARG_SIGNUM); |
| 335 | } |
| 336 | |
| 337 | void |
| 338 | audit_arg_socket(struct kaudit_record *ar, int sodomain, int sotype, |
| 339 | int soprotocol) |
| 340 | { |
| 341 | |
| 342 | ar->k_ar.ar_arg_sockinfo.sai_domain = sodomain; |
| 343 | ar->k_ar.ar_arg_sockinfo.sai_type = sotype; |
| 344 | ar->k_ar.ar_arg_sockinfo.sai_protocol = soprotocol; |
| 345 | ARG_SET_VALID(ar, ARG_SOCKINFO); |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Note that the current working directory vp must be supplied at the audit |
| 350 | * call site to permit per thread current working directories, and that it |
| 351 | * must take a upath starting with '/' into account for chroot if the path |
| 352 | * is absolute. This results in the real (non-chroot) path being recorded |
| 353 | * in the audit record. |
| 354 | */ |
| 355 | void |
| 356 | audit_arg_sockaddr(struct kaudit_record *ar, struct vnode *cwd_vp, |
| 357 | struct sockaddr *sa) |
| 358 | { |
| 359 | char path[SOCK_MAXADDRLEN - offsetof(struct sockaddr_un, sun_path) + 1] = "" ; |
| 360 | struct sockaddr_un *sun; |
| 361 | ssize_t namelen; |
| 362 | |
| 363 | KASSERT(sa != NULL, ("audit_arg_sockaddr: sa == NULL" )); |
| 364 | |
| 365 | if (cwd_vp == NULL || sa == NULL) |
| 366 | return; |
| 367 | |
| 368 | if (sa->sa_len > sizeof(ar->k_ar.ar_arg_sockaddr)) |
| 369 | bcopy(sa, &ar->k_ar.ar_arg_sockaddr, sizeof(ar->k_ar.ar_arg_sockaddr)); |
| 370 | else |
| 371 | bcopy(sa, &ar->k_ar.ar_arg_sockaddr, sa->sa_len); |
| 372 | |
| 373 | switch (sa->sa_family) { |
| 374 | case AF_INET: |
| 375 | ARG_SET_VALID(ar, ARG_SADDRINET); |
| 376 | break; |
| 377 | |
| 378 | case AF_INET6: |
| 379 | ARG_SET_VALID(ar, ARG_SADDRINET6); |
| 380 | break; |
| 381 | |
| 382 | case AF_UNIX: |
| 383 | sun = (struct sockaddr_un *)sa; |
| 384 | namelen = sun->sun_len - offsetof(struct sockaddr_un, sun_path); |
| 385 | if (namelen > 0 && (size_t)namelen < sizeof(path)) { |
| 386 | /* |
| 387 | * Make sure the path is NUL-terminated |
| 388 | */ |
| 389 | bcopy(sun->sun_path, path, namelen); |
| 390 | path[namelen] = 0; |
| 391 | audit_arg_upath(ar, cwd_vp, path, ARG_UPATH1); |
| 392 | } |
| 393 | ARG_SET_VALID(ar, ARG_SADDRUNIX); |
| 394 | break; |
| 395 | /* XXXAUDIT: default:? */ |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | void |
| 400 | audit_arg_auid(struct kaudit_record *ar, uid_t auid) |
| 401 | { |
| 402 | |
| 403 | ar->k_ar.ar_arg_auid = auid; |
| 404 | ARG_SET_VALID(ar, ARG_AUID); |
| 405 | } |
| 406 | |
| 407 | void |
| 408 | audit_arg_auditinfo(struct kaudit_record *ar, struct auditinfo *au_info) |
| 409 | { |
| 410 | |
| 411 | ar->k_ar.ar_arg_auid = au_info->ai_auid; |
| 412 | ar->k_ar.ar_arg_asid = au_info->ai_asid; |
| 413 | ar->k_ar.ar_arg_amask.am_success = au_info->ai_mask.am_success; |
| 414 | ar->k_ar.ar_arg_amask.am_failure = au_info->ai_mask.am_failure; |
| 415 | ar->k_ar.ar_arg_termid.port = au_info->ai_termid.port; |
| 416 | ar->k_ar.ar_arg_termid.machine = au_info->ai_termid.machine; |
| 417 | ARG_SET_VALID(ar, ARG_AUID | ARG_ASID | ARG_AMASK | ARG_TERMID); |
| 418 | } |
| 419 | |
| 420 | void |
| 421 | audit_arg_auditinfo_addr(struct kaudit_record *ar, |
| 422 | struct auditinfo_addr *au_info) |
| 423 | { |
| 424 | |
| 425 | ar->k_ar.ar_arg_auid = au_info->ai_auid; |
| 426 | ar->k_ar.ar_arg_asid = au_info->ai_asid; |
| 427 | ar->k_ar.ar_arg_amask.am_success = au_info->ai_mask.am_success; |
| 428 | ar->k_ar.ar_arg_amask.am_failure = au_info->ai_mask.am_failure; |
| 429 | ar->k_ar.ar_arg_termid_addr.at_type = au_info->ai_termid.at_type; |
| 430 | ar->k_ar.ar_arg_termid_addr.at_port = au_info->ai_termid.at_port; |
| 431 | ar->k_ar.ar_arg_termid_addr.at_addr[0] = au_info->ai_termid.at_addr[0]; |
| 432 | ar->k_ar.ar_arg_termid_addr.at_addr[1] = au_info->ai_termid.at_addr[1]; |
| 433 | ar->k_ar.ar_arg_termid_addr.at_addr[2] = au_info->ai_termid.at_addr[2]; |
| 434 | ar->k_ar.ar_arg_termid_addr.at_addr[3] = au_info->ai_termid.at_addr[3]; |
| 435 | ARG_SET_VALID(ar, ARG_AUID | ARG_ASID | ARG_AMASK | ARG_TERMID_ADDR); |
| 436 | } |
| 437 | |
| 438 | void |
| 439 | audit_arg_text(struct kaudit_record *ar, char *text) |
| 440 | { |
| 441 | |
| 442 | KASSERT(text != NULL, ("audit_arg_text: text == NULL" )); |
| 443 | |
| 444 | /* Invalidate the text string */ |
| 445 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_TEXT); |
| 446 | if (text == NULL) |
| 447 | return; |
| 448 | |
| 449 | if (ar->k_ar.ar_arg_text == NULL) |
| 450 | ar->k_ar.ar_arg_text = malloc(MAXPATHLEN, M_AUDITTEXT, |
| 451 | M_WAITOK); |
| 452 | |
| 453 | strncpy(ar->k_ar.ar_arg_text, text, MAXPATHLEN); |
| 454 | ARG_SET_VALID(ar, ARG_TEXT); |
| 455 | } |
| 456 | |
| 457 | void |
| 458 | audit_arg_opaque(struct kaudit_record *ar, void *data, size_t size) |
| 459 | { |
| 460 | |
| 461 | KASSERT(data != NULL, ("audit_arg_opaque: data == NULL" )); |
| 462 | KASSERT(size <= UINT16_MAX, ("audit_arg_opaque: size > UINT16_MAX" )); |
| 463 | |
| 464 | if (data == NULL || size > UINT16_MAX) |
| 465 | return; |
| 466 | |
| 467 | if (ar->k_ar.ar_arg_opaque == NULL) |
| 468 | ar->k_ar.ar_arg_opaque = malloc(size, M_AUDITDATA, M_WAITOK); |
| 469 | else |
| 470 | return; |
| 471 | |
| 472 | memcpy(ar->k_ar.ar_arg_opaque, data, size); |
| 473 | ar->k_ar.ar_arg_opq_size = (u_int16_t) size; |
| 474 | ARG_SET_VALID(ar, ARG_OPAQUE); |
| 475 | } |
| 476 | |
| 477 | void |
| 478 | audit_arg_data(struct kaudit_record *ar, void *data, size_t size, size_t number) |
| 479 | { |
| 480 | size_t sz; |
| 481 | |
| 482 | KASSERT(data != NULL, ("audit_arg_data: data == NULL" )); |
| 483 | KASSERT(size >= AUR_BYTE_SIZE && size <= AUR_INT64_SIZE, |
| 484 | ("audit_arg_data: size < AUR_BYTE_SIZE or size > AUR_INT64_SIZE" )); |
| 485 | KASSERT(number <= UINT8_MAX, |
| 486 | ("audit_arg_data: number > UINT8_MAX" )); |
| 487 | |
| 488 | if (data == NULL || size < AUR_BYTE_SIZE || size > AUR_INT64_SIZE || |
| 489 | number > UINT8_MAX) |
| 490 | return; |
| 491 | |
| 492 | sz = size * number; |
| 493 | |
| 494 | if (ar->k_ar.ar_arg_data == NULL) |
| 495 | ar->k_ar.ar_arg_data = malloc(sz, M_AUDITDATA, M_WAITOK); |
| 496 | else |
| 497 | return; |
| 498 | |
| 499 | memcpy(ar->k_ar.ar_arg_data, data, sz); |
| 500 | |
| 501 | switch(size) { |
| 502 | case AUR_BYTE_SIZE: |
| 503 | ar->k_ar.ar_arg_data_type = AUR_BYTE; |
| 504 | break; |
| 505 | |
| 506 | case AUR_SHORT_SIZE: |
| 507 | ar->k_ar.ar_arg_data_type = AUR_SHORT; |
| 508 | break; |
| 509 | |
| 510 | case AUR_INT32_SIZE: |
| 511 | ar->k_ar.ar_arg_data_type = AUR_INT32; |
| 512 | break; |
| 513 | |
| 514 | case AUR_INT64_SIZE: |
| 515 | ar->k_ar.ar_arg_data_type = AUR_INT64; |
| 516 | break; |
| 517 | |
| 518 | default: |
| 519 | free(ar->k_ar.ar_arg_data, M_AUDITDATA); |
| 520 | ar->k_ar.ar_arg_data = NULL; |
| 521 | return; |
| 522 | } |
| 523 | |
| 524 | ar->k_ar.ar_arg_data_count = (u_char)number; |
| 525 | |
| 526 | ARG_SET_VALID(ar, ARG_DATA); |
| 527 | } |
| 528 | |
| 529 | void |
| 530 | audit_arg_cmd(struct kaudit_record *ar, int cmd) |
| 531 | { |
| 532 | |
| 533 | ar->k_ar.ar_arg_cmd = cmd; |
| 534 | ARG_SET_VALID(ar, ARG_CMD); |
| 535 | } |
| 536 | |
| 537 | void |
| 538 | audit_arg_svipc_cmd(struct kaudit_record *ar, int cmd) |
| 539 | { |
| 540 | |
| 541 | ar->k_ar.ar_arg_svipc_cmd = cmd; |
| 542 | ARG_SET_VALID(ar, ARG_SVIPC_CMD); |
| 543 | } |
| 544 | |
| 545 | void |
| 546 | audit_arg_svipc_perm(struct kaudit_record *ar, struct ipc_perm *perm) |
| 547 | { |
| 548 | |
| 549 | bcopy(perm, &ar->k_ar.ar_arg_svipc_perm, |
| 550 | sizeof(ar->k_ar.ar_arg_svipc_perm)); |
| 551 | ARG_SET_VALID(ar, ARG_SVIPC_PERM); |
| 552 | } |
| 553 | |
| 554 | void |
| 555 | audit_arg_svipc_id(struct kaudit_record *ar, int id) |
| 556 | { |
| 557 | |
| 558 | ar->k_ar.ar_arg_svipc_id = id; |
| 559 | ARG_SET_VALID(ar, ARG_SVIPC_ID); |
| 560 | } |
| 561 | |
| 562 | void |
| 563 | audit_arg_svipc_addr(struct kaudit_record *ar, user_addr_t addr) |
| 564 | { |
| 565 | |
| 566 | ar->k_ar.ar_arg_svipc_addr = addr; |
| 567 | ARG_SET_VALID(ar, ARG_SVIPC_ADDR); |
| 568 | } |
| 569 | |
| 570 | void |
| 571 | audit_arg_posix_ipc_perm(struct kaudit_record *ar, uid_t uid, gid_t gid, |
| 572 | mode_t mode) |
| 573 | { |
| 574 | |
| 575 | ar->k_ar.ar_arg_pipc_perm.pipc_uid = uid; |
| 576 | ar->k_ar.ar_arg_pipc_perm.pipc_gid = gid; |
| 577 | ar->k_ar.ar_arg_pipc_perm.pipc_mode = mode; |
| 578 | ARG_SET_VALID(ar, ARG_POSIX_IPC_PERM); |
| 579 | } |
| 580 | |
| 581 | void |
| 582 | audit_arg_auditon(struct kaudit_record *ar, union auditon_udata *udata) |
| 583 | { |
| 584 | |
| 585 | bcopy((void *)udata, &ar->k_ar.ar_arg_auditon, |
| 586 | sizeof(ar->k_ar.ar_arg_auditon)); |
| 587 | ARG_SET_VALID(ar, ARG_AUDITON); |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Audit information about a file, either the file's vnode info, or its |
| 592 | * socket address info. |
| 593 | */ |
| 594 | void |
| 595 | audit_arg_file(struct kaudit_record *ar, __unused proc_t p, |
| 596 | struct fileproc *fp) |
| 597 | { |
| 598 | struct socket *so; |
| 599 | struct inpcb *pcb; |
| 600 | struct sockaddr_in *sin; |
| 601 | struct sockaddr_in6 *sin6; |
| 602 | |
| 603 | switch (FILEGLOB_DTYPE(fp->f_fglob)) { |
| 604 | case DTYPE_VNODE: |
| 605 | /* case DTYPE_FIFO: */ |
| 606 | audit_arg_vnpath_withref(ar, |
| 607 | (struct vnode *)fp->f_fglob->fg_data, ARG_VNODE1); |
| 608 | break; |
| 609 | |
| 610 | case DTYPE_SOCKET: |
| 611 | so = (struct socket *)fp->f_fglob->fg_data; |
| 612 | if (SOCK_CHECK_DOM(so, PF_INET)) { |
| 613 | if (so->so_pcb == NULL) |
| 614 | break; |
| 615 | ar->k_ar.ar_arg_sockinfo.sai_type = |
| 616 | so->so_type; |
| 617 | ar->k_ar.ar_arg_sockinfo.sai_domain = SOCK_DOM(so); |
| 618 | ar->k_ar.ar_arg_sockinfo.sai_protocol = SOCK_PROTO(so); |
| 619 | pcb = (struct inpcb *)so->so_pcb; |
| 620 | sin = (struct sockaddr_in *) |
| 621 | &ar->k_ar.ar_arg_sockinfo.sai_faddr; |
| 622 | sin->sin_addr.s_addr = pcb->inp_faddr.s_addr; |
| 623 | sin->sin_port = pcb->inp_fport; |
| 624 | sin = (struct sockaddr_in *) |
| 625 | &ar->k_ar.ar_arg_sockinfo.sai_laddr; |
| 626 | sin->sin_addr.s_addr = pcb->inp_laddr.s_addr; |
| 627 | sin->sin_port = pcb->inp_lport; |
| 628 | ARG_SET_VALID(ar, ARG_SOCKINFO); |
| 629 | } |
| 630 | if (SOCK_CHECK_DOM(so, PF_INET6)) { |
| 631 | if (so->so_pcb == NULL) |
| 632 | break; |
| 633 | ar->k_ar.ar_arg_sockinfo.sai_type = |
| 634 | so->so_type; |
| 635 | ar->k_ar.ar_arg_sockinfo.sai_domain = SOCK_DOM(so); |
| 636 | ar->k_ar.ar_arg_sockinfo.sai_protocol = SOCK_PROTO(so); |
| 637 | pcb = (struct inpcb *)so->so_pcb; |
| 638 | sin6 = (struct sockaddr_in6 *) |
| 639 | &ar->k_ar.ar_arg_sockinfo.sai_faddr; |
| 640 | sin6->sin6_addr = pcb->in6p_faddr; |
| 641 | sin6->sin6_port = pcb->in6p_fport; |
| 642 | sin6 = (struct sockaddr_in6 *) |
| 643 | &ar->k_ar.ar_arg_sockinfo.sai_laddr; |
| 644 | sin6->sin6_addr = pcb->in6p_laddr; |
| 645 | sin6->sin6_port = pcb->in6p_lport; |
| 646 | ARG_SET_VALID(ar, ARG_SOCKINFO); |
| 647 | } |
| 648 | break; |
| 649 | |
| 650 | default: |
| 651 | /* XXXAUDIT: else? */ |
| 652 | break; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * Store a path as given by the user process for auditing into the audit |
| 658 | * record stored on the user thread. This function will allocate the memory |
| 659 | * to store the path info if not already available. This memory will be |
| 660 | * freed when the audit record is freed. |
| 661 | * |
| 662 | * Note that the current working directory vp must be supplied at the audit call |
| 663 | * site to permit per thread current working directories, and that it must take |
| 664 | * a upath starting with '/' into account for chroot if the path is absolute. |
| 665 | * This results in the real (non-chroot) path being recorded in the audit |
| 666 | * record. |
| 667 | * |
| 668 | * XXXAUDIT: Possibly assert that the memory isn't already allocated? |
| 669 | */ |
| 670 | void |
| 671 | audit_arg_upath(struct kaudit_record *ar, struct vnode *cwd_vp, char *upath, u_int64_t flag) |
| 672 | { |
| 673 | char **pathp; |
| 674 | |
| 675 | KASSERT(upath != NULL, ("audit_arg_upath: upath == NULL" )); |
| 676 | KASSERT((flag == ARG_UPATH1) || (flag == ARG_UPATH2), |
| 677 | ("audit_arg_upath: flag %llu" , (unsigned long long)flag)); |
| 678 | KASSERT((flag != ARG_UPATH1) || (flag != ARG_UPATH2), |
| 679 | ("audit_arg_upath: flag %llu" , (unsigned long long)flag)); |
| 680 | |
| 681 | if (flag == ARG_UPATH1) |
| 682 | pathp = &ar->k_ar.ar_arg_upath1; |
| 683 | else |
| 684 | pathp = &ar->k_ar.ar_arg_upath2; |
| 685 | |
| 686 | if (*pathp == NULL) |
| 687 | *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); |
| 688 | else |
| 689 | return; |
| 690 | |
| 691 | if (audit_canon_path(cwd_vp, upath, *pathp) == 0) |
| 692 | ARG_SET_VALID(ar, flag); |
| 693 | else { |
| 694 | free(*pathp, M_AUDITPATH); |
| 695 | *pathp = NULL; |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * Function to save the path and vnode attr information into the audit |
| 701 | * record. |
| 702 | * |
| 703 | * It is assumed that the caller will hold any vnode locks necessary to |
| 704 | * perform a VNOP_GETATTR() on the passed vnode. |
| 705 | * |
| 706 | * XXX: The attr code is very similar to vfs_vnops.c:vn_stat(), but always |
| 707 | * provides access to the generation number as we need that to construct the |
| 708 | * BSM file ID. |
| 709 | * |
| 710 | * XXX: We should accept the process argument from the caller, since it's |
| 711 | * very likely they already have a reference. |
| 712 | * |
| 713 | * XXX: Error handling in this function is poor. |
| 714 | * |
| 715 | * XXXAUDIT: Possibly KASSERT the path pointer is NULL? |
| 716 | */ |
| 717 | void |
| 718 | audit_arg_vnpath(struct kaudit_record *ar, struct vnode *vp, u_int64_t flags) |
| 719 | { |
| 720 | struct vnode_attr va; |
| 721 | int error; |
| 722 | int len; |
| 723 | char **pathp; |
| 724 | struct vnode_au_info *vnp; |
| 725 | proc_t p; |
| 726 | #if CONFIG_MACF |
| 727 | char **vnode_mac_labelp; |
| 728 | struct mac mac; |
| 729 | #endif |
| 730 | |
| 731 | KASSERT(vp != NULL, ("audit_arg_vnpath: vp == NULL" )); |
| 732 | KASSERT((flags == ARG_VNODE1) || (flags == ARG_VNODE2), |
| 733 | ("audit_arg_vnpath: flags != ARG_VNODE[1,2]" )); |
| 734 | |
| 735 | p = current_proc(); |
| 736 | |
| 737 | /* |
| 738 | * XXXAUDIT: The below clears, and then resets the flags for valid |
| 739 | * arguments. Ideally, either the new vnode is used, or the old one |
| 740 | * would be. |
| 741 | */ |
| 742 | if (flags & ARG_VNODE1) { |
| 743 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH1); |
| 744 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE1); |
| 745 | pathp = &ar->k_ar.ar_arg_kpath1; |
| 746 | vnp = &ar->k_ar.ar_arg_vnode1; |
| 747 | #if CONFIG_MACF |
| 748 | vnode_mac_labelp = &ar->k_ar.ar_vnode1_mac_labels; |
| 749 | #endif |
| 750 | } else { |
| 751 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_KPATH2); |
| 752 | ar->k_ar.ar_valid_arg &= (ARG_ALL ^ ARG_VNODE2); |
| 753 | pathp = &ar->k_ar.ar_arg_kpath2; |
| 754 | vnp = &ar->k_ar.ar_arg_vnode2; |
| 755 | #if CONFIG_MACF |
| 756 | vnode_mac_labelp = &ar->k_ar.ar_vnode2_mac_labels; |
| 757 | #endif |
| 758 | } |
| 759 | |
| 760 | if (*pathp == NULL) |
| 761 | *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); |
| 762 | else |
| 763 | return; |
| 764 | |
| 765 | /* |
| 766 | * If vn_getpath() succeeds, place it in a string buffer |
| 767 | * attached to the audit record, and set a flag indicating |
| 768 | * it is present. |
| 769 | */ |
| 770 | len = MAXPATHLEN; |
| 771 | if (vn_getpath(vp, *pathp, &len) == 0) { |
| 772 | if (flags & ARG_VNODE1) |
| 773 | ARG_SET_VALID(ar, ARG_KPATH1); |
| 774 | else |
| 775 | ARG_SET_VALID(ar, ARG_KPATH2); |
| 776 | } else { |
| 777 | free(*pathp, M_AUDITPATH); |
| 778 | *pathp = NULL; |
| 779 | } |
| 780 | |
| 781 | VATTR_INIT(&va); |
| 782 | VATTR_WANTED(&va, va_mode); |
| 783 | VATTR_WANTED(&va, va_uid); |
| 784 | VATTR_WANTED(&va, va_gid); |
| 785 | VATTR_WANTED(&va, va_rdev); |
| 786 | VATTR_WANTED(&va, va_fsid); |
| 787 | VATTR_WANTED(&va, va_fileid); |
| 788 | VATTR_WANTED(&va, va_gen); |
| 789 | error = vnode_getattr(vp, &va, vfs_context_current()); |
| 790 | if (error) { |
| 791 | /* XXX: How to handle this case? */ |
| 792 | return; |
| 793 | } |
| 794 | |
| 795 | #if CONFIG_MACF |
| 796 | if (*vnode_mac_labelp == NULL && (vp->v_lflag & VL_LABELED) == VL_LABELED) { |
| 797 | *vnode_mac_labelp = (char *)zalloc(audit_mac_label_zone); |
| 798 | if (*vnode_mac_labelp != NULL) { |
| 799 | mac.m_buflen = MAC_AUDIT_LABEL_LEN; |
| 800 | mac.m_string = *vnode_mac_labelp; |
| 801 | mac_vnode_label_externalize_audit(vp, &mac); |
| 802 | } |
| 803 | } |
| 804 | #endif |
| 805 | |
| 806 | /* |
| 807 | * XXX do we want to fall back here when these aren't supported? |
| 808 | */ |
| 809 | vnp->vn_mode = va.va_mode; |
| 810 | vnp->vn_uid = va.va_uid; |
| 811 | vnp->vn_gid = va.va_gid; |
| 812 | vnp->vn_dev = va.va_rdev; |
| 813 | vnp->vn_fsid = va.va_fsid; |
| 814 | vnp->vn_fileid = (u_int32_t)va.va_fileid; |
| 815 | vnp->vn_gen = va.va_gen; |
| 816 | if (flags & ARG_VNODE1) |
| 817 | ARG_SET_VALID(ar, ARG_VNODE1); |
| 818 | else |
| 819 | ARG_SET_VALID(ar, ARG_VNODE2); |
| 820 | } |
| 821 | |
| 822 | void |
| 823 | audit_arg_vnpath_withref(struct kaudit_record *ar, struct vnode *vp, u_int64_t flags) |
| 824 | { |
| 825 | if (vp == NULL || vnode_getwithref(vp)) |
| 826 | return; |
| 827 | audit_arg_vnpath(ar, vp, flags); |
| 828 | (void)vnode_put(vp); |
| 829 | } |
| 830 | |
| 831 | void |
| 832 | audit_arg_mach_port1(struct kaudit_record *ar, mach_port_name_t port) |
| 833 | { |
| 834 | |
| 835 | ar->k_ar.ar_arg_mach_port1 = port; |
| 836 | ARG_SET_VALID(ar, ARG_MACHPORT1); |
| 837 | } |
| 838 | |
| 839 | void |
| 840 | audit_arg_mach_port2(struct kaudit_record *ar, mach_port_name_t port) |
| 841 | { |
| 842 | |
| 843 | ar->k_ar.ar_arg_mach_port2 = port; |
| 844 | ARG_SET_VALID(ar, ARG_MACHPORT2); |
| 845 | } |
| 846 | |
| 847 | |
| 848 | /* |
| 849 | * Audit the argument strings passed to exec. |
| 850 | */ |
| 851 | void |
| 852 | audit_arg_argv(struct kaudit_record *ar, char *argv, int argc, int length) |
| 853 | { |
| 854 | |
| 855 | if (audit_argv == 0 || argc == 0) |
| 856 | return; |
| 857 | |
| 858 | if (ar->k_ar.ar_arg_argv == NULL) |
| 859 | ar->k_ar.ar_arg_argv = malloc(length, M_AUDITTEXT, M_WAITOK); |
| 860 | bcopy(argv, ar->k_ar.ar_arg_argv, length); |
| 861 | ar->k_ar.ar_arg_argc = argc; |
| 862 | ARG_SET_VALID(ar, ARG_ARGV); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * Audit the environment strings passed to exec. |
| 867 | */ |
| 868 | void |
| 869 | audit_arg_envv(struct kaudit_record *ar, char *envv, int envc, int length) |
| 870 | { |
| 871 | |
| 872 | if (audit_arge == 0 || envc == 0) |
| 873 | return; |
| 874 | |
| 875 | if (ar->k_ar.ar_arg_envv == NULL) |
| 876 | ar->k_ar.ar_arg_envv = malloc(length, M_AUDITTEXT, M_WAITOK); |
| 877 | bcopy(envv, ar->k_ar.ar_arg_envv, length); |
| 878 | ar->k_ar.ar_arg_envc = envc; |
| 879 | ARG_SET_VALID(ar, ARG_ENVV); |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * The close() system call uses it's own audit call to capture the path/vnode |
| 884 | * information because those pieces are not easily obtained within the system |
| 885 | * call itself. |
| 886 | */ |
| 887 | void |
| 888 | audit_sysclose(struct kaudit_record *ar, proc_t p, int fd) |
| 889 | { |
| 890 | struct fileproc *fp; |
| 891 | struct vnode *vp; |
| 892 | |
| 893 | KASSERT(p != NULL, ("audit_sysclose: p == NULL" )); |
| 894 | |
| 895 | audit_arg_fd(ar, fd); |
| 896 | |
| 897 | if (fp_getfvp(p, fd, &fp, &vp) != 0) |
| 898 | return; |
| 899 | |
| 900 | audit_arg_vnpath_withref(ar, (struct vnode *)fp->f_fglob->fg_data, |
| 901 | ARG_VNODE1); |
| 902 | fp_drop(p, fd, fp, 0); |
| 903 | } |
| 904 | |
| 905 | void |
| 906 | audit_identity_info_destruct(struct au_identity_info *id_info) |
| 907 | { |
| 908 | if (!id_info) { |
| 909 | return; |
| 910 | } |
| 911 | |
| 912 | if (id_info->signing_id != NULL) { |
| 913 | free(id_info->signing_id, M_AUDITTEXT); |
| 914 | id_info->signing_id = NULL; |
| 915 | } |
| 916 | |
| 917 | if (id_info->team_id != NULL) { |
| 918 | free(id_info->team_id, M_AUDITTEXT); |
| 919 | id_info->team_id = NULL; |
| 920 | } |
| 921 | |
| 922 | if (id_info->cdhash != NULL) { |
| 923 | free(id_info->cdhash, M_AUDITDATA); |
| 924 | id_info->cdhash = NULL; |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | void |
| 929 | audit_identity_info_construct(struct au_identity_info *id_info) |
| 930 | { |
| 931 | struct proc *p; |
| 932 | struct cs_blob *blob; |
| 933 | unsigned int signer_type = 0; |
| 934 | const char *signing_id = NULL; |
| 935 | const char* team_id = NULL; |
| 936 | const uint8_t *cdhash = NULL; |
| 937 | size_t src_len = 0; |
| 938 | |
| 939 | p = current_proc(); |
| 940 | blob = csproc_get_blob(p); |
| 941 | if (blob) { |
| 942 | signing_id = csblob_get_identity(blob); |
| 943 | cdhash = csblob_get_cdhash(blob); |
| 944 | team_id = csblob_get_teamid(blob); |
| 945 | signer_type = csblob_get_platform_binary(blob) ? 1 : 0; |
| 946 | } |
| 947 | |
| 948 | id_info->signer_type = signer_type; |
| 949 | |
| 950 | if (id_info->signing_id == NULL && signing_id != NULL) { |
| 951 | id_info->signing_id = malloc( MAX_AU_IDENTITY_SIGNING_ID_LENGTH, |
| 952 | M_AUDITTEXT, M_WAITOK); |
| 953 | if (id_info->signing_id != NULL) { |
| 954 | src_len = strlcpy(id_info->signing_id, |
| 955 | signing_id, MAX_AU_IDENTITY_SIGNING_ID_LENGTH); |
| 956 | |
| 957 | if (src_len >= MAX_AU_IDENTITY_SIGNING_ID_LENGTH) { |
| 958 | id_info->signing_id_trunc = 1; |
| 959 | } |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | if (id_info->team_id == NULL && team_id != NULL) { |
| 964 | id_info->team_id = malloc(MAX_AU_IDENTITY_TEAM_ID_LENGTH, |
| 965 | M_AUDITTEXT, M_WAITOK); |
| 966 | if (id_info->team_id != NULL) { |
| 967 | src_len = strlcpy(id_info->team_id, team_id, |
| 968 | MAX_AU_IDENTITY_TEAM_ID_LENGTH); |
| 969 | |
| 970 | if (src_len >= MAX_AU_IDENTITY_TEAM_ID_LENGTH) { |
| 971 | id_info->team_id_trunc = 1; |
| 972 | } |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | if (id_info->cdhash == NULL && cdhash != NULL) { |
| 977 | id_info->cdhash = malloc(CS_CDHASH_LEN, M_AUDITDATA, M_WAITOK); |
| 978 | if (id_info->cdhash != NULL) { |
| 979 | memcpy(id_info->cdhash, cdhash, CS_CDHASH_LEN); |
| 980 | id_info->cdhash_len = CS_CDHASH_LEN; |
| 981 | } |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | void |
| 986 | audit_arg_identity(struct kaudit_record *ar) |
| 987 | { |
| 988 | audit_identity_info_construct(&ar->k_ar.ar_arg_identity); |
| 989 | ARG_SET_VALID(ar, ARG_IDENTITY); |
| 990 | } |
| 991 | |
| 992 | #endif /* CONFIG_AUDIT */ |
| 993 | |