1 | /*- |
2 | * Copyright (c) 1999-2009 Apple Inc. |
3 | * Copyright (c) 2006-2007 Robert N. M. Watson |
4 | * All rights reserved. |
5 | * |
6 | * Redistribution and use in source and binary forms, with or without |
7 | * modification, are permitted provided that the following conditions |
8 | * are met: |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in the |
13 | * documentation and/or other materials provided with the distribution. |
14 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
15 | * its contributors may be used to endorse or promote products derived |
16 | * from this software without specific prior written permission. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND |
19 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
21 | * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR |
22 | * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
24 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
25 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
26 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
27 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
28 | * POSSIBILITY OF SUCH DAMAGE. |
29 | * |
30 | */ |
31 | /* |
32 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
33 | * support for mandatory and extensible security protections. This notice |
34 | * is included in support of clause 2.2 (b) of the Apple Public License, |
35 | * Version 2.0. |
36 | */ |
37 | |
38 | #include <sys/param.h> |
39 | #include <sys/fcntl.h> |
40 | #include <sys/kernel.h> |
41 | #include <sys/lock.h> |
42 | #include <sys/namei.h> |
43 | #include <sys/proc_internal.h> |
44 | #include <sys/kauth.h> |
45 | #include <sys/queue.h> |
46 | #include <sys/systm.h> |
47 | #include <sys/time.h> |
48 | #include <sys/ucred.h> |
49 | #include <sys/uio.h> |
50 | #include <sys/unistd.h> |
51 | #include <sys/file_internal.h> |
52 | #include <sys/vnode_internal.h> |
53 | #include <sys/user.h> |
54 | #include <sys/syscall.h> |
55 | #include <sys/malloc.h> |
56 | #include <sys/un.h> |
57 | #include <sys/sysent.h> |
58 | #include <sys/sysproto.h> |
59 | #include <sys/vfs_context.h> |
60 | #include <sys/domain.h> |
61 | #include <sys/protosw.h> |
62 | #include <sys/socketvar.h> |
63 | |
64 | #include <bsm/audit.h> |
65 | #include <bsm/audit_internal.h> |
66 | #include <bsm/audit_kevents.h> |
67 | |
68 | #include <security/audit/audit.h> |
69 | #include <security/audit/audit_bsd.h> |
70 | #include <security/audit/audit_private.h> |
71 | |
72 | #include <mach/host_priv.h> |
73 | #include <mach/host_special_ports.h> |
74 | #include <mach/audit_triggers_server.h> |
75 | |
76 | #include <kern/host.h> |
77 | #include <kern/kalloc.h> |
78 | #include <kern/zalloc.h> |
79 | #include <kern/sched_prim.h> |
80 | |
81 | #include <net/route.h> |
82 | |
83 | #include <netinet/in.h> |
84 | #include <netinet/in_pcb.h> |
85 | |
86 | #if CONFIG_AUDIT |
87 | MALLOC_DEFINE(M_AUDITDATA, "audit_data" , "Audit data storage" ); |
88 | MALLOC_DEFINE(M_AUDITPATH, "audit_path" , "Audit path storage" ); |
89 | MALLOC_DEFINE(M_AUDITTEXT, "audit_text" , "Audit text storage" ); |
90 | |
91 | /* |
92 | * Audit control settings that are set/read by system calls and are hence |
93 | * non-static. |
94 | * |
95 | * Define the audit control flags. |
96 | */ |
97 | int audit_enabled; |
98 | int audit_suspended; |
99 | |
100 | int audit_syscalls; |
101 | au_class_t audit_kevent_mask; |
102 | |
103 | /* |
104 | * The audit control mode is used to ensure configuration settings are only |
105 | * accepted from appropriate sources based on the current mode. |
106 | */ |
107 | au_ctlmode_t audit_ctl_mode; |
108 | au_expire_after_t audit_expire_after; |
109 | |
110 | /* |
111 | * Flags controlling behavior in low storage situations. Should we panic if |
112 | * a write fails? Should we fail stop if we're out of disk space? |
113 | */ |
114 | int audit_panic_on_write_fail; |
115 | int audit_fail_stop; |
116 | int audit_argv; |
117 | int audit_arge; |
118 | |
119 | /* |
120 | * Are we currently "failing stop" due to out of disk space? |
121 | */ |
122 | int audit_in_failure; |
123 | |
124 | /* |
125 | * Global audit statistics. |
126 | */ |
127 | struct audit_fstat audit_fstat; |
128 | |
129 | /* |
130 | * Preselection mask for non-attributable events. |
131 | */ |
132 | struct au_mask audit_nae_mask; |
133 | |
134 | /* |
135 | * Mutex to protect global variables shared between various threads and |
136 | * processes. |
137 | */ |
138 | struct mtx audit_mtx; |
139 | |
140 | /* |
141 | * Queue of audit records ready for delivery to disk. We insert new records |
142 | * at the tail, and remove records from the head. Also, a count of the |
143 | * number of records used for checking queue depth. In addition, a counter |
144 | * of records that we have allocated but are not yet in the queue, which is |
145 | * needed to estimate the total size of the combined set of records |
146 | * outstanding in the system. |
147 | */ |
148 | struct kaudit_queue audit_q; |
149 | int audit_q_len; |
150 | int audit_pre_q_len; |
151 | |
152 | /* |
153 | * Audit queue control settings (minimum free, low/high water marks, etc.) |
154 | */ |
155 | struct au_qctrl audit_qctrl; |
156 | |
157 | /* |
158 | * Condition variable to signal to the worker that it has work to do: either |
159 | * new records are in the queue, or a log replacement is taking place. |
160 | */ |
161 | struct cv audit_worker_cv; |
162 | |
163 | /* |
164 | * Condition variable to signal when the worker is done draining the audit |
165 | * queue. |
166 | */ |
167 | struct cv audit_drain_cv; |
168 | |
169 | /* |
170 | * Condition variable to flag when crossing the low watermark, meaning that |
171 | * threads blocked due to hitting the high watermark can wake up and continue |
172 | * to commit records. |
173 | */ |
174 | struct cv audit_watermark_cv; |
175 | |
176 | /* |
177 | * Condition variable for auditing threads wait on when in fail-stop mode. |
178 | * Threads wait on this CV forever (and ever), never seeing the light of day |
179 | * again. |
180 | */ |
181 | static struct cv audit_fail_cv; |
182 | |
183 | static zone_t audit_record_zone; |
184 | |
185 | /* |
186 | * Kernel audit information. This will store the current audit address |
187 | * or host information that the kernel will use when it's generating |
188 | * audit records. This data is modified by the A_GET{SET}KAUDIT auditon(2) |
189 | * command. |
190 | */ |
191 | static struct auditinfo_addr audit_kinfo; |
192 | static struct rwlock audit_kinfo_lock; |
193 | |
194 | #define KINFO_LOCK_INIT() rw_init(&audit_kinfo_lock, \ |
195 | "audit_kinfo_lock") |
196 | #define KINFO_RLOCK() rw_rlock(&audit_kinfo_lock) |
197 | #define KINFO_WLOCK() rw_wlock(&audit_kinfo_lock) |
198 | #define KINFO_RUNLOCK() rw_runlock(&audit_kinfo_lock) |
199 | #define KINFO_WUNLOCK() rw_wunlock(&audit_kinfo_lock) |
200 | |
201 | void |
202 | audit_set_kinfo(struct auditinfo_addr *ak) |
203 | { |
204 | |
205 | KASSERT(ak->ai_termid.at_type == AU_IPv4 || |
206 | ak->ai_termid.at_type == AU_IPv6, |
207 | ("audit_set_kinfo: invalid address type" )); |
208 | |
209 | KINFO_WLOCK(); |
210 | bcopy(ak, &audit_kinfo, sizeof(audit_kinfo)); |
211 | KINFO_WUNLOCK(); |
212 | } |
213 | |
214 | void |
215 | audit_get_kinfo(struct auditinfo_addr *ak) |
216 | { |
217 | |
218 | KASSERT(audit_kinfo.ai_termid.at_type == AU_IPv4 || |
219 | audit_kinfo.ai_termid.at_type == AU_IPv6, |
220 | ("audit_set_kinfo: invalid address type" )); |
221 | |
222 | KINFO_RLOCK(); |
223 | bcopy(&audit_kinfo, ak, sizeof(*ak)); |
224 | KINFO_RUNLOCK(); |
225 | } |
226 | |
227 | /* |
228 | * Construct an audit record for the passed thread. |
229 | */ |
230 | static void |
231 | audit_record_ctor(proc_t p, struct kaudit_record *ar) |
232 | { |
233 | kauth_cred_t cred; |
234 | |
235 | bzero(ar, sizeof(*ar)); |
236 | ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; |
237 | nanotime(&ar->k_ar.ar_starttime); |
238 | |
239 | if (PROC_NULL != p) { |
240 | cred = kauth_cred_proc_ref(p); |
241 | |
242 | /* |
243 | * Export the subject credential. |
244 | */ |
245 | cru2x(cred, &ar->k_ar.ar_subj_cred); |
246 | ar->k_ar.ar_subj_ruid = kauth_cred_getruid(cred); |
247 | ar->k_ar.ar_subj_rgid = kauth_cred_getrgid(cred); |
248 | ar->k_ar.ar_subj_egid = kauth_cred_getgid(cred); |
249 | ar->k_ar.ar_subj_pid = p->p_pid; |
250 | ar->k_ar.ar_subj_auid = cred->cr_audit.as_aia_p->ai_auid; |
251 | ar->k_ar.ar_subj_asid = cred->cr_audit.as_aia_p->ai_asid; |
252 | bcopy(&cred->cr_audit.as_mask, &ar->k_ar.ar_subj_amask, |
253 | sizeof(struct au_mask)); |
254 | bcopy(&cred->cr_audit.as_aia_p->ai_termid, |
255 | &ar->k_ar.ar_subj_term_addr, sizeof(struct au_tid_addr)); |
256 | kauth_cred_unref(&cred); |
257 | } |
258 | } |
259 | |
260 | static void |
261 | audit_record_dtor(struct kaudit_record *ar) |
262 | { |
263 | |
264 | if (ar->k_ar.ar_arg_upath1 != NULL) |
265 | free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); |
266 | if (ar->k_ar.ar_arg_upath2 != NULL) |
267 | free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); |
268 | if (ar->k_ar.ar_arg_kpath1 != NULL) |
269 | free(ar->k_ar.ar_arg_kpath1, M_AUDITPATH); |
270 | if (ar->k_ar.ar_arg_kpath2 != NULL) |
271 | free(ar->k_ar.ar_arg_kpath2, M_AUDITPATH); |
272 | if (ar->k_ar.ar_arg_text != NULL) |
273 | free(ar->k_ar.ar_arg_text, M_AUDITTEXT); |
274 | if (ar->k_ar.ar_arg_opaque != NULL) |
275 | free(ar->k_ar.ar_arg_opaque, M_AUDITDATA); |
276 | if (ar->k_ar.ar_arg_data != NULL) |
277 | free(ar->k_ar.ar_arg_data, M_AUDITDATA); |
278 | if (ar->k_udata != NULL) |
279 | free(ar->k_udata, M_AUDITDATA); |
280 | if (ar->k_ar.ar_arg_argv != NULL) |
281 | free(ar->k_ar.ar_arg_argv, M_AUDITTEXT); |
282 | if (ar->k_ar.ar_arg_envv != NULL) |
283 | free(ar->k_ar.ar_arg_envv, M_AUDITTEXT); |
284 | audit_identity_info_destruct(&ar->k_ar.ar_arg_identity); |
285 | } |
286 | |
287 | /* |
288 | * Initialize the Audit subsystem: configuration state, work queue, |
289 | * synchronization primitives, worker thread, and trigger device node. Also |
290 | * call into the BSM assembly code to initialize it. |
291 | */ |
292 | void |
293 | audit_init(void) |
294 | { |
295 | |
296 | audit_enabled = 0; |
297 | audit_syscalls = 0; |
298 | audit_kevent_mask = 0; |
299 | audit_suspended = 0; |
300 | audit_panic_on_write_fail = 0; |
301 | audit_fail_stop = 0; |
302 | audit_in_failure = 0; |
303 | audit_argv = 0; |
304 | audit_arge = 0; |
305 | audit_ctl_mode = AUDIT_CTLMODE_NORMAL; |
306 | audit_expire_after.age = 0; |
307 | audit_expire_after.size = 0; |
308 | audit_expire_after.op_type = AUDIT_EXPIRE_OP_AND; |
309 | |
310 | audit_fstat.af_filesz = 0; /* '0' means unset, unbounded. */ |
311 | audit_fstat.af_currsz = 0; |
312 | audit_nae_mask.am_success = 0; |
313 | audit_nae_mask.am_failure = 0; |
314 | |
315 | TAILQ_INIT(&audit_q); |
316 | audit_q_len = 0; |
317 | audit_pre_q_len = 0; |
318 | audit_qctrl.aq_hiwater = AQ_HIWATER; |
319 | audit_qctrl.aq_lowater = AQ_LOWATER; |
320 | audit_qctrl.aq_bufsz = AQ_BUFSZ; |
321 | audit_qctrl.aq_minfree = AU_FS_MINFREE; |
322 | |
323 | audit_kinfo.ai_termid.at_type = AU_IPv4; |
324 | audit_kinfo.ai_termid.at_addr[0] = INADDR_ANY; |
325 | |
326 | _audit_lck_grp_init(); |
327 | mtx_init(&audit_mtx, "audit_mtx" , NULL, MTX_DEF); |
328 | KINFO_LOCK_INIT(); |
329 | cv_init(&audit_worker_cv, "audit_worker_cv" ); |
330 | cv_init(&audit_drain_cv, "audit_drain_cv" ); |
331 | cv_init(&audit_watermark_cv, "audit_watermark_cv" ); |
332 | cv_init(&audit_fail_cv, "audit_fail_cv" ); |
333 | |
334 | audit_record_zone = zinit(sizeof(struct kaudit_record), |
335 | AQ_HIWATER*sizeof(struct kaudit_record), 8192, "audit_zone" ); |
336 | #if CONFIG_MACF |
337 | audit_mac_init(); |
338 | #endif |
339 | /* Init audit session subsystem. */ |
340 | audit_session_init(); |
341 | |
342 | /* Initialize the BSM audit subsystem. */ |
343 | kau_init(); |
344 | |
345 | /* audit_trigger_init(); */ |
346 | |
347 | /* Start audit worker thread. */ |
348 | (void) audit_pipe_init(); |
349 | |
350 | /* Start audit worker thread. */ |
351 | audit_worker_init(); |
352 | } |
353 | |
354 | /* |
355 | * Drain the audit queue and close the log at shutdown. Note that this can |
356 | * be called both from the system shutdown path and also from audit |
357 | * configuration syscalls, so 'arg' and 'howto' are ignored. |
358 | */ |
359 | void |
360 | audit_shutdown(void) |
361 | { |
362 | |
363 | audit_rotate_vnode(NULL, NULL); |
364 | } |
365 | |
366 | /* |
367 | * Return the current thread's audit record, if any. |
368 | */ |
369 | struct kaudit_record * |
370 | currecord(void) |
371 | { |
372 | |
373 | return (curthread()->uu_ar); |
374 | } |
375 | |
376 | /* |
377 | * XXXAUDIT: There are a number of races present in the code below due to |
378 | * release and re-grab of the mutex. The code should be revised to become |
379 | * slightly less racy. |
380 | * |
381 | * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available |
382 | * pre_q space, suspending the system call until there is room? |
383 | */ |
384 | struct kaudit_record * |
385 | audit_new(int event, proc_t p, __unused struct uthread *uthread) |
386 | { |
387 | struct kaudit_record *ar; |
388 | int no_record; |
389 | int audit_override; |
390 | |
391 | /* |
392 | * Override the audit_suspended and audit_enabled if it always |
393 | * audits session events. |
394 | * |
395 | * XXXss - This really needs to be a generalized call to a filter |
396 | * interface so if other things that use the audit subsystem in the |
397 | * future can simply plugged in. |
398 | */ |
399 | audit_override = (AUE_SESSION_START == event || |
400 | AUE_SESSION_UPDATE == event || AUE_SESSION_END == event || |
401 | AUE_SESSION_CLOSE == event); |
402 | |
403 | mtx_lock(&audit_mtx); |
404 | no_record = (audit_suspended || !audit_enabled); |
405 | mtx_unlock(&audit_mtx); |
406 | if (!audit_override && no_record) |
407 | return (NULL); |
408 | |
409 | /* |
410 | * Initialize the audit record header. |
411 | * XXX: We may want to fail-stop if allocation fails. |
412 | * |
413 | * Note: the number of outstanding uncommitted audit records is |
414 | * limited to the number of concurrent threads servicing system calls |
415 | * in the kernel. |
416 | */ |
417 | ar = zalloc(audit_record_zone); |
418 | if (ar == NULL) |
419 | return NULL; |
420 | audit_record_ctor(p, ar); |
421 | ar->k_ar.ar_event = event; |
422 | |
423 | #if CONFIG_MACF |
424 | if (PROC_NULL != p) { |
425 | if (audit_mac_new(p, ar) != 0) { |
426 | zfree(audit_record_zone, ar); |
427 | return (NULL); |
428 | } |
429 | } else |
430 | ar->k_ar.ar_mac_records = NULL; |
431 | #endif |
432 | |
433 | mtx_lock(&audit_mtx); |
434 | audit_pre_q_len++; |
435 | mtx_unlock(&audit_mtx); |
436 | |
437 | return (ar); |
438 | } |
439 | |
440 | void |
441 | audit_free(struct kaudit_record *ar) |
442 | { |
443 | |
444 | audit_record_dtor(ar); |
445 | #if CONFIG_MACF |
446 | if (NULL != ar->k_ar.ar_mac_records) |
447 | audit_mac_free(ar); |
448 | #endif |
449 | zfree(audit_record_zone, ar); |
450 | } |
451 | |
452 | void |
453 | audit_commit(struct kaudit_record *ar, int error, int retval) |
454 | { |
455 | au_event_t event; |
456 | au_class_t class; |
457 | au_id_t auid; |
458 | int sorf; |
459 | struct au_mask *aumask; |
460 | int audit_override; |
461 | |
462 | if (ar == NULL) |
463 | return; |
464 | |
465 | /* |
466 | * Decide whether to commit the audit record by checking the error |
467 | * value from the system call and using the appropriate audit mask. |
468 | */ |
469 | if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) |
470 | aumask = &audit_nae_mask; |
471 | else |
472 | aumask = &ar->k_ar.ar_subj_amask; |
473 | |
474 | if (error) |
475 | sorf = AU_PRS_FAILURE; |
476 | else |
477 | sorf = AU_PRS_SUCCESS; |
478 | |
479 | switch(ar->k_ar.ar_event) { |
480 | case AUE_OPEN_RWTC: |
481 | /* |
482 | * The open syscall always writes a AUE_OPEN_RWTC event; |
483 | * change it to the proper type of event based on the flags |
484 | * and the error value. |
485 | */ |
486 | ar->k_ar.ar_event = audit_flags_and_error_to_openevent( |
487 | ar->k_ar.ar_arg_fflags, error); |
488 | break; |
489 | |
490 | case AUE_OPEN_EXTENDED_RWTC: |
491 | /* |
492 | * The open_extended syscall always writes a |
493 | * AUE_OPEN_EXTENDEDRWTC event; change it to the proper type of |
494 | * event based on the flags and the error value. |
495 | */ |
496 | ar->k_ar.ar_event = audit_flags_and_error_to_openextendedevent( |
497 | ar->k_ar.ar_arg_fflags, error); |
498 | break; |
499 | |
500 | case AUE_OPENAT_RWTC: |
501 | /* |
502 | * The openat syscall always writes a |
503 | * AUE_OPENAT_RWTC event; change it to the proper type of |
504 | * event based on the flags and the error value. |
505 | */ |
506 | ar->k_ar.ar_event = audit_flags_and_error_to_openatevent( |
507 | ar->k_ar.ar_arg_fflags, error); |
508 | break; |
509 | |
510 | case AUE_OPENBYID_RWT: |
511 | /* |
512 | * The openbyid syscall always writes a |
513 | * AUE_OPENBYID_RWT event; change it to the proper type of |
514 | * event based on the flags and the error value. |
515 | */ |
516 | ar->k_ar.ar_event = audit_flags_and_error_to_openbyidevent( |
517 | ar->k_ar.ar_arg_fflags, error); |
518 | break; |
519 | |
520 | case AUE_SYSCTL: |
521 | ar->k_ar.ar_event = audit_ctlname_to_sysctlevent( |
522 | ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); |
523 | break; |
524 | |
525 | case AUE_AUDITON: |
526 | /* Convert the auditon() command to an event. */ |
527 | ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); |
528 | break; |
529 | |
530 | case AUE_FCNTL: |
531 | /* Convert some fcntl() commands to their own events. */ |
532 | ar->k_ar.ar_event = audit_fcntl_command_event( |
533 | ar->k_ar.ar_arg_cmd, ar->k_ar.ar_arg_fflags, error); |
534 | break; |
535 | } |
536 | |
537 | auid = ar->k_ar.ar_subj_auid; |
538 | event = ar->k_ar.ar_event; |
539 | class = au_event_class(event); |
540 | |
541 | /* |
542 | * See if we need to override the audit_suspend and audit_enabled |
543 | * flags. |
544 | * |
545 | * XXXss - This check needs to be generalized so new filters can |
546 | * easily be added. |
547 | */ |
548 | audit_override = (AUE_SESSION_START == event || |
549 | AUE_SESSION_UPDATE == event || AUE_SESSION_END == event || |
550 | AUE_SESSION_CLOSE == event); |
551 | |
552 | ar->k_ar_commit |= AR_COMMIT_KERNEL; |
553 | if (au_preselect(event, class, aumask, sorf) != 0) |
554 | ar->k_ar_commit |= AR_PRESELECT_TRAIL; |
555 | if (audit_pipe_preselect(auid, event, class, sorf, |
556 | ar->k_ar_commit & AR_PRESELECT_TRAIL) != 0) |
557 | ar->k_ar_commit |= AR_PRESELECT_PIPE; |
558 | if ((ar->k_ar_commit & (AR_PRESELECT_TRAIL | AR_PRESELECT_PIPE | |
559 | AR_PRESELECT_USER_TRAIL | AR_PRESELECT_USER_PIPE | |
560 | AR_PRESELECT_FILTER)) == 0) { |
561 | mtx_lock(&audit_mtx); |
562 | audit_pre_q_len--; |
563 | mtx_unlock(&audit_mtx); |
564 | audit_free(ar); |
565 | return; |
566 | } |
567 | |
568 | ar->k_ar.ar_errno = error; |
569 | ar->k_ar.ar_retval = retval; |
570 | nanotime(&ar->k_ar.ar_endtime); |
571 | |
572 | /* |
573 | * Note: it could be that some records initiated while audit was |
574 | * enabled should still be committed? |
575 | */ |
576 | mtx_lock(&audit_mtx); |
577 | if (!audit_override && (audit_suspended || !audit_enabled)) { |
578 | audit_pre_q_len--; |
579 | mtx_unlock(&audit_mtx); |
580 | audit_free(ar); |
581 | return; |
582 | } |
583 | |
584 | /* |
585 | * Constrain the number of committed audit records based on the |
586 | * configurable parameter. |
587 | */ |
588 | while (audit_q_len >= audit_qctrl.aq_hiwater) |
589 | cv_wait(&audit_watermark_cv, &audit_mtx); |
590 | |
591 | TAILQ_INSERT_TAIL(&audit_q, ar, k_q); |
592 | audit_q_len++; |
593 | audit_pre_q_len--; |
594 | cv_signal(&audit_worker_cv); |
595 | mtx_unlock(&audit_mtx); |
596 | } |
597 | |
598 | /* |
599 | * audit_syscall_enter() is called on entry to each system call. It is |
600 | * responsible for deciding whether or not to audit the call (preselection), |
601 | * and if so, allocating a per-thread audit record. audit_new() will fill in |
602 | * basic thread/credential properties. |
603 | */ |
604 | void |
605 | audit_syscall_enter(unsigned int code, proc_t proc, struct uthread *uthread) |
606 | { |
607 | struct au_mask *aumask; |
608 | au_class_t class; |
609 | au_event_t event; |
610 | au_id_t auid; |
611 | kauth_cred_t cred; |
612 | |
613 | /* |
614 | * In FreeBSD, each ABI has its own system call table, and hence |
615 | * mapping of system call codes to audit events. Convert the code to |
616 | * an audit event identifier using the process system call table |
617 | * reference. In Darwin, there's only one, so we use the global |
618 | * symbol for the system call table. No audit record is generated |
619 | * for bad system calls, as no operation has been performed. |
620 | * |
621 | * In Mac OS X, the audit events are stored in a table seperate from |
622 | * the syscall table(s). This table is generated by makesyscalls.sh |
623 | * from syscalls.master and stored in audit_kevents.c. |
624 | */ |
625 | if (code >= nsysent) |
626 | return; |
627 | event = sys_au_event[code]; |
628 | if (event == AUE_NULL) |
629 | return; |
630 | |
631 | KASSERT(uthread->uu_ar == NULL, |
632 | ("audit_syscall_enter: uthread->uu_ar != NULL" )); |
633 | |
634 | /* |
635 | * Check which audit mask to use; either the kernel non-attributable |
636 | * event mask or the process audit mask. |
637 | */ |
638 | cred = kauth_cred_proc_ref(proc); |
639 | auid = cred->cr_audit.as_aia_p->ai_auid; |
640 | if (auid == AU_DEFAUDITID) |
641 | aumask = &audit_nae_mask; |
642 | else |
643 | aumask = &cred->cr_audit.as_mask; |
644 | |
645 | /* |
646 | * Allocate an audit record, if preselection allows it, and store in |
647 | * the thread for later use. |
648 | */ |
649 | class = au_event_class(event); |
650 | #if CONFIG_MACF |
651 | /* |
652 | * Note: audit_mac_syscall_enter() may call audit_new() and allocate |
653 | * memory for the audit record (uu_ar). |
654 | */ |
655 | if (audit_mac_syscall_enter(code, proc, uthread, cred, event) == 0) |
656 | goto out; |
657 | #endif |
658 | if (au_preselect(event, class, aumask, AU_PRS_BOTH)) { |
659 | /* |
660 | * If we're out of space and need to suspend unprivileged |
661 | * processes, do that here rather than trying to allocate |
662 | * another audit record. |
663 | * |
664 | * Note: we might wish to be able to continue here in the |
665 | * future, if the system recovers. That should be possible |
666 | * by means of checking the condition in a loop around |
667 | * cv_wait(). It might be desirable to reevaluate whether an |
668 | * audit record is still required for this event by |
669 | * re-calling au_preselect(). |
670 | */ |
671 | if (audit_in_failure && |
672 | suser(cred, &proc->p_acflag) != 0) { |
673 | cv_wait(&audit_fail_cv, &audit_mtx); |
674 | panic("audit_failing_stop: thread continued" ); |
675 | } |
676 | if (uthread->uu_ar == NULL) |
677 | uthread->uu_ar = audit_new(event, proc, uthread); |
678 | } else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) { |
679 | if (uthread->uu_ar == NULL) |
680 | uthread->uu_ar = audit_new(event, proc, uthread); |
681 | } |
682 | |
683 | /* |
684 | * All audited events will contain an identity |
685 | * |
686 | * Note: Identity should be obtained prior to the syscall implementation |
687 | * being called to handle cases like execve(2) where the process changes |
688 | */ |
689 | AUDIT_ARG(identity); |
690 | |
691 | out: |
692 | kauth_cred_unref(&cred); |
693 | } |
694 | |
695 | /* |
696 | * audit_syscall_exit() is called from the return of every system call, or in |
697 | * the event of exit1(), during the execution of exit1(). It is responsible |
698 | * for committing the audit record, if any, along with return condition. |
699 | * |
700 | * Note: The audit_syscall_exit() parameter list was modified to support |
701 | * mac_audit_check_postselect(), which requires the syscall number. |
702 | */ |
703 | #if CONFIG_MACF |
704 | void |
705 | audit_syscall_exit(unsigned int code, int error, __unused proc_t proc, |
706 | struct uthread *uthread) |
707 | #else |
708 | void |
709 | audit_syscall_exit(int error, __unsed proc_t proc, struct uthread *uthread) |
710 | #endif |
711 | { |
712 | int retval; |
713 | |
714 | /* |
715 | * Commit the audit record as desired; once we pass the record into |
716 | * audit_commit(), the memory is owned by the audit subsystem. The |
717 | * return value from the system call is stored on the user thread. |
718 | * If there was an error, the return value is set to -1, imitating |
719 | * the behavior of the cerror routine. |
720 | */ |
721 | if (error) |
722 | retval = -1; |
723 | else |
724 | retval = uthread->uu_rval[0]; |
725 | |
726 | #if CONFIG_MACF |
727 | if (audit_mac_syscall_exit(code, uthread, error, retval) != 0) |
728 | goto out; |
729 | #endif |
730 | audit_commit(uthread->uu_ar, error, retval); |
731 | |
732 | out: |
733 | uthread->uu_ar = NULL; |
734 | } |
735 | |
736 | /* |
737 | * Calls to set up and tear down audit structures used during Mach system |
738 | * calls. |
739 | */ |
740 | void |
741 | audit_mach_syscall_enter(unsigned short event) |
742 | { |
743 | struct uthread *uthread; |
744 | proc_t proc; |
745 | struct au_mask *aumask; |
746 | kauth_cred_t cred; |
747 | au_class_t class; |
748 | au_id_t auid; |
749 | |
750 | if (event == AUE_NULL) |
751 | return; |
752 | |
753 | uthread = curthread(); |
754 | if (uthread == NULL) |
755 | return; |
756 | |
757 | proc = current_proc(); |
758 | if (proc == NULL) |
759 | return; |
760 | |
761 | KASSERT(uthread->uu_ar == NULL, |
762 | ("audit_mach_syscall_enter: uthread->uu_ar != NULL" )); |
763 | |
764 | cred = kauth_cred_proc_ref(proc); |
765 | auid = cred->cr_audit.as_aia_p->ai_auid; |
766 | |
767 | /* |
768 | * Check which audit mask to use; either the kernel non-attributable |
769 | * event mask or the process audit mask. |
770 | */ |
771 | if (auid == AU_DEFAUDITID) |
772 | aumask = &audit_nae_mask; |
773 | else |
774 | aumask = &cred->cr_audit.as_mask; |
775 | |
776 | /* |
777 | * Allocate an audit record, if desired, and store in the BSD thread |
778 | * for later use. |
779 | */ |
780 | class = au_event_class(event); |
781 | if (au_preselect(event, class, aumask, AU_PRS_BOTH)) |
782 | uthread->uu_ar = audit_new(event, proc, uthread); |
783 | else if (audit_pipe_preselect(auid, event, class, AU_PRS_BOTH, 0)) |
784 | uthread->uu_ar = audit_new(event, proc, uthread); |
785 | else |
786 | uthread->uu_ar = NULL; |
787 | |
788 | kauth_cred_unref(&cred); |
789 | } |
790 | |
791 | void |
792 | audit_mach_syscall_exit(int retval, struct uthread *uthread) |
793 | { |
794 | /* |
795 | * The error code from Mach system calls is the same as the |
796 | * return value |
797 | */ |
798 | /* XXX Is the above statement always true? */ |
799 | audit_commit(uthread->uu_ar, retval, retval); |
800 | uthread->uu_ar = NULL; |
801 | } |
802 | |
803 | /* |
804 | * kau_will_audit can be used by a security policy to determine |
805 | * if an audit record will be stored, reducing wasted memory allocation |
806 | * and string handling. |
807 | */ |
808 | int |
809 | kau_will_audit(void) |
810 | { |
811 | |
812 | return (audit_enabled && currecord() != NULL); |
813 | } |
814 | |
815 | #if CONFIG_COREDUMP |
816 | void |
817 | audit_proc_coredump(proc_t proc, char *path, int errcode) |
818 | { |
819 | struct kaudit_record *ar; |
820 | struct au_mask *aumask; |
821 | au_class_t class; |
822 | int ret, sorf; |
823 | char **pathp; |
824 | au_id_t auid; |
825 | kauth_cred_t my_cred; |
826 | struct uthread *uthread; |
827 | |
828 | ret = 0; |
829 | |
830 | /* |
831 | * Make sure we are using the correct preselection mask. |
832 | */ |
833 | my_cred = kauth_cred_proc_ref(proc); |
834 | auid = my_cred->cr_audit.as_aia_p->ai_auid; |
835 | if (auid == AU_DEFAUDITID) |
836 | aumask = &audit_nae_mask; |
837 | else |
838 | aumask = &my_cred->cr_audit.as_mask; |
839 | kauth_cred_unref(&my_cred); |
840 | /* |
841 | * It's possible for coredump(9) generation to fail. Make sure that |
842 | * we handle this case correctly for preselection. |
843 | */ |
844 | if (errcode != 0) |
845 | sorf = AU_PRS_FAILURE; |
846 | else |
847 | sorf = AU_PRS_SUCCESS; |
848 | class = au_event_class(AUE_CORE); |
849 | if (au_preselect(AUE_CORE, class, aumask, sorf) == 0 && |
850 | audit_pipe_preselect(auid, AUE_CORE, class, sorf, 0) == 0) |
851 | return; |
852 | /* |
853 | * If we are interested in seeing this audit record, allocate it. |
854 | * Where possible coredump records should contain a pathname and arg32 |
855 | * (signal) tokens. |
856 | */ |
857 | uthread = curthread(); |
858 | ar = audit_new(AUE_CORE, proc, uthread); |
859 | if (path != NULL) { |
860 | pathp = &ar->k_ar.ar_arg_upath1; |
861 | *pathp = malloc(MAXPATHLEN, M_AUDITPATH, M_WAITOK); |
862 | if (audit_canon_path(vfs_context_cwd(vfs_context_current()), path, |
863 | *pathp)) |
864 | free(*pathp, M_AUDITPATH); |
865 | else |
866 | ARG_SET_VALID(ar, ARG_UPATH1); |
867 | } |
868 | ar->k_ar.ar_arg_signum = proc->p_sigacts->ps_sig; |
869 | ARG_SET_VALID(ar, ARG_SIGNUM); |
870 | if (errcode != 0) |
871 | ret = 1; |
872 | audit_commit(ar, errcode, ret); |
873 | } |
874 | #endif /* CONFIG_COREDUMP */ |
875 | #endif /* CONFIG_AUDIT */ |
876 | |