| 1 | /* |
| 2 | * Copyright (c) 2000-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995-2018 Apple, Inc. All Rights Reserved */ |
| 29 | |
| 30 | #include <sys/cdefs.h> |
| 31 | |
| 32 | // <rdar://problem/26158937> panic() should be marked noreturn |
| 33 | extern void panic(const char *string, ...) __printflike(1,2) __dead2; |
| 34 | |
| 35 | #include <kern/assert.h> |
| 36 | #include <kern/ast.h> |
| 37 | #include <kern/clock.h> |
| 38 | #include <kern/cpu_data.h> |
| 39 | #include <kern/kern_types.h> |
| 40 | #include <kern/policy_internal.h> |
| 41 | #include <kern/processor.h> |
| 42 | #include <kern/sched_prim.h> /* for thread_exception_return */ |
| 43 | #include <kern/task.h> |
| 44 | #include <kern/thread.h> |
| 45 | #include <kern/zalloc.h> |
| 46 | #include <mach/kern_return.h> |
| 47 | #include <mach/mach_param.h> |
| 48 | #include <mach/mach_port.h> |
| 49 | #include <mach/mach_types.h> |
| 50 | #include <mach/mach_vm.h> |
| 51 | #include <mach/sync_policy.h> |
| 52 | #include <mach/task.h> |
| 53 | #include <mach/thread_act.h> /* for thread_resume */ |
| 54 | #include <mach/thread_policy.h> |
| 55 | #include <mach/thread_status.h> |
| 56 | #include <mach/vm_prot.h> |
| 57 | #include <mach/vm_statistics.h> |
| 58 | #include <machine/atomic.h> |
| 59 | #include <machine/machine_routines.h> |
| 60 | #include <vm/vm_map.h> |
| 61 | #include <vm/vm_protos.h> |
| 62 | |
| 63 | #include <sys/eventvar.h> |
| 64 | #include <sys/kdebug.h> |
| 65 | #include <sys/kernel.h> |
| 66 | #include <sys/lock.h> |
| 67 | #include <sys/param.h> |
| 68 | #include <sys/proc_info.h> /* for fill_procworkqueue */ |
| 69 | #include <sys/proc_internal.h> |
| 70 | #include <sys/pthread_shims.h> |
| 71 | #include <sys/resourcevar.h> |
| 72 | #include <sys/signalvar.h> |
| 73 | #include <sys/sysctl.h> |
| 74 | #include <sys/sysproto.h> |
| 75 | #include <sys/systm.h> |
| 76 | #include <sys/ulock.h> /* for ulock_owner_value_to_port_name */ |
| 77 | |
| 78 | #include <pthread/bsdthread_private.h> |
| 79 | #include <pthread/workqueue_syscalls.h> |
| 80 | #include <pthread/workqueue_internal.h> |
| 81 | #include <pthread/workqueue_trace.h> |
| 82 | |
| 83 | #include <os/log.h> |
| 84 | |
| 85 | extern thread_t port_name_to_thread(mach_port_name_t port_name); /* osfmk/kern/ipc_tt.h */ |
| 86 | |
| 87 | static void workq_unpark_continue(void *uth, wait_result_t wr) __dead2; |
| 88 | static void workq_schedule_creator(proc_t p, struct workqueue *wq, int flags); |
| 89 | |
| 90 | static bool workq_threadreq_admissible(struct workqueue *wq, struct uthread *uth, |
| 91 | workq_threadreq_t req); |
| 92 | |
| 93 | static uint32_t workq_constrained_allowance(struct workqueue *wq, |
| 94 | thread_qos_t at_qos, struct uthread *uth, bool may_start_timer); |
| 95 | |
| 96 | static bool workq_thread_is_busy(uint64_t cur_ts, |
| 97 | _Atomic uint64_t *lastblocked_tsp); |
| 98 | |
| 99 | static int workq_sysctl_handle_usecs SYSCTL_HANDLER_ARGS; |
| 100 | |
| 101 | #pragma mark globals |
| 102 | |
| 103 | struct workq_usec_var { |
| 104 | uint32_t usecs; |
| 105 | uint64_t abstime; |
| 106 | }; |
| 107 | |
| 108 | #define WORKQ_SYSCTL_USECS(var, init) \ |
| 109 | static struct workq_usec_var var = { .usecs = init }; \ |
| 110 | SYSCTL_OID(_kern, OID_AUTO, var##_usecs, \ |
| 111 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &var, 0, \ |
| 112 | workq_sysctl_handle_usecs, "I", "") |
| 113 | |
| 114 | static lck_grp_t *workq_lck_grp; |
| 115 | static lck_attr_t *workq_lck_attr; |
| 116 | static lck_grp_attr_t *workq_lck_grp_attr; |
| 117 | os_refgrp_decl(static, workq_refgrp, "workq" , NULL); |
| 118 | |
| 119 | static zone_t workq_zone_workqueue; |
| 120 | static zone_t workq_zone_threadreq; |
| 121 | |
| 122 | WORKQ_SYSCTL_USECS(wq_stalled_window, WQ_STALLED_WINDOW_USECS); |
| 123 | WORKQ_SYSCTL_USECS(wq_reduce_pool_window, WQ_REDUCE_POOL_WINDOW_USECS); |
| 124 | WORKQ_SYSCTL_USECS(wq_max_timer_interval, WQ_MAX_TIMER_INTERVAL_USECS); |
| 125 | static uint32_t wq_max_threads = WORKQUEUE_MAXTHREADS; |
| 126 | static uint32_t wq_max_constrained_threads = WORKQUEUE_MAXTHREADS / 8; |
| 127 | static uint32_t wq_init_constrained_limit = 1; |
| 128 | static uint16_t wq_death_max_load; |
| 129 | static uint32_t wq_max_parallelism[WORKQ_NUM_QOS_BUCKETS]; |
| 130 | |
| 131 | #pragma mark sysctls |
| 132 | |
| 133 | static int |
| 134 | workq_sysctl_handle_usecs SYSCTL_HANDLER_ARGS |
| 135 | { |
| 136 | #pragma unused(arg2) |
| 137 | struct workq_usec_var *v = arg1; |
| 138 | int error = sysctl_handle_int(oidp, &v->usecs, 0, req); |
| 139 | if (error || !req->newptr) |
| 140 | return error; |
| 141 | clock_interval_to_absolutetime_interval(v->usecs, NSEC_PER_USEC, |
| 142 | &v->abstime); |
| 143 | return 0; |
| 144 | } |
| 145 | |
| 146 | SYSCTL_INT(_kern, OID_AUTO, wq_max_threads, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 147 | &wq_max_threads, 0, "" ); |
| 148 | |
| 149 | SYSCTL_INT(_kern, OID_AUTO, wq_max_constrained_threads, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 150 | &wq_max_constrained_threads, 0, "" ); |
| 151 | |
| 152 | #pragma mark p_wqptr |
| 153 | |
| 154 | #define WQPTR_IS_INITING_VALUE ((struct workqueue *)~(uintptr_t)0) |
| 155 | |
| 156 | static struct workqueue * |
| 157 | proc_get_wqptr_fast(struct proc *p) |
| 158 | { |
| 159 | return os_atomic_load(&p->p_wqptr, relaxed); |
| 160 | } |
| 161 | |
| 162 | static struct workqueue * |
| 163 | proc_get_wqptr(struct proc *p) |
| 164 | { |
| 165 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 166 | return wq == WQPTR_IS_INITING_VALUE ? NULL : wq; |
| 167 | } |
| 168 | |
| 169 | static void |
| 170 | proc_set_wqptr(struct proc *p, struct workqueue *wq) |
| 171 | { |
| 172 | wq = os_atomic_xchg(&p->p_wqptr, wq, release); |
| 173 | if (wq == WQPTR_IS_INITING_VALUE) { |
| 174 | proc_lock(p); |
| 175 | thread_wakeup(&p->p_wqptr); |
| 176 | proc_unlock(p); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | static bool |
| 181 | proc_init_wqptr_or_wait(struct proc *p) |
| 182 | { |
| 183 | struct workqueue *wq; |
| 184 | |
| 185 | proc_lock(p); |
| 186 | wq = p->p_wqptr; |
| 187 | |
| 188 | if (wq == NULL) { |
| 189 | p->p_wqptr = WQPTR_IS_INITING_VALUE; |
| 190 | proc_unlock(p); |
| 191 | return true; |
| 192 | } |
| 193 | |
| 194 | if (wq == WQPTR_IS_INITING_VALUE) { |
| 195 | assert_wait(&p->p_wqptr, THREAD_UNINT); |
| 196 | proc_unlock(p); |
| 197 | thread_block(THREAD_CONTINUE_NULL); |
| 198 | } else { |
| 199 | proc_unlock(p); |
| 200 | } |
| 201 | return false; |
| 202 | } |
| 203 | |
| 204 | static inline event_t |
| 205 | workq_parked_wait_event(struct uthread *uth) |
| 206 | { |
| 207 | return (event_t)&uth->uu_workq_stackaddr; |
| 208 | } |
| 209 | |
| 210 | static inline void |
| 211 | workq_thread_wakeup(struct uthread *uth) |
| 212 | { |
| 213 | if ((uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) == 0) { |
| 214 | thread_wakeup_thread(workq_parked_wait_event(uth), uth->uu_thread); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | #pragma mark wq_thactive |
| 219 | |
| 220 | #if defined(__LP64__) |
| 221 | // Layout is: |
| 222 | // 127 - 115 : 13 bits of zeroes |
| 223 | // 114 - 112 : best QoS among all pending constrained requests |
| 224 | // 111 - 0 : MGR, AUI, UI, IN, DF, UT, BG+MT buckets every 16 bits |
| 225 | #define WQ_THACTIVE_BUCKET_WIDTH 16 |
| 226 | #define WQ_THACTIVE_QOS_SHIFT (7 * WQ_THACTIVE_BUCKET_WIDTH) |
| 227 | #else |
| 228 | // Layout is: |
| 229 | // 63 - 61 : best QoS among all pending constrained requests |
| 230 | // 60 : Manager bucket (0 or 1) |
| 231 | // 59 - 0 : AUI, UI, IN, DF, UT, BG+MT buckets every 10 bits |
| 232 | #define WQ_THACTIVE_BUCKET_WIDTH 10 |
| 233 | #define WQ_THACTIVE_QOS_SHIFT (6 * WQ_THACTIVE_BUCKET_WIDTH + 1) |
| 234 | #endif |
| 235 | #define WQ_THACTIVE_BUCKET_MASK ((1U << WQ_THACTIVE_BUCKET_WIDTH) - 1) |
| 236 | #define WQ_THACTIVE_BUCKET_HALF (1U << (WQ_THACTIVE_BUCKET_WIDTH - 1)) |
| 237 | |
| 238 | static_assert(sizeof(wq_thactive_t) * CHAR_BIT - WQ_THACTIVE_QOS_SHIFT >= 3, |
| 239 | "Make sure we have space to encode a QoS" ); |
| 240 | |
| 241 | static inline wq_thactive_t |
| 242 | _wq_thactive(struct workqueue *wq) |
| 243 | { |
| 244 | return os_atomic_load(&wq->wq_thactive, relaxed); |
| 245 | } |
| 246 | |
| 247 | static inline int |
| 248 | _wq_bucket(thread_qos_t qos) |
| 249 | { |
| 250 | // Map both BG and MT to the same bucket by over-shifting down and |
| 251 | // clamping MT and BG together. |
| 252 | switch (qos) { |
| 253 | case THREAD_QOS_MAINTENANCE: |
| 254 | return 0; |
| 255 | default: |
| 256 | return qos - 2; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | #define WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(tha) \ |
| 261 | ((tha) >> WQ_THACTIVE_QOS_SHIFT) |
| 262 | |
| 263 | static inline thread_qos_t |
| 264 | _wq_thactive_best_constrained_req_qos(struct workqueue *wq) |
| 265 | { |
| 266 | // Avoid expensive atomic operations: the three bits we're loading are in |
| 267 | // a single byte, and always updated under the workqueue lock |
| 268 | wq_thactive_t v = *(wq_thactive_t *)&wq->wq_thactive; |
| 269 | return WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(v); |
| 270 | } |
| 271 | |
| 272 | static void |
| 273 | _wq_thactive_refresh_best_constrained_req_qos(struct workqueue *wq) |
| 274 | { |
| 275 | thread_qos_t old_qos, new_qos; |
| 276 | workq_threadreq_t req; |
| 277 | |
| 278 | req = priority_queue_max(&wq->wq_constrained_queue, |
| 279 | struct workq_threadreq_s, tr_entry); |
| 280 | new_qos = req ? req->tr_qos : THREAD_QOS_UNSPECIFIED; |
| 281 | old_qos = _wq_thactive_best_constrained_req_qos(wq); |
| 282 | if (old_qos != new_qos) { |
| 283 | long delta = (long)new_qos - (long)old_qos; |
| 284 | wq_thactive_t v = (wq_thactive_t)delta << WQ_THACTIVE_QOS_SHIFT; |
| 285 | /* |
| 286 | * We can do an atomic add relative to the initial load because updates |
| 287 | * to this qos are always serialized under the workqueue lock. |
| 288 | */ |
| 289 | v = os_atomic_add(&wq->wq_thactive, v, relaxed); |
| 290 | #ifdef __LP64__ |
| 291 | WQ_TRACE_WQ(TRACE_wq_thactive_update, wq, (uint64_t)v, |
| 292 | (uint64_t)(v >> 64), 0, 0); |
| 293 | #else |
| 294 | WQ_TRACE_WQ(TRACE_wq_thactive_update, wq, v, 0, 0, 0); |
| 295 | #endif |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | static inline wq_thactive_t |
| 300 | _wq_thactive_offset_for_qos(thread_qos_t qos) |
| 301 | { |
| 302 | return (wq_thactive_t)1 << (_wq_bucket(qos) * WQ_THACTIVE_BUCKET_WIDTH); |
| 303 | } |
| 304 | |
| 305 | static inline wq_thactive_t |
| 306 | _wq_thactive_inc(struct workqueue *wq, thread_qos_t qos) |
| 307 | { |
| 308 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos); |
| 309 | return os_atomic_add_orig(&wq->wq_thactive, v, relaxed); |
| 310 | } |
| 311 | |
| 312 | static inline wq_thactive_t |
| 313 | _wq_thactive_dec(struct workqueue *wq, thread_qos_t qos) |
| 314 | { |
| 315 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos); |
| 316 | return os_atomic_sub_orig(&wq->wq_thactive, v, relaxed); |
| 317 | } |
| 318 | |
| 319 | static inline void |
| 320 | _wq_thactive_move(struct workqueue *wq, |
| 321 | thread_qos_t old_qos, thread_qos_t new_qos) |
| 322 | { |
| 323 | wq_thactive_t v = _wq_thactive_offset_for_qos(new_qos) - |
| 324 | _wq_thactive_offset_for_qos(old_qos); |
| 325 | os_atomic_add_orig(&wq->wq_thactive, v, relaxed); |
| 326 | wq->wq_thscheduled_count[_wq_bucket(old_qos)]--; |
| 327 | wq->wq_thscheduled_count[_wq_bucket(new_qos)]++; |
| 328 | } |
| 329 | |
| 330 | static inline uint32_t |
| 331 | _wq_thactive_aggregate_downto_qos(struct workqueue *wq, wq_thactive_t v, |
| 332 | thread_qos_t qos, uint32_t *busycount, uint32_t *max_busycount) |
| 333 | { |
| 334 | uint32_t count = 0, active; |
| 335 | uint64_t curtime; |
| 336 | |
| 337 | assert(WORKQ_THREAD_QOS_MIN <= qos && qos <= WORKQ_THREAD_QOS_MAX); |
| 338 | |
| 339 | if (busycount) { |
| 340 | curtime = mach_absolute_time(); |
| 341 | *busycount = 0; |
| 342 | } |
| 343 | if (max_busycount) { |
| 344 | *max_busycount = THREAD_QOS_LAST - qos; |
| 345 | } |
| 346 | |
| 347 | int i = _wq_bucket(qos); |
| 348 | v >>= i * WQ_THACTIVE_BUCKET_WIDTH; |
| 349 | for (; i < WORKQ_NUM_QOS_BUCKETS; i++, v >>= WQ_THACTIVE_BUCKET_WIDTH) { |
| 350 | active = v & WQ_THACTIVE_BUCKET_MASK; |
| 351 | count += active; |
| 352 | |
| 353 | if (busycount && wq->wq_thscheduled_count[i] > active) { |
| 354 | if (workq_thread_is_busy(curtime, &wq->wq_lastblocked_ts[i])) { |
| 355 | /* |
| 356 | * We only consider the last blocked thread for a given bucket |
| 357 | * as busy because we don't want to take the list lock in each |
| 358 | * sched callback. However this is an approximation that could |
| 359 | * contribute to thread creation storms. |
| 360 | */ |
| 361 | (*busycount)++; |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | return count; |
| 367 | } |
| 368 | |
| 369 | #pragma mark wq_flags |
| 370 | |
| 371 | static inline uint32_t |
| 372 | _wq_flags(struct workqueue *wq) |
| 373 | { |
| 374 | return os_atomic_load(&wq->wq_flags, relaxed); |
| 375 | } |
| 376 | |
| 377 | static inline bool |
| 378 | _wq_exiting(struct workqueue *wq) |
| 379 | { |
| 380 | return _wq_flags(wq) & WQ_EXITING; |
| 381 | } |
| 382 | |
| 383 | bool |
| 384 | workq_is_exiting(struct proc *p) |
| 385 | { |
| 386 | struct workqueue *wq = proc_get_wqptr(p); |
| 387 | return !wq || _wq_exiting(wq); |
| 388 | } |
| 389 | |
| 390 | struct turnstile * |
| 391 | workq_turnstile(struct proc *p) |
| 392 | { |
| 393 | struct workqueue *wq = proc_get_wqptr(p); |
| 394 | return wq ? wq->wq_turnstile : TURNSTILE_NULL; |
| 395 | } |
| 396 | |
| 397 | #pragma mark workqueue lock |
| 398 | |
| 399 | static bool |
| 400 | workq_lock_spin_is_acquired_kdp(struct workqueue *wq) |
| 401 | { |
| 402 | return kdp_lck_spin_is_acquired(&wq->wq_lock); |
| 403 | } |
| 404 | |
| 405 | static inline void |
| 406 | workq_lock_spin(struct workqueue *wq) |
| 407 | { |
| 408 | lck_spin_lock(&wq->wq_lock); |
| 409 | } |
| 410 | |
| 411 | static inline void |
| 412 | workq_lock_held(__assert_only struct workqueue *wq) |
| 413 | { |
| 414 | LCK_SPIN_ASSERT(&wq->wq_lock, LCK_ASSERT_OWNED); |
| 415 | } |
| 416 | |
| 417 | static inline bool |
| 418 | workq_lock_try(struct workqueue *wq) |
| 419 | { |
| 420 | return lck_spin_try_lock(&wq->wq_lock); |
| 421 | } |
| 422 | |
| 423 | static inline void |
| 424 | workq_unlock(struct workqueue *wq) |
| 425 | { |
| 426 | lck_spin_unlock(&wq->wq_lock); |
| 427 | } |
| 428 | |
| 429 | #pragma mark idle thread lists |
| 430 | |
| 431 | #define WORKQ_POLICY_INIT(qos) \ |
| 432 | (struct uu_workq_policy){ .qos_req = qos, .qos_bucket = qos } |
| 433 | |
| 434 | static inline thread_qos_t |
| 435 | workq_pri_bucket(struct uu_workq_policy req) |
| 436 | { |
| 437 | return MAX(MAX(req.qos_req, req.qos_max), req.qos_override); |
| 438 | } |
| 439 | |
| 440 | static inline thread_qos_t |
| 441 | workq_pri_override(struct uu_workq_policy req) |
| 442 | { |
| 443 | return MAX(workq_pri_bucket(req), req.qos_bucket); |
| 444 | } |
| 445 | |
| 446 | static inline bool |
| 447 | workq_thread_needs_params_change(workq_threadreq_t req, struct uthread *uth) |
| 448 | { |
| 449 | workq_threadreq_param_t cur_trp, req_trp = { }; |
| 450 | |
| 451 | cur_trp.trp_value = uth->uu_save.uus_workq_park_data.workloop_params; |
| 452 | if (req->tr_flags & TR_FLAG_WL_PARAMS) { |
| 453 | req_trp = kqueue_threadreq_workloop_param(req); |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * CPU percent flags are handled separately to policy changes, so ignore |
| 458 | * them for all of these checks. |
| 459 | */ |
| 460 | uint16_t cur_flags = (cur_trp.trp_flags & ~TRP_CPUPERCENT); |
| 461 | uint16_t req_flags = (req_trp.trp_flags & ~TRP_CPUPERCENT); |
| 462 | |
| 463 | if (!req_flags && !cur_flags) { |
| 464 | return false; |
| 465 | } |
| 466 | |
| 467 | if (req_flags != cur_flags) { |
| 468 | return true; |
| 469 | } |
| 470 | |
| 471 | if ((req_flags & TRP_PRIORITY) && req_trp.trp_pri != cur_trp.trp_pri) { |
| 472 | return true; |
| 473 | } |
| 474 | |
| 475 | if ((req_flags & TRP_POLICY) && cur_trp.trp_pol != cur_trp.trp_pol) { |
| 476 | return true; |
| 477 | } |
| 478 | |
| 479 | return false; |
| 480 | } |
| 481 | |
| 482 | static inline bool |
| 483 | workq_thread_needs_priority_change(workq_threadreq_t req, struct uthread *uth) |
| 484 | { |
| 485 | if (workq_thread_needs_params_change(req, uth)) { |
| 486 | return true; |
| 487 | } |
| 488 | |
| 489 | return req->tr_qos != workq_pri_override(uth->uu_workq_pri); |
| 490 | } |
| 491 | |
| 492 | static void |
| 493 | workq_thread_update_bucket(proc_t p, struct workqueue *wq, struct uthread *uth, |
| 494 | struct uu_workq_policy old_pri, struct uu_workq_policy new_pri, |
| 495 | bool force_run) |
| 496 | { |
| 497 | thread_qos_t old_bucket = old_pri.qos_bucket; |
| 498 | thread_qos_t new_bucket = workq_pri_bucket(new_pri); |
| 499 | |
| 500 | if (old_bucket != new_bucket) { |
| 501 | _wq_thactive_move(wq, old_bucket, new_bucket); |
| 502 | } |
| 503 | |
| 504 | new_pri.qos_bucket = new_bucket; |
| 505 | uth->uu_workq_pri = new_pri; |
| 506 | |
| 507 | if (workq_pri_override(old_pri) != new_bucket) { |
| 508 | thread_set_workq_override(uth->uu_thread, new_bucket); |
| 509 | } |
| 510 | |
| 511 | if (wq->wq_reqcount && (old_bucket > new_bucket || force_run)) { |
| 512 | int flags = WORKQ_THREADREQ_CAN_CREATE_THREADS; |
| 513 | if (old_bucket > new_bucket) { |
| 514 | /* |
| 515 | * When lowering our bucket, we may unblock a thread request, |
| 516 | * but we can't drop our priority before we have evaluated |
| 517 | * whether this is the case, and if we ever drop the workqueue lock |
| 518 | * that would cause a priority inversion. |
| 519 | * |
| 520 | * We hence have to disallow thread creation in that case. |
| 521 | */ |
| 522 | flags = 0; |
| 523 | } |
| 524 | workq_schedule_creator(p, wq, flags); |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Sets/resets the cpu percent limits on the current thread. We can't set |
| 530 | * these limits from outside of the current thread, so this function needs |
| 531 | * to be called when we're executing on the intended |
| 532 | */ |
| 533 | static void |
| 534 | workq_thread_reset_cpupercent(workq_threadreq_t req, struct uthread *uth) |
| 535 | { |
| 536 | assert(uth == current_uthread()); |
| 537 | workq_threadreq_param_t trp = { }; |
| 538 | |
| 539 | if (req && (req->tr_flags & TR_FLAG_WL_PARAMS)) { |
| 540 | trp = kqueue_threadreq_workloop_param(req); |
| 541 | } |
| 542 | |
| 543 | if (uth->uu_workq_flags & UT_WORKQ_CPUPERCENT) { |
| 544 | /* |
| 545 | * Going through disable when we have an existing CPU percent limit |
| 546 | * set will force the ledger to refill the token bucket of the current |
| 547 | * thread. Removing any penalty applied by previous thread use. |
| 548 | */ |
| 549 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0); |
| 550 | uth->uu_workq_flags &= ~UT_WORKQ_CPUPERCENT; |
| 551 | } |
| 552 | |
| 553 | if (trp.trp_flags & TRP_CPUPERCENT) { |
| 554 | thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, trp.trp_cpupercent, |
| 555 | (uint64_t)trp.trp_refillms * NSEC_PER_SEC); |
| 556 | uth->uu_workq_flags |= UT_WORKQ_CPUPERCENT; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | static void |
| 561 | workq_thread_reset_pri(struct workqueue *wq, struct uthread *uth, |
| 562 | workq_threadreq_t req) |
| 563 | { |
| 564 | thread_t th = uth->uu_thread; |
| 565 | thread_qos_t qos = req ? req->tr_qos : WORKQ_THREAD_QOS_CLEANUP; |
| 566 | workq_threadreq_param_t trp = { }; |
| 567 | int priority = 31; |
| 568 | int policy = POLICY_TIMESHARE; |
| 569 | |
| 570 | if (req && (req->tr_flags & TR_FLAG_WL_PARAMS)) { |
| 571 | trp = kqueue_threadreq_workloop_param(req); |
| 572 | } |
| 573 | |
| 574 | uth->uu_workq_pri = WORKQ_POLICY_INIT(qos); |
| 575 | uth->uu_workq_flags &= ~UT_WORKQ_OUTSIDE_QOS; |
| 576 | uth->uu_save.uus_workq_park_data.workloop_params = trp.trp_value; |
| 577 | |
| 578 | // qos sent out to userspace (may differ from uu_workq_pri on param threads) |
| 579 | uth->uu_save.uus_workq_park_data.qos = qos; |
| 580 | |
| 581 | if (qos == WORKQ_THREAD_QOS_MANAGER) { |
| 582 | uint32_t mgr_pri = wq->wq_event_manager_priority; |
| 583 | assert(trp.trp_value == 0); // manager qos and thread policy don't mix |
| 584 | |
| 585 | if (mgr_pri & _PTHREAD_PRIORITY_SCHED_PRI_FLAG) { |
| 586 | mgr_pri &= _PTHREAD_PRIORITY_SCHED_PRI_MASK; |
| 587 | thread_set_workq_pri(th, THREAD_QOS_UNSPECIFIED, mgr_pri, |
| 588 | POLICY_TIMESHARE); |
| 589 | return; |
| 590 | } |
| 591 | |
| 592 | qos = _pthread_priority_thread_qos(mgr_pri); |
| 593 | } else { |
| 594 | if (trp.trp_flags & TRP_PRIORITY) { |
| 595 | qos = THREAD_QOS_UNSPECIFIED; |
| 596 | priority = trp.trp_pri; |
| 597 | uth->uu_workq_flags |= UT_WORKQ_OUTSIDE_QOS; |
| 598 | } |
| 599 | |
| 600 | if (trp.trp_flags & TRP_POLICY) { |
| 601 | policy = trp.trp_pol; |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | thread_set_workq_pri(th, qos, priority, policy); |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * Called by kevent with the NOTE_WL_THREAD_REQUEST knote lock held, |
| 610 | * every time a servicer is being told about a new max QoS. |
| 611 | */ |
| 612 | void |
| 613 | workq_thread_set_max_qos(struct proc *p, struct kqrequest *kqr) |
| 614 | { |
| 615 | struct uu_workq_policy old_pri, new_pri; |
| 616 | struct uthread *uth = get_bsdthread_info(kqr->kqr_thread); |
| 617 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 618 | thread_qos_t qos = kqr->kqr_qos_index; |
| 619 | |
| 620 | if (uth->uu_workq_pri.qos_max == qos) |
| 621 | return; |
| 622 | |
| 623 | workq_lock_spin(wq); |
| 624 | old_pri = new_pri = uth->uu_workq_pri; |
| 625 | new_pri.qos_max = qos; |
| 626 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
| 627 | workq_unlock(wq); |
| 628 | } |
| 629 | |
| 630 | #pragma mark idle threads accounting and handling |
| 631 | |
| 632 | static inline struct uthread * |
| 633 | workq_oldest_killable_idle_thread(struct workqueue *wq) |
| 634 | { |
| 635 | struct uthread *uth = TAILQ_LAST(&wq->wq_thidlelist, workq_uthread_head); |
| 636 | |
| 637 | if (uth && !uth->uu_save.uus_workq_park_data.has_stack) { |
| 638 | uth = TAILQ_PREV(uth, workq_uthread_head, uu_workq_entry); |
| 639 | if (uth) { |
| 640 | assert(uth->uu_save.uus_workq_park_data.has_stack); |
| 641 | } |
| 642 | } |
| 643 | return uth; |
| 644 | } |
| 645 | |
| 646 | static inline uint64_t |
| 647 | workq_kill_delay_for_idle_thread(struct workqueue *wq) |
| 648 | { |
| 649 | uint64_t delay = wq_reduce_pool_window.abstime; |
| 650 | uint16_t idle = wq->wq_thidlecount; |
| 651 | |
| 652 | /* |
| 653 | * If we have less than wq_death_max_load threads, have a 5s timer. |
| 654 | * |
| 655 | * For the next wq_max_constrained_threads ones, decay linearly from |
| 656 | * from 5s to 50ms. |
| 657 | */ |
| 658 | if (idle <= wq_death_max_load) { |
| 659 | return delay; |
| 660 | } |
| 661 | |
| 662 | if (wq_max_constrained_threads > idle - wq_death_max_load) { |
| 663 | delay *= (wq_max_constrained_threads - (idle - wq_death_max_load)); |
| 664 | } |
| 665 | return delay / wq_max_constrained_threads; |
| 666 | } |
| 667 | |
| 668 | static inline bool |
| 669 | workq_should_kill_idle_thread(struct workqueue *wq, struct uthread *uth, |
| 670 | uint64_t now) |
| 671 | { |
| 672 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
| 673 | return now - uth->uu_save.uus_workq_park_data.idle_stamp > delay; |
| 674 | } |
| 675 | |
| 676 | static void |
| 677 | workq_death_call_schedule(struct workqueue *wq, uint64_t deadline) |
| 678 | { |
| 679 | uint32_t wq_flags = os_atomic_load(&wq->wq_flags, relaxed); |
| 680 | |
| 681 | if (wq_flags & (WQ_EXITING | WQ_DEATH_CALL_SCHEDULED)) { |
| 682 | return; |
| 683 | } |
| 684 | os_atomic_or(&wq->wq_flags, WQ_DEATH_CALL_SCHEDULED, relaxed); |
| 685 | |
| 686 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_NONE, wq, 1, 0, 0, 0); |
| 687 | |
| 688 | /* |
| 689 | * <rdar://problem/13139182> Due to how long term timers work, the leeway |
| 690 | * can't be too short, so use 500ms which is long enough that we will not |
| 691 | * wake up the CPU for killing threads, but short enough that it doesn't |
| 692 | * fall into long-term timer list shenanigans. |
| 693 | */ |
| 694 | thread_call_enter_delayed_with_leeway(wq->wq_death_call, NULL, deadline, |
| 695 | wq_reduce_pool_window.abstime / 10, |
| 696 | THREAD_CALL_DELAY_LEEWAY | THREAD_CALL_DELAY_USER_BACKGROUND); |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * `decrement` is set to the number of threads that are no longer dying: |
| 701 | * - because they have been resuscitated just in time (workq_pop_idle_thread) |
| 702 | * - or have been killed (workq_thread_terminate). |
| 703 | */ |
| 704 | static void |
| 705 | workq_death_policy_evaluate(struct workqueue *wq, uint16_t decrement) |
| 706 | { |
| 707 | struct uthread *uth; |
| 708 | |
| 709 | assert(wq->wq_thdying_count >= decrement); |
| 710 | if ((wq->wq_thdying_count -= decrement) > 0) |
| 711 | return; |
| 712 | |
| 713 | if (wq->wq_thidlecount <= 1) |
| 714 | return; |
| 715 | |
| 716 | if ((uth = workq_oldest_killable_idle_thread(wq)) == NULL) |
| 717 | return; |
| 718 | |
| 719 | uint64_t now = mach_absolute_time(); |
| 720 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
| 721 | |
| 722 | if (now - uth->uu_save.uus_workq_park_data.idle_stamp > delay) { |
| 723 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_START, |
| 724 | wq, wq->wq_thidlecount, 0, 0, 0); |
| 725 | wq->wq_thdying_count++; |
| 726 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
| 727 | workq_thread_wakeup(uth); |
| 728 | return; |
| 729 | } |
| 730 | |
| 731 | workq_death_call_schedule(wq, |
| 732 | uth->uu_save.uus_workq_park_data.idle_stamp + delay); |
| 733 | } |
| 734 | |
| 735 | void |
| 736 | workq_thread_terminate(struct proc *p, struct uthread *uth) |
| 737 | { |
| 738 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 739 | |
| 740 | workq_lock_spin(wq); |
| 741 | TAILQ_REMOVE(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 742 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
| 743 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_END, |
| 744 | wq, wq->wq_thidlecount, 0, 0, 0); |
| 745 | workq_death_policy_evaluate(wq, 1); |
| 746 | } |
| 747 | if (wq->wq_nthreads-- == wq_max_threads) { |
| 748 | /* |
| 749 | * We got under the thread limit again, which may have prevented |
| 750 | * thread creation from happening, redrive if there are pending requests |
| 751 | */ |
| 752 | if (wq->wq_reqcount) { |
| 753 | workq_schedule_creator(p, wq, WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 754 | } |
| 755 | } |
| 756 | workq_unlock(wq); |
| 757 | |
| 758 | thread_deallocate(uth->uu_thread); |
| 759 | } |
| 760 | |
| 761 | static void |
| 762 | workq_kill_old_threads_call(void *param0, void *param1 __unused) |
| 763 | { |
| 764 | struct workqueue *wq = param0; |
| 765 | |
| 766 | workq_lock_spin(wq); |
| 767 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_START, wq, 0, 0, 0, 0); |
| 768 | os_atomic_and(&wq->wq_flags, ~WQ_DEATH_CALL_SCHEDULED, relaxed); |
| 769 | workq_death_policy_evaluate(wq, 0); |
| 770 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_END, wq, 0, 0, 0, 0); |
| 771 | workq_unlock(wq); |
| 772 | } |
| 773 | |
| 774 | static struct uthread * |
| 775 | workq_pop_idle_thread(struct workqueue *wq) |
| 776 | { |
| 777 | struct uthread *uth; |
| 778 | |
| 779 | if ((uth = TAILQ_FIRST(&wq->wq_thidlelist))) { |
| 780 | TAILQ_REMOVE(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 781 | } else { |
| 782 | uth = TAILQ_FIRST(&wq->wq_thnewlist); |
| 783 | TAILQ_REMOVE(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 784 | } |
| 785 | TAILQ_INSERT_TAIL(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 786 | |
| 787 | assert((uth->uu_workq_flags & UT_WORKQ_RUNNING) == 0); |
| 788 | uth->uu_workq_flags |= UT_WORKQ_RUNNING | UT_WORKQ_OVERCOMMIT; |
| 789 | wq->wq_threads_scheduled++; |
| 790 | wq->wq_thidlecount--; |
| 791 | |
| 792 | if (__improbable(uth->uu_workq_flags & UT_WORKQ_DYING)) { |
| 793 | uth->uu_workq_flags ^= UT_WORKQ_DYING; |
| 794 | workq_death_policy_evaluate(wq, 1); |
| 795 | } |
| 796 | return uth; |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * Called by thread_create_workq_waiting() during thread initialization, before |
| 801 | * assert_wait, before the thread has been started. |
| 802 | */ |
| 803 | event_t |
| 804 | workq_thread_init_and_wq_lock(task_t task, thread_t th) |
| 805 | { |
| 806 | struct uthread *uth = get_bsdthread_info(th); |
| 807 | |
| 808 | uth->uu_workq_flags = UT_WORKQ_NEW; |
| 809 | uth->uu_workq_pri = WORKQ_POLICY_INIT(THREAD_QOS_LEGACY); |
| 810 | uth->uu_workq_thport = MACH_PORT_NULL; |
| 811 | uth->uu_workq_stackaddr = 0; |
| 812 | |
| 813 | thread_set_tag(th, THREAD_TAG_PTHREAD | THREAD_TAG_WORKQUEUE); |
| 814 | thread_reset_workq_qos(th, THREAD_QOS_LEGACY); |
| 815 | |
| 816 | workq_lock_spin(proc_get_wqptr_fast(get_bsdtask_info(task))); |
| 817 | return workq_parked_wait_event(uth); |
| 818 | } |
| 819 | |
| 820 | /** |
| 821 | * Try to add a new workqueue thread. |
| 822 | * |
| 823 | * - called with workq lock held |
| 824 | * - dropped and retaken around thread creation |
| 825 | * - return with workq lock held |
| 826 | */ |
| 827 | static bool |
| 828 | workq_add_new_idle_thread(proc_t p, struct workqueue *wq) |
| 829 | { |
| 830 | mach_vm_offset_t th_stackaddr; |
| 831 | kern_return_t kret; |
| 832 | thread_t th; |
| 833 | |
| 834 | wq->wq_nthreads++; |
| 835 | |
| 836 | workq_unlock(wq); |
| 837 | |
| 838 | vm_map_t vmap = get_task_map(p->task); |
| 839 | |
| 840 | kret = pthread_functions->workq_create_threadstack(p, vmap, &th_stackaddr); |
| 841 | if (kret != KERN_SUCCESS) { |
| 842 | WQ_TRACE_WQ(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, |
| 843 | kret, 1, 0, 0); |
| 844 | goto out; |
| 845 | } |
| 846 | |
| 847 | kret = thread_create_workq_waiting(p->task, workq_unpark_continue, &th); |
| 848 | if (kret != KERN_SUCCESS) { |
| 849 | WQ_TRACE_WQ(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, |
| 850 | kret, 0, 0, 0); |
| 851 | pthread_functions->workq_destroy_threadstack(p, vmap, th_stackaddr); |
| 852 | goto out; |
| 853 | } |
| 854 | |
| 855 | // thread_create_workq_waiting() will return with the wq lock held |
| 856 | // on success, because it calls workq_thread_init_and_wq_lock() above |
| 857 | |
| 858 | struct uthread *uth = get_bsdthread_info(th); |
| 859 | |
| 860 | wq->wq_creations++; |
| 861 | wq->wq_thidlecount++; |
| 862 | uth->uu_workq_stackaddr = th_stackaddr; |
| 863 | TAILQ_INSERT_TAIL(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 864 | |
| 865 | WQ_TRACE_WQ(TRACE_wq_thread_create | DBG_FUNC_NONE, wq, 0, 0, 0, 0); |
| 866 | return true; |
| 867 | |
| 868 | out: |
| 869 | workq_lock_spin(wq); |
| 870 | /* |
| 871 | * Do not redrive here if we went under wq_max_threads again, |
| 872 | * it is the responsibility of the callers of this function |
| 873 | * to do so when it fails. |
| 874 | */ |
| 875 | wq->wq_nthreads--; |
| 876 | return false; |
| 877 | } |
| 878 | |
| 879 | #define WORKQ_UNPARK_FOR_DEATH_WAS_IDLE 0x1 |
| 880 | |
| 881 | __attribute__((noreturn, noinline)) |
| 882 | static void |
| 883 | workq_unpark_for_death_and_unlock(proc_t p, struct workqueue *wq, |
| 884 | struct uthread *uth, uint32_t death_flags) |
| 885 | { |
| 886 | thread_qos_t qos = workq_pri_override(uth->uu_workq_pri); |
| 887 | bool first_use = uth->uu_workq_flags & UT_WORKQ_NEW; |
| 888 | |
| 889 | if (qos > WORKQ_THREAD_QOS_CLEANUP) { |
| 890 | workq_thread_reset_pri(wq, uth, NULL); |
| 891 | qos = WORKQ_THREAD_QOS_CLEANUP; |
| 892 | } |
| 893 | |
| 894 | workq_thread_reset_cpupercent(NULL, uth); |
| 895 | |
| 896 | if (death_flags & WORKQ_UNPARK_FOR_DEATH_WAS_IDLE) { |
| 897 | wq->wq_thidlecount--; |
| 898 | if (first_use) { |
| 899 | TAILQ_REMOVE(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 900 | } else { |
| 901 | TAILQ_REMOVE(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 902 | } |
| 903 | } |
| 904 | TAILQ_INSERT_TAIL(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 905 | |
| 906 | workq_unlock(wq); |
| 907 | |
| 908 | uint32_t flags = WQ_FLAG_THREAD_NEWSPI | qos | WQ_FLAG_THREAD_PRIO_QOS; |
| 909 | uint32_t setup_flags = WQ_SETUP_EXIT_THREAD; |
| 910 | thread_t th = uth->uu_thread; |
| 911 | vm_map_t vmap = get_task_map(p->task); |
| 912 | |
| 913 | if (!first_use) flags |= WQ_FLAG_THREAD_REUSE; |
| 914 | |
| 915 | pthread_functions->workq_setup_thread(p, th, vmap, uth->uu_workq_stackaddr, |
| 916 | uth->uu_workq_thport, 0, setup_flags, flags); |
| 917 | __builtin_unreachable(); |
| 918 | } |
| 919 | |
| 920 | bool |
| 921 | workq_is_current_thread_updating_turnstile(struct workqueue *wq) |
| 922 | { |
| 923 | return wq->wq_turnstile_updater == current_thread(); |
| 924 | } |
| 925 | |
| 926 | __attribute__((always_inline)) |
| 927 | static inline void |
| 928 | workq_perform_turnstile_operation_locked(struct workqueue *wq, |
| 929 | void (^operation)(void)) |
| 930 | { |
| 931 | workq_lock_held(wq); |
| 932 | wq->wq_turnstile_updater = current_thread(); |
| 933 | operation(); |
| 934 | wq->wq_turnstile_updater = THREAD_NULL; |
| 935 | } |
| 936 | |
| 937 | static void |
| 938 | workq_turnstile_update_inheritor(struct workqueue *wq, |
| 939 | turnstile_inheritor_t inheritor, |
| 940 | turnstile_update_flags_t flags) |
| 941 | { |
| 942 | workq_perform_turnstile_operation_locked(wq, ^{ |
| 943 | turnstile_update_inheritor(wq->wq_turnstile, inheritor, |
| 944 | flags | TURNSTILE_IMMEDIATE_UPDATE); |
| 945 | turnstile_update_inheritor_complete(wq->wq_turnstile, |
| 946 | TURNSTILE_INTERLOCK_HELD); |
| 947 | }); |
| 948 | } |
| 949 | |
| 950 | static void |
| 951 | workq_push_idle_thread(proc_t p, struct workqueue *wq, struct uthread *uth) |
| 952 | { |
| 953 | uint64_t now = mach_absolute_time(); |
| 954 | |
| 955 | uth->uu_workq_flags &= ~UT_WORKQ_RUNNING; |
| 956 | if ((uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT) == 0) { |
| 957 | wq->wq_constrained_threads_scheduled--; |
| 958 | } |
| 959 | TAILQ_REMOVE(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 960 | wq->wq_threads_scheduled--; |
| 961 | |
| 962 | if (wq->wq_creator == uth) { |
| 963 | WQ_TRACE_WQ(TRACE_wq_creator_select, wq, 3, 0, |
| 964 | uth->uu_save.uus_workq_park_data.yields, 0); |
| 965 | wq->wq_creator = NULL; |
| 966 | if (wq->wq_reqcount) { |
| 967 | workq_turnstile_update_inheritor(wq, wq, TURNSTILE_INHERITOR_WORKQ); |
| 968 | } else { |
| 969 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, 0); |
| 970 | } |
| 971 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
| 972 | TAILQ_INSERT_TAIL(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 973 | wq->wq_thidlecount++; |
| 974 | return; |
| 975 | } |
| 976 | } else { |
| 977 | _wq_thactive_dec(wq, uth->uu_workq_pri.qos_bucket); |
| 978 | wq->wq_thscheduled_count[_wq_bucket(uth->uu_workq_pri.qos_bucket)]--; |
| 979 | assert(!(uth->uu_workq_flags & UT_WORKQ_NEW)); |
| 980 | uth->uu_workq_flags |= UT_WORKQ_IDLE_CLEANUP; |
| 981 | } |
| 982 | |
| 983 | uth->uu_save.uus_workq_park_data.idle_stamp = now; |
| 984 | |
| 985 | struct uthread *oldest = workq_oldest_killable_idle_thread(wq); |
| 986 | uint16_t cur_idle = wq->wq_thidlecount; |
| 987 | |
| 988 | if (cur_idle >= wq_max_constrained_threads || |
| 989 | (wq->wq_thdying_count == 0 && oldest && |
| 990 | workq_should_kill_idle_thread(wq, oldest, now))) { |
| 991 | /* |
| 992 | * Immediately kill threads if we have too may of them. |
| 993 | * |
| 994 | * And swap "place" with the oldest one we'd have woken up. |
| 995 | * This is a relatively desperate situation where we really |
| 996 | * need to kill threads quickly and it's best to kill |
| 997 | * the one that's currently on core than context switching. |
| 998 | */ |
| 999 | if (oldest) { |
| 1000 | oldest->uu_save.uus_workq_park_data.idle_stamp = now; |
| 1001 | TAILQ_REMOVE(&wq->wq_thidlelist, oldest, uu_workq_entry); |
| 1002 | TAILQ_INSERT_HEAD(&wq->wq_thidlelist, oldest, uu_workq_entry); |
| 1003 | } |
| 1004 | |
| 1005 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_START, |
| 1006 | wq, cur_idle, 0, 0, 0); |
| 1007 | wq->wq_thdying_count++; |
| 1008 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
| 1009 | uth->uu_workq_flags &= ~UT_WORKQ_IDLE_CLEANUP; |
| 1010 | workq_unpark_for_death_and_unlock(p, wq, uth, 0); |
| 1011 | __builtin_unreachable(); |
| 1012 | } |
| 1013 | |
| 1014 | struct uthread *tail = TAILQ_LAST(&wq->wq_thidlelist, workq_uthread_head); |
| 1015 | |
| 1016 | cur_idle += 1; |
| 1017 | wq->wq_thidlecount = cur_idle; |
| 1018 | |
| 1019 | if (cur_idle >= wq_death_max_load && tail && |
| 1020 | tail->uu_save.uus_workq_park_data.has_stack) { |
| 1021 | uth->uu_save.uus_workq_park_data.has_stack = false; |
| 1022 | TAILQ_INSERT_TAIL(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 1023 | } else { |
| 1024 | uth->uu_save.uus_workq_park_data.has_stack = true; |
| 1025 | TAILQ_INSERT_HEAD(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 1026 | } |
| 1027 | |
| 1028 | if (!tail) { |
| 1029 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
| 1030 | workq_death_call_schedule(wq, now + delay); |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | #pragma mark thread requests |
| 1035 | |
| 1036 | static inline int |
| 1037 | workq_priority_for_req(workq_threadreq_t req) |
| 1038 | { |
| 1039 | thread_qos_t qos = req->tr_qos; |
| 1040 | |
| 1041 | if (req->tr_flags & TR_FLAG_WL_OUTSIDE_QOS) { |
| 1042 | workq_threadreq_param_t trp = kqueue_threadreq_workloop_param(req); |
| 1043 | assert(trp.trp_flags & TRP_PRIORITY); |
| 1044 | return trp.trp_pri; |
| 1045 | } |
| 1046 | return thread_workq_pri_for_qos(qos); |
| 1047 | } |
| 1048 | |
| 1049 | static inline struct priority_queue * |
| 1050 | workq_priority_queue_for_req(struct workqueue *wq, workq_threadreq_t req) |
| 1051 | { |
| 1052 | if (req->tr_flags & TR_FLAG_WL_OUTSIDE_QOS) { |
| 1053 | return &wq->wq_special_queue; |
| 1054 | } else if (req->tr_flags & TR_FLAG_OVERCOMMIT) { |
| 1055 | return &wq->wq_overcommit_queue; |
| 1056 | } else { |
| 1057 | return &wq->wq_constrained_queue; |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * returns true if the the enqueued request is the highest priority item |
| 1063 | * in its priority queue. |
| 1064 | */ |
| 1065 | static bool |
| 1066 | workq_threadreq_enqueue(struct workqueue *wq, workq_threadreq_t req) |
| 1067 | { |
| 1068 | assert(req->tr_state == TR_STATE_NEW); |
| 1069 | |
| 1070 | req->tr_state = TR_STATE_QUEUED; |
| 1071 | wq->wq_reqcount += req->tr_count; |
| 1072 | |
| 1073 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
| 1074 | assert(wq->wq_event_manager_threadreq == NULL); |
| 1075 | assert(req->tr_flags & TR_FLAG_KEVENT); |
| 1076 | assert(req->tr_count == 1); |
| 1077 | wq->wq_event_manager_threadreq = req; |
| 1078 | return true; |
| 1079 | } |
| 1080 | if (priority_queue_insert(workq_priority_queue_for_req(wq, req), |
| 1081 | &req->tr_entry, workq_priority_for_req(req), |
| 1082 | PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE)) { |
| 1083 | if ((req->tr_flags & TR_FLAG_OVERCOMMIT) == 0) { |
| 1084 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
| 1085 | } |
| 1086 | return true; |
| 1087 | } |
| 1088 | return false; |
| 1089 | } |
| 1090 | |
| 1091 | /* |
| 1092 | * returns true if the the dequeued request was the highest priority item |
| 1093 | * in its priority queue. |
| 1094 | */ |
| 1095 | static bool |
| 1096 | workq_threadreq_dequeue(struct workqueue *wq, workq_threadreq_t req) |
| 1097 | { |
| 1098 | wq->wq_reqcount--; |
| 1099 | |
| 1100 | if (--req->tr_count == 0) { |
| 1101 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
| 1102 | assert(wq->wq_event_manager_threadreq == req); |
| 1103 | assert(req->tr_count == 0); |
| 1104 | wq->wq_event_manager_threadreq = NULL; |
| 1105 | return true; |
| 1106 | } |
| 1107 | if (priority_queue_remove(workq_priority_queue_for_req(wq, req), |
| 1108 | &req->tr_entry, PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE)) { |
| 1109 | if ((req->tr_flags & TR_FLAG_OVERCOMMIT) == 0) { |
| 1110 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
| 1111 | } |
| 1112 | return true; |
| 1113 | } |
| 1114 | } |
| 1115 | return false; |
| 1116 | } |
| 1117 | |
| 1118 | static void |
| 1119 | workq_threadreq_destroy(proc_t p, workq_threadreq_t req) |
| 1120 | { |
| 1121 | req->tr_state = TR_STATE_IDLE; |
| 1122 | if (req->tr_flags & (TR_FLAG_WORKLOOP | TR_FLAG_KEVENT)) { |
| 1123 | kqueue_threadreq_cancel(p, req); |
| 1124 | } else { |
| 1125 | zfree(workq_zone_threadreq, req); |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | /* |
| 1130 | * Mark a thread request as complete. At this point, it is treated as owned by |
| 1131 | * the submitting subsystem and you should assume it could be freed. |
| 1132 | * |
| 1133 | * Called with the workqueue lock held. |
| 1134 | */ |
| 1135 | static void |
| 1136 | workq_threadreq_bind_and_unlock(proc_t p, struct workqueue *wq, |
| 1137 | workq_threadreq_t req, struct uthread *uth) |
| 1138 | { |
| 1139 | uint8_t tr_flags = req->tr_flags; |
| 1140 | bool needs_commit = false; |
| 1141 | int creator_flags = 0; |
| 1142 | |
| 1143 | wq->wq_fulfilled++; |
| 1144 | |
| 1145 | if (req->tr_state == TR_STATE_QUEUED) { |
| 1146 | workq_threadreq_dequeue(wq, req); |
| 1147 | creator_flags = WORKQ_THREADREQ_CAN_CREATE_THREADS; |
| 1148 | } |
| 1149 | |
| 1150 | if (wq->wq_creator == uth) { |
| 1151 | WQ_TRACE_WQ(TRACE_wq_creator_select, wq, 4, 0, |
| 1152 | uth->uu_save.uus_workq_park_data.yields, 0); |
| 1153 | creator_flags = WORKQ_THREADREQ_CAN_CREATE_THREADS | |
| 1154 | WORKQ_THREADREQ_CREATOR_TRANSFER; |
| 1155 | wq->wq_creator = NULL; |
| 1156 | _wq_thactive_inc(wq, req->tr_qos); |
| 1157 | wq->wq_thscheduled_count[_wq_bucket(req->tr_qos)]++; |
| 1158 | } else if (uth->uu_workq_pri.qos_bucket != req->tr_qos) { |
| 1159 | _wq_thactive_move(wq, uth->uu_workq_pri.qos_bucket, req->tr_qos); |
| 1160 | } |
| 1161 | workq_thread_reset_pri(wq, uth, req); |
| 1162 | |
| 1163 | if (tr_flags & TR_FLAG_OVERCOMMIT) { |
| 1164 | if ((uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT) == 0) { |
| 1165 | uth->uu_workq_flags |= UT_WORKQ_OVERCOMMIT; |
| 1166 | wq->wq_constrained_threads_scheduled--; |
| 1167 | } |
| 1168 | } else { |
| 1169 | if ((uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT) != 0) { |
| 1170 | uth->uu_workq_flags &= ~UT_WORKQ_OVERCOMMIT; |
| 1171 | wq->wq_constrained_threads_scheduled++; |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | if (tr_flags & (TR_FLAG_KEVENT | TR_FLAG_WORKLOOP)) { |
| 1176 | if (req->tr_state == TR_STATE_NEW) { |
| 1177 | /* |
| 1178 | * We're called from workq_kern_threadreq_initiate() |
| 1179 | * due to an unbind, with the kq req held. |
| 1180 | */ |
| 1181 | assert(!creator_flags); |
| 1182 | req->tr_state = TR_STATE_IDLE; |
| 1183 | kqueue_threadreq_bind(p, req, uth->uu_thread, 0); |
| 1184 | } else { |
| 1185 | assert(req->tr_count == 0); |
| 1186 | workq_perform_turnstile_operation_locked(wq, ^{ |
| 1187 | kqueue_threadreq_bind_prepost(p, req, uth->uu_thread); |
| 1188 | }); |
| 1189 | needs_commit = true; |
| 1190 | } |
| 1191 | req = NULL; |
| 1192 | } else if (req->tr_count > 0) { |
| 1193 | req = NULL; |
| 1194 | } |
| 1195 | |
| 1196 | if (creator_flags) { |
| 1197 | /* This can drop the workqueue lock, and take it again */ |
| 1198 | workq_schedule_creator(p, wq, creator_flags); |
| 1199 | } |
| 1200 | |
| 1201 | workq_unlock(wq); |
| 1202 | |
| 1203 | if (req) { |
| 1204 | zfree(workq_zone_threadreq, req); |
| 1205 | } |
| 1206 | if (needs_commit) { |
| 1207 | kqueue_threadreq_bind_commit(p, uth->uu_thread); |
| 1208 | } |
| 1209 | |
| 1210 | /* |
| 1211 | * Run Thread, Run! |
| 1212 | */ |
| 1213 | uint32_t upcall_flags = WQ_FLAG_THREAD_NEWSPI; |
| 1214 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
| 1215 | upcall_flags |= WQ_FLAG_THREAD_EVENT_MANAGER; |
| 1216 | } else if (tr_flags & TR_FLAG_OVERCOMMIT) { |
| 1217 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
| 1218 | } |
| 1219 | if (tr_flags & TR_FLAG_KEVENT) { |
| 1220 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; |
| 1221 | } |
| 1222 | if (tr_flags & TR_FLAG_WORKLOOP) { |
| 1223 | upcall_flags |= WQ_FLAG_THREAD_WORKLOOP | WQ_FLAG_THREAD_KEVENT; |
| 1224 | } |
| 1225 | uth->uu_save.uus_workq_park_data.upcall_flags = upcall_flags; |
| 1226 | } |
| 1227 | |
| 1228 | #pragma mark workqueue thread creation thread calls |
| 1229 | |
| 1230 | static inline bool |
| 1231 | workq_thread_call_prepost(struct workqueue *wq, uint32_t sched, uint32_t pend, |
| 1232 | uint32_t fail_mask) |
| 1233 | { |
| 1234 | uint32_t old_flags, new_flags; |
| 1235 | |
| 1236 | os_atomic_rmw_loop(&wq->wq_flags, old_flags, new_flags, acquire, { |
| 1237 | if (__improbable(old_flags & (WQ_EXITING | sched | pend | fail_mask))) { |
| 1238 | os_atomic_rmw_loop_give_up(return false); |
| 1239 | } |
| 1240 | if (__improbable(old_flags & WQ_PROC_SUSPENDED)) { |
| 1241 | new_flags = old_flags | pend; |
| 1242 | } else { |
| 1243 | new_flags = old_flags | sched; |
| 1244 | } |
| 1245 | }); |
| 1246 | |
| 1247 | return (old_flags & WQ_PROC_SUSPENDED) == 0; |
| 1248 | } |
| 1249 | |
| 1250 | #define WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART 0x1 |
| 1251 | |
| 1252 | static bool |
| 1253 | workq_schedule_delayed_thread_creation(struct workqueue *wq, int flags) |
| 1254 | { |
| 1255 | assert(!preemption_enabled()); |
| 1256 | |
| 1257 | if (!workq_thread_call_prepost(wq, WQ_DELAYED_CALL_SCHEDULED, |
| 1258 | WQ_DELAYED_CALL_PENDED, WQ_IMMEDIATE_CALL_PENDED | |
| 1259 | WQ_IMMEDIATE_CALL_SCHEDULED)) { |
| 1260 | return false; |
| 1261 | } |
| 1262 | |
| 1263 | uint64_t now = mach_absolute_time(); |
| 1264 | |
| 1265 | if (flags & WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART) { |
| 1266 | /* do not change the window */ |
| 1267 | } else if (now - wq->wq_thread_call_last_run <= wq->wq_timer_interval) { |
| 1268 | wq->wq_timer_interval *= 2; |
| 1269 | if (wq->wq_timer_interval > wq_max_timer_interval.abstime) { |
| 1270 | wq->wq_timer_interval = wq_max_timer_interval.abstime; |
| 1271 | } |
| 1272 | } else if (now - wq->wq_thread_call_last_run > 2 * wq->wq_timer_interval) { |
| 1273 | wq->wq_timer_interval /= 2; |
| 1274 | if (wq->wq_timer_interval < wq_stalled_window.abstime) { |
| 1275 | wq->wq_timer_interval = wq_stalled_window.abstime; |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | WQ_TRACE_WQ(TRACE_wq_start_add_timer, wq, wq->wq_reqcount, |
| 1280 | _wq_flags(wq), wq->wq_timer_interval, 0); |
| 1281 | |
| 1282 | thread_call_t call = wq->wq_delayed_call; |
| 1283 | uintptr_t arg = WQ_DELAYED_CALL_SCHEDULED; |
| 1284 | uint64_t deadline = now + wq->wq_timer_interval; |
| 1285 | if (thread_call_enter1_delayed(call, (void *)arg, deadline)) { |
| 1286 | panic("delayed_call was already enqueued" ); |
| 1287 | } |
| 1288 | return true; |
| 1289 | } |
| 1290 | |
| 1291 | static void |
| 1292 | workq_schedule_immediate_thread_creation(struct workqueue *wq) |
| 1293 | { |
| 1294 | assert(!preemption_enabled()); |
| 1295 | |
| 1296 | if (workq_thread_call_prepost(wq, WQ_IMMEDIATE_CALL_SCHEDULED, |
| 1297 | WQ_IMMEDIATE_CALL_PENDED, 0)) { |
| 1298 | WQ_TRACE_WQ(TRACE_wq_start_add_timer, wq, wq->wq_reqcount, |
| 1299 | _wq_flags(wq), 0, 0); |
| 1300 | |
| 1301 | uintptr_t arg = WQ_IMMEDIATE_CALL_SCHEDULED; |
| 1302 | if (thread_call_enter1(wq->wq_immediate_call, (void *)arg)) { |
| 1303 | panic("immediate_call was already enqueued" ); |
| 1304 | } |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | void |
| 1309 | workq_proc_suspended(struct proc *p) |
| 1310 | { |
| 1311 | struct workqueue *wq = proc_get_wqptr(p); |
| 1312 | |
| 1313 | if (wq) os_atomic_or(&wq->wq_flags, WQ_PROC_SUSPENDED, relaxed); |
| 1314 | } |
| 1315 | |
| 1316 | void |
| 1317 | workq_proc_resumed(struct proc *p) |
| 1318 | { |
| 1319 | struct workqueue *wq = proc_get_wqptr(p); |
| 1320 | uint32_t wq_flags; |
| 1321 | |
| 1322 | if (!wq) return; |
| 1323 | |
| 1324 | wq_flags = os_atomic_and_orig(&wq->wq_flags, ~(WQ_PROC_SUSPENDED | |
| 1325 | WQ_DELAYED_CALL_PENDED | WQ_IMMEDIATE_CALL_PENDED), relaxed); |
| 1326 | if ((wq_flags & WQ_EXITING) == 0) { |
| 1327 | disable_preemption(); |
| 1328 | if (wq_flags & WQ_IMMEDIATE_CALL_PENDED) { |
| 1329 | workq_schedule_immediate_thread_creation(wq); |
| 1330 | } else if (wq_flags & WQ_DELAYED_CALL_PENDED) { |
| 1331 | workq_schedule_delayed_thread_creation(wq, |
| 1332 | WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART); |
| 1333 | } |
| 1334 | enable_preemption(); |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | /** |
| 1339 | * returns whether lastblocked_tsp is within wq_stalled_window usecs of now |
| 1340 | */ |
| 1341 | static bool |
| 1342 | workq_thread_is_busy(uint64_t now, _Atomic uint64_t *lastblocked_tsp) |
| 1343 | { |
| 1344 | uint64_t lastblocked_ts = os_atomic_load(lastblocked_tsp, relaxed); |
| 1345 | if (now <= lastblocked_ts) { |
| 1346 | /* |
| 1347 | * Because the update of the timestamp when a thread blocks |
| 1348 | * isn't serialized against us looking at it (i.e. we don't hold |
| 1349 | * the workq lock), it's possible to have a timestamp that matches |
| 1350 | * the current time or that even looks to be in the future relative |
| 1351 | * to when we grabbed the current time... |
| 1352 | * |
| 1353 | * Just treat this as a busy thread since it must have just blocked. |
| 1354 | */ |
| 1355 | return true; |
| 1356 | } |
| 1357 | return (now - lastblocked_ts) < wq_stalled_window.abstime; |
| 1358 | } |
| 1359 | |
| 1360 | static void |
| 1361 | workq_add_new_threads_call(void *_p, void *flags) |
| 1362 | { |
| 1363 | proc_t p = _p; |
| 1364 | struct workqueue *wq = proc_get_wqptr(p); |
| 1365 | uint32_t my_flag = (uint32_t)(uintptr_t)flags; |
| 1366 | |
| 1367 | /* |
| 1368 | * workq_exit() will set the workqueue to NULL before |
| 1369 | * it cancels thread calls. |
| 1370 | */ |
| 1371 | if (!wq) return; |
| 1372 | |
| 1373 | assert((my_flag == WQ_DELAYED_CALL_SCHEDULED) || |
| 1374 | (my_flag == WQ_IMMEDIATE_CALL_SCHEDULED)); |
| 1375 | |
| 1376 | WQ_TRACE_WQ(TRACE_wq_add_timer | DBG_FUNC_START, wq, _wq_flags(wq), |
| 1377 | wq->wq_nthreads, wq->wq_thidlecount, 0); |
| 1378 | |
| 1379 | workq_lock_spin(wq); |
| 1380 | |
| 1381 | wq->wq_thread_call_last_run = mach_absolute_time(); |
| 1382 | os_atomic_and(&wq->wq_flags, ~my_flag, release); |
| 1383 | |
| 1384 | /* This can drop the workqueue lock, and take it again */ |
| 1385 | workq_schedule_creator(p, wq, WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 1386 | |
| 1387 | workq_unlock(wq); |
| 1388 | |
| 1389 | WQ_TRACE_WQ(TRACE_wq_add_timer | DBG_FUNC_END, wq, 0, |
| 1390 | wq->wq_nthreads, wq->wq_thidlecount, 0); |
| 1391 | } |
| 1392 | |
| 1393 | #pragma mark thread state tracking |
| 1394 | |
| 1395 | static void |
| 1396 | workq_sched_callback(int type, thread_t thread) |
| 1397 | { |
| 1398 | struct uthread *uth = get_bsdthread_info(thread); |
| 1399 | proc_t proc = get_bsdtask_info(get_threadtask(thread)); |
| 1400 | struct workqueue *wq = proc_get_wqptr(proc); |
| 1401 | thread_qos_t req_qos, qos = uth->uu_workq_pri.qos_bucket; |
| 1402 | wq_thactive_t old_thactive; |
| 1403 | bool start_timer = false; |
| 1404 | |
| 1405 | if (qos == WORKQ_THREAD_QOS_MANAGER) { |
| 1406 | return; |
| 1407 | } |
| 1408 | |
| 1409 | switch (type) { |
| 1410 | case SCHED_CALL_BLOCK: |
| 1411 | old_thactive = _wq_thactive_dec(wq, qos); |
| 1412 | req_qos = WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(old_thactive); |
| 1413 | |
| 1414 | /* |
| 1415 | * Remember the timestamp of the last thread that blocked in this |
| 1416 | * bucket, it used used by admission checks to ignore one thread |
| 1417 | * being inactive if this timestamp is recent enough. |
| 1418 | * |
| 1419 | * If we collide with another thread trying to update the |
| 1420 | * last_blocked (really unlikely since another thread would have to |
| 1421 | * get scheduled and then block after we start down this path), it's |
| 1422 | * not a problem. Either timestamp is adequate, so no need to retry |
| 1423 | */ |
| 1424 | os_atomic_store(&wq->wq_lastblocked_ts[_wq_bucket(qos)], |
| 1425 | thread_last_run_time(thread), relaxed); |
| 1426 | |
| 1427 | if (req_qos == THREAD_QOS_UNSPECIFIED) { |
| 1428 | /* |
| 1429 | * No pending request at the moment we could unblock, move on. |
| 1430 | */ |
| 1431 | } else if (qos < req_qos) { |
| 1432 | /* |
| 1433 | * The blocking thread is at a lower QoS than the highest currently |
| 1434 | * pending constrained request, nothing has to be redriven |
| 1435 | */ |
| 1436 | } else { |
| 1437 | uint32_t max_busycount, old_req_count; |
| 1438 | old_req_count = _wq_thactive_aggregate_downto_qos(wq, old_thactive, |
| 1439 | req_qos, NULL, &max_busycount); |
| 1440 | /* |
| 1441 | * If it is possible that may_start_constrained_thread had refused |
| 1442 | * admission due to being over the max concurrency, we may need to |
| 1443 | * spin up a new thread. |
| 1444 | * |
| 1445 | * We take into account the maximum number of busy threads |
| 1446 | * that can affect may_start_constrained_thread as looking at the |
| 1447 | * actual number may_start_constrained_thread will see is racy. |
| 1448 | * |
| 1449 | * IOW at NCPU = 4, for IN (req_qos = 1), if the old req count is |
| 1450 | * between NCPU (4) and NCPU - 2 (2) we need to redrive. |
| 1451 | */ |
| 1452 | uint32_t conc = wq_max_parallelism[_wq_bucket(qos)]; |
| 1453 | if (old_req_count <= conc && conc <= old_req_count + max_busycount) { |
| 1454 | start_timer = workq_schedule_delayed_thread_creation(wq, 0); |
| 1455 | } |
| 1456 | } |
| 1457 | if (__improbable(kdebug_enable)) { |
| 1458 | __unused uint32_t old = _wq_thactive_aggregate_downto_qos(wq, |
| 1459 | old_thactive, qos, NULL, NULL); |
| 1460 | WQ_TRACE_WQ(TRACE_wq_thread_block | DBG_FUNC_START, wq, |
| 1461 | old - 1, qos | (req_qos << 8), |
| 1462 | wq->wq_reqcount << 1 | start_timer, 0); |
| 1463 | } |
| 1464 | break; |
| 1465 | |
| 1466 | case SCHED_CALL_UNBLOCK: |
| 1467 | /* |
| 1468 | * we cannot take the workqueue_lock here... |
| 1469 | * an UNBLOCK can occur from a timer event which |
| 1470 | * is run from an interrupt context... if the workqueue_lock |
| 1471 | * is already held by this processor, we'll deadlock... |
| 1472 | * the thread lock for the thread being UNBLOCKED |
| 1473 | * is also held |
| 1474 | */ |
| 1475 | old_thactive = _wq_thactive_inc(wq, qos); |
| 1476 | if (__improbable(kdebug_enable)) { |
| 1477 | __unused uint32_t old = _wq_thactive_aggregate_downto_qos(wq, |
| 1478 | old_thactive, qos, NULL, NULL); |
| 1479 | req_qos = WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(old_thactive); |
| 1480 | WQ_TRACE_WQ(TRACE_wq_thread_block | DBG_FUNC_END, wq, |
| 1481 | old + 1, qos | (req_qos << 8), |
| 1482 | wq->wq_threads_scheduled, 0); |
| 1483 | } |
| 1484 | break; |
| 1485 | } |
| 1486 | } |
| 1487 | |
| 1488 | #pragma mark workq lifecycle |
| 1489 | |
| 1490 | void |
| 1491 | workq_reference(struct workqueue *wq) |
| 1492 | { |
| 1493 | os_ref_retain(&wq->wq_refcnt); |
| 1494 | } |
| 1495 | |
| 1496 | void |
| 1497 | workq_destroy(struct workqueue *wq) |
| 1498 | { |
| 1499 | struct turnstile *ts; |
| 1500 | |
| 1501 | turnstile_complete((uintptr_t)wq, &wq->wq_turnstile, &ts); |
| 1502 | assert(ts); |
| 1503 | turnstile_cleanup(); |
| 1504 | turnstile_deallocate(ts); |
| 1505 | |
| 1506 | lck_spin_destroy(&wq->wq_lock, workq_lck_grp); |
| 1507 | zfree(workq_zone_workqueue, wq); |
| 1508 | } |
| 1509 | |
| 1510 | static void |
| 1511 | workq_deallocate(struct workqueue *wq) |
| 1512 | { |
| 1513 | if (os_ref_release_relaxed(&wq->wq_refcnt) == 0) { |
| 1514 | workq_destroy(wq); |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | void |
| 1519 | workq_deallocate_safe(struct workqueue *wq) |
| 1520 | { |
| 1521 | if (__improbable(os_ref_release_relaxed(&wq->wq_refcnt) == 0)) { |
| 1522 | workq_deallocate_enqueue(wq); |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | /** |
| 1527 | * Setup per-process state for the workqueue. |
| 1528 | */ |
| 1529 | int |
| 1530 | workq_open(struct proc *p, __unused struct workq_open_args *uap, |
| 1531 | __unused int32_t *retval) |
| 1532 | { |
| 1533 | struct workqueue *wq; |
| 1534 | int error = 0; |
| 1535 | |
| 1536 | if ((p->p_lflag & P_LREGISTER) == 0) { |
| 1537 | return EINVAL; |
| 1538 | } |
| 1539 | |
| 1540 | if (wq_init_constrained_limit) { |
| 1541 | uint32_t limit, num_cpus = ml_get_max_cpus(); |
| 1542 | |
| 1543 | /* |
| 1544 | * set up the limit for the constrained pool |
| 1545 | * this is a virtual pool in that we don't |
| 1546 | * maintain it on a separate idle and run list |
| 1547 | */ |
| 1548 | limit = num_cpus * WORKQUEUE_CONSTRAINED_FACTOR; |
| 1549 | |
| 1550 | if (limit > wq_max_constrained_threads) |
| 1551 | wq_max_constrained_threads = limit; |
| 1552 | |
| 1553 | if (wq_max_threads > WQ_THACTIVE_BUCKET_HALF) { |
| 1554 | wq_max_threads = WQ_THACTIVE_BUCKET_HALF; |
| 1555 | } |
| 1556 | if (wq_max_threads > CONFIG_THREAD_MAX - 20) { |
| 1557 | wq_max_threads = CONFIG_THREAD_MAX - 20; |
| 1558 | } |
| 1559 | |
| 1560 | wq_death_max_load = (uint16_t)fls(num_cpus) + 1; |
| 1561 | |
| 1562 | for (thread_qos_t qos = WORKQ_THREAD_QOS_MIN; qos <= WORKQ_THREAD_QOS_MAX; qos++) { |
| 1563 | wq_max_parallelism[_wq_bucket(qos)] = |
| 1564 | qos_max_parallelism(qos, QOS_PARALLELISM_COUNT_LOGICAL); |
| 1565 | } |
| 1566 | |
| 1567 | wq_init_constrained_limit = 0; |
| 1568 | } |
| 1569 | |
| 1570 | if (proc_get_wqptr(p) == NULL) { |
| 1571 | if (proc_init_wqptr_or_wait(p) == FALSE) { |
| 1572 | assert(proc_get_wqptr(p) != NULL); |
| 1573 | goto out; |
| 1574 | } |
| 1575 | |
| 1576 | wq = (struct workqueue *)zalloc(workq_zone_workqueue); |
| 1577 | bzero(wq, sizeof(struct workqueue)); |
| 1578 | |
| 1579 | os_ref_init_count(&wq->wq_refcnt, &workq_refgrp, 1); |
| 1580 | |
| 1581 | // Start the event manager at the priority hinted at by the policy engine |
| 1582 | thread_qos_t mgr_priority_hint = task_get_default_manager_qos(current_task()); |
| 1583 | pthread_priority_t pp = _pthread_priority_make_from_thread_qos(mgr_priority_hint, 0, 0); |
| 1584 | wq->wq_event_manager_priority = (uint32_t)pp; |
| 1585 | wq->wq_timer_interval = wq_stalled_window.abstime; |
| 1586 | wq->wq_proc = p; |
| 1587 | turnstile_prepare((uintptr_t)wq, &wq->wq_turnstile, turnstile_alloc(), |
| 1588 | TURNSTILE_WORKQS); |
| 1589 | |
| 1590 | TAILQ_INIT(&wq->wq_thrunlist); |
| 1591 | TAILQ_INIT(&wq->wq_thnewlist); |
| 1592 | TAILQ_INIT(&wq->wq_thidlelist); |
| 1593 | priority_queue_init(&wq->wq_overcommit_queue, |
| 1594 | PRIORITY_QUEUE_BUILTIN_MAX_HEAP); |
| 1595 | priority_queue_init(&wq->wq_constrained_queue, |
| 1596 | PRIORITY_QUEUE_BUILTIN_MAX_HEAP); |
| 1597 | priority_queue_init(&wq->wq_special_queue, |
| 1598 | PRIORITY_QUEUE_BUILTIN_MAX_HEAP); |
| 1599 | |
| 1600 | wq->wq_delayed_call = thread_call_allocate_with_options( |
| 1601 | workq_add_new_threads_call, p, THREAD_CALL_PRIORITY_KERNEL, |
| 1602 | THREAD_CALL_OPTIONS_ONCE); |
| 1603 | wq->wq_immediate_call = thread_call_allocate_with_options( |
| 1604 | workq_add_new_threads_call, p, THREAD_CALL_PRIORITY_KERNEL, |
| 1605 | THREAD_CALL_OPTIONS_ONCE); |
| 1606 | wq->wq_death_call = thread_call_allocate_with_options( |
| 1607 | workq_kill_old_threads_call, wq, |
| 1608 | THREAD_CALL_PRIORITY_USER, THREAD_CALL_OPTIONS_ONCE); |
| 1609 | |
| 1610 | lck_spin_init(&wq->wq_lock, workq_lck_grp, workq_lck_attr); |
| 1611 | |
| 1612 | WQ_TRACE_WQ(TRACE_wq_create | DBG_FUNC_NONE, wq, |
| 1613 | VM_KERNEL_ADDRHIDE(wq), 0, 0, 0); |
| 1614 | proc_set_wqptr(p, wq); |
| 1615 | } |
| 1616 | out: |
| 1617 | |
| 1618 | return error; |
| 1619 | } |
| 1620 | |
| 1621 | /* |
| 1622 | * Routine: workq_mark_exiting |
| 1623 | * |
| 1624 | * Function: Mark the work queue such that new threads will not be added to the |
| 1625 | * work queue after we return. |
| 1626 | * |
| 1627 | * Conditions: Called against the current process. |
| 1628 | */ |
| 1629 | void |
| 1630 | workq_mark_exiting(struct proc *p) |
| 1631 | { |
| 1632 | struct workqueue *wq = proc_get_wqptr(p); |
| 1633 | uint32_t wq_flags; |
| 1634 | workq_threadreq_t mgr_req; |
| 1635 | |
| 1636 | if (!wq) return; |
| 1637 | |
| 1638 | WQ_TRACE_WQ(TRACE_wq_pthread_exit|DBG_FUNC_START, wq, 0, 0, 0, 0); |
| 1639 | |
| 1640 | workq_lock_spin(wq); |
| 1641 | |
| 1642 | wq_flags = os_atomic_or_orig(&wq->wq_flags, WQ_EXITING, relaxed); |
| 1643 | if (__improbable(wq_flags & WQ_EXITING)) { |
| 1644 | panic("workq_mark_exiting called twice" ); |
| 1645 | } |
| 1646 | |
| 1647 | /* |
| 1648 | * Opportunistically try to cancel thread calls that are likely in flight. |
| 1649 | * workq_exit() will do the proper cleanup. |
| 1650 | */ |
| 1651 | if (wq_flags & WQ_IMMEDIATE_CALL_SCHEDULED) { |
| 1652 | thread_call_cancel(wq->wq_immediate_call); |
| 1653 | } |
| 1654 | if (wq_flags & WQ_DELAYED_CALL_SCHEDULED) { |
| 1655 | thread_call_cancel(wq->wq_delayed_call); |
| 1656 | } |
| 1657 | if (wq_flags & WQ_DEATH_CALL_SCHEDULED) { |
| 1658 | thread_call_cancel(wq->wq_death_call); |
| 1659 | } |
| 1660 | |
| 1661 | mgr_req = wq->wq_event_manager_threadreq; |
| 1662 | wq->wq_event_manager_threadreq = NULL; |
| 1663 | wq->wq_reqcount = 0; /* workq_schedule_creator must not look at queues */ |
| 1664 | workq_turnstile_update_inheritor(wq, NULL, 0); |
| 1665 | |
| 1666 | workq_unlock(wq); |
| 1667 | |
| 1668 | if (mgr_req) { |
| 1669 | kqueue_threadreq_cancel(p, mgr_req); |
| 1670 | } |
| 1671 | /* |
| 1672 | * No one touches the priority queues once WQ_EXITING is set. |
| 1673 | * It is hence safe to do the tear down without holding any lock. |
| 1674 | */ |
| 1675 | priority_queue_destroy(&wq->wq_overcommit_queue, |
| 1676 | struct workq_threadreq_s, tr_entry, ^(void *e){ |
| 1677 | workq_threadreq_destroy(p, e); |
| 1678 | }); |
| 1679 | priority_queue_destroy(&wq->wq_constrained_queue, |
| 1680 | struct workq_threadreq_s, tr_entry, ^(void *e){ |
| 1681 | workq_threadreq_destroy(p, e); |
| 1682 | }); |
| 1683 | priority_queue_destroy(&wq->wq_special_queue, |
| 1684 | struct workq_threadreq_s, tr_entry, ^(void *e){ |
| 1685 | workq_threadreq_destroy(p, e); |
| 1686 | }); |
| 1687 | |
| 1688 | WQ_TRACE(TRACE_wq_pthread_exit|DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 1689 | } |
| 1690 | |
| 1691 | /* |
| 1692 | * Routine: workq_exit |
| 1693 | * |
| 1694 | * Function: clean up the work queue structure(s) now that there are no threads |
| 1695 | * left running inside the work queue (except possibly current_thread). |
| 1696 | * |
| 1697 | * Conditions: Called by the last thread in the process. |
| 1698 | * Called against current process. |
| 1699 | */ |
| 1700 | void |
| 1701 | workq_exit(struct proc *p) |
| 1702 | { |
| 1703 | struct workqueue *wq; |
| 1704 | struct uthread *uth, *tmp; |
| 1705 | |
| 1706 | wq = os_atomic_xchg(&p->p_wqptr, NULL, relaxed); |
| 1707 | if (wq != NULL) { |
| 1708 | thread_t th = current_thread(); |
| 1709 | |
| 1710 | WQ_TRACE_WQ(TRACE_wq_workqueue_exit|DBG_FUNC_START, wq, 0, 0, 0, 0); |
| 1711 | |
| 1712 | if (thread_get_tag(th) & THREAD_TAG_WORKQUEUE) { |
| 1713 | /* |
| 1714 | * <rdar://problem/40111515> Make sure we will no longer call the |
| 1715 | * sched call, if we ever block this thread, which the cancel_wait |
| 1716 | * below can do. |
| 1717 | */ |
| 1718 | thread_sched_call(th, NULL); |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * Thread calls are always scheduled by the proc itself or under the |
| 1723 | * workqueue spinlock if WQ_EXITING is not yet set. |
| 1724 | * |
| 1725 | * Either way, when this runs, the proc has no threads left beside |
| 1726 | * the one running this very code, so we know no thread call can be |
| 1727 | * dispatched anymore. |
| 1728 | */ |
| 1729 | thread_call_cancel_wait(wq->wq_delayed_call); |
| 1730 | thread_call_cancel_wait(wq->wq_immediate_call); |
| 1731 | thread_call_cancel_wait(wq->wq_death_call); |
| 1732 | thread_call_free(wq->wq_delayed_call); |
| 1733 | thread_call_free(wq->wq_immediate_call); |
| 1734 | thread_call_free(wq->wq_death_call); |
| 1735 | |
| 1736 | /* |
| 1737 | * Clean up workqueue data structures for threads that exited and |
| 1738 | * didn't get a chance to clean up after themselves. |
| 1739 | * |
| 1740 | * idle/new threads should have been interrupted and died on their own |
| 1741 | */ |
| 1742 | TAILQ_FOREACH_SAFE(uth, &wq->wq_thrunlist, uu_workq_entry, tmp) { |
| 1743 | thread_sched_call(uth->uu_thread, NULL); |
| 1744 | thread_deallocate(uth->uu_thread); |
| 1745 | } |
| 1746 | assert(TAILQ_EMPTY(&wq->wq_thnewlist)); |
| 1747 | assert(TAILQ_EMPTY(&wq->wq_thidlelist)); |
| 1748 | |
| 1749 | WQ_TRACE_WQ(TRACE_wq_destroy | DBG_FUNC_END, wq, |
| 1750 | VM_KERNEL_ADDRHIDE(wq), 0, 0, 0); |
| 1751 | |
| 1752 | workq_deallocate(wq); |
| 1753 | |
| 1754 | WQ_TRACE(TRACE_wq_workqueue_exit|DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | |
| 1759 | #pragma mark bsd thread control |
| 1760 | |
| 1761 | static bool |
| 1762 | _pthread_priority_to_policy(pthread_priority_t priority, |
| 1763 | thread_qos_policy_data_t *data) |
| 1764 | { |
| 1765 | data->qos_tier = _pthread_priority_thread_qos(priority); |
| 1766 | data->tier_importance = _pthread_priority_relpri(priority); |
| 1767 | if (data->qos_tier == THREAD_QOS_UNSPECIFIED || data->tier_importance > 0 || |
| 1768 | data->tier_importance < THREAD_QOS_MIN_TIER_IMPORTANCE) { |
| 1769 | return false; |
| 1770 | } |
| 1771 | return true; |
| 1772 | } |
| 1773 | |
| 1774 | static int |
| 1775 | bsdthread_set_self(proc_t p, thread_t th, pthread_priority_t priority, |
| 1776 | mach_port_name_t voucher, enum workq_set_self_flags flags) |
| 1777 | { |
| 1778 | struct uthread *uth = get_bsdthread_info(th); |
| 1779 | struct workqueue *wq = proc_get_wqptr(p); |
| 1780 | |
| 1781 | kern_return_t kr; |
| 1782 | int unbind_rv = 0, qos_rv = 0, voucher_rv = 0, fixedpri_rv = 0; |
| 1783 | bool is_wq_thread = (thread_get_tag(th) & THREAD_TAG_WORKQUEUE); |
| 1784 | |
| 1785 | if (flags & WORKQ_SET_SELF_WQ_KEVENT_UNBIND) { |
| 1786 | if (!is_wq_thread) { |
| 1787 | unbind_rv = EINVAL; |
| 1788 | goto qos; |
| 1789 | } |
| 1790 | |
| 1791 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
| 1792 | unbind_rv = EINVAL; |
| 1793 | goto qos; |
| 1794 | } |
| 1795 | |
| 1796 | struct kqrequest *kqr = uth->uu_kqr_bound; |
| 1797 | if (kqr == NULL) { |
| 1798 | unbind_rv = EALREADY; |
| 1799 | goto qos; |
| 1800 | } |
| 1801 | |
| 1802 | if (kqr->kqr_state & KQR_WORKLOOP) { |
| 1803 | unbind_rv = EINVAL; |
| 1804 | goto qos; |
| 1805 | } |
| 1806 | |
| 1807 | kqueue_threadreq_unbind(p, uth->uu_kqr_bound); |
| 1808 | } |
| 1809 | |
| 1810 | qos: |
| 1811 | if (flags & WORKQ_SET_SELF_QOS_FLAG) { |
| 1812 | thread_qos_policy_data_t new_policy; |
| 1813 | |
| 1814 | if (!_pthread_priority_to_policy(priority, &new_policy)) { |
| 1815 | qos_rv = EINVAL; |
| 1816 | goto voucher; |
| 1817 | } |
| 1818 | |
| 1819 | if (!is_wq_thread) { |
| 1820 | /* |
| 1821 | * Threads opted out of QoS can't change QoS |
| 1822 | */ |
| 1823 | if (!thread_has_qos_policy(th)) { |
| 1824 | qos_rv = EPERM; |
| 1825 | goto voucher; |
| 1826 | } |
| 1827 | } else if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
| 1828 | /* |
| 1829 | * Workqueue manager threads can't change QoS |
| 1830 | */ |
| 1831 | qos_rv = EINVAL; |
| 1832 | goto voucher; |
| 1833 | } else { |
| 1834 | /* |
| 1835 | * For workqueue threads, possibly adjust buckets and redrive thread |
| 1836 | * requests. |
| 1837 | */ |
| 1838 | bool old_overcommit = uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT; |
| 1839 | bool new_overcommit = priority & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG; |
| 1840 | struct uu_workq_policy old_pri, new_pri; |
| 1841 | bool force_run = false; |
| 1842 | |
| 1843 | workq_lock_spin(wq); |
| 1844 | |
| 1845 | if (old_overcommit != new_overcommit) { |
| 1846 | uth->uu_workq_flags ^= UT_WORKQ_OVERCOMMIT; |
| 1847 | if (old_overcommit) { |
| 1848 | wq->wq_constrained_threads_scheduled++; |
| 1849 | } else if (wq->wq_constrained_threads_scheduled-- == |
| 1850 | wq_max_constrained_threads) { |
| 1851 | force_run = true; |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | old_pri = new_pri = uth->uu_workq_pri; |
| 1856 | new_pri.qos_req = new_policy.qos_tier; |
| 1857 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, force_run); |
| 1858 | workq_unlock(wq); |
| 1859 | } |
| 1860 | |
| 1861 | kr = thread_policy_set_internal(th, THREAD_QOS_POLICY, |
| 1862 | (thread_policy_t)&new_policy, THREAD_QOS_POLICY_COUNT); |
| 1863 | if (kr != KERN_SUCCESS) { |
| 1864 | qos_rv = EINVAL; |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | voucher: |
| 1869 | if (flags & WORKQ_SET_SELF_VOUCHER_FLAG) { |
| 1870 | kr = thread_set_voucher_name(voucher); |
| 1871 | if (kr != KERN_SUCCESS) { |
| 1872 | voucher_rv = ENOENT; |
| 1873 | goto fixedpri; |
| 1874 | } |
| 1875 | } |
| 1876 | |
| 1877 | fixedpri: |
| 1878 | if (qos_rv) goto done; |
| 1879 | if (flags & WORKQ_SET_SELF_FIXEDPRIORITY_FLAG) { |
| 1880 | thread_extended_policy_data_t extpol = {.timeshare = 0}; |
| 1881 | |
| 1882 | if (is_wq_thread) { |
| 1883 | /* Not allowed on workqueue threads */ |
| 1884 | fixedpri_rv = ENOTSUP; |
| 1885 | goto done; |
| 1886 | } |
| 1887 | |
| 1888 | kr = thread_policy_set_internal(th, THREAD_EXTENDED_POLICY, |
| 1889 | (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); |
| 1890 | if (kr != KERN_SUCCESS) { |
| 1891 | fixedpri_rv = EINVAL; |
| 1892 | goto done; |
| 1893 | } |
| 1894 | } else if (flags & WORKQ_SET_SELF_TIMESHARE_FLAG) { |
| 1895 | thread_extended_policy_data_t extpol = {.timeshare = 1}; |
| 1896 | |
| 1897 | if (is_wq_thread) { |
| 1898 | /* Not allowed on workqueue threads */ |
| 1899 | fixedpri_rv = ENOTSUP; |
| 1900 | goto done; |
| 1901 | } |
| 1902 | |
| 1903 | kr = thread_policy_set_internal(th, THREAD_EXTENDED_POLICY, |
| 1904 | (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); |
| 1905 | if (kr != KERN_SUCCESS) { |
| 1906 | fixedpri_rv = EINVAL; |
| 1907 | goto done; |
| 1908 | } |
| 1909 | } |
| 1910 | |
| 1911 | done: |
| 1912 | if (qos_rv && voucher_rv) { |
| 1913 | /* Both failed, give that a unique error. */ |
| 1914 | return EBADMSG; |
| 1915 | } |
| 1916 | |
| 1917 | if (unbind_rv) { |
| 1918 | return unbind_rv; |
| 1919 | } |
| 1920 | |
| 1921 | if (qos_rv) { |
| 1922 | return qos_rv; |
| 1923 | } |
| 1924 | |
| 1925 | if (voucher_rv) { |
| 1926 | return voucher_rv; |
| 1927 | } |
| 1928 | |
| 1929 | if (fixedpri_rv) { |
| 1930 | return fixedpri_rv; |
| 1931 | } |
| 1932 | |
| 1933 | return 0; |
| 1934 | } |
| 1935 | |
| 1936 | static int |
| 1937 | bsdthread_add_explicit_override(proc_t p, mach_port_name_t kport, |
| 1938 | pthread_priority_t pp, user_addr_t resource) |
| 1939 | { |
| 1940 | thread_qos_t qos = _pthread_priority_thread_qos(pp); |
| 1941 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 1942 | return EINVAL; |
| 1943 | } |
| 1944 | |
| 1945 | thread_t th = port_name_to_thread(kport); |
| 1946 | if (th == THREAD_NULL) { |
| 1947 | return ESRCH; |
| 1948 | } |
| 1949 | |
| 1950 | int rv = proc_thread_qos_add_override(p->task, th, 0, qos, TRUE, |
| 1951 | resource, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); |
| 1952 | |
| 1953 | thread_deallocate(th); |
| 1954 | return rv; |
| 1955 | } |
| 1956 | |
| 1957 | static int |
| 1958 | bsdthread_remove_explicit_override(proc_t p, mach_port_name_t kport, |
| 1959 | user_addr_t resource) |
| 1960 | { |
| 1961 | thread_t th = port_name_to_thread(kport); |
| 1962 | if (th == THREAD_NULL) { |
| 1963 | return ESRCH; |
| 1964 | } |
| 1965 | |
| 1966 | int rv = proc_thread_qos_remove_override(p->task, th, 0, resource, |
| 1967 | THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); |
| 1968 | |
| 1969 | thread_deallocate(th); |
| 1970 | return rv; |
| 1971 | } |
| 1972 | |
| 1973 | static int |
| 1974 | workq_thread_add_dispatch_override(proc_t p, mach_port_name_t kport, |
| 1975 | pthread_priority_t pp, user_addr_t ulock_addr) |
| 1976 | { |
| 1977 | struct uu_workq_policy old_pri, new_pri; |
| 1978 | struct workqueue *wq = proc_get_wqptr(p); |
| 1979 | |
| 1980 | thread_qos_t qos_override = _pthread_priority_thread_qos(pp); |
| 1981 | if (qos_override == THREAD_QOS_UNSPECIFIED) { |
| 1982 | return EINVAL; |
| 1983 | } |
| 1984 | |
| 1985 | thread_t thread = port_name_to_thread(kport); |
| 1986 | if (thread == THREAD_NULL) { |
| 1987 | return ESRCH; |
| 1988 | } |
| 1989 | |
| 1990 | struct uthread *uth = get_bsdthread_info(thread); |
| 1991 | if ((thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) == 0) { |
| 1992 | thread_deallocate(thread); |
| 1993 | return EPERM; |
| 1994 | } |
| 1995 | |
| 1996 | WQ_TRACE_WQ(TRACE_wq_override_dispatch | DBG_FUNC_NONE, |
| 1997 | wq, thread_tid(thread), 1, pp, 0); |
| 1998 | |
| 1999 | thread_mtx_lock(thread); |
| 2000 | |
| 2001 | if (ulock_addr) { |
| 2002 | uint64_t val; |
| 2003 | int rc; |
| 2004 | /* |
| 2005 | * Workaround lack of explicit support for 'no-fault copyin' |
| 2006 | * <rdar://problem/24999882>, as disabling preemption prevents paging in |
| 2007 | */ |
| 2008 | disable_preemption(); |
| 2009 | rc = copyin_word(ulock_addr, &val, sizeof(kport)); |
| 2010 | enable_preemption(); |
| 2011 | if (rc == 0 && ulock_owner_value_to_port_name((uint32_t)val) != kport) { |
| 2012 | goto out; |
| 2013 | } |
| 2014 | } |
| 2015 | |
| 2016 | workq_lock_spin(wq); |
| 2017 | |
| 2018 | old_pri = uth->uu_workq_pri; |
| 2019 | if (old_pri.qos_override >= qos_override) { |
| 2020 | /* Nothing to do */ |
| 2021 | } else if (thread == current_thread()) { |
| 2022 | new_pri = old_pri; |
| 2023 | new_pri.qos_override = qos_override; |
| 2024 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
| 2025 | } else { |
| 2026 | uth->uu_workq_pri.qos_override = qos_override; |
| 2027 | if (qos_override > workq_pri_override(old_pri)) { |
| 2028 | thread_set_workq_override(thread, qos_override); |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | workq_unlock(wq); |
| 2033 | |
| 2034 | out: |
| 2035 | thread_mtx_unlock(thread); |
| 2036 | thread_deallocate(thread); |
| 2037 | return 0; |
| 2038 | } |
| 2039 | |
| 2040 | static int |
| 2041 | workq_thread_reset_dispatch_override(proc_t p, thread_t thread) |
| 2042 | { |
| 2043 | struct uu_workq_policy old_pri, new_pri; |
| 2044 | struct workqueue *wq = proc_get_wqptr(p); |
| 2045 | struct uthread *uth = get_bsdthread_info(thread); |
| 2046 | |
| 2047 | if ((thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) == 0) { |
| 2048 | return EPERM; |
| 2049 | } |
| 2050 | |
| 2051 | WQ_TRACE_WQ(TRACE_wq_override_reset | DBG_FUNC_NONE, wq, 0, 0, 0, 0); |
| 2052 | |
| 2053 | workq_lock_spin(wq); |
| 2054 | old_pri = new_pri = uth->uu_workq_pri; |
| 2055 | new_pri.qos_override = THREAD_QOS_UNSPECIFIED; |
| 2056 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
| 2057 | workq_unlock(wq); |
| 2058 | return 0; |
| 2059 | } |
| 2060 | |
| 2061 | static int |
| 2062 | bsdthread_get_max_parallelism(thread_qos_t qos, unsigned long flags, |
| 2063 | int *retval) |
| 2064 | { |
| 2065 | static_assert(QOS_PARALLELISM_COUNT_LOGICAL == |
| 2066 | _PTHREAD_QOS_PARALLELISM_COUNT_LOGICAL, "logical" ); |
| 2067 | static_assert(QOS_PARALLELISM_REALTIME == |
| 2068 | _PTHREAD_QOS_PARALLELISM_REALTIME, "realtime" ); |
| 2069 | |
| 2070 | if (flags & ~(QOS_PARALLELISM_REALTIME | QOS_PARALLELISM_COUNT_LOGICAL)) { |
| 2071 | return EINVAL; |
| 2072 | } |
| 2073 | |
| 2074 | if (flags & QOS_PARALLELISM_REALTIME) { |
| 2075 | if (qos) { |
| 2076 | return EINVAL; |
| 2077 | } |
| 2078 | } else if (qos == THREAD_QOS_UNSPECIFIED || qos >= THREAD_QOS_LAST) { |
| 2079 | return EINVAL; |
| 2080 | } |
| 2081 | |
| 2082 | *retval = qos_max_parallelism(qos, flags); |
| 2083 | return 0; |
| 2084 | } |
| 2085 | |
| 2086 | #define ENSURE_UNUSED(arg) \ |
| 2087 | ({ if ((arg) != 0) { return EINVAL; } }) |
| 2088 | |
| 2089 | int |
| 2090 | bsdthread_ctl(struct proc *p, struct bsdthread_ctl_args *uap, int *retval) |
| 2091 | { |
| 2092 | switch (uap->cmd) { |
| 2093 | case BSDTHREAD_CTL_QOS_OVERRIDE_START: |
| 2094 | return bsdthread_add_explicit_override(p, (mach_port_name_t)uap->arg1, |
| 2095 | (pthread_priority_t)uap->arg2, uap->arg3); |
| 2096 | case BSDTHREAD_CTL_QOS_OVERRIDE_END: |
| 2097 | ENSURE_UNUSED(uap->arg3); |
| 2098 | return bsdthread_remove_explicit_override(p, (mach_port_name_t)uap->arg1, |
| 2099 | (user_addr_t)uap->arg2); |
| 2100 | |
| 2101 | case BSDTHREAD_CTL_QOS_OVERRIDE_DISPATCH: |
| 2102 | return workq_thread_add_dispatch_override(p, (mach_port_name_t)uap->arg1, |
| 2103 | (pthread_priority_t)uap->arg2, uap->arg3); |
| 2104 | case BSDTHREAD_CTL_QOS_OVERRIDE_RESET: |
| 2105 | return workq_thread_reset_dispatch_override(p, current_thread()); |
| 2106 | |
| 2107 | case BSDTHREAD_CTL_SET_SELF: |
| 2108 | return bsdthread_set_self(p, current_thread(), |
| 2109 | (pthread_priority_t)uap->arg1, (mach_port_name_t)uap->arg2, |
| 2110 | (enum workq_set_self_flags)uap->arg3); |
| 2111 | |
| 2112 | case BSDTHREAD_CTL_QOS_MAX_PARALLELISM: |
| 2113 | ENSURE_UNUSED(uap->arg3); |
| 2114 | return bsdthread_get_max_parallelism((thread_qos_t)uap->arg1, |
| 2115 | (unsigned long)uap->arg2, retval); |
| 2116 | |
| 2117 | case BSDTHREAD_CTL_SET_QOS: |
| 2118 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_ADD: |
| 2119 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_RESET: |
| 2120 | /* no longer supported */ |
| 2121 | return ENOTSUP; |
| 2122 | |
| 2123 | default: |
| 2124 | return EINVAL; |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | #pragma mark workqueue thread manipulation |
| 2129 | |
| 2130 | static void __dead2 |
| 2131 | workq_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
| 2132 | struct uthread *uth); |
| 2133 | |
| 2134 | static void workq_setup_and_run(proc_t p, struct uthread *uth, int flags) __dead2; |
| 2135 | |
| 2136 | #if KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD |
| 2137 | static inline uint64_t |
| 2138 | workq_trace_req_id(workq_threadreq_t req) |
| 2139 | { |
| 2140 | struct kqworkloop *kqwl; |
| 2141 | if (req->tr_flags & TR_FLAG_WORKLOOP) { |
| 2142 | kqwl = __container_of(req, struct kqworkloop, kqwl_request.kqr_req); |
| 2143 | return kqwl->kqwl_dynamicid; |
| 2144 | } |
| 2145 | |
| 2146 | return VM_KERNEL_ADDRHIDE(req); |
| 2147 | } |
| 2148 | #endif |
| 2149 | |
| 2150 | /** |
| 2151 | * Entry point for libdispatch to ask for threads |
| 2152 | */ |
| 2153 | static int |
| 2154 | workq_reqthreads(struct proc *p, uint32_t reqcount, pthread_priority_t pp) |
| 2155 | { |
| 2156 | thread_qos_t qos = _pthread_priority_thread_qos(pp); |
| 2157 | struct workqueue *wq = proc_get_wqptr(p); |
| 2158 | uint32_t unpaced, upcall_flags = WQ_FLAG_THREAD_NEWSPI; |
| 2159 | |
| 2160 | if (wq == NULL || reqcount <= 0 || reqcount > UINT16_MAX || |
| 2161 | qos == THREAD_QOS_UNSPECIFIED) { |
| 2162 | return EINVAL; |
| 2163 | } |
| 2164 | |
| 2165 | WQ_TRACE_WQ(TRACE_wq_wqops_reqthreads | DBG_FUNC_NONE, |
| 2166 | wq, reqcount, pp, 0, 0); |
| 2167 | |
| 2168 | workq_threadreq_t req = zalloc(workq_zone_threadreq); |
| 2169 | priority_queue_entry_init(&req->tr_entry); |
| 2170 | req->tr_state = TR_STATE_NEW; |
| 2171 | req->tr_flags = 0; |
| 2172 | req->tr_qos = qos; |
| 2173 | |
| 2174 | if (pp & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) { |
| 2175 | req->tr_flags |= TR_FLAG_OVERCOMMIT; |
| 2176 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
| 2177 | } |
| 2178 | |
| 2179 | WQ_TRACE_WQ(TRACE_wq_thread_request_initiate | DBG_FUNC_NONE, |
| 2180 | wq, workq_trace_req_id(req), req->tr_qos, reqcount, 0); |
| 2181 | |
| 2182 | workq_lock_spin(wq); |
| 2183 | do { |
| 2184 | if (_wq_exiting(wq)) { |
| 2185 | goto exiting; |
| 2186 | } |
| 2187 | |
| 2188 | /* |
| 2189 | * When userspace is asking for parallelism, wakeup up to (reqcount - 1) |
| 2190 | * threads without pacing, to inform the scheduler of that workload. |
| 2191 | * |
| 2192 | * The last requests, or the ones that failed the admission checks are |
| 2193 | * enqueued and go through the regular creator codepath. |
| 2194 | * |
| 2195 | * If there aren't enough threads, add one, but re-evaluate everything |
| 2196 | * as conditions may now have changed. |
| 2197 | */ |
| 2198 | if (reqcount > 1 && (req->tr_flags & TR_FLAG_OVERCOMMIT) == 0) { |
| 2199 | unpaced = workq_constrained_allowance(wq, qos, NULL, false); |
| 2200 | if (unpaced >= reqcount - 1) { |
| 2201 | unpaced = reqcount - 1; |
| 2202 | } |
| 2203 | } else { |
| 2204 | unpaced = reqcount - 1; |
| 2205 | } |
| 2206 | |
| 2207 | /* |
| 2208 | * This path does not currently handle custom workloop parameters |
| 2209 | * when creating threads for parallelism. |
| 2210 | */ |
| 2211 | assert(!(req->tr_flags & TR_FLAG_WL_PARAMS)); |
| 2212 | |
| 2213 | /* |
| 2214 | * This is a trimmed down version of workq_threadreq_bind_and_unlock() |
| 2215 | */ |
| 2216 | while (unpaced > 0 && wq->wq_thidlecount) { |
| 2217 | struct uthread *uth = workq_pop_idle_thread(wq); |
| 2218 | |
| 2219 | _wq_thactive_inc(wq, qos); |
| 2220 | wq->wq_thscheduled_count[_wq_bucket(qos)]++; |
| 2221 | workq_thread_reset_pri(wq, uth, req); |
| 2222 | wq->wq_fulfilled++; |
| 2223 | |
| 2224 | uth->uu_workq_flags |= UT_WORKQ_EARLY_BOUND; |
| 2225 | if ((req->tr_flags & TR_FLAG_OVERCOMMIT) == 0) { |
| 2226 | uth->uu_workq_flags &= ~UT_WORKQ_OVERCOMMIT; |
| 2227 | wq->wq_constrained_threads_scheduled++; |
| 2228 | } |
| 2229 | uth->uu_save.uus_workq_park_data.upcall_flags = upcall_flags; |
| 2230 | uth->uu_save.uus_workq_park_data.thread_request = req; |
| 2231 | workq_thread_wakeup(uth); |
| 2232 | unpaced--; |
| 2233 | reqcount--; |
| 2234 | } |
| 2235 | } while (unpaced && wq->wq_nthreads < wq_max_threads && |
| 2236 | workq_add_new_idle_thread(p, wq)); |
| 2237 | |
| 2238 | if (_wq_exiting(wq)) { |
| 2239 | goto exiting; |
| 2240 | } |
| 2241 | |
| 2242 | req->tr_count = reqcount; |
| 2243 | if (workq_threadreq_enqueue(wq, req)) { |
| 2244 | /* This can drop the workqueue lock, and take it again */ |
| 2245 | workq_schedule_creator(p, wq, WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 2246 | } |
| 2247 | workq_unlock(wq); |
| 2248 | return 0; |
| 2249 | |
| 2250 | exiting: |
| 2251 | workq_unlock(wq); |
| 2252 | zfree(workq_zone_threadreq, req); |
| 2253 | return ECANCELED; |
| 2254 | } |
| 2255 | |
| 2256 | bool |
| 2257 | workq_kern_threadreq_initiate(struct proc *p, struct kqrequest *kqr, |
| 2258 | struct turnstile *workloop_ts, thread_qos_t qos, int flags) |
| 2259 | { |
| 2260 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 2261 | workq_threadreq_t req = &kqr->kqr_req; |
| 2262 | struct uthread *uth = NULL; |
| 2263 | uint8_t tr_flags = 0; |
| 2264 | |
| 2265 | if (kqr->kqr_state & KQR_WORKLOOP) { |
| 2266 | tr_flags = TR_FLAG_WORKLOOP; |
| 2267 | |
| 2268 | workq_threadreq_param_t trp = kqueue_threadreq_workloop_param(req); |
| 2269 | if (trp.trp_flags & TRP_PRIORITY) { |
| 2270 | tr_flags |= TR_FLAG_WL_OUTSIDE_QOS; |
| 2271 | qos = thread_workq_qos_for_pri(trp.trp_pri); |
| 2272 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 2273 | qos = WORKQ_THREAD_QOS_ABOVEUI; |
| 2274 | } |
| 2275 | } |
| 2276 | if (trp.trp_flags) { |
| 2277 | tr_flags |= TR_FLAG_WL_PARAMS; |
| 2278 | } |
| 2279 | } else { |
| 2280 | tr_flags = TR_FLAG_KEVENT; |
| 2281 | } |
| 2282 | if (qos != WORKQ_THREAD_QOS_MANAGER && |
| 2283 | (kqr->kqr_state & KQR_THOVERCOMMIT)) { |
| 2284 | tr_flags |= TR_FLAG_OVERCOMMIT; |
| 2285 | } |
| 2286 | |
| 2287 | assert(req->tr_state == TR_STATE_IDLE); |
| 2288 | priority_queue_entry_init(&req->tr_entry); |
| 2289 | req->tr_count = 1; |
| 2290 | req->tr_state = TR_STATE_NEW; |
| 2291 | req->tr_flags = tr_flags; |
| 2292 | req->tr_qos = qos; |
| 2293 | |
| 2294 | WQ_TRACE_WQ(TRACE_wq_thread_request_initiate | DBG_FUNC_NONE, wq, |
| 2295 | workq_trace_req_id(req), qos, 1, 0); |
| 2296 | |
| 2297 | if (flags & WORKQ_THREADREQ_ATTEMPT_REBIND) { |
| 2298 | /* |
| 2299 | * we're called back synchronously from the context of |
| 2300 | * kqueue_threadreq_unbind from within workq_thread_return() |
| 2301 | * we can try to match up this thread with this request ! |
| 2302 | */ |
| 2303 | uth = current_uthread(); |
| 2304 | assert(uth->uu_kqr_bound == NULL); |
| 2305 | } |
| 2306 | |
| 2307 | workq_lock_spin(wq); |
| 2308 | if (_wq_exiting(wq)) { |
| 2309 | workq_unlock(wq); |
| 2310 | return false; |
| 2311 | } |
| 2312 | |
| 2313 | if (uth && workq_threadreq_admissible(wq, uth, req)) { |
| 2314 | assert(uth != wq->wq_creator); |
| 2315 | workq_threadreq_bind_and_unlock(p, wq, req, uth); |
| 2316 | } else { |
| 2317 | if (workloop_ts) { |
| 2318 | workq_perform_turnstile_operation_locked(wq, ^{ |
| 2319 | turnstile_update_inheritor(workloop_ts, wq->wq_turnstile, |
| 2320 | TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_TURNSTILE); |
| 2321 | turnstile_update_inheritor_complete(workloop_ts, |
| 2322 | TURNSTILE_INTERLOCK_HELD); |
| 2323 | }); |
| 2324 | } |
| 2325 | if (workq_threadreq_enqueue(wq, req)) { |
| 2326 | workq_schedule_creator(p, wq, flags); |
| 2327 | } |
| 2328 | workq_unlock(wq); |
| 2329 | } |
| 2330 | |
| 2331 | return true; |
| 2332 | } |
| 2333 | |
| 2334 | void |
| 2335 | workq_kern_threadreq_modify(struct proc *p, struct kqrequest *kqr, |
| 2336 | thread_qos_t qos, int flags) |
| 2337 | { |
| 2338 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 2339 | workq_threadreq_t req = &kqr->kqr_req; |
| 2340 | bool change_overcommit = false; |
| 2341 | |
| 2342 | if (req->tr_flags & TR_FLAG_WL_OUTSIDE_QOS) { |
| 2343 | /* Requests outside-of-QoS shouldn't accept modify operations */ |
| 2344 | return; |
| 2345 | } |
| 2346 | |
| 2347 | workq_lock_spin(wq); |
| 2348 | |
| 2349 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
| 2350 | assert(req->tr_flags & (TR_FLAG_KEVENT | TR_FLAG_WORKLOOP)); |
| 2351 | |
| 2352 | if (req->tr_state == TR_STATE_BINDING) { |
| 2353 | kqueue_threadreq_bind(p, req, req->tr_binding_thread, 0); |
| 2354 | workq_unlock(wq); |
| 2355 | return; |
| 2356 | } |
| 2357 | |
| 2358 | change_overcommit = (bool)(kqr->kqr_state & KQR_THOVERCOMMIT) != |
| 2359 | (bool)(req->tr_flags & TR_FLAG_OVERCOMMIT); |
| 2360 | |
| 2361 | if (_wq_exiting(wq) || (req->tr_qos == qos && !change_overcommit)) { |
| 2362 | workq_unlock(wq); |
| 2363 | return; |
| 2364 | } |
| 2365 | |
| 2366 | assert(req->tr_count == 1); |
| 2367 | if (req->tr_state != TR_STATE_QUEUED) { |
| 2368 | panic("Invalid thread request (%p) state %d" , req, req->tr_state); |
| 2369 | } |
| 2370 | |
| 2371 | WQ_TRACE_WQ(TRACE_wq_thread_request_modify | DBG_FUNC_NONE, wq, |
| 2372 | workq_trace_req_id(req), qos, 0, 0); |
| 2373 | |
| 2374 | struct priority_queue *pq = workq_priority_queue_for_req(wq, req); |
| 2375 | workq_threadreq_t req_max; |
| 2376 | |
| 2377 | /* |
| 2378 | * Stage 1: Dequeue the request from its priority queue. |
| 2379 | * |
| 2380 | * If we dequeue the root item of the constrained priority queue, |
| 2381 | * maintain the best constrained request qos invariant. |
| 2382 | */ |
| 2383 | if (priority_queue_remove(pq, &req->tr_entry, |
| 2384 | PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE)) { |
| 2385 | if ((req->tr_flags & TR_FLAG_OVERCOMMIT) == 0) { |
| 2386 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
| 2387 | } |
| 2388 | } |
| 2389 | |
| 2390 | /* |
| 2391 | * Stage 2: Apply changes to the thread request |
| 2392 | * |
| 2393 | * If the item will not become the root of the priority queue it belongs to, |
| 2394 | * then we need to wait in line, just enqueue and return quickly. |
| 2395 | */ |
| 2396 | if (__improbable(change_overcommit)) { |
| 2397 | req->tr_flags ^= TR_FLAG_OVERCOMMIT; |
| 2398 | pq = workq_priority_queue_for_req(wq, req); |
| 2399 | } |
| 2400 | req->tr_qos = qos; |
| 2401 | |
| 2402 | req_max = priority_queue_max(pq, struct workq_threadreq_s, tr_entry); |
| 2403 | if (req_max && req_max->tr_qos >= qos) { |
| 2404 | priority_queue_insert(pq, &req->tr_entry, workq_priority_for_req(req), |
| 2405 | PRIORITY_QUEUE_SCHED_PRI_MAX_HEAP_COMPARE); |
| 2406 | workq_unlock(wq); |
| 2407 | return; |
| 2408 | } |
| 2409 | |
| 2410 | /* |
| 2411 | * Stage 3: Reevaluate whether we should run the thread request. |
| 2412 | * |
| 2413 | * Pretend the thread request is new again: |
| 2414 | * - adjust wq_reqcount to not count it anymore. |
| 2415 | * - make its state TR_STATE_NEW (so that workq_threadreq_bind_and_unlock |
| 2416 | * properly attempts a synchronous bind) |
| 2417 | */ |
| 2418 | wq->wq_reqcount--; |
| 2419 | req->tr_state = TR_STATE_NEW; |
| 2420 | if (workq_threadreq_enqueue(wq, req)) { |
| 2421 | workq_schedule_creator(p, wq, flags); |
| 2422 | } |
| 2423 | workq_unlock(wq); |
| 2424 | } |
| 2425 | |
| 2426 | void |
| 2427 | workq_kern_threadreq_lock(struct proc *p) |
| 2428 | { |
| 2429 | workq_lock_spin(proc_get_wqptr_fast(p)); |
| 2430 | } |
| 2431 | |
| 2432 | void |
| 2433 | workq_kern_threadreq_unlock(struct proc *p) |
| 2434 | { |
| 2435 | workq_unlock(proc_get_wqptr_fast(p)); |
| 2436 | } |
| 2437 | |
| 2438 | void |
| 2439 | workq_kern_threadreq_update_inheritor(struct proc *p, struct kqrequest *kqr, |
| 2440 | thread_t owner, struct turnstile *wl_ts, |
| 2441 | turnstile_update_flags_t flags) |
| 2442 | { |
| 2443 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 2444 | workq_threadreq_t req = &kqr->kqr_req; |
| 2445 | turnstile_inheritor_t inheritor; |
| 2446 | |
| 2447 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
| 2448 | assert(req->tr_flags & TR_FLAG_WORKLOOP); |
| 2449 | workq_lock_held(wq); |
| 2450 | |
| 2451 | if (req->tr_state == TR_STATE_BINDING) { |
| 2452 | kqueue_threadreq_bind(p, req, req->tr_binding_thread, |
| 2453 | KQUEUE_THREADERQ_BIND_NO_INHERITOR_UPDATE); |
| 2454 | return; |
| 2455 | } |
| 2456 | |
| 2457 | if (_wq_exiting(wq)) { |
| 2458 | inheritor = TURNSTILE_INHERITOR_NULL; |
| 2459 | } else { |
| 2460 | if (req->tr_state != TR_STATE_QUEUED) { |
| 2461 | panic("Invalid thread request (%p) state %d" , req, req->tr_state); |
| 2462 | } |
| 2463 | |
| 2464 | if (owner) { |
| 2465 | inheritor = owner; |
| 2466 | flags |= TURNSTILE_INHERITOR_THREAD; |
| 2467 | } else { |
| 2468 | inheritor = wq->wq_turnstile; |
| 2469 | flags |= TURNSTILE_INHERITOR_TURNSTILE; |
| 2470 | } |
| 2471 | } |
| 2472 | |
| 2473 | workq_perform_turnstile_operation_locked(wq, ^{ |
| 2474 | turnstile_update_inheritor(wl_ts, inheritor, flags); |
| 2475 | }); |
| 2476 | } |
| 2477 | |
| 2478 | void |
| 2479 | workq_kern_threadreq_redrive(struct proc *p, int flags) |
| 2480 | { |
| 2481 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 2482 | |
| 2483 | workq_lock_spin(wq); |
| 2484 | workq_schedule_creator(p, wq, flags); |
| 2485 | workq_unlock(wq); |
| 2486 | } |
| 2487 | |
| 2488 | void |
| 2489 | workq_schedule_creator_turnstile_redrive(struct workqueue *wq, bool locked) |
| 2490 | { |
| 2491 | if (!locked) workq_lock_spin(wq); |
| 2492 | workq_schedule_creator(NULL, wq, WORKQ_THREADREQ_CREATOR_SYNC_UPDATE); |
| 2493 | if (!locked) workq_unlock(wq); |
| 2494 | } |
| 2495 | |
| 2496 | static int |
| 2497 | workq_thread_return(struct proc *p, struct workq_kernreturn_args *uap, |
| 2498 | struct workqueue *wq) |
| 2499 | { |
| 2500 | thread_t th = current_thread(); |
| 2501 | struct uthread *uth = get_bsdthread_info(th); |
| 2502 | struct kqrequest *kqr = uth->uu_kqr_bound; |
| 2503 | workq_threadreq_param_t trp = { }; |
| 2504 | int nevents = uap->affinity, error; |
| 2505 | user_addr_t eventlist = uap->item; |
| 2506 | |
| 2507 | if (((thread_get_tag(th) & THREAD_TAG_WORKQUEUE) == 0) || |
| 2508 | (uth->uu_workq_flags & UT_WORKQ_DYING)) { |
| 2509 | return EINVAL; |
| 2510 | } |
| 2511 | |
| 2512 | if (eventlist && nevents && kqr == NULL) { |
| 2513 | return EINVAL; |
| 2514 | } |
| 2515 | |
| 2516 | /* reset signal mask on the workqueue thread to default state */ |
| 2517 | if (uth->uu_sigmask != (sigset_t)(~workq_threadmask)) { |
| 2518 | proc_lock(p); |
| 2519 | uth->uu_sigmask = ~workq_threadmask; |
| 2520 | proc_unlock(p); |
| 2521 | } |
| 2522 | |
| 2523 | if (kqr && kqr->kqr_req.tr_flags & TR_FLAG_WL_PARAMS) { |
| 2524 | /* |
| 2525 | * Ensure we store the threadreq param before unbinding |
| 2526 | * the kqr from this thread. |
| 2527 | */ |
| 2528 | trp = kqueue_threadreq_workloop_param(&kqr->kqr_req); |
| 2529 | } |
| 2530 | |
| 2531 | if (kqr) { |
| 2532 | uint32_t upcall_flags = WQ_FLAG_THREAD_NEWSPI | WQ_FLAG_THREAD_REUSE; |
| 2533 | if (kqr->kqr_state & KQR_WORKLOOP) { |
| 2534 | upcall_flags |= WQ_FLAG_THREAD_WORKLOOP | WQ_FLAG_THREAD_KEVENT; |
| 2535 | } else { |
| 2536 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; |
| 2537 | } |
| 2538 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
| 2539 | upcall_flags |= WQ_FLAG_THREAD_EVENT_MANAGER; |
| 2540 | } else { |
| 2541 | if (uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT) { |
| 2542 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
| 2543 | } |
| 2544 | if (uth->uu_workq_flags & UT_WORKQ_OUTSIDE_QOS) { |
| 2545 | upcall_flags |= WQ_FLAG_THREAD_OUTSIDEQOS; |
| 2546 | } else { |
| 2547 | upcall_flags |= uth->uu_workq_pri.qos_req | |
| 2548 | WQ_FLAG_THREAD_PRIO_QOS; |
| 2549 | } |
| 2550 | } |
| 2551 | |
| 2552 | error = pthread_functions->workq_handle_stack_events(p, th, |
| 2553 | get_task_map(p->task), uth->uu_workq_stackaddr, |
| 2554 | uth->uu_workq_thport, eventlist, nevents, upcall_flags); |
| 2555 | if (error) return error; |
| 2556 | |
| 2557 | // pthread is supposed to pass KEVENT_FLAG_PARKING here |
| 2558 | // which should cause the above call to either: |
| 2559 | // - not return |
| 2560 | // - return an error |
| 2561 | // - return 0 and have unbound properly |
| 2562 | assert(uth->uu_kqr_bound == NULL); |
| 2563 | } |
| 2564 | |
| 2565 | WQ_TRACE_WQ(TRACE_wq_runthread | DBG_FUNC_END, wq, uap->options, 0, 0, 0); |
| 2566 | |
| 2567 | thread_sched_call(th, NULL); |
| 2568 | thread_will_park_or_terminate(th); |
| 2569 | #if CONFIG_WORKLOOP_DEBUG |
| 2570 | UU_KEVENT_HISTORY_WRITE_ENTRY(uth, { .uu_error = -1, }); |
| 2571 | #endif |
| 2572 | |
| 2573 | workq_lock_spin(wq); |
| 2574 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_END, wq, 0, 0, 0, 0); |
| 2575 | uth->uu_save.uus_workq_park_data.workloop_params = trp.trp_value; |
| 2576 | workq_select_threadreq_or_park_and_unlock(p, wq, uth); |
| 2577 | __builtin_unreachable(); |
| 2578 | } |
| 2579 | |
| 2580 | /** |
| 2581 | * Multiplexed call to interact with the workqueue mechanism |
| 2582 | */ |
| 2583 | int |
| 2584 | workq_kernreturn(struct proc *p, struct workq_kernreturn_args *uap, int32_t *retval) |
| 2585 | { |
| 2586 | int options = uap->options; |
| 2587 | int arg2 = uap->affinity; |
| 2588 | int arg3 = uap->prio; |
| 2589 | struct workqueue *wq = proc_get_wqptr(p); |
| 2590 | int error = 0; |
| 2591 | |
| 2592 | if ((p->p_lflag & P_LREGISTER) == 0) { |
| 2593 | return EINVAL; |
| 2594 | } |
| 2595 | |
| 2596 | switch (options) { |
| 2597 | case WQOPS_QUEUE_NEWSPISUPP: { |
| 2598 | /* |
| 2599 | * arg2 = offset of serialno into dispatch queue |
| 2600 | * arg3 = kevent support |
| 2601 | */ |
| 2602 | int offset = arg2; |
| 2603 | if (arg3 & 0x01){ |
| 2604 | // If we get here, then userspace has indicated support for kevent delivery. |
| 2605 | } |
| 2606 | |
| 2607 | p->p_dispatchqueue_serialno_offset = (uint64_t)offset; |
| 2608 | break; |
| 2609 | } |
| 2610 | case WQOPS_QUEUE_REQTHREADS: { |
| 2611 | /* |
| 2612 | * arg2 = number of threads to start |
| 2613 | * arg3 = priority |
| 2614 | */ |
| 2615 | error = workq_reqthreads(p, arg2, arg3); |
| 2616 | break; |
| 2617 | } |
| 2618 | case WQOPS_SET_EVENT_MANAGER_PRIORITY: { |
| 2619 | /* |
| 2620 | * arg2 = priority for the manager thread |
| 2621 | * |
| 2622 | * if _PTHREAD_PRIORITY_SCHED_PRI_FLAG is set, |
| 2623 | * the low bits of the value contains a scheduling priority |
| 2624 | * instead of a QOS value |
| 2625 | */ |
| 2626 | pthread_priority_t pri = arg2; |
| 2627 | |
| 2628 | if (wq == NULL) { |
| 2629 | error = EINVAL; |
| 2630 | break; |
| 2631 | } |
| 2632 | |
| 2633 | /* |
| 2634 | * Normalize the incoming priority so that it is ordered numerically. |
| 2635 | */ |
| 2636 | if (pri & _PTHREAD_PRIORITY_SCHED_PRI_FLAG) { |
| 2637 | pri &= (_PTHREAD_PRIORITY_SCHED_PRI_MASK | |
| 2638 | _PTHREAD_PRIORITY_SCHED_PRI_FLAG); |
| 2639 | } else { |
| 2640 | thread_qos_t qos = _pthread_priority_thread_qos(pri); |
| 2641 | int relpri = _pthread_priority_relpri(pri); |
| 2642 | if (relpri > 0 || relpri < THREAD_QOS_MIN_TIER_IMPORTANCE || |
| 2643 | qos == THREAD_QOS_UNSPECIFIED) { |
| 2644 | error = EINVAL; |
| 2645 | break; |
| 2646 | } |
| 2647 | pri &= ~_PTHREAD_PRIORITY_FLAGS_MASK; |
| 2648 | } |
| 2649 | |
| 2650 | /* |
| 2651 | * If userspace passes a scheduling priority, that wins over any QoS. |
| 2652 | * Userspace should takes care not to lower the priority this way. |
| 2653 | */ |
| 2654 | workq_lock_spin(wq); |
| 2655 | if (wq->wq_event_manager_priority < (uint32_t)pri) { |
| 2656 | wq->wq_event_manager_priority = (uint32_t)pri; |
| 2657 | } |
| 2658 | workq_unlock(wq); |
| 2659 | break; |
| 2660 | } |
| 2661 | case WQOPS_THREAD_KEVENT_RETURN: |
| 2662 | case WQOPS_THREAD_WORKLOOP_RETURN: |
| 2663 | case WQOPS_THREAD_RETURN: { |
| 2664 | error = workq_thread_return(p, uap, wq); |
| 2665 | break; |
| 2666 | } |
| 2667 | |
| 2668 | case WQOPS_SHOULD_NARROW: { |
| 2669 | /* |
| 2670 | * arg2 = priority to test |
| 2671 | * arg3 = unused |
| 2672 | */ |
| 2673 | thread_t th = current_thread(); |
| 2674 | struct uthread *uth = get_bsdthread_info(th); |
| 2675 | if (((thread_get_tag(th) & THREAD_TAG_WORKQUEUE) == 0) || |
| 2676 | (uth->uu_workq_flags & (UT_WORKQ_DYING|UT_WORKQ_OVERCOMMIT))) { |
| 2677 | error = EINVAL; |
| 2678 | break; |
| 2679 | } |
| 2680 | |
| 2681 | thread_qos_t qos = _pthread_priority_thread_qos(arg2); |
| 2682 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 2683 | error = EINVAL; |
| 2684 | break; |
| 2685 | } |
| 2686 | workq_lock_spin(wq); |
| 2687 | bool should_narrow = !workq_constrained_allowance(wq, qos, uth, false); |
| 2688 | workq_unlock(wq); |
| 2689 | |
| 2690 | *retval = should_narrow; |
| 2691 | break; |
| 2692 | } |
| 2693 | default: |
| 2694 | error = EINVAL; |
| 2695 | break; |
| 2696 | } |
| 2697 | |
| 2698 | return (error); |
| 2699 | } |
| 2700 | |
| 2701 | /* |
| 2702 | * We have no work to do, park ourselves on the idle list. |
| 2703 | * |
| 2704 | * Consumes the workqueue lock and does not return. |
| 2705 | */ |
| 2706 | __attribute__((noreturn, noinline)) |
| 2707 | static void |
| 2708 | workq_park_and_unlock(proc_t p, struct workqueue *wq, struct uthread *uth) |
| 2709 | { |
| 2710 | assert(uth == current_uthread()); |
| 2711 | assert(uth->uu_kqr_bound == NULL); |
| 2712 | workq_push_idle_thread(p, wq, uth); // may not return |
| 2713 | |
| 2714 | workq_thread_reset_cpupercent(NULL, uth); |
| 2715 | |
| 2716 | if (uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) { |
| 2717 | workq_unlock(wq); |
| 2718 | |
| 2719 | /* |
| 2720 | * workq_push_idle_thread() will unset `has_stack` |
| 2721 | * if it wants us to free the stack before parking. |
| 2722 | */ |
| 2723 | if (!uth->uu_save.uus_workq_park_data.has_stack) { |
| 2724 | pthread_functions->workq_markfree_threadstack(p, uth->uu_thread, |
| 2725 | get_task_map(p->task), uth->uu_workq_stackaddr); |
| 2726 | } |
| 2727 | |
| 2728 | /* |
| 2729 | * When we remove the voucher from the thread, we may lose our importance |
| 2730 | * causing us to get preempted, so we do this after putting the thread on |
| 2731 | * the idle list. Then, when we get our importance back we'll be able to |
| 2732 | * use this thread from e.g. the kevent call out to deliver a boosting |
| 2733 | * message. |
| 2734 | */ |
| 2735 | __assert_only kern_return_t kr; |
| 2736 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
| 2737 | assert(kr == KERN_SUCCESS); |
| 2738 | |
| 2739 | workq_lock_spin(wq); |
| 2740 | uth->uu_workq_flags &= ~UT_WORKQ_IDLE_CLEANUP; |
| 2741 | } |
| 2742 | |
| 2743 | if (uth->uu_workq_flags & UT_WORKQ_RUNNING) { |
| 2744 | /* |
| 2745 | * While we'd dropped the lock to unset our voucher, someone came |
| 2746 | * around and made us runnable. But because we weren't waiting on the |
| 2747 | * event their thread_wakeup() was ineffectual. To correct for that, |
| 2748 | * we just run the continuation ourselves. |
| 2749 | */ |
| 2750 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_END, wq, 0, 0, 0, 0); |
| 2751 | workq_select_threadreq_or_park_and_unlock(p, wq, uth); |
| 2752 | __builtin_unreachable(); |
| 2753 | } |
| 2754 | |
| 2755 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
| 2756 | workq_unpark_for_death_and_unlock(p, wq, uth, |
| 2757 | WORKQ_UNPARK_FOR_DEATH_WAS_IDLE); |
| 2758 | __builtin_unreachable(); |
| 2759 | } |
| 2760 | |
| 2761 | thread_set_pending_block_hint(uth->uu_thread, kThreadWaitParkedWorkQueue); |
| 2762 | assert_wait(workq_parked_wait_event(uth), THREAD_INTERRUPTIBLE); |
| 2763 | workq_unlock(wq); |
| 2764 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_END, wq, 0, 0, 0, 0); |
| 2765 | thread_block(workq_unpark_continue); |
| 2766 | __builtin_unreachable(); |
| 2767 | } |
| 2768 | |
| 2769 | static inline bool |
| 2770 | workq_may_start_event_mgr_thread(struct workqueue *wq, struct uthread *uth) |
| 2771 | { |
| 2772 | /* |
| 2773 | * There's an event manager request and either: |
| 2774 | * - no event manager currently running |
| 2775 | * - we are re-using the event manager |
| 2776 | */ |
| 2777 | return wq->wq_thscheduled_count[_wq_bucket(WORKQ_THREAD_QOS_MANAGER)] == 0 || |
| 2778 | (uth && uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER); |
| 2779 | } |
| 2780 | |
| 2781 | static uint32_t |
| 2782 | workq_constrained_allowance(struct workqueue *wq, thread_qos_t at_qos, |
| 2783 | struct uthread *uth, bool may_start_timer) |
| 2784 | { |
| 2785 | assert(at_qos != WORKQ_THREAD_QOS_MANAGER); |
| 2786 | uint32_t count = 0; |
| 2787 | |
| 2788 | uint32_t max_count = wq->wq_constrained_threads_scheduled; |
| 2789 | if (uth && (uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT) == 0) { |
| 2790 | /* |
| 2791 | * don't count the current thread as scheduled |
| 2792 | */ |
| 2793 | assert(max_count > 0); |
| 2794 | max_count--; |
| 2795 | } |
| 2796 | if (max_count >= wq_max_constrained_threads) { |
| 2797 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 1, |
| 2798 | wq->wq_constrained_threads_scheduled, |
| 2799 | wq_max_constrained_threads, 0); |
| 2800 | /* |
| 2801 | * we need 1 or more constrained threads to return to the kernel before |
| 2802 | * we can dispatch additional work |
| 2803 | */ |
| 2804 | return 0; |
| 2805 | } |
| 2806 | max_count -= wq_max_constrained_threads; |
| 2807 | |
| 2808 | /* |
| 2809 | * Compute a metric for many how many threads are active. We find the |
| 2810 | * highest priority request outstanding and then add up the number of |
| 2811 | * active threads in that and all higher-priority buckets. We'll also add |
| 2812 | * any "busy" threads which are not active but blocked recently enough that |
| 2813 | * we can't be sure they've gone idle yet. We'll then compare this metric |
| 2814 | * to our max concurrency to decide whether to add a new thread. |
| 2815 | */ |
| 2816 | |
| 2817 | uint32_t busycount, thactive_count; |
| 2818 | |
| 2819 | thactive_count = _wq_thactive_aggregate_downto_qos(wq, _wq_thactive(wq), |
| 2820 | at_qos, &busycount, NULL); |
| 2821 | |
| 2822 | if (uth && uth->uu_workq_pri.qos_bucket != WORKQ_THREAD_QOS_MANAGER && |
| 2823 | at_qos <= uth->uu_workq_pri.qos_bucket) { |
| 2824 | /* |
| 2825 | * Don't count this thread as currently active, but only if it's not |
| 2826 | * a manager thread, as _wq_thactive_aggregate_downto_qos ignores active |
| 2827 | * managers. |
| 2828 | */ |
| 2829 | assert(thactive_count > 0); |
| 2830 | thactive_count--; |
| 2831 | } |
| 2832 | |
| 2833 | count = wq_max_parallelism[_wq_bucket(at_qos)]; |
| 2834 | if (count > thactive_count + busycount) { |
| 2835 | count -= thactive_count + busycount; |
| 2836 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 2, |
| 2837 | thactive_count, busycount, 0); |
| 2838 | return MIN(count, max_count); |
| 2839 | } else { |
| 2840 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 3, |
| 2841 | thactive_count, busycount, 0); |
| 2842 | } |
| 2843 | |
| 2844 | if (busycount && may_start_timer) { |
| 2845 | /* |
| 2846 | * If this is called from the add timer, we won't have another timer |
| 2847 | * fire when the thread exits the "busy" state, so rearm the timer. |
| 2848 | */ |
| 2849 | workq_schedule_delayed_thread_creation(wq, 0); |
| 2850 | } |
| 2851 | |
| 2852 | return 0; |
| 2853 | } |
| 2854 | |
| 2855 | static bool |
| 2856 | workq_threadreq_admissible(struct workqueue *wq, struct uthread *uth, |
| 2857 | workq_threadreq_t req) |
| 2858 | { |
| 2859 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
| 2860 | return workq_may_start_event_mgr_thread(wq, uth); |
| 2861 | } |
| 2862 | if ((req->tr_flags & TR_FLAG_OVERCOMMIT) == 0) { |
| 2863 | return workq_constrained_allowance(wq, req->tr_qos, uth, true); |
| 2864 | } |
| 2865 | return true; |
| 2866 | } |
| 2867 | |
| 2868 | static workq_threadreq_t |
| 2869 | workq_threadreq_select_for_creator(struct workqueue *wq) |
| 2870 | { |
| 2871 | workq_threadreq_t req_qos, req_pri, req_tmp; |
| 2872 | thread_qos_t qos = THREAD_QOS_UNSPECIFIED; |
| 2873 | uint8_t pri = 0; |
| 2874 | |
| 2875 | req_tmp = wq->wq_event_manager_threadreq; |
| 2876 | if (req_tmp && workq_may_start_event_mgr_thread(wq, NULL)) { |
| 2877 | return req_tmp; |
| 2878 | } |
| 2879 | |
| 2880 | /* |
| 2881 | * Compute the best priority request, and ignore the turnstile for now |
| 2882 | */ |
| 2883 | |
| 2884 | req_pri = priority_queue_max(&wq->wq_special_queue, |
| 2885 | struct workq_threadreq_s, tr_entry); |
| 2886 | if (req_pri) { |
| 2887 | pri = priority_queue_entry_key(&wq->wq_special_queue, &req_pri->tr_entry); |
| 2888 | } |
| 2889 | |
| 2890 | /* |
| 2891 | * Compute the best QoS Request, and check whether it beats the "pri" one |
| 2892 | */ |
| 2893 | |
| 2894 | req_qos = priority_queue_max(&wq->wq_overcommit_queue, |
| 2895 | struct workq_threadreq_s, tr_entry); |
| 2896 | if (req_qos) { |
| 2897 | qos = req_qos->tr_qos; |
| 2898 | } |
| 2899 | |
| 2900 | req_tmp = priority_queue_max(&wq->wq_constrained_queue, |
| 2901 | struct workq_threadreq_s, tr_entry); |
| 2902 | |
| 2903 | if (req_tmp && qos < req_tmp->tr_qos) { |
| 2904 | if (pri && pri >= thread_workq_pri_for_qos(req_tmp->tr_qos)) { |
| 2905 | return req_pri; |
| 2906 | } |
| 2907 | |
| 2908 | if (workq_constrained_allowance(wq, req_tmp->tr_qos, NULL, true)) { |
| 2909 | /* |
| 2910 | * If the constrained thread request is the best one and passes |
| 2911 | * the admission check, pick it. |
| 2912 | */ |
| 2913 | return req_tmp; |
| 2914 | } |
| 2915 | } |
| 2916 | |
| 2917 | if (pri && (!qos || pri >= thread_workq_pri_for_qos(qos))) { |
| 2918 | return req_pri; |
| 2919 | } |
| 2920 | |
| 2921 | if (req_qos) { |
| 2922 | return req_qos; |
| 2923 | } |
| 2924 | |
| 2925 | /* |
| 2926 | * If we had no eligible request but we have a turnstile push, |
| 2927 | * it must be a non overcommit thread request that failed |
| 2928 | * the admission check. |
| 2929 | * |
| 2930 | * Just fake a BG thread request so that if the push stops the creator |
| 2931 | * priority just drops to 4. |
| 2932 | */ |
| 2933 | if (turnstile_workq_proprietor_of_max_turnstile(wq->wq_turnstile, NULL)) { |
| 2934 | static struct workq_threadreq_s workq_sync_push_fake_req = { |
| 2935 | .tr_qos = THREAD_QOS_BACKGROUND, |
| 2936 | }; |
| 2937 | |
| 2938 | return &workq_sync_push_fake_req; |
| 2939 | } |
| 2940 | |
| 2941 | return NULL; |
| 2942 | } |
| 2943 | |
| 2944 | static workq_threadreq_t |
| 2945 | workq_threadreq_select(struct workqueue *wq, struct uthread *uth) |
| 2946 | { |
| 2947 | workq_threadreq_t req_qos, req_pri, req_tmp; |
| 2948 | uintptr_t proprietor; |
| 2949 | thread_qos_t qos = THREAD_QOS_UNSPECIFIED; |
| 2950 | uint8_t pri = 0; |
| 2951 | |
| 2952 | if (uth == wq->wq_creator) uth = NULL; |
| 2953 | |
| 2954 | req_tmp = wq->wq_event_manager_threadreq; |
| 2955 | if (req_tmp && workq_may_start_event_mgr_thread(wq, uth)) { |
| 2956 | return req_tmp; |
| 2957 | } |
| 2958 | |
| 2959 | /* |
| 2960 | * Compute the best priority request (special or turnstile) |
| 2961 | */ |
| 2962 | |
| 2963 | pri = turnstile_workq_proprietor_of_max_turnstile(wq->wq_turnstile, |
| 2964 | &proprietor); |
| 2965 | if (pri) { |
| 2966 | struct kqworkloop *kqwl = (struct kqworkloop *)proprietor; |
| 2967 | req_pri = &kqwl->kqwl_request.kqr_req; |
| 2968 | if (req_pri->tr_state != TR_STATE_QUEUED) { |
| 2969 | panic("Invalid thread request (%p) state %d" , |
| 2970 | req_pri, req_pri->tr_state); |
| 2971 | } |
| 2972 | } else { |
| 2973 | req_pri = NULL; |
| 2974 | } |
| 2975 | |
| 2976 | req_tmp = priority_queue_max(&wq->wq_special_queue, |
| 2977 | struct workq_threadreq_s, tr_entry); |
| 2978 | if (req_tmp && pri < priority_queue_entry_key(&wq->wq_special_queue, |
| 2979 | &req_tmp->tr_entry)) { |
| 2980 | req_pri = req_tmp; |
| 2981 | pri = priority_queue_entry_key(&wq->wq_special_queue, &req_tmp->tr_entry); |
| 2982 | } |
| 2983 | |
| 2984 | /* |
| 2985 | * Compute the best QoS Request, and check whether it beats the "pri" one |
| 2986 | */ |
| 2987 | |
| 2988 | req_qos = priority_queue_max(&wq->wq_overcommit_queue, |
| 2989 | struct workq_threadreq_s, tr_entry); |
| 2990 | if (req_qos) { |
| 2991 | qos = req_qos->tr_qos; |
| 2992 | } |
| 2993 | |
| 2994 | req_tmp = priority_queue_max(&wq->wq_constrained_queue, |
| 2995 | struct workq_threadreq_s, tr_entry); |
| 2996 | |
| 2997 | if (req_tmp && qos < req_tmp->tr_qos) { |
| 2998 | if (pri && pri >= thread_workq_pri_for_qos(req_tmp->tr_qos)) { |
| 2999 | return req_pri; |
| 3000 | } |
| 3001 | |
| 3002 | if (workq_constrained_allowance(wq, req_tmp->tr_qos, uth, true)) { |
| 3003 | /* |
| 3004 | * If the constrained thread request is the best one and passes |
| 3005 | * the admission check, pick it. |
| 3006 | */ |
| 3007 | return req_tmp; |
| 3008 | } |
| 3009 | } |
| 3010 | |
| 3011 | if (req_pri && (!qos || pri >= thread_workq_pri_for_qos(qos))) { |
| 3012 | return req_pri; |
| 3013 | } |
| 3014 | |
| 3015 | return req_qos; |
| 3016 | } |
| 3017 | |
| 3018 | /* |
| 3019 | * The creator is an anonymous thread that is counted as scheduled, |
| 3020 | * but otherwise without its scheduler callback set or tracked as active |
| 3021 | * that is used to make other threads. |
| 3022 | * |
| 3023 | * When more requests are added or an existing one is hurried along, |
| 3024 | * a creator is elected and setup, or the existing one overridden accordingly. |
| 3025 | * |
| 3026 | * While this creator is in flight, because no request has been dequeued, |
| 3027 | * already running threads have a chance at stealing thread requests avoiding |
| 3028 | * useless context switches, and the creator once scheduled may not find any |
| 3029 | * work to do and will then just park again. |
| 3030 | * |
| 3031 | * The creator serves the dual purpose of informing the scheduler of work that |
| 3032 | * hasn't be materialized as threads yet, and also as a natural pacing mechanism |
| 3033 | * for thread creation. |
| 3034 | * |
| 3035 | * By being anonymous (and not bound to anything) it means that thread requests |
| 3036 | * can be stolen from this creator by threads already on core yielding more |
| 3037 | * efficient scheduling and reduced context switches. |
| 3038 | */ |
| 3039 | static void |
| 3040 | workq_schedule_creator(proc_t p, struct workqueue *wq, int flags) |
| 3041 | { |
| 3042 | workq_threadreq_t req; |
| 3043 | struct uthread *uth; |
| 3044 | |
| 3045 | workq_lock_held(wq); |
| 3046 | assert(p || (flags & WORKQ_THREADREQ_CAN_CREATE_THREADS) == 0); |
| 3047 | |
| 3048 | again: |
| 3049 | uth = wq->wq_creator; |
| 3050 | |
| 3051 | if (!wq->wq_reqcount) { |
| 3052 | if (uth == NULL) { |
| 3053 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, 0); |
| 3054 | } |
| 3055 | return; |
| 3056 | } |
| 3057 | |
| 3058 | req = workq_threadreq_select_for_creator(wq); |
| 3059 | if (req == NULL) { |
| 3060 | if (flags & WORKQ_THREADREQ_CREATOR_SYNC_UPDATE) { |
| 3061 | assert((flags & WORKQ_THREADREQ_CREATOR_TRANSFER) == 0); |
| 3062 | /* |
| 3063 | * turnstile propagation code is reaching out to us, |
| 3064 | * and we still don't want to do anything, do not recurse. |
| 3065 | */ |
| 3066 | } else { |
| 3067 | workq_turnstile_update_inheritor(wq, wq, TURNSTILE_INHERITOR_WORKQ); |
| 3068 | } |
| 3069 | return; |
| 3070 | } |
| 3071 | |
| 3072 | if (uth) { |
| 3073 | /* |
| 3074 | * We need to maybe override the creator we already have |
| 3075 | */ |
| 3076 | if (workq_thread_needs_priority_change(req, uth)) { |
| 3077 | WQ_TRACE_WQ(TRACE_wq_creator_select | DBG_FUNC_NONE, |
| 3078 | wq, 1, thread_tid(uth->uu_thread), req->tr_qos, 0); |
| 3079 | workq_thread_reset_pri(wq, uth, req); |
| 3080 | } |
| 3081 | } else if (wq->wq_thidlecount) { |
| 3082 | /* |
| 3083 | * We need to unpark a creator thread |
| 3084 | */ |
| 3085 | wq->wq_creator = uth = workq_pop_idle_thread(wq); |
| 3086 | if (workq_thread_needs_priority_change(req, uth)) { |
| 3087 | workq_thread_reset_pri(wq, uth, req); |
| 3088 | } |
| 3089 | workq_turnstile_update_inheritor(wq, uth->uu_thread, |
| 3090 | TURNSTILE_INHERITOR_THREAD); |
| 3091 | WQ_TRACE_WQ(TRACE_wq_creator_select | DBG_FUNC_NONE, |
| 3092 | wq, 2, thread_tid(uth->uu_thread), req->tr_qos, 0); |
| 3093 | uth->uu_save.uus_workq_park_data.fulfilled_snapshot = wq->wq_fulfilled; |
| 3094 | uth->uu_save.uus_workq_park_data.yields = 0; |
| 3095 | workq_thread_wakeup(uth); |
| 3096 | } else { |
| 3097 | /* |
| 3098 | * We need to allocate a thread... |
| 3099 | */ |
| 3100 | if (__improbable(wq->wq_nthreads >= wq_max_threads)) { |
| 3101 | /* out of threads, just go away */ |
| 3102 | } else if (flags & WORKQ_THREADREQ_SET_AST_ON_FAILURE) { |
| 3103 | act_set_astkevent(current_thread(), AST_KEVENT_REDRIVE_THREADREQ); |
| 3104 | } else if (!(flags & WORKQ_THREADREQ_CAN_CREATE_THREADS)) { |
| 3105 | /* This can drop the workqueue lock, and take it again */ |
| 3106 | workq_schedule_immediate_thread_creation(wq); |
| 3107 | } else if (workq_add_new_idle_thread(p, wq)) { |
| 3108 | goto again; |
| 3109 | } else { |
| 3110 | workq_schedule_delayed_thread_creation(wq, 0); |
| 3111 | } |
| 3112 | |
| 3113 | if (flags & WORKQ_THREADREQ_CREATOR_TRANSFER) { |
| 3114 | /* |
| 3115 | * workq_schedule_creator() failed at creating a thread, |
| 3116 | * and the responsibility of redriving is now with a thread-call. |
| 3117 | * |
| 3118 | * We still need to tell the turnstile the previous creator is gone. |
| 3119 | */ |
| 3120 | workq_turnstile_update_inheritor(wq, NULL, 0); |
| 3121 | } |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | /** |
| 3126 | * Runs a thread request on a thread |
| 3127 | * |
| 3128 | * - if thread is THREAD_NULL, will find a thread and run the request there. |
| 3129 | * Otherwise, the thread must be the current thread. |
| 3130 | * |
| 3131 | * - if req is NULL, will find the highest priority request and run that. If |
| 3132 | * it is not NULL, it must be a threadreq object in state NEW. If it can not |
| 3133 | * be run immediately, it will be enqueued and moved to state QUEUED. |
| 3134 | * |
| 3135 | * Either way, the thread request object serviced will be moved to state |
| 3136 | * BINDING and attached to the uthread. |
| 3137 | * |
| 3138 | * Should be called with the workqueue lock held. Will drop it. |
| 3139 | */ |
| 3140 | __attribute__((noreturn, noinline)) |
| 3141 | static void |
| 3142 | workq_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
| 3143 | struct uthread *uth) |
| 3144 | { |
| 3145 | uint32_t setup_flags = 0; |
| 3146 | workq_threadreq_t req; |
| 3147 | |
| 3148 | if (uth->uu_workq_flags & UT_WORKQ_EARLY_BOUND) { |
| 3149 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
| 3150 | setup_flags |= WQ_SETUP_FIRST_USE; |
| 3151 | } |
| 3152 | uth->uu_workq_flags &= ~(UT_WORKQ_NEW | UT_WORKQ_EARLY_BOUND); |
| 3153 | /* |
| 3154 | * This pointer is possibly freed and only used for tracing purposes. |
| 3155 | */ |
| 3156 | req = uth->uu_save.uus_workq_park_data.thread_request; |
| 3157 | workq_unlock(wq); |
| 3158 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
| 3159 | VM_KERNEL_ADDRHIDE(req), 0, 0, 0); |
| 3160 | goto run; |
| 3161 | } else if (_wq_exiting(wq)) { |
| 3162 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 0, 0, 0, 0); |
| 3163 | } else if (wq->wq_reqcount == 0) { |
| 3164 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 1, 0, 0, 0); |
| 3165 | } else if ((req = workq_threadreq_select(wq, uth)) == NULL) { |
| 3166 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 2, 0, 0, 0); |
| 3167 | } else { |
| 3168 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
| 3169 | workq_trace_req_id(req), 0, 0, 0); |
| 3170 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
| 3171 | uth->uu_workq_flags ^= UT_WORKQ_NEW; |
| 3172 | setup_flags |= WQ_SETUP_FIRST_USE; |
| 3173 | } |
| 3174 | workq_thread_reset_cpupercent(req, uth); |
| 3175 | workq_threadreq_bind_and_unlock(p, wq, req, uth); |
| 3176 | run: |
| 3177 | workq_setup_and_run(p, uth, setup_flags); |
| 3178 | __builtin_unreachable(); |
| 3179 | } |
| 3180 | |
| 3181 | workq_park_and_unlock(p, wq, uth); |
| 3182 | __builtin_unreachable(); |
| 3183 | } |
| 3184 | |
| 3185 | static bool |
| 3186 | workq_creator_should_yield(struct workqueue *wq, struct uthread *uth) |
| 3187 | { |
| 3188 | thread_qos_t qos = workq_pri_override(uth->uu_workq_pri); |
| 3189 | |
| 3190 | if (qos >= THREAD_QOS_USER_INTERACTIVE) { |
| 3191 | return false; |
| 3192 | } |
| 3193 | |
| 3194 | uint32_t snapshot = uth->uu_save.uus_workq_park_data.fulfilled_snapshot; |
| 3195 | if (wq->wq_fulfilled == snapshot) { |
| 3196 | return false; |
| 3197 | } |
| 3198 | |
| 3199 | uint32_t cnt = 0, conc = wq_max_parallelism[_wq_bucket(qos)]; |
| 3200 | if (wq->wq_fulfilled - snapshot > conc) { |
| 3201 | /* we fulfilled more than NCPU requests since being dispatched */ |
| 3202 | WQ_TRACE_WQ(TRACE_wq_creator_yield, wq, 1, |
| 3203 | wq->wq_fulfilled, snapshot, 0); |
| 3204 | return true; |
| 3205 | } |
| 3206 | |
| 3207 | for (int i = _wq_bucket(qos); i < WORKQ_NUM_QOS_BUCKETS; i++) { |
| 3208 | cnt += wq->wq_thscheduled_count[i]; |
| 3209 | } |
| 3210 | if (conc <= cnt) { |
| 3211 | /* We fulfilled requests and have more than NCPU scheduled threads */ |
| 3212 | WQ_TRACE_WQ(TRACE_wq_creator_yield, wq, 2, |
| 3213 | wq->wq_fulfilled, snapshot, 0); |
| 3214 | return true; |
| 3215 | } |
| 3216 | |
| 3217 | return false; |
| 3218 | } |
| 3219 | |
| 3220 | /** |
| 3221 | * parked thread wakes up |
| 3222 | */ |
| 3223 | __attribute__((noreturn, noinline)) |
| 3224 | static void |
| 3225 | workq_unpark_continue(void *parameter __unused, wait_result_t wr __unused) |
| 3226 | { |
| 3227 | struct uthread *uth = current_uthread(); |
| 3228 | proc_t p = current_proc(); |
| 3229 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 3230 | |
| 3231 | workq_lock_spin(wq); |
| 3232 | |
| 3233 | if (wq->wq_creator == uth && workq_creator_should_yield(wq, uth)) { |
| 3234 | /* |
| 3235 | * If the number of threads we have out are able to keep up with the |
| 3236 | * demand, then we should avoid sending this creator thread to |
| 3237 | * userspace. |
| 3238 | */ |
| 3239 | uth->uu_save.uus_workq_park_data.fulfilled_snapshot = wq->wq_fulfilled; |
| 3240 | uth->uu_save.uus_workq_park_data.yields++; |
| 3241 | workq_unlock(wq); |
| 3242 | thread_yield_with_continuation(workq_unpark_continue, NULL); |
| 3243 | __builtin_unreachable(); |
| 3244 | } |
| 3245 | |
| 3246 | if (__probable(uth->uu_workq_flags & UT_WORKQ_RUNNING)) { |
| 3247 | workq_select_threadreq_or_park_and_unlock(p, wq, uth); |
| 3248 | __builtin_unreachable(); |
| 3249 | } |
| 3250 | |
| 3251 | if (__probable(wr == THREAD_AWAKENED)) { |
| 3252 | /* |
| 3253 | * We were set running, but for the purposes of dying. |
| 3254 | */ |
| 3255 | assert(uth->uu_workq_flags & UT_WORKQ_DYING); |
| 3256 | assert((uth->uu_workq_flags & UT_WORKQ_NEW) == 0); |
| 3257 | } else { |
| 3258 | /* |
| 3259 | * workaround for <rdar://problem/38647347>, |
| 3260 | * in case we do hit userspace, make sure calling |
| 3261 | * workq_thread_terminate() does the right thing here, |
| 3262 | * and if we never call it, that workq_exit() will too because it sees |
| 3263 | * this thread on the runlist. |
| 3264 | */ |
| 3265 | assert(wr == THREAD_INTERRUPTED); |
| 3266 | wq->wq_thdying_count++; |
| 3267 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
| 3268 | } |
| 3269 | |
| 3270 | workq_unpark_for_death_and_unlock(p, wq, uth, |
| 3271 | WORKQ_UNPARK_FOR_DEATH_WAS_IDLE); |
| 3272 | __builtin_unreachable(); |
| 3273 | } |
| 3274 | |
| 3275 | __attribute__((noreturn, noinline)) |
| 3276 | static void |
| 3277 | workq_setup_and_run(proc_t p, struct uthread *uth, int setup_flags) |
| 3278 | { |
| 3279 | thread_t th = uth->uu_thread; |
| 3280 | vm_map_t vmap = get_task_map(p->task); |
| 3281 | |
| 3282 | if (setup_flags & WQ_SETUP_CLEAR_VOUCHER) { |
| 3283 | /* |
| 3284 | * For preemption reasons, we want to reset the voucher as late as |
| 3285 | * possible, so we do it in two places: |
| 3286 | * - Just before parking (i.e. in workq_park_and_unlock()) |
| 3287 | * - Prior to doing the setup for the next workitem (i.e. here) |
| 3288 | * |
| 3289 | * Those two places are sufficient to ensure we always reset it before |
| 3290 | * it goes back out to user space, but be careful to not break that |
| 3291 | * guarantee. |
| 3292 | */ |
| 3293 | __assert_only kern_return_t kr; |
| 3294 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
| 3295 | assert(kr == KERN_SUCCESS); |
| 3296 | } |
| 3297 | |
| 3298 | uint32_t upcall_flags = uth->uu_save.uus_workq_park_data.upcall_flags; |
| 3299 | if (!(setup_flags & WQ_SETUP_FIRST_USE)) { |
| 3300 | upcall_flags |= WQ_FLAG_THREAD_REUSE; |
| 3301 | } |
| 3302 | |
| 3303 | if (uth->uu_workq_flags & UT_WORKQ_OUTSIDE_QOS) { |
| 3304 | /* |
| 3305 | * For threads that have an outside-of-QoS thread priority, indicate |
| 3306 | * to userspace that setting QoS should only affect the TSD and not |
| 3307 | * change QOS in the kernel. |
| 3308 | */ |
| 3309 | upcall_flags |= WQ_FLAG_THREAD_OUTSIDEQOS; |
| 3310 | } else { |
| 3311 | /* |
| 3312 | * Put the QoS class value into the lower bits of the reuse_thread |
| 3313 | * register, this is where the thread priority used to be stored |
| 3314 | * anyway. |
| 3315 | */ |
| 3316 | upcall_flags |= uth->uu_save.uus_workq_park_data.qos | |
| 3317 | WQ_FLAG_THREAD_PRIO_QOS; |
| 3318 | } |
| 3319 | |
| 3320 | if (uth->uu_workq_thport == MACH_PORT_NULL) { |
| 3321 | /* convert_thread_to_port() consumes a reference */ |
| 3322 | thread_reference(th); |
| 3323 | ipc_port_t port = convert_thread_to_port(th); |
| 3324 | uth->uu_workq_thport = ipc_port_copyout_send(port, get_task_ipcspace(p->task)); |
| 3325 | } |
| 3326 | |
| 3327 | /* |
| 3328 | * Call out to pthread, this sets up the thread, pulls in kevent structs |
| 3329 | * onto the stack, sets up the thread state and then returns to userspace. |
| 3330 | */ |
| 3331 | WQ_TRACE_WQ(TRACE_wq_runthread | DBG_FUNC_START, |
| 3332 | proc_get_wqptr_fast(p), 0, 0, 0, 0); |
| 3333 | thread_sched_call(th, workq_sched_callback); |
| 3334 | pthread_functions->workq_setup_thread(p, th, vmap, uth->uu_workq_stackaddr, |
| 3335 | uth->uu_workq_thport, 0, setup_flags, upcall_flags); |
| 3336 | |
| 3337 | __builtin_unreachable(); |
| 3338 | } |
| 3339 | |
| 3340 | #pragma mark misc |
| 3341 | |
| 3342 | int |
| 3343 | fill_procworkqueue(proc_t p, struct proc_workqueueinfo * pwqinfo) |
| 3344 | { |
| 3345 | struct workqueue *wq = proc_get_wqptr(p); |
| 3346 | int error = 0; |
| 3347 | int activecount; |
| 3348 | |
| 3349 | if (wq == NULL) { |
| 3350 | return EINVAL; |
| 3351 | } |
| 3352 | |
| 3353 | /* |
| 3354 | * This is sometimes called from interrupt context by the kperf sampler. |
| 3355 | * In that case, it's not safe to spin trying to take the lock since we |
| 3356 | * might already hold it. So, we just try-lock it and error out if it's |
| 3357 | * already held. Since this is just a debugging aid, and all our callers |
| 3358 | * are able to handle an error, that's fine. |
| 3359 | */ |
| 3360 | bool locked = workq_lock_try(wq); |
| 3361 | if (!locked) { |
| 3362 | return EBUSY; |
| 3363 | } |
| 3364 | |
| 3365 | wq_thactive_t act = _wq_thactive(wq); |
| 3366 | activecount = _wq_thactive_aggregate_downto_qos(wq, act, |
| 3367 | WORKQ_THREAD_QOS_MIN, NULL, NULL); |
| 3368 | if (act & _wq_thactive_offset_for_qos(WORKQ_THREAD_QOS_MANAGER)) { |
| 3369 | activecount++; |
| 3370 | } |
| 3371 | pwqinfo->pwq_nthreads = wq->wq_nthreads; |
| 3372 | pwqinfo->pwq_runthreads = activecount; |
| 3373 | pwqinfo->pwq_blockedthreads = wq->wq_threads_scheduled - activecount; |
| 3374 | pwqinfo->pwq_state = 0; |
| 3375 | |
| 3376 | if (wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { |
| 3377 | pwqinfo->pwq_state |= WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT; |
| 3378 | } |
| 3379 | |
| 3380 | if (wq->wq_nthreads >= wq_max_threads) { |
| 3381 | pwqinfo->pwq_state |= WQ_EXCEEDED_TOTAL_THREAD_LIMIT; |
| 3382 | } |
| 3383 | |
| 3384 | workq_unlock(wq); |
| 3385 | return error; |
| 3386 | } |
| 3387 | |
| 3388 | boolean_t |
| 3389 | workqueue_get_pwq_exceeded(void *v, boolean_t *exceeded_total, |
| 3390 | boolean_t *exceeded_constrained) |
| 3391 | { |
| 3392 | proc_t p = v; |
| 3393 | struct proc_workqueueinfo pwqinfo; |
| 3394 | int err; |
| 3395 | |
| 3396 | assert(p != NULL); |
| 3397 | assert(exceeded_total != NULL); |
| 3398 | assert(exceeded_constrained != NULL); |
| 3399 | |
| 3400 | err = fill_procworkqueue(p, &pwqinfo); |
| 3401 | if (err) { |
| 3402 | return FALSE; |
| 3403 | } |
| 3404 | if (!(pwqinfo.pwq_state & WQ_FLAGS_AVAILABLE)) { |
| 3405 | return FALSE; |
| 3406 | } |
| 3407 | |
| 3408 | *exceeded_total = (pwqinfo.pwq_state & WQ_EXCEEDED_TOTAL_THREAD_LIMIT); |
| 3409 | *exceeded_constrained = (pwqinfo.pwq_state & WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT); |
| 3410 | |
| 3411 | return TRUE; |
| 3412 | } |
| 3413 | |
| 3414 | uint32_t |
| 3415 | workqueue_get_pwq_state_kdp(void * v) |
| 3416 | { |
| 3417 | static_assert((WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT << 17) == |
| 3418 | kTaskWqExceededConstrainedThreadLimit); |
| 3419 | static_assert((WQ_EXCEEDED_TOTAL_THREAD_LIMIT << 17) == |
| 3420 | kTaskWqExceededTotalThreadLimit); |
| 3421 | static_assert((WQ_FLAGS_AVAILABLE << 17) == kTaskWqFlagsAvailable); |
| 3422 | static_assert((WQ_FLAGS_AVAILABLE | WQ_EXCEEDED_TOTAL_THREAD_LIMIT | |
| 3423 | WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT) == 0x7); |
| 3424 | |
| 3425 | if (v == NULL) { |
| 3426 | return 0; |
| 3427 | } |
| 3428 | |
| 3429 | proc_t p = v; |
| 3430 | struct workqueue *wq = proc_get_wqptr(p); |
| 3431 | |
| 3432 | if (wq == NULL || workq_lock_spin_is_acquired_kdp(wq)) { |
| 3433 | return 0; |
| 3434 | } |
| 3435 | |
| 3436 | uint32_t pwq_state = WQ_FLAGS_AVAILABLE; |
| 3437 | |
| 3438 | if (wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { |
| 3439 | pwq_state |= WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT; |
| 3440 | } |
| 3441 | |
| 3442 | if (wq->wq_nthreads >= wq_max_threads) { |
| 3443 | pwq_state |= WQ_EXCEEDED_TOTAL_THREAD_LIMIT; |
| 3444 | } |
| 3445 | |
| 3446 | return pwq_state; |
| 3447 | } |
| 3448 | |
| 3449 | void |
| 3450 | workq_init(void) |
| 3451 | { |
| 3452 | workq_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 3453 | workq_lck_attr = lck_attr_alloc_init(); |
| 3454 | workq_lck_grp = lck_grp_alloc_init("workq" , workq_lck_grp_attr); |
| 3455 | |
| 3456 | workq_zone_workqueue = zinit(sizeof(struct workqueue), |
| 3457 | 1024 * sizeof(struct workqueue), 8192, "workq.wq" ); |
| 3458 | workq_zone_threadreq = zinit(sizeof(struct workq_threadreq_s), |
| 3459 | 1024 * sizeof(struct workq_threadreq_s), 8192, "workq.threadreq" ); |
| 3460 | |
| 3461 | clock_interval_to_absolutetime_interval(wq_stalled_window.usecs, |
| 3462 | NSEC_PER_USEC, &wq_stalled_window.abstime); |
| 3463 | clock_interval_to_absolutetime_interval(wq_reduce_pool_window.usecs, |
| 3464 | NSEC_PER_USEC, &wq_reduce_pool_window.abstime); |
| 3465 | clock_interval_to_absolutetime_interval(wq_max_timer_interval.usecs, |
| 3466 | NSEC_PER_USEC, &wq_max_timer_interval.abstime); |
| 3467 | } |
| 3468 | |