1 | /* |
2 | * Copyright (c) 2015 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* |
30 | * Copyright (c) 1999 Kungliga Tekniska Högskolan |
31 | * (Royal Institute of Technology, Stockholm, Sweden). |
32 | * All rights reserved. |
33 | * |
34 | * Redistribution and use in source and binary forms, with or without |
35 | * modification, are permitted provided that the following conditions |
36 | * are met: |
37 | * |
38 | * 1. Redistributions of source code must retain the above copyright |
39 | * notice, this list of conditions and the following disclaimer. |
40 | * |
41 | * 2. Redistributions in binary form must reproduce the above copyright |
42 | * notice, this list of conditions and the following disclaimer in the |
43 | * documentation and/or other materials provided with the distribution. |
44 | * |
45 | * 3. Neither the name of KTH nor the names of its contributors may be |
46 | * used to endorse or promote products derived from this software without |
47 | * specific prior written permission. |
48 | * |
49 | * THIS SOFTWARE IS PROVIDED BY KTH AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
50 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
52 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KTH OR ITS CONTRIBUTORS BE |
53 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
54 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
55 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
56 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
57 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
58 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
59 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
60 | */ |
61 | |
62 | #include <stdint.h> |
63 | #include <sys/param.h> |
64 | #include <sys/systm.h> |
65 | #include <sys/kernel.h> |
66 | #include <sys/malloc.h> |
67 | #include <sys/kpi_mbuf.h> |
68 | #include <sys/random.h> |
69 | #include <mach_assert.h> |
70 | #include <kern/assert.h> |
71 | #include <libkern/OSAtomic.h> |
72 | #include "gss_krb5_mech.h" |
73 | |
74 | lck_grp_t *gss_krb5_mech_grp; |
75 | |
76 | typedef struct crypt_walker_ctx { |
77 | size_t length; |
78 | const struct ccmode_cbc *ccmode; |
79 | cccbc_ctx *crypt_ctx; |
80 | cccbc_iv *iv; |
81 | } *crypt_walker_ctx_t; |
82 | |
83 | typedef struct hmac_walker_ctx { |
84 | const struct ccdigest_info *di; |
85 | struct cchmac_ctx *hmac_ctx; |
86 | } *hmac_walker_ctx_t; |
87 | |
88 | typedef size_t (*ccpad_func)(const struct ccmode_cbc *, cccbc_ctx *, cccbc_iv *, |
89 | size_t nbytes, const void *, void *); |
90 | |
91 | static int krb5_n_fold(const void *instr, size_t len, void *foldstr, size_t size); |
92 | |
93 | size_t gss_mbuf_len(mbuf_t, size_t); |
94 | errno_t gss_prepend_mbuf(mbuf_t *, uint8_t *, size_t); |
95 | errno_t gss_append_mbuf(mbuf_t, uint8_t *, size_t); |
96 | errno_t gss_strip_mbuf(mbuf_t, ssize_t); |
97 | int mbuf_walk(mbuf_t, size_t, size_t, size_t, int (*)(void *, uint8_t *, uint32_t), void *); |
98 | |
99 | void do_crypt_init(crypt_walker_ctx_t, int, crypto_ctx_t, cccbc_ctx *); |
100 | int do_crypt(void *, uint8_t *, uint32_t); |
101 | void do_hmac_init(hmac_walker_ctx_t, crypto_ctx_t, void *); |
102 | int do_hmac(void *, uint8_t *, uint32_t); |
103 | |
104 | void krb5_make_usage(uint32_t, uint8_t, uint8_t [KRB5_USAGE_LEN]); |
105 | void krb5_key_derivation(crypto_ctx_t, const void *, size_t, void **, size_t); |
106 | void cc_key_schedule_create(crypto_ctx_t); |
107 | void gss_crypto_ctx_free(crypto_ctx_t); |
108 | int gss_crypto_ctx_init(struct crypto_ctx *, lucid_context_t); |
109 | |
110 | errno_t krb5_crypt_mbuf(crypto_ctx_t, mbuf_t *, uint32_t, int, cccbc_ctx *); |
111 | int krb5_mic(crypto_ctx_t, gss_buffer_t, gss_buffer_t, gss_buffer_t, uint8_t *, int *, int, int); |
112 | int krb5_mic_mbuf(crypto_ctx_t, gss_buffer_t, mbuf_t, uint32_t, uint32_t, gss_buffer_t, uint8_t *, int *, int, int); |
113 | |
114 | uint32_t gss_krb5_cfx_get_mic(uint32_t *, gss_ctx_id_t, gss_qop_t, gss_buffer_t, gss_buffer_t); |
115 | uint32_t gss_krb5_cfx_verify_mic(uint32_t *, gss_ctx_id_t, gss_buffer_t, gss_buffer_t, gss_qop_t *); |
116 | uint32_t gss_krb5_cfx_get_mic_mbuf(uint32_t *, gss_ctx_id_t, gss_qop_t, mbuf_t, size_t, size_t, gss_buffer_t); |
117 | uint32_t gss_krb5_cfx_verify_mic_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t, size_t, size_t, gss_buffer_t, gss_qop_t *); |
118 | errno_t krb5_cfx_crypt_mbuf(crypto_ctx_t, mbuf_t *, size_t *, int, int); |
119 | uint32_t gss_krb5_cfx_wrap_mbuf(uint32_t *, gss_ctx_id_t, int, gss_qop_t, mbuf_t *, size_t, int *); |
120 | uint32_t gss_krb5_cfx_unwrap_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t *, size_t, int *, gss_qop_t *); |
121 | |
122 | int gss_krb5_mech_is_initialized(void); |
123 | void gss_krb5_mech_init(void); |
124 | |
125 | /* Debugging routines */ |
126 | void |
127 | printmbuf(const char *str, mbuf_t mb, uint32_t offset, uint32_t len) |
128 | { |
129 | size_t i; |
130 | int cout = 1; |
131 | |
132 | len = len ? len : ~0; |
133 | printf("%s mbuf = %p offset = %d len = %d:\n" , str ? str : "mbuf" , mb, offset, len); |
134 | for (; mb && len; mb = mbuf_next(mb)) { |
135 | if (offset >= mbuf_len(mb)) { |
136 | offset -= mbuf_len(mb); |
137 | continue; |
138 | } |
139 | for(i = offset; len && i < mbuf_len(mb); i++) { |
140 | const char *s = (cout % 8) ? " " : (cout % 16) ? " " : "\n" ; |
141 | printf("%02x%s" , ((uint8_t *)mbuf_data(mb))[i], s); |
142 | len--; |
143 | cout++; |
144 | } |
145 | offset = 0; |
146 | } |
147 | if ((cout-1) % 16) |
148 | printf("\n" ); |
149 | printf("Count chars %d\n" , cout - 1); |
150 | } |
151 | |
152 | void |
153 | printgbuf(const char *str, gss_buffer_t buf) |
154 | { |
155 | size_t i; |
156 | size_t len = buf->length > 128 ? 128 : buf->length; |
157 | |
158 | printf("%s: len = %d value = %p\n" , str ? str : "buffer" , (int)buf->length, buf->value); |
159 | for (i = 0; i < len; i++) { |
160 | const char *s = ((i + 1) % 8) ? " " : ((i + 1) % 16) ? " " : "\n" ; |
161 | printf("%02x%s" , ((uint8_t *)buf->value)[i], s); |
162 | } |
163 | if (i % 16) |
164 | printf("\n" ); |
165 | } |
166 | |
167 | /* |
168 | * Initialize the data structures for the gss kerberos mech. |
169 | */ |
170 | #define GSS_KRB5_NOT_INITIALIZED 0 |
171 | #define GSS_KRB5_INITIALIZING 1 |
172 | #define GSS_KRB5_INITIALIZED 2 |
173 | static volatile uint32_t gss_krb5_mech_initted = GSS_KRB5_NOT_INITIALIZED; |
174 | |
175 | int |
176 | gss_krb5_mech_is_initialized(void) |
177 | { |
178 | return (gss_krb5_mech_initted == GSS_KRB5_NOT_INITIALIZED); |
179 | } |
180 | |
181 | void |
182 | gss_krb5_mech_init(void) |
183 | { |
184 | extern void IOSleep(int); |
185 | |
186 | /* Once initted always initted */ |
187 | if (gss_krb5_mech_initted == GSS_KRB5_INITIALIZED) |
188 | return; |
189 | |
190 | /* make sure we init only once */ |
191 | if (!OSCompareAndSwap(GSS_KRB5_NOT_INITIALIZED, GSS_KRB5_INITIALIZING, &gss_krb5_mech_initted)) { |
192 | /* wait until initialization is complete */ |
193 | while (!gss_krb5_mech_is_initialized()) |
194 | IOSleep(10); |
195 | return; |
196 | } |
197 | gss_krb5_mech_grp = lck_grp_alloc_init("gss_krb5_mech" , LCK_GRP_ATTR_NULL); |
198 | gss_krb5_mech_initted = GSS_KRB5_INITIALIZED; |
199 | } |
200 | |
201 | uint32_t |
202 | gss_release_buffer(uint32_t *minor, gss_buffer_t buf) |
203 | { |
204 | if (minor) |
205 | *minor = 0; |
206 | if (buf->value) |
207 | FREE(buf->value, M_TEMP); |
208 | buf->value = NULL; |
209 | buf->length = 0; |
210 | return (GSS_S_COMPLETE); |
211 | } |
212 | |
213 | /* |
214 | * GSS mbuf routines |
215 | */ |
216 | |
217 | size_t |
218 | gss_mbuf_len(mbuf_t mb, size_t offset) |
219 | { |
220 | size_t len; |
221 | |
222 | for (len = 0; mb; mb = mbuf_next(mb)) |
223 | len += mbuf_len(mb); |
224 | return ((offset > len) ? 0 : len - offset); |
225 | } |
226 | |
227 | /* |
228 | * Split an mbuf in a chain into two mbufs such that the original mbuf |
229 | * points to the original mbuf and the new mbuf points to the rest of the |
230 | * chain. The first mbuf length is the first len bytes and the second |
231 | * mbuf contains the remaining bytes. if len is zero or equals |
232 | * mbuf_len(mb) the don't create a new mbuf. We are already at an mbuf |
233 | * boundary. Return the mbuf that starts at the offset. |
234 | */ |
235 | static errno_t |
236 | split_one_mbuf(mbuf_t mb, size_t offset, mbuf_t *nmb, int join) |
237 | { |
238 | errno_t error; |
239 | |
240 | *nmb = mb; |
241 | /* We don't have an mbuf or we're alread on an mbuf boundary */ |
242 | if (mb == NULL || offset == 0) |
243 | return (0); |
244 | |
245 | /* If the mbuf length is offset then the next mbuf is the one we want */ |
246 | if (mbuf_len(mb) == offset) { |
247 | *nmb = mbuf_next(mb); |
248 | if (!join) |
249 | mbuf_setnext(mb, NULL); |
250 | return (0); |
251 | } |
252 | |
253 | if (offset > mbuf_len(mb)) |
254 | return (EINVAL); |
255 | |
256 | error = mbuf_split(mb, offset, MBUF_WAITOK, nmb); |
257 | if (error) |
258 | return (error); |
259 | |
260 | if (mbuf_flags(*nmb) & MBUF_PKTHDR) { |
261 | /* We don't want to copy the pkthdr. mbuf_split does that. */ |
262 | error = mbuf_setflags_mask(*nmb, ~MBUF_PKTHDR, MBUF_PKTHDR); |
263 | } |
264 | |
265 | if (join) |
266 | /* Join the chain again */ |
267 | mbuf_setnext(mb, *nmb); |
268 | |
269 | return (0); |
270 | } |
271 | |
272 | /* |
273 | * Given an mbuf with an offset and length return the chain such that |
274 | * offset and offset + *subchain_length are on mbuf boundaries. If |
275 | * *mbuf_length is less that the length of the chain after offset |
276 | * return that length in *mbuf_length. The mbuf sub chain starting at |
277 | * offset is returned in *subchain. If an error occurs return the |
278 | * corresponding errno. Note if there are less than offset bytes then |
279 | * subchain will be set to NULL and *subchain_length will be set to |
280 | * zero. If *subchain_length is 0; then set it to the length of the |
281 | * chain starting at offset. Join parameter is used to indicate whether |
282 | * the mbuf chain will be joined again as on chain, just rearranged so |
283 | * that offset and subchain_length are on mbuf boundaries. |
284 | */ |
285 | |
286 | errno_t |
287 | gss_normalize_mbuf(mbuf_t chain, size_t offset, size_t *subchain_length, mbuf_t *subchain, mbuf_t *tail, int join) |
288 | { |
289 | size_t length = *subchain_length ? *subchain_length : ~0; |
290 | size_t len; |
291 | mbuf_t mb, nmb; |
292 | errno_t error; |
293 | |
294 | if (tail == NULL) |
295 | tail = &nmb; |
296 | *tail = NULL; |
297 | *subchain = NULL; |
298 | |
299 | for (len = offset, mb = chain; mb && len > mbuf_len(mb); mb = mbuf_next(mb)) |
300 | len -= mbuf_len(mb); |
301 | |
302 | /* if we don't have offset bytes just return */ |
303 | if (mb == NULL) |
304 | return (0); |
305 | |
306 | error = split_one_mbuf(mb, len, subchain, join); |
307 | if (error) |
308 | return (error); |
309 | |
310 | assert(subchain != NULL && *subchain != NULL); |
311 | assert(offset == 0 ? mb == *subchain : 1); |
312 | |
313 | len = gss_mbuf_len(*subchain, 0); |
314 | length = (length > len) ? len : length; |
315 | *subchain_length = length; |
316 | |
317 | for (len = length, mb = *subchain; mb && len > mbuf_len(mb); mb = mbuf_next(mb)) |
318 | len -= mbuf_len(mb); |
319 | |
320 | error = split_one_mbuf(mb, len, tail, join); |
321 | |
322 | return (error); |
323 | } |
324 | |
325 | mbuf_t |
326 | gss_join_mbuf(mbuf_t head, mbuf_t body, mbuf_t tail) |
327 | { |
328 | mbuf_t mb; |
329 | |
330 | for (mb = head; mb && mbuf_next(mb); mb = mbuf_next(mb)) |
331 | ; |
332 | if (mb) |
333 | mbuf_setnext(mb, body); |
334 | for (mb = body; mb && mbuf_next(mb); mb = mbuf_next(mb)) |
335 | ; |
336 | if (mb) |
337 | mbuf_setnext(mb, tail); |
338 | mb = head ? head : (body ? body : tail); |
339 | return (mb); |
340 | } |
341 | |
342 | /* |
343 | * Prepend size bytes to the mbuf chain. |
344 | */ |
345 | errno_t |
346 | gss_prepend_mbuf(mbuf_t *chain, uint8_t *bytes, size_t size) |
347 | { |
348 | uint8_t *data = mbuf_data(*chain); |
349 | size_t leading = mbuf_leadingspace(*chain); |
350 | size_t trailing = mbuf_trailingspace(*chain); |
351 | size_t mlen = mbuf_len(*chain); |
352 | errno_t error; |
353 | |
354 | if (size > leading && size <= leading + trailing) { |
355 | data = memmove(data + size - leading, data, mlen); |
356 | mbuf_setdata(*chain, data, mlen); |
357 | } |
358 | |
359 | error = mbuf_prepend(chain, size, MBUF_WAITOK); |
360 | if (error) |
361 | return (error); |
362 | data = mbuf_data(*chain); |
363 | memcpy(data, bytes, size); |
364 | |
365 | return (0); |
366 | } |
367 | |
368 | errno_t |
369 | gss_append_mbuf(mbuf_t chain, uint8_t *bytes, size_t size) |
370 | { |
371 | size_t len = 0; |
372 | mbuf_t mb; |
373 | |
374 | if (chain == NULL) |
375 | return (EINVAL); |
376 | |
377 | for (mb = chain; mb; mb = mbuf_next(mb)) |
378 | len += mbuf_len(mb); |
379 | |
380 | return (mbuf_copyback(chain, len, size, bytes, MBUF_WAITOK)); |
381 | } |
382 | |
383 | errno_t |
384 | gss_strip_mbuf(mbuf_t chain, ssize_t size) |
385 | { |
386 | if (chain == NULL) |
387 | return (EINVAL); |
388 | |
389 | mbuf_adj(chain, size); |
390 | |
391 | return (0); |
392 | } |
393 | |
394 | |
395 | /* |
396 | * Kerberos mech generic crypto support for mbufs |
397 | */ |
398 | |
399 | /* |
400 | * Walk the mbuf after the given offset calling the passed in crypto function |
401 | * for len bytes. Note the length, len should be a multiple of the blocksize and |
402 | * there should be at least len bytes available after the offset in the mbuf chain. |
403 | * padding should be done before calling this routine. |
404 | */ |
405 | int |
406 | mbuf_walk(mbuf_t mbp, size_t offset, size_t len, size_t blocksize, int (*crypto_fn)(void *, uint8_t *data, uint32_t length), void *ctx) |
407 | { |
408 | mbuf_t mb; |
409 | size_t mlen, residue; |
410 | uint8_t *ptr; |
411 | int error = 0; |
412 | |
413 | /* Move to the start of the chain */ |
414 | for (mb = mbp; mb && len > 0; mb = mbuf_next(mb)) { |
415 | ptr = mbuf_data(mb); |
416 | mlen = mbuf_len(mb); |
417 | if (offset >= mlen) { |
418 | /* Offset not yet reached */ |
419 | offset -= mlen; |
420 | continue; |
421 | } |
422 | /* Found starting point in chain */ |
423 | ptr += offset; |
424 | mlen -= offset; |
425 | offset = 0; |
426 | |
427 | /* |
428 | * Handle the data in this mbuf. If the length to |
429 | * walk is less than the data in the mbuf, set |
430 | * the mbuf length left to be the length left |
431 | */ |
432 | mlen = mlen < len ? mlen : len; |
433 | /* Figure out how much is a multple of blocksize */ |
434 | residue = mlen % blocksize; |
435 | /* And addjust the mleft length to be the largest multiple of blocksized */ |
436 | mlen -= residue; |
437 | /* run our hash/encrypt/decrpyt function */ |
438 | if (mlen > 0) { |
439 | error = crypto_fn(ctx, ptr, mlen); |
440 | if (error) |
441 | break; |
442 | ptr += mlen; |
443 | len -= mlen; |
444 | } |
445 | /* |
446 | * If we have a residue then to get a full block for our crypto |
447 | * function, we need to copy the residue into our block size |
448 | * block and use the next mbuf to get the rest of the data for |
449 | * the block. N.B. We generally assume that from the offset |
450 | * passed in, that the total length, len, is a multple of |
451 | * blocksize and that there are at least len bytes in the chain |
452 | * from the offset. We also assume there is at least (blocksize |
453 | * - residue) size data in any next mbuf for residue > 0. If not |
454 | * we attemp to pullup bytes from down the chain. |
455 | */ |
456 | if (residue) { |
457 | mbuf_t nmb = mbuf_next(mb); |
458 | uint8_t *nptr = NULL, block[blocksize]; |
459 | |
460 | assert(nmb); |
461 | len -= residue; |
462 | offset = blocksize - residue; |
463 | if (len < offset) { |
464 | offset = len; |
465 | /* |
466 | * We don't have enough bytes so zero the block |
467 | * so that any trailing bytes will be zero. |
468 | */ |
469 | cc_clear(sizeof(block), block); |
470 | } |
471 | memcpy(block, ptr, residue); |
472 | if (len && nmb) { |
473 | mlen = mbuf_len(nmb); |
474 | if (mlen < offset) { |
475 | error = mbuf_pullup(&nmb, offset - mlen); |
476 | if (error) { |
477 | mbuf_setnext(mb, NULL); |
478 | return (error); |
479 | } |
480 | } |
481 | nptr = mbuf_data(nmb); |
482 | memcpy(block + residue, nptr, offset); |
483 | } |
484 | len -= offset; |
485 | error = crypto_fn(ctx, block, sizeof(block)); |
486 | if (error) |
487 | break; |
488 | memcpy(ptr, block, residue); |
489 | if (nptr) |
490 | memcpy(nptr, block + residue, offset); |
491 | } |
492 | } |
493 | |
494 | return (error); |
495 | } |
496 | |
497 | void |
498 | do_crypt_init(crypt_walker_ctx_t wctx, int encrypt, crypto_ctx_t cctx, cccbc_ctx *ks) |
499 | { |
500 | wctx->ccmode = encrypt ? cctx->enc_mode : cctx->dec_mode; |
501 | |
502 | wctx->crypt_ctx = ks; |
503 | MALLOC(wctx->iv, cccbc_iv *, wctx->ccmode->block_size, M_TEMP, M_WAITOK|M_ZERO); |
504 | cccbc_set_iv(wctx->ccmode, wctx->iv, NULL); |
505 | } |
506 | |
507 | int |
508 | do_crypt(void *walker, uint8_t *data, uint32_t len) |
509 | { |
510 | struct crypt_walker_ctx *wctx = (crypt_walker_ctx_t)walker; |
511 | uint32_t nblocks; |
512 | |
513 | nblocks = len / wctx->ccmode->block_size; |
514 | assert(len % wctx->ccmode->block_size == 0); |
515 | cccbc_update(wctx->ccmode, wctx->crypt_ctx, wctx->iv, nblocks, data, data); |
516 | wctx->length += len; |
517 | |
518 | return (0); |
519 | } |
520 | |
521 | void |
522 | do_hmac_init(hmac_walker_ctx_t wctx, crypto_ctx_t cctx, void *key) |
523 | { |
524 | size_t alloc_size = cchmac_di_size(cctx->di); |
525 | |
526 | wctx->di = cctx->di; |
527 | MALLOC(wctx->hmac_ctx, struct cchmac_ctx *, alloc_size, M_TEMP, M_WAITOK|M_ZERO); |
528 | cchmac_init(cctx->di, wctx->hmac_ctx, cctx->keylen, key); |
529 | } |
530 | |
531 | int |
532 | do_hmac(void *walker, uint8_t *data, uint32_t len) |
533 | { |
534 | hmac_walker_ctx_t wctx = (hmac_walker_ctx_t)walker; |
535 | |
536 | cchmac_update(wctx->di, wctx->hmac_ctx, len, data); |
537 | |
538 | return (0); |
539 | } |
540 | |
541 | |
542 | int |
543 | krb5_mic(crypto_ctx_t ctx, gss_buffer_t , gss_buffer_t bp, gss_buffer_t trailer, uint8_t *mic, int *verify, int ikey, int reverse) |
544 | { |
545 | uint8_t digest[ctx->di->output_size]; |
546 | cchmac_di_decl(ctx->di, hmac_ctx); |
547 | int kdx = (verify == NULL) ? (reverse ? GSS_RCV : GSS_SND) : (reverse ? GSS_SND : GSS_RCV); |
548 | void *key2use; |
549 | |
550 | if (ikey) { |
551 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
552 | lck_mtx_lock(ctx->lock); |
553 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
554 | cc_key_schedule_create(ctx); |
555 | } |
556 | ctx->flags |= CRYPTO_KS_ALLOCED; |
557 | lck_mtx_unlock(ctx->lock); |
558 | } |
559 | key2use = ctx->ks.ikey[kdx]; |
560 | } else { |
561 | key2use = ctx->ckey[kdx]; |
562 | } |
563 | |
564 | cchmac_init(ctx->di, hmac_ctx, ctx->keylen, key2use); |
565 | |
566 | if (header) { |
567 | cchmac_update(ctx->di, hmac_ctx, header->length, header->value); |
568 | } |
569 | |
570 | cchmac_update(ctx->di, hmac_ctx, bp->length, bp->value); |
571 | |
572 | if (trailer) { |
573 | cchmac_update(ctx->di, hmac_ctx, trailer->length, trailer->value); |
574 | } |
575 | |
576 | cchmac_final(ctx->di, hmac_ctx, digest); |
577 | |
578 | if (verify) { |
579 | *verify = (memcmp(mic, digest, ctx->digest_size) == 0); |
580 | } |
581 | else |
582 | memcpy(mic, digest, ctx->digest_size); |
583 | |
584 | return (0); |
585 | } |
586 | |
587 | int |
588 | krb5_mic_mbuf(crypto_ctx_t ctx, gss_buffer_t , |
589 | mbuf_t mbp, uint32_t offset, uint32_t len, gss_buffer_t trailer, uint8_t *mic, int *verify, int ikey, int reverse) |
590 | { |
591 | struct hmac_walker_ctx wctx; |
592 | uint8_t digest[ctx->di->output_size]; |
593 | int error; |
594 | int kdx = (verify == NULL) ? (reverse ? GSS_RCV : GSS_SND) : (reverse ? GSS_SND : GSS_RCV); |
595 | void *key2use; |
596 | |
597 | if (ikey) { |
598 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
599 | lck_mtx_lock(ctx->lock); |
600 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
601 | cc_key_schedule_create(ctx); |
602 | } |
603 | ctx->flags |= CRYPTO_KS_ALLOCED; |
604 | lck_mtx_unlock(ctx->lock); |
605 | } |
606 | key2use = ctx->ks.ikey[kdx]; |
607 | } else { |
608 | key2use = ctx->ckey[kdx]; |
609 | } |
610 | |
611 | do_hmac_init(&wctx, ctx, key2use); |
612 | |
613 | if (header) { |
614 | cchmac_update(ctx->di, wctx.hmac_ctx, header->length, header->value); |
615 | } |
616 | |
617 | error = mbuf_walk(mbp, offset, len, 1, do_hmac, &wctx); |
618 | |
619 | if (error) |
620 | return (error); |
621 | if (trailer) |
622 | cchmac_update(ctx->di, wctx.hmac_ctx, trailer->length, trailer->value); |
623 | |
624 | cchmac_final(ctx->di, wctx.hmac_ctx, digest); |
625 | FREE(wctx.hmac_ctx, M_TEMP); |
626 | |
627 | if (verify) { |
628 | *verify = (memcmp(mic, digest, ctx->digest_size) == 0); |
629 | if (!*verify) |
630 | return (EBADRPC); |
631 | } else |
632 | memcpy(mic, digest, ctx->digest_size); |
633 | |
634 | return (0); |
635 | } |
636 | |
637 | errno_t /* __attribute__((optnone)) */ |
638 | krb5_crypt_mbuf(crypto_ctx_t ctx, mbuf_t *mbp, uint32_t len, int encrypt, cccbc_ctx *ks) |
639 | { |
640 | struct crypt_walker_ctx wctx; |
641 | const struct ccmode_cbc *ccmode = encrypt ? ctx->enc_mode : ctx->dec_mode; |
642 | size_t plen = len; |
643 | size_t cts_len = 0; |
644 | mbuf_t mb, lmb; |
645 | int error; |
646 | |
647 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
648 | lck_mtx_lock(ctx->lock); |
649 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
650 | cc_key_schedule_create(ctx); |
651 | } |
652 | ctx->flags |= CRYPTO_KS_ALLOCED; |
653 | lck_mtx_unlock(ctx->lock); |
654 | } |
655 | if (!ks) |
656 | ks = encrypt ? ctx->ks.enc : ctx->ks.dec; |
657 | |
658 | if ((ctx->flags & CRYPTO_CTS_ENABLE) && ctx->mpad == 1) { |
659 | uint8_t block[ccmode->block_size]; |
660 | /* if the length is less than or equal to a blocksize. We just encrypt the block */ |
661 | if (len <= ccmode->block_size) { |
662 | if (len < ccmode->block_size) { |
663 | memset(block, 0, sizeof(block)); |
664 | gss_append_mbuf(*mbp, block, ccmode->block_size); |
665 | } |
666 | plen = ccmode->block_size; |
667 | } else { |
668 | /* determine where the last two blocks are */ |
669 | uint32_t r = len % ccmode->block_size; |
670 | |
671 | cts_len = r ? r + ccmode->block_size : 2 * ccmode->block_size; |
672 | plen = len - cts_len; |
673 | /* If plen is 0 we only have two blocks to crypt with ccpad below */ |
674 | if (plen == 0) |
675 | lmb = *mbp; |
676 | else { |
677 | gss_normalize_mbuf(*mbp, 0, &plen, &mb, &lmb, 0); |
678 | assert(*mbp == mb); |
679 | assert(plen == len - cts_len); |
680 | assert(gss_mbuf_len(mb, 0) == plen); |
681 | assert(gss_mbuf_len(lmb, 0) == cts_len); |
682 | } |
683 | } |
684 | } else if (len % ctx->mpad) { |
685 | uint8_t pad_block[ctx->mpad]; |
686 | size_t padlen = ctx->mpad - (len % ctx->mpad); |
687 | |
688 | memset(pad_block, 0, padlen); |
689 | error = gss_append_mbuf(*mbp, pad_block, padlen); |
690 | if (error) |
691 | return (error); |
692 | plen = len + padlen; |
693 | } |
694 | do_crypt_init(&wctx, encrypt, ctx, ks); |
695 | if (plen) { |
696 | error = mbuf_walk(*mbp, 0, plen, ccmode->block_size, do_crypt, &wctx); |
697 | if (error) |
698 | return (error); |
699 | } |
700 | |
701 | if ((ctx->flags & CRYPTO_CTS_ENABLE) && cts_len) { |
702 | uint8_t cts_pad[2*ccmode->block_size]; |
703 | ccpad_func do_ccpad = encrypt ? ccpad_cts3_encrypt : ccpad_cts3_decrypt; |
704 | |
705 | assert(cts_len <= 2*ccmode->block_size && cts_len > ccmode->block_size); |
706 | memset(cts_pad, 0, sizeof(cts_pad)); |
707 | mbuf_copydata(lmb, 0, cts_len, cts_pad); |
708 | mbuf_freem(lmb); |
709 | do_ccpad(ccmode, wctx.crypt_ctx, wctx.iv, cts_len, cts_pad, cts_pad); |
710 | gss_append_mbuf(*mbp, cts_pad, cts_len); |
711 | } |
712 | FREE(wctx.iv, M_TEMP); |
713 | |
714 | return (0); |
715 | } |
716 | |
717 | /* |
718 | * Key derivation routines |
719 | */ |
720 | |
721 | static int |
722 | rr13(unsigned char *buf, size_t len) |
723 | { |
724 | size_t bytes = (len + 7) / 8; |
725 | unsigned char tmp[bytes]; |
726 | size_t i; |
727 | |
728 | if(len == 0) |
729 | return 0; |
730 | |
731 | { |
732 | const int bits = 13 % len; |
733 | const int lbit = len % 8; |
734 | |
735 | memcpy(tmp, buf, bytes); |
736 | if(lbit) { |
737 | /* pad final byte with inital bits */ |
738 | tmp[bytes - 1] &= 0xff << (8 - lbit); |
739 | for(i = lbit; i < 8; i += len) |
740 | tmp[bytes - 1] |= buf[0] >> i; |
741 | } |
742 | for(i = 0; i < bytes; i++) { |
743 | ssize_t bb; |
744 | ssize_t b1, s1, b2, s2; |
745 | |
746 | /* calculate first bit position of this byte */ |
747 | bb = 8 * i - bits; |
748 | while(bb < 0) |
749 | bb += len; |
750 | /* byte offset and shift count */ |
751 | b1 = bb / 8; |
752 | s1 = bb % 8; |
753 | if((size_t)bb + 8 > bytes * 8) |
754 | /* watch for wraparound */ |
755 | s2 = (len + 8 - s1) % 8; |
756 | else |
757 | s2 = 8 - s1; |
758 | b2 = (b1 + 1) % bytes; |
759 | buf[i] = (tmp[b1] << s1) | (tmp[b2] >> s2); |
760 | } |
761 | } |
762 | return 0; |
763 | } |
764 | |
765 | |
766 | /* Add `b' to `a', both being one's complement numbers. */ |
767 | static void |
768 | add1(unsigned char *a, unsigned char *b, size_t len) |
769 | { |
770 | ssize_t i; |
771 | int carry = 0; |
772 | |
773 | for(i = len - 1; i >= 0; i--){ |
774 | int x = a[i] + b[i] + carry; |
775 | carry = x > 0xff; |
776 | a[i] = x & 0xff; |
777 | } |
778 | for(i = len - 1; carry && i >= 0; i--){ |
779 | int x = a[i] + carry; |
780 | carry = x > 0xff; |
781 | a[i] = x & 0xff; |
782 | } |
783 | } |
784 | |
785 | |
786 | static int |
787 | krb5_n_fold(const void *instr, size_t len, void *foldstr, size_t size) |
788 | { |
789 | /* if len < size we need at most N * len bytes, ie < 2 * size; |
790 | if len > size we need at most 2 * len */ |
791 | int ret = 0; |
792 | size_t maxlen = 2 * max(size, len); |
793 | size_t l = 0; |
794 | unsigned char tmp[maxlen]; |
795 | unsigned char buf[len]; |
796 | |
797 | memcpy(buf, instr, len); |
798 | memset(foldstr, 0, size); |
799 | do { |
800 | memcpy(tmp + l, buf, len); |
801 | l += len; |
802 | ret = rr13(buf, len * 8); |
803 | if (ret) |
804 | goto out; |
805 | while(l >= size) { |
806 | add1(foldstr, tmp, size); |
807 | l -= size; |
808 | if(l == 0) |
809 | break; |
810 | memmove(tmp, tmp + size, l); |
811 | } |
812 | } while(l != 0); |
813 | out: |
814 | |
815 | return ret; |
816 | } |
817 | |
818 | void |
819 | krb5_make_usage(uint32_t usage_no, uint8_t suffix, uint8_t usage_string[KRB5_USAGE_LEN]) |
820 | { |
821 | uint32_t i; |
822 | |
823 | for (i = 0; i < 4; i++) |
824 | usage_string[i] = ((usage_no >> 8*(3-i)) & 0xff); |
825 | usage_string[i] = suffix; |
826 | } |
827 | |
828 | void |
829 | krb5_key_derivation(crypto_ctx_t ctx, const void *cons, size_t conslen, void **dkey, size_t dklen) |
830 | { |
831 | size_t blocksize = ctx->enc_mode->block_size; |
832 | cccbc_iv_decl(blocksize, iv); |
833 | cccbc_ctx_decl(ctx->enc_mode->size, enc_ctx); |
834 | size_t ksize = 8*dklen; |
835 | size_t nblocks = (ksize + 8*blocksize - 1) / (8*blocksize); |
836 | uint8_t *dkptr; |
837 | uint8_t block[blocksize]; |
838 | |
839 | MALLOC(*dkey, void *, nblocks * blocksize, M_TEMP, M_WAITOK | M_ZERO); |
840 | dkptr = *dkey; |
841 | |
842 | krb5_n_fold(cons, conslen, block, blocksize); |
843 | cccbc_init(ctx->enc_mode, enc_ctx, ctx->keylen, ctx->key); |
844 | for (size_t i = 0; i < nblocks; i++) { |
845 | cccbc_set_iv(ctx->enc_mode, iv, NULL); |
846 | cccbc_update(ctx->enc_mode, enc_ctx, iv, 1, block, block); |
847 | memcpy(dkptr, block, blocksize); |
848 | dkptr += blocksize; |
849 | } |
850 | } |
851 | |
852 | static void |
853 | des_make_key(const uint8_t rawkey[7], uint8_t deskey[8]) |
854 | { |
855 | uint8_t val = 0; |
856 | |
857 | memcpy(deskey, rawkey, 7); |
858 | for (int i = 0; i < 7; i++) |
859 | val |= ((deskey[i] & 1) << (i+1)); |
860 | deskey[7] = val; |
861 | ccdes_key_set_odd_parity(deskey, 8); |
862 | } |
863 | |
864 | static void |
865 | krb5_3des_key_derivation(crypto_ctx_t ctx, const void *cons, size_t conslen, void **des3key) |
866 | { |
867 | const struct ccmode_cbc *cbcmode = ctx->enc_mode; |
868 | void *rawkey; |
869 | uint8_t *kptr, *rptr; |
870 | |
871 | MALLOC(*des3key, void *, 3*cbcmode->block_size, M_TEMP, M_WAITOK | M_ZERO); |
872 | krb5_key_derivation(ctx, cons, conslen, &rawkey, 3*(cbcmode->block_size - 1)); |
873 | kptr = (uint8_t *)*des3key; |
874 | rptr = (uint8_t *)rawkey; |
875 | |
876 | for (int i = 0; i < 3; i++) { |
877 | des_make_key(rptr, kptr); |
878 | rptr += cbcmode->block_size - 1; |
879 | kptr += cbcmode->block_size; |
880 | } |
881 | |
882 | cc_clear(3*(cbcmode->block_size - 1), rawkey); |
883 | FREE(rawkey, M_TEMP); |
884 | } |
885 | |
886 | /* |
887 | * Create a key schecule |
888 | * |
889 | */ |
890 | void |
891 | cc_key_schedule_create(crypto_ctx_t ctx) |
892 | { |
893 | uint8_t usage_string[KRB5_USAGE_LEN]; |
894 | lucid_context_t lctx = ctx->gss_ctx; |
895 | void *ekey; |
896 | |
897 | switch (lctx->key_data.proto) { |
898 | case 0: { |
899 | if (ctx->ks.enc == NULL) { |
900 | MALLOC(ctx->ks.enc, cccbc_ctx *, ctx->enc_mode->size, M_TEMP, M_WAITOK | M_ZERO); |
901 | cccbc_init(ctx->enc_mode, ctx->ks.enc, ctx->keylen, ctx->key); |
902 | } |
903 | if (ctx->ks.dec == NULL) { |
904 | MALLOC(ctx->ks.dec, cccbc_ctx *, ctx->dec_mode->size, M_TEMP, M_WAITOK | M_ZERO); |
905 | cccbc_init(ctx->dec_mode, ctx->ks.dec, ctx->keylen, ctx->key); |
906 | } |
907 | } |
908 | case 1: { |
909 | if (ctx->ks.enc == NULL) { |
910 | krb5_make_usage(lctx->initiate ? |
911 | KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL, |
912 | 0xAA, usage_string); |
913 | krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ekey, ctx->keylen); |
914 | MALLOC(ctx->ks.enc, cccbc_ctx *, ctx->enc_mode->size, M_TEMP, M_WAITOK | M_ZERO); |
915 | cccbc_init(ctx->enc_mode, ctx->ks.enc, ctx->keylen, ekey); |
916 | FREE(ekey, M_TEMP); |
917 | } |
918 | if (ctx->ks.dec == NULL) { |
919 | krb5_make_usage(lctx->initiate ? |
920 | KRB5_USAGE_ACCEPTOR_SEAL : KRB5_USAGE_INITIATOR_SEAL, |
921 | 0xAA, usage_string); |
922 | krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ekey, ctx->keylen); |
923 | MALLOC(ctx->ks.dec, cccbc_ctx *, ctx->dec_mode->size, M_TEMP, M_WAITOK | M_ZERO); |
924 | cccbc_init(ctx->dec_mode, ctx->ks.dec, ctx->keylen, ekey); |
925 | FREE(ekey, M_TEMP); |
926 | } |
927 | if (ctx->ks.ikey[GSS_SND] == NULL) { |
928 | krb5_make_usage(lctx->initiate ? |
929 | KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL, |
930 | 0x55, usage_string); |
931 | krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ks.ikey[GSS_SND], ctx->keylen); |
932 | } |
933 | if (ctx->ks.ikey[GSS_RCV] == NULL) { |
934 | krb5_make_usage(lctx->initiate ? |
935 | KRB5_USAGE_ACCEPTOR_SEAL : KRB5_USAGE_INITIATOR_SEAL, |
936 | 0x55, usage_string); |
937 | krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ks.ikey[GSS_RCV], ctx->keylen); |
938 | } |
939 | } |
940 | } |
941 | } |
942 | |
943 | void |
944 | gss_crypto_ctx_free(crypto_ctx_t ctx) |
945 | { |
946 | ctx->ks.ikey[GSS_SND] = NULL; |
947 | if (ctx->ks.ikey[GSS_RCV] && ctx->key != ctx->ks.ikey[GSS_RCV]) { |
948 | cc_clear(ctx->keylen, ctx->ks.ikey[GSS_RCV]); |
949 | FREE(ctx->ks.ikey[GSS_RCV], M_TEMP); |
950 | } |
951 | ctx->ks.ikey[GSS_RCV] = NULL; |
952 | if (ctx->ks.enc) { |
953 | cccbc_ctx_clear(ctx->enc_mode->size, ctx->ks.enc); |
954 | FREE(ctx->ks.enc, M_TEMP); |
955 | ctx->ks.enc = NULL; |
956 | } |
957 | if (ctx->ks.dec) { |
958 | cccbc_ctx_clear(ctx->dec_mode->size, ctx->ks.dec); |
959 | FREE(ctx->ks.dec, M_TEMP); |
960 | ctx->ks.dec = NULL; |
961 | } |
962 | if (ctx->ckey[GSS_SND] && ctx->ckey[GSS_SND] != ctx->key) { |
963 | cc_clear(ctx->keylen, ctx->ckey[GSS_SND]); |
964 | FREE(ctx->ckey[GSS_SND], M_TEMP); |
965 | } |
966 | ctx->ckey[GSS_SND] = NULL; |
967 | if (ctx->ckey[GSS_RCV] && ctx->ckey[GSS_RCV] != ctx->key) { |
968 | cc_clear(ctx->keylen, ctx->ckey[GSS_RCV]); |
969 | FREE(ctx->ckey[GSS_RCV], M_TEMP); |
970 | } |
971 | ctx->ckey[GSS_RCV] = NULL; |
972 | ctx->key = NULL; |
973 | ctx->keylen = 0; |
974 | } |
975 | |
976 | int |
977 | gss_crypto_ctx_init(struct crypto_ctx *ctx, lucid_context_t lucid) |
978 | { |
979 | ctx->gss_ctx = lucid; |
980 | void *key; |
981 | uint8_t usage_string[KRB5_USAGE_LEN]; |
982 | |
983 | ctx->keylen = ctx->gss_ctx->ctx_key.key.key_len; |
984 | key = ctx->gss_ctx->ctx_key.key.key_val; |
985 | ctx->etype = ctx->gss_ctx->ctx_key.etype; |
986 | ctx->key = key; |
987 | |
988 | switch(ctx->etype) { |
989 | case AES128_CTS_HMAC_SHA1_96: |
990 | case AES256_CTS_HMAC_SHA1_96: |
991 | ctx->enc_mode = ccaes_cbc_encrypt_mode(); |
992 | assert(ctx->enc_mode); |
993 | ctx->dec_mode = ccaes_cbc_decrypt_mode(); |
994 | assert(ctx->dec_mode); |
995 | ctx->ks.enc = NULL; |
996 | ctx->ks.dec = NULL; |
997 | ctx->di = ccsha1_di(); |
998 | assert(ctx->di); |
999 | ctx->flags = CRYPTO_CTS_ENABLE; |
1000 | ctx->mpad = 1; |
1001 | ctx->digest_size = 12; /* 96 bits */ |
1002 | krb5_make_usage(ctx->gss_ctx->initiate ? |
1003 | KRB5_USAGE_INITIATOR_SIGN : KRB5_USAGE_ACCEPTOR_SIGN, |
1004 | 0x99, usage_string); |
1005 | krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_SND], ctx->keylen); |
1006 | krb5_make_usage(ctx->gss_ctx->initiate ? |
1007 | KRB5_USAGE_ACCEPTOR_SIGN : KRB5_USAGE_INITIATOR_SIGN, |
1008 | 0x99, usage_string); |
1009 | krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_RCV], ctx->keylen); |
1010 | break; |
1011 | case DES3_CBC_SHA1_KD: |
1012 | ctx->enc_mode = ccdes3_cbc_encrypt_mode(); |
1013 | assert(ctx->enc_mode); |
1014 | ctx->dec_mode = ccdes3_cbc_decrypt_mode(); |
1015 | assert(ctx->dec_mode); |
1016 | ctx->ks.ikey[GSS_SND] = ctx->key; |
1017 | ctx->ks.ikey[GSS_RCV] = ctx->key; |
1018 | ctx->di = ccsha1_di(); |
1019 | assert(ctx->di); |
1020 | ctx->flags = 0; |
1021 | ctx->mpad = ctx->enc_mode->block_size; |
1022 | ctx->digest_size = 20; /* 160 bits */ |
1023 | krb5_make_usage(KRB5_USAGE_ACCEPTOR_SIGN, 0x99, usage_string); |
1024 | krb5_3des_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_SND]); |
1025 | krb5_3des_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_RCV]); |
1026 | break; |
1027 | default: |
1028 | return (ENOTSUP); |
1029 | } |
1030 | |
1031 | ctx->lock = lck_mtx_alloc_init(gss_krb5_mech_grp, LCK_ATTR_NULL); |
1032 | |
1033 | return (0); |
1034 | } |
1035 | |
1036 | /* |
1037 | * CFX gss support routines |
1038 | */ |
1039 | /* From Heimdal cfx.h file RFC 4121 Cryptoo framework extensions */ |
1040 | typedef struct gss_cfx_mic_token_desc_struct |
1041 | { |
1042 | uint8_t TOK_ID[2]; /* 04 04 */ |
1043 | uint8_t Flags; |
1044 | uint8_t Filler[5]; |
1045 | uint8_t SND_SEQ[8]; |
1046 | } gss_cfx_mic_token_desc, *gss_cfx_mic_token; |
1047 | |
1048 | typedef struct gss_cfx_wrap_token_desc_struct |
1049 | { |
1050 | uint8_t TOK_ID[2]; /* 05 04 */ |
1051 | uint8_t Flags; |
1052 | uint8_t Filler; |
1053 | uint8_t EC[2]; |
1054 | uint8_t RRC[2]; |
1055 | uint8_t SND_SEQ[8]; |
1056 | } gss_cfx_wrap_token_desc, *gss_cfx_wrap_token; |
1057 | |
1058 | /* End of cfx.h file */ |
1059 | |
1060 | #define CFXSentByAcceptor (1 << 0) |
1061 | #define CFXSealed (1 << 1) |
1062 | #define CFXAcceptorSubkey (1 << 2) |
1063 | |
1064 | const gss_cfx_mic_token_desc mic_cfx_token = { |
1065 | .TOK_ID = "\x04\x04" , |
1066 | .Flags = 0, |
1067 | .Filler = "\xff\xff\xff\xff\xff" , |
1068 | .SND_SEQ = "\x00\x00\x00\x00\x00\x00\x00\x00" |
1069 | }; |
1070 | |
1071 | const gss_cfx_wrap_token_desc wrap_cfx_token = { |
1072 | .TOK_ID = "\x05\04" , |
1073 | .Flags = 0, |
1074 | .Filler = '\xff', |
1075 | .EC = "\x00\x00" , |
1076 | .RRC = "\x00\x00" , |
1077 | .SND_SEQ = "\x00\x00\x00\x00\x00\x00\x00\x00" |
1078 | }; |
1079 | |
1080 | static int |
1081 | gss_krb5_cfx_verify_mic_token(gss_ctx_id_t ctx, gss_cfx_mic_token token) |
1082 | { |
1083 | int i; |
1084 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1085 | uint8_t flags = 0; |
1086 | |
1087 | if (token->TOK_ID[0] != mic_cfx_token.TOK_ID[0] || token->TOK_ID[1] != mic_cfx_token.TOK_ID[1]) { |
1088 | printf("Bad mic TOK_ID %x %x\n" , token->TOK_ID[0], token->TOK_ID[1]); |
1089 | return (EBADRPC); |
1090 | } |
1091 | if (lctx->initiate) |
1092 | flags |= CFXSentByAcceptor; |
1093 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) |
1094 | flags |= CFXAcceptorSubkey; |
1095 | if (token->Flags != flags) { |
1096 | printf("Bad flags received %x exptect %x\n" , token->Flags, flags); |
1097 | return (EBADRPC); |
1098 | } |
1099 | for (i = 0; i < 5; i++) { |
1100 | if (token->Filler[i] != mic_cfx_token.Filler[i]) |
1101 | break; |
1102 | } |
1103 | |
1104 | if (i != 5) { |
1105 | printf("Bad mic filler %x @ %d\n" , token->Filler[i], i); |
1106 | return (EBADRPC); |
1107 | } |
1108 | |
1109 | return (0); |
1110 | } |
1111 | |
1112 | uint32_t |
1113 | gss_krb5_cfx_get_mic(uint32_t *minor, /* minor_status */ |
1114 | gss_ctx_id_t ctx, /* context_handle */ |
1115 | gss_qop_t qop __unused, /* qop_req (ignored) */ |
1116 | gss_buffer_t mbp, /* message mbuf */ |
1117 | gss_buffer_t mic /* message_token */) |
1118 | { |
1119 | gss_cfx_mic_token_desc token; |
1120 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1121 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1122 | gss_buffer_desc ; |
1123 | uint32_t rv; |
1124 | uint64_t seq = htonll(lctx->send_seq); |
1125 | |
1126 | if (minor == NULL) |
1127 | minor = &rv; |
1128 | *minor = 0; |
1129 | token = mic_cfx_token; |
1130 | mic->length = sizeof (token) + cctx->digest_size; |
1131 | MALLOC(mic->value, void *, mic->length, M_TEMP, M_WAITOK | M_ZERO); |
1132 | if (!lctx->initiate) |
1133 | token.Flags |= CFXSentByAcceptor; |
1134 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) |
1135 | token.Flags |= CFXAcceptorSubkey; |
1136 | memcpy(&token.SND_SEQ, &seq, sizeof(lctx->send_seq)); |
1137 | lctx->send_seq++; //XXX should only update this below on success? Heimdal seems to do it this way |
1138 | header.value = &token; |
1139 | header.length = sizeof (gss_cfx_mic_token_desc); |
1140 | |
1141 | *minor = krb5_mic(cctx, NULL, mbp, &header, (uint8_t *)mic->value + sizeof(token), NULL, 0, 0); |
1142 | |
1143 | if (*minor) { |
1144 | mic->length = 0; |
1145 | FREE(mic->value, M_TEMP); |
1146 | mic->value = NULL; |
1147 | } else { |
1148 | memcpy(mic->value, &token, sizeof(token)); |
1149 | } |
1150 | |
1151 | return (*minor ? GSS_S_FAILURE : GSS_S_COMPLETE); |
1152 | } |
1153 | |
1154 | uint32_t |
1155 | gss_krb5_cfx_verify_mic(uint32_t *minor, /* minor_status */ |
1156 | gss_ctx_id_t ctx, /* context_handle */ |
1157 | gss_buffer_t mbp, /* message_buffer */ |
1158 | gss_buffer_t mic, /* message_token */ |
1159 | gss_qop_t *qop /* qop_state */) |
1160 | { |
1161 | gss_cfx_mic_token token = mic->value; |
1162 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1163 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1164 | uint8_t *digest = (uint8_t *)mic->value + sizeof (gss_cfx_mic_token_desc); |
1165 | int verified = 0; |
1166 | uint64_t seq; |
1167 | uint32_t rv; |
1168 | gss_buffer_desc ; |
1169 | |
1170 | if (qop) |
1171 | *qop = GSS_C_QOP_DEFAULT; |
1172 | if (minor == NULL) |
1173 | minor = &rv; |
1174 | |
1175 | if (mic->length != sizeof(gss_cfx_mic_token_desc) + cctx->digest_size) { |
1176 | printf("mic token wrong length\n" ); |
1177 | *minor = EBADRPC; |
1178 | goto out; |
1179 | } |
1180 | *minor = gss_krb5_cfx_verify_mic_token(ctx, token); |
1181 | if (*minor) |
1182 | return (GSS_S_FAILURE); |
1183 | header.value = token; |
1184 | header.length = sizeof (gss_cfx_mic_token_desc); |
1185 | *minor = krb5_mic(cctx, NULL, mbp, &header, digest, &verified, 0, 0); |
1186 | |
1187 | if (verified) { |
1188 | //XXX errors and such? Sequencing and replay? Not supported in RPCSEC_GSS |
1189 | memcpy(&seq, token->SND_SEQ, sizeof (uint64_t)); |
1190 | seq = ntohll(seq); |
1191 | lctx->recv_seq = seq; |
1192 | } |
1193 | |
1194 | out: |
1195 | return (verified ? GSS_S_COMPLETE : GSS_S_BAD_SIG); |
1196 | } |
1197 | |
1198 | uint32_t |
1199 | gss_krb5_cfx_get_mic_mbuf(uint32_t *minor, /* minor_status */ |
1200 | gss_ctx_id_t ctx, /* context_handle */ |
1201 | gss_qop_t qop __unused ,/* qop_req (ignored) */ |
1202 | mbuf_t mbp, /* message mbuf */ |
1203 | size_t offset, /* offest */ |
1204 | size_t len, /* length */ |
1205 | gss_buffer_t mic /* message_token */) |
1206 | { |
1207 | gss_cfx_mic_token_desc token; |
1208 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1209 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1210 | uint32_t rv; |
1211 | uint64_t seq = htonll(lctx->send_seq); |
1212 | gss_buffer_desc ; |
1213 | |
1214 | if (minor == NULL) |
1215 | minor = &rv; |
1216 | *minor = 0; |
1217 | |
1218 | token = mic_cfx_token; |
1219 | mic->length = sizeof (token) + cctx->digest_size; |
1220 | MALLOC(mic->value, void *, mic->length, M_TEMP, M_WAITOK | M_ZERO); |
1221 | if (!lctx->initiate) |
1222 | token.Flags |= CFXSentByAcceptor; |
1223 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) |
1224 | token.Flags |= CFXAcceptorSubkey; |
1225 | |
1226 | memcpy(&token.SND_SEQ, &seq, sizeof(lctx->send_seq)); |
1227 | lctx->send_seq++; //XXX should only update this below on success? Heimdal seems to do it this way |
1228 | |
1229 | header.length = sizeof(token); |
1230 | header.value = &token; |
1231 | |
1232 | len = len ? len : gss_mbuf_len(mbp, offset); |
1233 | *minor = krb5_mic_mbuf(cctx, NULL, mbp, offset, len, &header, (uint8_t *)mic->value + sizeof(token), NULL, 0, 0); |
1234 | |
1235 | if (*minor) { |
1236 | mic->length = 0; |
1237 | FREE(mic->value, M_TEMP); |
1238 | mic->value = NULL; |
1239 | } else { |
1240 | memcpy(mic->value, &token, sizeof(token)); |
1241 | } |
1242 | |
1243 | return (*minor ? GSS_S_FAILURE : GSS_S_COMPLETE); |
1244 | } |
1245 | |
1246 | |
1247 | uint32_t |
1248 | gss_krb5_cfx_verify_mic_mbuf(uint32_t *minor, /* minor_status */ |
1249 | gss_ctx_id_t ctx, /* context_handle */ |
1250 | mbuf_t mbp, /* message_buffer */ |
1251 | size_t offset, /* offset */ |
1252 | size_t len, /* length */ |
1253 | gss_buffer_t mic, /* message_token */ |
1254 | gss_qop_t *qop /* qop_state */) |
1255 | { |
1256 | gss_cfx_mic_token token = mic->value; |
1257 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1258 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1259 | uint8_t *digest = (uint8_t *)mic->value + sizeof (gss_cfx_mic_token_desc); |
1260 | int verified; |
1261 | uint64_t seq; |
1262 | uint32_t rv; |
1263 | gss_buffer_desc ; |
1264 | |
1265 | if (qop) |
1266 | *qop = GSS_C_QOP_DEFAULT; |
1267 | |
1268 | if (minor == NULL) |
1269 | minor = &rv; |
1270 | |
1271 | *minor = gss_krb5_cfx_verify_mic_token(ctx, token); |
1272 | if (*minor) |
1273 | return (GSS_S_FAILURE); |
1274 | |
1275 | header.length = sizeof(gss_cfx_mic_token_desc); |
1276 | header.value = mic->value; |
1277 | |
1278 | *minor = krb5_mic_mbuf(cctx, NULL, mbp, offset, len, &header, digest, &verified, 0, 0); |
1279 | |
1280 | //XXX errors and such? Sequencing and replay? Not Supported RPCSEC_GSS |
1281 | memcpy(&seq, token->SND_SEQ, sizeof (uint64_t)); |
1282 | seq = ntohll(seq); |
1283 | lctx->recv_seq = seq; |
1284 | |
1285 | return (verified ? GSS_S_COMPLETE : GSS_S_BAD_SIG); |
1286 | } |
1287 | |
1288 | errno_t |
1289 | krb5_cfx_crypt_mbuf(crypto_ctx_t ctx, mbuf_t *mbp, size_t *len, int encrypt, int reverse) |
1290 | { |
1291 | const struct ccmode_cbc *ccmode = encrypt ? ctx->enc_mode : ctx->dec_mode; |
1292 | uint8_t confounder[ccmode->block_size]; |
1293 | uint8_t digest[ctx->digest_size]; |
1294 | size_t tlen, r = 0; |
1295 | errno_t error; |
1296 | |
1297 | if (encrypt) { |
1298 | read_random(confounder, ccmode->block_size); |
1299 | error = gss_prepend_mbuf(mbp, confounder, ccmode->block_size); |
1300 | if (error) |
1301 | return (error); |
1302 | tlen = *len + ccmode->block_size; |
1303 | if (ctx->mpad > 1) |
1304 | r = ctx->mpad - (tlen % ctx->mpad); |
1305 | /* We expect that r == 0 from krb5_cfx_wrap */ |
1306 | if (r != 0) { |
1307 | uint8_t mpad[r]; |
1308 | memset(mpad, 0, r); |
1309 | error = gss_append_mbuf(*mbp, mpad, r); |
1310 | if (error) |
1311 | return (error); |
1312 | } |
1313 | tlen += r; |
1314 | error = krb5_mic_mbuf(ctx, NULL, *mbp, 0, tlen, NULL, digest, NULL, 1, 0); |
1315 | if (error) |
1316 | return (error); |
1317 | error = krb5_crypt_mbuf(ctx, mbp, tlen, 1, NULL); |
1318 | if (error) |
1319 | return (error); |
1320 | error = gss_append_mbuf(*mbp, digest, ctx->digest_size); |
1321 | if (error) |
1322 | return (error); |
1323 | *len = tlen + ctx->digest_size; |
1324 | return (0); |
1325 | } else { |
1326 | int verf; |
1327 | cccbc_ctx *ks = NULL; |
1328 | |
1329 | if (*len < ctx->digest_size + sizeof(confounder)) |
1330 | return (EBADRPC); |
1331 | tlen = *len - ctx->digest_size; |
1332 | /* get the digest */ |
1333 | error = mbuf_copydata(*mbp, tlen, ctx->digest_size, digest); |
1334 | /* Remove the digest from the mbuffer */ |
1335 | error = gss_strip_mbuf(*mbp, -ctx->digest_size); |
1336 | if (error) |
1337 | return (error); |
1338 | |
1339 | if (reverse) { |
1340 | /* |
1341 | * Derive a key schedule that the sender can unwrap with. This |
1342 | * is so that RPCSEC_GSS can restore encrypted arguments for |
1343 | * resending. We do that because the RPCSEC_GSS sequence number in |
1344 | * the rpc header is prepended to the body of the message before wrapping. |
1345 | */ |
1346 | void *ekey; |
1347 | uint8_t usage_string[KRB5_USAGE_LEN]; |
1348 | lucid_context_t lctx = ctx->gss_ctx; |
1349 | |
1350 | krb5_make_usage(lctx->initiate ? |
1351 | KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL, |
1352 | 0xAA, usage_string); |
1353 | krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ekey, ctx->keylen); |
1354 | MALLOC(ks, cccbc_ctx *, ctx->dec_mode->size, M_TEMP, M_WAITOK | M_ZERO); |
1355 | cccbc_init(ctx->dec_mode, ks, ctx->keylen, ekey); |
1356 | FREE(ekey, M_TEMP); |
1357 | } |
1358 | error = krb5_crypt_mbuf(ctx, mbp, tlen, 0, ks); |
1359 | FREE(ks, M_TEMP); |
1360 | if (error) |
1361 | return (error); |
1362 | error = krb5_mic_mbuf(ctx, NULL, *mbp, 0, tlen, NULL, digest, &verf, 1, reverse); |
1363 | if (error) |
1364 | return (error); |
1365 | if (!verf) |
1366 | return (EBADRPC); |
1367 | /* strip off the confounder */ |
1368 | error = gss_strip_mbuf(*mbp, ccmode->block_size); |
1369 | if (error) |
1370 | return (error); |
1371 | *len = tlen - ccmode->block_size; |
1372 | } |
1373 | return (0); |
1374 | } |
1375 | |
1376 | uint32_t |
1377 | gss_krb5_cfx_wrap_mbuf(uint32_t *minor, /* minor_status */ |
1378 | gss_ctx_id_t ctx, /* context_handle */ |
1379 | int conf_flag, /* conf_req_flag */ |
1380 | gss_qop_t qop __unused, /* qop_req */ |
1381 | mbuf_t *mbp, /* input/output message_buffer */ |
1382 | size_t len, /* mbuf chain length */ |
1383 | int *conf /* conf_state */) |
1384 | { |
1385 | gss_cfx_wrap_token_desc token; |
1386 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1387 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1388 | int error = 0; |
1389 | uint32_t mv; |
1390 | uint64_t seq = htonll(lctx->send_seq); |
1391 | |
1392 | if (minor == NULL) |
1393 | minor = &mv; |
1394 | if (conf) |
1395 | *conf = conf_flag; |
1396 | |
1397 | *minor = 0; |
1398 | token = wrap_cfx_token; |
1399 | if (!lctx->initiate) |
1400 | token.Flags |= CFXSentByAcceptor; |
1401 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) |
1402 | token.Flags |= CFXAcceptorSubkey; |
1403 | memcpy(&token.SND_SEQ, &seq, sizeof(uint64_t)); |
1404 | lctx->send_seq++; |
1405 | if (conf_flag) { |
1406 | uint8_t pad[cctx->mpad]; |
1407 | uint16_t plen = 0; |
1408 | |
1409 | token.Flags |= CFXSealed; |
1410 | memset(pad, 0, cctx->mpad); |
1411 | if (cctx->mpad > 1) { |
1412 | plen = htons(cctx->mpad - ((len + sizeof (gss_cfx_wrap_token_desc)) % cctx->mpad)); |
1413 | token.EC[0] = ((plen >> 8) & 0xff); |
1414 | token.EC[1] = (plen & 0xff); |
1415 | } |
1416 | if (plen) { |
1417 | error = gss_append_mbuf(*mbp, pad, plen); |
1418 | len += plen; |
1419 | } |
1420 | if (error == 0) { |
1421 | error = gss_append_mbuf(*mbp, (uint8_t *)&token, sizeof(gss_cfx_wrap_token_desc)); |
1422 | len += sizeof (gss_cfx_wrap_token_desc); |
1423 | } |
1424 | if (error == 0) |
1425 | error = krb5_cfx_crypt_mbuf(cctx, mbp, &len, 1, 0); |
1426 | if (error == 0) |
1427 | error = gss_prepend_mbuf(mbp, (uint8_t *)&token, sizeof(gss_cfx_wrap_token_desc)); |
1428 | } else { |
1429 | uint8_t digest[cctx->digest_size]; |
1430 | gss_buffer_desc ; |
1431 | |
1432 | header.length = sizeof(token); |
1433 | header.value = &token; |
1434 | |
1435 | error = krb5_mic_mbuf(cctx, NULL, *mbp, 0, len, &header, digest, NULL, 1, 0); |
1436 | if (error == 0) { |
1437 | error = gss_append_mbuf(*mbp, digest, cctx->digest_size); |
1438 | if (error == 0) { |
1439 | uint16_t plen = htons(cctx->digest_size); |
1440 | memcpy(token.EC, &plen, 2); |
1441 | error = gss_prepend_mbuf(mbp, (uint8_t *)&token, sizeof (gss_cfx_wrap_token_desc)); |
1442 | } |
1443 | } |
1444 | } |
1445 | if (error) { |
1446 | *minor = error; |
1447 | return (GSS_S_FAILURE); |
1448 | } |
1449 | |
1450 | return (GSS_S_COMPLETE); |
1451 | } |
1452 | |
1453 | /* |
1454 | * Given a wrap token the has a rrc, move the trailer back to the end. |
1455 | */ |
1456 | static void |
1457 | gss_krb5_cfx_unwrap_rrc_mbuf(mbuf_t , size_t rrc) |
1458 | { |
1459 | mbuf_t body, trailer; |
1460 | |
1461 | gss_normalize_mbuf(header, sizeof(gss_cfx_wrap_token_desc), &rrc, &trailer, &body, 0); |
1462 | gss_join_mbuf(header, body, trailer); |
1463 | } |
1464 | |
1465 | uint32_t |
1466 | gss_krb5_cfx_unwrap_mbuf(uint32_t * minor, /* minor_status */ |
1467 | gss_ctx_id_t ctx, /* context_handle */ |
1468 | mbuf_t *mbp, /* input/output message_buffer */ |
1469 | size_t len, /* mbuf chain length */ |
1470 | int *conf_flag, /* conf_state */ |
1471 | gss_qop_t *qop /* qop state */) |
1472 | { |
1473 | gss_cfx_wrap_token_desc token; |
1474 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1475 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1476 | int error, conf; |
1477 | uint16_t ec = 0 , rrc = 0; |
1478 | uint64_t seq; |
1479 | int reverse = (*qop == GSS_C_QOP_REVERSE); |
1480 | int initiate = lctx->initiate ? (reverse ? 0 : 1) : (reverse ? 1 : 0); |
1481 | |
1482 | error = mbuf_copydata(*mbp, 0, sizeof (gss_cfx_wrap_token_desc), &token); |
1483 | gss_strip_mbuf(*mbp, sizeof (gss_cfx_wrap_token_desc)); |
1484 | len -= sizeof (gss_cfx_wrap_token_desc); |
1485 | |
1486 | /* Check for valid token */ |
1487 | if (token.TOK_ID[0] != wrap_cfx_token.TOK_ID[0] || |
1488 | token.TOK_ID[1] != wrap_cfx_token.TOK_ID[1] || |
1489 | token.Filler != wrap_cfx_token.Filler) { |
1490 | printf("Token id does not match\n" ); |
1491 | goto badrpc; |
1492 | } |
1493 | if ((initiate && !(token.Flags & CFXSentByAcceptor)) || |
1494 | (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey && !(token.Flags & CFXAcceptorSubkey))) { |
1495 | printf("Bad flags %x\n" , token.Flags); |
1496 | goto badrpc; |
1497 | } |
1498 | |
1499 | /* XXX Sequence replay detection */ |
1500 | memcpy(&seq, token.SND_SEQ, sizeof (seq)); |
1501 | seq = ntohll(seq); |
1502 | lctx->recv_seq = seq; |
1503 | |
1504 | ec = (token.EC[0] << 8) | token.EC[1]; |
1505 | rrc = (token.RRC[0] << 8) | token.RRC[1]; |
1506 | *qop = GSS_C_QOP_DEFAULT; |
1507 | conf = ((token.Flags & CFXSealed) == CFXSealed); |
1508 | if (conf_flag) |
1509 | *conf_flag = conf; |
1510 | if (conf) { |
1511 | gss_cfx_wrap_token_desc etoken; |
1512 | |
1513 | if (rrc) /* Handle Right rotation count */ |
1514 | gss_krb5_cfx_unwrap_rrc_mbuf(*mbp, rrc); |
1515 | error = krb5_cfx_crypt_mbuf(cctx, mbp, &len, 0, reverse); |
1516 | if (error) { |
1517 | printf("krb5_cfx_crypt_mbuf %d\n" , error); |
1518 | *minor = error; |
1519 | return (GSS_S_FAILURE); |
1520 | } |
1521 | if (len >= sizeof(gss_cfx_wrap_token_desc)) |
1522 | len -= sizeof(gss_cfx_wrap_token_desc); |
1523 | else |
1524 | goto badrpc; |
1525 | mbuf_copydata(*mbp, len, sizeof(gss_cfx_wrap_token_desc), &etoken); |
1526 | /* Verify etoken with the token wich should be the same, except the rc field is always zero */ |
1527 | token.RRC[0] = token.RRC[1] = 0; |
1528 | if (memcmp(&token, &etoken, sizeof (gss_cfx_wrap_token_desc)) != 0) { |
1529 | printf("Encrypted token mismach\n" ); |
1530 | goto badrpc; |
1531 | } |
1532 | /* strip the encrypted token and any pad bytes */ |
1533 | gss_strip_mbuf(*mbp, -(sizeof(gss_cfx_wrap_token_desc) + ec)); |
1534 | len -= (sizeof(gss_cfx_wrap_token_desc) + ec); |
1535 | } else { |
1536 | uint8_t digest[cctx->digest_size]; |
1537 | int verf; |
1538 | gss_buffer_desc ; |
1539 | |
1540 | if (ec != cctx->digest_size || len >= cctx->digest_size) |
1541 | goto badrpc; |
1542 | len -= cctx->digest_size; |
1543 | mbuf_copydata(*mbp, len, cctx->digest_size, digest); |
1544 | gss_strip_mbuf(*mbp, -cctx->digest_size); |
1545 | /* When calculating the mic header fields ec and rcc must be zero */ |
1546 | token.EC[0] = token.EC[1] = token.RRC[0] = token.RRC[1] = 0; |
1547 | header.value = &token; |
1548 | header.length = sizeof(gss_cfx_wrap_token_desc); |
1549 | error = krb5_mic_mbuf(cctx, NULL, *mbp, 0, len, &header, digest, &verf, 1, reverse); |
1550 | if (error) |
1551 | goto badrpc; |
1552 | } |
1553 | return (GSS_S_COMPLETE); |
1554 | |
1555 | badrpc: |
1556 | *minor = EBADRPC; |
1557 | return (GSS_S_FAILURE); |
1558 | } |
1559 | |
1560 | /* |
1561 | * RFC 1964 3DES support |
1562 | */ |
1563 | |
1564 | typedef struct gss_1964_mic_token_desc_struct { |
1565 | uint8_t TOK_ID[2]; /* 01 01 */ |
1566 | uint8_t Sign_Alg[2]; |
1567 | uint8_t Filler[4]; /* ff ff ff ff */ |
1568 | } gss_1964_mic_token_desc, *gss_1964_mic_token; |
1569 | |
1570 | typedef struct gss_1964_wrap_token_desc_struct { |
1571 | uint8_t TOK_ID[2]; /* 02 01 */ |
1572 | uint8_t Sign_Alg[2]; |
1573 | uint8_t Seal_Alg[2]; |
1574 | uint8_t Filler[2]; /* ff ff */ |
1575 | } gss_1964_wrap_token_desc, *gss_1964_wrap_token; |
1576 | |
1577 | typedef struct gss_1964_delete_token_desc_struct { |
1578 | uint8_t TOK_ID[2]; /* 01 02 */ |
1579 | uint8_t Sign_Alg[2]; |
1580 | uint8_t Filler[4]; /* ff ff ff ff */ |
1581 | } gss_1964_delete_token_desc, *gss_1964_delete_token; |
1582 | |
1583 | typedef struct { |
1584 | uint8_t ; /* 0x60 Application 0 constructed */ |
1585 | uint8_t []; /* Variable Der length */ |
1586 | } , *; |
1587 | |
1588 | typedef union { |
1589 | gss_1964_mic_token_desc mic_tok; |
1590 | gss_1964_wrap_token_desc wrap_tok; |
1591 | gss_1964_delete_token_desc del_tok; |
1592 | } gss_1964_tok_type __attribute__((transparent_union)); |
1593 | |
1594 | typedef struct gss_1964_token_body_struct |
1595 | { |
1596 | uint8_t OIDType; /* 0x06 */ |
1597 | uint8_t OIDLen; /* 0x09 */ |
1598 | uint8_t kerb_mech[9]; /* Der Encode kerberos mech 1.2.840.113554.1.2.2 |
1599 | 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 */ |
1600 | gss_1964_tok_type body; |
1601 | uint8_t SND_SEQ[8]; |
1602 | uint8_t Hash[]; /* Mic */ |
1603 | } gss_1964_token_body_desc, *gss_1964_token_body; |
1604 | |
1605 | |
1606 | gss_1964_header_desc = { |
1607 | .App0 = 0x60 |
1608 | }; |
1609 | |
1610 | gss_1964_mic_token_desc mic_1964_token = { |
1611 | .TOK_ID = "\x01\x01" , |
1612 | .Filler = "\xff\xff\xff\xff" |
1613 | }; |
1614 | |
1615 | gss_1964_wrap_token_desc wrap_1964_token = { |
1616 | .TOK_ID = "\x02\x01" , |
1617 | .Filler = "\xff\xff" |
1618 | }; |
1619 | |
1620 | gss_1964_delete_token_desc del_1964_token = { |
1621 | .TOK_ID = "\x01\x01" , |
1622 | .Filler = "\xff\xff\xff\xff" |
1623 | }; |
1624 | |
1625 | gss_1964_token_body_desc body_1964_token = { |
1626 | .OIDType = 0x06, |
1627 | .OIDLen = 0x09, |
1628 | .kerb_mech = "\x2a\x86\x48\x86\xf7\x12\x01\x02\x02" , |
1629 | }; |
1630 | |
1631 | #define GSS_KRB5_3DES_MAXTOKSZ (sizeof(gss_1964_header_desc) + 5 /* max der length supported */ + sizeof(gss_1964_token_body_desc)) |
1632 | |
1633 | uint32_t gss_krb5_3des_get_mic(uint32_t *, gss_ctx_id_t, gss_qop_t, gss_buffer_t, gss_buffer_t); |
1634 | uint32_t gss_krb5_3des_verify_mic(uint32_t *, gss_ctx_id_t, gss_buffer_t, gss_buffer_t, gss_qop_t *); |
1635 | uint32_t gss_krb5_3des_get_mic_mbuf(uint32_t *, gss_ctx_id_t, gss_qop_t, mbuf_t, size_t, size_t, gss_buffer_t); |
1636 | uint32_t gss_krb5_3des_verify_mic_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t, size_t, size_t, gss_buffer_t, gss_qop_t *); |
1637 | uint32_t gss_krb5_3des_wrap_mbuf(uint32_t *, gss_ctx_id_t, int, gss_qop_t, mbuf_t *, size_t, int *); |
1638 | uint32_t gss_krb5_3des_unwrap_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t *, size_t, int *, gss_qop_t *); |
1639 | |
1640 | /* |
1641 | * Decode an ASN.1 DER length field |
1642 | */ |
1643 | static ssize_t |
1644 | gss_krb5_der_length_get(uint8_t **pp) |
1645 | { |
1646 | uint8_t *p = *pp; |
1647 | uint32_t flen, len = 0; |
1648 | |
1649 | flen = *p & 0x7f; |
1650 | |
1651 | if (*p++ & 0x80) { |
1652 | if (flen > sizeof(uint32_t)) |
1653 | return (-1); |
1654 | while (flen--) |
1655 | len = (len << 8) + *p++; |
1656 | } else { |
1657 | len = flen; |
1658 | } |
1659 | *pp = p; |
1660 | return (len); |
1661 | } |
1662 | |
1663 | /* |
1664 | * Determine size of ASN.1 DER length |
1665 | */ |
1666 | static int |
1667 | gss_krb5_der_length_size(int len) |
1668 | { |
1669 | return |
1670 | len < (1 << 7) ? 1 : |
1671 | len < (1 << 8) ? 2 : |
1672 | len < (1 << 16) ? 3 : |
1673 | len < (1 << 24) ? 4 : 5; |
1674 | } |
1675 | |
1676 | /* |
1677 | * Encode an ASN.1 DER length field |
1678 | */ |
1679 | static void |
1680 | gss_krb5_der_length_put(uint8_t **pp, int len) |
1681 | { |
1682 | int sz = gss_krb5_der_length_size(len); |
1683 | uint8_t *p = *pp; |
1684 | |
1685 | if (sz == 1) { |
1686 | *p++ = (uint8_t) len; |
1687 | } else { |
1688 | *p++ = (uint8_t) ((sz-1) | 0x80); |
1689 | sz -= 1; |
1690 | while (sz--) |
1691 | *p++ = (uint8_t) ((len >> (sz * 8)) & 0xff); |
1692 | } |
1693 | |
1694 | *pp = p; |
1695 | } |
1696 | |
1697 | static void |
1698 | gss_krb5_3des_token_put(gss_ctx_id_t ctx, gss_1964_tok_type body, gss_buffer_t hash, size_t datalen, gss_buffer_t des3_token) |
1699 | { |
1700 | gss_1964_header token; |
1701 | gss_1964_token_body tokbody; |
1702 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1703 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1704 | uint32_t seq = (uint32_t) (lctx->send_seq++ & 0xffff); |
1705 | size_t toklen = sizeof(gss_1964_token_body_desc) + cctx->digest_size; |
1706 | size_t alloclen = toklen + sizeof (gss_1964_header_desc) + gss_krb5_der_length_size(toklen + datalen); |
1707 | uint8_t *tokptr; |
1708 | |
1709 | MALLOC(token, gss_1964_header, alloclen, M_TEMP, M_WAITOK|M_ZERO); |
1710 | *token = tok_1964_header; |
1711 | tokptr = token->AppLen; |
1712 | gss_krb5_der_length_put(&tokptr, toklen + datalen); |
1713 | tokbody = (gss_1964_token_body)tokptr; |
1714 | *tokbody = body_1964_token; /* Initalize the token body */ |
1715 | tokbody->body = body; /* and now set the body to the token type passed in */ |
1716 | seq = htonl(seq); |
1717 | for (int i = 0; i < 4; i++) |
1718 | tokbody->SND_SEQ[i] = (uint8_t)((seq >> (i * 8)) & 0xff); |
1719 | for (int i = 4; i < 8; i++) |
1720 | tokbody->SND_SEQ[i] = lctx->initiate ? 0x00 : 0xff; |
1721 | |
1722 | size_t blocksize = cctx->enc_mode->block_size; |
1723 | cccbc_iv_decl(blocksize, iv); |
1724 | cccbc_ctx_decl(cctx->enc_mode->size, enc_ctx); |
1725 | cccbc_set_iv(cctx->enc_mode, iv, hash->value); |
1726 | cccbc_init(cctx->enc_mode, enc_ctx, cctx->keylen, cctx->key); |
1727 | cccbc_update(cctx->enc_mode, enc_ctx, iv, 1, tokbody->SND_SEQ, tokbody->SND_SEQ); |
1728 | |
1729 | assert(hash->length == cctx->digest_size); |
1730 | memcpy(tokbody->Hash, hash->value, hash->length); |
1731 | des3_token->length = alloclen; |
1732 | des3_token->value = token; |
1733 | } |
1734 | |
1735 | static int |
1736 | gss_krb5_3des_token_get(gss_ctx_id_t ctx, gss_buffer_t intok, |
1737 | gss_1964_tok_type body, gss_buffer_t hash, size_t *offset, size_t *len, int reverse) |
1738 | { |
1739 | gss_1964_header token = intok->value; |
1740 | gss_1964_token_body tokbody; |
1741 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
1742 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1743 | ssize_t length; |
1744 | size_t toklen; |
1745 | uint8_t *tokptr; |
1746 | uint32_t seq; |
1747 | int initiate; |
1748 | |
1749 | if (token->App0 != tok_1964_header.App0) { |
1750 | printf("%s: bad framing\n" , __func__); |
1751 | printgbuf(__func__, intok); |
1752 | return (EBADRPC); |
1753 | } |
1754 | tokptr = token->AppLen; |
1755 | length = gss_krb5_der_length_get(&tokptr); |
1756 | if (length < 0) { |
1757 | printf("%s: invalid length\n" , __func__); |
1758 | printgbuf(__func__, intok); |
1759 | return (EBADRPC); |
1760 | } |
1761 | toklen = sizeof (gss_1964_header_desc) + gss_krb5_der_length_size(length) |
1762 | + sizeof (gss_1964_token_body_desc); |
1763 | |
1764 | if (intok->length < toklen + cctx->digest_size) { |
1765 | printf("%s: token to short" , __func__); |
1766 | printf("toklen = %d, length = %d\n" , (int)toklen, (int)length); |
1767 | printgbuf(__func__, intok); |
1768 | return (EBADRPC); |
1769 | } |
1770 | |
1771 | if (offset) |
1772 | *offset = toklen + cctx->digest_size; |
1773 | |
1774 | if (len) |
1775 | *len = length - sizeof (gss_1964_token_body_desc) - cctx->digest_size; |
1776 | |
1777 | tokbody = (gss_1964_token_body)tokptr; |
1778 | if (tokbody->OIDType != body_1964_token.OIDType || |
1779 | tokbody->OIDLen != body_1964_token.OIDLen || |
1780 | memcmp(tokbody->kerb_mech, body_1964_token.kerb_mech, tokbody->OIDLen) != 0) { |
1781 | printf("%s: Invalid mechanism\n" , __func__); |
1782 | printgbuf(__func__, intok); |
1783 | return (EBADRPC); |
1784 | } |
1785 | if (memcmp(&tokbody->body, &body, sizeof(gss_1964_tok_type)) != 0) { |
1786 | printf("%s: Invalid body\n" , __func__); |
1787 | printgbuf(__func__, intok); |
1788 | return (EBADRPC); |
1789 | } |
1790 | size_t blocksize = cctx->enc_mode->block_size; |
1791 | uint8_t *block = tokbody->SND_SEQ; |
1792 | |
1793 | assert(blocksize == sizeof(tokbody->SND_SEQ)); |
1794 | cccbc_iv_decl(blocksize, iv); |
1795 | cccbc_ctx_decl(cctx->dec_mode->size, dec_ctx); |
1796 | cccbc_set_iv(cctx->dec_mode, iv, tokbody->Hash); |
1797 | cccbc_init(cctx->dec_mode, dec_ctx, cctx->keylen, cctx->key); |
1798 | cccbc_update(cctx->dec_mode, dec_ctx, iv, 1, block, block); |
1799 | |
1800 | initiate = lctx->initiate ? (reverse ? 0 : 1) : (reverse ? 1 : 0); |
1801 | for(int i = 4; i < 8; i++) { |
1802 | if (tokbody->SND_SEQ[i] != (initiate ? 0xff : 0x00)) { |
1803 | printf("%s: Invalid des mac\n" , __func__); |
1804 | printgbuf(__func__, intok); |
1805 | return (EAUTH); |
1806 | } |
1807 | } |
1808 | |
1809 | memcpy(&seq, tokbody->SND_SEQ, sizeof (uint32_t)); |
1810 | |
1811 | lctx->recv_seq = ntohl(seq); |
1812 | |
1813 | assert(hash->length >= cctx->digest_size); |
1814 | memcpy(hash->value, tokbody->Hash, cctx->digest_size); |
1815 | |
1816 | return (0); |
1817 | } |
1818 | |
1819 | uint32_t |
1820 | gss_krb5_3des_get_mic(uint32_t *minor, /* minor status */ |
1821 | gss_ctx_id_t ctx, /* krb5 context id */ |
1822 | gss_qop_t qop __unused, /* qop_req (ignored) */ |
1823 | gss_buffer_t mbp, /* message buffer in */ |
1824 | gss_buffer_t mic) /* mic token out */ |
1825 | { |
1826 | gss_1964_mic_token_desc tokbody = mic_1964_token; |
1827 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1828 | gss_buffer_desc hash; |
1829 | gss_buffer_desc ; |
1830 | uint8_t hashval[cctx->digest_size]; |
1831 | |
1832 | hash.length = cctx->digest_size; |
1833 | hash.value = hashval; |
1834 | tokbody.Sign_Alg[0] = 0x04; /* lctx->keydata.lucid_protocol_u.data_1964.sign_alg */ |
1835 | tokbody.Sign_Alg[1] = 0x00; |
1836 | header.length = sizeof (gss_1964_mic_token_desc); |
1837 | header.value = & tokbody; |
1838 | |
1839 | /* Hash the data */ |
1840 | *minor = krb5_mic(cctx, &header, mbp, NULL, hashval, NULL, 0, 0); |
1841 | if (*minor) |
1842 | return (GSS_S_FAILURE); |
1843 | |
1844 | /* Make the token */ |
1845 | gss_krb5_3des_token_put(ctx, tokbody, &hash, 0, mic); |
1846 | |
1847 | return (GSS_S_COMPLETE); |
1848 | } |
1849 | |
1850 | uint32_t |
1851 | gss_krb5_3des_verify_mic(uint32_t *minor, |
1852 | gss_ctx_id_t ctx, |
1853 | gss_buffer_t mbp, |
1854 | gss_buffer_t mic, |
1855 | gss_qop_t *qop) |
1856 | { |
1857 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1858 | uint8_t hashval[cctx->digest_size]; |
1859 | gss_buffer_desc hash; |
1860 | gss_1964_mic_token_desc mtok = mic_1964_token; |
1861 | gss_buffer_desc ; |
1862 | int verf; |
1863 | |
1864 | mtok.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_1964.sign_alg */ |
1865 | mtok.Sign_Alg[1] = 0x00; |
1866 | hash.length = cctx->digest_size; |
1867 | hash.value = hashval; |
1868 | header.length = sizeof(gss_1964_mic_token_desc); |
1869 | header.value = &mtok; |
1870 | |
1871 | if (qop) |
1872 | *qop = GSS_C_QOP_DEFAULT; |
1873 | |
1874 | *minor = gss_krb5_3des_token_get(ctx, mic, mtok, &hash, NULL, NULL, 0); |
1875 | if (*minor) |
1876 | return (GSS_S_FAILURE); |
1877 | |
1878 | *minor = krb5_mic(cctx, &header, mbp, NULL, hashval, &verf, 0, 0); |
1879 | if (*minor) |
1880 | return (GSS_S_FAILURE); |
1881 | |
1882 | return (verf ? GSS_S_COMPLETE : GSS_S_BAD_SIG); |
1883 | } |
1884 | |
1885 | uint32_t |
1886 | gss_krb5_3des_get_mic_mbuf(uint32_t *minor, |
1887 | gss_ctx_id_t ctx, |
1888 | gss_qop_t qop __unused, |
1889 | mbuf_t mbp, |
1890 | size_t offset, |
1891 | size_t len, |
1892 | gss_buffer_t mic) |
1893 | { |
1894 | gss_1964_mic_token_desc tokbody = mic_1964_token; |
1895 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1896 | gss_buffer_desc ; |
1897 | gss_buffer_desc hash; |
1898 | uint8_t hashval[cctx->digest_size]; |
1899 | |
1900 | hash.length = cctx->digest_size; |
1901 | hash.value = hashval; |
1902 | tokbody.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_4121.sign_alg */ |
1903 | tokbody.Sign_Alg[1] = 0x00; |
1904 | header.length = sizeof (gss_1964_mic_token_desc); |
1905 | header.value = &tokbody; |
1906 | |
1907 | /* Hash the data */ |
1908 | *minor = krb5_mic_mbuf(cctx, &header, mbp, offset, len, NULL, hashval, NULL, 0, 0); |
1909 | if (*minor) |
1910 | return (GSS_S_FAILURE); |
1911 | |
1912 | /* Make the token */ |
1913 | gss_krb5_3des_token_put(ctx, tokbody, &hash, 0, mic); |
1914 | |
1915 | return (GSS_S_COMPLETE); |
1916 | } |
1917 | |
1918 | uint32_t |
1919 | gss_krb5_3des_verify_mic_mbuf(uint32_t *minor, |
1920 | gss_ctx_id_t ctx, |
1921 | mbuf_t mbp, |
1922 | size_t offset, |
1923 | size_t len, |
1924 | gss_buffer_t mic, |
1925 | gss_qop_t *qop) |
1926 | { |
1927 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1928 | uint8_t hashval[cctx->digest_size]; |
1929 | gss_buffer_desc ; |
1930 | gss_buffer_desc hash; |
1931 | gss_1964_mic_token_desc mtok = mic_1964_token; |
1932 | int verf; |
1933 | |
1934 | mtok.Sign_Alg[0] = 0x04; /* lctx->key_data.lucic_protocol_u.data1964.sign_alg */ |
1935 | mtok.Sign_Alg[1] = 0x00; |
1936 | hash.length = cctx->digest_size; |
1937 | hash.value = hashval; |
1938 | header.length = sizeof(gss_1964_mic_token_desc); |
1939 | header.value = &mtok; |
1940 | |
1941 | if (qop) |
1942 | *qop = GSS_C_QOP_DEFAULT; |
1943 | |
1944 | *minor = gss_krb5_3des_token_get(ctx, mic, mtok, &hash, NULL, NULL, 0); |
1945 | if (*minor) |
1946 | return (GSS_S_FAILURE); |
1947 | |
1948 | *minor = krb5_mic_mbuf(cctx, &header, mbp, offset, len, NULL, hashval, &verf, 0, 0); |
1949 | if (*minor) |
1950 | return (GSS_S_FAILURE); |
1951 | |
1952 | return (verf ? GSS_S_COMPLETE : GSS_S_BAD_SIG); |
1953 | } |
1954 | |
1955 | uint32_t |
1956 | gss_krb5_3des_wrap_mbuf(uint32_t *minor, |
1957 | gss_ctx_id_t ctx, |
1958 | int conf_flag, |
1959 | gss_qop_t qop __unused, |
1960 | mbuf_t *mbp, |
1961 | size_t len, |
1962 | int *conf_state) |
1963 | { |
1964 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
1965 | const struct ccmode_cbc *ccmode = cctx->enc_mode; |
1966 | uint8_t padlen; |
1967 | uint8_t pad[8]; |
1968 | uint8_t confounder[ccmode->block_size]; |
1969 | gss_1964_wrap_token_desc tokbody = wrap_1964_token; |
1970 | gss_buffer_desc ; |
1971 | gss_buffer_desc mic; |
1972 | gss_buffer_desc hash; |
1973 | uint8_t hashval[cctx->digest_size]; |
1974 | |
1975 | if (conf_state) |
1976 | *conf_state = conf_flag; |
1977 | |
1978 | hash.length = cctx->digest_size; |
1979 | hash.value = hashval; |
1980 | tokbody.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_1964.sign_alg */ |
1981 | tokbody.Sign_Alg[1] = 0x00; |
1982 | /* conf_flag ? lctx->key_data.lucid_protocol_u.data_1964.seal_alg : 0xffff */ |
1983 | tokbody.Seal_Alg[0] = conf_flag ? 0x02 : 0xff; |
1984 | tokbody.Seal_Alg[1] = conf_flag ? 0x00 : 0xff; |
1985 | header.length = sizeof (gss_1964_wrap_token_desc); |
1986 | header.value = &tokbody; |
1987 | |
1988 | /* Prepend confounder */ |
1989 | read_random(confounder, ccmode->block_size); |
1990 | *minor = gss_prepend_mbuf(mbp, confounder, ccmode->block_size); |
1991 | if (*minor) |
1992 | return (GSS_S_FAILURE); |
1993 | |
1994 | /* Append trailer of up to 8 bytes and set pad length in each trailer byte */ |
1995 | padlen = 8 - len % 8; |
1996 | for (int i = 0; i < padlen; i++) |
1997 | pad[i] = padlen; |
1998 | *minor = gss_append_mbuf(*mbp, pad, padlen); |
1999 | if (*minor) |
2000 | return (GSS_S_FAILURE); |
2001 | |
2002 | len += ccmode->block_size + padlen; |
2003 | |
2004 | /* Hash the data */ |
2005 | *minor = krb5_mic_mbuf(cctx, &header, *mbp, 0, len, NULL, hashval, NULL, 0, 0); |
2006 | if (*minor) |
2007 | return (GSS_S_FAILURE); |
2008 | |
2009 | /* Make the token */ |
2010 | gss_krb5_3des_token_put(ctx, tokbody, &hash, len, &mic); |
2011 | |
2012 | if (conf_flag) { |
2013 | *minor = krb5_crypt_mbuf(cctx, mbp, len, 1, 0); |
2014 | if (*minor) |
2015 | return (GSS_S_FAILURE); |
2016 | } |
2017 | |
2018 | *minor = gss_prepend_mbuf(mbp, mic.value, mic.length); |
2019 | |
2020 | return (*minor ? GSS_S_FAILURE : GSS_S_COMPLETE); |
2021 | } |
2022 | |
2023 | uint32_t |
2024 | gss_krb5_3des_unwrap_mbuf(uint32_t *minor, |
2025 | gss_ctx_id_t ctx, |
2026 | mbuf_t *mbp, |
2027 | size_t len, |
2028 | int *conf_state, |
2029 | gss_qop_t *qop) |
2030 | { |
2031 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
2032 | const struct ccmode_cbc *ccmode = cctx->dec_mode; |
2033 | size_t length = 0, offset; |
2034 | gss_buffer_desc hash; |
2035 | uint8_t hashval[cctx->digest_size]; |
2036 | gss_buffer_desc itoken; |
2037 | uint8_t tbuffer[GSS_KRB5_3DES_MAXTOKSZ + cctx->digest_size]; |
2038 | itoken.length = GSS_KRB5_3DES_MAXTOKSZ + cctx->digest_size; |
2039 | itoken.value = tbuffer; |
2040 | gss_1964_wrap_token_desc wrap = wrap_1964_token; |
2041 | gss_buffer_desc ; |
2042 | uint8_t padlen; |
2043 | mbuf_t smb, tmb; |
2044 | int cflag, verified, reverse = 0; |
2045 | |
2046 | if (len < GSS_KRB5_3DES_MAXTOKSZ) { |
2047 | *minor = EBADRPC; |
2048 | return (GSS_S_FAILURE); |
2049 | } |
2050 | |
2051 | if (*qop == GSS_C_QOP_REVERSE) |
2052 | reverse = 1; |
2053 | *qop = GSS_C_QOP_DEFAULT; |
2054 | |
2055 | *minor = mbuf_copydata(*mbp, 0, itoken.length, itoken.value); |
2056 | if (*minor) |
2057 | return (GSS_S_FAILURE); |
2058 | |
2059 | hash.length = cctx->digest_size; |
2060 | hash.value = hashval; |
2061 | wrap.Sign_Alg[0] = 0x04; |
2062 | wrap.Sign_Alg[1] = 0x00; |
2063 | wrap.Seal_Alg[0] = 0x02; |
2064 | wrap.Seal_Alg[1] = 0x00; |
2065 | |
2066 | for (cflag = 1; cflag >= 0; cflag--) { |
2067 | *minor = gss_krb5_3des_token_get(ctx, &itoken, wrap, &hash, &offset, &length, reverse); |
2068 | if (*minor == 0) |
2069 | break; |
2070 | wrap.Seal_Alg[0] = 0xff; |
2071 | wrap.Seal_Alg[0] = 0xff; |
2072 | } |
2073 | if (*minor) |
2074 | return (GSS_S_FAILURE); |
2075 | |
2076 | if (conf_state) |
2077 | *conf_state = cflag; |
2078 | |
2079 | /* |
2080 | * Seperate off the header |
2081 | */ |
2082 | *minor = gss_normalize_mbuf(*mbp, offset, &length, &smb, &tmb, 0); |
2083 | if (*minor) |
2084 | return (GSS_S_FAILURE); |
2085 | |
2086 | assert(tmb == NULL); |
2087 | |
2088 | /* Decrypt the chain if needed */ |
2089 | if (cflag) { |
2090 | *minor = krb5_crypt_mbuf(cctx, &smb, length, 0, NULL); |
2091 | if (*minor) |
2092 | return (GSS_S_FAILURE); |
2093 | } |
2094 | |
2095 | /* Verify the mic */ |
2096 | header.length = sizeof(gss_1964_wrap_token_desc); |
2097 | header.value = &wrap; |
2098 | |
2099 | *minor = krb5_mic_mbuf(cctx, &header, smb, 0, length, NULL, hashval, &verified, 0, 0); |
2100 | if (!verified) |
2101 | return (GSS_S_BAD_SIG); |
2102 | if (*minor) |
2103 | return (GSS_S_FAILURE); |
2104 | |
2105 | /* Get the pad bytes */ |
2106 | *minor = mbuf_copydata(smb, length - 1, 1, &padlen); |
2107 | if (*minor) |
2108 | return (GSS_S_FAILURE); |
2109 | |
2110 | /* Strip the confounder and trailing pad bytes */ |
2111 | gss_strip_mbuf(smb, -padlen); |
2112 | gss_strip_mbuf(smb, ccmode->block_size); |
2113 | |
2114 | if (*mbp != smb) { |
2115 | mbuf_freem(*mbp); |
2116 | *mbp = smb; |
2117 | } |
2118 | |
2119 | return (GSS_S_COMPLETE); |
2120 | } |
2121 | |
2122 | static const char * |
2123 | etype_name(etypes etype) |
2124 | { |
2125 | switch (etype) { |
2126 | case DES3_CBC_SHA1_KD: |
2127 | return ("des3-cbc-sha1" ); |
2128 | case AES128_CTS_HMAC_SHA1_96: |
2129 | return ("aes128-cts-hmac-sha1-96" ); |
2130 | case AES256_CTS_HMAC_SHA1_96: |
2131 | return ("aes-cts-hmac-sha1-96" ); |
2132 | default: |
2133 | return ("unknown enctype" ); |
2134 | } |
2135 | } |
2136 | |
2137 | static int |
2138 | supported_etype(uint32_t proto, etypes etype) |
2139 | { |
2140 | const char *proto_name; |
2141 | |
2142 | switch(proto) { |
2143 | case 0: |
2144 | /* RFC 1964 */ |
2145 | proto_name = "RFC 1964 krb5 gss mech" ; |
2146 | switch (etype) { |
2147 | case DES3_CBC_SHA1_KD: |
2148 | return (1); |
2149 | default: |
2150 | break; |
2151 | } |
2152 | break; |
2153 | case 1: |
2154 | /* RFC 4121 */ |
2155 | proto_name = "RFC 4121 krb5 gss mech" ; |
2156 | switch (etype) { |
2157 | case AES256_CTS_HMAC_SHA1_96: |
2158 | case AES128_CTS_HMAC_SHA1_96: |
2159 | return (1); |
2160 | default: |
2161 | break; |
2162 | } |
2163 | break; |
2164 | default: |
2165 | proto_name = "Unknown krb5 gss mech" ; |
2166 | break; |
2167 | } |
2168 | printf("%s: Non supported encryption %s (%d) type for protocol %s (%d)\n" , |
2169 | __func__, etype_name(etype), etype, proto_name, proto); |
2170 | return (0); |
2171 | } |
2172 | |
2173 | /* |
2174 | * Kerberos gss mech entry points |
2175 | */ |
2176 | uint32_t |
2177 | gss_krb5_get_mic(uint32_t *minor, /* minor_status */ |
2178 | gss_ctx_id_t ctx, /* context_handle */ |
2179 | gss_qop_t qop, /* qop_req */ |
2180 | gss_buffer_t mbp, /* message buffer */ |
2181 | gss_buffer_t mic /* message_token */) |
2182 | { |
2183 | uint32_t minor_stat = 0; |
2184 | |
2185 | if (minor == NULL) |
2186 | minor = &minor_stat; |
2187 | *minor = 0; |
2188 | |
2189 | /* Validate context */ |
2190 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) |
2191 | return (GSS_S_NO_CONTEXT); |
2192 | |
2193 | if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) { |
2194 | *minor = ENOTSUP; |
2195 | return (GSS_S_FAILURE); |
2196 | } |
2197 | |
2198 | switch(ctx->gss_lucid_ctx.key_data.proto) { |
2199 | case 0: |
2200 | /* RFC 1964 DES3 case */ |
2201 | return (gss_krb5_3des_get_mic(minor, ctx, qop, mbp, mic)); |
2202 | case 1: |
2203 | /* RFC 4121 CFX case */ |
2204 | return (gss_krb5_cfx_get_mic(minor, ctx, qop, mbp, mic)); |
2205 | } |
2206 | |
2207 | return (GSS_S_COMPLETE); |
2208 | } |
2209 | |
2210 | uint32_t |
2211 | gss_krb5_verify_mic(uint32_t *minor, /* minor_status */ |
2212 | gss_ctx_id_t ctx, /* context_handle */ |
2213 | gss_buffer_t mbp, /* message_buffer */ |
2214 | gss_buffer_t mic, /* message_token */ |
2215 | gss_qop_t *qop /* qop_state */) |
2216 | { |
2217 | uint32_t minor_stat = 0; |
2218 | gss_qop_t qop_val = GSS_C_QOP_DEFAULT; |
2219 | |
2220 | if (minor == NULL) |
2221 | minor = &minor_stat; |
2222 | if (qop == NULL) |
2223 | qop = &qop_val; |
2224 | |
2225 | *minor = 0; |
2226 | |
2227 | /* Validate context */ |
2228 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) |
2229 | return (GSS_S_NO_CONTEXT); |
2230 | |
2231 | if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) { |
2232 | *minor = ENOTSUP; |
2233 | return (GSS_S_FAILURE); |
2234 | } |
2235 | |
2236 | switch(ctx->gss_lucid_ctx.key_data.proto) { |
2237 | case 0: |
2238 | /* RFC 1964 DES3 case */ |
2239 | return (gss_krb5_3des_verify_mic(minor, ctx, mbp, mic, qop)); |
2240 | case 1: |
2241 | /* RFC 4121 CFX case */ |
2242 | return (gss_krb5_cfx_verify_mic(minor, ctx, mbp, mic, qop)); |
2243 | } |
2244 | return (GSS_S_COMPLETE); |
2245 | } |
2246 | |
2247 | uint32_t |
2248 | gss_krb5_get_mic_mbuf(uint32_t *minor, /* minor_status */ |
2249 | gss_ctx_id_t ctx, /* context_handle */ |
2250 | gss_qop_t qop, /* qop_req */ |
2251 | mbuf_t mbp, /* message mbuf */ |
2252 | size_t offset, /* offest */ |
2253 | size_t len, /* length */ |
2254 | gss_buffer_t mic /* message_token */) |
2255 | { |
2256 | uint32_t minor_stat = 0; |
2257 | |
2258 | if (minor == NULL) |
2259 | minor = &minor_stat; |
2260 | *minor = 0; |
2261 | |
2262 | if (len == 0) |
2263 | len = ~(size_t)0; |
2264 | |
2265 | /* Validate context */ |
2266 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) |
2267 | return (GSS_S_NO_CONTEXT); |
2268 | |
2269 | if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) { |
2270 | *minor = ENOTSUP; |
2271 | return (GSS_S_FAILURE); |
2272 | } |
2273 | |
2274 | switch(ctx->gss_lucid_ctx.key_data.proto) { |
2275 | case 0: |
2276 | /* RFC 1964 DES3 case */ |
2277 | return (gss_krb5_3des_get_mic_mbuf(minor, ctx, qop, mbp, offset, len, mic)); |
2278 | case 1: |
2279 | /* RFC 4121 CFX case */ |
2280 | return (gss_krb5_cfx_get_mic_mbuf(minor, ctx, qop, mbp, offset, len, mic)); |
2281 | } |
2282 | |
2283 | return (GSS_S_COMPLETE); |
2284 | } |
2285 | |
2286 | uint32_t |
2287 | gss_krb5_verify_mic_mbuf(uint32_t *minor, /* minor_status */ |
2288 | gss_ctx_id_t ctx, /* context_handle */ |
2289 | mbuf_t mbp, /* message_buffer */ |
2290 | size_t offset, /* offset */ |
2291 | size_t len, /* length */ |
2292 | gss_buffer_t mic, /* message_token */ |
2293 | gss_qop_t *qop /* qop_state */) |
2294 | { |
2295 | uint32_t minor_stat = 0; |
2296 | gss_qop_t qop_val = GSS_C_QOP_DEFAULT; |
2297 | |
2298 | if (minor == NULL) |
2299 | minor = &minor_stat; |
2300 | if (qop == NULL) |
2301 | qop = &qop_val; |
2302 | |
2303 | *minor = 0; |
2304 | |
2305 | if (len == 0) |
2306 | len = ~(size_t)0; |
2307 | |
2308 | /* Validate context */ |
2309 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) |
2310 | return (GSS_S_NO_CONTEXT); |
2311 | |
2312 | if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) { |
2313 | *minor = ENOTSUP; |
2314 | return (GSS_S_FAILURE); |
2315 | } |
2316 | |
2317 | switch(ctx->gss_lucid_ctx.key_data.proto) { |
2318 | case 0: |
2319 | /* RFC 1964 DES3 case */ |
2320 | return (gss_krb5_3des_verify_mic_mbuf(minor, ctx, mbp, offset, len, mic, qop)); |
2321 | case 1: |
2322 | /* RFC 4121 CFX case */ |
2323 | return (gss_krb5_cfx_verify_mic_mbuf(minor, ctx, mbp, offset, len, mic, qop)); |
2324 | } |
2325 | |
2326 | return (GSS_S_COMPLETE); |
2327 | } |
2328 | |
2329 | uint32_t |
2330 | gss_krb5_wrap_mbuf(uint32_t *minor, /* minor_status */ |
2331 | gss_ctx_id_t ctx, /* context_handle */ |
2332 | int conf_flag, /* conf_req_flag */ |
2333 | gss_qop_t qop, /* qop_req */ |
2334 | mbuf_t *mbp, /* input/output message_buffer */ |
2335 | size_t offset, /* offset */ |
2336 | size_t len, /* length */ |
2337 | int *conf_state /* conf state */) |
2338 | { |
2339 | uint32_t major, minor_stat = 0; |
2340 | mbuf_t smb, tmb; |
2341 | int conf_val = 0; |
2342 | |
2343 | if (minor == NULL) |
2344 | minor = &minor_stat; |
2345 | if (conf_state == NULL) |
2346 | conf_state = &conf_val; |
2347 | |
2348 | *minor = 0; |
2349 | |
2350 | /* Validate context */ |
2351 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) |
2352 | return (GSS_S_NO_CONTEXT); |
2353 | |
2354 | if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) { |
2355 | *minor = ENOTSUP; |
2356 | return (GSS_S_FAILURE); |
2357 | } |
2358 | |
2359 | gss_normalize_mbuf(*mbp, offset, &len, &smb, &tmb, 0); |
2360 | |
2361 | switch(ctx->gss_lucid_ctx.key_data.proto) { |
2362 | case 0: |
2363 | /* RFC 1964 DES3 case */ |
2364 | major = gss_krb5_3des_wrap_mbuf(minor, ctx, conf_flag, qop, &smb, len, conf_state); |
2365 | break; |
2366 | case 1: |
2367 | /* RFC 4121 CFX case */ |
2368 | major = gss_krb5_cfx_wrap_mbuf(minor, ctx, conf_flag, qop, &smb, len, conf_state); |
2369 | break; |
2370 | } |
2371 | |
2372 | if (offset) |
2373 | gss_join_mbuf(*mbp, smb, tmb); |
2374 | else { |
2375 | *mbp = smb; |
2376 | gss_join_mbuf(smb, tmb, NULL); |
2377 | } |
2378 | |
2379 | return (major); |
2380 | } |
2381 | |
2382 | uint32_t |
2383 | gss_krb5_unwrap_mbuf(uint32_t * minor, /* minor_status */ |
2384 | gss_ctx_id_t ctx, /* context_handle */ |
2385 | mbuf_t *mbp, /* input/output message_buffer */ |
2386 | size_t offset, /* offset */ |
2387 | size_t len, /* length */ |
2388 | int *conf_flag, /* conf_state */ |
2389 | gss_qop_t *qop /* qop state */) |
2390 | { |
2391 | uint32_t major, minor_stat = 0; |
2392 | gss_qop_t qop_val = GSS_C_QOP_DEFAULT; |
2393 | int conf_val = 0; |
2394 | mbuf_t smb, tmb; |
2395 | |
2396 | if (minor == NULL) |
2397 | minor = &minor_stat; |
2398 | if (qop == NULL) |
2399 | qop = &qop_val; |
2400 | if (conf_flag == NULL) |
2401 | conf_flag = &conf_val; |
2402 | |
2403 | /* Validate context */ |
2404 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) |
2405 | return (GSS_S_NO_CONTEXT); |
2406 | |
2407 | if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) { |
2408 | *minor = ENOTSUP; |
2409 | return (GSS_S_FAILURE); |
2410 | } |
2411 | |
2412 | gss_normalize_mbuf(*mbp, offset, &len, &smb, &tmb, 0); |
2413 | |
2414 | switch(ctx->gss_lucid_ctx.key_data.proto) { |
2415 | case 0: |
2416 | /* RFC 1964 DES3 case */ |
2417 | major = gss_krb5_3des_unwrap_mbuf(minor, ctx, &smb, len, conf_flag, qop); |
2418 | break; |
2419 | case 1: |
2420 | /* RFC 4121 CFX case */ |
2421 | major = gss_krb5_cfx_unwrap_mbuf(minor, ctx, &smb, len, conf_flag, qop); |
2422 | break; |
2423 | } |
2424 | |
2425 | if (offset) |
2426 | gss_join_mbuf(*mbp, smb, tmb); |
2427 | else { |
2428 | *mbp = smb; |
2429 | gss_join_mbuf(smb, tmb, NULL); |
2430 | } |
2431 | |
2432 | return (major); |
2433 | } |
2434 | |
2435 | #include <nfs/xdr_subs.h> |
2436 | |
2437 | static int |
2438 | xdr_lucid_context(void *data, size_t length, lucid_context_t lctx) |
2439 | { |
2440 | struct xdrbuf xb; |
2441 | int error = 0; |
2442 | uint32_t keylen = 0; |
2443 | |
2444 | xb_init_buffer(&xb, data, length); |
2445 | xb_get_32(error, &xb, lctx->vers); |
2446 | if (!error && lctx->vers != 1) { |
2447 | error = EINVAL; |
2448 | printf("%s: invalid version %d\n" , __func__, (int)lctx->vers); |
2449 | goto out; |
2450 | } |
2451 | xb_get_32(error, &xb, lctx->initiate); |
2452 | if (error) { |
2453 | printf("%s: Could not decode initiate\n" , __func__); |
2454 | goto out; |
2455 | } |
2456 | xb_get_32(error, &xb, lctx->endtime); |
2457 | if (error) { |
2458 | printf("%s: Could not decode endtime\n" , __func__); |
2459 | goto out; |
2460 | } |
2461 | xb_get_64(error, &xb, lctx->send_seq); |
2462 | if (error) { |
2463 | printf("%s: Could not decode send_seq\n" , __func__); |
2464 | goto out; |
2465 | } |
2466 | xb_get_64(error, &xb, lctx->recv_seq); |
2467 | if (error) { |
2468 | printf("%s: Could not decode recv_seq\n" , __func__); |
2469 | goto out; |
2470 | } |
2471 | xb_get_32(error, &xb, lctx->key_data.proto); |
2472 | if (error) { |
2473 | printf("%s: Could not decode mech protocol\n" , __func__); |
2474 | goto out; |
2475 | } |
2476 | switch(lctx->key_data.proto) { |
2477 | case 0: |
2478 | xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_1964.sign_alg); |
2479 | xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_1964.seal_alg); |
2480 | if (error) |
2481 | printf("%s: Could not decode rfc1964 sign and seal\n" , __func__); |
2482 | break; |
2483 | case 1: |
2484 | xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey); |
2485 | if (error) |
2486 | printf("%s: Could not decode rfc4121 acceptor_subkey" , __func__); |
2487 | break; |
2488 | default: |
2489 | printf("%s: Invalid mech protocol %d\n" , __func__, (int)lctx->key_data.proto); |
2490 | error = EINVAL; |
2491 | } |
2492 | if (error) |
2493 | goto out; |
2494 | xb_get_32(error, &xb, lctx->ctx_key.etype); |
2495 | if (error) { |
2496 | printf("%s: Could not decode key enctype\n" , __func__); |
2497 | goto out; |
2498 | } |
2499 | switch(lctx->ctx_key.etype) { |
2500 | case DES3_CBC_SHA1_KD: |
2501 | keylen = 24; |
2502 | break; |
2503 | case AES128_CTS_HMAC_SHA1_96: |
2504 | keylen = 16; |
2505 | break; |
2506 | case AES256_CTS_HMAC_SHA1_96: |
2507 | keylen = 32; |
2508 | break; |
2509 | default: |
2510 | error = ENOTSUP; |
2511 | goto out; |
2512 | } |
2513 | xb_get_32(error, &xb, lctx->ctx_key.key.key_len); |
2514 | if (error) { |
2515 | printf("%s: could not decode key length\n" , __func__); |
2516 | goto out; |
2517 | } |
2518 | if (lctx->ctx_key.key.key_len != keylen) { |
2519 | error = EINVAL; |
2520 | printf("%s: etype = %d keylen = %d expected keylen = %d\n" , __func__, |
2521 | lctx->ctx_key.etype, lctx->ctx_key.key.key_len, keylen); |
2522 | goto out; |
2523 | } |
2524 | |
2525 | lctx->ctx_key.key.key_val = xb_malloc(keylen); |
2526 | if (lctx->ctx_key.key.key_val == NULL) { |
2527 | printf("%s: could not get memory for key\n" , __func__); |
2528 | error = ENOMEM; |
2529 | goto out; |
2530 | } |
2531 | error = xb_get_bytes(&xb, (char *)lctx->ctx_key.key.key_val, keylen, 1); |
2532 | if (error) { |
2533 | printf("%s: could get key value\n" , __func__); |
2534 | xb_free(lctx->ctx_key.key.key_val); |
2535 | } |
2536 | out: |
2537 | return (error); |
2538 | } |
2539 | |
2540 | gss_ctx_id_t |
2541 | gss_krb5_make_context(void *data, uint32_t datalen) |
2542 | { |
2543 | gss_ctx_id_t ctx; |
2544 | |
2545 | if (!corecrypto_available()) |
2546 | return (NULL); |
2547 | |
2548 | gss_krb5_mech_init(); |
2549 | MALLOC(ctx, gss_ctx_id_t, sizeof (struct gss_ctx_id_desc), M_TEMP, M_WAITOK | M_ZERO); |
2550 | if (xdr_lucid_context(data, datalen, &ctx->gss_lucid_ctx) || |
2551 | !supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_lucid_ctx.ctx_key.etype)) { |
2552 | FREE(ctx, M_TEMP); |
2553 | FREE(data, M_TEMP); |
2554 | return (NULL); |
2555 | } |
2556 | |
2557 | /* Set up crypto context */ |
2558 | gss_crypto_ctx_init(&ctx->gss_cryptor, &ctx->gss_lucid_ctx); |
2559 | FREE(data, M_TEMP); |
2560 | |
2561 | return (ctx); |
2562 | } |
2563 | |
2564 | void |
2565 | gss_krb5_destroy_context(gss_ctx_id_t ctx) |
2566 | { |
2567 | if (ctx == NULL) |
2568 | return; |
2569 | gss_crypto_ctx_free(&ctx->gss_cryptor); |
2570 | FREE(ctx->gss_lucid_ctx.ctx_key.key.key_val, M_TEMP); |
2571 | cc_clear(sizeof (lucid_context_t), &ctx->gss_lucid_ctx); |
2572 | FREE(ctx, M_TEMP); |
2573 | } |
2574 | |