| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. Neither the name of the project nor the names of its contributors |
| 42 | * may be used to endorse or promote products derived from this software |
| 43 | * without specific prior written permission. |
| 44 | * |
| 45 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 46 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 47 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 48 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 49 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 50 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 51 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 52 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 53 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 54 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 55 | * SUCH DAMAGE. |
| 56 | */ |
| 57 | |
| 58 | /* |
| 59 | * XXX |
| 60 | * KAME 970409 note: |
| 61 | * BSD/OS version heavily modifies this code, related to llinfo. |
| 62 | * Since we don't have BSD/OS version of net/route.c in our hand, |
| 63 | * I left the code mostly as it was in 970310. -- itojun |
| 64 | */ |
| 65 | |
| 66 | #include <sys/param.h> |
| 67 | #include <sys/systm.h> |
| 68 | #include <sys/malloc.h> |
| 69 | #include <sys/mbuf.h> |
| 70 | #include <sys/socket.h> |
| 71 | #include <sys/sockio.h> |
| 72 | #include <sys/time.h> |
| 73 | #include <sys/kernel.h> |
| 74 | #include <sys/sysctl.h> |
| 75 | #include <sys/errno.h> |
| 76 | #include <sys/syslog.h> |
| 77 | #include <sys/protosw.h> |
| 78 | #include <sys/proc.h> |
| 79 | #include <sys/mcache.h> |
| 80 | |
| 81 | #include <dev/random/randomdev.h> |
| 82 | |
| 83 | #include <kern/queue.h> |
| 84 | #include <kern/zalloc.h> |
| 85 | |
| 86 | #include <net/if.h> |
| 87 | #include <net/if_dl.h> |
| 88 | #include <net/if_types.h> |
| 89 | #include <net/if_llreach.h> |
| 90 | #include <net/route.h> |
| 91 | #include <net/dlil.h> |
| 92 | #include <net/ntstat.h> |
| 93 | #include <net/net_osdep.h> |
| 94 | #include <net/nwk_wq.h> |
| 95 | |
| 96 | #include <netinet/in.h> |
| 97 | #include <netinet/in_arp.h> |
| 98 | #include <netinet/if_ether.h> |
| 99 | #include <netinet6/in6_var.h> |
| 100 | #include <netinet/ip6.h> |
| 101 | #include <netinet6/ip6_var.h> |
| 102 | #include <netinet6/nd6.h> |
| 103 | #include <netinet6/scope6_var.h> |
| 104 | #include <netinet/icmp6.h> |
| 105 | |
| 106 | #include "loop.h" |
| 107 | |
| 108 | #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ |
| 109 | #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ |
| 110 | |
| 111 | #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) |
| 112 | |
| 113 | /* timer values */ |
| 114 | int nd6_prune = 1; /* walk list every 1 seconds */ |
| 115 | int nd6_prune_lazy = 5; /* lazily walk list every 5 seconds */ |
| 116 | int nd6_delay = 5; /* delay first probe time 5 second */ |
| 117 | int nd6_umaxtries = 3; /* maximum unicast query */ |
| 118 | int nd6_mmaxtries = 3; /* maximum multicast query */ |
| 119 | int nd6_useloopback = 1; /* use loopback interface for local traffic */ |
| 120 | int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ |
| 121 | |
| 122 | /* preventing too many loops in ND option parsing */ |
| 123 | int nd6_maxndopt = 10; /* max # of ND options allowed */ |
| 124 | |
| 125 | int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ |
| 126 | |
| 127 | #if ND6_DEBUG |
| 128 | int nd6_debug = 1; |
| 129 | #else |
| 130 | int nd6_debug = 0; |
| 131 | #endif |
| 132 | |
| 133 | int nd6_optimistic_dad = |
| 134 | (ND6_OPTIMISTIC_DAD_LINKLOCAL|ND6_OPTIMISTIC_DAD_AUTOCONF| |
| 135 | ND6_OPTIMISTIC_DAD_TEMPORARY|ND6_OPTIMISTIC_DAD_DYNAMIC| |
| 136 | ND6_OPTIMISTIC_DAD_SECURED|ND6_OPTIMISTIC_DAD_MANUAL); |
| 137 | |
| 138 | /* for debugging? */ |
| 139 | static int nd6_inuse, nd6_allocated; |
| 140 | |
| 141 | /* |
| 142 | * Synchronization notes: |
| 143 | * |
| 144 | * The global list of ND entries are stored in llinfo_nd6; an entry |
| 145 | * gets inserted into the list when the route is created and gets |
| 146 | * removed from the list when it is deleted; this is done as part |
| 147 | * of RTM_ADD/RTM_RESOLVE/RTM_DELETE in nd6_rtrequest(). |
| 148 | * |
| 149 | * Because rnh_lock and rt_lock for the entry are held during those |
| 150 | * operations, the same locks (and thus lock ordering) must be used |
| 151 | * elsewhere to access the relevant data structure fields: |
| 152 | * |
| 153 | * ln_next, ln_prev, ln_rt |
| 154 | * |
| 155 | * - Routing lock (rnh_lock) |
| 156 | * |
| 157 | * ln_hold, ln_asked, ln_expire, ln_state, ln_router, ln_flags, |
| 158 | * ln_llreach, ln_lastused |
| 159 | * |
| 160 | * - Routing entry lock (rt_lock) |
| 161 | * |
| 162 | * Due to the dependency on rt_lock, llinfo_nd6 has the same lifetime |
| 163 | * as the route entry itself. When a route is deleted (RTM_DELETE), |
| 164 | * it is simply removed from the global list but the memory is not |
| 165 | * freed until the route itself is freed. |
| 166 | */ |
| 167 | struct llinfo_nd6 llinfo_nd6 = { |
| 168 | .ln_next = &llinfo_nd6, |
| 169 | .ln_prev = &llinfo_nd6, |
| 170 | }; |
| 171 | |
| 172 | static lck_grp_attr_t *nd_if_lock_grp_attr = NULL; |
| 173 | static lck_grp_t *nd_if_lock_grp = NULL; |
| 174 | static lck_attr_t *nd_if_lock_attr = NULL; |
| 175 | |
| 176 | /* Protected by nd6_mutex */ |
| 177 | struct nd_drhead nd_defrouter; |
| 178 | struct nd_prhead nd_prefix = { 0 }; |
| 179 | |
| 180 | /* |
| 181 | * nd6_timeout() is scheduled on a demand basis. nd6_timeout_run is used |
| 182 | * to indicate whether or not a timeout has been scheduled. The rnh_lock |
| 183 | * mutex is used to protect this scheduling; it is a natural choice given |
| 184 | * the work done in the timer callback. Unfortunately, there are cases |
| 185 | * when nd6_timeout() needs to be scheduled while rnh_lock cannot be easily |
| 186 | * held, due to lock ordering. In those cases, we utilize a "demand" counter |
| 187 | * nd6_sched_timeout_want which can be atomically incremented without |
| 188 | * having to hold rnh_lock. On places where we acquire rnh_lock, such as |
| 189 | * nd6_rtrequest(), we check this counter and schedule the timer if it is |
| 190 | * non-zero. The increment happens on various places when we allocate |
| 191 | * new ND entries, default routers, prefixes and addresses. |
| 192 | */ |
| 193 | static int nd6_timeout_run; /* nd6_timeout is scheduled to run */ |
| 194 | static void nd6_timeout(void *); |
| 195 | int nd6_sched_timeout_want; /* demand count for timer to be sched */ |
| 196 | static boolean_t nd6_fast_timer_on = FALSE; |
| 197 | |
| 198 | /* Serialization variables for nd6_service(), protected by rnh_lock */ |
| 199 | static boolean_t nd6_service_busy; |
| 200 | static void *nd6_service_wc = &nd6_service_busy; |
| 201 | static int nd6_service_waiters = 0; |
| 202 | |
| 203 | int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; |
| 204 | static struct sockaddr_in6 all1_sa; |
| 205 | |
| 206 | static int regen_tmpaddr(struct in6_ifaddr *); |
| 207 | extern lck_mtx_t *nd6_mutex; |
| 208 | |
| 209 | static struct llinfo_nd6 *nd6_llinfo_alloc(int); |
| 210 | static void nd6_llinfo_free(void *); |
| 211 | static void nd6_llinfo_purge(struct rtentry *); |
| 212 | static void nd6_llinfo_get_ri(struct rtentry *, struct rt_reach_info *); |
| 213 | static void nd6_llinfo_get_iflri(struct rtentry *, struct ifnet_llreach_info *); |
| 214 | static void nd6_llinfo_refresh(struct rtentry *); |
| 215 | static uint64_t ln_getexpire(struct llinfo_nd6 *); |
| 216 | |
| 217 | static void nd6_service(void *); |
| 218 | static void nd6_slowtimo(void *); |
| 219 | static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, struct ifnet *); |
| 220 | static int nd6_siocgdrlst(void *, int); |
| 221 | static int nd6_siocgprlst(void *, int); |
| 222 | |
| 223 | static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS; |
| 224 | static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS; |
| 225 | |
| 226 | /* |
| 227 | * Insertion and removal from llinfo_nd6 must be done with rnh_lock held. |
| 228 | */ |
| 229 | #define LN_DEQUEUE(_ln) do { \ |
| 230 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \ |
| 231 | RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ |
| 232 | (_ln)->ln_next->ln_prev = (_ln)->ln_prev; \ |
| 233 | (_ln)->ln_prev->ln_next = (_ln)->ln_next; \ |
| 234 | (_ln)->ln_prev = (_ln)->ln_next = NULL; \ |
| 235 | (_ln)->ln_flags &= ~ND6_LNF_IN_USE; \ |
| 236 | } while (0) |
| 237 | |
| 238 | #define LN_INSERTHEAD(_ln) do { \ |
| 239 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \ |
| 240 | RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ |
| 241 | (_ln)->ln_next = llinfo_nd6.ln_next; \ |
| 242 | llinfo_nd6.ln_next = (_ln); \ |
| 243 | (_ln)->ln_prev = &llinfo_nd6; \ |
| 244 | (_ln)->ln_next->ln_prev = (_ln); \ |
| 245 | (_ln)->ln_flags |= ND6_LNF_IN_USE; \ |
| 246 | } while (0) |
| 247 | |
| 248 | static struct zone *llinfo_nd6_zone; |
| 249 | #define LLINFO_ND6_ZONE_MAX 256 /* maximum elements in zone */ |
| 250 | #define LLINFO_ND6_ZONE_NAME "llinfo_nd6" /* name for zone */ |
| 251 | |
| 252 | extern int tvtohz(struct timeval *); |
| 253 | |
| 254 | static int nd6_init_done; |
| 255 | |
| 256 | SYSCTL_DECL(_net_inet6_icmp6); |
| 257 | |
| 258 | SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, |
| 259 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 260 | nd6_sysctl_drlist, "S,in6_defrouter" , "" ); |
| 261 | |
| 262 | SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, |
| 263 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 264 | nd6_sysctl_prlist, "S,in6_defrouter" , "" ); |
| 265 | |
| 266 | SYSCTL_DECL(_net_inet6_ip6); |
| 267 | |
| 268 | static int ip6_maxchainsent = 0; |
| 269 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, maxchainsent, |
| 270 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxchainsent, 0, |
| 271 | "use dlil_output_list" ); |
| 272 | |
| 273 | void |
| 274 | nd6_init(void) |
| 275 | { |
| 276 | int i; |
| 277 | |
| 278 | VERIFY(!nd6_init_done); |
| 279 | |
| 280 | all1_sa.sin6_family = AF_INET6; |
| 281 | all1_sa.sin6_len = sizeof (struct sockaddr_in6); |
| 282 | for (i = 0; i < sizeof (all1_sa.sin6_addr); i++) |
| 283 | all1_sa.sin6_addr.s6_addr[i] = 0xff; |
| 284 | |
| 285 | /* initialization of the default router list */ |
| 286 | TAILQ_INIT(&nd_defrouter); |
| 287 | |
| 288 | nd_if_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 289 | nd_if_lock_grp = lck_grp_alloc_init("nd_if_lock" , nd_if_lock_grp_attr); |
| 290 | nd_if_lock_attr = lck_attr_alloc_init(); |
| 291 | |
| 292 | llinfo_nd6_zone = zinit(sizeof (struct llinfo_nd6), |
| 293 | LLINFO_ND6_ZONE_MAX * sizeof (struct llinfo_nd6), 0, |
| 294 | LLINFO_ND6_ZONE_NAME); |
| 295 | if (llinfo_nd6_zone == NULL) |
| 296 | panic("%s: failed allocating llinfo_nd6_zone" , __func__); |
| 297 | |
| 298 | zone_change(llinfo_nd6_zone, Z_EXPAND, TRUE); |
| 299 | zone_change(llinfo_nd6_zone, Z_CALLERACCT, FALSE); |
| 300 | |
| 301 | nd6_nbr_init(); |
| 302 | nd6_rtr_init(); |
| 303 | nd6_prproxy_init(); |
| 304 | |
| 305 | nd6_init_done = 1; |
| 306 | |
| 307 | /* start timer */ |
| 308 | timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz); |
| 309 | } |
| 310 | |
| 311 | static struct llinfo_nd6 * |
| 312 | nd6_llinfo_alloc(int how) |
| 313 | { |
| 314 | struct llinfo_nd6 *ln; |
| 315 | |
| 316 | ln = (how == M_WAITOK) ? zalloc(llinfo_nd6_zone) : |
| 317 | zalloc_noblock(llinfo_nd6_zone); |
| 318 | if (ln != NULL) |
| 319 | bzero(ln, sizeof (*ln)); |
| 320 | |
| 321 | return (ln); |
| 322 | } |
| 323 | |
| 324 | static void |
| 325 | nd6_llinfo_free(void *arg) |
| 326 | { |
| 327 | struct llinfo_nd6 *ln = arg; |
| 328 | |
| 329 | if (ln->ln_next != NULL || ln->ln_prev != NULL) { |
| 330 | panic("%s: trying to free %p when it is in use" , __func__, ln); |
| 331 | /* NOTREACHED */ |
| 332 | } |
| 333 | |
| 334 | /* Just in case there's anything there, free it */ |
| 335 | if (ln->ln_hold != NULL) { |
| 336 | m_freem_list(ln->ln_hold); |
| 337 | ln->ln_hold = NULL; |
| 338 | } |
| 339 | |
| 340 | /* Purge any link-layer info caching */ |
| 341 | VERIFY(ln->ln_rt->rt_llinfo == ln); |
| 342 | if (ln->ln_rt->rt_llinfo_purge != NULL) |
| 343 | ln->ln_rt->rt_llinfo_purge(ln->ln_rt); |
| 344 | |
| 345 | zfree(llinfo_nd6_zone, ln); |
| 346 | } |
| 347 | |
| 348 | static void |
| 349 | nd6_llinfo_purge(struct rtentry *rt) |
| 350 | { |
| 351 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
| 352 | |
| 353 | RT_LOCK_ASSERT_HELD(rt); |
| 354 | VERIFY(rt->rt_llinfo_purge == nd6_llinfo_purge && ln != NULL); |
| 355 | |
| 356 | if (ln->ln_llreach != NULL) { |
| 357 | RT_CONVERT_LOCK(rt); |
| 358 | ifnet_llreach_free(ln->ln_llreach); |
| 359 | ln->ln_llreach = NULL; |
| 360 | } |
| 361 | ln->ln_lastused = 0; |
| 362 | } |
| 363 | |
| 364 | static void |
| 365 | nd6_llinfo_get_ri(struct rtentry *rt, struct rt_reach_info *ri) |
| 366 | { |
| 367 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
| 368 | struct if_llreach *lr = ln->ln_llreach; |
| 369 | |
| 370 | if (lr == NULL) { |
| 371 | bzero(ri, sizeof (*ri)); |
| 372 | ri->ri_rssi = IFNET_RSSI_UNKNOWN; |
| 373 | ri->ri_lqm = IFNET_LQM_THRESH_OFF; |
| 374 | ri->ri_npm = IFNET_NPM_THRESH_UNKNOWN; |
| 375 | } else { |
| 376 | IFLR_LOCK(lr); |
| 377 | /* Export to rt_reach_info structure */ |
| 378 | ifnet_lr2ri(lr, ri); |
| 379 | /* Export ND6 send expiration (calendar) time */ |
| 380 | ri->ri_snd_expire = |
| 381 | ifnet_llreach_up2calexp(lr, ln->ln_lastused); |
| 382 | IFLR_UNLOCK(lr); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | static void |
| 387 | nd6_llinfo_get_iflri(struct rtentry *rt, struct ifnet_llreach_info *iflri) |
| 388 | { |
| 389 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
| 390 | struct if_llreach *lr = ln->ln_llreach; |
| 391 | |
| 392 | if (lr == NULL) { |
| 393 | bzero(iflri, sizeof (*iflri)); |
| 394 | iflri->iflri_rssi = IFNET_RSSI_UNKNOWN; |
| 395 | iflri->iflri_lqm = IFNET_LQM_THRESH_OFF; |
| 396 | iflri->iflri_npm = IFNET_NPM_THRESH_UNKNOWN; |
| 397 | } else { |
| 398 | IFLR_LOCK(lr); |
| 399 | /* Export to ifnet_llreach_info structure */ |
| 400 | ifnet_lr2iflri(lr, iflri); |
| 401 | /* Export ND6 send expiration (uptime) time */ |
| 402 | iflri->iflri_snd_expire = |
| 403 | ifnet_llreach_up2upexp(lr, ln->ln_lastused); |
| 404 | IFLR_UNLOCK(lr); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | static void |
| 409 | nd6_llinfo_refresh(struct rtentry *rt) |
| 410 | { |
| 411 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
| 412 | uint64_t timenow = net_uptime(); |
| 413 | /* |
| 414 | * Can't refresh permanent, static or entries that are |
| 415 | * not direct host entries |
| 416 | */ |
| 417 | if (!ln || ln->ln_expire == 0 || |
| 418 | (rt->rt_flags & RTF_STATIC) || |
| 419 | !(rt->rt_flags & RTF_LLINFO)) { |
| 420 | return; |
| 421 | } |
| 422 | |
| 423 | if ((ln->ln_state > ND6_LLINFO_INCOMPLETE) && |
| 424 | (ln->ln_state < ND6_LLINFO_PROBE)) { |
| 425 | if (ln->ln_expire > timenow) { |
| 426 | ln_setexpire(ln, timenow); |
| 427 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE); |
| 428 | } |
| 429 | } |
| 430 | return; |
| 431 | } |
| 432 | |
| 433 | const char * |
| 434 | ndcache_state2str(short ndp_state) |
| 435 | { |
| 436 | const char *ndp_state_str = "UNKNOWN" ; |
| 437 | switch (ndp_state) { |
| 438 | case ND6_LLINFO_PURGE: |
| 439 | ndp_state_str = "ND6_LLINFO_PURGE" ; |
| 440 | break; |
| 441 | case ND6_LLINFO_NOSTATE: |
| 442 | ndp_state_str = "ND6_LLINFO_NOSTATE" ; |
| 443 | break; |
| 444 | case ND6_LLINFO_INCOMPLETE: |
| 445 | ndp_state_str = "ND6_LLINFO_INCOMPLETE" ; |
| 446 | break; |
| 447 | case ND6_LLINFO_REACHABLE: |
| 448 | ndp_state_str = "ND6_LLINFO_REACHABLE" ; |
| 449 | break; |
| 450 | case ND6_LLINFO_STALE: |
| 451 | ndp_state_str = "ND6_LLINFO_STALE" ; |
| 452 | break; |
| 453 | case ND6_LLINFO_DELAY: |
| 454 | ndp_state_str = "ND6_LLINFO_DELAY" ; |
| 455 | break; |
| 456 | case ND6_LLINFO_PROBE: |
| 457 | ndp_state_str = "ND6_LLINFO_PROBE" ; |
| 458 | break; |
| 459 | default: |
| 460 | /* Init'd to UNKNOWN */ |
| 461 | break; |
| 462 | } |
| 463 | return ndp_state_str; |
| 464 | } |
| 465 | |
| 466 | void |
| 467 | ln_setexpire(struct llinfo_nd6 *ln, uint64_t expiry) |
| 468 | { |
| 469 | ln->ln_expire = expiry; |
| 470 | } |
| 471 | |
| 472 | static uint64_t |
| 473 | ln_getexpire(struct llinfo_nd6 *ln) |
| 474 | { |
| 475 | struct timeval caltime; |
| 476 | uint64_t expiry; |
| 477 | |
| 478 | if (ln->ln_expire != 0) { |
| 479 | struct rtentry *rt = ln->ln_rt; |
| 480 | |
| 481 | VERIFY(rt != NULL); |
| 482 | /* account for system time change */ |
| 483 | getmicrotime(&caltime); |
| 484 | |
| 485 | rt->base_calendartime += |
| 486 | NET_CALCULATE_CLOCKSKEW(caltime, |
| 487 | rt->base_calendartime, net_uptime(), rt->base_uptime); |
| 488 | |
| 489 | expiry = rt->base_calendartime + |
| 490 | ln->ln_expire - rt->base_uptime; |
| 491 | } else { |
| 492 | expiry = 0; |
| 493 | } |
| 494 | return (expiry); |
| 495 | } |
| 496 | |
| 497 | void |
| 498 | nd6_ifreset(struct ifnet *ifp) |
| 499 | { |
| 500 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
| 501 | VERIFY(NULL != ndi); |
| 502 | VERIFY(ndi->initialized); |
| 503 | |
| 504 | LCK_MTX_ASSERT(&ndi->lock, LCK_MTX_ASSERT_OWNED); |
| 505 | ndi->linkmtu = ifp->if_mtu; |
| 506 | ndi->chlim = IPV6_DEFHLIM; |
| 507 | ndi->basereachable = REACHABLE_TIME; |
| 508 | ndi->reachable = ND_COMPUTE_RTIME(ndi->basereachable); |
| 509 | ndi->retrans = RETRANS_TIMER; |
| 510 | } |
| 511 | |
| 512 | void |
| 513 | nd6_ifattach(struct ifnet *ifp) |
| 514 | { |
| 515 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
| 516 | |
| 517 | VERIFY(NULL != ndi); |
| 518 | if (!ndi->initialized) { |
| 519 | lck_mtx_init(&ndi->lock, nd_if_lock_grp, nd_if_lock_attr); |
| 520 | ndi->flags = ND6_IFF_PERFORMNUD; |
| 521 | ndi->flags |= ND6_IFF_DAD; |
| 522 | ndi->initialized = TRUE; |
| 523 | } |
| 524 | |
| 525 | lck_mtx_lock(&ndi->lock); |
| 526 | |
| 527 | if (!(ifp->if_flags & IFF_MULTICAST)) { |
| 528 | ndi->flags |= ND6_IFF_IFDISABLED; |
| 529 | } |
| 530 | |
| 531 | nd6_ifreset(ifp); |
| 532 | lck_mtx_unlock(&ndi->lock); |
| 533 | nd6_setmtu(ifp); |
| 534 | |
| 535 | nd6log0((LOG_INFO, ": " , |
| 536 | "%s Reinit'd ND information for interface %s\n" , |
| 537 | if_name(ifp))); |
| 538 | return; |
| 539 | } |
| 540 | |
| 541 | #if 0 |
| 542 | /* |
| 543 | * XXX Look more into this. Especially since we recycle ifnets and do delayed |
| 544 | * cleanup |
| 545 | */ |
| 546 | void |
| 547 | nd6_ifdetach(struct nd_ifinfo *nd) |
| 548 | { |
| 549 | /* XXX destroy nd's lock? */ |
| 550 | FREE(nd, M_IP6NDP); |
| 551 | } |
| 552 | #endif |
| 553 | |
| 554 | void |
| 555 | nd6_setmtu(struct ifnet *ifp) |
| 556 | { |
| 557 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
| 558 | u_int32_t oldmaxmtu, maxmtu; |
| 559 | |
| 560 | if ((NULL == ndi) || (FALSE == ndi->initialized)) { |
| 561 | return; |
| 562 | } |
| 563 | |
| 564 | lck_mtx_lock(&ndi->lock); |
| 565 | oldmaxmtu = ndi->maxmtu; |
| 566 | |
| 567 | /* |
| 568 | * The ND level maxmtu is somewhat redundant to the interface MTU |
| 569 | * and is an implementation artifact of KAME. Instead of hard- |
| 570 | * limiting the maxmtu based on the interface type here, we simply |
| 571 | * take the if_mtu value since SIOCSIFMTU would have taken care of |
| 572 | * the sanity checks related to the maximum MTU allowed for the |
| 573 | * interface (a value that is known only by the interface layer), |
| 574 | * by sending the request down via ifnet_ioctl(). The use of the |
| 575 | * ND level maxmtu and linkmtu are done via IN6_LINKMTU() which |
| 576 | * does further checking against if_mtu. |
| 577 | */ |
| 578 | maxmtu = ndi->maxmtu = ifp->if_mtu; |
| 579 | |
| 580 | /* |
| 581 | * Decreasing the interface MTU under IPV6 minimum MTU may cause |
| 582 | * undesirable situation. We thus notify the operator of the change |
| 583 | * explicitly. The check for oldmaxmtu is necessary to restrict the |
| 584 | * log to the case of changing the MTU, not initializing it. |
| 585 | */ |
| 586 | if (oldmaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { |
| 587 | log(LOG_NOTICE, "nd6_setmtu: " |
| 588 | "new link MTU on %s (%u) is too small for IPv6\n" , |
| 589 | if_name(ifp), (uint32_t)ndi->maxmtu); |
| 590 | } |
| 591 | ndi->linkmtu = ifp->if_mtu; |
| 592 | lck_mtx_unlock(&ndi->lock); |
| 593 | |
| 594 | /* also adjust in6_maxmtu if necessary. */ |
| 595 | if (maxmtu > in6_maxmtu) { |
| 596 | in6_setmaxmtu(); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | void |
| 601 | nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) |
| 602 | { |
| 603 | bzero(ndopts, sizeof (*ndopts)); |
| 604 | ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; |
| 605 | ndopts->nd_opts_last = |
| 606 | (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); |
| 607 | |
| 608 | if (icmp6len == 0) { |
| 609 | ndopts->nd_opts_done = 1; |
| 610 | ndopts->nd_opts_search = NULL; |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | /* |
| 615 | * Take one ND option. |
| 616 | */ |
| 617 | struct nd_opt_hdr * |
| 618 | nd6_option(union nd_opts *ndopts) |
| 619 | { |
| 620 | struct nd_opt_hdr *nd_opt; |
| 621 | int olen; |
| 622 | |
| 623 | if (!ndopts) |
| 624 | panic("ndopts == NULL in nd6_option\n" ); |
| 625 | if (!ndopts->nd_opts_last) |
| 626 | panic("uninitialized ndopts in nd6_option\n" ); |
| 627 | if (!ndopts->nd_opts_search) |
| 628 | return (NULL); |
| 629 | if (ndopts->nd_opts_done) |
| 630 | return (NULL); |
| 631 | |
| 632 | nd_opt = ndopts->nd_opts_search; |
| 633 | |
| 634 | /* make sure nd_opt_len is inside the buffer */ |
| 635 | if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { |
| 636 | bzero(ndopts, sizeof (*ndopts)); |
| 637 | return (NULL); |
| 638 | } |
| 639 | |
| 640 | olen = nd_opt->nd_opt_len << 3; |
| 641 | if (olen == 0) { |
| 642 | /* |
| 643 | * Message validation requires that all included |
| 644 | * options have a length that is greater than zero. |
| 645 | */ |
| 646 | bzero(ndopts, sizeof (*ndopts)); |
| 647 | return (NULL); |
| 648 | } |
| 649 | |
| 650 | ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); |
| 651 | if (ndopts->nd_opts_search > ndopts->nd_opts_last) { |
| 652 | /* option overruns the end of buffer, invalid */ |
| 653 | bzero(ndopts, sizeof (*ndopts)); |
| 654 | return (NULL); |
| 655 | } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { |
| 656 | /* reached the end of options chain */ |
| 657 | ndopts->nd_opts_done = 1; |
| 658 | ndopts->nd_opts_search = NULL; |
| 659 | } |
| 660 | return (nd_opt); |
| 661 | } |
| 662 | |
| 663 | /* |
| 664 | * Parse multiple ND options. |
| 665 | * This function is much easier to use, for ND routines that do not need |
| 666 | * multiple options of the same type. |
| 667 | */ |
| 668 | int |
| 669 | nd6_options(union nd_opts *ndopts) |
| 670 | { |
| 671 | struct nd_opt_hdr *nd_opt; |
| 672 | int i = 0; |
| 673 | |
| 674 | if (ndopts == NULL) |
| 675 | panic("ndopts == NULL in nd6_options" ); |
| 676 | if (ndopts->nd_opts_last == NULL) |
| 677 | panic("uninitialized ndopts in nd6_options" ); |
| 678 | if (ndopts->nd_opts_search == NULL) |
| 679 | return (0); |
| 680 | |
| 681 | while (1) { |
| 682 | nd_opt = nd6_option(ndopts); |
| 683 | if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { |
| 684 | /* |
| 685 | * Message validation requires that all included |
| 686 | * options have a length that is greater than zero. |
| 687 | */ |
| 688 | icmp6stat.icp6s_nd_badopt++; |
| 689 | bzero(ndopts, sizeof (*ndopts)); |
| 690 | return (-1); |
| 691 | } |
| 692 | |
| 693 | if (nd_opt == NULL) |
| 694 | goto skip1; |
| 695 | |
| 696 | switch (nd_opt->nd_opt_type) { |
| 697 | case ND_OPT_SOURCE_LINKADDR: |
| 698 | case ND_OPT_TARGET_LINKADDR: |
| 699 | case ND_OPT_MTU: |
| 700 | case ND_OPT_REDIRECTED_HEADER: |
| 701 | case ND_OPT_NONCE: |
| 702 | if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { |
| 703 | nd6log((LOG_INFO, |
| 704 | "duplicated ND6 option found (type=%d)\n" , |
| 705 | nd_opt->nd_opt_type)); |
| 706 | /* XXX bark? */ |
| 707 | } else { |
| 708 | ndopts->nd_opt_array[nd_opt->nd_opt_type] = |
| 709 | nd_opt; |
| 710 | } |
| 711 | break; |
| 712 | case ND_OPT_PREFIX_INFORMATION: |
| 713 | if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { |
| 714 | ndopts->nd_opt_array[nd_opt->nd_opt_type] = |
| 715 | nd_opt; |
| 716 | } |
| 717 | ndopts->nd_opts_pi_end = |
| 718 | (struct nd_opt_prefix_info *)nd_opt; |
| 719 | break; |
| 720 | case ND_OPT_RDNSS: |
| 721 | case ND_OPT_DNSSL: |
| 722 | /* ignore */ |
| 723 | break; |
| 724 | default: |
| 725 | /* |
| 726 | * Unknown options must be silently ignored, |
| 727 | * to accomodate future extension to the protocol. |
| 728 | */ |
| 729 | nd6log((LOG_DEBUG, |
| 730 | "nd6_options: unsupported option %d - " |
| 731 | "option ignored\n" , nd_opt->nd_opt_type)); |
| 732 | } |
| 733 | |
| 734 | skip1: |
| 735 | i++; |
| 736 | if (i > nd6_maxndopt) { |
| 737 | icmp6stat.icp6s_nd_toomanyopt++; |
| 738 | nd6log((LOG_INFO, "too many loop in nd opt\n" )); |
| 739 | break; |
| 740 | } |
| 741 | |
| 742 | if (ndopts->nd_opts_done) |
| 743 | break; |
| 744 | } |
| 745 | |
| 746 | return (0); |
| 747 | } |
| 748 | |
| 749 | struct nd6svc_arg { |
| 750 | int draining; |
| 751 | uint32_t killed; |
| 752 | uint32_t aging_lazy; |
| 753 | uint32_t aging; |
| 754 | uint32_t sticky; |
| 755 | uint32_t found; |
| 756 | }; |
| 757 | |
| 758 | /* |
| 759 | * ND6 service routine to expire default route list and prefix list |
| 760 | */ |
| 761 | static void |
| 762 | nd6_service(void *arg) |
| 763 | { |
| 764 | struct nd6svc_arg *ap = arg; |
| 765 | struct llinfo_nd6 *ln; |
| 766 | struct nd_defrouter *dr = NULL; |
| 767 | struct nd_prefix *pr = NULL; |
| 768 | struct ifnet *ifp = NULL; |
| 769 | struct in6_ifaddr *ia6, *nia6; |
| 770 | uint64_t timenow; |
| 771 | boolean_t send_nc_failure_kev = FALSE; |
| 772 | struct nd_drhead nd_defrouter_tmp; |
| 773 | struct nd_defrouter *ndr = NULL; |
| 774 | struct radix_node_head *rnh = rt_tables[AF_INET6]; |
| 775 | |
| 776 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 777 | /* |
| 778 | * Since we may drop rnh_lock and nd6_mutex below, we want |
| 779 | * to run this entire operation single threaded. |
| 780 | */ |
| 781 | while (nd6_service_busy) { |
| 782 | nd6log2((LOG_DEBUG, "%s: %s is blocked by %d waiters\n" , |
| 783 | __func__, ap->draining ? "drainer" : "timer" , |
| 784 | nd6_service_waiters)); |
| 785 | nd6_service_waiters++; |
| 786 | (void) msleep(nd6_service_wc, rnh_lock, (PZERO-1), |
| 787 | __func__, NULL); |
| 788 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 789 | } |
| 790 | |
| 791 | /* We are busy now; tell everyone else to go away */ |
| 792 | nd6_service_busy = TRUE; |
| 793 | |
| 794 | net_update_uptime(); |
| 795 | timenow = net_uptime(); |
| 796 | again: |
| 797 | /* |
| 798 | * send_nc_failure_kev gets set when default router's IPv6 address |
| 799 | * can't be resolved. |
| 800 | * That can happen either: |
| 801 | * 1. When the entry has resolved once but can't be |
| 802 | * resolved later and the neighbor cache entry for gateway is deleted |
| 803 | * after max probe attempts. |
| 804 | * |
| 805 | * 2. When the entry is in ND6_LLINFO_INCOMPLETE but can not be resolved |
| 806 | * after max neighbor address resolution attempts. |
| 807 | * |
| 808 | * Both set send_nc_failure_kev to true. ifp is also set to the previous |
| 809 | * neighbor cache entry's route's ifp. |
| 810 | * Once we are done sending the notification, set send_nc_failure_kev |
| 811 | * to false to stop sending false notifications for non default router |
| 812 | * neighbors. |
| 813 | * |
| 814 | * We may to send more information like Gateway's IP that could not be |
| 815 | * resolved, however right now we do not install more than one default |
| 816 | * route per interface in the routing table. |
| 817 | */ |
| 818 | if (send_nc_failure_kev && ifp != NULL && |
| 819 | ifp->if_addrlen == IF_LLREACH_MAXLEN) { |
| 820 | struct kev_msg ev_msg; |
| 821 | struct kev_nd6_ndfailure nd6_ndfailure; |
| 822 | bzero(&ev_msg, sizeof(ev_msg)); |
| 823 | bzero(&nd6_ndfailure, sizeof(nd6_ndfailure)); |
| 824 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
| 825 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
| 826 | ev_msg.kev_subclass = KEV_ND6_SUBCLASS; |
| 827 | ev_msg.event_code = KEV_ND6_NDFAILURE; |
| 828 | |
| 829 | nd6_ndfailure.link_data.if_family = ifp->if_family; |
| 830 | nd6_ndfailure.link_data.if_unit = ifp->if_unit; |
| 831 | strlcpy(nd6_ndfailure.link_data.if_name, |
| 832 | ifp->if_name, |
| 833 | sizeof(nd6_ndfailure.link_data.if_name)); |
| 834 | ev_msg.dv[0].data_ptr = &nd6_ndfailure; |
| 835 | ev_msg.dv[0].data_length = |
| 836 | sizeof(nd6_ndfailure); |
| 837 | dlil_post_complete_msg(NULL, &ev_msg); |
| 838 | } |
| 839 | |
| 840 | send_nc_failure_kev = FALSE; |
| 841 | ifp = NULL; |
| 842 | /* |
| 843 | * The global list llinfo_nd6 is modified by nd6_request() and is |
| 844 | * therefore protected by rnh_lock. For obvious reasons, we cannot |
| 845 | * hold rnh_lock across calls that might lead to code paths which |
| 846 | * attempt to acquire rnh_lock, else we deadlock. Hence for such |
| 847 | * cases we drop rt_lock and rnh_lock, make the calls, and repeat the |
| 848 | * loop. To ensure that we don't process the same entry more than |
| 849 | * once in a single timeout, we mark the "already-seen" entries with |
| 850 | * ND6_LNF_TIMER_SKIP flag. At the end of the loop, we do a second |
| 851 | * pass thru the entries and clear the flag so they can be processed |
| 852 | * during the next timeout. |
| 853 | */ |
| 854 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 855 | |
| 856 | ln = llinfo_nd6.ln_next; |
| 857 | while (ln != NULL && ln != &llinfo_nd6) { |
| 858 | struct rtentry *rt; |
| 859 | struct sockaddr_in6 *dst; |
| 860 | struct llinfo_nd6 *next; |
| 861 | u_int32_t retrans, flags; |
| 862 | struct nd_ifinfo *ndi = NULL; |
| 863 | boolean_t is_router = FALSE; |
| 864 | |
| 865 | /* ln_next/prev/rt is protected by rnh_lock */ |
| 866 | next = ln->ln_next; |
| 867 | rt = ln->ln_rt; |
| 868 | RT_LOCK(rt); |
| 869 | |
| 870 | /* We've seen this already; skip it */ |
| 871 | if (ln->ln_flags & ND6_LNF_TIMER_SKIP) { |
| 872 | RT_UNLOCK(rt); |
| 873 | ln = next; |
| 874 | continue; |
| 875 | } |
| 876 | ap->found++; |
| 877 | |
| 878 | /* rt->rt_ifp should never be NULL */ |
| 879 | if ((ifp = rt->rt_ifp) == NULL) { |
| 880 | panic("%s: ln(%p) rt(%p) rt_ifp == NULL" , __func__, |
| 881 | ln, rt); |
| 882 | /* NOTREACHED */ |
| 883 | } |
| 884 | |
| 885 | /* rt_llinfo must always be equal to ln */ |
| 886 | if ((struct llinfo_nd6 *)rt->rt_llinfo != ln) { |
| 887 | panic("%s: rt_llinfo(%p) is not equal to ln(%p)" , |
| 888 | __func__, rt->rt_llinfo, ln); |
| 889 | /* NOTREACHED */ |
| 890 | } |
| 891 | |
| 892 | /* rt_key should never be NULL */ |
| 893 | dst = SIN6(rt_key(rt)); |
| 894 | if (dst == NULL) { |
| 895 | panic("%s: rt(%p) key is NULL ln(%p)" , __func__, |
| 896 | rt, ln); |
| 897 | /* NOTREACHED */ |
| 898 | } |
| 899 | |
| 900 | /* Set the flag in case we jump to "again" */ |
| 901 | ln->ln_flags |= ND6_LNF_TIMER_SKIP; |
| 902 | |
| 903 | if (ln->ln_expire == 0 || (rt->rt_flags & RTF_STATIC)) { |
| 904 | ap->sticky++; |
| 905 | } else if (ap->draining && (rt->rt_refcnt == 0)) { |
| 906 | /* |
| 907 | * If we are draining, immediately purge non-static |
| 908 | * entries without oustanding route refcnt. |
| 909 | */ |
| 910 | if (ln->ln_state > ND6_LLINFO_INCOMPLETE) |
| 911 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); |
| 912 | else |
| 913 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PURGE); |
| 914 | ln_setexpire(ln, timenow); |
| 915 | } |
| 916 | |
| 917 | /* |
| 918 | * If the entry has not expired, skip it. Take note on the |
| 919 | * state, as entries that are in the STALE state are simply |
| 920 | * waiting to be garbage collected, in which case we can |
| 921 | * relax the callout scheduling (use nd6_prune_lazy). |
| 922 | */ |
| 923 | if (ln->ln_expire > timenow) { |
| 924 | switch (ln->ln_state) { |
| 925 | case ND6_LLINFO_STALE: |
| 926 | ap->aging_lazy++; |
| 927 | break; |
| 928 | default: |
| 929 | ap->aging++; |
| 930 | break; |
| 931 | } |
| 932 | RT_UNLOCK(rt); |
| 933 | ln = next; |
| 934 | continue; |
| 935 | } |
| 936 | |
| 937 | ndi = ND_IFINFO(ifp); |
| 938 | VERIFY(ndi->initialized); |
| 939 | retrans = ndi->retrans; |
| 940 | flags = ndi->flags; |
| 941 | |
| 942 | RT_LOCK_ASSERT_HELD(rt); |
| 943 | is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; |
| 944 | |
| 945 | switch (ln->ln_state) { |
| 946 | case ND6_LLINFO_INCOMPLETE: |
| 947 | if (ln->ln_asked < nd6_mmaxtries) { |
| 948 | struct ifnet *exclifp = ln->ln_exclifp; |
| 949 | ln->ln_asked++; |
| 950 | ln_setexpire(ln, timenow + retrans / 1000); |
| 951 | RT_ADDREF_LOCKED(rt); |
| 952 | RT_UNLOCK(rt); |
| 953 | lck_mtx_unlock(rnh_lock); |
| 954 | if (ip6_forwarding) { |
| 955 | nd6_prproxy_ns_output(ifp, exclifp, |
| 956 | NULL, &dst->sin6_addr, ln); |
| 957 | } else { |
| 958 | nd6_ns_output(ifp, NULL, |
| 959 | &dst->sin6_addr, ln, NULL); |
| 960 | } |
| 961 | RT_REMREF(rt); |
| 962 | ap->aging++; |
| 963 | lck_mtx_lock(rnh_lock); |
| 964 | } else { |
| 965 | struct mbuf *m = ln->ln_hold; |
| 966 | ln->ln_hold = NULL; |
| 967 | send_nc_failure_kev = is_router; |
| 968 | if (m != NULL) { |
| 969 | RT_ADDREF_LOCKED(rt); |
| 970 | RT_UNLOCK(rt); |
| 971 | lck_mtx_unlock(rnh_lock); |
| 972 | |
| 973 | struct mbuf *mnext; |
| 974 | while (m) { |
| 975 | mnext = m->m_nextpkt; |
| 976 | m->m_nextpkt = NULL; |
| 977 | m->m_pkthdr.rcvif = ifp; |
| 978 | icmp6_error_flag(m, ICMP6_DST_UNREACH, |
| 979 | ICMP6_DST_UNREACH_ADDR, 0, 0); |
| 980 | m = mnext; |
| 981 | } |
| 982 | } else { |
| 983 | RT_ADDREF_LOCKED(rt); |
| 984 | RT_UNLOCK(rt); |
| 985 | lck_mtx_unlock(rnh_lock); |
| 986 | } |
| 987 | |
| 988 | /* |
| 989 | * Enqueue work item to invoke callback for |
| 990 | * this route entry |
| 991 | */ |
| 992 | route_event_enqueue_nwk_wq_entry(rt, NULL, |
| 993 | ROUTE_LLENTRY_UNREACH, NULL, FALSE); |
| 994 | nd6_free(rt); |
| 995 | ap->killed++; |
| 996 | lck_mtx_lock(rnh_lock); |
| 997 | /* |
| 998 | * nd6_free above would flush out the routing table of |
| 999 | * any cloned routes with same next-hop. |
| 1000 | * Walk the tree anyways as there could be static routes |
| 1001 | * left. |
| 1002 | * |
| 1003 | * We also already have a reference to rt that gets freed right |
| 1004 | * after the block below executes. Don't need an extra reference |
| 1005 | * on rt here. |
| 1006 | */ |
| 1007 | if (is_router) { |
| 1008 | struct route_event rt_ev; |
| 1009 | route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH); |
| 1010 | (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); |
| 1011 | } |
| 1012 | rtfree_locked(rt); |
| 1013 | } |
| 1014 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1015 | goto again; |
| 1016 | |
| 1017 | case ND6_LLINFO_REACHABLE: |
| 1018 | if (ln->ln_expire != 0) { |
| 1019 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); |
| 1020 | ln_setexpire(ln, timenow + nd6_gctimer); |
| 1021 | ap->aging_lazy++; |
| 1022 | /* |
| 1023 | * Enqueue work item to invoke callback for |
| 1024 | * this route entry |
| 1025 | */ |
| 1026 | route_event_enqueue_nwk_wq_entry(rt, NULL, |
| 1027 | ROUTE_LLENTRY_STALE, NULL, TRUE); |
| 1028 | |
| 1029 | RT_ADDREF_LOCKED(rt); |
| 1030 | RT_UNLOCK(rt); |
| 1031 | if (is_router) { |
| 1032 | struct route_event rt_ev; |
| 1033 | route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_STALE); |
| 1034 | (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); |
| 1035 | } |
| 1036 | rtfree_locked(rt); |
| 1037 | } else { |
| 1038 | RT_UNLOCK(rt); |
| 1039 | } |
| 1040 | break; |
| 1041 | |
| 1042 | case ND6_LLINFO_STALE: |
| 1043 | case ND6_LLINFO_PURGE: |
| 1044 | /* Garbage Collection(RFC 4861 5.3) */ |
| 1045 | if (ln->ln_expire != 0) { |
| 1046 | RT_ADDREF_LOCKED(rt); |
| 1047 | RT_UNLOCK(rt); |
| 1048 | lck_mtx_unlock(rnh_lock); |
| 1049 | nd6_free(rt); |
| 1050 | ap->killed++; |
| 1051 | lck_mtx_lock(rnh_lock); |
| 1052 | rtfree_locked(rt); |
| 1053 | goto again; |
| 1054 | } else { |
| 1055 | RT_UNLOCK(rt); |
| 1056 | } |
| 1057 | break; |
| 1058 | |
| 1059 | case ND6_LLINFO_DELAY: |
| 1060 | if ((flags & ND6_IFF_PERFORMNUD) != 0) { |
| 1061 | /* We need NUD */ |
| 1062 | ln->ln_asked = 1; |
| 1063 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE); |
| 1064 | ln_setexpire(ln, timenow + retrans / 1000); |
| 1065 | RT_ADDREF_LOCKED(rt); |
| 1066 | RT_UNLOCK(rt); |
| 1067 | lck_mtx_unlock(rnh_lock); |
| 1068 | nd6_ns_output(ifp, &dst->sin6_addr, |
| 1069 | &dst->sin6_addr, ln, NULL); |
| 1070 | RT_REMREF(rt); |
| 1071 | ap->aging++; |
| 1072 | lck_mtx_lock(rnh_lock); |
| 1073 | goto again; |
| 1074 | } |
| 1075 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); /* XXX */ |
| 1076 | ln_setexpire(ln, timenow + nd6_gctimer); |
| 1077 | RT_UNLOCK(rt); |
| 1078 | ap->aging_lazy++; |
| 1079 | break; |
| 1080 | |
| 1081 | case ND6_LLINFO_PROBE: |
| 1082 | if (ln->ln_asked < nd6_umaxtries) { |
| 1083 | ln->ln_asked++; |
| 1084 | ln_setexpire(ln, timenow + retrans / 1000); |
| 1085 | RT_ADDREF_LOCKED(rt); |
| 1086 | RT_UNLOCK(rt); |
| 1087 | lck_mtx_unlock(rnh_lock); |
| 1088 | nd6_ns_output(ifp, &dst->sin6_addr, |
| 1089 | &dst->sin6_addr, ln, NULL); |
| 1090 | RT_REMREF(rt); |
| 1091 | ap->aging++; |
| 1092 | lck_mtx_lock(rnh_lock); |
| 1093 | } else { |
| 1094 | is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; |
| 1095 | send_nc_failure_kev = is_router; |
| 1096 | RT_ADDREF_LOCKED(rt); |
| 1097 | RT_UNLOCK(rt); |
| 1098 | lck_mtx_unlock(rnh_lock); |
| 1099 | nd6_free(rt); |
| 1100 | ap->killed++; |
| 1101 | |
| 1102 | /* |
| 1103 | * Enqueue work item to invoke callback for |
| 1104 | * this route entry |
| 1105 | */ |
| 1106 | route_event_enqueue_nwk_wq_entry(rt, NULL, |
| 1107 | ROUTE_LLENTRY_UNREACH, NULL, FALSE); |
| 1108 | |
| 1109 | lck_mtx_lock(rnh_lock); |
| 1110 | /* |
| 1111 | * nd6_free above would flush out the routing table of |
| 1112 | * any cloned routes with same next-hop. |
| 1113 | * Walk the tree anyways as there could be static routes |
| 1114 | * left. |
| 1115 | * |
| 1116 | * We also already have a reference to rt that gets freed right |
| 1117 | * after the block below executes. Don't need an extra reference |
| 1118 | * on rt here. |
| 1119 | */ |
| 1120 | if (is_router) { |
| 1121 | struct route_event rt_ev; |
| 1122 | route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH); |
| 1123 | (void) rnh->rnh_walktree(rnh, |
| 1124 | route_event_walktree, (void *)&rt_ev); |
| 1125 | } |
| 1126 | rtfree_locked(rt); |
| 1127 | } |
| 1128 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1129 | goto again; |
| 1130 | |
| 1131 | default: |
| 1132 | RT_UNLOCK(rt); |
| 1133 | break; |
| 1134 | } |
| 1135 | ln = next; |
| 1136 | } |
| 1137 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1138 | |
| 1139 | /* Now clear the flag from all entries */ |
| 1140 | ln = llinfo_nd6.ln_next; |
| 1141 | while (ln != NULL && ln != &llinfo_nd6) { |
| 1142 | struct rtentry *rt = ln->ln_rt; |
| 1143 | struct llinfo_nd6 *next = ln->ln_next; |
| 1144 | |
| 1145 | RT_LOCK_SPIN(rt); |
| 1146 | if (ln->ln_flags & ND6_LNF_TIMER_SKIP) |
| 1147 | ln->ln_flags &= ~ND6_LNF_TIMER_SKIP; |
| 1148 | RT_UNLOCK(rt); |
| 1149 | ln = next; |
| 1150 | } |
| 1151 | lck_mtx_unlock(rnh_lock); |
| 1152 | |
| 1153 | /* expire default router list */ |
| 1154 | TAILQ_INIT(&nd_defrouter_tmp); |
| 1155 | |
| 1156 | lck_mtx_lock(nd6_mutex); |
| 1157 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { |
| 1158 | ap->found++; |
| 1159 | if (dr->expire != 0 && dr->expire < timenow) { |
| 1160 | VERIFY(dr->ifp != NULL); |
| 1161 | in6_ifstat_inc(dr->ifp, ifs6_defrtr_expiry_cnt); |
| 1162 | in6_event_enqueue_nwk_wq_entry(IN6_NDP_RTR_EXPIRY, dr->ifp, |
| 1163 | &dr->rtaddr, dr->rtlifetime); |
| 1164 | if (dr->ifp != NULL && |
| 1165 | dr->ifp->if_type == IFT_CELLULAR) { |
| 1166 | /* |
| 1167 | * Some buggy cellular gateways may not send |
| 1168 | * periodic router advertisements. |
| 1169 | * Or they may send it with router lifetime |
| 1170 | * value that is less than the configured Max and Min |
| 1171 | * Router Advertisement interval. |
| 1172 | * To top that an idle device may not wake up |
| 1173 | * when periodic RA is received on cellular |
| 1174 | * interface. |
| 1175 | * We could send RS on every wake but RFC |
| 1176 | * 4861 precludes that. |
| 1177 | * The addresses are of infinite lifetimes |
| 1178 | * and are tied to the lifetime of the bearer, |
| 1179 | * so keeping the addresses and just getting rid of |
| 1180 | * the router does not help us anyways. |
| 1181 | * If there's network renumbering, a lifetime with |
| 1182 | * value 0 would remove the default router. |
| 1183 | * Also it will get deleted as part of purge when |
| 1184 | * the PDP context is torn down and configured again. |
| 1185 | * For that reason, do not expire the default router |
| 1186 | * learned on cellular interface. Ever. |
| 1187 | */ |
| 1188 | dr->expire += dr->rtlifetime; |
| 1189 | nd6log2((LOG_DEBUG, |
| 1190 | "%s: Refreshing expired default router entry " |
| 1191 | "%s for interface %s\n" , __func__, |
| 1192 | ip6_sprintf(&dr->rtaddr), if_name(dr->ifp))); |
| 1193 | } else { |
| 1194 | ap->killed++; |
| 1195 | /* |
| 1196 | * Remove the entry from default router list |
| 1197 | * and add it to the temp list. |
| 1198 | * nd_defrouter_tmp will be a local temporary |
| 1199 | * list as no one else can get the same |
| 1200 | * removed entry once it is removed from default |
| 1201 | * router list. |
| 1202 | * Remove the reference after calling defrtrlist_del |
| 1203 | */ |
| 1204 | TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); |
| 1205 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
| 1206 | } |
| 1207 | } else { |
| 1208 | if (dr->expire == 0 || (dr->stateflags & NDDRF_STATIC)) |
| 1209 | ap->sticky++; |
| 1210 | else |
| 1211 | ap->aging_lazy++; |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | /* |
| 1216 | * Keep the following separate from the above |
| 1217 | * iteration of nd_defrouter because it's not safe |
| 1218 | * to call defrtrlist_del while iterating global default |
| 1219 | * router list. Global list has to be traversed |
| 1220 | * while holding nd6_mutex throughout. |
| 1221 | * |
| 1222 | * The following call to defrtrlist_del should be |
| 1223 | * safe as we are iterating a local list of |
| 1224 | * default routers. |
| 1225 | */ |
| 1226 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) { |
| 1227 | TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); |
| 1228 | defrtrlist_del(dr); |
| 1229 | NDDR_REMREF(dr); /* remove list reference */ |
| 1230 | } |
| 1231 | lck_mtx_unlock(nd6_mutex); |
| 1232 | |
| 1233 | /* |
| 1234 | * expire interface addresses. |
| 1235 | * in the past the loop was inside prefix expiry processing. |
| 1236 | * However, from a stricter speci-confrmance standpoint, we should |
| 1237 | * rather separate address lifetimes and prefix lifetimes. |
| 1238 | */ |
| 1239 | addrloop: |
| 1240 | lck_rw_lock_exclusive(&in6_ifaddr_rwlock); |
| 1241 | for (ia6 = in6_ifaddrs; ia6; ia6 = nia6) { |
| 1242 | int oldflags = ia6->ia6_flags; |
| 1243 | ap->found++; |
| 1244 | nia6 = ia6->ia_next; |
| 1245 | IFA_LOCK(&ia6->ia_ifa); |
| 1246 | /* |
| 1247 | * Extra reference for ourselves; it's no-op if |
| 1248 | * we don't have to regenerate temporary address, |
| 1249 | * otherwise it protects the address from going |
| 1250 | * away since we drop in6_ifaddr_rwlock below. |
| 1251 | */ |
| 1252 | IFA_ADDREF_LOCKED(&ia6->ia_ifa); |
| 1253 | /* check address lifetime */ |
| 1254 | if (IFA6_IS_INVALID(ia6, timenow)) { |
| 1255 | /* |
| 1256 | * If the expiring address is temporary, try |
| 1257 | * regenerating a new one. This would be useful when |
| 1258 | * we suspended a laptop PC, then turned it on after a |
| 1259 | * period that could invalidate all temporary |
| 1260 | * addresses. Although we may have to restart the |
| 1261 | * loop (see below), it must be after purging the |
| 1262 | * address. Otherwise, we'd see an infinite loop of |
| 1263 | * regeneration. |
| 1264 | */ |
| 1265 | if (ip6_use_tempaddr && |
| 1266 | (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { |
| 1267 | /* |
| 1268 | * NOTE: We have to drop the lock here |
| 1269 | * because regen_tmpaddr() eventually calls |
| 1270 | * in6_update_ifa(), which must take the lock |
| 1271 | * and would otherwise cause a hang. This is |
| 1272 | * safe because the goto addrloop leads to a |
| 1273 | * re-evaluation of the in6_ifaddrs list |
| 1274 | */ |
| 1275 | IFA_UNLOCK(&ia6->ia_ifa); |
| 1276 | lck_rw_done(&in6_ifaddr_rwlock); |
| 1277 | (void) regen_tmpaddr(ia6); |
| 1278 | } else { |
| 1279 | IFA_UNLOCK(&ia6->ia_ifa); |
| 1280 | lck_rw_done(&in6_ifaddr_rwlock); |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * Purging the address would have caused |
| 1285 | * in6_ifaddr_rwlock to be dropped and reacquired; |
| 1286 | * therefore search again from the beginning |
| 1287 | * of in6_ifaddrs list. |
| 1288 | */ |
| 1289 | in6_purgeaddr(&ia6->ia_ifa); |
| 1290 | ap->killed++; |
| 1291 | |
| 1292 | if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) { |
| 1293 | in6_ifstat_inc(ia6->ia_ifa.ifa_ifp, ifs6_addr_expiry_cnt); |
| 1294 | in6_event_enqueue_nwk_wq_entry(IN6_NDP_ADDR_EXPIRY, |
| 1295 | ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr, |
| 1296 | 0); |
| 1297 | } |
| 1298 | /* Release extra reference taken above */ |
| 1299 | IFA_REMREF(&ia6->ia_ifa); |
| 1300 | goto addrloop; |
| 1301 | } |
| 1302 | /* |
| 1303 | * The lazy timer runs every nd6_prune_lazy seconds with at |
| 1304 | * most "2 * nd6_prune_lazy - 1" leeway. We consider the worst |
| 1305 | * case here and make sure we schedule the regular timer if an |
| 1306 | * interface address is about to expire. |
| 1307 | */ |
| 1308 | if (IFA6_IS_INVALID(ia6, timenow + 3 * nd6_prune_lazy)) |
| 1309 | ap->aging++; |
| 1310 | else |
| 1311 | ap->aging_lazy++; |
| 1312 | IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa); |
| 1313 | if (IFA6_IS_DEPRECATED(ia6, timenow)) { |
| 1314 | ia6->ia6_flags |= IN6_IFF_DEPRECATED; |
| 1315 | |
| 1316 | if((oldflags & IN6_IFF_DEPRECATED) == 0) { |
| 1317 | /* |
| 1318 | * Only enqueue the Deprecated event when the address just |
| 1319 | * becomes deprecated. |
| 1320 | * Keep it limited to the stable address as it is common for |
| 1321 | * older temporary addresses to get deprecated while we generate |
| 1322 | * new ones. |
| 1323 | */ |
| 1324 | if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) { |
| 1325 | in6_event_enqueue_nwk_wq_entry(IN6_ADDR_MARKED_DEPRECATED, |
| 1326 | ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr, |
| 1327 | 0); |
| 1328 | } |
| 1329 | } |
| 1330 | /* |
| 1331 | * If a temporary address has just become deprecated, |
| 1332 | * regenerate a new one if possible. |
| 1333 | */ |
| 1334 | if (ip6_use_tempaddr && |
| 1335 | (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && |
| 1336 | (oldflags & IN6_IFF_DEPRECATED) == 0) { |
| 1337 | |
| 1338 | /* see NOTE above */ |
| 1339 | IFA_UNLOCK(&ia6->ia_ifa); |
| 1340 | lck_rw_done(&in6_ifaddr_rwlock); |
| 1341 | if (regen_tmpaddr(ia6) == 0) { |
| 1342 | /* |
| 1343 | * A new temporary address is |
| 1344 | * generated. |
| 1345 | * XXX: this means the address chain |
| 1346 | * has changed while we are still in |
| 1347 | * the loop. Although the change |
| 1348 | * would not cause disaster (because |
| 1349 | * it's not a deletion, but an |
| 1350 | * addition,) we'd rather restart the |
| 1351 | * loop just for safety. Or does this |
| 1352 | * significantly reduce performance?? |
| 1353 | */ |
| 1354 | /* Release extra reference */ |
| 1355 | IFA_REMREF(&ia6->ia_ifa); |
| 1356 | goto addrloop; |
| 1357 | } |
| 1358 | lck_rw_lock_exclusive(&in6_ifaddr_rwlock); |
| 1359 | } else { |
| 1360 | IFA_UNLOCK(&ia6->ia_ifa); |
| 1361 | } |
| 1362 | } else { |
| 1363 | /* |
| 1364 | * A new RA might have made a deprecated address |
| 1365 | * preferred. |
| 1366 | */ |
| 1367 | ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; |
| 1368 | IFA_UNLOCK(&ia6->ia_ifa); |
| 1369 | } |
| 1370 | LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE); |
| 1371 | /* Release extra reference taken above */ |
| 1372 | IFA_REMREF(&ia6->ia_ifa); |
| 1373 | } |
| 1374 | lck_rw_done(&in6_ifaddr_rwlock); |
| 1375 | |
| 1376 | lck_mtx_lock(nd6_mutex); |
| 1377 | /* expire prefix list */ |
| 1378 | pr = nd_prefix.lh_first; |
| 1379 | while (pr != NULL) { |
| 1380 | ap->found++; |
| 1381 | /* |
| 1382 | * check prefix lifetime. |
| 1383 | * since pltime is just for autoconf, pltime processing for |
| 1384 | * prefix is not necessary. |
| 1385 | */ |
| 1386 | NDPR_LOCK(pr); |
| 1387 | if (pr->ndpr_stateflags & NDPRF_PROCESSED_SERVICE || |
| 1388 | pr->ndpr_stateflags & NDPRF_DEFUNCT) { |
| 1389 | pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; |
| 1390 | NDPR_UNLOCK(pr); |
| 1391 | pr = pr->ndpr_next; |
| 1392 | continue; |
| 1393 | } |
| 1394 | if (pr->ndpr_expire != 0 && pr->ndpr_expire < timenow) { |
| 1395 | /* |
| 1396 | * address expiration and prefix expiration are |
| 1397 | * separate. NEVER perform in6_purgeaddr here. |
| 1398 | */ |
| 1399 | pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; |
| 1400 | NDPR_ADDREF_LOCKED(pr); |
| 1401 | prelist_remove(pr); |
| 1402 | NDPR_UNLOCK(pr); |
| 1403 | |
| 1404 | in6_ifstat_inc(pr->ndpr_ifp, ifs6_pfx_expiry_cnt); |
| 1405 | in6_event_enqueue_nwk_wq_entry(IN6_NDP_PFX_EXPIRY, |
| 1406 | pr->ndpr_ifp, &pr->ndpr_prefix.sin6_addr, |
| 1407 | 0); |
| 1408 | NDPR_REMREF(pr); |
| 1409 | pfxlist_onlink_check(); |
| 1410 | pr = nd_prefix.lh_first; |
| 1411 | ap->killed++; |
| 1412 | } else { |
| 1413 | if (pr->ndpr_expire == 0 || |
| 1414 | (pr->ndpr_stateflags & NDPRF_STATIC)) |
| 1415 | ap->sticky++; |
| 1416 | else |
| 1417 | ap->aging_lazy++; |
| 1418 | pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE; |
| 1419 | NDPR_UNLOCK(pr); |
| 1420 | pr = pr->ndpr_next; |
| 1421 | } |
| 1422 | } |
| 1423 | LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { |
| 1424 | NDPR_LOCK(pr); |
| 1425 | pr->ndpr_stateflags &= ~NDPRF_PROCESSED_SERVICE; |
| 1426 | NDPR_UNLOCK(pr); |
| 1427 | } |
| 1428 | lck_mtx_unlock(nd6_mutex); |
| 1429 | |
| 1430 | lck_mtx_lock(rnh_lock); |
| 1431 | /* We're done; let others enter */ |
| 1432 | nd6_service_busy = FALSE; |
| 1433 | if (nd6_service_waiters > 0) { |
| 1434 | nd6_service_waiters = 0; |
| 1435 | wakeup(nd6_service_wc); |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | |
| 1440 | static int nd6_need_draining = 0; |
| 1441 | |
| 1442 | void |
| 1443 | nd6_drain(void *arg) |
| 1444 | { |
| 1445 | #pragma unused(arg) |
| 1446 | nd6log2((LOG_DEBUG, "%s: draining ND6 entries\n" , __func__)); |
| 1447 | |
| 1448 | lck_mtx_lock(rnh_lock); |
| 1449 | nd6_need_draining = 1; |
| 1450 | nd6_sched_timeout(NULL, NULL); |
| 1451 | lck_mtx_unlock(rnh_lock); |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * We use the ``arg'' variable to decide whether or not the timer we're |
| 1456 | * running is the fast timer. We do this to reset the nd6_fast_timer_on |
| 1457 | * variable so that later we don't end up ignoring a ``fast timer'' |
| 1458 | * request if the 5 second timer is running (see nd6_sched_timeout). |
| 1459 | */ |
| 1460 | static void |
| 1461 | nd6_timeout(void *arg) |
| 1462 | { |
| 1463 | struct nd6svc_arg sarg; |
| 1464 | uint32_t buf; |
| 1465 | |
| 1466 | lck_mtx_lock(rnh_lock); |
| 1467 | bzero(&sarg, sizeof (sarg)); |
| 1468 | if (nd6_need_draining != 0) { |
| 1469 | nd6_need_draining = 0; |
| 1470 | sarg.draining = 1; |
| 1471 | } |
| 1472 | nd6_service(&sarg); |
| 1473 | nd6log2((LOG_DEBUG, "%s: found %u, aging_lazy %u, aging %u, " |
| 1474 | "sticky %u, killed %u\n" , __func__, sarg.found, sarg.aging_lazy, |
| 1475 | sarg.aging, sarg.sticky, sarg.killed)); |
| 1476 | /* re-arm the timer if there's work to do */ |
| 1477 | nd6_timeout_run--; |
| 1478 | VERIFY(nd6_timeout_run >= 0 && nd6_timeout_run < 2); |
| 1479 | if (arg == &nd6_fast_timer_on) |
| 1480 | nd6_fast_timer_on = FALSE; |
| 1481 | if (sarg.aging_lazy > 0 || sarg.aging > 0 || nd6_sched_timeout_want) { |
| 1482 | struct timeval atv, ltv, *leeway; |
| 1483 | int lazy = nd6_prune_lazy; |
| 1484 | |
| 1485 | if (sarg.aging > 0 || lazy < 1) { |
| 1486 | atv.tv_usec = 0; |
| 1487 | atv.tv_sec = nd6_prune; |
| 1488 | leeway = NULL; |
| 1489 | } else { |
| 1490 | VERIFY(lazy >= 1); |
| 1491 | atv.tv_usec = 0; |
| 1492 | atv.tv_sec = MAX(nd6_prune, lazy); |
| 1493 | ltv.tv_usec = 0; |
| 1494 | read_frandom(&buf, sizeof(buf)); |
| 1495 | ltv.tv_sec = MAX(buf % lazy, 1) * 2; |
| 1496 | leeway = <v; |
| 1497 | } |
| 1498 | nd6_sched_timeout(&atv, leeway); |
| 1499 | } else if (nd6_debug) { |
| 1500 | nd6log2((LOG_DEBUG, "%s: not rescheduling timer\n" , __func__)); |
| 1501 | } |
| 1502 | lck_mtx_unlock(rnh_lock); |
| 1503 | } |
| 1504 | |
| 1505 | void |
| 1506 | nd6_sched_timeout(struct timeval *atv, struct timeval *ltv) |
| 1507 | { |
| 1508 | struct timeval tv; |
| 1509 | |
| 1510 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1511 | if (atv == NULL) { |
| 1512 | tv.tv_usec = 0; |
| 1513 | tv.tv_sec = MAX(nd6_prune, 1); |
| 1514 | atv = &tv; |
| 1515 | ltv = NULL; /* ignore leeway */ |
| 1516 | } |
| 1517 | /* see comments on top of this file */ |
| 1518 | if (nd6_timeout_run == 0) { |
| 1519 | if (ltv == NULL) { |
| 1520 | nd6log2((LOG_DEBUG, "%s: timer scheduled in " |
| 1521 | "T+%llus.%lluu (demand %d)\n" , __func__, |
| 1522 | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, |
| 1523 | nd6_sched_timeout_want)); |
| 1524 | nd6_fast_timer_on = TRUE; |
| 1525 | timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv)); |
| 1526 | } else { |
| 1527 | nd6log2((LOG_DEBUG, "%s: timer scheduled in " |
| 1528 | "T+%llus.%lluu with %llus.%lluu leeway " |
| 1529 | "(demand %d)\n" , __func__, (uint64_t)atv->tv_sec, |
| 1530 | (uint64_t)atv->tv_usec, (uint64_t)ltv->tv_sec, |
| 1531 | (uint64_t)ltv->tv_usec, nd6_sched_timeout_want)); |
| 1532 | nd6_fast_timer_on = FALSE; |
| 1533 | timeout_with_leeway(nd6_timeout, NULL, |
| 1534 | tvtohz(atv), tvtohz(ltv)); |
| 1535 | } |
| 1536 | nd6_timeout_run++; |
| 1537 | nd6_sched_timeout_want = 0; |
| 1538 | } else if (nd6_timeout_run == 1 && ltv == NULL && |
| 1539 | nd6_fast_timer_on == FALSE) { |
| 1540 | nd6log2((LOG_DEBUG, "%s: fast timer scheduled in " |
| 1541 | "T+%llus.%lluu (demand %d)\n" , __func__, |
| 1542 | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, |
| 1543 | nd6_sched_timeout_want)); |
| 1544 | nd6_fast_timer_on = TRUE; |
| 1545 | nd6_sched_timeout_want = 0; |
| 1546 | nd6_timeout_run++; |
| 1547 | timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv)); |
| 1548 | } else { |
| 1549 | if (ltv == NULL) { |
| 1550 | nd6log2((LOG_DEBUG, "%s: not scheduling timer: " |
| 1551 | "timers %d, fast_timer %d, T+%llus.%lluu\n" , |
| 1552 | __func__, nd6_timeout_run, nd6_fast_timer_on, |
| 1553 | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec)); |
| 1554 | } else { |
| 1555 | nd6log2((LOG_DEBUG, "%s: not scheduling timer: " |
| 1556 | "timers %d, fast_timer %d, T+%llus.%lluu " |
| 1557 | "with %llus.%lluu leeway\n" , __func__, |
| 1558 | nd6_timeout_run, nd6_fast_timer_on, |
| 1559 | (uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec, |
| 1560 | (uint64_t)ltv->tv_sec, (uint64_t)ltv->tv_usec)); |
| 1561 | } |
| 1562 | } |
| 1563 | } |
| 1564 | |
| 1565 | /* |
| 1566 | * ND6 router advertisement kernel notification |
| 1567 | */ |
| 1568 | void |
| 1569 | nd6_post_msg(u_int32_t code, struct nd_prefix_list *prefix_list, |
| 1570 | u_int32_t list_length, u_int32_t mtu) |
| 1571 | { |
| 1572 | struct kev_msg ev_msg; |
| 1573 | struct kev_nd6_ra_data nd6_ra_msg_data; |
| 1574 | struct nd_prefix_list *itr = prefix_list; |
| 1575 | |
| 1576 | bzero(&ev_msg, sizeof (struct kev_msg)); |
| 1577 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
| 1578 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
| 1579 | ev_msg.kev_subclass = KEV_ND6_SUBCLASS; |
| 1580 | ev_msg.event_code = code; |
| 1581 | |
| 1582 | bzero(&nd6_ra_msg_data, sizeof (nd6_ra_msg_data)); |
| 1583 | |
| 1584 | if (mtu > 0 && mtu >= IPV6_MMTU) { |
| 1585 | nd6_ra_msg_data.mtu = mtu; |
| 1586 | nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_MTU; |
| 1587 | } |
| 1588 | |
| 1589 | if (list_length > 0 && prefix_list != NULL) { |
| 1590 | nd6_ra_msg_data.list_length = list_length; |
| 1591 | nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_PREFIX; |
| 1592 | } |
| 1593 | |
| 1594 | while (itr != NULL && nd6_ra_msg_data.list_index < list_length) { |
| 1595 | bcopy(&itr->pr.ndpr_prefix, &nd6_ra_msg_data.prefix.prefix, |
| 1596 | sizeof (nd6_ra_msg_data.prefix.prefix)); |
| 1597 | nd6_ra_msg_data.prefix.raflags = itr->pr.ndpr_raf; |
| 1598 | nd6_ra_msg_data.prefix.prefixlen = itr->pr.ndpr_plen; |
| 1599 | nd6_ra_msg_data.prefix.origin = PR_ORIG_RA; |
| 1600 | nd6_ra_msg_data.prefix.vltime = itr->pr.ndpr_vltime; |
| 1601 | nd6_ra_msg_data.prefix.pltime = itr->pr.ndpr_pltime; |
| 1602 | nd6_ra_msg_data.prefix.expire = ndpr_getexpire(&itr->pr); |
| 1603 | nd6_ra_msg_data.prefix.flags = itr->pr.ndpr_stateflags; |
| 1604 | nd6_ra_msg_data.prefix.refcnt = itr->pr.ndpr_addrcnt; |
| 1605 | nd6_ra_msg_data.prefix.if_index = itr->pr.ndpr_ifp->if_index; |
| 1606 | |
| 1607 | /* send the message up */ |
| 1608 | ev_msg.dv[0].data_ptr = &nd6_ra_msg_data; |
| 1609 | ev_msg.dv[0].data_length = sizeof (nd6_ra_msg_data); |
| 1610 | ev_msg.dv[1].data_length = 0; |
| 1611 | dlil_post_complete_msg(NULL, &ev_msg); |
| 1612 | |
| 1613 | /* clean up for the next prefix */ |
| 1614 | bzero(&nd6_ra_msg_data.prefix, sizeof (nd6_ra_msg_data.prefix)); |
| 1615 | itr = itr->next; |
| 1616 | nd6_ra_msg_data.list_index++; |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | /* |
| 1621 | * Regenerate deprecated/invalidated temporary address |
| 1622 | */ |
| 1623 | static int |
| 1624 | regen_tmpaddr(struct in6_ifaddr *ia6) |
| 1625 | { |
| 1626 | struct ifaddr *ifa; |
| 1627 | struct ifnet *ifp; |
| 1628 | struct in6_ifaddr *public_ifa6 = NULL; |
| 1629 | uint64_t timenow = net_uptime(); |
| 1630 | |
| 1631 | ifp = ia6->ia_ifa.ifa_ifp; |
| 1632 | ifnet_lock_shared(ifp); |
| 1633 | TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { |
| 1634 | struct in6_ifaddr *it6; |
| 1635 | |
| 1636 | IFA_LOCK(ifa); |
| 1637 | if (ifa->ifa_addr->sa_family != AF_INET6) { |
| 1638 | IFA_UNLOCK(ifa); |
| 1639 | continue; |
| 1640 | } |
| 1641 | it6 = (struct in6_ifaddr *)ifa; |
| 1642 | |
| 1643 | /* ignore no autoconf addresses. */ |
| 1644 | if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) { |
| 1645 | IFA_UNLOCK(ifa); |
| 1646 | continue; |
| 1647 | } |
| 1648 | /* ignore autoconf addresses with different prefixes. */ |
| 1649 | if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) { |
| 1650 | IFA_UNLOCK(ifa); |
| 1651 | continue; |
| 1652 | } |
| 1653 | /* |
| 1654 | * Now we are looking at an autoconf address with the same |
| 1655 | * prefix as ours. If the address is temporary and is still |
| 1656 | * preferred, do not create another one. It would be rare, but |
| 1657 | * could happen, for example, when we resume a laptop PC after |
| 1658 | * a long period. |
| 1659 | */ |
| 1660 | if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && |
| 1661 | !IFA6_IS_DEPRECATED(it6, timenow)) { |
| 1662 | IFA_UNLOCK(ifa); |
| 1663 | if (public_ifa6 != NULL) |
| 1664 | IFA_REMREF(&public_ifa6->ia_ifa); |
| 1665 | public_ifa6 = NULL; |
| 1666 | break; |
| 1667 | } |
| 1668 | |
| 1669 | /* |
| 1670 | * This is a public autoconf address that has the same prefix |
| 1671 | * as ours. If it is preferred, keep it. We can't break the |
| 1672 | * loop here, because there may be a still-preferred temporary |
| 1673 | * address with the prefix. |
| 1674 | */ |
| 1675 | if (!IFA6_IS_DEPRECATED(it6, timenow)) { |
| 1676 | IFA_ADDREF_LOCKED(ifa); /* for public_ifa6 */ |
| 1677 | IFA_UNLOCK(ifa); |
| 1678 | if (public_ifa6 != NULL) |
| 1679 | IFA_REMREF(&public_ifa6->ia_ifa); |
| 1680 | public_ifa6 = it6; |
| 1681 | } else { |
| 1682 | IFA_UNLOCK(ifa); |
| 1683 | } |
| 1684 | } |
| 1685 | ifnet_lock_done(ifp); |
| 1686 | |
| 1687 | if (public_ifa6 != NULL) { |
| 1688 | int e; |
| 1689 | |
| 1690 | if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { |
| 1691 | log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" |
| 1692 | " tmp addr,errno=%d\n" , e); |
| 1693 | IFA_REMREF(&public_ifa6->ia_ifa); |
| 1694 | return (-1); |
| 1695 | } |
| 1696 | IFA_REMREF(&public_ifa6->ia_ifa); |
| 1697 | return (0); |
| 1698 | } |
| 1699 | |
| 1700 | return (-1); |
| 1701 | } |
| 1702 | |
| 1703 | /* |
| 1704 | * Nuke neighbor cache/prefix/default router management table, right before |
| 1705 | * ifp goes away. |
| 1706 | */ |
| 1707 | void |
| 1708 | nd6_purge(struct ifnet *ifp) |
| 1709 | { |
| 1710 | struct llinfo_nd6 *ln; |
| 1711 | struct nd_defrouter *dr, *ndr; |
| 1712 | struct nd_prefix *pr, *npr; |
| 1713 | boolean_t removed; |
| 1714 | struct nd_drhead nd_defrouter_tmp; |
| 1715 | |
| 1716 | TAILQ_INIT(&nd_defrouter_tmp); |
| 1717 | |
| 1718 | /* Nuke default router list entries toward ifp */ |
| 1719 | lck_mtx_lock(nd6_mutex); |
| 1720 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { |
| 1721 | if (dr->ifp != ifp) |
| 1722 | continue; |
| 1723 | /* |
| 1724 | * Remove the entry from default router list |
| 1725 | * and add it to the temp list. |
| 1726 | * nd_defrouter_tmp will be a local temporary |
| 1727 | * list as no one else can get the same |
| 1728 | * removed entry once it is removed from default |
| 1729 | * router list. |
| 1730 | * Remove the reference after calling defrtrlist_del. |
| 1731 | * |
| 1732 | * The uninstalled entries have to be iterated first |
| 1733 | * when we call defrtrlist_del. |
| 1734 | * This is to ensure that we don't end up calling |
| 1735 | * default router selection when there are other |
| 1736 | * uninstalled candidate default routers on |
| 1737 | * the interface. |
| 1738 | * If we don't respect that order, we may end |
| 1739 | * up missing out on some entries. |
| 1740 | * |
| 1741 | * For that reason, installed ones must be inserted |
| 1742 | * at the tail and uninstalled ones at the head |
| 1743 | */ |
| 1744 | TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); |
| 1745 | |
| 1746 | if (dr->stateflags & NDDRF_INSTALLED) |
| 1747 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
| 1748 | else |
| 1749 | TAILQ_INSERT_HEAD(&nd_defrouter_tmp, dr, dr_entry); |
| 1750 | } |
| 1751 | |
| 1752 | /* |
| 1753 | * The following call to defrtrlist_del should be |
| 1754 | * safe as we are iterating a local list of |
| 1755 | * default routers. |
| 1756 | * |
| 1757 | * We don't really need nd6_mutex here but keeping |
| 1758 | * it as it is to avoid changing assertios held in |
| 1759 | * the functions in the call-path. |
| 1760 | */ |
| 1761 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) { |
| 1762 | TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); |
| 1763 | defrtrlist_del(dr); |
| 1764 | NDDR_REMREF(dr); /* remove list reference */ |
| 1765 | } |
| 1766 | |
| 1767 | /* Nuke prefix list entries toward ifp */ |
| 1768 | removed = FALSE; |
| 1769 | for (pr = nd_prefix.lh_first; pr; pr = npr) { |
| 1770 | NDPR_LOCK(pr); |
| 1771 | npr = pr->ndpr_next; |
| 1772 | if (pr->ndpr_ifp == ifp && |
| 1773 | !(pr->ndpr_stateflags & NDPRF_DEFUNCT)) { |
| 1774 | /* |
| 1775 | * Because if_detach() does *not* release prefixes |
| 1776 | * while purging addresses the reference count will |
| 1777 | * still be above zero. We therefore reset it to |
| 1778 | * make sure that the prefix really gets purged. |
| 1779 | */ |
| 1780 | pr->ndpr_addrcnt = 0; |
| 1781 | |
| 1782 | /* |
| 1783 | * Previously, pr->ndpr_addr is removed as well, |
| 1784 | * but I strongly believe we don't have to do it. |
| 1785 | * nd6_purge() is only called from in6_ifdetach(), |
| 1786 | * which removes all the associated interface addresses |
| 1787 | * by itself. |
| 1788 | * (jinmei@kame.net 20010129) |
| 1789 | */ |
| 1790 | NDPR_ADDREF_LOCKED(pr); |
| 1791 | prelist_remove(pr); |
| 1792 | NDPR_UNLOCK(pr); |
| 1793 | NDPR_REMREF(pr); |
| 1794 | removed = TRUE; |
| 1795 | npr = nd_prefix.lh_first; |
| 1796 | } else { |
| 1797 | NDPR_UNLOCK(pr); |
| 1798 | } |
| 1799 | } |
| 1800 | if (removed) |
| 1801 | pfxlist_onlink_check(); |
| 1802 | lck_mtx_unlock(nd6_mutex); |
| 1803 | |
| 1804 | /* cancel default outgoing interface setting */ |
| 1805 | if (nd6_defifindex == ifp->if_index) { |
| 1806 | nd6_setdefaultiface(0); |
| 1807 | } |
| 1808 | |
| 1809 | /* |
| 1810 | * Perform default router selection even when we are a router, |
| 1811 | * if Scoped Routing is enabled. |
| 1812 | */ |
| 1813 | lck_mtx_lock(nd6_mutex); |
| 1814 | /* refresh default router list */ |
| 1815 | defrouter_select(ifp); |
| 1816 | lck_mtx_unlock(nd6_mutex); |
| 1817 | |
| 1818 | /* |
| 1819 | * Nuke neighbor cache entries for the ifp. |
| 1820 | * Note that rt->rt_ifp may not be the same as ifp, |
| 1821 | * due to KAME goto ours hack. See RTM_RESOLVE case in |
| 1822 | * nd6_rtrequest(), and ip6_input(). |
| 1823 | */ |
| 1824 | again: |
| 1825 | lck_mtx_lock(rnh_lock); |
| 1826 | ln = llinfo_nd6.ln_next; |
| 1827 | while (ln != NULL && ln != &llinfo_nd6) { |
| 1828 | struct rtentry *rt; |
| 1829 | struct llinfo_nd6 *nln; |
| 1830 | |
| 1831 | nln = ln->ln_next; |
| 1832 | rt = ln->ln_rt; |
| 1833 | RT_LOCK(rt); |
| 1834 | if (rt->rt_gateway != NULL && |
| 1835 | rt->rt_gateway->sa_family == AF_LINK && |
| 1836 | SDL(rt->rt_gateway)->sdl_index == ifp->if_index) { |
| 1837 | RT_ADDREF_LOCKED(rt); |
| 1838 | RT_UNLOCK(rt); |
| 1839 | lck_mtx_unlock(rnh_lock); |
| 1840 | /* |
| 1841 | * See comments on nd6_service() for reasons why |
| 1842 | * this loop is repeated; we bite the costs of |
| 1843 | * going thru the same llinfo_nd6 more than once |
| 1844 | * here, since this purge happens during detach, |
| 1845 | * and that unlike the timer case, it's possible |
| 1846 | * there's more than one purges happening at the |
| 1847 | * same time (thus a flag wouldn't buy anything). |
| 1848 | */ |
| 1849 | nd6_free(rt); |
| 1850 | RT_REMREF(rt); |
| 1851 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 1852 | goto again; |
| 1853 | } else { |
| 1854 | RT_UNLOCK(rt); |
| 1855 | } |
| 1856 | ln = nln; |
| 1857 | } |
| 1858 | lck_mtx_unlock(rnh_lock); |
| 1859 | } |
| 1860 | |
| 1861 | /* |
| 1862 | * Upon success, the returned route will be locked and the caller is |
| 1863 | * responsible for releasing the reference and doing RT_UNLOCK(rt). |
| 1864 | * This routine does not require rnh_lock to be held by the caller, |
| 1865 | * although it needs to be indicated of such a case in order to call |
| 1866 | * the correct variant of the relevant routing routines. |
| 1867 | */ |
| 1868 | struct rtentry * |
| 1869 | nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp, int rt_locked) |
| 1870 | { |
| 1871 | struct rtentry *rt; |
| 1872 | struct sockaddr_in6 sin6; |
| 1873 | unsigned int ifscope; |
| 1874 | |
| 1875 | bzero(&sin6, sizeof (sin6)); |
| 1876 | sin6.sin6_len = sizeof (struct sockaddr_in6); |
| 1877 | sin6.sin6_family = AF_INET6; |
| 1878 | sin6.sin6_addr = *addr6; |
| 1879 | |
| 1880 | ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE; |
| 1881 | if (rt_locked) { |
| 1882 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1883 | rt = rtalloc1_scoped_locked(SA(&sin6), create, 0, ifscope); |
| 1884 | } else { |
| 1885 | rt = rtalloc1_scoped(SA(&sin6), create, 0, ifscope); |
| 1886 | } |
| 1887 | |
| 1888 | if (rt != NULL) { |
| 1889 | RT_LOCK(rt); |
| 1890 | if ((rt->rt_flags & RTF_LLINFO) == 0) { |
| 1891 | /* |
| 1892 | * This is the case for the default route. |
| 1893 | * If we want to create a neighbor cache for the |
| 1894 | * address, we should free the route for the |
| 1895 | * destination and allocate an interface route. |
| 1896 | */ |
| 1897 | if (create) { |
| 1898 | RT_UNLOCK(rt); |
| 1899 | if (rt_locked) |
| 1900 | rtfree_locked(rt); |
| 1901 | else |
| 1902 | rtfree(rt); |
| 1903 | rt = NULL; |
| 1904 | } |
| 1905 | } |
| 1906 | } |
| 1907 | if (rt == NULL) { |
| 1908 | if (create && ifp) { |
| 1909 | struct ifaddr *ifa; |
| 1910 | u_int32_t ifa_flags; |
| 1911 | int e; |
| 1912 | |
| 1913 | /* |
| 1914 | * If no route is available and create is set, |
| 1915 | * we allocate a host route for the destination |
| 1916 | * and treat it like an interface route. |
| 1917 | * This hack is necessary for a neighbor which can't |
| 1918 | * be covered by our own prefix. |
| 1919 | */ |
| 1920 | ifa = ifaof_ifpforaddr(SA(&sin6), ifp); |
| 1921 | if (ifa == NULL) |
| 1922 | return (NULL); |
| 1923 | |
| 1924 | /* |
| 1925 | * Create a new route. RTF_LLINFO is necessary |
| 1926 | * to create a Neighbor Cache entry for the |
| 1927 | * destination in nd6_rtrequest which will be |
| 1928 | * called in rtrequest via ifa->ifa_rtrequest. |
| 1929 | */ |
| 1930 | if (!rt_locked) |
| 1931 | lck_mtx_lock(rnh_lock); |
| 1932 | IFA_LOCK_SPIN(ifa); |
| 1933 | ifa_flags = ifa->ifa_flags; |
| 1934 | IFA_UNLOCK(ifa); |
| 1935 | if ((e = rtrequest_scoped_locked(RTM_ADD, |
| 1936 | SA(&sin6), ifa->ifa_addr, SA(&all1_sa), |
| 1937 | (ifa_flags | RTF_HOST | RTF_LLINFO) & |
| 1938 | ~RTF_CLONING, &rt, ifscope)) != 0) { |
| 1939 | if (e != EEXIST) |
| 1940 | log(LOG_ERR, "%s: failed to add route " |
| 1941 | "for a neighbor(%s), errno=%d\n" , |
| 1942 | __func__, ip6_sprintf(addr6), e); |
| 1943 | } |
| 1944 | if (!rt_locked) |
| 1945 | lck_mtx_unlock(rnh_lock); |
| 1946 | IFA_REMREF(ifa); |
| 1947 | if (rt == NULL) |
| 1948 | return (NULL); |
| 1949 | |
| 1950 | RT_LOCK(rt); |
| 1951 | if (rt->rt_llinfo) { |
| 1952 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
| 1953 | struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp); |
| 1954 | |
| 1955 | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
| 1956 | /* |
| 1957 | * For interface's that do not perform NUD |
| 1958 | * neighbor cache entres must always be marked |
| 1959 | * reachable with no expiry |
| 1960 | */ |
| 1961 | if (ndi->flags & ND6_IFF_PERFORMNUD) { |
| 1962 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE); |
| 1963 | } else { |
| 1964 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
| 1965 | ln_setexpire(ln, 0); |
| 1966 | } |
| 1967 | } |
| 1968 | } else { |
| 1969 | return (NULL); |
| 1970 | } |
| 1971 | } |
| 1972 | RT_LOCK_ASSERT_HELD(rt); |
| 1973 | /* |
| 1974 | * Validation for the entry. |
| 1975 | * Note that the check for rt_llinfo is necessary because a cloned |
| 1976 | * route from a parent route that has the L flag (e.g. the default |
| 1977 | * route to a p2p interface) may have the flag, too, while the |
| 1978 | * destination is not actually a neighbor. |
| 1979 | * XXX: we can't use rt->rt_ifp to check for the interface, since |
| 1980 | * it might be the loopback interface if the entry is for our |
| 1981 | * own address on a non-loopback interface. Instead, we should |
| 1982 | * use rt->rt_ifa->ifa_ifp, which would specify the REAL |
| 1983 | * interface. |
| 1984 | * Note also that ifa_ifp and ifp may differ when we connect two |
| 1985 | * interfaces to a same link, install a link prefix to an interface, |
| 1986 | * and try to install a neighbor cache on an interface that does not |
| 1987 | * have a route to the prefix. |
| 1988 | * |
| 1989 | * If the address is from a proxied prefix, the ifa_ifp and ifp might |
| 1990 | * not match, because nd6_na_input() could have modified the ifp |
| 1991 | * of the route to point to the interface where the NA arrived on, |
| 1992 | * hence the test for RTF_PROXY. |
| 1993 | */ |
| 1994 | if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || |
| 1995 | rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || |
| 1996 | (ifp && rt->rt_ifa->ifa_ifp != ifp && |
| 1997 | !(rt->rt_flags & RTF_PROXY))) { |
| 1998 | RT_REMREF_LOCKED(rt); |
| 1999 | RT_UNLOCK(rt); |
| 2000 | if (create) { |
| 2001 | log(LOG_DEBUG, "%s: failed to lookup %s " |
| 2002 | "(if = %s)\n" , __func__, ip6_sprintf(addr6), |
| 2003 | ifp ? if_name(ifp) : "unspec" ); |
| 2004 | /* xxx more logs... kazu */ |
| 2005 | } |
| 2006 | return (NULL); |
| 2007 | } |
| 2008 | /* |
| 2009 | * Caller needs to release reference and call RT_UNLOCK(rt). |
| 2010 | */ |
| 2011 | return (rt); |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * Test whether a given IPv6 address is a neighbor or not, ignoring |
| 2016 | * the actual neighbor cache. The neighbor cache is ignored in order |
| 2017 | * to not reenter the routing code from within itself. |
| 2018 | */ |
| 2019 | static int |
| 2020 | nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) |
| 2021 | { |
| 2022 | struct nd_prefix *pr; |
| 2023 | struct ifaddr *dstaddr; |
| 2024 | |
| 2025 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
| 2026 | |
| 2027 | /* |
| 2028 | * A link-local address is always a neighbor. |
| 2029 | * XXX: a link does not necessarily specify a single interface. |
| 2030 | */ |
| 2031 | if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { |
| 2032 | struct sockaddr_in6 sin6_copy; |
| 2033 | u_int32_t zone; |
| 2034 | |
| 2035 | /* |
| 2036 | * We need sin6_copy since sa6_recoverscope() may modify the |
| 2037 | * content (XXX). |
| 2038 | */ |
| 2039 | sin6_copy = *addr; |
| 2040 | if (sa6_recoverscope(&sin6_copy, FALSE)) |
| 2041 | return (0); /* XXX: should be impossible */ |
| 2042 | if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) |
| 2043 | return (0); |
| 2044 | if (sin6_copy.sin6_scope_id == zone) |
| 2045 | return (1); |
| 2046 | else |
| 2047 | return (0); |
| 2048 | } |
| 2049 | |
| 2050 | /* |
| 2051 | * If the address matches one of our addresses, |
| 2052 | * it should be a neighbor. |
| 2053 | * If the address matches one of our on-link prefixes, it should be a |
| 2054 | * neighbor. |
| 2055 | */ |
| 2056 | for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { |
| 2057 | NDPR_LOCK(pr); |
| 2058 | if (pr->ndpr_ifp != ifp) { |
| 2059 | NDPR_UNLOCK(pr); |
| 2060 | continue; |
| 2061 | } |
| 2062 | if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { |
| 2063 | NDPR_UNLOCK(pr); |
| 2064 | continue; |
| 2065 | } |
| 2066 | if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, |
| 2067 | &addr->sin6_addr, &pr->ndpr_mask)) { |
| 2068 | NDPR_UNLOCK(pr); |
| 2069 | return (1); |
| 2070 | } |
| 2071 | NDPR_UNLOCK(pr); |
| 2072 | } |
| 2073 | |
| 2074 | /* |
| 2075 | * If the address is assigned on the node of the other side of |
| 2076 | * a p2p interface, the address should be a neighbor. |
| 2077 | */ |
| 2078 | dstaddr = ifa_ifwithdstaddr(SA(addr)); |
| 2079 | if (dstaddr != NULL) { |
| 2080 | if (dstaddr->ifa_ifp == ifp) { |
| 2081 | IFA_REMREF(dstaddr); |
| 2082 | return (1); |
| 2083 | } |
| 2084 | IFA_REMREF(dstaddr); |
| 2085 | dstaddr = NULL; |
| 2086 | } |
| 2087 | |
| 2088 | return (0); |
| 2089 | } |
| 2090 | |
| 2091 | |
| 2092 | /* |
| 2093 | * Detect if a given IPv6 address identifies a neighbor on a given link. |
| 2094 | * XXX: should take care of the destination of a p2p link? |
| 2095 | */ |
| 2096 | int |
| 2097 | nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp, |
| 2098 | int rt_locked) |
| 2099 | { |
| 2100 | struct rtentry *rt; |
| 2101 | |
| 2102 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 2103 | lck_mtx_lock(nd6_mutex); |
| 2104 | if (nd6_is_new_addr_neighbor(addr, ifp)) { |
| 2105 | lck_mtx_unlock(nd6_mutex); |
| 2106 | return (1); |
| 2107 | } |
| 2108 | lck_mtx_unlock(nd6_mutex); |
| 2109 | |
| 2110 | /* |
| 2111 | * Even if the address matches none of our addresses, it might be |
| 2112 | * in the neighbor cache. |
| 2113 | */ |
| 2114 | if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp, rt_locked)) != NULL) { |
| 2115 | RT_LOCK_ASSERT_HELD(rt); |
| 2116 | RT_REMREF_LOCKED(rt); |
| 2117 | RT_UNLOCK(rt); |
| 2118 | return (1); |
| 2119 | } |
| 2120 | |
| 2121 | return (0); |
| 2122 | } |
| 2123 | |
| 2124 | /* |
| 2125 | * Free an nd6 llinfo entry. |
| 2126 | * Since the function would cause significant changes in the kernel, DO NOT |
| 2127 | * make it global, unless you have a strong reason for the change, and are sure |
| 2128 | * that the change is safe. |
| 2129 | */ |
| 2130 | void |
| 2131 | nd6_free(struct rtentry *rt) |
| 2132 | { |
| 2133 | struct llinfo_nd6 *ln; |
| 2134 | struct in6_addr in6; |
| 2135 | struct nd_defrouter *dr; |
| 2136 | |
| 2137 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 2138 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 2139 | lck_mtx_lock(nd6_mutex); |
| 2140 | |
| 2141 | RT_LOCK(rt); |
| 2142 | RT_ADDREF_LOCKED(rt); /* Extra ref */ |
| 2143 | ln = rt->rt_llinfo; |
| 2144 | in6 = SIN6(rt_key(rt))->sin6_addr; |
| 2145 | |
| 2146 | /* |
| 2147 | * Prevent another thread from modifying rt_key, rt_gateway |
| 2148 | * via rt_setgate() after the rt_lock is dropped by marking |
| 2149 | * the route as defunct. |
| 2150 | */ |
| 2151 | rt->rt_flags |= RTF_CONDEMNED; |
| 2152 | |
| 2153 | /* |
| 2154 | * We used to have pfctlinput(PRC_HOSTDEAD) here. Even though it is |
| 2155 | * not harmful, it was not really necessary. Perform default router |
| 2156 | * selection even when we are a router, if Scoped Routing is enabled. |
| 2157 | */ |
| 2158 | dr = defrouter_lookup(&SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp); |
| 2159 | |
| 2160 | if ((ln && ln->ln_router) || dr) { |
| 2161 | /* |
| 2162 | * rt6_flush must be called whether or not the neighbor |
| 2163 | * is in the Default Router List. |
| 2164 | * See a corresponding comment in nd6_na_input(). |
| 2165 | */ |
| 2166 | RT_UNLOCK(rt); |
| 2167 | lck_mtx_unlock(nd6_mutex); |
| 2168 | rt6_flush(&in6, rt->rt_ifp); |
| 2169 | lck_mtx_lock(nd6_mutex); |
| 2170 | } else { |
| 2171 | RT_UNLOCK(rt); |
| 2172 | } |
| 2173 | |
| 2174 | if (dr) { |
| 2175 | NDDR_REMREF(dr); |
| 2176 | /* |
| 2177 | * Unreachablity of a router might affect the default |
| 2178 | * router selection and on-link detection of advertised |
| 2179 | * prefixes. |
| 2180 | */ |
| 2181 | |
| 2182 | /* |
| 2183 | * Temporarily fake the state to choose a new default |
| 2184 | * router and to perform on-link determination of |
| 2185 | * prefixes correctly. |
| 2186 | * Below the state will be set correctly, |
| 2187 | * or the entry itself will be deleted. |
| 2188 | */ |
| 2189 | RT_LOCK_SPIN(rt); |
| 2190 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE); |
| 2191 | |
| 2192 | /* |
| 2193 | * Since defrouter_select() does not affect the |
| 2194 | * on-link determination and MIP6 needs the check |
| 2195 | * before the default router selection, we perform |
| 2196 | * the check now. |
| 2197 | */ |
| 2198 | RT_UNLOCK(rt); |
| 2199 | pfxlist_onlink_check(); |
| 2200 | |
| 2201 | /* |
| 2202 | * refresh default router list |
| 2203 | */ |
| 2204 | defrouter_select(rt->rt_ifp); |
| 2205 | } |
| 2206 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 2207 | lck_mtx_unlock(nd6_mutex); |
| 2208 | /* |
| 2209 | * Detach the route from the routing tree and the list of neighbor |
| 2210 | * caches, and disable the route entry not to be used in already |
| 2211 | * cached routes. |
| 2212 | */ |
| 2213 | (void) rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL); |
| 2214 | |
| 2215 | /* Extra ref held above; now free it */ |
| 2216 | rtfree(rt); |
| 2217 | } |
| 2218 | |
| 2219 | void |
| 2220 | nd6_rtrequest(int req, struct rtentry *rt, struct sockaddr *sa) |
| 2221 | { |
| 2222 | #pragma unused(sa) |
| 2223 | struct sockaddr *gate = rt->rt_gateway; |
| 2224 | struct llinfo_nd6 *ln = rt->rt_llinfo; |
| 2225 | static struct sockaddr_dl null_sdl = |
| 2226 | { .sdl_len = sizeof (null_sdl), .sdl_family = AF_LINK }; |
| 2227 | struct ifnet *ifp = rt->rt_ifp; |
| 2228 | struct ifaddr *ifa; |
| 2229 | uint64_t timenow; |
| 2230 | char buf[MAX_IPv6_STR_LEN]; |
| 2231 | struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp); |
| 2232 | |
| 2233 | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
| 2234 | VERIFY(nd6_init_done); |
| 2235 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 2236 | RT_LOCK_ASSERT_HELD(rt); |
| 2237 | |
| 2238 | /* |
| 2239 | * We have rnh_lock held, see if we need to schedule the timer; |
| 2240 | * we might do this again below during RTM_RESOLVE, but doing it |
| 2241 | * now handles all other cases. |
| 2242 | */ |
| 2243 | if (nd6_sched_timeout_want) |
| 2244 | nd6_sched_timeout(NULL, NULL); |
| 2245 | |
| 2246 | if (rt->rt_flags & RTF_GATEWAY) |
| 2247 | return; |
| 2248 | |
| 2249 | if (!nd6_need_cache(ifp) && !(rt->rt_flags & RTF_HOST)) { |
| 2250 | /* |
| 2251 | * This is probably an interface direct route for a link |
| 2252 | * which does not need neighbor caches (e.g. fe80::%lo0/64). |
| 2253 | * We do not need special treatment below for such a route. |
| 2254 | * Moreover, the RTF_LLINFO flag which would be set below |
| 2255 | * would annoy the ndp(8) command. |
| 2256 | */ |
| 2257 | return; |
| 2258 | } |
| 2259 | |
| 2260 | if (req == RTM_RESOLVE) { |
| 2261 | int no_nd_cache; |
| 2262 | |
| 2263 | if (!nd6_need_cache(ifp)) { /* stf case */ |
| 2264 | no_nd_cache = 1; |
| 2265 | } else { |
| 2266 | struct sockaddr_in6 sin6; |
| 2267 | |
| 2268 | rtkey_to_sa6(rt, &sin6); |
| 2269 | /* |
| 2270 | * nd6_is_addr_neighbor() may call nd6_lookup(), |
| 2271 | * therefore we drop rt_lock to avoid deadlock |
| 2272 | * during the lookup. |
| 2273 | */ |
| 2274 | RT_ADDREF_LOCKED(rt); |
| 2275 | RT_UNLOCK(rt); |
| 2276 | no_nd_cache = !nd6_is_addr_neighbor(&sin6, ifp, 1); |
| 2277 | RT_LOCK(rt); |
| 2278 | RT_REMREF_LOCKED(rt); |
| 2279 | } |
| 2280 | |
| 2281 | /* |
| 2282 | * FreeBSD and BSD/OS often make a cloned host route based |
| 2283 | * on a less-specific route (e.g. the default route). |
| 2284 | * If the less specific route does not have a "gateway" |
| 2285 | * (this is the case when the route just goes to a p2p or an |
| 2286 | * stf interface), we'll mistakenly make a neighbor cache for |
| 2287 | * the host route, and will see strange neighbor solicitation |
| 2288 | * for the corresponding destination. In order to avoid the |
| 2289 | * confusion, we check if the destination of the route is |
| 2290 | * a neighbor in terms of neighbor discovery, and stop the |
| 2291 | * process if not. Additionally, we remove the LLINFO flag |
| 2292 | * so that ndp(8) will not try to get the neighbor information |
| 2293 | * of the destination. |
| 2294 | */ |
| 2295 | if (no_nd_cache) { |
| 2296 | rt->rt_flags &= ~RTF_LLINFO; |
| 2297 | return; |
| 2298 | } |
| 2299 | } |
| 2300 | |
| 2301 | timenow = net_uptime(); |
| 2302 | |
| 2303 | switch (req) { |
| 2304 | case RTM_ADD: |
| 2305 | /* |
| 2306 | * There is no backward compatibility :) |
| 2307 | * |
| 2308 | * if ((rt->rt_flags & RTF_HOST) == 0 && |
| 2309 | * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) |
| 2310 | * rt->rt_flags |= RTF_CLONING; |
| 2311 | */ |
| 2312 | if ((rt->rt_flags & RTF_CLONING) || |
| 2313 | ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { |
| 2314 | /* |
| 2315 | * Case 1: This route should come from a route to |
| 2316 | * interface (RTF_CLONING case) or the route should be |
| 2317 | * treated as on-link but is currently not |
| 2318 | * (RTF_LLINFO && ln == NULL case). |
| 2319 | */ |
| 2320 | if (rt_setgate(rt, rt_key(rt), SA(&null_sdl)) == 0) { |
| 2321 | gate = rt->rt_gateway; |
| 2322 | SDL(gate)->sdl_type = ifp->if_type; |
| 2323 | SDL(gate)->sdl_index = ifp->if_index; |
| 2324 | /* |
| 2325 | * In case we're called before 1.0 sec. |
| 2326 | * has elapsed. |
| 2327 | */ |
| 2328 | if (ln != NULL) { |
| 2329 | ln_setexpire(ln, |
| 2330 | (ifp->if_eflags & IFEF_IPV6_ND6ALT) |
| 2331 | ? 0 : MAX(timenow, 1)); |
| 2332 | } |
| 2333 | } |
| 2334 | if (rt->rt_flags & RTF_CLONING) |
| 2335 | break; |
| 2336 | } |
| 2337 | /* |
| 2338 | * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. |
| 2339 | * We don't do that here since llinfo is not ready yet. |
| 2340 | * |
| 2341 | * There are also couple of other things to be discussed: |
| 2342 | * - unsolicited NA code needs improvement beforehand |
| 2343 | * - RFC4861 says we MAY send multicast unsolicited NA |
| 2344 | * (7.2.6 paragraph 4), however, it also says that we |
| 2345 | * SHOULD provide a mechanism to prevent multicast NA storm. |
| 2346 | * we don't have anything like it right now. |
| 2347 | * note that the mechanism needs a mutual agreement |
| 2348 | * between proxies, which means that we need to implement |
| 2349 | * a new protocol, or a new kludge. |
| 2350 | * - from RFC4861 6.2.4, host MUST NOT send an unsolicited RA. |
| 2351 | * we need to check ip6forwarding before sending it. |
| 2352 | * (or should we allow proxy ND configuration only for |
| 2353 | * routers? there's no mention about proxy ND from hosts) |
| 2354 | */ |
| 2355 | /* FALLTHROUGH */ |
| 2356 | case RTM_RESOLVE: |
| 2357 | if (!(ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK))) { |
| 2358 | /* |
| 2359 | * Address resolution isn't necessary for a point to |
| 2360 | * point link, so we can skip this test for a p2p link. |
| 2361 | */ |
| 2362 | if (gate->sa_family != AF_LINK || |
| 2363 | gate->sa_len < sizeof (null_sdl)) { |
| 2364 | /* Don't complain in case of RTM_ADD */ |
| 2365 | if (req == RTM_RESOLVE) { |
| 2366 | log(LOG_ERR, "%s: route to %s has bad " |
| 2367 | "gateway address (sa_family %u " |
| 2368 | "sa_len %u) on %s\n" , __func__, |
| 2369 | inet_ntop(AF_INET6, |
| 2370 | &SIN6(rt_key(rt))->sin6_addr, buf, |
| 2371 | sizeof (buf)), gate->sa_family, |
| 2372 | gate->sa_len, if_name(ifp)); |
| 2373 | } |
| 2374 | break; |
| 2375 | } |
| 2376 | SDL(gate)->sdl_type = ifp->if_type; |
| 2377 | SDL(gate)->sdl_index = ifp->if_index; |
| 2378 | } |
| 2379 | if (ln != NULL) |
| 2380 | break; /* This happens on a route change */ |
| 2381 | /* |
| 2382 | * Case 2: This route may come from cloning, or a manual route |
| 2383 | * add with a LL address. |
| 2384 | */ |
| 2385 | rt->rt_llinfo = ln = nd6_llinfo_alloc(M_WAITOK); |
| 2386 | if (ln == NULL) |
| 2387 | break; |
| 2388 | |
| 2389 | nd6_allocated++; |
| 2390 | rt->rt_llinfo_get_ri = nd6_llinfo_get_ri; |
| 2391 | rt->rt_llinfo_get_iflri = nd6_llinfo_get_iflri; |
| 2392 | rt->rt_llinfo_purge = nd6_llinfo_purge; |
| 2393 | rt->rt_llinfo_free = nd6_llinfo_free; |
| 2394 | rt->rt_llinfo_refresh = nd6_llinfo_refresh; |
| 2395 | rt->rt_flags |= RTF_LLINFO; |
| 2396 | ln->ln_rt = rt; |
| 2397 | /* this is required for "ndp" command. - shin */ |
| 2398 | /* |
| 2399 | * For interface's that do not perform NUD |
| 2400 | * neighbor cache entries must always be marked |
| 2401 | * reachable with no expiry |
| 2402 | */ |
| 2403 | if ((req == RTM_ADD) || |
| 2404 | !(ndi->flags & ND6_IFF_PERFORMNUD)) { |
| 2405 | /* |
| 2406 | * gate should have some valid AF_LINK entry, |
| 2407 | * and ln->ln_expire should have some lifetime |
| 2408 | * which is specified by ndp command. |
| 2409 | */ |
| 2410 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
| 2411 | ln_setexpire(ln, 0); |
| 2412 | } else { |
| 2413 | /* |
| 2414 | * When req == RTM_RESOLVE, rt is created and |
| 2415 | * initialized in rtrequest(), so rt_expire is 0. |
| 2416 | */ |
| 2417 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE); |
| 2418 | /* In case we're called before 1.0 sec. has elapsed */ |
| 2419 | ln_setexpire(ln, (ifp->if_eflags & IFEF_IPV6_ND6ALT) ? |
| 2420 | 0 : MAX(timenow, 1)); |
| 2421 | } |
| 2422 | LN_INSERTHEAD(ln); |
| 2423 | nd6_inuse++; |
| 2424 | |
| 2425 | /* We have at least one entry; arm the timer if not already */ |
| 2426 | nd6_sched_timeout(NULL, NULL); |
| 2427 | |
| 2428 | /* |
| 2429 | * If we have too many cache entries, initiate immediate |
| 2430 | * purging for some "less recently used" entries. Note that |
| 2431 | * we cannot directly call nd6_free() here because it would |
| 2432 | * cause re-entering rtable related routines triggering an LOR |
| 2433 | * problem. |
| 2434 | */ |
| 2435 | if (ip6_neighborgcthresh > 0 && |
| 2436 | nd6_inuse >= ip6_neighborgcthresh) { |
| 2437 | int i; |
| 2438 | |
| 2439 | for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) { |
| 2440 | struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev; |
| 2441 | struct rtentry *rt_end = ln_end->ln_rt; |
| 2442 | |
| 2443 | /* Move this entry to the head */ |
| 2444 | RT_LOCK(rt_end); |
| 2445 | LN_DEQUEUE(ln_end); |
| 2446 | LN_INSERTHEAD(ln_end); |
| 2447 | |
| 2448 | if (ln_end->ln_expire == 0) { |
| 2449 | RT_UNLOCK(rt_end); |
| 2450 | continue; |
| 2451 | } |
| 2452 | if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE) |
| 2453 | ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_STALE); |
| 2454 | else |
| 2455 | ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_PURGE); |
| 2456 | ln_setexpire(ln_end, timenow); |
| 2457 | RT_UNLOCK(rt_end); |
| 2458 | } |
| 2459 | } |
| 2460 | |
| 2461 | /* |
| 2462 | * check if rt_key(rt) is one of my address assigned |
| 2463 | * to the interface. |
| 2464 | */ |
| 2465 | ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, |
| 2466 | &SIN6(rt_key(rt))->sin6_addr); |
| 2467 | if (ifa != NULL) { |
| 2468 | caddr_t macp = nd6_ifptomac(ifp); |
| 2469 | ln_setexpire(ln, 0); |
| 2470 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
| 2471 | if (macp != NULL) { |
| 2472 | Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); |
| 2473 | SDL(gate)->sdl_alen = ifp->if_addrlen; |
| 2474 | } |
| 2475 | if (nd6_useloopback) { |
| 2476 | if (rt->rt_ifp != lo_ifp) { |
| 2477 | /* |
| 2478 | * Purge any link-layer info caching. |
| 2479 | */ |
| 2480 | if (rt->rt_llinfo_purge != NULL) |
| 2481 | rt->rt_llinfo_purge(rt); |
| 2482 | |
| 2483 | /* |
| 2484 | * Adjust route ref count for the |
| 2485 | * interfaces. |
| 2486 | */ |
| 2487 | if (rt->rt_if_ref_fn != NULL) { |
| 2488 | rt->rt_if_ref_fn(lo_ifp, 1); |
| 2489 | rt->rt_if_ref_fn(rt->rt_ifp, |
| 2490 | -1); |
| 2491 | } |
| 2492 | } |
| 2493 | rt->rt_ifp = lo_ifp; |
| 2494 | /* |
| 2495 | * If rmx_mtu is not locked, update it |
| 2496 | * to the MTU used by the new interface. |
| 2497 | */ |
| 2498 | if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) |
| 2499 | rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu; |
| 2500 | /* |
| 2501 | * Make sure rt_ifa be equal to the ifaddr |
| 2502 | * corresponding to the address. |
| 2503 | * We need this because when we refer |
| 2504 | * rt_ifa->ia6_flags in ip6_input, we assume |
| 2505 | * that the rt_ifa points to the address instead |
| 2506 | * of the loopback address. |
| 2507 | */ |
| 2508 | if (ifa != rt->rt_ifa) { |
| 2509 | rtsetifa(rt, ifa); |
| 2510 | } |
| 2511 | } |
| 2512 | IFA_REMREF(ifa); |
| 2513 | } else if (rt->rt_flags & RTF_ANNOUNCE) { |
| 2514 | ln_setexpire(ln, 0); |
| 2515 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE); |
| 2516 | |
| 2517 | /* join solicited node multicast for proxy ND */ |
| 2518 | if (ifp->if_flags & IFF_MULTICAST) { |
| 2519 | struct in6_addr llsol; |
| 2520 | struct in6_multi *in6m; |
| 2521 | int error; |
| 2522 | |
| 2523 | llsol = SIN6(rt_key(rt))->sin6_addr; |
| 2524 | llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; |
| 2525 | llsol.s6_addr32[1] = 0; |
| 2526 | llsol.s6_addr32[2] = htonl(1); |
| 2527 | llsol.s6_addr8[12] = 0xff; |
| 2528 | if (in6_setscope(&llsol, ifp, NULL)) |
| 2529 | break; |
| 2530 | error = in6_mc_join(ifp, &llsol, |
| 2531 | NULL, &in6m, 0); |
| 2532 | if (error) { |
| 2533 | nd6log((LOG_ERR, "%s: failed to join " |
| 2534 | "%s (errno=%d)\n" , if_name(ifp), |
| 2535 | ip6_sprintf(&llsol), error)); |
| 2536 | } else { |
| 2537 | IN6M_REMREF(in6m); |
| 2538 | } |
| 2539 | } |
| 2540 | } |
| 2541 | break; |
| 2542 | |
| 2543 | case RTM_DELETE: |
| 2544 | if (ln == NULL) |
| 2545 | break; |
| 2546 | /* leave from solicited node multicast for proxy ND */ |
| 2547 | if ((rt->rt_flags & RTF_ANNOUNCE) && |
| 2548 | (ifp->if_flags & IFF_MULTICAST)) { |
| 2549 | struct in6_addr llsol; |
| 2550 | struct in6_multi *in6m; |
| 2551 | |
| 2552 | llsol = SIN6(rt_key(rt))->sin6_addr; |
| 2553 | llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; |
| 2554 | llsol.s6_addr32[1] = 0; |
| 2555 | llsol.s6_addr32[2] = htonl(1); |
| 2556 | llsol.s6_addr8[12] = 0xff; |
| 2557 | if (in6_setscope(&llsol, ifp, NULL) == 0) { |
| 2558 | in6_multihead_lock_shared(); |
| 2559 | IN6_LOOKUP_MULTI(&llsol, ifp, in6m); |
| 2560 | in6_multihead_lock_done(); |
| 2561 | if (in6m != NULL) { |
| 2562 | in6_mc_leave(in6m, NULL); |
| 2563 | IN6M_REMREF(in6m); |
| 2564 | } |
| 2565 | } |
| 2566 | } |
| 2567 | nd6_inuse--; |
| 2568 | /* |
| 2569 | * Unchain it but defer the actual freeing until the route |
| 2570 | * itself is to be freed. rt->rt_llinfo still points to |
| 2571 | * llinfo_nd6, and likewise, ln->ln_rt stil points to this |
| 2572 | * route entry, except that RTF_LLINFO is now cleared. |
| 2573 | */ |
| 2574 | if (ln->ln_flags & ND6_LNF_IN_USE) |
| 2575 | LN_DEQUEUE(ln); |
| 2576 | |
| 2577 | /* |
| 2578 | * Purge any link-layer info caching. |
| 2579 | */ |
| 2580 | if (rt->rt_llinfo_purge != NULL) |
| 2581 | rt->rt_llinfo_purge(rt); |
| 2582 | |
| 2583 | rt->rt_flags &= ~RTF_LLINFO; |
| 2584 | if (ln->ln_hold != NULL) { |
| 2585 | m_freem_list(ln->ln_hold); |
| 2586 | ln->ln_hold = NULL; |
| 2587 | } |
| 2588 | } |
| 2589 | } |
| 2590 | |
| 2591 | static int |
| 2592 | nd6_siocgdrlst(void *data, int data_is_64) |
| 2593 | { |
| 2594 | struct in6_drlist_32 *drl_32; |
| 2595 | struct nd_defrouter *dr; |
| 2596 | int i = 0; |
| 2597 | |
| 2598 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
| 2599 | |
| 2600 | dr = TAILQ_FIRST(&nd_defrouter); |
| 2601 | |
| 2602 | /* XXX Handle mapped defrouter entries */ |
| 2603 | /* For 64-bit process */ |
| 2604 | if (data_is_64) { |
| 2605 | struct in6_drlist_64 *drl_64; |
| 2606 | |
| 2607 | drl_64 = _MALLOC(sizeof (*drl_64), M_TEMP, M_WAITOK|M_ZERO); |
| 2608 | if (drl_64 == NULL) |
| 2609 | return (ENOMEM); |
| 2610 | |
| 2611 | /* preserve the interface name */ |
| 2612 | bcopy(data, drl_64, sizeof (drl_64->ifname)); |
| 2613 | |
| 2614 | while (dr && i < DRLSTSIZ) { |
| 2615 | drl_64->defrouter[i].rtaddr = dr->rtaddr; |
| 2616 | if (IN6_IS_ADDR_LINKLOCAL( |
| 2617 | &drl_64->defrouter[i].rtaddr)) { |
| 2618 | /* XXX: need to this hack for KAME stack */ |
| 2619 | drl_64->defrouter[i].rtaddr.s6_addr16[1] = 0; |
| 2620 | } else { |
| 2621 | log(LOG_ERR, |
| 2622 | "default router list contains a " |
| 2623 | "non-linklocal address(%s)\n" , |
| 2624 | ip6_sprintf(&drl_64->defrouter[i].rtaddr)); |
| 2625 | } |
| 2626 | drl_64->defrouter[i].flags = dr->flags; |
| 2627 | drl_64->defrouter[i].rtlifetime = dr->rtlifetime; |
| 2628 | drl_64->defrouter[i].expire = nddr_getexpire(dr); |
| 2629 | drl_64->defrouter[i].if_index = dr->ifp->if_index; |
| 2630 | i++; |
| 2631 | dr = TAILQ_NEXT(dr, dr_entry); |
| 2632 | } |
| 2633 | bcopy(drl_64, data, sizeof (*drl_64)); |
| 2634 | _FREE(drl_64, M_TEMP); |
| 2635 | return (0); |
| 2636 | } |
| 2637 | |
| 2638 | /* For 32-bit process */ |
| 2639 | drl_32 = _MALLOC(sizeof (*drl_32), M_TEMP, M_WAITOK|M_ZERO); |
| 2640 | if (drl_32 == NULL) |
| 2641 | return (ENOMEM); |
| 2642 | |
| 2643 | /* preserve the interface name */ |
| 2644 | bcopy(data, drl_32, sizeof (drl_32->ifname)); |
| 2645 | |
| 2646 | while (dr != NULL && i < DRLSTSIZ) { |
| 2647 | drl_32->defrouter[i].rtaddr = dr->rtaddr; |
| 2648 | if (IN6_IS_ADDR_LINKLOCAL(&drl_32->defrouter[i].rtaddr)) { |
| 2649 | /* XXX: need to this hack for KAME stack */ |
| 2650 | drl_32->defrouter[i].rtaddr.s6_addr16[1] = 0; |
| 2651 | } else { |
| 2652 | log(LOG_ERR, |
| 2653 | "default router list contains a " |
| 2654 | "non-linklocal address(%s)\n" , |
| 2655 | ip6_sprintf(&drl_32->defrouter[i].rtaddr)); |
| 2656 | } |
| 2657 | drl_32->defrouter[i].flags = dr->flags; |
| 2658 | drl_32->defrouter[i].rtlifetime = dr->rtlifetime; |
| 2659 | drl_32->defrouter[i].expire = nddr_getexpire(dr); |
| 2660 | drl_32->defrouter[i].if_index = dr->ifp->if_index; |
| 2661 | i++; |
| 2662 | dr = TAILQ_NEXT(dr, dr_entry); |
| 2663 | } |
| 2664 | bcopy(drl_32, data, sizeof (*drl_32)); |
| 2665 | _FREE(drl_32, M_TEMP); |
| 2666 | return (0); |
| 2667 | } |
| 2668 | |
| 2669 | /* |
| 2670 | * XXX meaning of fields, especialy "raflags", is very |
| 2671 | * differnet between RA prefix list and RR/static prefix list. |
| 2672 | * how about separating ioctls into two? |
| 2673 | */ |
| 2674 | static int |
| 2675 | nd6_siocgprlst(void *data, int data_is_64) |
| 2676 | { |
| 2677 | struct in6_prlist_32 *prl_32; |
| 2678 | struct nd_prefix *pr; |
| 2679 | int i = 0; |
| 2680 | |
| 2681 | LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED); |
| 2682 | |
| 2683 | pr = nd_prefix.lh_first; |
| 2684 | |
| 2685 | /* XXX Handle mapped defrouter entries */ |
| 2686 | /* For 64-bit process */ |
| 2687 | if (data_is_64) { |
| 2688 | struct in6_prlist_64 *prl_64; |
| 2689 | |
| 2690 | prl_64 = _MALLOC(sizeof (*prl_64), M_TEMP, M_WAITOK|M_ZERO); |
| 2691 | if (prl_64 == NULL) |
| 2692 | return (ENOMEM); |
| 2693 | |
| 2694 | /* preserve the interface name */ |
| 2695 | bcopy(data, prl_64, sizeof (prl_64->ifname)); |
| 2696 | |
| 2697 | while (pr && i < PRLSTSIZ) { |
| 2698 | struct nd_pfxrouter *pfr; |
| 2699 | int j; |
| 2700 | |
| 2701 | NDPR_LOCK(pr); |
| 2702 | (void) in6_embedscope(&prl_64->prefix[i].prefix, |
| 2703 | &pr->ndpr_prefix, NULL, NULL, NULL); |
| 2704 | prl_64->prefix[i].raflags = pr->ndpr_raf; |
| 2705 | prl_64->prefix[i].prefixlen = pr->ndpr_plen; |
| 2706 | prl_64->prefix[i].vltime = pr->ndpr_vltime; |
| 2707 | prl_64->prefix[i].pltime = pr->ndpr_pltime; |
| 2708 | prl_64->prefix[i].if_index = pr->ndpr_ifp->if_index; |
| 2709 | prl_64->prefix[i].expire = ndpr_getexpire(pr); |
| 2710 | |
| 2711 | pfr = pr->ndpr_advrtrs.lh_first; |
| 2712 | j = 0; |
| 2713 | while (pfr) { |
| 2714 | if (j < DRLSTSIZ) { |
| 2715 | #define RTRADDR prl_64->prefix[i].advrtr[j] |
| 2716 | RTRADDR = pfr->router->rtaddr; |
| 2717 | if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { |
| 2718 | /* XXX: hack for KAME */ |
| 2719 | RTRADDR.s6_addr16[1] = 0; |
| 2720 | } else { |
| 2721 | log(LOG_ERR, |
| 2722 | "a router(%s) advertises " |
| 2723 | "a prefix with " |
| 2724 | "non-link local address\n" , |
| 2725 | ip6_sprintf(&RTRADDR)); |
| 2726 | } |
| 2727 | #undef RTRADDR |
| 2728 | } |
| 2729 | j++; |
| 2730 | pfr = pfr->pfr_next; |
| 2731 | } |
| 2732 | prl_64->prefix[i].advrtrs = j; |
| 2733 | prl_64->prefix[i].origin = PR_ORIG_RA; |
| 2734 | NDPR_UNLOCK(pr); |
| 2735 | |
| 2736 | i++; |
| 2737 | pr = pr->ndpr_next; |
| 2738 | } |
| 2739 | bcopy(prl_64, data, sizeof (*prl_64)); |
| 2740 | _FREE(prl_64, M_TEMP); |
| 2741 | return (0); |
| 2742 | } |
| 2743 | |
| 2744 | /* For 32-bit process */ |
| 2745 | prl_32 = _MALLOC(sizeof (*prl_32), M_TEMP, M_WAITOK|M_ZERO); |
| 2746 | if (prl_32 == NULL) |
| 2747 | return (ENOMEM); |
| 2748 | |
| 2749 | /* preserve the interface name */ |
| 2750 | bcopy(data, prl_32, sizeof (prl_32->ifname)); |
| 2751 | |
| 2752 | while (pr && i < PRLSTSIZ) { |
| 2753 | struct nd_pfxrouter *pfr; |
| 2754 | int j; |
| 2755 | |
| 2756 | NDPR_LOCK(pr); |
| 2757 | (void) in6_embedscope(&prl_32->prefix[i].prefix, |
| 2758 | &pr->ndpr_prefix, NULL, NULL, NULL); |
| 2759 | prl_32->prefix[i].raflags = pr->ndpr_raf; |
| 2760 | prl_32->prefix[i].prefixlen = pr->ndpr_plen; |
| 2761 | prl_32->prefix[i].vltime = pr->ndpr_vltime; |
| 2762 | prl_32->prefix[i].pltime = pr->ndpr_pltime; |
| 2763 | prl_32->prefix[i].if_index = pr->ndpr_ifp->if_index; |
| 2764 | prl_32->prefix[i].expire = ndpr_getexpire(pr); |
| 2765 | |
| 2766 | pfr = pr->ndpr_advrtrs.lh_first; |
| 2767 | j = 0; |
| 2768 | while (pfr) { |
| 2769 | if (j < DRLSTSIZ) { |
| 2770 | #define RTRADDR prl_32->prefix[i].advrtr[j] |
| 2771 | RTRADDR = pfr->router->rtaddr; |
| 2772 | if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { |
| 2773 | /* XXX: hack for KAME */ |
| 2774 | RTRADDR.s6_addr16[1] = 0; |
| 2775 | } else { |
| 2776 | log(LOG_ERR, |
| 2777 | "a router(%s) advertises " |
| 2778 | "a prefix with " |
| 2779 | "non-link local address\n" , |
| 2780 | ip6_sprintf(&RTRADDR)); |
| 2781 | } |
| 2782 | #undef RTRADDR |
| 2783 | } |
| 2784 | j++; |
| 2785 | pfr = pfr->pfr_next; |
| 2786 | } |
| 2787 | prl_32->prefix[i].advrtrs = j; |
| 2788 | prl_32->prefix[i].origin = PR_ORIG_RA; |
| 2789 | NDPR_UNLOCK(pr); |
| 2790 | |
| 2791 | i++; |
| 2792 | pr = pr->ndpr_next; |
| 2793 | } |
| 2794 | bcopy(prl_32, data, sizeof (*prl_32)); |
| 2795 | _FREE(prl_32, M_TEMP); |
| 2796 | return (0); |
| 2797 | } |
| 2798 | |
| 2799 | int |
| 2800 | nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) |
| 2801 | { |
| 2802 | struct nd_defrouter *dr; |
| 2803 | struct nd_prefix *pr; |
| 2804 | struct rtentry *rt; |
| 2805 | int error = 0; |
| 2806 | |
| 2807 | VERIFY(ifp != NULL); |
| 2808 | |
| 2809 | switch (cmd) { |
| 2810 | case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */ |
| 2811 | case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */ |
| 2812 | /* |
| 2813 | * obsolete API, use sysctl under net.inet6.icmp6 |
| 2814 | */ |
| 2815 | lck_mtx_lock(nd6_mutex); |
| 2816 | error = nd6_siocgdrlst(data, cmd == SIOCGDRLST_IN6_64); |
| 2817 | lck_mtx_unlock(nd6_mutex); |
| 2818 | break; |
| 2819 | |
| 2820 | case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */ |
| 2821 | case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */ |
| 2822 | /* |
| 2823 | * obsolete API, use sysctl under net.inet6.icmp6 |
| 2824 | */ |
| 2825 | lck_mtx_lock(nd6_mutex); |
| 2826 | error = nd6_siocgprlst(data, cmd == SIOCGPRLST_IN6_64); |
| 2827 | lck_mtx_unlock(nd6_mutex); |
| 2828 | break; |
| 2829 | |
| 2830 | case OSIOCGIFINFO_IN6: /* struct in6_ondireq */ |
| 2831 | case SIOCGIFINFO_IN6: { /* struct in6_ondireq */ |
| 2832 | u_int32_t linkmtu; |
| 2833 | struct in6_ondireq *ondi = (struct in6_ondireq *)(void *)data; |
| 2834 | struct nd_ifinfo *ndi; |
| 2835 | /* |
| 2836 | * SIOCGIFINFO_IN6 ioctl is encoded with in6_ondireq |
| 2837 | * instead of in6_ndireq, so we treat it as such. |
| 2838 | */ |
| 2839 | ndi = ND_IFINFO(ifp); |
| 2840 | if ((NULL == ndi) || (FALSE == ndi->initialized)){ |
| 2841 | error = EINVAL; |
| 2842 | break; |
| 2843 | } |
| 2844 | lck_mtx_lock(&ndi->lock); |
| 2845 | linkmtu = IN6_LINKMTU(ifp); |
| 2846 | bcopy(&linkmtu, &ondi->ndi.linkmtu, sizeof (linkmtu)); |
| 2847 | bcopy(&ndi->maxmtu, &ondi->ndi.maxmtu, |
| 2848 | sizeof (u_int32_t)); |
| 2849 | bcopy(&ndi->basereachable, &ondi->ndi.basereachable, |
| 2850 | sizeof (u_int32_t)); |
| 2851 | bcopy(&ndi->reachable, &ondi->ndi.reachable, |
| 2852 | sizeof (u_int32_t)); |
| 2853 | bcopy(&ndi->retrans, &ondi->ndi.retrans, |
| 2854 | sizeof (u_int32_t)); |
| 2855 | bcopy(&ndi->flags, &ondi->ndi.flags, |
| 2856 | sizeof (u_int32_t)); |
| 2857 | bcopy(&ndi->recalctm, &ondi->ndi.recalctm, |
| 2858 | sizeof (int)); |
| 2859 | ondi->ndi.chlim = ndi->chlim; |
| 2860 | ondi->ndi.receivedra = 0; |
| 2861 | lck_mtx_unlock(&ndi->lock); |
| 2862 | break; |
| 2863 | } |
| 2864 | |
| 2865 | case SIOCSIFINFO_FLAGS: { /* struct in6_ndireq */ |
| 2866 | /* |
| 2867 | * XXX BSD has a bunch of checks here to ensure |
| 2868 | * that interface disabled flag is not reset if |
| 2869 | * link local address has failed DAD. |
| 2870 | * Investigate that part. |
| 2871 | */ |
| 2872 | struct in6_ndireq *cndi = (struct in6_ndireq *)(void *)data; |
| 2873 | u_int32_t oflags, flags; |
| 2874 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
| 2875 | |
| 2876 | /* XXX: almost all other fields of cndi->ndi is unused */ |
| 2877 | if ((NULL == ndi) || !ndi->initialized) { |
| 2878 | error = EINVAL; |
| 2879 | break; |
| 2880 | } |
| 2881 | |
| 2882 | lck_mtx_lock(&ndi->lock); |
| 2883 | oflags = ndi->flags; |
| 2884 | bcopy(&cndi->ndi.flags, &(ndi->flags), sizeof (flags)); |
| 2885 | flags = ndi->flags; |
| 2886 | lck_mtx_unlock(&ndi->lock); |
| 2887 | |
| 2888 | if (oflags == flags) { |
| 2889 | break; |
| 2890 | } |
| 2891 | |
| 2892 | error = nd6_setifinfo(ifp, oflags, flags); |
| 2893 | break; |
| 2894 | } |
| 2895 | |
| 2896 | case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */ |
| 2897 | /* flush default router list */ |
| 2898 | /* |
| 2899 | * xxx sumikawa: should not delete route if default |
| 2900 | * route equals to the top of default router list |
| 2901 | */ |
| 2902 | lck_mtx_lock(nd6_mutex); |
| 2903 | defrouter_reset(); |
| 2904 | defrouter_select(ifp); |
| 2905 | lck_mtx_unlock(nd6_mutex); |
| 2906 | /* xxx sumikawa: flush prefix list */ |
| 2907 | break; |
| 2908 | |
| 2909 | case SIOCSPFXFLUSH_IN6: { /* struct in6_ifreq */ |
| 2910 | /* flush all the prefix advertised by routers */ |
| 2911 | struct nd_prefix *next = NULL; |
| 2912 | |
| 2913 | lck_mtx_lock(nd6_mutex); |
| 2914 | for (pr = nd_prefix.lh_first; pr; pr = next) { |
| 2915 | struct in6_ifaddr *ia = NULL; |
| 2916 | bool iterate_pfxlist_again = false; |
| 2917 | |
| 2918 | next = pr->ndpr_next; |
| 2919 | |
| 2920 | NDPR_LOCK(pr); |
| 2921 | if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) { |
| 2922 | NDPR_UNLOCK(pr); |
| 2923 | continue; /* XXX */ |
| 2924 | } |
| 2925 | if (ifp != lo_ifp && pr->ndpr_ifp != ifp) { |
| 2926 | NDPR_UNLOCK(pr); |
| 2927 | continue; |
| 2928 | } |
| 2929 | /* do we really have to remove addresses as well? */ |
| 2930 | NDPR_ADDREF_LOCKED(pr); |
| 2931 | NDPR_UNLOCK(pr); |
| 2932 | lck_rw_lock_exclusive(&in6_ifaddr_rwlock); |
| 2933 | ia = in6_ifaddrs; |
| 2934 | while (ia != NULL) { |
| 2935 | IFA_LOCK(&ia->ia_ifa); |
| 2936 | if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) { |
| 2937 | IFA_UNLOCK(&ia->ia_ifa); |
| 2938 | ia = ia->ia_next; |
| 2939 | continue; |
| 2940 | } |
| 2941 | |
| 2942 | if (ia->ia6_ndpr == pr) { |
| 2943 | IFA_ADDREF_LOCKED(&ia->ia_ifa); |
| 2944 | IFA_UNLOCK(&ia->ia_ifa); |
| 2945 | lck_rw_done(&in6_ifaddr_rwlock); |
| 2946 | lck_mtx_unlock(nd6_mutex); |
| 2947 | in6_purgeaddr(&ia->ia_ifa); |
| 2948 | IFA_REMREF(&ia->ia_ifa); |
| 2949 | lck_mtx_lock(nd6_mutex); |
| 2950 | lck_rw_lock_exclusive( |
| 2951 | &in6_ifaddr_rwlock); |
| 2952 | /* |
| 2953 | * Purging the address caused |
| 2954 | * in6_ifaddr_rwlock to be |
| 2955 | * dropped and |
| 2956 | * reacquired; therefore search again |
| 2957 | * from the beginning of in6_ifaddrs. |
| 2958 | * The same applies for the prefix list. |
| 2959 | */ |
| 2960 | ia = in6_ifaddrs; |
| 2961 | iterate_pfxlist_again = true; |
| 2962 | continue; |
| 2963 | } |
| 2964 | IFA_UNLOCK(&ia->ia_ifa); |
| 2965 | ia = ia->ia_next; |
| 2966 | } |
| 2967 | lck_rw_done(&in6_ifaddr_rwlock); |
| 2968 | NDPR_LOCK(pr); |
| 2969 | prelist_remove(pr); |
| 2970 | NDPR_UNLOCK(pr); |
| 2971 | pfxlist_onlink_check(); |
| 2972 | NDPR_REMREF(pr); |
| 2973 | if (iterate_pfxlist_again) { |
| 2974 | next = nd_prefix.lh_first; |
| 2975 | } |
| 2976 | } |
| 2977 | lck_mtx_unlock(nd6_mutex); |
| 2978 | break; |
| 2979 | } |
| 2980 | |
| 2981 | case SIOCSRTRFLUSH_IN6: { /* struct in6_ifreq */ |
| 2982 | /* flush all the default routers */ |
| 2983 | struct nd_defrouter *next; |
| 2984 | struct nd_drhead nd_defrouter_tmp; |
| 2985 | |
| 2986 | TAILQ_INIT(&nd_defrouter_tmp); |
| 2987 | lck_mtx_lock(nd6_mutex); |
| 2988 | if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { |
| 2989 | /* |
| 2990 | * The first entry of the list may be stored in |
| 2991 | * the routing table, so we'll delete it later. |
| 2992 | */ |
| 2993 | for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { |
| 2994 | next = TAILQ_NEXT(dr, dr_entry); |
| 2995 | if (ifp == lo_ifp || dr->ifp == ifp) { |
| 2996 | /* |
| 2997 | * Remove the entry from default router list |
| 2998 | * and add it to the temp list. |
| 2999 | * nd_defrouter_tmp will be a local temporary |
| 3000 | * list as no one else can get the same |
| 3001 | * removed entry once it is removed from default |
| 3002 | * router list. |
| 3003 | * Remove the reference after calling defrtrlist_de |
| 3004 | */ |
| 3005 | TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); |
| 3006 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
| 3007 | } |
| 3008 | } |
| 3009 | |
| 3010 | dr = TAILQ_FIRST(&nd_defrouter); |
| 3011 | if (ifp == lo_ifp || |
| 3012 | dr->ifp == ifp) { |
| 3013 | TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); |
| 3014 | TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry); |
| 3015 | } |
| 3016 | } |
| 3017 | |
| 3018 | /* |
| 3019 | * Keep the following separate from the above iteration of |
| 3020 | * nd_defrouter because it's not safe to call |
| 3021 | * defrtrlist_del while iterating global default |
| 3022 | * router list. Global list has to be traversed |
| 3023 | * while holding nd6_mutex throughout. |
| 3024 | * |
| 3025 | * The following call to defrtrlist_del should be |
| 3026 | * safe as we are iterating a local list of |
| 3027 | * default routers. |
| 3028 | */ |
| 3029 | TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, next) { |
| 3030 | TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry); |
| 3031 | defrtrlist_del(dr); |
| 3032 | NDDR_REMREF(dr); /* remove list reference */ |
| 3033 | } |
| 3034 | lck_mtx_unlock(nd6_mutex); |
| 3035 | break; |
| 3036 | } |
| 3037 | |
| 3038 | case SIOCGNBRINFO_IN6_32: { /* struct in6_nbrinfo_32 */ |
| 3039 | struct llinfo_nd6 *ln; |
| 3040 | struct in6_nbrinfo_32 nbi_32; |
| 3041 | struct in6_addr nb_addr; /* make local for safety */ |
| 3042 | |
| 3043 | bcopy(data, &nbi_32, sizeof (nbi_32)); |
| 3044 | nb_addr = nbi_32.addr; |
| 3045 | /* |
| 3046 | * XXX: KAME specific hack for scoped addresses |
| 3047 | * XXXX: for other scopes than link-local? |
| 3048 | */ |
| 3049 | if (IN6_IS_ADDR_LINKLOCAL(&nbi_32.addr) || |
| 3050 | IN6_IS_ADDR_MC_LINKLOCAL(&nbi_32.addr)) { |
| 3051 | u_int16_t *idp = |
| 3052 | (u_int16_t *)(void *)&nb_addr.s6_addr[2]; |
| 3053 | |
| 3054 | if (*idp == 0) |
| 3055 | *idp = htons(ifp->if_index); |
| 3056 | } |
| 3057 | |
| 3058 | /* Callee returns a locked route upon success */ |
| 3059 | if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { |
| 3060 | error = EINVAL; |
| 3061 | break; |
| 3062 | } |
| 3063 | RT_LOCK_ASSERT_HELD(rt); |
| 3064 | ln = rt->rt_llinfo; |
| 3065 | nbi_32.state = ln->ln_state; |
| 3066 | nbi_32.asked = ln->ln_asked; |
| 3067 | nbi_32.isrouter = ln->ln_router; |
| 3068 | nbi_32.expire = ln_getexpire(ln); |
| 3069 | RT_REMREF_LOCKED(rt); |
| 3070 | RT_UNLOCK(rt); |
| 3071 | bcopy(&nbi_32, data, sizeof (nbi_32)); |
| 3072 | break; |
| 3073 | } |
| 3074 | |
| 3075 | case SIOCGNBRINFO_IN6_64: { /* struct in6_nbrinfo_64 */ |
| 3076 | struct llinfo_nd6 *ln; |
| 3077 | struct in6_nbrinfo_64 nbi_64; |
| 3078 | struct in6_addr nb_addr; /* make local for safety */ |
| 3079 | |
| 3080 | bcopy(data, &nbi_64, sizeof (nbi_64)); |
| 3081 | nb_addr = nbi_64.addr; |
| 3082 | /* |
| 3083 | * XXX: KAME specific hack for scoped addresses |
| 3084 | * XXXX: for other scopes than link-local? |
| 3085 | */ |
| 3086 | if (IN6_IS_ADDR_LINKLOCAL(&nbi_64.addr) || |
| 3087 | IN6_IS_ADDR_MC_LINKLOCAL(&nbi_64.addr)) { |
| 3088 | u_int16_t *idp = |
| 3089 | (u_int16_t *)(void *)&nb_addr.s6_addr[2]; |
| 3090 | |
| 3091 | if (*idp == 0) |
| 3092 | *idp = htons(ifp->if_index); |
| 3093 | } |
| 3094 | |
| 3095 | /* Callee returns a locked route upon success */ |
| 3096 | if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { |
| 3097 | error = EINVAL; |
| 3098 | break; |
| 3099 | } |
| 3100 | RT_LOCK_ASSERT_HELD(rt); |
| 3101 | ln = rt->rt_llinfo; |
| 3102 | nbi_64.state = ln->ln_state; |
| 3103 | nbi_64.asked = ln->ln_asked; |
| 3104 | nbi_64.isrouter = ln->ln_router; |
| 3105 | nbi_64.expire = ln_getexpire(ln); |
| 3106 | RT_REMREF_LOCKED(rt); |
| 3107 | RT_UNLOCK(rt); |
| 3108 | bcopy(&nbi_64, data, sizeof (nbi_64)); |
| 3109 | break; |
| 3110 | } |
| 3111 | |
| 3112 | case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ |
| 3113 | case SIOCGDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ |
| 3114 | struct in6_ndifreq_64 *ndif_64 = |
| 3115 | (struct in6_ndifreq_64 *)(void *)data; |
| 3116 | struct in6_ndifreq_32 *ndif_32 = |
| 3117 | (struct in6_ndifreq_32 *)(void *)data; |
| 3118 | |
| 3119 | if (cmd == SIOCGDEFIFACE_IN6_64) { |
| 3120 | u_int64_t j = nd6_defifindex; |
| 3121 | bcopy(&j, &ndif_64->ifindex, sizeof (j)); |
| 3122 | } else { |
| 3123 | bcopy(&nd6_defifindex, &ndif_32->ifindex, |
| 3124 | sizeof (u_int32_t)); |
| 3125 | } |
| 3126 | break; |
| 3127 | } |
| 3128 | |
| 3129 | case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ |
| 3130 | case SIOCSDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ |
| 3131 | struct in6_ndifreq_64 *ndif_64 = |
| 3132 | (struct in6_ndifreq_64 *)(void *)data; |
| 3133 | struct in6_ndifreq_32 *ndif_32 = |
| 3134 | (struct in6_ndifreq_32 *)(void *)data; |
| 3135 | u_int32_t idx; |
| 3136 | |
| 3137 | if (cmd == SIOCSDEFIFACE_IN6_64) { |
| 3138 | u_int64_t j; |
| 3139 | bcopy(&ndif_64->ifindex, &j, sizeof (j)); |
| 3140 | idx = (u_int32_t)j; |
| 3141 | } else { |
| 3142 | bcopy(&ndif_32->ifindex, &idx, sizeof (idx)); |
| 3143 | } |
| 3144 | |
| 3145 | error = nd6_setdefaultiface(idx); |
| 3146 | return (error); |
| 3147 | /* NOTREACHED */ |
| 3148 | } |
| 3149 | case SIOCGIFCGAPREP_IN6: |
| 3150 | case SIOCSIFCGAPREP_IN6: |
| 3151 | { |
| 3152 | struct in6_cgareq *p_cgareq = |
| 3153 | (struct in6_cgareq *)(void *)data; |
| 3154 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
| 3155 | |
| 3156 | struct in6_cga_modifier *req_cga_mod = |
| 3157 | &(p_cgareq->cgar_cgaprep.cga_modifier); |
| 3158 | struct in6_cga_modifier *ndi_cga_mod = NULL; |
| 3159 | |
| 3160 | if ((NULL == ndi) || !ndi->initialized) { |
| 3161 | error = EINVAL; |
| 3162 | break; |
| 3163 | } |
| 3164 | |
| 3165 | lck_mtx_lock(&ndi->lock); |
| 3166 | ndi_cga_mod = &(ndi->local_cga_modifier); |
| 3167 | |
| 3168 | if (cmd == SIOCSIFCGAPREP_IN6) { |
| 3169 | bcopy(req_cga_mod, ndi_cga_mod, sizeof(*ndi_cga_mod)); |
| 3170 | ndi->cga_initialized = TRUE; |
| 3171 | } else |
| 3172 | bcopy(ndi_cga_mod, req_cga_mod, sizeof(*req_cga_mod)); |
| 3173 | |
| 3174 | lck_mtx_unlock(&ndi->lock); |
| 3175 | return (error); |
| 3176 | /* NOTREACHED */ |
| 3177 | } |
| 3178 | } |
| 3179 | return (error); |
| 3180 | } |
| 3181 | |
| 3182 | /* |
| 3183 | * Create neighbor cache entry and cache link-layer address, |
| 3184 | * on reception of inbound ND6 packets. (RS/RA/NS/redirect) |
| 3185 | */ |
| 3186 | void |
| 3187 | nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, |
| 3188 | int lladdrlen, int type, int code) |
| 3189 | { |
| 3190 | #pragma unused(lladdrlen) |
| 3191 | struct rtentry *rt = NULL; |
| 3192 | struct llinfo_nd6 *ln = NULL; |
| 3193 | int is_newentry; |
| 3194 | struct sockaddr_dl *sdl = NULL; |
| 3195 | int do_update; |
| 3196 | int olladdr; |
| 3197 | int llchange; |
| 3198 | int newstate = 0; |
| 3199 | uint64_t timenow; |
| 3200 | boolean_t sched_timeout = FALSE; |
| 3201 | struct nd_ifinfo *ndi = NULL; |
| 3202 | |
| 3203 | if (ifp == NULL) |
| 3204 | panic("ifp == NULL in nd6_cache_lladdr" ); |
| 3205 | if (from == NULL) |
| 3206 | panic("from == NULL in nd6_cache_lladdr" ); |
| 3207 | |
| 3208 | /* nothing must be updated for unspecified address */ |
| 3209 | if (IN6_IS_ADDR_UNSPECIFIED(from)) |
| 3210 | return; |
| 3211 | |
| 3212 | /* |
| 3213 | * Validation about ifp->if_addrlen and lladdrlen must be done in |
| 3214 | * the caller. |
| 3215 | */ |
| 3216 | timenow = net_uptime(); |
| 3217 | |
| 3218 | rt = nd6_lookup(from, 0, ifp, 0); |
| 3219 | if (rt == NULL) { |
| 3220 | if ((rt = nd6_lookup(from, 1, ifp, 0)) == NULL) |
| 3221 | return; |
| 3222 | RT_LOCK_ASSERT_HELD(rt); |
| 3223 | is_newentry = 1; |
| 3224 | } else { |
| 3225 | RT_LOCK_ASSERT_HELD(rt); |
| 3226 | /* do nothing if static ndp is set */ |
| 3227 | if (rt->rt_flags & RTF_STATIC) { |
| 3228 | RT_REMREF_LOCKED(rt); |
| 3229 | RT_UNLOCK(rt); |
| 3230 | return; |
| 3231 | } |
| 3232 | is_newentry = 0; |
| 3233 | } |
| 3234 | |
| 3235 | if (rt == NULL) |
| 3236 | return; |
| 3237 | if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { |
| 3238 | fail: |
| 3239 | RT_UNLOCK(rt); |
| 3240 | nd6_free(rt); |
| 3241 | rtfree(rt); |
| 3242 | return; |
| 3243 | } |
| 3244 | ln = (struct llinfo_nd6 *)rt->rt_llinfo; |
| 3245 | if (ln == NULL) |
| 3246 | goto fail; |
| 3247 | if (rt->rt_gateway == NULL) |
| 3248 | goto fail; |
| 3249 | if (rt->rt_gateway->sa_family != AF_LINK) |
| 3250 | goto fail; |
| 3251 | sdl = SDL(rt->rt_gateway); |
| 3252 | |
| 3253 | olladdr = (sdl->sdl_alen) ? 1 : 0; |
| 3254 | if (olladdr && lladdr) { |
| 3255 | if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) |
| 3256 | llchange = 1; |
| 3257 | else |
| 3258 | llchange = 0; |
| 3259 | } else |
| 3260 | llchange = 0; |
| 3261 | |
| 3262 | /* |
| 3263 | * newentry olladdr lladdr llchange (*=record) |
| 3264 | * 0 n n -- (1) |
| 3265 | * 0 y n -- (2) |
| 3266 | * 0 n y -- (3) * STALE |
| 3267 | * 0 y y n (4) * |
| 3268 | * 0 y y y (5) * STALE |
| 3269 | * 1 -- n -- (6) NOSTATE(= PASSIVE) |
| 3270 | * 1 -- y -- (7) * STALE |
| 3271 | */ |
| 3272 | |
| 3273 | if (lladdr != NULL) { /* (3-5) and (7) */ |
| 3274 | /* |
| 3275 | * Record source link-layer address |
| 3276 | * XXX is it dependent to ifp->if_type? |
| 3277 | */ |
| 3278 | sdl->sdl_alen = ifp->if_addrlen; |
| 3279 | bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); |
| 3280 | |
| 3281 | /* cache the gateway (sender HW) address */ |
| 3282 | nd6_llreach_alloc(rt, ifp, LLADDR(sdl), sdl->sdl_alen, FALSE); |
| 3283 | } |
| 3284 | |
| 3285 | if (is_newentry == 0) { |
| 3286 | if ((!olladdr && lladdr != NULL) || /* (3) */ |
| 3287 | (olladdr && lladdr != NULL && llchange)) { /* (5) */ |
| 3288 | do_update = 1; |
| 3289 | newstate = ND6_LLINFO_STALE; |
| 3290 | } else /* (1-2,4) */ |
| 3291 | do_update = 0; |
| 3292 | } else { |
| 3293 | do_update = 1; |
| 3294 | if (lladdr == NULL) /* (6) */ |
| 3295 | newstate = ND6_LLINFO_NOSTATE; |
| 3296 | else /* (7) */ |
| 3297 | newstate = ND6_LLINFO_STALE; |
| 3298 | } |
| 3299 | |
| 3300 | /* |
| 3301 | * For interface's that do not perform NUD |
| 3302 | * neighbor cache entres must always be marked |
| 3303 | * reachable with no expiry |
| 3304 | */ |
| 3305 | ndi = ND_IFINFO(ifp); |
| 3306 | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
| 3307 | |
| 3308 | if (ndi && !(ndi->flags & ND6_IFF_PERFORMNUD)) { |
| 3309 | newstate = ND6_LLINFO_REACHABLE; |
| 3310 | ln_setexpire(ln, 0); |
| 3311 | } |
| 3312 | |
| 3313 | if (do_update) { |
| 3314 | /* |
| 3315 | * Update the state of the neighbor cache. |
| 3316 | */ |
| 3317 | ND6_CACHE_STATE_TRANSITION(ln, newstate); |
| 3318 | |
| 3319 | if ((ln->ln_state == ND6_LLINFO_STALE) || |
| 3320 | (ln->ln_state == ND6_LLINFO_REACHABLE)) { |
| 3321 | struct mbuf *m = ln->ln_hold; |
| 3322 | /* |
| 3323 | * XXX: since nd6_output() below will cause |
| 3324 | * state tansition to DELAY and reset the timer, |
| 3325 | * we must set the timer now, although it is actually |
| 3326 | * meaningless. |
| 3327 | */ |
| 3328 | if (ln->ln_state == ND6_LLINFO_STALE) |
| 3329 | ln_setexpire(ln, timenow + nd6_gctimer); |
| 3330 | |
| 3331 | ln->ln_hold = NULL; |
| 3332 | if (m != NULL) { |
| 3333 | struct sockaddr_in6 sin6; |
| 3334 | |
| 3335 | rtkey_to_sa6(rt, &sin6); |
| 3336 | /* |
| 3337 | * we assume ifp is not a p2p here, so just |
| 3338 | * set the 2nd argument as the 1st one. |
| 3339 | */ |
| 3340 | RT_UNLOCK(rt); |
| 3341 | nd6_output_list(ifp, ifp, m, &sin6, rt, NULL); |
| 3342 | RT_LOCK(rt); |
| 3343 | } |
| 3344 | } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { |
| 3345 | /* probe right away */ |
| 3346 | ln_setexpire(ln, timenow); |
| 3347 | sched_timeout = TRUE; |
| 3348 | } |
| 3349 | } |
| 3350 | |
| 3351 | /* |
| 3352 | * ICMP6 type dependent behavior. |
| 3353 | * |
| 3354 | * NS: clear IsRouter if new entry |
| 3355 | * RS: clear IsRouter |
| 3356 | * RA: set IsRouter if there's lladdr |
| 3357 | * redir: clear IsRouter if new entry |
| 3358 | * |
| 3359 | * RA case, (1): |
| 3360 | * The spec says that we must set IsRouter in the following cases: |
| 3361 | * - If lladdr exist, set IsRouter. This means (1-5). |
| 3362 | * - If it is old entry (!newentry), set IsRouter. This means (7). |
| 3363 | * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. |
| 3364 | * A quetion arises for (1) case. (1) case has no lladdr in the |
| 3365 | * neighbor cache, this is similar to (6). |
| 3366 | * This case is rare but we figured that we MUST NOT set IsRouter. |
| 3367 | * |
| 3368 | * newentry olladdr lladdr llchange NS RS RA redir |
| 3369 | * D R |
| 3370 | * 0 n n -- (1) c ? s |
| 3371 | * 0 y n -- (2) c s s |
| 3372 | * 0 n y -- (3) c s s |
| 3373 | * 0 y y n (4) c s s |
| 3374 | * 0 y y y (5) c s s |
| 3375 | * 1 -- n -- (6) c c c s |
| 3376 | * 1 -- y -- (7) c c s c s |
| 3377 | * |
| 3378 | * (c=clear s=set) |
| 3379 | */ |
| 3380 | switch (type & 0xff) { |
| 3381 | case ND_NEIGHBOR_SOLICIT: |
| 3382 | /* |
| 3383 | * New entry must have is_router flag cleared. |
| 3384 | */ |
| 3385 | if (is_newentry) /* (6-7) */ |
| 3386 | ln->ln_router = 0; |
| 3387 | break; |
| 3388 | case ND_REDIRECT: |
| 3389 | /* |
| 3390 | * If the ICMP message is a Redirect to a better router, always |
| 3391 | * set the is_router flag. Otherwise, if the entry is newly |
| 3392 | * created, then clear the flag. [RFC 4861, sec 8.3] |
| 3393 | */ |
| 3394 | if (code == ND_REDIRECT_ROUTER) |
| 3395 | ln->ln_router = 1; |
| 3396 | else if (is_newentry) /* (6-7) */ |
| 3397 | ln->ln_router = 0; |
| 3398 | break; |
| 3399 | case ND_ROUTER_SOLICIT: |
| 3400 | /* |
| 3401 | * is_router flag must always be cleared. |
| 3402 | */ |
| 3403 | ln->ln_router = 0; |
| 3404 | break; |
| 3405 | case ND_ROUTER_ADVERT: |
| 3406 | /* |
| 3407 | * Mark an entry with lladdr as a router. |
| 3408 | */ |
| 3409 | if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ |
| 3410 | (is_newentry && lladdr)) { /* (7) */ |
| 3411 | ln->ln_router = 1; |
| 3412 | } |
| 3413 | break; |
| 3414 | } |
| 3415 | |
| 3416 | if (do_update) { |
| 3417 | int route_ev_code = 0; |
| 3418 | |
| 3419 | if (llchange) |
| 3420 | route_ev_code = ROUTE_LLENTRY_CHANGED; |
| 3421 | else |
| 3422 | route_ev_code = ROUTE_LLENTRY_RESOLVED; |
| 3423 | |
| 3424 | /* Enqueue work item to invoke callback for this route entry */ |
| 3425 | route_event_enqueue_nwk_wq_entry(rt, NULL, route_ev_code, NULL, TRUE); |
| 3426 | |
| 3427 | if (ln->ln_router || (rt->rt_flags & RTF_ROUTER)) { |
| 3428 | struct radix_node_head *rnh = NULL; |
| 3429 | struct route_event rt_ev; |
| 3430 | route_event_init(&rt_ev, rt, NULL, llchange ? ROUTE_LLENTRY_CHANGED : |
| 3431 | ROUTE_LLENTRY_RESOLVED); |
| 3432 | /* |
| 3433 | * We already have a valid reference on rt. |
| 3434 | * The function frees that before returning. |
| 3435 | * We therefore don't need an extra reference here |
| 3436 | */ |
| 3437 | RT_UNLOCK(rt); |
| 3438 | lck_mtx_lock(rnh_lock); |
| 3439 | |
| 3440 | rnh = rt_tables[AF_INET6]; |
| 3441 | if (rnh != NULL) |
| 3442 | (void) rnh->rnh_walktree(rnh, route_event_walktree, |
| 3443 | (void *)&rt_ev); |
| 3444 | lck_mtx_unlock(rnh_lock); |
| 3445 | RT_LOCK(rt); |
| 3446 | } |
| 3447 | } |
| 3448 | |
| 3449 | /* |
| 3450 | * When the link-layer address of a router changes, select the |
| 3451 | * best router again. In particular, when the neighbor entry is newly |
| 3452 | * created, it might affect the selection policy. |
| 3453 | * Question: can we restrict the first condition to the "is_newentry" |
| 3454 | * case? |
| 3455 | * |
| 3456 | * Note: Perform default router selection even when we are a router, |
| 3457 | * if Scoped Routing is enabled. |
| 3458 | */ |
| 3459 | if (do_update && ln->ln_router) { |
| 3460 | RT_REMREF_LOCKED(rt); |
| 3461 | RT_UNLOCK(rt); |
| 3462 | lck_mtx_lock(nd6_mutex); |
| 3463 | defrouter_select(ifp); |
| 3464 | lck_mtx_unlock(nd6_mutex); |
| 3465 | } else { |
| 3466 | RT_REMREF_LOCKED(rt); |
| 3467 | RT_UNLOCK(rt); |
| 3468 | } |
| 3469 | if (sched_timeout) { |
| 3470 | lck_mtx_lock(rnh_lock); |
| 3471 | nd6_sched_timeout(NULL, NULL); |
| 3472 | lck_mtx_unlock(rnh_lock); |
| 3473 | } |
| 3474 | } |
| 3475 | |
| 3476 | static void |
| 3477 | nd6_slowtimo(void *arg) |
| 3478 | { |
| 3479 | #pragma unused(arg) |
| 3480 | struct nd_ifinfo *nd6if = NULL; |
| 3481 | struct ifnet *ifp = NULL; |
| 3482 | |
| 3483 | ifnet_head_lock_shared(); |
| 3484 | for (ifp = ifnet_head.tqh_first; ifp; |
| 3485 | ifp = ifp->if_link.tqe_next) { |
| 3486 | nd6if = ND_IFINFO(ifp); |
| 3487 | if ((NULL == nd6if) || (FALSE == nd6if->initialized)) { |
| 3488 | continue; |
| 3489 | } |
| 3490 | |
| 3491 | lck_mtx_lock(&nd6if->lock); |
| 3492 | if (nd6if->basereachable && /* already initialized */ |
| 3493 | (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { |
| 3494 | /* |
| 3495 | * Since reachable time rarely changes by router |
| 3496 | * advertisements, we SHOULD insure that a new random |
| 3497 | * value gets recomputed at least once every few hours. |
| 3498 | * (RFC 4861, 6.3.4) |
| 3499 | */ |
| 3500 | nd6if->recalctm = nd6_recalc_reachtm_interval; |
| 3501 | nd6if->reachable = |
| 3502 | ND_COMPUTE_RTIME(nd6if->basereachable); |
| 3503 | } |
| 3504 | lck_mtx_unlock(&nd6if->lock); |
| 3505 | } |
| 3506 | ifnet_head_done(); |
| 3507 | timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz); |
| 3508 | } |
| 3509 | |
| 3510 | int |
| 3511 | nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, |
| 3512 | struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv) |
| 3513 | { |
| 3514 | return nd6_output_list(ifp, origifp, m0, dst, hint0, adv); |
| 3515 | } |
| 3516 | |
| 3517 | /* |
| 3518 | * nd6_output_list() |
| 3519 | * |
| 3520 | * Assumption: route determination for first packet can be correctly applied to |
| 3521 | * all packets in the chain. |
| 3522 | */ |
| 3523 | #define senderr(e) { error = (e); goto bad; } |
| 3524 | int |
| 3525 | nd6_output_list(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, |
| 3526 | struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv) |
| 3527 | { |
| 3528 | struct rtentry *rt = hint0, *hint = hint0; |
| 3529 | struct llinfo_nd6 *ln = NULL; |
| 3530 | int error = 0; |
| 3531 | uint64_t timenow; |
| 3532 | struct rtentry *rtrele = NULL; |
| 3533 | struct nd_ifinfo *ndi = NULL; |
| 3534 | |
| 3535 | if (rt != NULL) { |
| 3536 | RT_LOCK_SPIN(rt); |
| 3537 | RT_ADDREF_LOCKED(rt); |
| 3538 | } |
| 3539 | |
| 3540 | if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr) || !nd6_need_cache(ifp)) { |
| 3541 | if (rt != NULL) |
| 3542 | RT_UNLOCK(rt); |
| 3543 | goto sendpkt; |
| 3544 | } |
| 3545 | |
| 3546 | /* |
| 3547 | * Next hop determination. Because we may involve the gateway route |
| 3548 | * in addition to the original route, locking is rather complicated. |
| 3549 | * The general concept is that regardless of whether the route points |
| 3550 | * to the original route or to the gateway route, this routine takes |
| 3551 | * an extra reference on such a route. This extra reference will be |
| 3552 | * released at the end. |
| 3553 | * |
| 3554 | * Care must be taken to ensure that the "hint0" route never gets freed |
| 3555 | * via rtfree(), since the caller may have stored it inside a struct |
| 3556 | * route with a reference held for that placeholder. |
| 3557 | * |
| 3558 | * This logic is similar to, though not exactly the same as the one |
| 3559 | * used by route_to_gwroute(). |
| 3560 | */ |
| 3561 | if (rt != NULL) { |
| 3562 | /* |
| 3563 | * We have a reference to "rt" by now (or below via rtalloc1), |
| 3564 | * which will either be released or freed at the end of this |
| 3565 | * routine. |
| 3566 | */ |
| 3567 | RT_LOCK_ASSERT_HELD(rt); |
| 3568 | if (!(rt->rt_flags & RTF_UP)) { |
| 3569 | RT_REMREF_LOCKED(rt); |
| 3570 | RT_UNLOCK(rt); |
| 3571 | if ((hint = rt = rtalloc1_scoped(SA(dst), 1, 0, |
| 3572 | ifp->if_index)) != NULL) { |
| 3573 | RT_LOCK_SPIN(rt); |
| 3574 | if (rt->rt_ifp != ifp) { |
| 3575 | /* XXX: loop care? */ |
| 3576 | RT_UNLOCK(rt); |
| 3577 | error = nd6_output_list(ifp, origifp, m0, |
| 3578 | dst, rt, adv); |
| 3579 | rtfree(rt); |
| 3580 | return (error); |
| 3581 | } |
| 3582 | } else { |
| 3583 | senderr(EHOSTUNREACH); |
| 3584 | } |
| 3585 | } |
| 3586 | |
| 3587 | if (rt->rt_flags & RTF_GATEWAY) { |
| 3588 | struct rtentry *gwrt; |
| 3589 | struct in6_ifaddr *ia6 = NULL; |
| 3590 | struct sockaddr_in6 gw6; |
| 3591 | |
| 3592 | rtgw_to_sa6(rt, &gw6); |
| 3593 | /* |
| 3594 | * Must drop rt_lock since nd6_is_addr_neighbor() |
| 3595 | * calls nd6_lookup() and acquires rnh_lock. |
| 3596 | */ |
| 3597 | RT_UNLOCK(rt); |
| 3598 | |
| 3599 | /* |
| 3600 | * We skip link-layer address resolution and NUD |
| 3601 | * if the gateway is not a neighbor from ND point |
| 3602 | * of view, regardless of the value of nd_ifinfo.flags. |
| 3603 | * The second condition is a bit tricky; we skip |
| 3604 | * if the gateway is our own address, which is |
| 3605 | * sometimes used to install a route to a p2p link. |
| 3606 | */ |
| 3607 | if (!nd6_is_addr_neighbor(&gw6, ifp, 0) || |
| 3608 | (ia6 = in6ifa_ifpwithaddr(ifp, &gw6.sin6_addr))) { |
| 3609 | /* |
| 3610 | * We allow this kind of tricky route only |
| 3611 | * when the outgoing interface is p2p. |
| 3612 | * XXX: we may need a more generic rule here. |
| 3613 | */ |
| 3614 | if (ia6 != NULL) |
| 3615 | IFA_REMREF(&ia6->ia_ifa); |
| 3616 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0) |
| 3617 | senderr(EHOSTUNREACH); |
| 3618 | goto sendpkt; |
| 3619 | } |
| 3620 | |
| 3621 | RT_LOCK_SPIN(rt); |
| 3622 | gw6 = *(SIN6(rt->rt_gateway)); |
| 3623 | |
| 3624 | /* If hint is now down, give up */ |
| 3625 | if (!(rt->rt_flags & RTF_UP)) { |
| 3626 | RT_UNLOCK(rt); |
| 3627 | senderr(EHOSTUNREACH); |
| 3628 | } |
| 3629 | |
| 3630 | /* If there's no gateway route, look it up */ |
| 3631 | if ((gwrt = rt->rt_gwroute) == NULL) { |
| 3632 | RT_UNLOCK(rt); |
| 3633 | goto lookup; |
| 3634 | } |
| 3635 | /* Become a regular mutex */ |
| 3636 | RT_CONVERT_LOCK(rt); |
| 3637 | |
| 3638 | /* |
| 3639 | * Take gwrt's lock while holding route's lock; |
| 3640 | * this is okay since gwrt never points back |
| 3641 | * to rt, so no lock ordering issues. |
| 3642 | */ |
| 3643 | RT_LOCK_SPIN(gwrt); |
| 3644 | if (!(gwrt->rt_flags & RTF_UP)) { |
| 3645 | rt->rt_gwroute = NULL; |
| 3646 | RT_UNLOCK(gwrt); |
| 3647 | RT_UNLOCK(rt); |
| 3648 | rtfree(gwrt); |
| 3649 | lookup: |
| 3650 | lck_mtx_lock(rnh_lock); |
| 3651 | gwrt = rtalloc1_scoped_locked(SA(&gw6), 1, 0, |
| 3652 | ifp->if_index); |
| 3653 | |
| 3654 | RT_LOCK(rt); |
| 3655 | /* |
| 3656 | * Bail out if the route is down, no route |
| 3657 | * to gateway, circular route, or if the |
| 3658 | * gateway portion of "rt" has changed. |
| 3659 | */ |
| 3660 | if (!(rt->rt_flags & RTF_UP) || |
| 3661 | gwrt == NULL || gwrt == rt || |
| 3662 | !equal(SA(&gw6), rt->rt_gateway)) { |
| 3663 | if (gwrt == rt) { |
| 3664 | RT_REMREF_LOCKED(gwrt); |
| 3665 | gwrt = NULL; |
| 3666 | } |
| 3667 | RT_UNLOCK(rt); |
| 3668 | if (gwrt != NULL) |
| 3669 | rtfree_locked(gwrt); |
| 3670 | lck_mtx_unlock(rnh_lock); |
| 3671 | senderr(EHOSTUNREACH); |
| 3672 | } |
| 3673 | VERIFY(gwrt != NULL); |
| 3674 | /* |
| 3675 | * Set gateway route; callee adds ref to gwrt; |
| 3676 | * gwrt has an extra ref from rtalloc1() for |
| 3677 | * this routine. |
| 3678 | */ |
| 3679 | rt_set_gwroute(rt, rt_key(rt), gwrt); |
| 3680 | RT_UNLOCK(rt); |
| 3681 | lck_mtx_unlock(rnh_lock); |
| 3682 | /* Remember to release/free "rt" at the end */ |
| 3683 | rtrele = rt; |
| 3684 | rt = gwrt; |
| 3685 | } else { |
| 3686 | RT_ADDREF_LOCKED(gwrt); |
| 3687 | RT_UNLOCK(gwrt); |
| 3688 | RT_UNLOCK(rt); |
| 3689 | /* Remember to release/free "rt" at the end */ |
| 3690 | rtrele = rt; |
| 3691 | rt = gwrt; |
| 3692 | } |
| 3693 | VERIFY(rt == gwrt); |
| 3694 | |
| 3695 | /* |
| 3696 | * This is an opportunity to revalidate the parent |
| 3697 | * route's gwroute, in case it now points to a dead |
| 3698 | * route entry. Parent route won't go away since the |
| 3699 | * clone (hint) holds a reference to it. rt == gwrt. |
| 3700 | */ |
| 3701 | RT_LOCK_SPIN(hint); |
| 3702 | if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) == |
| 3703 | (RTF_WASCLONED | RTF_UP)) { |
| 3704 | struct rtentry *prt = hint->rt_parent; |
| 3705 | VERIFY(prt != NULL); |
| 3706 | |
| 3707 | RT_CONVERT_LOCK(hint); |
| 3708 | RT_ADDREF(prt); |
| 3709 | RT_UNLOCK(hint); |
| 3710 | rt_revalidate_gwroute(prt, rt); |
| 3711 | RT_REMREF(prt); |
| 3712 | } else { |
| 3713 | RT_UNLOCK(hint); |
| 3714 | } |
| 3715 | |
| 3716 | RT_LOCK_SPIN(rt); |
| 3717 | /* rt == gwrt; if it is now down, give up */ |
| 3718 | if (!(rt->rt_flags & RTF_UP)) { |
| 3719 | RT_UNLOCK(rt); |
| 3720 | rtfree(rt); |
| 3721 | rt = NULL; |
| 3722 | /* "rtrele" == original "rt" */ |
| 3723 | senderr(EHOSTUNREACH); |
| 3724 | } |
| 3725 | } |
| 3726 | |
| 3727 | /* Become a regular mutex */ |
| 3728 | RT_CONVERT_LOCK(rt); |
| 3729 | } |
| 3730 | |
| 3731 | /* |
| 3732 | * Address resolution or Neighbor Unreachability Detection |
| 3733 | * for the next hop. |
| 3734 | * At this point, the destination of the packet must be a unicast |
| 3735 | * or an anycast address(i.e. not a multicast). |
| 3736 | */ |
| 3737 | |
| 3738 | /* Look up the neighbor cache for the nexthop */ |
| 3739 | if (rt && (rt->rt_flags & RTF_LLINFO) != 0) { |
| 3740 | ln = rt->rt_llinfo; |
| 3741 | } else { |
| 3742 | struct sockaddr_in6 sin6; |
| 3743 | /* |
| 3744 | * Clear out Scope ID field in case it is set. |
| 3745 | */ |
| 3746 | sin6 = *dst; |
| 3747 | sin6.sin6_scope_id = 0; |
| 3748 | /* |
| 3749 | * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), |
| 3750 | * the condition below is not very efficient. But we believe |
| 3751 | * it is tolerable, because this should be a rare case. |
| 3752 | * Must drop rt_lock since nd6_is_addr_neighbor() calls |
| 3753 | * nd6_lookup() and acquires rnh_lock. |
| 3754 | */ |
| 3755 | if (rt != NULL) |
| 3756 | RT_UNLOCK(rt); |
| 3757 | if (nd6_is_addr_neighbor(&sin6, ifp, 0)) { |
| 3758 | /* "rtrele" may have been used, so clean up "rt" now */ |
| 3759 | if (rt != NULL) { |
| 3760 | /* Don't free "hint0" */ |
| 3761 | if (rt == hint0) |
| 3762 | RT_REMREF(rt); |
| 3763 | else |
| 3764 | rtfree(rt); |
| 3765 | } |
| 3766 | /* Callee returns a locked route upon success */ |
| 3767 | rt = nd6_lookup(&dst->sin6_addr, 1, ifp, 0); |
| 3768 | if (rt != NULL) { |
| 3769 | RT_LOCK_ASSERT_HELD(rt); |
| 3770 | ln = rt->rt_llinfo; |
| 3771 | } |
| 3772 | } else if (rt != NULL) { |
| 3773 | RT_LOCK(rt); |
| 3774 | } |
| 3775 | } |
| 3776 | |
| 3777 | if (!ln || !rt) { |
| 3778 | if (rt != NULL) { |
| 3779 | RT_UNLOCK(rt); |
| 3780 | } |
| 3781 | ndi = ND_IFINFO(ifp); |
| 3782 | VERIFY(ndi != NULL && ndi->initialized); |
| 3783 | lck_mtx_lock(&ndi->lock); |
| 3784 | if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && |
| 3785 | !(ndi->flags & ND6_IFF_PERFORMNUD)) { |
| 3786 | lck_mtx_unlock(&ndi->lock); |
| 3787 | log(LOG_DEBUG, |
| 3788 | "nd6_output: can't allocate llinfo for %s " |
| 3789 | "(ln=0x%llx, rt=0x%llx)\n" , |
| 3790 | ip6_sprintf(&dst->sin6_addr), |
| 3791 | (uint64_t)VM_KERNEL_ADDRPERM(ln), |
| 3792 | (uint64_t)VM_KERNEL_ADDRPERM(rt)); |
| 3793 | senderr(EIO); /* XXX: good error? */ |
| 3794 | } |
| 3795 | lck_mtx_unlock(&ndi->lock); |
| 3796 | |
| 3797 | goto sendpkt; /* send anyway */ |
| 3798 | } |
| 3799 | |
| 3800 | net_update_uptime(); |
| 3801 | timenow = net_uptime(); |
| 3802 | |
| 3803 | /* We don't have to do link-layer address resolution on a p2p link. */ |
| 3804 | if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && |
| 3805 | ln->ln_state < ND6_LLINFO_REACHABLE) { |
| 3806 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); |
| 3807 | ln_setexpire(ln, timenow + nd6_gctimer); |
| 3808 | } |
| 3809 | |
| 3810 | /* |
| 3811 | * The first time we send a packet to a neighbor whose entry is |
| 3812 | * STALE, we have to change the state to DELAY and a sets a timer to |
| 3813 | * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do |
| 3814 | * neighbor unreachability detection on expiration. |
| 3815 | * (RFC 4861 7.3.3) |
| 3816 | */ |
| 3817 | if (ln->ln_state == ND6_LLINFO_STALE) { |
| 3818 | ln->ln_asked = 0; |
| 3819 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_DELAY); |
| 3820 | ln_setexpire(ln, timenow + nd6_delay); |
| 3821 | /* N.B.: we will re-arm the timer below. */ |
| 3822 | _CASSERT(ND6_LLINFO_DELAY > ND6_LLINFO_INCOMPLETE); |
| 3823 | } |
| 3824 | |
| 3825 | /* |
| 3826 | * If the neighbor cache entry has a state other than INCOMPLETE |
| 3827 | * (i.e. its link-layer address is already resolved), just |
| 3828 | * send the packet. |
| 3829 | */ |
| 3830 | if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { |
| 3831 | RT_UNLOCK(rt); |
| 3832 | /* |
| 3833 | * Move this entry to the head of the queue so that it is |
| 3834 | * less likely for this entry to be a target of forced |
| 3835 | * garbage collection (see nd6_rtrequest()). Do this only |
| 3836 | * if the entry is non-permanent (as permanent ones will |
| 3837 | * never be purged), and if the number of active entries |
| 3838 | * is at least half of the threshold. |
| 3839 | */ |
| 3840 | if (ln->ln_state == ND6_LLINFO_DELAY || |
| 3841 | (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && |
| 3842 | nd6_inuse >= (ip6_neighborgcthresh >> 1))) { |
| 3843 | lck_mtx_lock(rnh_lock); |
| 3844 | if (ln->ln_state == ND6_LLINFO_DELAY) |
| 3845 | nd6_sched_timeout(NULL, NULL); |
| 3846 | if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && |
| 3847 | nd6_inuse >= (ip6_neighborgcthresh >> 1)) { |
| 3848 | RT_LOCK_SPIN(rt); |
| 3849 | if (ln->ln_flags & ND6_LNF_IN_USE) { |
| 3850 | LN_DEQUEUE(ln); |
| 3851 | LN_INSERTHEAD(ln); |
| 3852 | } |
| 3853 | RT_UNLOCK(rt); |
| 3854 | } |
| 3855 | lck_mtx_unlock(rnh_lock); |
| 3856 | } |
| 3857 | goto sendpkt; |
| 3858 | } |
| 3859 | |
| 3860 | /* |
| 3861 | * If this is a prefix proxy route, record the inbound interface |
| 3862 | * so that it can be excluded from the list of interfaces eligible |
| 3863 | * for forwarding the proxied NS in nd6_prproxy_ns_output(). |
| 3864 | */ |
| 3865 | if (rt->rt_flags & RTF_PROXY) |
| 3866 | ln->ln_exclifp = ((origifp == ifp) ? NULL : origifp); |
| 3867 | |
| 3868 | /* |
| 3869 | * There is a neighbor cache entry, but no ethernet address |
| 3870 | * response yet. Replace the held mbuf (if any) with this |
| 3871 | * latest one. |
| 3872 | * |
| 3873 | * This code conforms to the rate-limiting rule described in Section |
| 3874 | * 7.2.2 of RFC 4861, because the timer is set correctly after sending |
| 3875 | * an NS below. |
| 3876 | */ |
| 3877 | if (ln->ln_state == ND6_LLINFO_NOSTATE) |
| 3878 | ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE); |
| 3879 | if (ln->ln_hold) |
| 3880 | m_freem_list(ln->ln_hold); |
| 3881 | ln->ln_hold = m0; |
| 3882 | if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { |
| 3883 | ln->ln_asked++; |
| 3884 | ndi = ND_IFINFO(ifp); |
| 3885 | VERIFY(ndi != NULL && ndi->initialized); |
| 3886 | lck_mtx_lock(&ndi->lock); |
| 3887 | ln_setexpire(ln, timenow + ndi->retrans / 1000); |
| 3888 | lck_mtx_unlock(&ndi->lock); |
| 3889 | RT_UNLOCK(rt); |
| 3890 | /* We still have a reference on rt (for ln) */ |
| 3891 | if (ip6_forwarding) |
| 3892 | nd6_prproxy_ns_output(ifp, origifp, NULL, |
| 3893 | &dst->sin6_addr, ln); |
| 3894 | else |
| 3895 | nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, NULL); |
| 3896 | lck_mtx_lock(rnh_lock); |
| 3897 | nd6_sched_timeout(NULL, NULL); |
| 3898 | lck_mtx_unlock(rnh_lock); |
| 3899 | } else { |
| 3900 | RT_UNLOCK(rt); |
| 3901 | } |
| 3902 | /* |
| 3903 | * Move this entry to the head of the queue so that it is |
| 3904 | * less likely for this entry to be a target of forced |
| 3905 | * garbage collection (see nd6_rtrequest()). Do this only |
| 3906 | * if the entry is non-permanent (as permanent ones will |
| 3907 | * never be purged), and if the number of active entries |
| 3908 | * is at least half of the threshold. |
| 3909 | */ |
| 3910 | if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 && |
| 3911 | nd6_inuse >= (ip6_neighborgcthresh >> 1)) { |
| 3912 | lck_mtx_lock(rnh_lock); |
| 3913 | RT_LOCK_SPIN(rt); |
| 3914 | if (ln->ln_flags & ND6_LNF_IN_USE) { |
| 3915 | LN_DEQUEUE(ln); |
| 3916 | LN_INSERTHEAD(ln); |
| 3917 | } |
| 3918 | /* Clean up "rt" now while we can */ |
| 3919 | if (rt == hint0) { |
| 3920 | RT_REMREF_LOCKED(rt); |
| 3921 | RT_UNLOCK(rt); |
| 3922 | } else { |
| 3923 | RT_UNLOCK(rt); |
| 3924 | rtfree_locked(rt); |
| 3925 | } |
| 3926 | rt = NULL; /* "rt" has been taken care of */ |
| 3927 | lck_mtx_unlock(rnh_lock); |
| 3928 | } |
| 3929 | error = 0; |
| 3930 | goto release; |
| 3931 | |
| 3932 | sendpkt: |
| 3933 | if (rt != NULL) |
| 3934 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 3935 | |
| 3936 | /* discard the packet if IPv6 operation is disabled on the interface */ |
| 3937 | if (ifp->if_eflags & IFEF_IPV6_DISABLED) { |
| 3938 | error = ENETDOWN; /* better error? */ |
| 3939 | goto bad; |
| 3940 | } |
| 3941 | |
| 3942 | if (ifp->if_flags & IFF_LOOPBACK) { |
| 3943 | /* forwarding rules require the original scope_id */ |
| 3944 | m0->m_pkthdr.rcvif = origifp; |
| 3945 | error = dlil_output(origifp, PF_INET6, m0, (caddr_t)rt, |
| 3946 | SA(dst), 0, adv); |
| 3947 | goto release; |
| 3948 | } else { |
| 3949 | /* Do not allow loopback address to wind up on a wire */ |
| 3950 | struct ip6_hdr *ip6 = mtod(m0, struct ip6_hdr *); |
| 3951 | |
| 3952 | if ((IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src) || |
| 3953 | IN6_IS_ADDR_LOOPBACK(&ip6->ip6_dst))) { |
| 3954 | ip6stat.ip6s_badscope++; |
| 3955 | error = EADDRNOTAVAIL; |
| 3956 | goto bad; |
| 3957 | } |
| 3958 | } |
| 3959 | |
| 3960 | if (rt != NULL) { |
| 3961 | RT_LOCK_SPIN(rt); |
| 3962 | /* Mark use timestamp */ |
| 3963 | if (rt->rt_llinfo != NULL) |
| 3964 | nd6_llreach_use(rt->rt_llinfo); |
| 3965 | RT_UNLOCK(rt); |
| 3966 | } |
| 3967 | |
| 3968 | struct mbuf *mcur = m0; |
| 3969 | uint32_t pktcnt = 0; |
| 3970 | |
| 3971 | while (mcur) { |
| 3972 | if (hint != NULL && nstat_collect) { |
| 3973 | int scnt; |
| 3974 | |
| 3975 | if ((mcur->m_pkthdr.csum_flags & CSUM_TSO_IPV6) && |
| 3976 | (mcur->m_pkthdr.tso_segsz > 0)) |
| 3977 | scnt = mcur->m_pkthdr.len / mcur->m_pkthdr.tso_segsz; |
| 3978 | else |
| 3979 | scnt = 1; |
| 3980 | |
| 3981 | nstat_route_tx(hint, scnt, mcur->m_pkthdr.len, 0); |
| 3982 | } |
| 3983 | pktcnt++; |
| 3984 | |
| 3985 | mcur->m_pkthdr.rcvif = NULL; |
| 3986 | mcur = mcur->m_nextpkt; |
| 3987 | } |
| 3988 | if (pktcnt > ip6_maxchainsent) |
| 3989 | ip6_maxchainsent = pktcnt; |
| 3990 | error = dlil_output(ifp, PF_INET6, m0, (caddr_t)rt, SA(dst), 0, adv); |
| 3991 | goto release; |
| 3992 | |
| 3993 | bad: |
| 3994 | if (m0 != NULL) |
| 3995 | m_freem_list(m0); |
| 3996 | |
| 3997 | release: |
| 3998 | /* Clean up "rt" unless it's already been done */ |
| 3999 | if (rt != NULL) { |
| 4000 | RT_LOCK_SPIN(rt); |
| 4001 | if (rt == hint0) { |
| 4002 | RT_REMREF_LOCKED(rt); |
| 4003 | RT_UNLOCK(rt); |
| 4004 | } else { |
| 4005 | RT_UNLOCK(rt); |
| 4006 | rtfree(rt); |
| 4007 | } |
| 4008 | } |
| 4009 | /* And now clean up "rtrele" if there is any */ |
| 4010 | if (rtrele != NULL) { |
| 4011 | RT_LOCK_SPIN(rtrele); |
| 4012 | if (rtrele == hint0) { |
| 4013 | RT_REMREF_LOCKED(rtrele); |
| 4014 | RT_UNLOCK(rtrele); |
| 4015 | } else { |
| 4016 | RT_UNLOCK(rtrele); |
| 4017 | rtfree(rtrele); |
| 4018 | } |
| 4019 | } |
| 4020 | return (error); |
| 4021 | } |
| 4022 | #undef senderr |
| 4023 | |
| 4024 | int |
| 4025 | nd6_need_cache(struct ifnet *ifp) |
| 4026 | { |
| 4027 | /* |
| 4028 | * XXX: we currently do not make neighbor cache on any interface |
| 4029 | * other than ARCnet, Ethernet, FDDI and GIF. |
| 4030 | * |
| 4031 | * RFC2893 says: |
| 4032 | * - unidirectional tunnels needs no ND |
| 4033 | */ |
| 4034 | switch (ifp->if_type) { |
| 4035 | case IFT_ARCNET: |
| 4036 | case IFT_ETHER: |
| 4037 | case IFT_FDDI: |
| 4038 | case IFT_IEEE1394: |
| 4039 | case IFT_L2VLAN: |
| 4040 | case IFT_IEEE8023ADLAG: |
| 4041 | #if IFT_IEEE80211 |
| 4042 | case IFT_IEEE80211: |
| 4043 | #endif |
| 4044 | case IFT_GIF: /* XXX need more cases? */ |
| 4045 | case IFT_PPP: |
| 4046 | #if IFT_TUNNEL |
| 4047 | case IFT_TUNNEL: |
| 4048 | #endif |
| 4049 | case IFT_BRIDGE: |
| 4050 | case IFT_CELLULAR: |
| 4051 | return (1); |
| 4052 | default: |
| 4053 | return (0); |
| 4054 | } |
| 4055 | } |
| 4056 | |
| 4057 | int |
| 4058 | nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m, |
| 4059 | struct sockaddr *dst, u_char *desten) |
| 4060 | { |
| 4061 | int i; |
| 4062 | struct sockaddr_dl *sdl; |
| 4063 | |
| 4064 | if (m->m_flags & M_MCAST) { |
| 4065 | switch (ifp->if_type) { |
| 4066 | case IFT_ETHER: |
| 4067 | case IFT_FDDI: |
| 4068 | case IFT_L2VLAN: |
| 4069 | case IFT_IEEE8023ADLAG: |
| 4070 | #if IFT_IEEE80211 |
| 4071 | case IFT_IEEE80211: |
| 4072 | #endif |
| 4073 | case IFT_BRIDGE: |
| 4074 | ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, desten); |
| 4075 | return (1); |
| 4076 | case IFT_IEEE1394: |
| 4077 | for (i = 0; i < ifp->if_addrlen; i++) |
| 4078 | desten[i] = ~0; |
| 4079 | return (1); |
| 4080 | case IFT_ARCNET: |
| 4081 | *desten = 0; |
| 4082 | return (1); |
| 4083 | default: |
| 4084 | return (0); /* caller will free mbuf */ |
| 4085 | } |
| 4086 | } |
| 4087 | |
| 4088 | if (rt == NULL) { |
| 4089 | /* this could happen, if we could not allocate memory */ |
| 4090 | return (0); /* caller will free mbuf */ |
| 4091 | } |
| 4092 | RT_LOCK(rt); |
| 4093 | if (rt->rt_gateway->sa_family != AF_LINK) { |
| 4094 | printf("nd6_storelladdr: something odd happens\n" ); |
| 4095 | RT_UNLOCK(rt); |
| 4096 | return (0); /* caller will free mbuf */ |
| 4097 | } |
| 4098 | sdl = SDL(rt->rt_gateway); |
| 4099 | if (sdl->sdl_alen == 0) { |
| 4100 | /* this should be impossible, but we bark here for debugging */ |
| 4101 | printf("nd6_storelladdr: sdl_alen == 0\n" ); |
| 4102 | RT_UNLOCK(rt); |
| 4103 | return (0); /* caller will free mbuf */ |
| 4104 | } |
| 4105 | |
| 4106 | bcopy(LLADDR(sdl), desten, sdl->sdl_alen); |
| 4107 | RT_UNLOCK(rt); |
| 4108 | return (1); |
| 4109 | } |
| 4110 | |
| 4111 | /* |
| 4112 | * This is the ND pre-output routine; care must be taken to ensure that |
| 4113 | * the "hint" route never gets freed via rtfree(), since the caller may |
| 4114 | * have stored it inside a struct route with a reference held for that |
| 4115 | * placeholder. |
| 4116 | */ |
| 4117 | errno_t |
| 4118 | nd6_lookup_ipv6(ifnet_t ifp, const struct sockaddr_in6 *ip6_dest, |
| 4119 | struct sockaddr_dl *ll_dest, size_t ll_dest_len, route_t hint, |
| 4120 | mbuf_t packet) |
| 4121 | { |
| 4122 | route_t route = hint; |
| 4123 | errno_t result = 0; |
| 4124 | struct sockaddr_dl *sdl = NULL; |
| 4125 | size_t copy_len; |
| 4126 | |
| 4127 | if (ifp == NULL || ip6_dest == NULL) |
| 4128 | return (EINVAL); |
| 4129 | |
| 4130 | if (ip6_dest->sin6_family != AF_INET6) |
| 4131 | return (EAFNOSUPPORT); |
| 4132 | |
| 4133 | if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) |
| 4134 | return (ENETDOWN); |
| 4135 | |
| 4136 | if (hint != NULL) { |
| 4137 | /* |
| 4138 | * Callee holds a reference on the route and returns |
| 4139 | * with the route entry locked, upon success. |
| 4140 | */ |
| 4141 | result = route_to_gwroute((const struct sockaddr *)ip6_dest, |
| 4142 | hint, &route); |
| 4143 | if (result != 0) |
| 4144 | return (result); |
| 4145 | if (route != NULL) |
| 4146 | RT_LOCK_ASSERT_HELD(route); |
| 4147 | } |
| 4148 | |
| 4149 | if ((packet != NULL && (packet->m_flags & M_MCAST) != 0) || |
| 4150 | ((ifp->if_flags & IFF_MULTICAST) && |
| 4151 | IN6_IS_ADDR_MULTICAST(&ip6_dest->sin6_addr))) { |
| 4152 | if (route != NULL) |
| 4153 | RT_UNLOCK(route); |
| 4154 | result = dlil_resolve_multi(ifp, |
| 4155 | (const struct sockaddr *)ip6_dest, |
| 4156 | SA(ll_dest), ll_dest_len); |
| 4157 | if (route != NULL) |
| 4158 | RT_LOCK(route); |
| 4159 | goto release; |
| 4160 | } else if (route == NULL) { |
| 4161 | /* |
| 4162 | * rdar://24596652 |
| 4163 | * For unicast, lookup existing ND6 entries but |
| 4164 | * do not trigger a resolution |
| 4165 | */ |
| 4166 | lck_mtx_lock(rnh_lock); |
| 4167 | route = rt_lookup(TRUE, |
| 4168 | __DECONST(struct sockaddr *, ip6_dest), NULL, |
| 4169 | rt_tables[AF_INET6], ifp->if_index); |
| 4170 | lck_mtx_unlock(rnh_lock); |
| 4171 | |
| 4172 | if (route != NULL) { |
| 4173 | RT_LOCK(route); |
| 4174 | } |
| 4175 | } |
| 4176 | |
| 4177 | if (route == NULL) { |
| 4178 | /* |
| 4179 | * This could happen, if we could not allocate memory or |
| 4180 | * if route_to_gwroute() didn't return a route. |
| 4181 | */ |
| 4182 | result = ENOBUFS; |
| 4183 | goto release; |
| 4184 | } |
| 4185 | |
| 4186 | if (route->rt_gateway->sa_family != AF_LINK) { |
| 4187 | printf("%s: route %s on %s%d gateway address not AF_LINK\n" , |
| 4188 | __func__, ip6_sprintf(&ip6_dest->sin6_addr), |
| 4189 | route->rt_ifp->if_name, route->rt_ifp->if_unit); |
| 4190 | result = EADDRNOTAVAIL; |
| 4191 | goto release; |
| 4192 | } |
| 4193 | |
| 4194 | sdl = SDL(route->rt_gateway); |
| 4195 | if (sdl->sdl_alen == 0) { |
| 4196 | /* this should be impossible, but we bark here for debugging */ |
| 4197 | printf("%s: route %s on %s%d sdl_alen == 0\n" , __func__, |
| 4198 | ip6_sprintf(&ip6_dest->sin6_addr), route->rt_ifp->if_name, |
| 4199 | route->rt_ifp->if_unit); |
| 4200 | result = EHOSTUNREACH; |
| 4201 | goto release; |
| 4202 | } |
| 4203 | |
| 4204 | copy_len = sdl->sdl_len <= ll_dest_len ? sdl->sdl_len : ll_dest_len; |
| 4205 | bcopy(sdl, ll_dest, copy_len); |
| 4206 | |
| 4207 | release: |
| 4208 | if (route != NULL) { |
| 4209 | if (route == hint) { |
| 4210 | RT_REMREF_LOCKED(route); |
| 4211 | RT_UNLOCK(route); |
| 4212 | } else { |
| 4213 | RT_UNLOCK(route); |
| 4214 | rtfree(route); |
| 4215 | } |
| 4216 | } |
| 4217 | return (result); |
| 4218 | } |
| 4219 | |
| 4220 | #if (DEVELOPMENT || DEBUG) |
| 4221 | |
| 4222 | static int sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS; |
| 4223 | SYSCTL_PROC(_net_inet6_icmp6, OID_AUTO, nd6_lookup_ipv6, |
| 4224 | CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, |
| 4225 | sysctl_nd6_lookup_ipv6, "S" , "" ); |
| 4226 | |
| 4227 | int |
| 4228 | sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS |
| 4229 | { |
| 4230 | #pragma unused(oidp, arg1, arg2) |
| 4231 | int error = 0; |
| 4232 | struct nd6_lookup_ipv6_args nd6_lookup_ipv6_args; |
| 4233 | ifnet_t ifp = NULL; |
| 4234 | |
| 4235 | /* |
| 4236 | * Only root can lookup MAC addresses |
| 4237 | */ |
| 4238 | error = proc_suser(current_proc()); |
| 4239 | if (error != 0) { |
| 4240 | printf("%s: proc_suser() error %d\n" , |
| 4241 | __func__, error); |
| 4242 | goto done; |
| 4243 | } |
| 4244 | if (req->oldptr == USER_ADDR_NULL) { |
| 4245 | req->oldidx = sizeof(struct nd6_lookup_ipv6_args); |
| 4246 | } |
| 4247 | if (req->newptr == USER_ADDR_NULL) { |
| 4248 | goto done; |
| 4249 | } |
| 4250 | if (req->oldlen != sizeof(struct nd6_lookup_ipv6_args) || |
| 4251 | req->newlen != sizeof(struct nd6_lookup_ipv6_args)) { |
| 4252 | error = EINVAL; |
| 4253 | printf("%s: bad req, error %d\n" , |
| 4254 | __func__, error); |
| 4255 | goto done; |
| 4256 | } |
| 4257 | error = SYSCTL_IN(req, &nd6_lookup_ipv6_args, |
| 4258 | sizeof(struct nd6_lookup_ipv6_args)); |
| 4259 | if (error != 0) { |
| 4260 | printf("%s: SYSCTL_IN() error %d\n" , |
| 4261 | __func__, error); |
| 4262 | goto done; |
| 4263 | } |
| 4264 | /* Make sure to terminate the string */ |
| 4265 | nd6_lookup_ipv6_args.ifname[IFNAMSIZ - 1] = 0; |
| 4266 | |
| 4267 | error = ifnet_find_by_name(nd6_lookup_ipv6_args.ifname, &ifp); |
| 4268 | if (error != 0) { |
| 4269 | printf("%s: ifnet_find_by_name() error %d\n" , |
| 4270 | __func__, error); |
| 4271 | goto done; |
| 4272 | } |
| 4273 | |
| 4274 | error = nd6_lookup_ipv6(ifp, &nd6_lookup_ipv6_args.ip6_dest, |
| 4275 | &nd6_lookup_ipv6_args.ll_dest_._sdl, |
| 4276 | nd6_lookup_ipv6_args.ll_dest_len, NULL, NULL); |
| 4277 | if (error != 0) { |
| 4278 | printf("%s: nd6_lookup_ipv6() error %d\n" , |
| 4279 | __func__, error); |
| 4280 | goto done; |
| 4281 | } |
| 4282 | |
| 4283 | error = SYSCTL_OUT(req, &nd6_lookup_ipv6_args, |
| 4284 | sizeof(struct nd6_lookup_ipv6_args)); |
| 4285 | if (error != 0) { |
| 4286 | printf("%s: SYSCTL_OUT() error %d\n" , |
| 4287 | __func__, error); |
| 4288 | goto done; |
| 4289 | } |
| 4290 | done: |
| 4291 | return (error); |
| 4292 | } |
| 4293 | |
| 4294 | #endif /* (DEVELOPEMENT || DEBUG) */ |
| 4295 | |
| 4296 | int |
| 4297 | nd6_setifinfo(struct ifnet *ifp, u_int32_t before, u_int32_t after) |
| 4298 | { |
| 4299 | uint32_t b, a; |
| 4300 | int err = 0; |
| 4301 | |
| 4302 | /* |
| 4303 | * Handle ND6_IFF_IFDISABLED |
| 4304 | */ |
| 4305 | if ((before & ND6_IFF_IFDISABLED) || |
| 4306 | (after & ND6_IFF_IFDISABLED)) { |
| 4307 | b = (before & ND6_IFF_IFDISABLED); |
| 4308 | a = (after & ND6_IFF_IFDISABLED); |
| 4309 | |
| 4310 | if (b != a && (err = nd6_if_disable(ifp, |
| 4311 | ((int32_t)(a - b) > 0))) != 0) |
| 4312 | goto done; |
| 4313 | } |
| 4314 | |
| 4315 | /* |
| 4316 | * Handle ND6_IFF_PROXY_PREFIXES |
| 4317 | */ |
| 4318 | if ((before & ND6_IFF_PROXY_PREFIXES) || |
| 4319 | (after & ND6_IFF_PROXY_PREFIXES)) { |
| 4320 | b = (before & ND6_IFF_PROXY_PREFIXES); |
| 4321 | a = (after & ND6_IFF_PROXY_PREFIXES); |
| 4322 | |
| 4323 | if (b != a && (err = nd6_if_prproxy(ifp, |
| 4324 | ((int32_t)(a - b) > 0))) != 0) |
| 4325 | goto done; |
| 4326 | } |
| 4327 | done: |
| 4328 | return (err); |
| 4329 | } |
| 4330 | |
| 4331 | /* |
| 4332 | * Enable/disable IPv6 on an interface, called as part of |
| 4333 | * setting/clearing ND6_IFF_IFDISABLED, or during DAD failure. |
| 4334 | */ |
| 4335 | int |
| 4336 | nd6_if_disable(struct ifnet *ifp, boolean_t enable) |
| 4337 | { |
| 4338 | ifnet_lock_shared(ifp); |
| 4339 | if (enable) |
| 4340 | ifp->if_eflags |= IFEF_IPV6_DISABLED; |
| 4341 | else |
| 4342 | ifp->if_eflags &= ~IFEF_IPV6_DISABLED; |
| 4343 | ifnet_lock_done(ifp); |
| 4344 | |
| 4345 | return (0); |
| 4346 | } |
| 4347 | |
| 4348 | static int |
| 4349 | nd6_sysctl_drlist SYSCTL_HANDLER_ARGS |
| 4350 | { |
| 4351 | #pragma unused(oidp, arg1, arg2) |
| 4352 | char pbuf[MAX_IPv6_STR_LEN]; |
| 4353 | struct nd_defrouter *dr; |
| 4354 | int error = 0; |
| 4355 | |
| 4356 | if (req->newptr != USER_ADDR_NULL) |
| 4357 | return (EPERM); |
| 4358 | |
| 4359 | /* XXX Handle mapped defrouter entries */ |
| 4360 | lck_mtx_lock(nd6_mutex); |
| 4361 | if (proc_is64bit(req->p)) { |
| 4362 | struct in6_defrouter_64 d; |
| 4363 | |
| 4364 | bzero(&d, sizeof (d)); |
| 4365 | d.rtaddr.sin6_family = AF_INET6; |
| 4366 | d.rtaddr.sin6_len = sizeof (d.rtaddr); |
| 4367 | |
| 4368 | TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { |
| 4369 | d.rtaddr.sin6_addr = dr->rtaddr; |
| 4370 | if (in6_recoverscope(&d.rtaddr, |
| 4371 | &dr->rtaddr, dr->ifp) != 0) |
| 4372 | log(LOG_ERR, "scope error in default router " |
| 4373 | "list (%s)\n" , inet_ntop(AF_INET6, |
| 4374 | &dr->rtaddr, pbuf, sizeof (pbuf))); |
| 4375 | d.flags = dr->flags; |
| 4376 | d.stateflags = dr->stateflags; |
| 4377 | d.rtlifetime = dr->rtlifetime; |
| 4378 | d.expire = nddr_getexpire(dr); |
| 4379 | d.if_index = dr->ifp->if_index; |
| 4380 | error = SYSCTL_OUT(req, &d, sizeof (d)); |
| 4381 | if (error != 0) |
| 4382 | break; |
| 4383 | } |
| 4384 | } else { |
| 4385 | struct in6_defrouter_32 d; |
| 4386 | |
| 4387 | bzero(&d, sizeof (d)); |
| 4388 | d.rtaddr.sin6_family = AF_INET6; |
| 4389 | d.rtaddr.sin6_len = sizeof (d.rtaddr); |
| 4390 | |
| 4391 | TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { |
| 4392 | d.rtaddr.sin6_addr = dr->rtaddr; |
| 4393 | if (in6_recoverscope(&d.rtaddr, |
| 4394 | &dr->rtaddr, dr->ifp) != 0) |
| 4395 | log(LOG_ERR, "scope error in default router " |
| 4396 | "list (%s)\n" , inet_ntop(AF_INET6, |
| 4397 | &dr->rtaddr, pbuf, sizeof (pbuf))); |
| 4398 | d.flags = dr->flags; |
| 4399 | d.stateflags = dr->stateflags; |
| 4400 | d.rtlifetime = dr->rtlifetime; |
| 4401 | d.expire = nddr_getexpire(dr); |
| 4402 | d.if_index = dr->ifp->if_index; |
| 4403 | error = SYSCTL_OUT(req, &d, sizeof (d)); |
| 4404 | if (error != 0) |
| 4405 | break; |
| 4406 | } |
| 4407 | } |
| 4408 | lck_mtx_unlock(nd6_mutex); |
| 4409 | return (error); |
| 4410 | } |
| 4411 | |
| 4412 | static int |
| 4413 | nd6_sysctl_prlist SYSCTL_HANDLER_ARGS |
| 4414 | { |
| 4415 | #pragma unused(oidp, arg1, arg2) |
| 4416 | char pbuf[MAX_IPv6_STR_LEN]; |
| 4417 | struct nd_pfxrouter *pfr; |
| 4418 | struct sockaddr_in6 s6; |
| 4419 | struct nd_prefix *pr; |
| 4420 | int error = 0; |
| 4421 | |
| 4422 | if (req->newptr != USER_ADDR_NULL) |
| 4423 | return (EPERM); |
| 4424 | |
| 4425 | bzero(&s6, sizeof (s6)); |
| 4426 | s6.sin6_family = AF_INET6; |
| 4427 | s6.sin6_len = sizeof (s6); |
| 4428 | |
| 4429 | /* XXX Handle mapped defrouter entries */ |
| 4430 | lck_mtx_lock(nd6_mutex); |
| 4431 | if (proc_is64bit(req->p)) { |
| 4432 | struct in6_prefix_64 p; |
| 4433 | |
| 4434 | bzero(&p, sizeof (p)); |
| 4435 | p.origin = PR_ORIG_RA; |
| 4436 | |
| 4437 | LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { |
| 4438 | NDPR_LOCK(pr); |
| 4439 | p.prefix = pr->ndpr_prefix; |
| 4440 | if (in6_recoverscope(&p.prefix, |
| 4441 | &pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) |
| 4442 | log(LOG_ERR, "scope error in " |
| 4443 | "prefix list (%s)\n" , inet_ntop(AF_INET6, |
| 4444 | &p.prefix.sin6_addr, pbuf, sizeof (pbuf))); |
| 4445 | p.raflags = pr->ndpr_raf; |
| 4446 | p.prefixlen = pr->ndpr_plen; |
| 4447 | p.vltime = pr->ndpr_vltime; |
| 4448 | p.pltime = pr->ndpr_pltime; |
| 4449 | p.if_index = pr->ndpr_ifp->if_index; |
| 4450 | p.expire = ndpr_getexpire(pr); |
| 4451 | p.refcnt = pr->ndpr_addrcnt; |
| 4452 | p.flags = pr->ndpr_stateflags; |
| 4453 | p.advrtrs = 0; |
| 4454 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) |
| 4455 | p.advrtrs++; |
| 4456 | error = SYSCTL_OUT(req, &p, sizeof (p)); |
| 4457 | if (error != 0) { |
| 4458 | NDPR_UNLOCK(pr); |
| 4459 | break; |
| 4460 | } |
| 4461 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { |
| 4462 | s6.sin6_addr = pfr->router->rtaddr; |
| 4463 | if (in6_recoverscope(&s6, &pfr->router->rtaddr, |
| 4464 | pfr->router->ifp) != 0) |
| 4465 | log(LOG_ERR, |
| 4466 | "scope error in prefix list (%s)\n" , |
| 4467 | inet_ntop(AF_INET6, &s6.sin6_addr, |
| 4468 | pbuf, sizeof (pbuf))); |
| 4469 | error = SYSCTL_OUT(req, &s6, sizeof (s6)); |
| 4470 | if (error != 0) |
| 4471 | break; |
| 4472 | } |
| 4473 | NDPR_UNLOCK(pr); |
| 4474 | if (error != 0) |
| 4475 | break; |
| 4476 | } |
| 4477 | } else { |
| 4478 | struct in6_prefix_32 p; |
| 4479 | |
| 4480 | bzero(&p, sizeof (p)); |
| 4481 | p.origin = PR_ORIG_RA; |
| 4482 | |
| 4483 | LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { |
| 4484 | NDPR_LOCK(pr); |
| 4485 | p.prefix = pr->ndpr_prefix; |
| 4486 | if (in6_recoverscope(&p.prefix, |
| 4487 | &pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) |
| 4488 | log(LOG_ERR, |
| 4489 | "scope error in prefix list (%s)\n" , |
| 4490 | inet_ntop(AF_INET6, &p.prefix.sin6_addr, |
| 4491 | pbuf, sizeof (pbuf))); |
| 4492 | p.raflags = pr->ndpr_raf; |
| 4493 | p.prefixlen = pr->ndpr_plen; |
| 4494 | p.vltime = pr->ndpr_vltime; |
| 4495 | p.pltime = pr->ndpr_pltime; |
| 4496 | p.if_index = pr->ndpr_ifp->if_index; |
| 4497 | p.expire = ndpr_getexpire(pr); |
| 4498 | p.refcnt = pr->ndpr_addrcnt; |
| 4499 | p.flags = pr->ndpr_stateflags; |
| 4500 | p.advrtrs = 0; |
| 4501 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) |
| 4502 | p.advrtrs++; |
| 4503 | error = SYSCTL_OUT(req, &p, sizeof (p)); |
| 4504 | if (error != 0) { |
| 4505 | NDPR_UNLOCK(pr); |
| 4506 | break; |
| 4507 | } |
| 4508 | LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { |
| 4509 | s6.sin6_addr = pfr->router->rtaddr; |
| 4510 | if (in6_recoverscope(&s6, &pfr->router->rtaddr, |
| 4511 | pfr->router->ifp) != 0) |
| 4512 | log(LOG_ERR, |
| 4513 | "scope error in prefix list (%s)\n" , |
| 4514 | inet_ntop(AF_INET6, &s6.sin6_addr, |
| 4515 | pbuf, sizeof (pbuf))); |
| 4516 | error = SYSCTL_OUT(req, &s6, sizeof (s6)); |
| 4517 | if (error != 0) |
| 4518 | break; |
| 4519 | } |
| 4520 | NDPR_UNLOCK(pr); |
| 4521 | if (error != 0) |
| 4522 | break; |
| 4523 | } |
| 4524 | } |
| 4525 | lck_mtx_unlock(nd6_mutex); |
| 4526 | |
| 4527 | return (error); |
| 4528 | } |
| 4529 | |
| 4530 | void |
| 4531 | in6_ifaddr_set_dadprogress(struct in6_ifaddr *ia) |
| 4532 | { |
| 4533 | struct ifnet* ifp = ia->ia_ifp; |
| 4534 | uint32_t flags = IN6_IFF_TENTATIVE; |
| 4535 | uint32_t optdad = nd6_optimistic_dad; |
| 4536 | struct nd_ifinfo *ndi = NULL; |
| 4537 | |
| 4538 | ndi = ND_IFINFO(ifp); |
| 4539 | VERIFY((NULL != ndi) && (TRUE == ndi->initialized)); |
| 4540 | if (!(ndi->flags & ND6_IFF_DAD)) |
| 4541 | return; |
| 4542 | |
| 4543 | if (optdad) { |
| 4544 | if ((ifp->if_eflags & IFEF_IPV6_ROUTER) != 0) { |
| 4545 | optdad = 0; |
| 4546 | } else { |
| 4547 | lck_mtx_lock(&ndi->lock); |
| 4548 | if ((ndi->flags & ND6_IFF_REPLICATED) != 0) { |
| 4549 | optdad = 0; |
| 4550 | } |
| 4551 | lck_mtx_unlock(&ndi->lock); |
| 4552 | } |
| 4553 | } |
| 4554 | |
| 4555 | if (optdad) { |
| 4556 | if ((optdad & ND6_OPTIMISTIC_DAD_LINKLOCAL) && |
| 4557 | IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) |
| 4558 | flags = IN6_IFF_OPTIMISTIC; |
| 4559 | else if ((optdad & ND6_OPTIMISTIC_DAD_AUTOCONF) && |
| 4560 | (ia->ia6_flags & IN6_IFF_AUTOCONF)) { |
| 4561 | if (ia->ia6_flags & IN6_IFF_TEMPORARY) { |
| 4562 | if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) |
| 4563 | flags = IN6_IFF_OPTIMISTIC; |
| 4564 | } else if (ia->ia6_flags & IN6_IFF_SECURED) { |
| 4565 | if (optdad & ND6_OPTIMISTIC_DAD_SECURED) |
| 4566 | flags = IN6_IFF_OPTIMISTIC; |
| 4567 | } else { |
| 4568 | /* |
| 4569 | * Keeping the behavior for temp and CGA |
| 4570 | * SLAAC addresses to have a knob for optimistic |
| 4571 | * DAD. |
| 4572 | * Other than that if ND6_OPTIMISTIC_DAD_AUTOCONF |
| 4573 | * is set, we should default to optimistic |
| 4574 | * DAD. |
| 4575 | * For now this means SLAAC addresses with interface |
| 4576 | * identifier derived from modified EUI-64 bit |
| 4577 | * identifiers. |
| 4578 | */ |
| 4579 | flags = IN6_IFF_OPTIMISTIC; |
| 4580 | } |
| 4581 | } else if ((optdad & ND6_OPTIMISTIC_DAD_DYNAMIC) && |
| 4582 | (ia->ia6_flags & IN6_IFF_DYNAMIC)) { |
| 4583 | if (ia->ia6_flags & IN6_IFF_TEMPORARY) { |
| 4584 | if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) |
| 4585 | flags = IN6_IFF_OPTIMISTIC; |
| 4586 | } else { |
| 4587 | flags = IN6_IFF_OPTIMISTIC; |
| 4588 | } |
| 4589 | } else if ((optdad & ND6_OPTIMISTIC_DAD_MANUAL) && |
| 4590 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC)) { |
| 4591 | /* |
| 4592 | * rdar://17483438 |
| 4593 | * Bypass tentative for address assignments |
| 4594 | * not covered above (e.g. manual) upon request |
| 4595 | */ |
| 4596 | if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr) && |
| 4597 | !(ia->ia6_flags & IN6_IFF_AUTOCONF) && |
| 4598 | !(ia->ia6_flags & IN6_IFF_DYNAMIC)) |
| 4599 | flags = IN6_IFF_OPTIMISTIC; |
| 4600 | } |
| 4601 | } |
| 4602 | |
| 4603 | ia->ia6_flags &= ~(IN6_IFF_DUPLICATED | IN6_IFF_DADPROGRESS); |
| 4604 | ia->ia6_flags |= flags; |
| 4605 | |
| 4606 | nd6log2((LOG_DEBUG, "%s - %s ifp %s ia6_flags 0x%x\n" , |
| 4607 | __func__, |
| 4608 | ip6_sprintf(&ia->ia_addr.sin6_addr), |
| 4609 | if_name(ia->ia_ifp), |
| 4610 | ia->ia6_flags)); |
| 4611 | } |
| 4612 | |
| 4613 | |