| 1 | /* |
| 2 | * Copyright (c) 2000-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */ |
| 30 | /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */ |
| 31 | |
| 32 | /* |
| 33 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 34 | * All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * 1. Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * 3. Neither the name of the project nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | */ |
| 60 | |
| 61 | #include <sys/param.h> |
| 62 | #include <sys/systm.h> |
| 63 | #include <sys/malloc.h> |
| 64 | #include <sys/mcache.h> |
| 65 | #include <sys/mbuf.h> |
| 66 | #include <sys/domain.h> |
| 67 | #include <sys/protosw.h> |
| 68 | #include <sys/socket.h> |
| 69 | #include <sys/errno.h> |
| 70 | #include <sys/time.h> |
| 71 | #include <sys/kernel.h> |
| 72 | #include <sys/syslog.h> |
| 73 | #include <kern/queue.h> |
| 74 | #include <kern/locks.h> |
| 75 | |
| 76 | #include <net/if.h> |
| 77 | #include <net/route.h> |
| 78 | |
| 79 | #include <netinet/in.h> |
| 80 | #include <netinet/in_var.h> |
| 81 | #include <netinet/ip.h> |
| 82 | #include <netinet/ip_var.h> |
| 83 | #include <netinet/ip6.h> |
| 84 | #include <netinet6/ip6_var.h> |
| 85 | #include <netinet/icmp6.h> |
| 86 | |
| 87 | #include <net/net_osdep.h> |
| 88 | #include <dev/random/randomdev.h> |
| 89 | |
| 90 | /* |
| 91 | * Define it to get a correct behavior on per-interface statistics. |
| 92 | */ |
| 93 | #define IN6_IFSTAT_STRICT |
| 94 | |
| 95 | MBUFQ_HEAD(fq6_head); |
| 96 | |
| 97 | static void frag6_save_context(struct mbuf *, int); |
| 98 | static void frag6_scrub_context(struct mbuf *); |
| 99 | static int frag6_restore_context(struct mbuf *); |
| 100 | |
| 101 | static void frag6_icmp6_paramprob_error(struct fq6_head *); |
| 102 | static void frag6_icmp6_timeex_error(struct fq6_head *); |
| 103 | |
| 104 | static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *); |
| 105 | static void frag6_deq(struct ip6asfrag *); |
| 106 | static void frag6_insque(struct ip6q *, struct ip6q *); |
| 107 | static void frag6_remque(struct ip6q *); |
| 108 | static void frag6_freef(struct ip6q *, struct fq6_head *, struct fq6_head *); |
| 109 | |
| 110 | static int frag6_timeout_run; /* frag6 timer is scheduled to run */ |
| 111 | static void frag6_timeout(void *); |
| 112 | static void frag6_sched_timeout(void); |
| 113 | |
| 114 | static struct ip6q *ip6q_alloc(int); |
| 115 | static void ip6q_free(struct ip6q *); |
| 116 | static void ip6q_updateparams(void); |
| 117 | static struct ip6asfrag *ip6af_alloc(int); |
| 118 | static void ip6af_free(struct ip6asfrag *); |
| 119 | |
| 120 | decl_lck_mtx_data(static, ip6qlock); |
| 121 | static lck_attr_t *ip6qlock_attr; |
| 122 | static lck_grp_t *ip6qlock_grp; |
| 123 | static lck_grp_attr_t *ip6qlock_grp_attr; |
| 124 | |
| 125 | /* IPv6 fragment reassembly queues (protected by ip6qlock) */ |
| 126 | static struct ip6q ip6q; /* ip6 reassembly queues */ |
| 127 | static int ip6_maxfragpackets; /* max packets in reass queues */ |
| 128 | static u_int32_t frag6_nfragpackets; /* # of packets in reass queues */ |
| 129 | static int ip6_maxfrags; /* max fragments in reass queues */ |
| 130 | static u_int32_t frag6_nfrags; /* # of fragments in reass queues */ |
| 131 | static u_int32_t ip6q_limit; /* ip6q allocation limit */ |
| 132 | static u_int32_t ip6q_count; /* current # of allocated ip6q's */ |
| 133 | static u_int32_t ip6af_limit; /* ip6asfrag allocation limit */ |
| 134 | static u_int32_t ip6af_count; /* current # of allocated ip6asfrag's */ |
| 135 | |
| 136 | static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS; |
| 137 | static int sysctl_maxfrags SYSCTL_HANDLER_ARGS; |
| 138 | |
| 139 | SYSCTL_DECL(_net_inet6_ip6); |
| 140 | |
| 141 | SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets, |
| 142 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfragpackets, 0, |
| 143 | sysctl_maxfragpackets, "I" , |
| 144 | "Maximum number of IPv6 fragment reassembly queue entries" ); |
| 145 | |
| 146 | SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, fragpackets, |
| 147 | CTLFLAG_RD | CTLFLAG_LOCKED, &frag6_nfragpackets, 0, |
| 148 | "Current number of IPv6 fragment reassembly queue entries" ); |
| 149 | |
| 150 | SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags, |
| 151 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfrags, 0, |
| 152 | sysctl_maxfrags, "I" , "Maximum number of IPv6 fragments allowed" ); |
| 153 | |
| 154 | /* |
| 155 | * Initialise reassembly queue and fragment identifier. |
| 156 | */ |
| 157 | void |
| 158 | frag6_init(void) |
| 159 | { |
| 160 | /* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */ |
| 161 | _CASSERT(sizeof (struct ip6q) <= _MLEN); |
| 162 | /* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */ |
| 163 | _CASSERT(sizeof (struct ip6asfrag) <= _MLEN); |
| 164 | |
| 165 | /* IPv6 fragment reassembly queue lock */ |
| 166 | ip6qlock_grp_attr = lck_grp_attr_alloc_init(); |
| 167 | ip6qlock_grp = lck_grp_alloc_init("ip6qlock" , ip6qlock_grp_attr); |
| 168 | ip6qlock_attr = lck_attr_alloc_init(); |
| 169 | lck_mtx_init(&ip6qlock, ip6qlock_grp, ip6qlock_attr); |
| 170 | |
| 171 | lck_mtx_lock(&ip6qlock); |
| 172 | /* Initialize IPv6 reassembly queue. */ |
| 173 | ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q; |
| 174 | |
| 175 | /* same limits as IPv4 */ |
| 176 | ip6_maxfragpackets = nmbclusters / 32; |
| 177 | ip6_maxfrags = ip6_maxfragpackets * 2; |
| 178 | ip6q_updateparams(); |
| 179 | lck_mtx_unlock(&ip6qlock); |
| 180 | } |
| 181 | |
| 182 | static void |
| 183 | frag6_save_context(struct mbuf *m, int val) |
| 184 | { |
| 185 | m->m_pkthdr.pkt_hdr = (void *)(uintptr_t)val; |
| 186 | } |
| 187 | |
| 188 | static void |
| 189 | frag6_scrub_context(struct mbuf *m) |
| 190 | { |
| 191 | m->m_pkthdr.pkt_hdr = NULL; |
| 192 | } |
| 193 | |
| 194 | static int |
| 195 | frag6_restore_context(struct mbuf *m) |
| 196 | { |
| 197 | return ((int)m->m_pkthdr.pkt_hdr); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Send any deferred ICMP param problem error messages; caller must not be |
| 202 | * holding ip6qlock and is expected to have saved the per-packet parameter |
| 203 | * value via frag6_save_context(). |
| 204 | */ |
| 205 | static void |
| 206 | frag6_icmp6_paramprob_error(struct fq6_head *diq6) |
| 207 | { |
| 208 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED); |
| 209 | |
| 210 | if (!MBUFQ_EMPTY(diq6)) { |
| 211 | struct mbuf *merr, *merr_tmp; |
| 212 | int param; |
| 213 | MBUFQ_FOREACH_SAFE(merr, diq6, merr_tmp) { |
| 214 | MBUFQ_REMOVE(diq6, merr); |
| 215 | MBUFQ_NEXT(merr) = NULL; |
| 216 | param = frag6_restore_context(merr); |
| 217 | frag6_scrub_context(merr); |
| 218 | icmp6_error(merr, ICMP6_PARAM_PROB, |
| 219 | ICMP6_PARAMPROB_HEADER, param); |
| 220 | } |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Send any deferred ICMP time exceeded error messages; |
| 226 | * caller must not be holding ip6qlock. |
| 227 | */ |
| 228 | static void |
| 229 | frag6_icmp6_timeex_error(struct fq6_head *diq6) |
| 230 | { |
| 231 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED); |
| 232 | |
| 233 | if (!MBUFQ_EMPTY(diq6)) { |
| 234 | struct mbuf *m, *m_tmp; |
| 235 | MBUFQ_FOREACH_SAFE(m, diq6, m_tmp) { |
| 236 | MBUFQ_REMOVE(diq6, m); |
| 237 | MBUFQ_NEXT(m) = NULL; |
| 238 | icmp6_error_flag(m, ICMP6_TIME_EXCEEDED, |
| 239 | ICMP6_TIME_EXCEED_REASSEMBLY, 0, 0); |
| 240 | } |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * In RFC2460, fragment and reassembly rule do not agree with each other, |
| 246 | * in terms of next header field handling in fragment header. |
| 247 | * While the sender will use the same value for all of the fragmented packets, |
| 248 | * receiver is suggested not to check the consistency. |
| 249 | * |
| 250 | * fragment rule (p20): |
| 251 | * (2) A Fragment header containing: |
| 252 | * The Next Header value that identifies the first header of |
| 253 | * the Fragmentable Part of the original packet. |
| 254 | * -> next header field is same for all fragments |
| 255 | * |
| 256 | * reassembly rule (p21): |
| 257 | * The Next Header field of the last header of the Unfragmentable |
| 258 | * Part is obtained from the Next Header field of the first |
| 259 | * fragment's Fragment header. |
| 260 | * -> should grab it from the first fragment only |
| 261 | * |
| 262 | * The following note also contradicts with fragment rule - noone is going to |
| 263 | * send different fragment with different next header field. |
| 264 | * |
| 265 | * additional note (p22): |
| 266 | * The Next Header values in the Fragment headers of different |
| 267 | * fragments of the same original packet may differ. Only the value |
| 268 | * from the Offset zero fragment packet is used for reassembly. |
| 269 | * -> should grab it from the first fragment only |
| 270 | * |
| 271 | * There is no explicit reason given in the RFC. Historical reason maybe? |
| 272 | */ |
| 273 | /* |
| 274 | * Fragment input |
| 275 | */ |
| 276 | int |
| 277 | frag6_input(struct mbuf **mp, int *offp, int proto) |
| 278 | { |
| 279 | #pragma unused(proto) |
| 280 | struct mbuf *m = *mp, *t; |
| 281 | struct ip6_hdr *ip6; |
| 282 | struct ip6_frag *ip6f; |
| 283 | struct ip6q *q6; |
| 284 | struct ip6asfrag *af6, *ip6af, *af6dwn; |
| 285 | int offset = *offp, nxt, i, next; |
| 286 | int first_frag = 0; |
| 287 | int fragoff, frgpartlen; /* must be larger than u_int16_t */ |
| 288 | struct ifnet *dstifp = NULL; |
| 289 | u_int8_t ecn, ecn0; |
| 290 | uint32_t csum, csum_flags; |
| 291 | struct fq6_head diq6; |
| 292 | int locked = 0; |
| 293 | |
| 294 | VERIFY(m->m_flags & M_PKTHDR); |
| 295 | |
| 296 | MBUFQ_INIT(&diq6); /* for deferred ICMP param problem errors */ |
| 297 | |
| 298 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 299 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 300 | |
| 301 | ip6 = mtod(m, struct ip6_hdr *); |
| 302 | IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), goto done); |
| 303 | ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset); |
| 304 | |
| 305 | #ifdef IN6_IFSTAT_STRICT |
| 306 | /* find the destination interface of the packet. */ |
| 307 | if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) { |
| 308 | uint32_t idx; |
| 309 | |
| 310 | if (ip6_getdstifaddr_info(m, &idx, NULL) == 0) { |
| 311 | if (idx > 0 && idx <= if_index) { |
| 312 | ifnet_head_lock_shared(); |
| 313 | dstifp = ifindex2ifnet[idx]; |
| 314 | ifnet_head_done(); |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | #endif /* IN6_IFSTAT_STRICT */ |
| 319 | |
| 320 | /* we are violating the spec, this may not be the dst interface */ |
| 321 | if (dstifp == NULL) |
| 322 | dstifp = m->m_pkthdr.rcvif; |
| 323 | |
| 324 | /* jumbo payload can't contain a fragment header */ |
| 325 | if (ip6->ip6_plen == 0) { |
| 326 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset); |
| 327 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 328 | m = NULL; |
| 329 | goto done; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * check whether fragment packet's fragment length is |
| 334 | * multiple of 8 octets. |
| 335 | * sizeof(struct ip6_frag) == 8 |
| 336 | * sizeof(struct ip6_hdr) = 40 |
| 337 | */ |
| 338 | if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) && |
| 339 | (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) { |
| 340 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
| 341 | offsetof(struct ip6_hdr, ip6_plen)); |
| 342 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 343 | m = NULL; |
| 344 | goto done; |
| 345 | } |
| 346 | |
| 347 | /* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */ |
| 348 | if (ip6_maxfragpackets == 0 || ip6_maxfrags == 0) { |
| 349 | ip6stat.ip6s_fragments++; |
| 350 | ip6stat.ip6s_fragdropped++; |
| 351 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 352 | m_freem(m); |
| 353 | m = NULL; |
| 354 | goto done; |
| 355 | } |
| 356 | |
| 357 | /* offset now points to data portion */ |
| 358 | offset += sizeof(struct ip6_frag); |
| 359 | |
| 360 | /* |
| 361 | * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0) |
| 362 | * upfront, unrelated to any reassembly. Just skip the fragment header. |
| 363 | */ |
| 364 | if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) { |
| 365 | /* |
| 366 | * In ICMPv6 processing, we drop certain |
| 367 | * NDP messages that are not expected to |
| 368 | * have fragment header based on recommendations |
| 369 | * against security vulnerability as described in |
| 370 | * RFC 6980. |
| 371 | * We set PKTF_REASSEMBLED flag to let ICMPv6 NDP |
| 372 | * drop such packets. |
| 373 | * However there are already devices running software |
| 374 | * that are creating interface with MTU < IPv6 Min |
| 375 | * MTU. We should not have allowed that but they are |
| 376 | * out, and sending atomic NDP fragments. |
| 377 | * For that reason, we do not set the same flag here |
| 378 | * and relax the check. |
| 379 | */ |
| 380 | ip6stat.ip6s_atmfrag_rcvd++; |
| 381 | in6_ifstat_inc(dstifp, ifs6_atmfrag_rcvd); |
| 382 | *offp = offset; |
| 383 | return (ip6f->ip6f_nxt); |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * Leverage partial checksum offload for simple UDP/IP fragments, |
| 388 | * as that is the most common case. |
| 389 | * |
| 390 | * Perform 1's complement adjustment of octets that got included/ |
| 391 | * excluded in the hardware-calculated checksum value. Also take |
| 392 | * care of any trailing bytes and subtract out their partial sum. |
| 393 | */ |
| 394 | if (ip6f->ip6f_nxt == IPPROTO_UDP && |
| 395 | offset == (sizeof (*ip6) + sizeof (*ip6f)) && |
| 396 | (m->m_pkthdr.csum_flags & |
| 397 | (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) == |
| 398 | (CSUM_DATA_VALID | CSUM_PARTIAL)) { |
| 399 | uint32_t start = m->m_pkthdr.csum_rx_start; |
| 400 | uint32_t ip_len = (sizeof (*ip6) + ntohs(ip6->ip6_plen)); |
| 401 | int32_t trailer = (m_pktlen(m) - ip_len); |
| 402 | uint32_t swbytes = (uint32_t)trailer; |
| 403 | |
| 404 | csum = m->m_pkthdr.csum_rx_val; |
| 405 | |
| 406 | ASSERT(trailer >= 0); |
| 407 | if (start != offset || trailer != 0) { |
| 408 | uint16_t s = 0, d = 0; |
| 409 | |
| 410 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
| 411 | s = ip6->ip6_src.s6_addr16[1]; |
| 412 | ip6->ip6_src.s6_addr16[1] = 0 ; |
| 413 | } |
| 414 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
| 415 | d = ip6->ip6_dst.s6_addr16[1]; |
| 416 | ip6->ip6_dst.s6_addr16[1] = 0; |
| 417 | } |
| 418 | |
| 419 | /* callee folds in sum */ |
| 420 | csum = m_adj_sum16(m, start, offset, |
| 421 | (ip_len - offset), csum); |
| 422 | if (offset > start) |
| 423 | swbytes += (offset - start); |
| 424 | else |
| 425 | swbytes += (start - offset); |
| 426 | |
| 427 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) |
| 428 | ip6->ip6_src.s6_addr16[1] = s; |
| 429 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) |
| 430 | ip6->ip6_dst.s6_addr16[1] = d; |
| 431 | |
| 432 | } |
| 433 | csum_flags = m->m_pkthdr.csum_flags; |
| 434 | |
| 435 | if (swbytes != 0) |
| 436 | udp_in6_cksum_stats(swbytes); |
| 437 | if (trailer != 0) |
| 438 | m_adj(m, -trailer); |
| 439 | } else { |
| 440 | csum = 0; |
| 441 | csum_flags = 0; |
| 442 | } |
| 443 | |
| 444 | /* Invalidate checksum */ |
| 445 | m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; |
| 446 | |
| 447 | ip6stat.ip6s_fragments++; |
| 448 | in6_ifstat_inc(dstifp, ifs6_reass_reqd); |
| 449 | |
| 450 | lck_mtx_lock(&ip6qlock); |
| 451 | locked = 1; |
| 452 | |
| 453 | for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next) |
| 454 | if (ip6f->ip6f_ident == q6->ip6q_ident && |
| 455 | IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) && |
| 456 | IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst)) |
| 457 | break; |
| 458 | |
| 459 | if (q6 == &ip6q) { |
| 460 | /* |
| 461 | * the first fragment to arrive, create a reassembly queue. |
| 462 | */ |
| 463 | first_frag = 1; |
| 464 | |
| 465 | q6 = ip6q_alloc(M_DONTWAIT); |
| 466 | if (q6 == NULL) |
| 467 | goto dropfrag; |
| 468 | |
| 469 | frag6_insque(q6, &ip6q); |
| 470 | frag6_nfragpackets++; |
| 471 | |
| 472 | /* ip6q_nxt will be filled afterwards, from 1st fragment */ |
| 473 | q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6; |
| 474 | #ifdef notyet |
| 475 | q6->ip6q_nxtp = (u_char *)nxtp; |
| 476 | #endif |
| 477 | q6->ip6q_ident = ip6f->ip6f_ident; |
| 478 | q6->ip6q_ttl = IPV6_FRAGTTL; |
| 479 | q6->ip6q_src = ip6->ip6_src; |
| 480 | q6->ip6q_dst = ip6->ip6_dst; |
| 481 | q6->ip6q_ecn = |
| 482 | (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; |
| 483 | q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */ |
| 484 | |
| 485 | q6->ip6q_nfrag = 0; |
| 486 | |
| 487 | /* |
| 488 | * If the first fragment has valid checksum offload |
| 489 | * info, the rest of fragments are eligible as well. |
| 490 | */ |
| 491 | if (csum_flags != 0) { |
| 492 | q6->ip6q_csum = csum; |
| 493 | q6->ip6q_csum_flags = csum_flags; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * If it's the 1st fragment, record the length of the |
| 499 | * unfragmentable part and the next header of the fragment header. |
| 500 | */ |
| 501 | fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK); |
| 502 | if (fragoff == 0) { |
| 503 | q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) - |
| 504 | sizeof(struct ip6_frag); |
| 505 | q6->ip6q_nxt = ip6f->ip6f_nxt; |
| 506 | } |
| 507 | |
| 508 | /* |
| 509 | * Check that the reassembled packet would not exceed 65535 bytes |
| 510 | * in size. |
| 511 | * If it would exceed, discard the fragment and return an ICMP error. |
| 512 | */ |
| 513 | frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset; |
| 514 | if (q6->ip6q_unfrglen >= 0) { |
| 515 | /* The 1st fragment has already arrived. */ |
| 516 | if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) { |
| 517 | lck_mtx_unlock(&ip6qlock); |
| 518 | locked = 0; |
| 519 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
| 520 | offset - sizeof(struct ip6_frag) + |
| 521 | offsetof(struct ip6_frag, ip6f_offlg)); |
| 522 | m = NULL; |
| 523 | goto done; |
| 524 | } |
| 525 | } else if (fragoff + frgpartlen > IPV6_MAXPACKET) { |
| 526 | lck_mtx_unlock(&ip6qlock); |
| 527 | locked = 0; |
| 528 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
| 529 | offset - sizeof(struct ip6_frag) + |
| 530 | offsetof(struct ip6_frag, ip6f_offlg)); |
| 531 | m = NULL; |
| 532 | goto done; |
| 533 | } |
| 534 | /* |
| 535 | * If it's the first fragment, do the above check for each |
| 536 | * fragment already stored in the reassembly queue. |
| 537 | */ |
| 538 | if (fragoff == 0) { |
| 539 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 540 | af6 = af6dwn) { |
| 541 | af6dwn = af6->ip6af_down; |
| 542 | |
| 543 | if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen > |
| 544 | IPV6_MAXPACKET) { |
| 545 | struct mbuf *merr = IP6_REASS_MBUF(af6); |
| 546 | struct ip6_hdr *ip6err; |
| 547 | int erroff = af6->ip6af_offset; |
| 548 | |
| 549 | /* dequeue the fragment. */ |
| 550 | frag6_deq(af6); |
| 551 | ip6af_free(af6); |
| 552 | |
| 553 | /* adjust pointer. */ |
| 554 | ip6err = mtod(merr, struct ip6_hdr *); |
| 555 | |
| 556 | /* |
| 557 | * Restore source and destination addresses |
| 558 | * in the erroneous IPv6 header. |
| 559 | */ |
| 560 | ip6err->ip6_src = q6->ip6q_src; |
| 561 | ip6err->ip6_dst = q6->ip6q_dst; |
| 562 | |
| 563 | frag6_save_context(merr, |
| 564 | erroff - sizeof (struct ip6_frag) + |
| 565 | offsetof(struct ip6_frag, ip6f_offlg)); |
| 566 | |
| 567 | MBUFQ_ENQUEUE(&diq6, merr); |
| 568 | } |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | ip6af = ip6af_alloc(M_DONTWAIT); |
| 573 | if (ip6af == NULL) |
| 574 | goto dropfrag; |
| 575 | |
| 576 | ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG; |
| 577 | ip6af->ip6af_off = fragoff; |
| 578 | ip6af->ip6af_frglen = frgpartlen; |
| 579 | ip6af->ip6af_offset = offset; |
| 580 | IP6_REASS_MBUF(ip6af) = m; |
| 581 | |
| 582 | if (first_frag) { |
| 583 | af6 = (struct ip6asfrag *)q6; |
| 584 | goto insert; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Handle ECN by comparing this segment with the first one; |
| 589 | * if CE is set, do not lose CE. |
| 590 | * drop if CE and not-ECT are mixed for the same packet. |
| 591 | */ |
| 592 | ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; |
| 593 | ecn0 = q6->ip6q_ecn; |
| 594 | if (ecn == IPTOS_ECN_CE) { |
| 595 | if (ecn0 == IPTOS_ECN_NOTECT) { |
| 596 | ip6af_free(ip6af); |
| 597 | goto dropfrag; |
| 598 | } |
| 599 | if (ecn0 != IPTOS_ECN_CE) |
| 600 | q6->ip6q_ecn = IPTOS_ECN_CE; |
| 601 | } |
| 602 | if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) { |
| 603 | ip6af_free(ip6af); |
| 604 | goto dropfrag; |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * Find a segment which begins after this one does. |
| 609 | */ |
| 610 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 611 | af6 = af6->ip6af_down) |
| 612 | if (af6->ip6af_off > ip6af->ip6af_off) |
| 613 | break; |
| 614 | |
| 615 | #if 0 |
| 616 | /* |
| 617 | * If there is a preceding segment, it may provide some of |
| 618 | * our data already. If so, drop the data from the incoming |
| 619 | * segment. If it provides all of our data, drop us. |
| 620 | * |
| 621 | * If some of the data is dropped from the preceding |
| 622 | * segment, then it's checksum is invalidated. |
| 623 | */ |
| 624 | if (af6->ip6af_up != (struct ip6asfrag *)q6) { |
| 625 | i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen |
| 626 | - ip6af->ip6af_off; |
| 627 | if (i > 0) { |
| 628 | if (i >= ip6af->ip6af_frglen) |
| 629 | goto dropfrag; |
| 630 | m_adj(IP6_REASS_MBUF(ip6af), i); |
| 631 | q6->ip6q_csum_flags = 0; |
| 632 | ip6af->ip6af_off += i; |
| 633 | ip6af->ip6af_frglen -= i; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * While we overlap succeeding segments trim them or, |
| 639 | * if they are completely covered, dequeue them. |
| 640 | */ |
| 641 | while (af6 != (struct ip6asfrag *)q6 && |
| 642 | ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) { |
| 643 | i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; |
| 644 | if (i < af6->ip6af_frglen) { |
| 645 | af6->ip6af_frglen -= i; |
| 646 | af6->ip6af_off += i; |
| 647 | m_adj(IP6_REASS_MBUF(af6), i); |
| 648 | q6->ip6q_csum_flags = 0; |
| 649 | break; |
| 650 | } |
| 651 | af6 = af6->ip6af_down; |
| 652 | m_freem(IP6_REASS_MBUF(af6->ip6af_up)); |
| 653 | frag6_deq(af6->ip6af_up); |
| 654 | } |
| 655 | #else |
| 656 | /* |
| 657 | * If the incoming framgent overlaps some existing fragments in |
| 658 | * the reassembly queue, drop it, since it is dangerous to override |
| 659 | * existing fragments from a security point of view. |
| 660 | * We don't know which fragment is the bad guy - here we trust |
| 661 | * fragment that came in earlier, with no real reason. |
| 662 | * |
| 663 | * Note: due to changes after disabling this part, mbuf passed to |
| 664 | * m_adj() below now does not meet the requirement. |
| 665 | */ |
| 666 | if (af6->ip6af_up != (struct ip6asfrag *)q6) { |
| 667 | i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen |
| 668 | - ip6af->ip6af_off; |
| 669 | if (i > 0) { |
| 670 | #if 0 /* suppress the noisy log */ |
| 671 | log(LOG_ERR, "%d bytes of a fragment from %s " |
| 672 | "overlaps the previous fragment\n" , |
| 673 | i, ip6_sprintf(&q6->ip6q_src)); |
| 674 | #endif |
| 675 | ip6af_free(ip6af); |
| 676 | goto dropfrag; |
| 677 | } |
| 678 | } |
| 679 | if (af6 != (struct ip6asfrag *)q6) { |
| 680 | i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; |
| 681 | if (i > 0) { |
| 682 | #if 0 /* suppress the noisy log */ |
| 683 | log(LOG_ERR, "%d bytes of a fragment from %s " |
| 684 | "overlaps the succeeding fragment" , |
| 685 | i, ip6_sprintf(&q6->ip6q_src)); |
| 686 | #endif |
| 687 | ip6af_free(ip6af); |
| 688 | goto dropfrag; |
| 689 | } |
| 690 | } |
| 691 | #endif |
| 692 | |
| 693 | /* |
| 694 | * If this fragment contains similar checksum offload info |
| 695 | * as that of the existing ones, accumulate checksum. Otherwise, |
| 696 | * invalidate checksum offload info for the entire datagram. |
| 697 | */ |
| 698 | if (csum_flags != 0 && csum_flags == q6->ip6q_csum_flags) |
| 699 | q6->ip6q_csum += csum; |
| 700 | else if (q6->ip6q_csum_flags != 0) |
| 701 | q6->ip6q_csum_flags = 0; |
| 702 | |
| 703 | insert: |
| 704 | |
| 705 | /* |
| 706 | * Stick new segment in its place; |
| 707 | * check for complete reassembly. |
| 708 | * Move to front of packet queue, as we are |
| 709 | * the most recently active fragmented packet. |
| 710 | */ |
| 711 | frag6_enq(ip6af, af6->ip6af_up); |
| 712 | frag6_nfrags++; |
| 713 | q6->ip6q_nfrag++; |
| 714 | #if 0 /* xxx */ |
| 715 | if (q6 != ip6q.ip6q_next) { |
| 716 | frag6_remque(q6); |
| 717 | frag6_insque(q6, &ip6q); |
| 718 | } |
| 719 | #endif |
| 720 | next = 0; |
| 721 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 722 | af6 = af6->ip6af_down) { |
| 723 | if (af6->ip6af_off != next) { |
| 724 | lck_mtx_unlock(&ip6qlock); |
| 725 | locked = 0; |
| 726 | m = NULL; |
| 727 | goto done; |
| 728 | } |
| 729 | next += af6->ip6af_frglen; |
| 730 | } |
| 731 | if (af6->ip6af_up->ip6af_mff) { |
| 732 | lck_mtx_unlock(&ip6qlock); |
| 733 | locked = 0; |
| 734 | m = NULL; |
| 735 | goto done; |
| 736 | } |
| 737 | |
| 738 | /* |
| 739 | * Reassembly is complete; concatenate fragments. |
| 740 | */ |
| 741 | ip6af = q6->ip6q_down; |
| 742 | t = m = IP6_REASS_MBUF(ip6af); |
| 743 | af6 = ip6af->ip6af_down; |
| 744 | frag6_deq(ip6af); |
| 745 | while (af6 != (struct ip6asfrag *)q6) { |
| 746 | af6dwn = af6->ip6af_down; |
| 747 | frag6_deq(af6); |
| 748 | while (t->m_next) |
| 749 | t = t->m_next; |
| 750 | t->m_next = IP6_REASS_MBUF(af6); |
| 751 | m_adj(t->m_next, af6->ip6af_offset); |
| 752 | ip6af_free(af6); |
| 753 | af6 = af6dwn; |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * Store partial hardware checksum info from the fragment queue; |
| 758 | * the receive start offset is set to 40 bytes (see code at the |
| 759 | * top of this routine.) |
| 760 | */ |
| 761 | if (q6->ip6q_csum_flags != 0) { |
| 762 | csum = q6->ip6q_csum; |
| 763 | |
| 764 | ADDCARRY(csum); |
| 765 | |
| 766 | m->m_pkthdr.csum_rx_val = csum; |
| 767 | m->m_pkthdr.csum_rx_start = sizeof (struct ip6_hdr); |
| 768 | m->m_pkthdr.csum_flags = q6->ip6q_csum_flags; |
| 769 | } else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) || |
| 770 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 771 | /* loopback checksums are always OK */ |
| 772 | m->m_pkthdr.csum_data = 0xffff; |
| 773 | m->m_pkthdr.csum_flags &= ~CSUM_PARTIAL; |
| 774 | m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR; |
| 775 | } |
| 776 | |
| 777 | /* adjust offset to point where the original next header starts */ |
| 778 | offset = ip6af->ip6af_offset - sizeof(struct ip6_frag); |
| 779 | ip6af_free(ip6af); |
| 780 | ip6 = mtod(m, struct ip6_hdr *); |
| 781 | ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr)); |
| 782 | ip6->ip6_src = q6->ip6q_src; |
| 783 | ip6->ip6_dst = q6->ip6q_dst; |
| 784 | if (q6->ip6q_ecn == IPTOS_ECN_CE) |
| 785 | ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20); |
| 786 | |
| 787 | nxt = q6->ip6q_nxt; |
| 788 | #ifdef notyet |
| 789 | *q6->ip6q_nxtp = (u_char)(nxt & 0xff); |
| 790 | #endif |
| 791 | |
| 792 | /* Delete frag6 header */ |
| 793 | if (m->m_len >= offset + sizeof(struct ip6_frag)) { |
| 794 | /* This is the only possible case with !PULLDOWN_TEST */ |
| 795 | ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag), |
| 796 | offset); |
| 797 | m->m_data += sizeof(struct ip6_frag); |
| 798 | m->m_len -= sizeof(struct ip6_frag); |
| 799 | } else { |
| 800 | /* this comes with no copy if the boundary is on cluster */ |
| 801 | if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) { |
| 802 | frag6_remque(q6); |
| 803 | frag6_nfragpackets--; |
| 804 | frag6_nfrags -= q6->ip6q_nfrag; |
| 805 | ip6q_free(q6); |
| 806 | goto dropfrag; |
| 807 | } |
| 808 | m_adj(t, sizeof(struct ip6_frag)); |
| 809 | m_cat(m, t); |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * Store NXT to the original. |
| 814 | */ |
| 815 | { |
| 816 | char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */ |
| 817 | *prvnxtp = nxt; |
| 818 | } |
| 819 | |
| 820 | frag6_remque(q6); |
| 821 | frag6_nfragpackets--; |
| 822 | frag6_nfrags -= q6->ip6q_nfrag; |
| 823 | ip6q_free(q6); |
| 824 | |
| 825 | if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */ |
| 826 | m_fixhdr(m); |
| 827 | /* |
| 828 | * Mark packet as reassembled |
| 829 | * In ICMPv6 processing, we drop certain |
| 830 | * NDP messages that are not expected to |
| 831 | * have fragment header based on recommendations |
| 832 | * against security vulnerability as described in |
| 833 | * RFC 6980. |
| 834 | */ |
| 835 | m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED; |
| 836 | } |
| 837 | ip6stat.ip6s_reassembled++; |
| 838 | |
| 839 | /* |
| 840 | * Tell launch routine the next header |
| 841 | */ |
| 842 | *mp = m; |
| 843 | *offp = offset; |
| 844 | |
| 845 | /* arm the purge timer if not already and if there's work to do */ |
| 846 | frag6_sched_timeout(); |
| 847 | lck_mtx_unlock(&ip6qlock); |
| 848 | in6_ifstat_inc(dstifp, ifs6_reass_ok); |
| 849 | frag6_icmp6_paramprob_error(&diq6); |
| 850 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 851 | return (nxt); |
| 852 | |
| 853 | done: |
| 854 | VERIFY(m == NULL); |
| 855 | if (!locked) { |
| 856 | if (frag6_nfragpackets == 0) { |
| 857 | frag6_icmp6_paramprob_error(&diq6); |
| 858 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 859 | return (IPPROTO_DONE); |
| 860 | } |
| 861 | lck_mtx_lock(&ip6qlock); |
| 862 | } |
| 863 | /* arm the purge timer if not already and if there's work to do */ |
| 864 | frag6_sched_timeout(); |
| 865 | lck_mtx_unlock(&ip6qlock); |
| 866 | frag6_icmp6_paramprob_error(&diq6); |
| 867 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 868 | return (IPPROTO_DONE); |
| 869 | |
| 870 | dropfrag: |
| 871 | ip6stat.ip6s_fragdropped++; |
| 872 | /* arm the purge timer if not already and if there's work to do */ |
| 873 | frag6_sched_timeout(); |
| 874 | lck_mtx_unlock(&ip6qlock); |
| 875 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 876 | m_freem(m); |
| 877 | frag6_icmp6_paramprob_error(&diq6); |
| 878 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 879 | return (IPPROTO_DONE); |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * Free a fragment reassembly header and all |
| 884 | * associated datagrams. |
| 885 | */ |
| 886 | void |
| 887 | frag6_freef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6) |
| 888 | { |
| 889 | struct ip6asfrag *af6, *down6; |
| 890 | |
| 891 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 892 | |
| 893 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 894 | af6 = down6) { |
| 895 | struct mbuf *m = IP6_REASS_MBUF(af6); |
| 896 | |
| 897 | down6 = af6->ip6af_down; |
| 898 | frag6_deq(af6); |
| 899 | |
| 900 | /* |
| 901 | * Return ICMP time exceeded error for the 1st fragment. |
| 902 | * Just free other fragments. |
| 903 | */ |
| 904 | if (af6->ip6af_off == 0) { |
| 905 | struct ip6_hdr *ip6; |
| 906 | |
| 907 | /* adjust pointer */ |
| 908 | ip6 = mtod(m, struct ip6_hdr *); |
| 909 | |
| 910 | /* restore source and destination addresses */ |
| 911 | ip6->ip6_src = q6->ip6q_src; |
| 912 | ip6->ip6_dst = q6->ip6q_dst; |
| 913 | |
| 914 | MBUFQ_ENQUEUE(diq6, m); |
| 915 | } else { |
| 916 | MBUFQ_ENQUEUE(dfq6, m); |
| 917 | } |
| 918 | ip6af_free(af6); |
| 919 | |
| 920 | } |
| 921 | frag6_remque(q6); |
| 922 | frag6_nfragpackets--; |
| 923 | frag6_nfrags -= q6->ip6q_nfrag; |
| 924 | ip6q_free(q6); |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * Put an ip fragment on a reassembly chain. |
| 929 | * Like insque, but pointers in middle of structure. |
| 930 | */ |
| 931 | void |
| 932 | frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6) |
| 933 | { |
| 934 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 935 | |
| 936 | af6->ip6af_up = up6; |
| 937 | af6->ip6af_down = up6->ip6af_down; |
| 938 | up6->ip6af_down->ip6af_up = af6; |
| 939 | up6->ip6af_down = af6; |
| 940 | } |
| 941 | |
| 942 | /* |
| 943 | * To frag6_enq as remque is to insque. |
| 944 | */ |
| 945 | void |
| 946 | frag6_deq(struct ip6asfrag *af6) |
| 947 | { |
| 948 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 949 | |
| 950 | af6->ip6af_up->ip6af_down = af6->ip6af_down; |
| 951 | af6->ip6af_down->ip6af_up = af6->ip6af_up; |
| 952 | } |
| 953 | |
| 954 | void |
| 955 | frag6_insque(struct ip6q *new, struct ip6q *old) |
| 956 | { |
| 957 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 958 | |
| 959 | new->ip6q_prev = old; |
| 960 | new->ip6q_next = old->ip6q_next; |
| 961 | old->ip6q_next->ip6q_prev= new; |
| 962 | old->ip6q_next = new; |
| 963 | } |
| 964 | |
| 965 | void |
| 966 | frag6_remque(struct ip6q *p6) |
| 967 | { |
| 968 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 969 | |
| 970 | p6->ip6q_prev->ip6q_next = p6->ip6q_next; |
| 971 | p6->ip6q_next->ip6q_prev = p6->ip6q_prev; |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * IPv6 reassembling timer processing; |
| 976 | * if a timer expires on a reassembly |
| 977 | * queue, discard it. |
| 978 | */ |
| 979 | static void |
| 980 | frag6_timeout(void *arg) |
| 981 | { |
| 982 | #pragma unused(arg) |
| 983 | struct fq6_head dfq6, diq6; |
| 984 | struct ip6q *q6; |
| 985 | |
| 986 | MBUFQ_INIT(&dfq6); /* for deferred frees */ |
| 987 | MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */ |
| 988 | |
| 989 | /* |
| 990 | * Update coarse-grained networking timestamp (in sec.); the idea |
| 991 | * is to piggy-back on the timeout callout to update the counter |
| 992 | * returnable via net_uptime(). |
| 993 | */ |
| 994 | net_update_uptime(); |
| 995 | |
| 996 | lck_mtx_lock(&ip6qlock); |
| 997 | q6 = ip6q.ip6q_next; |
| 998 | if (q6) |
| 999 | while (q6 != &ip6q) { |
| 1000 | --q6->ip6q_ttl; |
| 1001 | q6 = q6->ip6q_next; |
| 1002 | if (q6->ip6q_prev->ip6q_ttl == 0) { |
| 1003 | ip6stat.ip6s_fragtimeout++; |
| 1004 | /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ |
| 1005 | frag6_freef(q6->ip6q_prev, &dfq6, &diq6); |
| 1006 | } |
| 1007 | } |
| 1008 | /* |
| 1009 | * If we are over the maximum number of fragments |
| 1010 | * (due to the limit being lowered), drain off |
| 1011 | * enough to get down to the new limit. |
| 1012 | */ |
| 1013 | if (ip6_maxfragpackets >= 0) { |
| 1014 | while (frag6_nfragpackets > (unsigned)ip6_maxfragpackets && |
| 1015 | ip6q.ip6q_prev) { |
| 1016 | ip6stat.ip6s_fragoverflow++; |
| 1017 | /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ |
| 1018 | frag6_freef(ip6q.ip6q_prev, &dfq6, &diq6); |
| 1019 | } |
| 1020 | } |
| 1021 | /* re-arm the purge timer if there's work to do */ |
| 1022 | frag6_timeout_run = 0; |
| 1023 | frag6_sched_timeout(); |
| 1024 | lck_mtx_unlock(&ip6qlock); |
| 1025 | |
| 1026 | /* free fragments that need to be freed */ |
| 1027 | if (!MBUFQ_EMPTY(&dfq6)) |
| 1028 | MBUFQ_DRAIN(&dfq6); |
| 1029 | |
| 1030 | frag6_icmp6_timeex_error(&diq6); |
| 1031 | |
| 1032 | VERIFY(MBUFQ_EMPTY(&dfq6)); |
| 1033 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 1034 | } |
| 1035 | |
| 1036 | static void |
| 1037 | frag6_sched_timeout(void) |
| 1038 | { |
| 1039 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1040 | |
| 1041 | if (!frag6_timeout_run && frag6_nfragpackets > 0) { |
| 1042 | frag6_timeout_run = 1; |
| 1043 | timeout(frag6_timeout, NULL, hz); |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Drain off all datagram fragments. |
| 1049 | */ |
| 1050 | void |
| 1051 | frag6_drain(void) |
| 1052 | { |
| 1053 | struct fq6_head dfq6, diq6; |
| 1054 | |
| 1055 | MBUFQ_INIT(&dfq6); /* for deferred frees */ |
| 1056 | MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */ |
| 1057 | |
| 1058 | lck_mtx_lock(&ip6qlock); |
| 1059 | while (ip6q.ip6q_next != &ip6q) { |
| 1060 | ip6stat.ip6s_fragdropped++; |
| 1061 | /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ |
| 1062 | frag6_freef(ip6q.ip6q_next, &dfq6, &diq6); |
| 1063 | } |
| 1064 | lck_mtx_unlock(&ip6qlock); |
| 1065 | |
| 1066 | /* free fragments that need to be freed */ |
| 1067 | if (!MBUFQ_EMPTY(&dfq6)) |
| 1068 | MBUFQ_DRAIN(&dfq6); |
| 1069 | |
| 1070 | frag6_icmp6_timeex_error(&diq6); |
| 1071 | |
| 1072 | VERIFY(MBUFQ_EMPTY(&dfq6)); |
| 1073 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 1074 | } |
| 1075 | |
| 1076 | static struct ip6q * |
| 1077 | ip6q_alloc(int how) |
| 1078 | { |
| 1079 | struct mbuf *t; |
| 1080 | struct ip6q *q6; |
| 1081 | |
| 1082 | /* |
| 1083 | * See comments in ip6q_updateparams(). Keep the count separate |
| 1084 | * from frag6_nfragpackets since the latter represents the elements |
| 1085 | * already in the reassembly queues. |
| 1086 | */ |
| 1087 | if (ip6q_limit > 0 && ip6q_count > ip6q_limit) |
| 1088 | return (NULL); |
| 1089 | |
| 1090 | t = m_get(how, MT_FTABLE); |
| 1091 | if (t != NULL) { |
| 1092 | atomic_add_32(&ip6q_count, 1); |
| 1093 | q6 = mtod(t, struct ip6q *); |
| 1094 | bzero(q6, sizeof (*q6)); |
| 1095 | } else { |
| 1096 | q6 = NULL; |
| 1097 | } |
| 1098 | return (q6); |
| 1099 | } |
| 1100 | |
| 1101 | static void |
| 1102 | ip6q_free(struct ip6q *q6) |
| 1103 | { |
| 1104 | (void) m_free(dtom(q6)); |
| 1105 | atomic_add_32(&ip6q_count, -1); |
| 1106 | } |
| 1107 | |
| 1108 | static struct ip6asfrag * |
| 1109 | ip6af_alloc(int how) |
| 1110 | { |
| 1111 | struct mbuf *t; |
| 1112 | struct ip6asfrag *af6; |
| 1113 | |
| 1114 | /* |
| 1115 | * See comments in ip6q_updateparams(). Keep the count separate |
| 1116 | * from frag6_nfrags since the latter represents the elements |
| 1117 | * already in the reassembly queues. |
| 1118 | */ |
| 1119 | if (ip6af_limit > 0 && ip6af_count > ip6af_limit) |
| 1120 | return (NULL); |
| 1121 | |
| 1122 | t = m_get(how, MT_FTABLE); |
| 1123 | if (t != NULL) { |
| 1124 | atomic_add_32(&ip6af_count, 1); |
| 1125 | af6 = mtod(t, struct ip6asfrag *); |
| 1126 | bzero(af6, sizeof (*af6)); |
| 1127 | } else { |
| 1128 | af6 = NULL; |
| 1129 | } |
| 1130 | return (af6); |
| 1131 | } |
| 1132 | |
| 1133 | static void |
| 1134 | ip6af_free(struct ip6asfrag *af6) |
| 1135 | { |
| 1136 | (void) m_free(dtom(af6)); |
| 1137 | atomic_add_32(&ip6af_count, -1); |
| 1138 | } |
| 1139 | |
| 1140 | static void |
| 1141 | ip6q_updateparams(void) |
| 1142 | { |
| 1143 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1144 | /* |
| 1145 | * -1 for unlimited allocation. |
| 1146 | */ |
| 1147 | if (ip6_maxfragpackets < 0) |
| 1148 | ip6q_limit = 0; |
| 1149 | if (ip6_maxfrags < 0) |
| 1150 | ip6af_limit = 0; |
| 1151 | /* |
| 1152 | * Positive number for specific bound. |
| 1153 | */ |
| 1154 | if (ip6_maxfragpackets > 0) |
| 1155 | ip6q_limit = ip6_maxfragpackets; |
| 1156 | if (ip6_maxfrags > 0) |
| 1157 | ip6af_limit = ip6_maxfrags; |
| 1158 | /* |
| 1159 | * Zero specifies no further fragment queue allocation -- set the |
| 1160 | * bound very low, but rely on implementation elsewhere to actually |
| 1161 | * prevent allocation and reclaim current queues. |
| 1162 | */ |
| 1163 | if (ip6_maxfragpackets == 0) |
| 1164 | ip6q_limit = 1; |
| 1165 | if (ip6_maxfrags == 0) |
| 1166 | ip6af_limit = 1; |
| 1167 | /* |
| 1168 | * Arm the purge timer if not already and if there's work to do |
| 1169 | */ |
| 1170 | frag6_sched_timeout(); |
| 1171 | } |
| 1172 | |
| 1173 | static int |
| 1174 | sysctl_maxfragpackets SYSCTL_HANDLER_ARGS |
| 1175 | { |
| 1176 | #pragma unused(arg1, arg2) |
| 1177 | int error, i; |
| 1178 | |
| 1179 | lck_mtx_lock(&ip6qlock); |
| 1180 | i = ip6_maxfragpackets; |
| 1181 | error = sysctl_handle_int(oidp, &i, 0, req); |
| 1182 | if (error || req->newptr == USER_ADDR_NULL) |
| 1183 | goto done; |
| 1184 | /* impose bounds */ |
| 1185 | if (i < -1 || i > (nmbclusters / 4)) { |
| 1186 | error = EINVAL; |
| 1187 | goto done; |
| 1188 | } |
| 1189 | ip6_maxfragpackets = i; |
| 1190 | ip6q_updateparams(); |
| 1191 | done: |
| 1192 | lck_mtx_unlock(&ip6qlock); |
| 1193 | return (error); |
| 1194 | } |
| 1195 | |
| 1196 | static int |
| 1197 | sysctl_maxfrags SYSCTL_HANDLER_ARGS |
| 1198 | { |
| 1199 | #pragma unused(arg1, arg2) |
| 1200 | int error, i; |
| 1201 | |
| 1202 | lck_mtx_lock(&ip6qlock); |
| 1203 | i = ip6_maxfrags; |
| 1204 | error = sysctl_handle_int(oidp, &i, 0, req); |
| 1205 | if (error || req->newptr == USER_ADDR_NULL) |
| 1206 | goto done; |
| 1207 | /* impose bounds */ |
| 1208 | if (i < -1 || i > (nmbclusters / 4)) { |
| 1209 | error = EINVAL; |
| 1210 | goto done; |
| 1211 | } |
| 1212 | ip6_maxfrags= i; |
| 1213 | ip6q_updateparams(); /* see if we need to arm timer */ |
| 1214 | done: |
| 1215 | lck_mtx_unlock(&ip6qlock); |
| 1216 | return (error); |
| 1217 | } |
| 1218 | |