| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 |
| 61 | */ |
| 62 | |
| 63 | #include <sys/param.h> |
| 64 | #include <sys/systm.h> |
| 65 | #include <sys/kernel.h> |
| 66 | #include <sys/malloc.h> |
| 67 | #include <sys/mbuf.h> |
| 68 | #include <sys/domain.h> |
| 69 | #include <sys/protosw.h> |
| 70 | #include <sys/socket.h> |
| 71 | #include <sys/socketvar.h> |
| 72 | #include <sys/sysctl.h> |
| 73 | #include <sys/syslog.h> |
| 74 | #include <sys/mcache.h> |
| 75 | #include <net/ntstat.h> |
| 76 | |
| 77 | #include <kern/zalloc.h> |
| 78 | #include <mach/boolean.h> |
| 79 | |
| 80 | #include <net/if.h> |
| 81 | #include <net/if_types.h> |
| 82 | #include <net/route.h> |
| 83 | #include <net/dlil.h> |
| 84 | #include <net/net_api_stats.h> |
| 85 | |
| 86 | #include <netinet/in.h> |
| 87 | #include <netinet/in_systm.h> |
| 88 | #include <netinet/in_tclass.h> |
| 89 | #include <netinet/ip.h> |
| 90 | #if INET6 |
| 91 | #include <netinet/ip6.h> |
| 92 | #endif /* INET6 */ |
| 93 | #include <netinet/in_pcb.h> |
| 94 | #include <netinet/in_var.h> |
| 95 | #include <netinet/ip_var.h> |
| 96 | #if INET6 |
| 97 | #include <netinet6/in6_pcb.h> |
| 98 | #include <netinet6/ip6_var.h> |
| 99 | #include <netinet6/udp6_var.h> |
| 100 | #endif /* INET6 */ |
| 101 | #include <netinet/ip_icmp.h> |
| 102 | #include <netinet/icmp_var.h> |
| 103 | #include <netinet/udp.h> |
| 104 | #include <netinet/udp_var.h> |
| 105 | #include <sys/kdebug.h> |
| 106 | |
| 107 | #if IPSEC |
| 108 | #include <netinet6/ipsec.h> |
| 109 | #include <netinet6/esp.h> |
| 110 | extern int ipsec_bypass; |
| 111 | extern int esp_udp_encap_port; |
| 112 | #endif /* IPSEC */ |
| 113 | |
| 114 | #if NECP |
| 115 | #include <net/necp.h> |
| 116 | #endif /* NECP */ |
| 117 | |
| 118 | #if FLOW_DIVERT |
| 119 | #include <netinet/flow_divert.h> |
| 120 | #endif /* FLOW_DIVERT */ |
| 121 | |
| 122 | #if CONTENT_FILTER |
| 123 | #include <net/content_filter.h> |
| 124 | #endif /* CONTENT_FILTER */ |
| 125 | |
| 126 | #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0) |
| 127 | #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2) |
| 128 | #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1) |
| 129 | #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3) |
| 130 | #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8)) |
| 131 | #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1) |
| 132 | |
| 133 | /* |
| 134 | * UDP protocol implementation. |
| 135 | * Per RFC 768, August, 1980. |
| 136 | */ |
| 137 | #ifndef COMPAT_42 |
| 138 | static int udpcksum = 1; |
| 139 | #else |
| 140 | static int udpcksum = 0; /* XXX */ |
| 141 | #endif |
| 142 | SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, |
| 143 | CTLFLAG_RW | CTLFLAG_LOCKED, &udpcksum, 0, "" ); |
| 144 | |
| 145 | int udp_log_in_vain = 0; |
| 146 | SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 147 | &udp_log_in_vain, 0, "Log all incoming UDP packets" ); |
| 148 | |
| 149 | static int blackhole = 0; |
| 150 | SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 151 | &blackhole, 0, "Do not send port unreachables for refused connects" ); |
| 152 | |
| 153 | struct inpcbhead udb; /* from udp_var.h */ |
| 154 | #define udb6 udb /* for KAME src sync over BSD*'s */ |
| 155 | struct inpcbinfo udbinfo; |
| 156 | |
| 157 | #ifndef UDBHASHSIZE |
| 158 | #define UDBHASHSIZE 16 |
| 159 | #endif |
| 160 | |
| 161 | /* Garbage collection performed during most recent udp_gc() run */ |
| 162 | static boolean_t udp_gc_done = FALSE; |
| 163 | |
| 164 | #if IPFIREWALL |
| 165 | extern int fw_verbose; |
| 166 | extern void ipfwsyslog(int level, const char *format, ...); |
| 167 | extern void ipfw_stealth_stats_incr_udp(void); |
| 168 | |
| 169 | /* Apple logging, log to ipfw.log */ |
| 170 | #define log_in_vain_log(a) { \ |
| 171 | if ((udp_log_in_vain == 3) && (fw_verbose == 2)) { \ |
| 172 | ipfwsyslog a; \ |
| 173 | } else if ((udp_log_in_vain == 4) && (fw_verbose == 2)) { \ |
| 174 | ipfw_stealth_stats_incr_udp(); \ |
| 175 | } else { \ |
| 176 | log a; \ |
| 177 | } \ |
| 178 | } |
| 179 | #else /* !IPFIREWALL */ |
| 180 | #define log_in_vain_log(a) { log a; } |
| 181 | #endif /* !IPFIREWALL */ |
| 182 | |
| 183 | static int udp_getstat SYSCTL_HANDLER_ARGS; |
| 184 | struct udpstat udpstat; /* from udp_var.h */ |
| 185 | SYSCTL_PROC(_net_inet_udp, UDPCTL_STATS, stats, |
| 186 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 187 | 0, 0, udp_getstat, "S,udpstat" , |
| 188 | "UDP statistics (struct udpstat, netinet/udp_var.h)" ); |
| 189 | |
| 190 | SYSCTL_INT(_net_inet_udp, OID_AUTO, pcbcount, |
| 191 | CTLFLAG_RD | CTLFLAG_LOCKED, &udbinfo.ipi_count, 0, |
| 192 | "Number of active PCBs" ); |
| 193 | |
| 194 | __private_extern__ int udp_use_randomport = 1; |
| 195 | SYSCTL_INT(_net_inet_udp, OID_AUTO, randomize_ports, |
| 196 | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_use_randomport, 0, |
| 197 | "Randomize UDP port numbers" ); |
| 198 | |
| 199 | #if INET6 |
| 200 | struct udp_in6 { |
| 201 | struct sockaddr_in6 uin6_sin; |
| 202 | u_char uin6_init_done : 1; |
| 203 | }; |
| 204 | struct udp_ip6 { |
| 205 | struct ip6_hdr uip6_ip6; |
| 206 | u_char uip6_init_done : 1; |
| 207 | }; |
| 208 | |
| 209 | int udp_abort(struct socket *); |
| 210 | int udp_attach(struct socket *, int, struct proc *); |
| 211 | int udp_bind(struct socket *, struct sockaddr *, struct proc *); |
| 212 | int udp_connect(struct socket *, struct sockaddr *, struct proc *); |
| 213 | int udp_connectx(struct socket *, struct sockaddr *, |
| 214 | struct sockaddr *, struct proc *, uint32_t, sae_associd_t, |
| 215 | sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *); |
| 216 | int udp_detach(struct socket *); |
| 217 | int udp_disconnect(struct socket *); |
| 218 | int udp_disconnectx(struct socket *, sae_associd_t, sae_connid_t); |
| 219 | int udp_send(struct socket *, int, struct mbuf *, struct sockaddr *, |
| 220 | struct mbuf *, struct proc *); |
| 221 | static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int, |
| 222 | struct sockaddr_in *, struct udp_in6 *, struct udp_ip6 *, struct ifnet *); |
| 223 | #else /* !INET6 */ |
| 224 | static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int, |
| 225 | struct sockaddr_in *, struct ifnet *); |
| 226 | #endif /* !INET6 */ |
| 227 | static int udp_input_checksum(struct mbuf *, struct udphdr *, int, int); |
| 228 | int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, |
| 229 | struct mbuf *, struct proc *); |
| 230 | static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip); |
| 231 | static void udp_gc(struct inpcbinfo *); |
| 232 | |
| 233 | struct pr_usrreqs udp_usrreqs = { |
| 234 | .pru_abort = udp_abort, |
| 235 | .pru_attach = udp_attach, |
| 236 | .pru_bind = udp_bind, |
| 237 | .pru_connect = udp_connect, |
| 238 | .pru_connectx = udp_connectx, |
| 239 | .pru_control = in_control, |
| 240 | .pru_detach = udp_detach, |
| 241 | .pru_disconnect = udp_disconnect, |
| 242 | .pru_disconnectx = udp_disconnectx, |
| 243 | .pru_peeraddr = in_getpeeraddr, |
| 244 | .pru_send = udp_send, |
| 245 | .pru_shutdown = udp_shutdown, |
| 246 | .pru_sockaddr = in_getsockaddr, |
| 247 | .pru_sosend = sosend, |
| 248 | .pru_soreceive = soreceive, |
| 249 | .pru_soreceive_list = soreceive_list, |
| 250 | }; |
| 251 | |
| 252 | void |
| 253 | udp_init(struct protosw *pp, struct domain *dp) |
| 254 | { |
| 255 | #pragma unused(dp) |
| 256 | static int udp_initialized = 0; |
| 257 | vm_size_t str_size; |
| 258 | struct inpcbinfo *pcbinfo; |
| 259 | |
| 260 | VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED); |
| 261 | |
| 262 | if (udp_initialized) |
| 263 | return; |
| 264 | udp_initialized = 1; |
| 265 | uint32_t pool_size = (nmbclusters << MCLSHIFT) >> MBSHIFT; |
| 266 | if (pool_size >= 96) { |
| 267 | /* Improves 10GbE UDP performance. */ |
| 268 | udp_recvspace = 786896; |
| 269 | } |
| 270 | LIST_INIT(&udb); |
| 271 | udbinfo.ipi_listhead = &udb; |
| 272 | udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB, |
| 273 | &udbinfo.ipi_hashmask); |
| 274 | udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB, |
| 275 | &udbinfo.ipi_porthashmask); |
| 276 | str_size = (vm_size_t) sizeof (struct inpcb); |
| 277 | udbinfo.ipi_zone = zinit(str_size, 80000*str_size, 8192, "udpcb" ); |
| 278 | |
| 279 | pcbinfo = &udbinfo; |
| 280 | /* |
| 281 | * allocate lock group attribute and group for udp pcb mutexes |
| 282 | */ |
| 283 | pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 284 | pcbinfo->ipi_lock_grp = lck_grp_alloc_init("udppcb" , |
| 285 | pcbinfo->ipi_lock_grp_attr); |
| 286 | pcbinfo->ipi_lock_attr = lck_attr_alloc_init(); |
| 287 | if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp, |
| 288 | pcbinfo->ipi_lock_attr)) == NULL) { |
| 289 | panic("%s: unable to allocate PCB lock\n" , __func__); |
| 290 | /* NOTREACHED */ |
| 291 | } |
| 292 | |
| 293 | udbinfo.ipi_gc = udp_gc; |
| 294 | in_pcbinfo_attach(&udbinfo); |
| 295 | } |
| 296 | |
| 297 | void |
| 298 | udp_input(struct mbuf *m, int iphlen) |
| 299 | { |
| 300 | struct ip *ip; |
| 301 | struct udphdr *uh; |
| 302 | struct inpcb *inp; |
| 303 | struct mbuf *opts = NULL; |
| 304 | int len, isbroadcast; |
| 305 | struct ip save_ip; |
| 306 | struct sockaddr *append_sa; |
| 307 | struct inpcbinfo *pcbinfo = &udbinfo; |
| 308 | struct sockaddr_in udp_in; |
| 309 | struct ip_moptions *imo = NULL; |
| 310 | int foundmembership = 0, ret = 0; |
| 311 | #if INET6 |
| 312 | struct udp_in6 udp_in6; |
| 313 | struct udp_ip6 udp_ip6; |
| 314 | #endif /* INET6 */ |
| 315 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 316 | boolean_t cell = IFNET_IS_CELLULAR(ifp); |
| 317 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); |
| 318 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); |
| 319 | |
| 320 | bzero(&udp_in, sizeof (udp_in)); |
| 321 | udp_in.sin_len = sizeof (struct sockaddr_in); |
| 322 | udp_in.sin_family = AF_INET; |
| 323 | #if INET6 |
| 324 | bzero(&udp_in6, sizeof (udp_in6)); |
| 325 | udp_in6.uin6_sin.sin6_len = sizeof (struct sockaddr_in6); |
| 326 | udp_in6.uin6_sin.sin6_family = AF_INET6; |
| 327 | #endif /* INET6 */ |
| 328 | |
| 329 | udpstat.udps_ipackets++; |
| 330 | |
| 331 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 332 | |
| 333 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 334 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 335 | |
| 336 | /* |
| 337 | * Strip IP options, if any; should skip this, |
| 338 | * make available to user, and use on returned packets, |
| 339 | * but we don't yet have a way to check the checksum |
| 340 | * with options still present. |
| 341 | */ |
| 342 | if (iphlen > sizeof (struct ip)) { |
| 343 | ip_stripoptions(m); |
| 344 | iphlen = sizeof (struct ip); |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Get IP and UDP header together in first mbuf. |
| 349 | */ |
| 350 | ip = mtod(m, struct ip *); |
| 351 | if (m->m_len < iphlen + sizeof (struct udphdr)) { |
| 352 | m = m_pullup(m, iphlen + sizeof (struct udphdr)); |
| 353 | if (m == NULL) { |
| 354 | udpstat.udps_hdrops++; |
| 355 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 356 | 0, 0, 0, 0, 0); |
| 357 | return; |
| 358 | } |
| 359 | ip = mtod(m, struct ip *); |
| 360 | } |
| 361 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); |
| 362 | |
| 363 | /* destination port of 0 is illegal, based on RFC768. */ |
| 364 | if (uh->uh_dport == 0) { |
| 365 | IF_UDP_STATINC(ifp, port0); |
| 366 | goto bad; |
| 367 | } |
| 368 | |
| 369 | KERNEL_DEBUG(DBG_LAYER_IN_BEG, uh->uh_dport, uh->uh_sport, |
| 370 | ip->ip_src.s_addr, ip->ip_dst.s_addr, uh->uh_ulen); |
| 371 | |
| 372 | /* |
| 373 | * Make mbuf data length reflect UDP length. |
| 374 | * If not enough data to reflect UDP length, drop. |
| 375 | */ |
| 376 | len = ntohs((u_short)uh->uh_ulen); |
| 377 | if (ip->ip_len != len) { |
| 378 | if (len > ip->ip_len || len < sizeof (struct udphdr)) { |
| 379 | udpstat.udps_badlen++; |
| 380 | IF_UDP_STATINC(ifp, badlength); |
| 381 | goto bad; |
| 382 | } |
| 383 | m_adj(m, len - ip->ip_len); |
| 384 | /* ip->ip_len = len; */ |
| 385 | } |
| 386 | /* |
| 387 | * Save a copy of the IP header in case we want restore it |
| 388 | * for sending an ICMP error message in response. |
| 389 | */ |
| 390 | save_ip = *ip; |
| 391 | |
| 392 | /* |
| 393 | * Checksum extended UDP header and data. |
| 394 | */ |
| 395 | if (udp_input_checksum(m, uh, iphlen, len)) |
| 396 | goto bad; |
| 397 | |
| 398 | isbroadcast = in_broadcast(ip->ip_dst, ifp); |
| 399 | |
| 400 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || isbroadcast) { |
| 401 | int reuse_sock = 0, mcast_delivered = 0; |
| 402 | |
| 403 | lck_rw_lock_shared(pcbinfo->ipi_lock); |
| 404 | /* |
| 405 | * Deliver a multicast or broadcast datagram to *all* sockets |
| 406 | * for which the local and remote addresses and ports match |
| 407 | * those of the incoming datagram. This allows more than |
| 408 | * one process to receive multi/broadcasts on the same port. |
| 409 | * (This really ought to be done for unicast datagrams as |
| 410 | * well, but that would cause problems with existing |
| 411 | * applications that open both address-specific sockets and |
| 412 | * a wildcard socket listening to the same port -- they would |
| 413 | * end up receiving duplicates of every unicast datagram. |
| 414 | * Those applications open the multiple sockets to overcome an |
| 415 | * inadequacy of the UDP socket interface, but for backwards |
| 416 | * compatibility we avoid the problem here rather than |
| 417 | * fixing the interface. Maybe 4.5BSD will remedy this?) |
| 418 | */ |
| 419 | |
| 420 | /* |
| 421 | * Construct sockaddr format source address. |
| 422 | */ |
| 423 | udp_in.sin_port = uh->uh_sport; |
| 424 | udp_in.sin_addr = ip->ip_src; |
| 425 | /* |
| 426 | * Locate pcb(s) for datagram. |
| 427 | * (Algorithm copied from raw_intr().) |
| 428 | */ |
| 429 | #if INET6 |
| 430 | udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0; |
| 431 | #endif /* INET6 */ |
| 432 | LIST_FOREACH(inp, &udb, inp_list) { |
| 433 | #if IPSEC |
| 434 | int skipit; |
| 435 | #endif /* IPSEC */ |
| 436 | |
| 437 | if (inp->inp_socket == NULL) |
| 438 | continue; |
| 439 | if (inp != sotoinpcb(inp->inp_socket)) { |
| 440 | panic("%s: bad so back ptr inp=%p\n" , |
| 441 | __func__, inp); |
| 442 | /* NOTREACHED */ |
| 443 | } |
| 444 | #if INET6 |
| 445 | if ((inp->inp_vflag & INP_IPV4) == 0) |
| 446 | continue; |
| 447 | #endif /* INET6 */ |
| 448 | if (inp_restricted_recv(inp, ifp)) |
| 449 | continue; |
| 450 | |
| 451 | if ((inp->inp_moptions == NULL) && |
| 452 | (ntohl(ip->ip_dst.s_addr) != |
| 453 | INADDR_ALLHOSTS_GROUP) && (isbroadcast == 0)) |
| 454 | continue; |
| 455 | |
| 456 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == |
| 457 | WNT_STOPUSING) |
| 458 | continue; |
| 459 | |
| 460 | udp_lock(inp->inp_socket, 1, 0); |
| 461 | |
| 462 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == |
| 463 | WNT_STOPUSING) { |
| 464 | udp_unlock(inp->inp_socket, 1, 0); |
| 465 | continue; |
| 466 | } |
| 467 | |
| 468 | if (inp->inp_lport != uh->uh_dport) { |
| 469 | udp_unlock(inp->inp_socket, 1, 0); |
| 470 | continue; |
| 471 | } |
| 472 | if (inp->inp_laddr.s_addr != INADDR_ANY) { |
| 473 | if (inp->inp_laddr.s_addr != |
| 474 | ip->ip_dst.s_addr) { |
| 475 | udp_unlock(inp->inp_socket, 1, 0); |
| 476 | continue; |
| 477 | } |
| 478 | } |
| 479 | if (inp->inp_faddr.s_addr != INADDR_ANY) { |
| 480 | if (inp->inp_faddr.s_addr != |
| 481 | ip->ip_src.s_addr || |
| 482 | inp->inp_fport != uh->uh_sport) { |
| 483 | udp_unlock(inp->inp_socket, 1, 0); |
| 484 | continue; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | if (isbroadcast == 0 && (ntohl(ip->ip_dst.s_addr) != |
| 489 | INADDR_ALLHOSTS_GROUP)) { |
| 490 | struct sockaddr_in group; |
| 491 | int blocked; |
| 492 | |
| 493 | if ((imo = inp->inp_moptions) == NULL) { |
| 494 | udp_unlock(inp->inp_socket, 1, 0); |
| 495 | continue; |
| 496 | } |
| 497 | IMO_LOCK(imo); |
| 498 | |
| 499 | bzero(&group, sizeof (struct sockaddr_in)); |
| 500 | group.sin_len = sizeof (struct sockaddr_in); |
| 501 | group.sin_family = AF_INET; |
| 502 | group.sin_addr = ip->ip_dst; |
| 503 | |
| 504 | blocked = imo_multi_filter(imo, ifp, |
| 505 | &group, &udp_in); |
| 506 | if (blocked == MCAST_PASS) |
| 507 | foundmembership = 1; |
| 508 | |
| 509 | IMO_UNLOCK(imo); |
| 510 | if (!foundmembership) { |
| 511 | udp_unlock(inp->inp_socket, 1, 0); |
| 512 | if (blocked == MCAST_NOTSMEMBER || |
| 513 | blocked == MCAST_MUTED) |
| 514 | udpstat.udps_filtermcast++; |
| 515 | continue; |
| 516 | } |
| 517 | foundmembership = 0; |
| 518 | } |
| 519 | |
| 520 | reuse_sock = (inp->inp_socket->so_options & |
| 521 | (SO_REUSEPORT|SO_REUSEADDR)); |
| 522 | |
| 523 | #if NECP |
| 524 | skipit = 0; |
| 525 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, |
| 526 | uh->uh_dport, uh->uh_sport, &ip->ip_dst, |
| 527 | &ip->ip_src, ifp, NULL, NULL, NULL)) { |
| 528 | /* do not inject data to pcb */ |
| 529 | skipit = 1; |
| 530 | } |
| 531 | if (skipit == 0) |
| 532 | #endif /* NECP */ |
| 533 | { |
| 534 | struct mbuf *n = NULL; |
| 535 | |
| 536 | if (reuse_sock) |
| 537 | n = m_copy(m, 0, M_COPYALL); |
| 538 | #if INET6 |
| 539 | udp_append(inp, ip, m, |
| 540 | iphlen + sizeof (struct udphdr), |
| 541 | &udp_in, &udp_in6, &udp_ip6, ifp); |
| 542 | #else /* !INET6 */ |
| 543 | udp_append(inp, ip, m, |
| 544 | iphlen + sizeof (struct udphdr), |
| 545 | &udp_in, ifp); |
| 546 | #endif /* !INET6 */ |
| 547 | mcast_delivered++; |
| 548 | |
| 549 | m = n; |
| 550 | } |
| 551 | udp_unlock(inp->inp_socket, 1, 0); |
| 552 | |
| 553 | /* |
| 554 | * Don't look for additional matches if this one does |
| 555 | * not have either the SO_REUSEPORT or SO_REUSEADDR |
| 556 | * socket options set. This heuristic avoids searching |
| 557 | * through all pcbs in the common case of a non-shared |
| 558 | * port. It assumes that an application will never |
| 559 | * clear these options after setting them. |
| 560 | */ |
| 561 | if (reuse_sock == 0 || m == NULL) |
| 562 | break; |
| 563 | |
| 564 | /* |
| 565 | * Expect 32-bit aligned data pointer on strict-align |
| 566 | * platforms. |
| 567 | */ |
| 568 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 569 | /* |
| 570 | * Recompute IP and UDP header pointers for new mbuf |
| 571 | */ |
| 572 | ip = mtod(m, struct ip *); |
| 573 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); |
| 574 | } |
| 575 | lck_rw_done(pcbinfo->ipi_lock); |
| 576 | |
| 577 | if (mcast_delivered == 0) { |
| 578 | /* |
| 579 | * No matching pcb found; discard datagram. |
| 580 | * (No need to send an ICMP Port Unreachable |
| 581 | * for a broadcast or multicast datgram.) |
| 582 | */ |
| 583 | udpstat.udps_noportbcast++; |
| 584 | IF_UDP_STATINC(ifp, port_unreach); |
| 585 | goto bad; |
| 586 | } |
| 587 | |
| 588 | /* free the extra copy of mbuf or skipped by IPSec */ |
| 589 | if (m != NULL) |
| 590 | m_freem(m); |
| 591 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 592 | return; |
| 593 | } |
| 594 | |
| 595 | #if IPSEC |
| 596 | /* |
| 597 | * UDP to port 4500 with a payload where the first four bytes are |
| 598 | * not zero is a UDP encapsulated IPSec packet. Packets where |
| 599 | * the payload is one byte and that byte is 0xFF are NAT keepalive |
| 600 | * packets. Decapsulate the ESP packet and carry on with IPSec input |
| 601 | * or discard the NAT keep-alive. |
| 602 | */ |
| 603 | if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 && |
| 604 | uh->uh_dport == ntohs((u_short)esp_udp_encap_port)) { |
| 605 | int payload_len = len - sizeof (struct udphdr) > 4 ? 4 : |
| 606 | len - sizeof (struct udphdr); |
| 607 | |
| 608 | if (m->m_len < iphlen + sizeof (struct udphdr) + payload_len) { |
| 609 | if ((m = m_pullup(m, iphlen + sizeof (struct udphdr) + |
| 610 | payload_len)) == NULL) { |
| 611 | udpstat.udps_hdrops++; |
| 612 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 613 | 0, 0, 0, 0, 0); |
| 614 | return; |
| 615 | } |
| 616 | /* |
| 617 | * Expect 32-bit aligned data pointer on strict-align |
| 618 | * platforms. |
| 619 | */ |
| 620 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 621 | |
| 622 | ip = mtod(m, struct ip *); |
| 623 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); |
| 624 | } |
| 625 | /* Check for NAT keepalive packet */ |
| 626 | if (payload_len == 1 && *(u_int8_t *) |
| 627 | ((caddr_t)uh + sizeof (struct udphdr)) == 0xFF) { |
| 628 | m_freem(m); |
| 629 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 630 | 0, 0, 0, 0, 0); |
| 631 | return; |
| 632 | } else if (payload_len == 4 && *(u_int32_t *)(void *) |
| 633 | ((caddr_t)uh + sizeof (struct udphdr)) != 0) { |
| 634 | /* UDP encapsulated IPSec packet to pass through NAT */ |
| 635 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 636 | 0, 0, 0, 0, 0); |
| 637 | /* preserve the udp header */ |
| 638 | esp4_input(m, iphlen + sizeof (struct udphdr)); |
| 639 | return; |
| 640 | } |
| 641 | } |
| 642 | #endif /* IPSEC */ |
| 643 | |
| 644 | /* |
| 645 | * Locate pcb for datagram. |
| 646 | */ |
| 647 | inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport, |
| 648 | ip->ip_dst, uh->uh_dport, 1, ifp); |
| 649 | if (inp == NULL) { |
| 650 | IF_UDP_STATINC(ifp, port_unreach); |
| 651 | |
| 652 | if (udp_log_in_vain) { |
| 653 | char buf[MAX_IPv4_STR_LEN]; |
| 654 | char buf2[MAX_IPv4_STR_LEN]; |
| 655 | |
| 656 | /* check src and dst address */ |
| 657 | if (udp_log_in_vain < 3) { |
| 658 | log(LOG_INFO, "Connection attempt to " |
| 659 | "UDP %s:%d from %s:%d\n" , inet_ntop(AF_INET, |
| 660 | &ip->ip_dst, buf, sizeof (buf)), |
| 661 | ntohs(uh->uh_dport), inet_ntop(AF_INET, |
| 662 | &ip->ip_src, buf2, sizeof (buf2)), |
| 663 | ntohs(uh->uh_sport)); |
| 664 | } else if (!(m->m_flags & (M_BCAST | M_MCAST)) && |
| 665 | ip->ip_dst.s_addr != ip->ip_src.s_addr) { |
| 666 | log_in_vain_log((LOG_INFO, |
| 667 | "Stealth Mode connection attempt to " |
| 668 | "UDP %s:%d from %s:%d\n" , inet_ntop(AF_INET, |
| 669 | &ip->ip_dst, buf, sizeof (buf)), |
| 670 | ntohs(uh->uh_dport), inet_ntop(AF_INET, |
| 671 | &ip->ip_src, buf2, sizeof (buf2)), |
| 672 | ntohs(uh->uh_sport))) |
| 673 | } |
| 674 | } |
| 675 | udpstat.udps_noport++; |
| 676 | if (m->m_flags & (M_BCAST | M_MCAST)) { |
| 677 | udpstat.udps_noportbcast++; |
| 678 | goto bad; |
| 679 | } |
| 680 | #if ICMP_BANDLIM |
| 681 | if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) |
| 682 | goto bad; |
| 683 | #endif /* ICMP_BANDLIM */ |
| 684 | if (blackhole) |
| 685 | if (ifp && ifp->if_type != IFT_LOOP) |
| 686 | goto bad; |
| 687 | *ip = save_ip; |
| 688 | ip->ip_len += iphlen; |
| 689 | icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); |
| 690 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 691 | return; |
| 692 | } |
| 693 | udp_lock(inp->inp_socket, 1, 0); |
| 694 | |
| 695 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 696 | udp_unlock(inp->inp_socket, 1, 0); |
| 697 | IF_UDP_STATINC(ifp, cleanup); |
| 698 | goto bad; |
| 699 | } |
| 700 | #if NECP |
| 701 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, uh->uh_dport, |
| 702 | uh->uh_sport, &ip->ip_dst, &ip->ip_src, ifp, NULL, NULL, NULL)) { |
| 703 | udp_unlock(inp->inp_socket, 1, 0); |
| 704 | IF_UDP_STATINC(ifp, badipsec); |
| 705 | goto bad; |
| 706 | } |
| 707 | #endif /* NECP */ |
| 708 | |
| 709 | /* |
| 710 | * Construct sockaddr format source address. |
| 711 | * Stuff source address and datagram in user buffer. |
| 712 | */ |
| 713 | udp_in.sin_port = uh->uh_sport; |
| 714 | udp_in.sin_addr = ip->ip_src; |
| 715 | if ((inp->inp_flags & INP_CONTROLOPTS) != 0 || |
| 716 | (inp->inp_socket->so_options & SO_TIMESTAMP) != 0 || |
| 717 | (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0 || |
| 718 | (inp->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) != 0) { |
| 719 | #if INET6 |
| 720 | if (inp->inp_vflag & INP_IPV6) { |
| 721 | int savedflags; |
| 722 | |
| 723 | ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip); |
| 724 | savedflags = inp->inp_flags; |
| 725 | inp->inp_flags &= ~INP_UNMAPPABLEOPTS; |
| 726 | ret = ip6_savecontrol(inp, m, &opts); |
| 727 | inp->inp_flags = savedflags; |
| 728 | } else |
| 729 | #endif /* INET6 */ |
| 730 | { |
| 731 | ret = ip_savecontrol(inp, &opts, ip, m); |
| 732 | } |
| 733 | if (ret != 0) { |
| 734 | udp_unlock(inp->inp_socket, 1, 0); |
| 735 | goto bad; |
| 736 | } |
| 737 | } |
| 738 | m_adj(m, iphlen + sizeof (struct udphdr)); |
| 739 | |
| 740 | KERNEL_DEBUG(DBG_LAYER_IN_END, uh->uh_dport, uh->uh_sport, |
| 741 | save_ip.ip_src.s_addr, save_ip.ip_dst.s_addr, uh->uh_ulen); |
| 742 | |
| 743 | #if INET6 |
| 744 | if (inp->inp_vflag & INP_IPV6) { |
| 745 | in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin); |
| 746 | append_sa = (struct sockaddr *)&udp_in6.uin6_sin; |
| 747 | } else |
| 748 | #endif /* INET6 */ |
| 749 | { |
| 750 | append_sa = (struct sockaddr *)&udp_in; |
| 751 | } |
| 752 | if (nstat_collect) { |
| 753 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); |
| 754 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, m->m_pkthdr.len); |
| 755 | inp_set_activity_bitmap(inp); |
| 756 | } |
| 757 | so_recv_data_stat(inp->inp_socket, m, 0); |
| 758 | if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa, |
| 759 | m, opts, NULL) == 0) { |
| 760 | udpstat.udps_fullsock++; |
| 761 | } else { |
| 762 | sorwakeup(inp->inp_socket); |
| 763 | } |
| 764 | udp_unlock(inp->inp_socket, 1, 0); |
| 765 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 766 | return; |
| 767 | bad: |
| 768 | m_freem(m); |
| 769 | if (opts) |
| 770 | m_freem(opts); |
| 771 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 772 | } |
| 773 | |
| 774 | #if INET6 |
| 775 | static void |
| 776 | ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip) |
| 777 | { |
| 778 | bzero(ip6, sizeof (*ip6)); |
| 779 | |
| 780 | ip6->ip6_vfc = IPV6_VERSION; |
| 781 | ip6->ip6_plen = ip->ip_len; |
| 782 | ip6->ip6_nxt = ip->ip_p; |
| 783 | ip6->ip6_hlim = ip->ip_ttl; |
| 784 | if (ip->ip_src.s_addr) { |
| 785 | ip6->ip6_src.s6_addr32[2] = IPV6_ADDR_INT32_SMP; |
| 786 | ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; |
| 787 | } |
| 788 | if (ip->ip_dst.s_addr) { |
| 789 | ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; |
| 790 | ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; |
| 791 | } |
| 792 | } |
| 793 | #endif /* INET6 */ |
| 794 | |
| 795 | /* |
| 796 | * subroutine of udp_input(), mainly for source code readability. |
| 797 | */ |
| 798 | static void |
| 799 | #if INET6 |
| 800 | udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, |
| 801 | struct sockaddr_in *pudp_in, struct udp_in6 *pudp_in6, |
| 802 | struct udp_ip6 *pudp_ip6, struct ifnet *ifp) |
| 803 | #else /* !INET6 */ |
| 804 | udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, |
| 805 | struct sockaddr_in *pudp_in, struct ifnet *ifp) |
| 806 | #endif /* !INET6 */ |
| 807 | { |
| 808 | struct sockaddr *append_sa; |
| 809 | struct mbuf *opts = 0; |
| 810 | boolean_t cell = IFNET_IS_CELLULAR(ifp); |
| 811 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); |
| 812 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); |
| 813 | int ret = 0; |
| 814 | |
| 815 | #if CONFIG_MACF_NET |
| 816 | if (mac_inpcb_check_deliver(last, n, AF_INET, SOCK_DGRAM) != 0) { |
| 817 | m_freem(n); |
| 818 | return; |
| 819 | } |
| 820 | #endif /* CONFIG_MACF_NET */ |
| 821 | if ((last->inp_flags & INP_CONTROLOPTS) != 0 || |
| 822 | (last->inp_socket->so_options & SO_TIMESTAMP) != 0 || |
| 823 | (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0 || |
| 824 | (last->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) != 0) { |
| 825 | #if INET6 |
| 826 | if (last->inp_vflag & INP_IPV6) { |
| 827 | int savedflags; |
| 828 | |
| 829 | if (pudp_ip6->uip6_init_done == 0) { |
| 830 | ip_2_ip6_hdr(&pudp_ip6->uip6_ip6, ip); |
| 831 | pudp_ip6->uip6_init_done = 1; |
| 832 | } |
| 833 | savedflags = last->inp_flags; |
| 834 | last->inp_flags &= ~INP_UNMAPPABLEOPTS; |
| 835 | ret = ip6_savecontrol(last, n, &opts); |
| 836 | if (ret != 0) { |
| 837 | last->inp_flags = savedflags; |
| 838 | goto error; |
| 839 | } |
| 840 | last->inp_flags = savedflags; |
| 841 | } else |
| 842 | #endif /* INET6 */ |
| 843 | { |
| 844 | ret = ip_savecontrol(last, &opts, ip, n); |
| 845 | if (ret != 0) { |
| 846 | goto error; |
| 847 | } |
| 848 | } |
| 849 | } |
| 850 | #if INET6 |
| 851 | if (last->inp_vflag & INP_IPV6) { |
| 852 | if (pudp_in6->uin6_init_done == 0) { |
| 853 | in6_sin_2_v4mapsin6(pudp_in, &pudp_in6->uin6_sin); |
| 854 | pudp_in6->uin6_init_done = 1; |
| 855 | } |
| 856 | append_sa = (struct sockaddr *)&pudp_in6->uin6_sin; |
| 857 | } else |
| 858 | #endif /* INET6 */ |
| 859 | append_sa = (struct sockaddr *)pudp_in; |
| 860 | if (nstat_collect) { |
| 861 | INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1); |
| 862 | INP_ADD_STAT(last, cell, wifi, wired, rxbytes, |
| 863 | n->m_pkthdr.len); |
| 864 | inp_set_activity_bitmap(last); |
| 865 | } |
| 866 | so_recv_data_stat(last->inp_socket, n, 0); |
| 867 | m_adj(n, off); |
| 868 | if (sbappendaddr(&last->inp_socket->so_rcv, append_sa, |
| 869 | n, opts, NULL) == 0) { |
| 870 | udpstat.udps_fullsock++; |
| 871 | } else { |
| 872 | sorwakeup(last->inp_socket); |
| 873 | } |
| 874 | return; |
| 875 | error: |
| 876 | m_freem(n); |
| 877 | m_freem(opts); |
| 878 | } |
| 879 | |
| 880 | /* |
| 881 | * Notify a udp user of an asynchronous error; |
| 882 | * just wake up so that he can collect error status. |
| 883 | */ |
| 884 | void |
| 885 | udp_notify(struct inpcb *inp, int errno) |
| 886 | { |
| 887 | inp->inp_socket->so_error = errno; |
| 888 | sorwakeup(inp->inp_socket); |
| 889 | sowwakeup(inp->inp_socket); |
| 890 | } |
| 891 | |
| 892 | void |
| 893 | udp_ctlinput(int cmd, struct sockaddr *sa, void *vip, __unused struct ifnet * ifp) |
| 894 | { |
| 895 | struct ip *ip = vip; |
| 896 | void (*notify)(struct inpcb *, int) = udp_notify; |
| 897 | struct in_addr faddr; |
| 898 | struct inpcb *inp = NULL; |
| 899 | |
| 900 | faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr; |
| 901 | if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) |
| 902 | return; |
| 903 | |
| 904 | if (PRC_IS_REDIRECT(cmd)) { |
| 905 | ip = 0; |
| 906 | notify = in_rtchange; |
| 907 | } else if (cmd == PRC_HOSTDEAD) { |
| 908 | ip = 0; |
| 909 | } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) { |
| 910 | return; |
| 911 | } |
| 912 | if (ip) { |
| 913 | struct udphdr uh; |
| 914 | |
| 915 | bcopy(((caddr_t)ip + (ip->ip_hl << 2)), &uh, sizeof (uh)); |
| 916 | inp = in_pcblookup_hash(&udbinfo, faddr, uh.uh_dport, |
| 917 | ip->ip_src, uh.uh_sport, 0, NULL); |
| 918 | if (inp != NULL && inp->inp_socket != NULL) { |
| 919 | udp_lock(inp->inp_socket, 1, 0); |
| 920 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == |
| 921 | WNT_STOPUSING) { |
| 922 | udp_unlock(inp->inp_socket, 1, 0); |
| 923 | return; |
| 924 | } |
| 925 | (*notify)(inp, inetctlerrmap[cmd]); |
| 926 | udp_unlock(inp->inp_socket, 1, 0); |
| 927 | } |
| 928 | } else { |
| 929 | in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify); |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | int |
| 934 | udp_ctloutput(struct socket *so, struct sockopt *sopt) |
| 935 | { |
| 936 | int error = 0, optval = 0; |
| 937 | struct inpcb *inp; |
| 938 | |
| 939 | /* Allow <SOL_SOCKET,SO_FLUSH> at this level */ |
| 940 | if (sopt->sopt_level != IPPROTO_UDP && |
| 941 | !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) |
| 942 | return (ip_ctloutput(so, sopt)); |
| 943 | |
| 944 | inp = sotoinpcb(so); |
| 945 | |
| 946 | switch (sopt->sopt_dir) { |
| 947 | case SOPT_SET: |
| 948 | switch (sopt->sopt_name) { |
| 949 | case UDP_NOCKSUM: |
| 950 | /* This option is settable only for UDP over IPv4 */ |
| 951 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 952 | error = EINVAL; |
| 953 | break; |
| 954 | } |
| 955 | |
| 956 | if ((error = sooptcopyin(sopt, &optval, sizeof (optval), |
| 957 | sizeof (optval))) != 0) |
| 958 | break; |
| 959 | |
| 960 | if (optval != 0) |
| 961 | inp->inp_flags |= INP_UDP_NOCKSUM; |
| 962 | else |
| 963 | inp->inp_flags &= ~INP_UDP_NOCKSUM; |
| 964 | break; |
| 965 | case UDP_KEEPALIVE_OFFLOAD: |
| 966 | { |
| 967 | struct udp_keepalive_offload ka; |
| 968 | /* |
| 969 | * If the socket is not connected, the stack will |
| 970 | * not know the destination address to put in the |
| 971 | * keepalive datagram. Return an error now instead |
| 972 | * of failing later. |
| 973 | */ |
| 974 | if (!(so->so_state & SS_ISCONNECTED)) { |
| 975 | error = EINVAL; |
| 976 | break; |
| 977 | } |
| 978 | if (sopt->sopt_valsize != sizeof(ka)) { |
| 979 | error = EINVAL; |
| 980 | break; |
| 981 | } |
| 982 | if ((error = sooptcopyin(sopt, &ka, sizeof(ka), |
| 983 | sizeof(ka))) != 0) |
| 984 | break; |
| 985 | |
| 986 | /* application should specify the type */ |
| 987 | if (ka.ka_type == 0) |
| 988 | return (EINVAL); |
| 989 | |
| 990 | if (ka.ka_interval == 0) { |
| 991 | /* |
| 992 | * if interval is 0, disable the offload |
| 993 | * mechanism |
| 994 | */ |
| 995 | if (inp->inp_keepalive_data != NULL) |
| 996 | FREE(inp->inp_keepalive_data, |
| 997 | M_TEMP); |
| 998 | inp->inp_keepalive_data = NULL; |
| 999 | inp->inp_keepalive_datalen = 0; |
| 1000 | inp->inp_keepalive_interval = 0; |
| 1001 | inp->inp_keepalive_type = 0; |
| 1002 | inp->inp_flags2 &= ~INP2_KEEPALIVE_OFFLOAD; |
| 1003 | } else { |
| 1004 | if (inp->inp_keepalive_data != NULL) { |
| 1005 | FREE(inp->inp_keepalive_data, |
| 1006 | M_TEMP); |
| 1007 | inp->inp_keepalive_data = NULL; |
| 1008 | } |
| 1009 | |
| 1010 | inp->inp_keepalive_datalen = min( |
| 1011 | ka.ka_data_len, |
| 1012 | UDP_KEEPALIVE_OFFLOAD_DATA_SIZE); |
| 1013 | if (inp->inp_keepalive_datalen > 0) { |
| 1014 | MALLOC(inp->inp_keepalive_data, |
| 1015 | u_int8_t *, |
| 1016 | inp->inp_keepalive_datalen, |
| 1017 | M_TEMP, M_WAITOK); |
| 1018 | if (inp->inp_keepalive_data == NULL) { |
| 1019 | inp->inp_keepalive_datalen = 0; |
| 1020 | error = ENOMEM; |
| 1021 | break; |
| 1022 | } |
| 1023 | bcopy(ka.ka_data, |
| 1024 | inp->inp_keepalive_data, |
| 1025 | inp->inp_keepalive_datalen); |
| 1026 | } else { |
| 1027 | inp->inp_keepalive_datalen = 0; |
| 1028 | } |
| 1029 | inp->inp_keepalive_interval = |
| 1030 | min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS, |
| 1031 | ka.ka_interval); |
| 1032 | inp->inp_keepalive_type = ka.ka_type; |
| 1033 | inp->inp_flags2 |= INP2_KEEPALIVE_OFFLOAD; |
| 1034 | } |
| 1035 | break; |
| 1036 | } |
| 1037 | case SO_FLUSH: |
| 1038 | if ((error = sooptcopyin(sopt, &optval, sizeof (optval), |
| 1039 | sizeof (optval))) != 0) |
| 1040 | break; |
| 1041 | |
| 1042 | error = inp_flush(inp, optval); |
| 1043 | break; |
| 1044 | |
| 1045 | default: |
| 1046 | error = ENOPROTOOPT; |
| 1047 | break; |
| 1048 | } |
| 1049 | break; |
| 1050 | |
| 1051 | case SOPT_GET: |
| 1052 | switch (sopt->sopt_name) { |
| 1053 | case UDP_NOCKSUM: |
| 1054 | optval = inp->inp_flags & INP_UDP_NOCKSUM; |
| 1055 | break; |
| 1056 | |
| 1057 | default: |
| 1058 | error = ENOPROTOOPT; |
| 1059 | break; |
| 1060 | } |
| 1061 | if (error == 0) |
| 1062 | error = sooptcopyout(sopt, &optval, sizeof (optval)); |
| 1063 | break; |
| 1064 | } |
| 1065 | return (error); |
| 1066 | } |
| 1067 | |
| 1068 | static int |
| 1069 | udp_pcblist SYSCTL_HANDLER_ARGS |
| 1070 | { |
| 1071 | #pragma unused(oidp, arg1, arg2) |
| 1072 | int error, i, n; |
| 1073 | struct inpcb *inp, **inp_list; |
| 1074 | inp_gen_t gencnt; |
| 1075 | struct xinpgen xig; |
| 1076 | |
| 1077 | /* |
| 1078 | * The process of preparing the TCB list is too time-consuming and |
| 1079 | * resource-intensive to repeat twice on every request. |
| 1080 | */ |
| 1081 | lck_rw_lock_exclusive(udbinfo.ipi_lock); |
| 1082 | if (req->oldptr == USER_ADDR_NULL) { |
| 1083 | n = udbinfo.ipi_count; |
| 1084 | req->oldidx = 2 * (sizeof (xig)) |
| 1085 | + (n + n/8) * sizeof (struct xinpcb); |
| 1086 | lck_rw_done(udbinfo.ipi_lock); |
| 1087 | return (0); |
| 1088 | } |
| 1089 | |
| 1090 | if (req->newptr != USER_ADDR_NULL) { |
| 1091 | lck_rw_done(udbinfo.ipi_lock); |
| 1092 | return (EPERM); |
| 1093 | } |
| 1094 | |
| 1095 | /* |
| 1096 | * OK, now we're committed to doing something. |
| 1097 | */ |
| 1098 | gencnt = udbinfo.ipi_gencnt; |
| 1099 | n = udbinfo.ipi_count; |
| 1100 | |
| 1101 | bzero(&xig, sizeof (xig)); |
| 1102 | xig.xig_len = sizeof (xig); |
| 1103 | xig.xig_count = n; |
| 1104 | xig.xig_gen = gencnt; |
| 1105 | xig.xig_sogen = so_gencnt; |
| 1106 | error = SYSCTL_OUT(req, &xig, sizeof (xig)); |
| 1107 | if (error) { |
| 1108 | lck_rw_done(udbinfo.ipi_lock); |
| 1109 | return (error); |
| 1110 | } |
| 1111 | /* |
| 1112 | * We are done if there is no pcb |
| 1113 | */ |
| 1114 | if (n == 0) { |
| 1115 | lck_rw_done(udbinfo.ipi_lock); |
| 1116 | return (0); |
| 1117 | } |
| 1118 | |
| 1119 | inp_list = _MALLOC(n * sizeof (*inp_list), M_TEMP, M_WAITOK); |
| 1120 | if (inp_list == 0) { |
| 1121 | lck_rw_done(udbinfo.ipi_lock); |
| 1122 | return (ENOMEM); |
| 1123 | } |
| 1124 | |
| 1125 | for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n; |
| 1126 | inp = LIST_NEXT(inp, inp_list)) { |
| 1127 | if (inp->inp_gencnt <= gencnt && |
| 1128 | inp->inp_state != INPCB_STATE_DEAD) |
| 1129 | inp_list[i++] = inp; |
| 1130 | } |
| 1131 | n = i; |
| 1132 | |
| 1133 | error = 0; |
| 1134 | for (i = 0; i < n; i++) { |
| 1135 | struct xinpcb xi; |
| 1136 | |
| 1137 | inp = inp_list[i]; |
| 1138 | |
| 1139 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) |
| 1140 | continue; |
| 1141 | udp_lock(inp->inp_socket, 1, 0); |
| 1142 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 1143 | udp_unlock(inp->inp_socket, 1, 0); |
| 1144 | continue; |
| 1145 | } |
| 1146 | if (inp->inp_gencnt > gencnt) { |
| 1147 | udp_unlock(inp->inp_socket, 1, 0); |
| 1148 | continue; |
| 1149 | } |
| 1150 | |
| 1151 | bzero(&xi, sizeof (xi)); |
| 1152 | xi.xi_len = sizeof (xi); |
| 1153 | /* XXX should avoid extra copy */ |
| 1154 | inpcb_to_compat(inp, &xi.xi_inp); |
| 1155 | if (inp->inp_socket) |
| 1156 | sotoxsocket(inp->inp_socket, &xi.xi_socket); |
| 1157 | |
| 1158 | udp_unlock(inp->inp_socket, 1, 0); |
| 1159 | |
| 1160 | error = SYSCTL_OUT(req, &xi, sizeof (xi)); |
| 1161 | } |
| 1162 | if (!error) { |
| 1163 | /* |
| 1164 | * Give the user an updated idea of our state. |
| 1165 | * If the generation differs from what we told |
| 1166 | * her before, she knows that something happened |
| 1167 | * while we were processing this request, and it |
| 1168 | * might be necessary to retry. |
| 1169 | */ |
| 1170 | bzero(&xig, sizeof (xig)); |
| 1171 | xig.xig_len = sizeof (xig); |
| 1172 | xig.xig_gen = udbinfo.ipi_gencnt; |
| 1173 | xig.xig_sogen = so_gencnt; |
| 1174 | xig.xig_count = udbinfo.ipi_count; |
| 1175 | error = SYSCTL_OUT(req, &xig, sizeof (xig)); |
| 1176 | } |
| 1177 | FREE(inp_list, M_TEMP); |
| 1178 | lck_rw_done(udbinfo.ipi_lock); |
| 1179 | return (error); |
| 1180 | } |
| 1181 | |
| 1182 | SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, |
| 1183 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist, |
| 1184 | "S,xinpcb" , "List of active UDP sockets" ); |
| 1185 | |
| 1186 | #if !CONFIG_EMBEDDED |
| 1187 | |
| 1188 | static int |
| 1189 | udp_pcblist64 SYSCTL_HANDLER_ARGS |
| 1190 | { |
| 1191 | #pragma unused(oidp, arg1, arg2) |
| 1192 | int error, i, n; |
| 1193 | struct inpcb *inp, **inp_list; |
| 1194 | inp_gen_t gencnt; |
| 1195 | struct xinpgen xig; |
| 1196 | |
| 1197 | /* |
| 1198 | * The process of preparing the TCB list is too time-consuming and |
| 1199 | * resource-intensive to repeat twice on every request. |
| 1200 | */ |
| 1201 | lck_rw_lock_shared(udbinfo.ipi_lock); |
| 1202 | if (req->oldptr == USER_ADDR_NULL) { |
| 1203 | n = udbinfo.ipi_count; |
| 1204 | req->oldidx = |
| 1205 | 2 * (sizeof (xig)) + (n + n/8) * sizeof (struct xinpcb64); |
| 1206 | lck_rw_done(udbinfo.ipi_lock); |
| 1207 | return (0); |
| 1208 | } |
| 1209 | |
| 1210 | if (req->newptr != USER_ADDR_NULL) { |
| 1211 | lck_rw_done(udbinfo.ipi_lock); |
| 1212 | return (EPERM); |
| 1213 | } |
| 1214 | |
| 1215 | /* |
| 1216 | * OK, now we're committed to doing something. |
| 1217 | */ |
| 1218 | gencnt = udbinfo.ipi_gencnt; |
| 1219 | n = udbinfo.ipi_count; |
| 1220 | |
| 1221 | bzero(&xig, sizeof (xig)); |
| 1222 | xig.xig_len = sizeof (xig); |
| 1223 | xig.xig_count = n; |
| 1224 | xig.xig_gen = gencnt; |
| 1225 | xig.xig_sogen = so_gencnt; |
| 1226 | error = SYSCTL_OUT(req, &xig, sizeof (xig)); |
| 1227 | if (error) { |
| 1228 | lck_rw_done(udbinfo.ipi_lock); |
| 1229 | return (error); |
| 1230 | } |
| 1231 | /* |
| 1232 | * We are done if there is no pcb |
| 1233 | */ |
| 1234 | if (n == 0) { |
| 1235 | lck_rw_done(udbinfo.ipi_lock); |
| 1236 | return (0); |
| 1237 | } |
| 1238 | |
| 1239 | inp_list = _MALLOC(n * sizeof (*inp_list), M_TEMP, M_WAITOK); |
| 1240 | if (inp_list == 0) { |
| 1241 | lck_rw_done(udbinfo.ipi_lock); |
| 1242 | return (ENOMEM); |
| 1243 | } |
| 1244 | |
| 1245 | for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n; |
| 1246 | inp = LIST_NEXT(inp, inp_list)) { |
| 1247 | if (inp->inp_gencnt <= gencnt && |
| 1248 | inp->inp_state != INPCB_STATE_DEAD) |
| 1249 | inp_list[i++] = inp; |
| 1250 | } |
| 1251 | n = i; |
| 1252 | |
| 1253 | error = 0; |
| 1254 | for (i = 0; i < n; i++) { |
| 1255 | struct xinpcb64 xi; |
| 1256 | |
| 1257 | inp = inp_list[i]; |
| 1258 | |
| 1259 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) |
| 1260 | continue; |
| 1261 | udp_lock(inp->inp_socket, 1, 0); |
| 1262 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 1263 | udp_unlock(inp->inp_socket, 1, 0); |
| 1264 | continue; |
| 1265 | } |
| 1266 | if (inp->inp_gencnt > gencnt) { |
| 1267 | udp_unlock(inp->inp_socket, 1, 0); |
| 1268 | continue; |
| 1269 | } |
| 1270 | |
| 1271 | bzero(&xi, sizeof (xi)); |
| 1272 | xi.xi_len = sizeof (xi); |
| 1273 | inpcb_to_xinpcb64(inp, &xi); |
| 1274 | if (inp->inp_socket) |
| 1275 | sotoxsocket64(inp->inp_socket, &xi.xi_socket); |
| 1276 | |
| 1277 | udp_unlock(inp->inp_socket, 1, 0); |
| 1278 | |
| 1279 | error = SYSCTL_OUT(req, &xi, sizeof (xi)); |
| 1280 | } |
| 1281 | if (!error) { |
| 1282 | /* |
| 1283 | * Give the user an updated idea of our state. |
| 1284 | * If the generation differs from what we told |
| 1285 | * her before, she knows that something happened |
| 1286 | * while we were processing this request, and it |
| 1287 | * might be necessary to retry. |
| 1288 | */ |
| 1289 | bzero(&xig, sizeof (xig)); |
| 1290 | xig.xig_len = sizeof (xig); |
| 1291 | xig.xig_gen = udbinfo.ipi_gencnt; |
| 1292 | xig.xig_sogen = so_gencnt; |
| 1293 | xig.xig_count = udbinfo.ipi_count; |
| 1294 | error = SYSCTL_OUT(req, &xig, sizeof (xig)); |
| 1295 | } |
| 1296 | FREE(inp_list, M_TEMP); |
| 1297 | lck_rw_done(udbinfo.ipi_lock); |
| 1298 | return (error); |
| 1299 | } |
| 1300 | |
| 1301 | SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist64, |
| 1302 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist64, |
| 1303 | "S,xinpcb64" , "List of active UDP sockets" ); |
| 1304 | |
| 1305 | #endif /* !CONFIG_EMBEDDED */ |
| 1306 | |
| 1307 | static int |
| 1308 | udp_pcblist_n SYSCTL_HANDLER_ARGS |
| 1309 | { |
| 1310 | #pragma unused(oidp, arg1, arg2) |
| 1311 | return (get_pcblist_n(IPPROTO_UDP, req, &udbinfo)); |
| 1312 | } |
| 1313 | |
| 1314 | SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist_n, |
| 1315 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist_n, |
| 1316 | "S,xinpcb_n" , "List of active UDP sockets" ); |
| 1317 | |
| 1318 | __private_extern__ void |
| 1319 | udp_get_ports_used(uint32_t ifindex, int protocol, uint32_t flags, |
| 1320 | bitstr_t *bitfield) |
| 1321 | { |
| 1322 | inpcb_get_ports_used(ifindex, protocol, flags, bitfield, |
| 1323 | &udbinfo); |
| 1324 | } |
| 1325 | |
| 1326 | __private_extern__ uint32_t |
| 1327 | udp_count_opportunistic(unsigned int ifindex, u_int32_t flags) |
| 1328 | { |
| 1329 | return (inpcb_count_opportunistic(ifindex, &udbinfo, flags)); |
| 1330 | } |
| 1331 | |
| 1332 | __private_extern__ uint32_t |
| 1333 | udp_find_anypcb_byaddr(struct ifaddr *ifa) |
| 1334 | { |
| 1335 | return (inpcb_find_anypcb_byaddr(ifa, &udbinfo)); |
| 1336 | } |
| 1337 | |
| 1338 | static int |
| 1339 | udp_check_pktinfo(struct mbuf *control, struct ifnet **outif, |
| 1340 | struct in_addr *laddr) |
| 1341 | { |
| 1342 | struct cmsghdr *cm = 0; |
| 1343 | struct in_pktinfo *pktinfo; |
| 1344 | struct ifnet *ifp; |
| 1345 | |
| 1346 | if (outif != NULL) |
| 1347 | *outif = NULL; |
| 1348 | |
| 1349 | /* |
| 1350 | * XXX: Currently, we assume all the optional information is stored |
| 1351 | * in a single mbuf. |
| 1352 | */ |
| 1353 | if (control->m_next) |
| 1354 | return (EINVAL); |
| 1355 | |
| 1356 | if (control->m_len < CMSG_LEN(0)) |
| 1357 | return (EINVAL); |
| 1358 | |
| 1359 | for (cm = M_FIRST_CMSGHDR(control); cm; |
| 1360 | cm = M_NXT_CMSGHDR(control, cm)) { |
| 1361 | if (cm->cmsg_len < sizeof (struct cmsghdr) || |
| 1362 | cm->cmsg_len > control->m_len) |
| 1363 | return (EINVAL); |
| 1364 | |
| 1365 | if (cm->cmsg_level != IPPROTO_IP || cm->cmsg_type != IP_PKTINFO) |
| 1366 | continue; |
| 1367 | |
| 1368 | if (cm->cmsg_len != CMSG_LEN(sizeof (struct in_pktinfo))) |
| 1369 | return (EINVAL); |
| 1370 | |
| 1371 | pktinfo = (struct in_pktinfo *)(void *)CMSG_DATA(cm); |
| 1372 | |
| 1373 | /* Check for a valid ifindex in pktinfo */ |
| 1374 | ifnet_head_lock_shared(); |
| 1375 | |
| 1376 | if (pktinfo->ipi_ifindex > if_index) { |
| 1377 | ifnet_head_done(); |
| 1378 | return (ENXIO); |
| 1379 | } |
| 1380 | |
| 1381 | /* |
| 1382 | * If ipi_ifindex is specified it takes precedence |
| 1383 | * over ipi_spec_dst. |
| 1384 | */ |
| 1385 | if (pktinfo->ipi_ifindex) { |
| 1386 | ifp = ifindex2ifnet[pktinfo->ipi_ifindex]; |
| 1387 | if (ifp == NULL) { |
| 1388 | ifnet_head_done(); |
| 1389 | return (ENXIO); |
| 1390 | } |
| 1391 | if (outif != NULL) { |
| 1392 | ifnet_reference(ifp); |
| 1393 | *outif = ifp; |
| 1394 | } |
| 1395 | ifnet_head_done(); |
| 1396 | laddr->s_addr = INADDR_ANY; |
| 1397 | break; |
| 1398 | } |
| 1399 | |
| 1400 | ifnet_head_done(); |
| 1401 | |
| 1402 | /* |
| 1403 | * Use the provided ipi_spec_dst address for temp |
| 1404 | * source address. |
| 1405 | */ |
| 1406 | *laddr = pktinfo->ipi_spec_dst; |
| 1407 | break; |
| 1408 | } |
| 1409 | return (0); |
| 1410 | } |
| 1411 | |
| 1412 | int |
| 1413 | udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, |
| 1414 | struct mbuf *control, struct proc *p) |
| 1415 | { |
| 1416 | struct udpiphdr *ui; |
| 1417 | int len = m->m_pkthdr.len; |
| 1418 | struct sockaddr_in *sin; |
| 1419 | struct in_addr origladdr, laddr, faddr, pi_laddr; |
| 1420 | u_short lport, fport; |
| 1421 | int error = 0, udp_dodisconnect = 0, pktinfo = 0; |
| 1422 | struct socket *so = inp->inp_socket; |
| 1423 | int soopts = 0; |
| 1424 | struct mbuf *inpopts; |
| 1425 | struct ip_moptions *mopts; |
| 1426 | struct route ro; |
| 1427 | struct ip_out_args ipoa; |
| 1428 | #if CONTENT_FILTER |
| 1429 | struct m_tag *cfil_tag = NULL; |
| 1430 | bool cfil_faddr_use = false; |
| 1431 | uint32_t cfil_so_state_change_cnt = 0; |
| 1432 | short cfil_so_options = 0; |
| 1433 | struct sockaddr *cfil_faddr = NULL; |
| 1434 | #endif |
| 1435 | |
| 1436 | bzero(&ipoa, sizeof(ipoa)); |
| 1437 | ipoa.ipoa_boundif = IFSCOPE_NONE; |
| 1438 | ipoa.ipoa_flags = IPOAF_SELECT_SRCIF; |
| 1439 | |
| 1440 | struct ifnet *outif = NULL; |
| 1441 | struct flowadv *adv = &ipoa.ipoa_flowadv; |
| 1442 | int sotc = SO_TC_UNSPEC; |
| 1443 | int netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 1444 | struct ifnet *origoutifp = NULL; |
| 1445 | int flowadv = 0; |
| 1446 | |
| 1447 | /* Enable flow advisory only when connected */ |
| 1448 | flowadv = (so->so_state & SS_ISCONNECTED) ? 1 : 0; |
| 1449 | pi_laddr.s_addr = INADDR_ANY; |
| 1450 | |
| 1451 | KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 1452 | |
| 1453 | socket_lock_assert_owned(so); |
| 1454 | |
| 1455 | #if CONTENT_FILTER |
| 1456 | /* |
| 1457 | * If socket is subject to UDP Content Filter and no addr is passed in, |
| 1458 | * retrieve CFIL saved state from mbuf and use it if necessary. |
| 1459 | */ |
| 1460 | if (so->so_cfil_db && !addr) { |
| 1461 | cfil_tag = cfil_udp_get_socket_state(m, &cfil_so_state_change_cnt, &cfil_so_options, &cfil_faddr); |
| 1462 | if (cfil_tag) { |
| 1463 | sin = (struct sockaddr_in *)(void *)cfil_faddr; |
| 1464 | if (inp && inp->inp_faddr.s_addr == INADDR_ANY) { |
| 1465 | /* |
| 1466 | * Socket is unconnected, simply use the saved faddr as 'addr' to go through |
| 1467 | * the connect/disconnect logic. |
| 1468 | */ |
| 1469 | addr = (struct sockaddr *)cfil_faddr; |
| 1470 | } else if ((so->so_state_change_cnt != cfil_so_state_change_cnt) && |
| 1471 | (inp->inp_fport != sin->sin_port || |
| 1472 | inp->inp_faddr.s_addr != sin->sin_addr.s_addr)) { |
| 1473 | /* |
| 1474 | * Socket is connected but socket state and dest addr/port changed. |
| 1475 | * We need to use the saved faddr info. |
| 1476 | */ |
| 1477 | cfil_faddr_use = true; |
| 1478 | } |
| 1479 | } |
| 1480 | } |
| 1481 | #endif |
| 1482 | |
| 1483 | if (control != NULL) { |
| 1484 | sotc = so_tc_from_control(control, &netsvctype); |
| 1485 | VERIFY(outif == NULL); |
| 1486 | error = udp_check_pktinfo(control, &outif, &pi_laddr); |
| 1487 | m_freem(control); |
| 1488 | control = NULL; |
| 1489 | if (error) |
| 1490 | goto release; |
| 1491 | pktinfo++; |
| 1492 | if (outif != NULL) |
| 1493 | ipoa.ipoa_boundif = outif->if_index; |
| 1494 | } |
| 1495 | if (sotc == SO_TC_UNSPEC) { |
| 1496 | sotc = so->so_traffic_class; |
| 1497 | netsvctype = so->so_netsvctype; |
| 1498 | } |
| 1499 | |
| 1500 | KERNEL_DEBUG(DBG_LAYER_OUT_BEG, inp->inp_fport, inp->inp_lport, |
| 1501 | inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, |
| 1502 | (htons((u_short)len + sizeof (struct udphdr)))); |
| 1503 | |
| 1504 | if (len + sizeof (struct udpiphdr) > IP_MAXPACKET) { |
| 1505 | error = EMSGSIZE; |
| 1506 | goto release; |
| 1507 | } |
| 1508 | |
| 1509 | if (flowadv && INP_WAIT_FOR_IF_FEEDBACK(inp)) { |
| 1510 | /* |
| 1511 | * The socket is flow-controlled, drop the packets |
| 1512 | * until the inp is not flow controlled |
| 1513 | */ |
| 1514 | error = ENOBUFS; |
| 1515 | goto release; |
| 1516 | } |
| 1517 | /* |
| 1518 | * If socket was bound to an ifindex, tell ip_output about it. |
| 1519 | * If the ancillary IP_PKTINFO option contains an interface index, |
| 1520 | * it takes precedence over the one specified by IP_BOUND_IF. |
| 1521 | */ |
| 1522 | if (ipoa.ipoa_boundif == IFSCOPE_NONE && |
| 1523 | (inp->inp_flags & INP_BOUND_IF)) { |
| 1524 | VERIFY(inp->inp_boundifp != NULL); |
| 1525 | ifnet_reference(inp->inp_boundifp); /* for this routine */ |
| 1526 | if (outif != NULL) |
| 1527 | ifnet_release(outif); |
| 1528 | outif = inp->inp_boundifp; |
| 1529 | ipoa.ipoa_boundif = outif->if_index; |
| 1530 | } |
| 1531 | if (INP_NO_CELLULAR(inp)) |
| 1532 | ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; |
| 1533 | if (INP_NO_EXPENSIVE(inp)) |
| 1534 | ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE; |
| 1535 | if (INP_AWDL_UNRESTRICTED(inp)) |
| 1536 | ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED; |
| 1537 | ipoa.ipoa_sotc = sotc; |
| 1538 | ipoa.ipoa_netsvctype = netsvctype; |
| 1539 | soopts |= IP_OUTARGS; |
| 1540 | |
| 1541 | /* |
| 1542 | * If there was a routing change, discard cached route and check |
| 1543 | * that we have a valid source address. Reacquire a new source |
| 1544 | * address if INADDR_ANY was specified. |
| 1545 | * |
| 1546 | * If we are using cfil saved state, go through this cache cleanup |
| 1547 | * so that we can get a new route. |
| 1548 | */ |
| 1549 | if (ROUTE_UNUSABLE(&inp->inp_route) |
| 1550 | #if CONTENT_FILTER |
| 1551 | || cfil_faddr_use |
| 1552 | #endif |
| 1553 | ) { |
| 1554 | struct in_ifaddr *ia = NULL; |
| 1555 | |
| 1556 | ROUTE_RELEASE(&inp->inp_route); |
| 1557 | |
| 1558 | /* src address is gone? */ |
| 1559 | if (inp->inp_laddr.s_addr != INADDR_ANY && |
| 1560 | (ia = ifa_foraddr(inp->inp_laddr.s_addr)) == NULL) { |
| 1561 | if (!(inp->inp_flags & INP_INADDR_ANY) || |
| 1562 | (so->so_state & SS_ISCONNECTED)) { |
| 1563 | /* |
| 1564 | * Rdar://5448998 |
| 1565 | * If the source address is gone, return an |
| 1566 | * error if: |
| 1567 | * - the source was specified |
| 1568 | * - the socket was already connected |
| 1569 | */ |
| 1570 | soevent(so, (SO_FILT_HINT_LOCKED | |
| 1571 | SO_FILT_HINT_NOSRCADDR)); |
| 1572 | error = EADDRNOTAVAIL; |
| 1573 | goto release; |
| 1574 | } else { |
| 1575 | /* new src will be set later */ |
| 1576 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 1577 | inp->inp_last_outifp = NULL; |
| 1578 | } |
| 1579 | } |
| 1580 | if (ia != NULL) |
| 1581 | IFA_REMREF(&ia->ia_ifa); |
| 1582 | } |
| 1583 | |
| 1584 | /* |
| 1585 | * IP_PKTINFO option check. If a temporary scope or src address |
| 1586 | * is provided, use it for this packet only and make sure we forget |
| 1587 | * it after sending this datagram. |
| 1588 | */ |
| 1589 | if (pi_laddr.s_addr != INADDR_ANY || |
| 1590 | (ipoa.ipoa_boundif != IFSCOPE_NONE && pktinfo)) { |
| 1591 | /* temp src address for this datagram only */ |
| 1592 | laddr = pi_laddr; |
| 1593 | origladdr.s_addr = INADDR_ANY; |
| 1594 | /* we don't want to keep the laddr or route */ |
| 1595 | udp_dodisconnect = 1; |
| 1596 | /* remember we don't care about src addr */ |
| 1597 | inp->inp_flags |= INP_INADDR_ANY; |
| 1598 | } else { |
| 1599 | origladdr = laddr = inp->inp_laddr; |
| 1600 | } |
| 1601 | |
| 1602 | origoutifp = inp->inp_last_outifp; |
| 1603 | faddr = inp->inp_faddr; |
| 1604 | lport = inp->inp_lport; |
| 1605 | fport = inp->inp_fport; |
| 1606 | |
| 1607 | #if CONTENT_FILTER |
| 1608 | if (cfil_faddr_use) |
| 1609 | { |
| 1610 | faddr = ((struct sockaddr_in *)(void *)cfil_faddr)->sin_addr; |
| 1611 | fport = ((struct sockaddr_in *)(void *)cfil_faddr)->sin_port; |
| 1612 | } |
| 1613 | #endif |
| 1614 | |
| 1615 | if (addr) { |
| 1616 | sin = (struct sockaddr_in *)(void *)addr; |
| 1617 | if (faddr.s_addr != INADDR_ANY) { |
| 1618 | error = EISCONN; |
| 1619 | goto release; |
| 1620 | } |
| 1621 | if (lport == 0) { |
| 1622 | /* |
| 1623 | * In case we don't have a local port set, go through |
| 1624 | * the full connect. We don't have a local port yet |
| 1625 | * (i.e., we can't be looked up), so it's not an issue |
| 1626 | * if the input runs at the same time we do this. |
| 1627 | */ |
| 1628 | /* if we have a source address specified, use that */ |
| 1629 | if (pi_laddr.s_addr != INADDR_ANY) |
| 1630 | inp->inp_laddr = pi_laddr; |
| 1631 | /* |
| 1632 | * If a scope is specified, use it. Scope from |
| 1633 | * IP_PKTINFO takes precendence over the the scope |
| 1634 | * set via INP_BOUND_IF. |
| 1635 | */ |
| 1636 | error = in_pcbconnect(inp, addr, p, ipoa.ipoa_boundif, |
| 1637 | &outif); |
| 1638 | if (error) |
| 1639 | goto release; |
| 1640 | |
| 1641 | laddr = inp->inp_laddr; |
| 1642 | lport = inp->inp_lport; |
| 1643 | faddr = inp->inp_faddr; |
| 1644 | fport = inp->inp_fport; |
| 1645 | udp_dodisconnect = 1; |
| 1646 | |
| 1647 | /* synch up in case in_pcbladdr() overrides */ |
| 1648 | if (outif != NULL && ipoa.ipoa_boundif != IFSCOPE_NONE) |
| 1649 | ipoa.ipoa_boundif = outif->if_index; |
| 1650 | } else { |
| 1651 | /* |
| 1652 | * Fast path case |
| 1653 | * |
| 1654 | * We have a full address and a local port; use those |
| 1655 | * info to build the packet without changing the pcb |
| 1656 | * and interfering with the input path. See 3851370. |
| 1657 | * |
| 1658 | * Scope from IP_PKTINFO takes precendence over the |
| 1659 | * the scope set via INP_BOUND_IF. |
| 1660 | */ |
| 1661 | if (laddr.s_addr == INADDR_ANY) { |
| 1662 | if ((error = in_pcbladdr(inp, addr, &laddr, |
| 1663 | ipoa.ipoa_boundif, &outif, 0)) != 0) |
| 1664 | goto release; |
| 1665 | /* |
| 1666 | * from pcbconnect: remember we don't |
| 1667 | * care about src addr. |
| 1668 | */ |
| 1669 | inp->inp_flags |= INP_INADDR_ANY; |
| 1670 | |
| 1671 | /* synch up in case in_pcbladdr() overrides */ |
| 1672 | if (outif != NULL && |
| 1673 | ipoa.ipoa_boundif != IFSCOPE_NONE) |
| 1674 | ipoa.ipoa_boundif = outif->if_index; |
| 1675 | } |
| 1676 | |
| 1677 | faddr = sin->sin_addr; |
| 1678 | fport = sin->sin_port; |
| 1679 | } |
| 1680 | } else { |
| 1681 | if (faddr.s_addr == INADDR_ANY) { |
| 1682 | error = ENOTCONN; |
| 1683 | goto release; |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | #if CONFIG_MACF_NET |
| 1688 | mac_mbuf_label_associate_inpcb(inp, m); |
| 1689 | #endif /* CONFIG_MACF_NET */ |
| 1690 | |
| 1691 | if (inp->inp_flowhash == 0) |
| 1692 | inp->inp_flowhash = inp_calc_flowhash(inp); |
| 1693 | |
| 1694 | if (fport == htons(53) && !(so->so_flags1 & SOF1_DNS_COUNTED)) { |
| 1695 | so->so_flags1 |= SOF1_DNS_COUNTED; |
| 1696 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_dns); |
| 1697 | } |
| 1698 | |
| 1699 | /* |
| 1700 | * Calculate data length and get a mbuf |
| 1701 | * for UDP and IP headers. |
| 1702 | */ |
| 1703 | M_PREPEND(m, sizeof (struct udpiphdr), M_DONTWAIT, 1); |
| 1704 | if (m == 0) { |
| 1705 | error = ENOBUFS; |
| 1706 | goto abort; |
| 1707 | } |
| 1708 | |
| 1709 | /* |
| 1710 | * Fill in mbuf with extended UDP header |
| 1711 | * and addresses and length put into network format. |
| 1712 | */ |
| 1713 | ui = mtod(m, struct udpiphdr *); |
| 1714 | bzero(ui->ui_x1, sizeof (ui->ui_x1)); /* XXX still needed? */ |
| 1715 | ui->ui_pr = IPPROTO_UDP; |
| 1716 | ui->ui_src = laddr; |
| 1717 | ui->ui_dst = faddr; |
| 1718 | ui->ui_sport = lport; |
| 1719 | ui->ui_dport = fport; |
| 1720 | ui->ui_ulen = htons((u_short)len + sizeof (struct udphdr)); |
| 1721 | |
| 1722 | /* |
| 1723 | * Set up checksum to pseudo header checksum and output datagram. |
| 1724 | * |
| 1725 | * Treat flows to be CLAT46'd as IPv6 flow and compute checksum |
| 1726 | * no matter what, as IPv6 mandates checksum for UDP. |
| 1727 | * |
| 1728 | * Here we only compute the one's complement sum of the pseudo header. |
| 1729 | * The payload computation and final complement is delayed to much later |
| 1730 | * in IP processing to decide if remaining computation needs to be done |
| 1731 | * through offload. |
| 1732 | * |
| 1733 | * That is communicated by setting CSUM_UDP in csum_flags. |
| 1734 | * The offset of checksum from the start of ULP header is communicated |
| 1735 | * through csum_data. |
| 1736 | * |
| 1737 | * Note since this already contains the pseudo checksum header, any |
| 1738 | * later operation at IP layer that modify the values used here must |
| 1739 | * update the checksum as well (for example NAT etc). |
| 1740 | */ |
| 1741 | if ((inp->inp_flags2 & INP2_CLAT46_FLOW) || |
| 1742 | (udpcksum && !(inp->inp_flags & INP_UDP_NOCKSUM))) { |
| 1743 | ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr, |
| 1744 | htons((u_short)len + sizeof (struct udphdr) + IPPROTO_UDP)); |
| 1745 | m->m_pkthdr.csum_flags = (CSUM_UDP|CSUM_ZERO_INVERT); |
| 1746 | m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); |
| 1747 | } else { |
| 1748 | ui->ui_sum = 0; |
| 1749 | } |
| 1750 | ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len; |
| 1751 | ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ |
| 1752 | ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ |
| 1753 | udpstat.udps_opackets++; |
| 1754 | |
| 1755 | KERNEL_DEBUG(DBG_LAYER_OUT_END, ui->ui_dport, ui->ui_sport, |
| 1756 | ui->ui_src.s_addr, ui->ui_dst.s_addr, ui->ui_ulen); |
| 1757 | |
| 1758 | #if NECP |
| 1759 | { |
| 1760 | necp_kernel_policy_id policy_id; |
| 1761 | necp_kernel_policy_id skip_policy_id; |
| 1762 | u_int32_t route_rule_id; |
| 1763 | |
| 1764 | /* |
| 1765 | * We need a route to perform NECP route rule checks |
| 1766 | */ |
| 1767 | if (net_qos_policy_restricted != 0 && |
| 1768 | ROUTE_UNUSABLE(&inp->inp_route)) { |
| 1769 | struct sockaddr_in to; |
| 1770 | struct sockaddr_in from; |
| 1771 | |
| 1772 | ROUTE_RELEASE(&inp->inp_route); |
| 1773 | |
| 1774 | bzero(&from, sizeof(struct sockaddr_in)); |
| 1775 | from.sin_family = AF_INET; |
| 1776 | from.sin_len = sizeof(struct sockaddr_in); |
| 1777 | from.sin_addr = laddr; |
| 1778 | |
| 1779 | bzero(&to, sizeof(struct sockaddr_in)); |
| 1780 | to.sin_family = AF_INET; |
| 1781 | to.sin_len = sizeof(struct sockaddr_in); |
| 1782 | to.sin_addr = faddr; |
| 1783 | |
| 1784 | inp->inp_route.ro_dst.sa_family = AF_INET; |
| 1785 | inp->inp_route.ro_dst.sa_len = sizeof(struct sockaddr_in); |
| 1786 | ((struct sockaddr_in *)(void *)&inp->inp_route.ro_dst)->sin_addr = |
| 1787 | faddr; |
| 1788 | |
| 1789 | rtalloc_scoped(&inp->inp_route, ipoa.ipoa_boundif); |
| 1790 | |
| 1791 | inp_update_necp_policy(inp, (struct sockaddr *)&from, |
| 1792 | (struct sockaddr *)&to, ipoa.ipoa_boundif); |
| 1793 | inp->inp_policyresult.results.qos_marking_gencount = 0; |
| 1794 | } |
| 1795 | |
| 1796 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, lport, fport, |
| 1797 | &laddr, &faddr, NULL, &policy_id, &route_rule_id, &skip_policy_id)) { |
| 1798 | error = EHOSTUNREACH; |
| 1799 | goto abort; |
| 1800 | } |
| 1801 | |
| 1802 | necp_mark_packet_from_socket(m, inp, policy_id, route_rule_id, skip_policy_id); |
| 1803 | |
| 1804 | if (net_qos_policy_restricted != 0) { |
| 1805 | necp_socket_update_qos_marking(inp, |
| 1806 | inp->inp_route.ro_rt, NULL, route_rule_id); |
| 1807 | } |
| 1808 | } |
| 1809 | #endif /* NECP */ |
| 1810 | if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) |
| 1811 | ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; |
| 1812 | |
| 1813 | #if IPSEC |
| 1814 | if (inp->inp_sp != NULL && ipsec_setsocket(m, inp->inp_socket) != 0) { |
| 1815 | error = ENOBUFS; |
| 1816 | goto abort; |
| 1817 | } |
| 1818 | #endif /* IPSEC */ |
| 1819 | |
| 1820 | inpopts = inp->inp_options; |
| 1821 | #if CONTENT_FILTER |
| 1822 | if (cfil_tag && (inp->inp_socket->so_options != cfil_so_options)) |
| 1823 | soopts |= (cfil_so_options & (SO_DONTROUTE | SO_BROADCAST)); |
| 1824 | else |
| 1825 | #endif |
| 1826 | soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)); |
| 1827 | |
| 1828 | mopts = inp->inp_moptions; |
| 1829 | if (mopts != NULL) { |
| 1830 | IMO_LOCK(mopts); |
| 1831 | IMO_ADDREF_LOCKED(mopts); |
| 1832 | if (IN_MULTICAST(ntohl(ui->ui_dst.s_addr)) && |
| 1833 | mopts->imo_multicast_ifp != NULL) { |
| 1834 | /* no reference needed */ |
| 1835 | inp->inp_last_outifp = mopts->imo_multicast_ifp; |
| 1836 | |
| 1837 | } |
| 1838 | IMO_UNLOCK(mopts); |
| 1839 | } |
| 1840 | |
| 1841 | /* Copy the cached route and take an extra reference */ |
| 1842 | inp_route_copyout(inp, &ro); |
| 1843 | |
| 1844 | set_packet_service_class(m, so, sotc, 0); |
| 1845 | m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; |
| 1846 | m->m_pkthdr.pkt_flowid = inp->inp_flowhash; |
| 1847 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; |
| 1848 | m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC); |
| 1849 | if (flowadv) |
| 1850 | m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV; |
| 1851 | m->m_pkthdr.tx_udp_pid = so->last_pid; |
| 1852 | if (so->so_flags & SOF_DELEGATED) |
| 1853 | m->m_pkthdr.tx_udp_e_pid = so->e_pid; |
| 1854 | else |
| 1855 | m->m_pkthdr.tx_udp_e_pid = 0; |
| 1856 | |
| 1857 | if (ipoa.ipoa_boundif != IFSCOPE_NONE) |
| 1858 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; |
| 1859 | |
| 1860 | if (laddr.s_addr != INADDR_ANY) |
| 1861 | ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR; |
| 1862 | |
| 1863 | inp->inp_sndinprog_cnt++; |
| 1864 | |
| 1865 | socket_unlock(so, 0); |
| 1866 | error = ip_output(m, inpopts, &ro, soopts, mopts, &ipoa); |
| 1867 | m = NULL; |
| 1868 | socket_lock(so, 0); |
| 1869 | if (mopts != NULL) |
| 1870 | IMO_REMREF(mopts); |
| 1871 | |
| 1872 | if (error == 0 && nstat_collect) { |
| 1873 | boolean_t cell, wifi, wired; |
| 1874 | |
| 1875 | if (ro.ro_rt != NULL) { |
| 1876 | cell = IFNET_IS_CELLULAR(ro.ro_rt->rt_ifp); |
| 1877 | wifi = (!cell && IFNET_IS_WIFI(ro.ro_rt->rt_ifp)); |
| 1878 | wired = (!wifi && IFNET_IS_WIRED(ro.ro_rt->rt_ifp)); |
| 1879 | } else { |
| 1880 | cell = wifi = wired = FALSE; |
| 1881 | } |
| 1882 | INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1); |
| 1883 | INP_ADD_STAT(inp, cell, wifi, wired, txbytes, len); |
| 1884 | inp_set_activity_bitmap(inp); |
| 1885 | } |
| 1886 | |
| 1887 | if (flowadv && (adv->code == FADV_FLOW_CONTROLLED || |
| 1888 | adv->code == FADV_SUSPENDED)) { |
| 1889 | /* |
| 1890 | * return a hint to the application that |
| 1891 | * the packet has been dropped |
| 1892 | */ |
| 1893 | error = ENOBUFS; |
| 1894 | inp_set_fc_state(inp, adv->code); |
| 1895 | } |
| 1896 | |
| 1897 | VERIFY(inp->inp_sndinprog_cnt > 0); |
| 1898 | if ( --inp->inp_sndinprog_cnt == 0) |
| 1899 | inp->inp_flags &= ~(INP_FC_FEEDBACK); |
| 1900 | |
| 1901 | /* Synchronize PCB cached route */ |
| 1902 | inp_route_copyin(inp, &ro); |
| 1903 | |
| 1904 | abort: |
| 1905 | if (udp_dodisconnect) { |
| 1906 | /* Always discard the cached route for unconnected socket */ |
| 1907 | ROUTE_RELEASE(&inp->inp_route); |
| 1908 | in_pcbdisconnect(inp); |
| 1909 | inp->inp_laddr = origladdr; /* XXX rehash? */ |
| 1910 | /* no reference needed */ |
| 1911 | inp->inp_last_outifp = origoutifp; |
| 1912 | |
| 1913 | } else if (inp->inp_route.ro_rt != NULL) { |
| 1914 | struct rtentry *rt = inp->inp_route.ro_rt; |
| 1915 | struct ifnet *outifp; |
| 1916 | |
| 1917 | if (rt->rt_flags & (RTF_MULTICAST|RTF_BROADCAST)) |
| 1918 | rt = NULL; /* unusable */ |
| 1919 | |
| 1920 | #if CONTENT_FILTER |
| 1921 | /* |
| 1922 | * Discard temporary route for cfil case |
| 1923 | */ |
| 1924 | if (cfil_faddr_use) |
| 1925 | rt = NULL; /* unusable */ |
| 1926 | #endif |
| 1927 | |
| 1928 | /* |
| 1929 | * Always discard if it is a multicast or broadcast route. |
| 1930 | */ |
| 1931 | if (rt == NULL) |
| 1932 | ROUTE_RELEASE(&inp->inp_route); |
| 1933 | |
| 1934 | /* |
| 1935 | * If the destination route is unicast, update outifp with |
| 1936 | * that of the route interface used by IP. |
| 1937 | */ |
| 1938 | if (rt != NULL && |
| 1939 | (outifp = rt->rt_ifp) != inp->inp_last_outifp) { |
| 1940 | inp->inp_last_outifp = outifp; /* no reference needed */ |
| 1941 | |
| 1942 | so->so_pktheadroom = P2ROUNDUP( |
| 1943 | sizeof(struct udphdr) + |
| 1944 | sizeof(struct ip) + |
| 1945 | ifnet_hdrlen(outifp) + |
| 1946 | ifnet_mbuf_packetpreamblelen(outifp), |
| 1947 | sizeof(u_int32_t)); |
| 1948 | } |
| 1949 | } else { |
| 1950 | ROUTE_RELEASE(&inp->inp_route); |
| 1951 | } |
| 1952 | |
| 1953 | /* |
| 1954 | * If output interface was cellular/expensive, and this socket is |
| 1955 | * denied access to it, generate an event. |
| 1956 | */ |
| 1957 | if (error != 0 && (ipoa.ipoa_retflags & IPOARF_IFDENIED) && |
| 1958 | (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp))) |
| 1959 | soevent(so, (SO_FILT_HINT_LOCKED|SO_FILT_HINT_IFDENIED)); |
| 1960 | |
| 1961 | release: |
| 1962 | KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0); |
| 1963 | |
| 1964 | if (m != NULL) |
| 1965 | m_freem(m); |
| 1966 | |
| 1967 | if (outif != NULL) |
| 1968 | ifnet_release(outif); |
| 1969 | |
| 1970 | #if CONTENT_FILTER |
| 1971 | if (cfil_tag) |
| 1972 | m_tag_free(cfil_tag); |
| 1973 | #endif |
| 1974 | |
| 1975 | return (error); |
| 1976 | } |
| 1977 | |
| 1978 | u_int32_t udp_sendspace = 9216; /* really max datagram size */ |
| 1979 | /* 187 1K datagrams (approx 192 KB) */ |
| 1980 | u_int32_t udp_recvspace = 187 * (1024 + |
| 1981 | #if INET6 |
| 1982 | sizeof (struct sockaddr_in6) |
| 1983 | #else /* !INET6 */ |
| 1984 | sizeof (struct sockaddr_in) |
| 1985 | #endif /* !INET6 */ |
| 1986 | ); |
| 1987 | |
| 1988 | /* Check that the values of udp send and recv space do not exceed sb_max */ |
| 1989 | static int |
| 1990 | sysctl_udp_sospace(struct sysctl_oid *oidp, void *arg1, int arg2, |
| 1991 | struct sysctl_req *req) |
| 1992 | { |
| 1993 | #pragma unused(arg1, arg2) |
| 1994 | u_int32_t new_value = 0, *space_p = NULL; |
| 1995 | int changed = 0, error = 0; |
| 1996 | u_quad_t sb_effective_max = (sb_max/(MSIZE+MCLBYTES)) * MCLBYTES; |
| 1997 | |
| 1998 | switch (oidp->oid_number) { |
| 1999 | case UDPCTL_RECVSPACE: |
| 2000 | space_p = &udp_recvspace; |
| 2001 | break; |
| 2002 | case UDPCTL_MAXDGRAM: |
| 2003 | space_p = &udp_sendspace; |
| 2004 | break; |
| 2005 | default: |
| 2006 | return (EINVAL); |
| 2007 | } |
| 2008 | error = sysctl_io_number(req, *space_p, sizeof (u_int32_t), |
| 2009 | &new_value, &changed); |
| 2010 | if (changed) { |
| 2011 | if (new_value > 0 && new_value <= sb_effective_max) |
| 2012 | *space_p = new_value; |
| 2013 | else |
| 2014 | error = ERANGE; |
| 2015 | } |
| 2016 | return (error); |
| 2017 | } |
| 2018 | |
| 2019 | SYSCTL_PROC(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, |
| 2020 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_recvspace, 0, |
| 2021 | &sysctl_udp_sospace, "IU" , "Maximum incoming UDP datagram size" ); |
| 2022 | |
| 2023 | SYSCTL_PROC(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, |
| 2024 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_sendspace, 0, |
| 2025 | &sysctl_udp_sospace, "IU" , "Maximum outgoing UDP datagram size" ); |
| 2026 | |
| 2027 | int |
| 2028 | udp_abort(struct socket *so) |
| 2029 | { |
| 2030 | struct inpcb *inp; |
| 2031 | |
| 2032 | inp = sotoinpcb(so); |
| 2033 | if (inp == NULL) { |
| 2034 | panic("%s: so=%p null inp\n" , __func__, so); |
| 2035 | /* NOTREACHED */ |
| 2036 | } |
| 2037 | soisdisconnected(so); |
| 2038 | in_pcbdetach(inp); |
| 2039 | return (0); |
| 2040 | } |
| 2041 | |
| 2042 | int |
| 2043 | udp_attach(struct socket *so, int proto, struct proc *p) |
| 2044 | { |
| 2045 | #pragma unused(proto) |
| 2046 | struct inpcb *inp; |
| 2047 | int error; |
| 2048 | |
| 2049 | inp = sotoinpcb(so); |
| 2050 | if (inp != NULL) { |
| 2051 | panic("%s so=%p inp=%p\n" , __func__, so, inp); |
| 2052 | /* NOTREACHED */ |
| 2053 | } |
| 2054 | error = in_pcballoc(so, &udbinfo, p); |
| 2055 | if (error != 0) |
| 2056 | return (error); |
| 2057 | error = soreserve(so, udp_sendspace, udp_recvspace); |
| 2058 | if (error != 0) |
| 2059 | return (error); |
| 2060 | inp = (struct inpcb *)so->so_pcb; |
| 2061 | inp->inp_vflag |= INP_IPV4; |
| 2062 | inp->inp_ip_ttl = ip_defttl; |
| 2063 | if (nstat_collect) |
| 2064 | nstat_udp_new_pcb(inp); |
| 2065 | return (0); |
| 2066 | } |
| 2067 | |
| 2068 | int |
| 2069 | udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 2070 | { |
| 2071 | struct inpcb *inp; |
| 2072 | int error; |
| 2073 | |
| 2074 | if (nam->sa_family != 0 && nam->sa_family != AF_INET && |
| 2075 | nam->sa_family != AF_INET6) |
| 2076 | return (EAFNOSUPPORT); |
| 2077 | |
| 2078 | inp = sotoinpcb(so); |
| 2079 | if (inp == NULL) |
| 2080 | return (EINVAL); |
| 2081 | error = in_pcbbind(inp, nam, p); |
| 2082 | |
| 2083 | #if NECP |
| 2084 | /* Update NECP client with bind result if not in middle of connect */ |
| 2085 | if (error == 0 && |
| 2086 | (inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS) && |
| 2087 | !uuid_is_null(inp->necp_client_uuid)) { |
| 2088 | socket_unlock(so, 0); |
| 2089 | necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); |
| 2090 | socket_lock(so, 0); |
| 2091 | } |
| 2092 | #endif /* NECP */ |
| 2093 | |
| 2094 | return (error); |
| 2095 | } |
| 2096 | |
| 2097 | int |
| 2098 | udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 2099 | { |
| 2100 | struct inpcb *inp; |
| 2101 | int error; |
| 2102 | |
| 2103 | inp = sotoinpcb(so); |
| 2104 | if (inp == NULL) |
| 2105 | return (EINVAL); |
| 2106 | if (inp->inp_faddr.s_addr != INADDR_ANY) |
| 2107 | return (EISCONN); |
| 2108 | |
| 2109 | if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { |
| 2110 | so->so_flags1 |= SOF1_CONNECT_COUNTED; |
| 2111 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected); |
| 2112 | } |
| 2113 | |
| 2114 | #if NECP |
| 2115 | #if FLOW_DIVERT |
| 2116 | if (necp_socket_should_use_flow_divert(inp)) { |
| 2117 | uint32_t fd_ctl_unit = |
| 2118 | necp_socket_get_flow_divert_control_unit(inp); |
| 2119 | if (fd_ctl_unit > 0) { |
| 2120 | error = flow_divert_pcb_init(so, fd_ctl_unit); |
| 2121 | if (error == 0) { |
| 2122 | error = flow_divert_connect_out(so, nam, p); |
| 2123 | } |
| 2124 | } else { |
| 2125 | error = ENETDOWN; |
| 2126 | } |
| 2127 | return (error); |
| 2128 | } |
| 2129 | #endif /* FLOW_DIVERT */ |
| 2130 | #endif /* NECP */ |
| 2131 | |
| 2132 | error = in_pcbconnect(inp, nam, p, IFSCOPE_NONE, NULL); |
| 2133 | if (error == 0) { |
| 2134 | #if NECP |
| 2135 | /* Update NECP client with connected five-tuple */ |
| 2136 | if (!uuid_is_null(inp->necp_client_uuid)) { |
| 2137 | socket_unlock(so, 0); |
| 2138 | necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp); |
| 2139 | socket_lock(so, 0); |
| 2140 | } |
| 2141 | #endif /* NECP */ |
| 2142 | |
| 2143 | soisconnected(so); |
| 2144 | if (inp->inp_flowhash == 0) |
| 2145 | inp->inp_flowhash = inp_calc_flowhash(inp); |
| 2146 | } |
| 2147 | return (error); |
| 2148 | } |
| 2149 | |
| 2150 | int |
| 2151 | udp_connectx_common(struct socket *so, int af, struct sockaddr *src, struct sockaddr *dst, |
| 2152 | struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid, |
| 2153 | uint32_t flags, void *arg, uint32_t arglen, |
| 2154 | struct uio *uio, user_ssize_t *bytes_written) |
| 2155 | { |
| 2156 | #pragma unused(aid, flags, arg, arglen) |
| 2157 | struct inpcb *inp = sotoinpcb(so); |
| 2158 | int error = 0; |
| 2159 | user_ssize_t datalen = 0; |
| 2160 | |
| 2161 | if (inp == NULL) |
| 2162 | return (EINVAL); |
| 2163 | |
| 2164 | VERIFY(dst != NULL); |
| 2165 | |
| 2166 | ASSERT(!(inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS)); |
| 2167 | inp->inp_flags2 |= INP2_CONNECT_IN_PROGRESS; |
| 2168 | |
| 2169 | #if NECP |
| 2170 | inp_update_necp_policy(inp, src, dst, ifscope); |
| 2171 | #endif /* NECP */ |
| 2172 | |
| 2173 | /* bind socket to the specified interface, if requested */ |
| 2174 | if (ifscope != IFSCOPE_NONE && |
| 2175 | (error = inp_bindif(inp, ifscope, NULL)) != 0) { |
| 2176 | goto done; |
| 2177 | } |
| 2178 | |
| 2179 | /* if source address and/or port is specified, bind to it */ |
| 2180 | if (src != NULL) { |
| 2181 | error = sobindlock(so, src, 0); /* already locked */ |
| 2182 | if (error != 0) { |
| 2183 | goto done; |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | switch (af) { |
| 2188 | case AF_INET: |
| 2189 | error = udp_connect(so, dst, p); |
| 2190 | break; |
| 2191 | #if INET6 |
| 2192 | case AF_INET6: |
| 2193 | error = udp6_connect(so, dst, p); |
| 2194 | break; |
| 2195 | #endif /* INET6 */ |
| 2196 | default: |
| 2197 | VERIFY(0); |
| 2198 | /* NOTREACHED */ |
| 2199 | } |
| 2200 | |
| 2201 | if (error != 0) { |
| 2202 | goto done; |
| 2203 | } |
| 2204 | |
| 2205 | /* |
| 2206 | * If there is data, copy it. DATA_IDEMPOTENT is ignored. |
| 2207 | * CONNECT_RESUME_ON_READ_WRITE is ignored. |
| 2208 | */ |
| 2209 | if (uio != NULL) { |
| 2210 | socket_unlock(so, 0); |
| 2211 | |
| 2212 | VERIFY(bytes_written != NULL); |
| 2213 | |
| 2214 | datalen = uio_resid(uio); |
| 2215 | error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL, |
| 2216 | (uio_t)uio, NULL, NULL, 0); |
| 2217 | socket_lock(so, 0); |
| 2218 | |
| 2219 | /* If error returned is EMSGSIZE, for example, disconnect */ |
| 2220 | if (error == 0 || error == EWOULDBLOCK) |
| 2221 | *bytes_written = datalen - uio_resid(uio); |
| 2222 | else |
| 2223 | (void) so->so_proto->pr_usrreqs->pru_disconnectx(so, |
| 2224 | SAE_ASSOCID_ANY, SAE_CONNID_ANY); |
| 2225 | /* |
| 2226 | * mask the EWOULDBLOCK error so that the caller |
| 2227 | * knows that atleast the connect was successful. |
| 2228 | */ |
| 2229 | if (error == EWOULDBLOCK) |
| 2230 | error = 0; |
| 2231 | } |
| 2232 | |
| 2233 | if (error == 0 && pcid != NULL) |
| 2234 | *pcid = 1; /* there is only 1 connection for UDP */ |
| 2235 | |
| 2236 | done: |
| 2237 | inp->inp_flags2 &= ~INP2_CONNECT_IN_PROGRESS; |
| 2238 | return (error); |
| 2239 | } |
| 2240 | |
| 2241 | int |
| 2242 | udp_connectx(struct socket *so, struct sockaddr *src, |
| 2243 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, |
| 2244 | sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, |
| 2245 | uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) |
| 2246 | { |
| 2247 | return (udp_connectx_common(so, AF_INET, src, dst, |
| 2248 | p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)); |
| 2249 | } |
| 2250 | |
| 2251 | int |
| 2252 | udp_detach(struct socket *so) |
| 2253 | { |
| 2254 | struct inpcb *inp; |
| 2255 | |
| 2256 | inp = sotoinpcb(so); |
| 2257 | if (inp == NULL) { |
| 2258 | panic("%s: so=%p null inp\n" , __func__, so); |
| 2259 | /* NOTREACHED */ |
| 2260 | } |
| 2261 | |
| 2262 | /* |
| 2263 | * If this is a socket that does not want to wakeup the device |
| 2264 | * for it's traffic, the application might be waiting for |
| 2265 | * close to complete before going to sleep. Send a notification |
| 2266 | * for this kind of sockets |
| 2267 | */ |
| 2268 | if (so->so_options & SO_NOWAKEFROMSLEEP) |
| 2269 | socket_post_kev_msg_closed(so); |
| 2270 | |
| 2271 | in_pcbdetach(inp); |
| 2272 | inp->inp_state = INPCB_STATE_DEAD; |
| 2273 | return (0); |
| 2274 | } |
| 2275 | |
| 2276 | int |
| 2277 | udp_disconnect(struct socket *so) |
| 2278 | { |
| 2279 | struct inpcb *inp; |
| 2280 | |
| 2281 | inp = sotoinpcb(so); |
| 2282 | if (inp == NULL |
| 2283 | #if NECP |
| 2284 | || (necp_socket_should_use_flow_divert(inp)) |
| 2285 | #endif /* NECP */ |
| 2286 | ) |
| 2287 | return (inp == NULL ? EINVAL : EPROTOTYPE); |
| 2288 | if (inp->inp_faddr.s_addr == INADDR_ANY) |
| 2289 | return (ENOTCONN); |
| 2290 | |
| 2291 | in_pcbdisconnect(inp); |
| 2292 | |
| 2293 | /* reset flow controlled state, just in case */ |
| 2294 | inp_reset_fc_state(inp); |
| 2295 | |
| 2296 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 2297 | so->so_state &= ~SS_ISCONNECTED; /* XXX */ |
| 2298 | inp->inp_last_outifp = NULL; |
| 2299 | |
| 2300 | return (0); |
| 2301 | } |
| 2302 | |
| 2303 | int |
| 2304 | udp_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid) |
| 2305 | { |
| 2306 | #pragma unused(cid) |
| 2307 | if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) |
| 2308 | return (EINVAL); |
| 2309 | |
| 2310 | return (udp_disconnect(so)); |
| 2311 | } |
| 2312 | |
| 2313 | int |
| 2314 | udp_send(struct socket *so, int flags, struct mbuf *m, |
| 2315 | struct sockaddr *addr, struct mbuf *control, struct proc *p) |
| 2316 | { |
| 2317 | #ifndef FLOW_DIVERT |
| 2318 | #pragma unused(flags) |
| 2319 | #endif /* !(FLOW_DIVERT) */ |
| 2320 | struct inpcb *inp; |
| 2321 | |
| 2322 | inp = sotoinpcb(so); |
| 2323 | if (inp == NULL) { |
| 2324 | if (m != NULL) |
| 2325 | m_freem(m); |
| 2326 | if (control != NULL) |
| 2327 | m_freem(control); |
| 2328 | return (EINVAL); |
| 2329 | } |
| 2330 | |
| 2331 | #if NECP |
| 2332 | #if FLOW_DIVERT |
| 2333 | if (necp_socket_should_use_flow_divert(inp)) { |
| 2334 | /* Implicit connect */ |
| 2335 | return (flow_divert_implicit_data_out(so, flags, m, addr, |
| 2336 | control, p)); |
| 2337 | } |
| 2338 | #endif /* FLOW_DIVERT */ |
| 2339 | #endif /* NECP */ |
| 2340 | |
| 2341 | return (udp_output(inp, m, addr, control, p)); |
| 2342 | } |
| 2343 | |
| 2344 | int |
| 2345 | udp_shutdown(struct socket *so) |
| 2346 | { |
| 2347 | struct inpcb *inp; |
| 2348 | |
| 2349 | inp = sotoinpcb(so); |
| 2350 | if (inp == NULL) |
| 2351 | return (EINVAL); |
| 2352 | socantsendmore(so); |
| 2353 | return (0); |
| 2354 | } |
| 2355 | |
| 2356 | int |
| 2357 | udp_lock(struct socket *so, int refcount, void *debug) |
| 2358 | { |
| 2359 | void *lr_saved; |
| 2360 | |
| 2361 | if (debug == NULL) |
| 2362 | lr_saved = __builtin_return_address(0); |
| 2363 | else |
| 2364 | lr_saved = debug; |
| 2365 | |
| 2366 | if (so->so_pcb != NULL) { |
| 2367 | LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx, |
| 2368 | LCK_MTX_ASSERT_NOTOWNED); |
| 2369 | lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); |
| 2370 | } else { |
| 2371 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n" , __func__, |
| 2372 | so, lr_saved, solockhistory_nr(so)); |
| 2373 | /* NOTREACHED */ |
| 2374 | } |
| 2375 | if (refcount) |
| 2376 | so->so_usecount++; |
| 2377 | |
| 2378 | so->lock_lr[so->next_lock_lr] = lr_saved; |
| 2379 | so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; |
| 2380 | return (0); |
| 2381 | } |
| 2382 | |
| 2383 | int |
| 2384 | udp_unlock(struct socket *so, int refcount, void *debug) |
| 2385 | { |
| 2386 | void *lr_saved; |
| 2387 | |
| 2388 | if (debug == NULL) |
| 2389 | lr_saved = __builtin_return_address(0); |
| 2390 | else |
| 2391 | lr_saved = debug; |
| 2392 | |
| 2393 | if (refcount) { |
| 2394 | VERIFY(so->so_usecount > 0); |
| 2395 | so->so_usecount--; |
| 2396 | } |
| 2397 | if (so->so_pcb == NULL) { |
| 2398 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n" , __func__, |
| 2399 | so, lr_saved, solockhistory_nr(so)); |
| 2400 | /* NOTREACHED */ |
| 2401 | } else { |
| 2402 | LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx, |
| 2403 | LCK_MTX_ASSERT_OWNED); |
| 2404 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
| 2405 | so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; |
| 2406 | lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); |
| 2407 | } |
| 2408 | return (0); |
| 2409 | } |
| 2410 | |
| 2411 | lck_mtx_t * |
| 2412 | udp_getlock(struct socket *so, int flags) |
| 2413 | { |
| 2414 | #pragma unused(flags) |
| 2415 | struct inpcb *inp = sotoinpcb(so); |
| 2416 | |
| 2417 | if (so->so_pcb == NULL) { |
| 2418 | panic("%s: so=%p NULL so_pcb lrh= %s\n" , __func__, |
| 2419 | so, solockhistory_nr(so)); |
| 2420 | /* NOTREACHED */ |
| 2421 | } |
| 2422 | return (&inp->inpcb_mtx); |
| 2423 | } |
| 2424 | |
| 2425 | /* |
| 2426 | * UDP garbage collector callback (inpcb_timer_func_t). |
| 2427 | * |
| 2428 | * Returns > 0 to keep timer active. |
| 2429 | */ |
| 2430 | static void |
| 2431 | udp_gc(struct inpcbinfo *ipi) |
| 2432 | { |
| 2433 | struct inpcb *inp, *inpnxt; |
| 2434 | struct socket *so; |
| 2435 | |
| 2436 | if (lck_rw_try_lock_exclusive(ipi->ipi_lock) == FALSE) { |
| 2437 | if (udp_gc_done == TRUE) { |
| 2438 | udp_gc_done = FALSE; |
| 2439 | /* couldn't get the lock, must lock next time */ |
| 2440 | atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); |
| 2441 | return; |
| 2442 | } |
| 2443 | lck_rw_lock_exclusive(ipi->ipi_lock); |
| 2444 | } |
| 2445 | |
| 2446 | udp_gc_done = TRUE; |
| 2447 | |
| 2448 | for (inp = udb.lh_first; inp != NULL; inp = inpnxt) { |
| 2449 | inpnxt = inp->inp_list.le_next; |
| 2450 | |
| 2451 | /* |
| 2452 | * Skip unless it's STOPUSING; garbage collector will |
| 2453 | * be triggered by in_pcb_checkstate() upon setting |
| 2454 | * wantcnt to that value. If the PCB is already dead, |
| 2455 | * keep gc active to anticipate wantcnt changing. |
| 2456 | */ |
| 2457 | if (inp->inp_wantcnt != WNT_STOPUSING) |
| 2458 | continue; |
| 2459 | |
| 2460 | /* |
| 2461 | * Skip if busy, no hurry for cleanup. Keep gc active |
| 2462 | * and try the lock again during next round. |
| 2463 | */ |
| 2464 | if (!socket_try_lock(inp->inp_socket)) { |
| 2465 | atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); |
| 2466 | continue; |
| 2467 | } |
| 2468 | |
| 2469 | /* |
| 2470 | * Keep gc active unless usecount is 0. |
| 2471 | */ |
| 2472 | so = inp->inp_socket; |
| 2473 | if (so->so_usecount == 0) { |
| 2474 | if (inp->inp_state != INPCB_STATE_DEAD) { |
| 2475 | #if INET6 |
| 2476 | if (SOCK_CHECK_DOM(so, PF_INET6)) |
| 2477 | in6_pcbdetach(inp); |
| 2478 | else |
| 2479 | #endif /* INET6 */ |
| 2480 | in_pcbdetach(inp); |
| 2481 | } |
| 2482 | in_pcbdispose(inp); |
| 2483 | } else { |
| 2484 | socket_unlock(so, 0); |
| 2485 | atomic_add_32(&ipi->ipi_gc_req.intimer_fast, 1); |
| 2486 | } |
| 2487 | } |
| 2488 | lck_rw_done(ipi->ipi_lock); |
| 2489 | } |
| 2490 | |
| 2491 | static int |
| 2492 | udp_getstat SYSCTL_HANDLER_ARGS |
| 2493 | { |
| 2494 | #pragma unused(oidp, arg1, arg2) |
| 2495 | if (req->oldptr == USER_ADDR_NULL) |
| 2496 | req->oldlen = (size_t)sizeof (struct udpstat); |
| 2497 | |
| 2498 | return (SYSCTL_OUT(req, &udpstat, MIN(sizeof (udpstat), req->oldlen))); |
| 2499 | } |
| 2500 | |
| 2501 | void |
| 2502 | udp_in_cksum_stats(u_int32_t len) |
| 2503 | { |
| 2504 | udpstat.udps_rcv_swcsum++; |
| 2505 | udpstat.udps_rcv_swcsum_bytes += len; |
| 2506 | } |
| 2507 | |
| 2508 | void |
| 2509 | udp_out_cksum_stats(u_int32_t len) |
| 2510 | { |
| 2511 | udpstat.udps_snd_swcsum++; |
| 2512 | udpstat.udps_snd_swcsum_bytes += len; |
| 2513 | } |
| 2514 | |
| 2515 | #if INET6 |
| 2516 | void |
| 2517 | udp_in6_cksum_stats(u_int32_t len) |
| 2518 | { |
| 2519 | udpstat.udps_rcv6_swcsum++; |
| 2520 | udpstat.udps_rcv6_swcsum_bytes += len; |
| 2521 | } |
| 2522 | |
| 2523 | void |
| 2524 | udp_out6_cksum_stats(u_int32_t len) |
| 2525 | { |
| 2526 | udpstat.udps_snd6_swcsum++; |
| 2527 | udpstat.udps_snd6_swcsum_bytes += len; |
| 2528 | } |
| 2529 | #endif /* INET6 */ |
| 2530 | |
| 2531 | /* |
| 2532 | * Checksum extended UDP header and data. |
| 2533 | */ |
| 2534 | static int |
| 2535 | udp_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen) |
| 2536 | { |
| 2537 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 2538 | struct ip *ip = mtod(m, struct ip *); |
| 2539 | struct ipovly *ipov = (struct ipovly *)ip; |
| 2540 | |
| 2541 | if (uh->uh_sum == 0) { |
| 2542 | udpstat.udps_nosum++; |
| 2543 | return (0); |
| 2544 | } |
| 2545 | |
| 2546 | /* ip_stripoptions() must have been called before we get here */ |
| 2547 | ASSERT((ip->ip_hl << 2) == sizeof (*ip)); |
| 2548 | |
| 2549 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || |
| 2550 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && |
| 2551 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { |
| 2552 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { |
| 2553 | uh->uh_sum = m->m_pkthdr.csum_rx_val; |
| 2554 | } else { |
| 2555 | uint32_t sum = m->m_pkthdr.csum_rx_val; |
| 2556 | uint32_t start = m->m_pkthdr.csum_rx_start; |
| 2557 | int32_t trailer = (m_pktlen(m) - (off + ulen)); |
| 2558 | |
| 2559 | /* |
| 2560 | * Perform 1's complement adjustment of octets |
| 2561 | * that got included/excluded in the hardware- |
| 2562 | * calculated checksum value. Ignore cases |
| 2563 | * where the value already includes the entire |
| 2564 | * IP header span, as the sum for those octets |
| 2565 | * would already be 0 by the time we get here; |
| 2566 | * IP has already performed its header checksum |
| 2567 | * checks. If we do need to adjust, restore |
| 2568 | * the original fields in the IP header when |
| 2569 | * computing the adjustment value. Also take |
| 2570 | * care of any trailing bytes and subtract out |
| 2571 | * their partial sum. |
| 2572 | */ |
| 2573 | ASSERT(trailer >= 0); |
| 2574 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && |
| 2575 | ((start != 0 && start != off) || trailer != 0)) { |
| 2576 | uint32_t swbytes = (uint32_t)trailer; |
| 2577 | |
| 2578 | if (start < off) { |
| 2579 | ip->ip_len += sizeof (*ip); |
| 2580 | #if BYTE_ORDER != BIG_ENDIAN |
| 2581 | HTONS(ip->ip_len); |
| 2582 | HTONS(ip->ip_off); |
| 2583 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 2584 | } |
| 2585 | /* callee folds in sum */ |
| 2586 | sum = m_adj_sum16(m, start, off, ulen, sum); |
| 2587 | if (off > start) |
| 2588 | swbytes += (off - start); |
| 2589 | else |
| 2590 | swbytes += (start - off); |
| 2591 | |
| 2592 | if (start < off) { |
| 2593 | #if BYTE_ORDER != BIG_ENDIAN |
| 2594 | NTOHS(ip->ip_off); |
| 2595 | NTOHS(ip->ip_len); |
| 2596 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 2597 | ip->ip_len -= sizeof (*ip); |
| 2598 | } |
| 2599 | |
| 2600 | if (swbytes != 0) |
| 2601 | udp_in_cksum_stats(swbytes); |
| 2602 | if (trailer != 0) |
| 2603 | m_adj(m, -trailer); |
| 2604 | } |
| 2605 | |
| 2606 | /* callee folds in sum */ |
| 2607 | uh->uh_sum = in_pseudo(ip->ip_src.s_addr, |
| 2608 | ip->ip_dst.s_addr, sum + htonl(ulen + IPPROTO_UDP)); |
| 2609 | } |
| 2610 | uh->uh_sum ^= 0xffff; |
| 2611 | } else { |
| 2612 | uint16_t ip_sum; |
| 2613 | char b[9]; |
| 2614 | |
| 2615 | bcopy(ipov->ih_x1, b, sizeof (ipov->ih_x1)); |
| 2616 | bzero(ipov->ih_x1, sizeof (ipov->ih_x1)); |
| 2617 | ip_sum = ipov->ih_len; |
| 2618 | ipov->ih_len = uh->uh_ulen; |
| 2619 | uh->uh_sum = in_cksum(m, ulen + sizeof (struct ip)); |
| 2620 | bcopy(b, ipov->ih_x1, sizeof (ipov->ih_x1)); |
| 2621 | ipov->ih_len = ip_sum; |
| 2622 | |
| 2623 | udp_in_cksum_stats(ulen); |
| 2624 | } |
| 2625 | |
| 2626 | if (uh->uh_sum != 0) { |
| 2627 | udpstat.udps_badsum++; |
| 2628 | IF_UDP_STATINC(ifp, badchksum); |
| 2629 | return (-1); |
| 2630 | } |
| 2631 | |
| 2632 | return (0); |
| 2633 | } |
| 2634 | |
| 2635 | void |
| 2636 | udp_fill_keepalive_offload_frames(ifnet_t ifp, |
| 2637 | struct ifnet_keepalive_offload_frame *frames_array, |
| 2638 | u_int32_t frames_array_count, size_t frame_data_offset, |
| 2639 | u_int32_t *used_frames_count) |
| 2640 | { |
| 2641 | struct inpcb *inp; |
| 2642 | inp_gen_t gencnt; |
| 2643 | u_int32_t frame_index = *used_frames_count; |
| 2644 | |
| 2645 | if (ifp == NULL || frames_array == NULL || |
| 2646 | frames_array_count == 0 || |
| 2647 | frame_index >= frames_array_count || |
| 2648 | frame_data_offset >= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) |
| 2649 | return; |
| 2650 | |
| 2651 | lck_rw_lock_shared(udbinfo.ipi_lock); |
| 2652 | gencnt = udbinfo.ipi_gencnt; |
| 2653 | LIST_FOREACH(inp, udbinfo.ipi_listhead, inp_list) { |
| 2654 | struct socket *so; |
| 2655 | u_int8_t *data; |
| 2656 | struct ifnet_keepalive_offload_frame *frame; |
| 2657 | struct mbuf *m = NULL; |
| 2658 | |
| 2659 | if (frame_index >= frames_array_count) |
| 2660 | break; |
| 2661 | |
| 2662 | if (inp->inp_gencnt > gencnt || |
| 2663 | inp->inp_state == INPCB_STATE_DEAD) |
| 2664 | continue; |
| 2665 | |
| 2666 | if ((so = inp->inp_socket) == NULL || |
| 2667 | (so->so_state & SS_DEFUNCT)) |
| 2668 | continue; |
| 2669 | /* |
| 2670 | * check for keepalive offload flag without socket |
| 2671 | * lock to avoid a deadlock |
| 2672 | */ |
| 2673 | if (!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD)) { |
| 2674 | continue; |
| 2675 | } |
| 2676 | |
| 2677 | udp_lock(so, 1, 0); |
| 2678 | if (!(inp->inp_vflag & (INP_IPV4 | INP_IPV6))) { |
| 2679 | udp_unlock(so, 1, 0); |
| 2680 | continue; |
| 2681 | } |
| 2682 | if ((inp->inp_vflag & INP_IPV4) && |
| 2683 | (inp->inp_laddr.s_addr == INADDR_ANY || |
| 2684 | inp->inp_faddr.s_addr == INADDR_ANY)) { |
| 2685 | udp_unlock(so, 1, 0); |
| 2686 | continue; |
| 2687 | } |
| 2688 | if ((inp->inp_vflag & INP_IPV6) && |
| 2689 | (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) || |
| 2690 | IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))) { |
| 2691 | udp_unlock(so, 1, 0); |
| 2692 | continue; |
| 2693 | } |
| 2694 | if (inp->inp_lport == 0 || inp->inp_fport == 0) { |
| 2695 | udp_unlock(so, 1, 0); |
| 2696 | continue; |
| 2697 | } |
| 2698 | if (inp->inp_last_outifp == NULL || |
| 2699 | inp->inp_last_outifp->if_index != ifp->if_index) { |
| 2700 | udp_unlock(so, 1, 0); |
| 2701 | continue; |
| 2702 | } |
| 2703 | if ((inp->inp_vflag & INP_IPV4)) { |
| 2704 | if ((frame_data_offset + sizeof(struct udpiphdr) + |
| 2705 | inp->inp_keepalive_datalen) > |
| 2706 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { |
| 2707 | udp_unlock(so, 1, 0); |
| 2708 | continue; |
| 2709 | } |
| 2710 | if ((sizeof(struct udpiphdr) + |
| 2711 | inp->inp_keepalive_datalen) > _MHLEN) { |
| 2712 | udp_unlock(so, 1, 0); |
| 2713 | continue; |
| 2714 | } |
| 2715 | } else { |
| 2716 | if ((frame_data_offset + sizeof(struct ip6_hdr) + |
| 2717 | sizeof(struct udphdr) + |
| 2718 | inp->inp_keepalive_datalen) > |
| 2719 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { |
| 2720 | udp_unlock(so, 1, 0); |
| 2721 | continue; |
| 2722 | } |
| 2723 | if ((sizeof(struct ip6_hdr) + sizeof(struct udphdr) + |
| 2724 | inp->inp_keepalive_datalen) > _MHLEN) { |
| 2725 | udp_unlock(so, 1, 0); |
| 2726 | continue; |
| 2727 | } |
| 2728 | } |
| 2729 | MGETHDR(m, M_WAIT, MT_HEADER); |
| 2730 | if (m == NULL) { |
| 2731 | udp_unlock(so, 1, 0); |
| 2732 | continue; |
| 2733 | } |
| 2734 | /* |
| 2735 | * This inp has all the information that is needed to |
| 2736 | * generate an offload frame. |
| 2737 | */ |
| 2738 | if (inp->inp_vflag & INP_IPV4) { |
| 2739 | struct ip *ip; |
| 2740 | struct udphdr *udp; |
| 2741 | |
| 2742 | frame = &frames_array[frame_index]; |
| 2743 | frame->length = frame_data_offset + |
| 2744 | sizeof(struct udpiphdr) + |
| 2745 | inp->inp_keepalive_datalen; |
| 2746 | frame->ether_type = |
| 2747 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4; |
| 2748 | frame->interval = inp->inp_keepalive_interval; |
| 2749 | switch (inp->inp_keepalive_type) { |
| 2750 | case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY: |
| 2751 | frame->type = |
| 2752 | IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY; |
| 2753 | break; |
| 2754 | default: |
| 2755 | break; |
| 2756 | } |
| 2757 | data = mtod(m, u_int8_t *); |
| 2758 | bzero(data, sizeof(struct udpiphdr)); |
| 2759 | ip = (__typeof__(ip))(void *)data; |
| 2760 | udp = (__typeof__(udp))(void *) (data + |
| 2761 | sizeof(struct ip)); |
| 2762 | m->m_len = sizeof(struct udpiphdr); |
| 2763 | data = data + sizeof(struct udpiphdr); |
| 2764 | if (inp->inp_keepalive_datalen > 0 && |
| 2765 | inp->inp_keepalive_data != NULL) { |
| 2766 | bcopy(inp->inp_keepalive_data, data, |
| 2767 | inp->inp_keepalive_datalen); |
| 2768 | m->m_len += inp->inp_keepalive_datalen; |
| 2769 | } |
| 2770 | m->m_pkthdr.len = m->m_len; |
| 2771 | |
| 2772 | ip->ip_v = IPVERSION; |
| 2773 | ip->ip_hl = (sizeof(struct ip) >> 2); |
| 2774 | ip->ip_p = IPPROTO_UDP; |
| 2775 | ip->ip_len = htons(sizeof(struct udpiphdr) + |
| 2776 | (u_short)inp->inp_keepalive_datalen); |
| 2777 | ip->ip_ttl = inp->inp_ip_ttl; |
| 2778 | ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK); |
| 2779 | ip->ip_src = inp->inp_laddr; |
| 2780 | ip->ip_dst = inp->inp_faddr; |
| 2781 | ip->ip_sum = in_cksum_hdr_opt(ip); |
| 2782 | |
| 2783 | udp->uh_sport = inp->inp_lport; |
| 2784 | udp->uh_dport = inp->inp_fport; |
| 2785 | udp->uh_ulen = htons(sizeof(struct udphdr) + |
| 2786 | (u_short)inp->inp_keepalive_datalen); |
| 2787 | |
| 2788 | if (!(inp->inp_flags & INP_UDP_NOCKSUM)) { |
| 2789 | udp->uh_sum = in_pseudo(ip->ip_src.s_addr, |
| 2790 | ip->ip_dst.s_addr, |
| 2791 | htons(sizeof(struct udphdr) + |
| 2792 | (u_short)inp->inp_keepalive_datalen + |
| 2793 | IPPROTO_UDP)); |
| 2794 | m->m_pkthdr.csum_flags = |
| 2795 | (CSUM_UDP|CSUM_ZERO_INVERT); |
| 2796 | m->m_pkthdr.csum_data = offsetof(struct udphdr, |
| 2797 | uh_sum); |
| 2798 | } |
| 2799 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; |
| 2800 | in_delayed_cksum(m); |
| 2801 | bcopy(m->m_data, frame->data + frame_data_offset, |
| 2802 | m->m_len); |
| 2803 | } else { |
| 2804 | struct ip6_hdr *ip6; |
| 2805 | struct udphdr *udp6; |
| 2806 | |
| 2807 | VERIFY(inp->inp_vflag & INP_IPV6); |
| 2808 | frame = &frames_array[frame_index]; |
| 2809 | frame->length = frame_data_offset + |
| 2810 | sizeof(struct ip6_hdr) + |
| 2811 | sizeof(struct udphdr) + |
| 2812 | inp->inp_keepalive_datalen; |
| 2813 | frame->ether_type = |
| 2814 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6; |
| 2815 | frame->interval = inp->inp_keepalive_interval; |
| 2816 | switch (inp->inp_keepalive_type) { |
| 2817 | case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY: |
| 2818 | frame->type = |
| 2819 | IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY; |
| 2820 | break; |
| 2821 | default: |
| 2822 | break; |
| 2823 | } |
| 2824 | data = mtod(m, u_int8_t *); |
| 2825 | bzero(data, sizeof(struct ip6_hdr) + sizeof(struct udphdr)); |
| 2826 | ip6 = (__typeof__(ip6))(void *)data; |
| 2827 | udp6 = (__typeof__(udp6))(void *)(data + |
| 2828 | sizeof(struct ip6_hdr)); |
| 2829 | m->m_len = sizeof(struct ip6_hdr) + |
| 2830 | sizeof(struct udphdr); |
| 2831 | data = data + (sizeof(struct ip6_hdr) + |
| 2832 | sizeof(struct udphdr)); |
| 2833 | if (inp->inp_keepalive_datalen > 0 && |
| 2834 | inp->inp_keepalive_data != NULL) { |
| 2835 | bcopy(inp->inp_keepalive_data, data, |
| 2836 | inp->inp_keepalive_datalen); |
| 2837 | m->m_len += inp->inp_keepalive_datalen; |
| 2838 | } |
| 2839 | m->m_pkthdr.len = m->m_len; |
| 2840 | ip6->ip6_flow = inp->inp_flow & IPV6_FLOWINFO_MASK; |
| 2841 | ip6->ip6_flow = ip6->ip6_flow & ~IPV6_FLOW_ECN_MASK; |
| 2842 | ip6->ip6_vfc &= ~IPV6_VERSION_MASK; |
| 2843 | ip6->ip6_vfc |= IPV6_VERSION; |
| 2844 | ip6->ip6_nxt = IPPROTO_UDP; |
| 2845 | ip6->ip6_hlim = ip6_defhlim; |
| 2846 | ip6->ip6_plen = htons(sizeof(struct udphdr) + |
| 2847 | (u_short)inp->inp_keepalive_datalen); |
| 2848 | ip6->ip6_src = inp->in6p_laddr; |
| 2849 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) |
| 2850 | ip6->ip6_src.s6_addr16[1] = 0; |
| 2851 | |
| 2852 | ip6->ip6_dst = inp->in6p_faddr; |
| 2853 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) |
| 2854 | ip6->ip6_dst.s6_addr16[1] = 0; |
| 2855 | |
| 2856 | udp6->uh_sport = inp->in6p_lport; |
| 2857 | udp6->uh_dport = inp->in6p_fport; |
| 2858 | udp6->uh_ulen = htons(sizeof(struct udphdr) + |
| 2859 | (u_short)inp->inp_keepalive_datalen); |
| 2860 | if (!(inp->inp_flags & INP_UDP_NOCKSUM)) { |
| 2861 | udp6->uh_sum = in6_pseudo(&ip6->ip6_src, |
| 2862 | &ip6->ip6_dst, |
| 2863 | htonl(sizeof(struct udphdr) + |
| 2864 | (u_short)inp->inp_keepalive_datalen + |
| 2865 | IPPROTO_UDP)); |
| 2866 | m->m_pkthdr.csum_flags = |
| 2867 | (CSUM_UDPIPV6|CSUM_ZERO_INVERT); |
| 2868 | m->m_pkthdr.csum_data = offsetof(struct udphdr, |
| 2869 | uh_sum); |
| 2870 | } |
| 2871 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; |
| 2872 | in6_delayed_cksum(m); |
| 2873 | bcopy(m->m_data, frame->data + frame_data_offset, |
| 2874 | m->m_len); |
| 2875 | } |
| 2876 | if (m != NULL) { |
| 2877 | m_freem(m); |
| 2878 | m = NULL; |
| 2879 | } |
| 2880 | frame_index++; |
| 2881 | udp_unlock(so, 1, 0); |
| 2882 | } |
| 2883 | lck_rw_done(udbinfo.ipi_lock); |
| 2884 | *used_frames_count = frame_index; |
| 2885 | } |
| 2886 | |