| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 |
| 61 | */ |
| 62 | /* |
| 63 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 64 | * support for mandatory and extensible security protections. This notice |
| 65 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 66 | * Version 2.0. |
| 67 | */ |
| 68 | |
| 69 | #include <sys/param.h> |
| 70 | #include <sys/systm.h> |
| 71 | #include <sys/callout.h> |
| 72 | #include <sys/kernel.h> |
| 73 | #include <sys/sysctl.h> |
| 74 | #include <sys/malloc.h> |
| 75 | #include <sys/mbuf.h> |
| 76 | #include <sys/domain.h> |
| 77 | #include <sys/proc.h> |
| 78 | #include <sys/kauth.h> |
| 79 | #include <sys/socket.h> |
| 80 | #include <sys/socketvar.h> |
| 81 | #include <sys/protosw.h> |
| 82 | #include <sys/random.h> |
| 83 | #include <sys/syslog.h> |
| 84 | #include <sys/mcache.h> |
| 85 | #include <kern/locks.h> |
| 86 | #include <kern/zalloc.h> |
| 87 | |
| 88 | #include <dev/random/randomdev.h> |
| 89 | |
| 90 | #include <net/route.h> |
| 91 | #include <net/if.h> |
| 92 | #include <net/content_filter.h> |
| 93 | #include <net/ntstat.h> |
| 94 | |
| 95 | #define tcp_minmssoverload fring |
| 96 | #define _IP_VHL |
| 97 | #include <netinet/in.h> |
| 98 | #include <netinet/in_systm.h> |
| 99 | #include <netinet/ip.h> |
| 100 | #include <netinet/ip_icmp.h> |
| 101 | #if INET6 |
| 102 | #include <netinet/ip6.h> |
| 103 | #include <netinet/icmp6.h> |
| 104 | #endif |
| 105 | #include <netinet/in_pcb.h> |
| 106 | #if INET6 |
| 107 | #include <netinet6/in6_pcb.h> |
| 108 | #endif |
| 109 | #include <netinet/in_var.h> |
| 110 | #include <netinet/ip_var.h> |
| 111 | #include <netinet/icmp_var.h> |
| 112 | #if INET6 |
| 113 | #include <netinet6/ip6_var.h> |
| 114 | #endif |
| 115 | #include <netinet/mptcp_var.h> |
| 116 | #include <netinet/tcp.h> |
| 117 | #include <netinet/tcp_fsm.h> |
| 118 | #include <netinet/tcp_seq.h> |
| 119 | #include <netinet/tcp_timer.h> |
| 120 | #include <netinet/tcp_var.h> |
| 121 | #include <netinet/tcp_cc.h> |
| 122 | #include <netinet/tcp_cache.h> |
| 123 | #include <kern/thread_call.h> |
| 124 | |
| 125 | #if INET6 |
| 126 | #include <netinet6/tcp6_var.h> |
| 127 | #endif |
| 128 | #include <netinet/tcpip.h> |
| 129 | #if TCPDEBUG |
| 130 | #include <netinet/tcp_debug.h> |
| 131 | #endif |
| 132 | #include <netinet6/ip6protosw.h> |
| 133 | |
| 134 | #if IPSEC |
| 135 | #include <netinet6/ipsec.h> |
| 136 | #if INET6 |
| 137 | #include <netinet6/ipsec6.h> |
| 138 | #endif |
| 139 | #endif /* IPSEC */ |
| 140 | |
| 141 | #if NECP |
| 142 | #include <net/necp.h> |
| 143 | #endif /* NECP */ |
| 144 | |
| 145 | #undef tcp_minmssoverload |
| 146 | |
| 147 | #if CONFIG_MACF_NET |
| 148 | #include <security/mac_framework.h> |
| 149 | #endif /* MAC_NET */ |
| 150 | |
| 151 | #include <corecrypto/ccaes.h> |
| 152 | #include <libkern/crypto/aes.h> |
| 153 | #include <libkern/crypto/md5.h> |
| 154 | #include <sys/kdebug.h> |
| 155 | #include <mach/sdt.h> |
| 156 | |
| 157 | #include <netinet/lro_ext.h> |
| 158 | |
| 159 | #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2)) |
| 160 | |
| 161 | static tcp_cc tcp_ccgen; |
| 162 | extern int tcp_lq_overflow; |
| 163 | |
| 164 | extern struct tcptimerlist tcp_timer_list; |
| 165 | extern struct tcptailq tcp_tw_tailq; |
| 166 | |
| 167 | SYSCTL_SKMEM_TCP_INT(TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 168 | int, tcp_mssdflt, TCP_MSS, "Default TCP Maximum Segment Size" ); |
| 169 | |
| 170 | #if INET6 |
| 171 | SYSCTL_SKMEM_TCP_INT(TCPCTL_V6MSSDFLT, v6mssdflt, |
| 172 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_v6mssdflt, TCP6_MSS, |
| 173 | "Default TCP Maximum Segment Size for IPv6" ); |
| 174 | #endif |
| 175 | |
| 176 | int tcp_sysctl_fastopenkey(struct sysctl_oid *, void *, int, |
| 177 | struct sysctl_req *); |
| 178 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, fastopen_key, CTLTYPE_STRING | CTLFLAG_WR, |
| 179 | 0, 0, tcp_sysctl_fastopenkey, "S" , "TCP Fastopen key" ); |
| 180 | |
| 181 | /* Current count of half-open TFO connections */ |
| 182 | int tcp_tfo_halfcnt = 0; |
| 183 | |
| 184 | /* Maximum of half-open TFO connection backlog */ |
| 185 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, fastopen_backlog, |
| 186 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_tfo_backlog, 10, |
| 187 | "Backlog queue for half-open TFO connections" ); |
| 188 | |
| 189 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, fastopen, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 190 | int, tcp_fastopen, TCP_FASTOPEN_CLIENT | TCP_FASTOPEN_SERVER, |
| 191 | "Enable TCP Fastopen (RFC 7413)" ); |
| 192 | |
| 193 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, now_init, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 194 | uint32_t, tcp_now_init, 0, "Initial tcp now value" ); |
| 195 | |
| 196 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, microuptime_init, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 197 | uint32_t, tcp_microuptime_init, 0, "Initial tcp uptime value in micro seconds" ); |
| 198 | |
| 199 | /* |
| 200 | * Minimum MSS we accept and use. This prevents DoS attacks where |
| 201 | * we are forced to a ridiculous low MSS like 20 and send hundreds |
| 202 | * of packets instead of one. The effect scales with the available |
| 203 | * bandwidth and quickly saturates the CPU and network interface |
| 204 | * with packet generation and sending. Set to zero to disable MINMSS |
| 205 | * checking. This setting prevents us from sending too small packets. |
| 206 | */ |
| 207 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 208 | int, tcp_minmss, TCP_MINMSS, "Minmum TCP Maximum Segment Size" ); |
| 209 | int tcp_do_rfc1323 = 1; |
| 210 | #if (DEVELOPMENT || DEBUG) |
| 211 | SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, |
| 212 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_rfc1323, 0, |
| 213 | "Enable rfc1323 (high performance TCP) extensions" ); |
| 214 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 215 | |
| 216 | // Not used |
| 217 | static int tcp_do_rfc1644 = 0; |
| 218 | SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, |
| 219 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_rfc1644, 0, |
| 220 | "Enable rfc1644 (TTCP) extensions" ); |
| 221 | |
| 222 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_tcpdrain, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 223 | static int, do_tcpdrain, 0, |
| 224 | "Enable tcp_drain routine for extra help when low on mbufs" ); |
| 225 | |
| 226 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 227 | &tcbinfo.ipi_count, 0, "Number of active PCBs" ); |
| 228 | |
| 229 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, tw_pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 230 | &tcbinfo.ipi_twcount, 0, "Number of pcbs in time-wait state" ); |
| 231 | |
| 232 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 233 | static int, icmp_may_rst, 1, |
| 234 | "Certain ICMP unreachable messages may abort connections in SYN_SENT" ); |
| 235 | |
| 236 | static int tcp_strict_rfc1948 = 0; |
| 237 | static int tcp_isn_reseed_interval = 0; |
| 238 | #if (DEVELOPMENT || DEBUG) |
| 239 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 240 | &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly" ); |
| 241 | |
| 242 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, |
| 243 | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 244 | &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret" ); |
| 245 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 246 | |
| 247 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 248 | int, tcp_TCPTV_MIN, 100, "min rtt value allowed" ); |
| 249 | |
| 250 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rexmt_slop, CTLFLAG_RW, |
| 251 | int, tcp_rexmt_slop, TCPTV_REXMTSLOP, "Slop added to retransmit timeout" ); |
| 252 | |
| 253 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 254 | __private_extern__ int , tcp_use_randomport, 0, |
| 255 | "Randomize TCP port numbers" ); |
| 256 | |
| 257 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, win_scale_factor, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 258 | __private_extern__ int, tcp_win_scale, 3, "Window scaling factor" ); |
| 259 | |
| 260 | static void tcp_cleartaocache(void); |
| 261 | static void tcp_notify(struct inpcb *, int); |
| 262 | |
| 263 | struct zone *sack_hole_zone; |
| 264 | struct zone *tcp_reass_zone; |
| 265 | struct zone *tcp_bwmeas_zone; |
| 266 | struct zone *tcp_rxt_seg_zone; |
| 267 | |
| 268 | extern int slowlink_wsize; /* window correction for slow links */ |
| 269 | extern int path_mtu_discovery; |
| 270 | |
| 271 | static void tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb); |
| 272 | |
| 273 | #define TCP_BWMEAS_BURST_MINSIZE 6 |
| 274 | #define TCP_BWMEAS_BURST_MAXSIZE 25 |
| 275 | |
| 276 | static uint32_t bwmeas_elm_size; |
| 277 | |
| 278 | /* |
| 279 | * Target size of TCP PCB hash tables. Must be a power of two. |
| 280 | * |
| 281 | * Note that this can be overridden by the kernel environment |
| 282 | * variable net.inet.tcp.tcbhashsize |
| 283 | */ |
| 284 | #ifndef TCBHASHSIZE |
| 285 | #define TCBHASHSIZE CONFIG_TCBHASHSIZE |
| 286 | #endif |
| 287 | |
| 288 | __private_extern__ int tcp_tcbhashsize = TCBHASHSIZE; |
| 289 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 290 | &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable" ); |
| 291 | |
| 292 | /* |
| 293 | * This is the actual shape of what we allocate using the zone |
| 294 | * allocator. Doing it this way allows us to protect both structures |
| 295 | * using the same generation count, and also eliminates the overhead |
| 296 | * of allocating tcpcbs separately. By hiding the structure here, |
| 297 | * we avoid changing most of the rest of the code (although it needs |
| 298 | * to be changed, eventually, for greater efficiency). |
| 299 | */ |
| 300 | #define ALIGNMENT 32 |
| 301 | struct inp_tp { |
| 302 | struct inpcb inp; |
| 303 | struct tcpcb tcb __attribute__((aligned(ALIGNMENT))); |
| 304 | }; |
| 305 | #undef ALIGNMENT |
| 306 | |
| 307 | int get_inpcb_str_size(void); |
| 308 | int get_tcp_str_size(void); |
| 309 | |
| 310 | static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *); |
| 311 | |
| 312 | static lck_attr_t *tcp_uptime_mtx_attr = NULL; |
| 313 | static lck_grp_t *tcp_uptime_mtx_grp = NULL; |
| 314 | static lck_grp_attr_t *tcp_uptime_mtx_grp_attr = NULL; |
| 315 | int tcp_notsent_lowat_check(struct socket *so); |
| 316 | static void tcp_flow_lim_stats(struct ifnet_stats_per_flow *ifs, |
| 317 | struct if_lim_perf_stat *stat); |
| 318 | static void tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow *ifs, |
| 319 | struct if_tcp_ecn_perf_stat *stat); |
| 320 | |
| 321 | static aes_encrypt_ctx tfo_ctx; /* Crypto-context for TFO */ |
| 322 | |
| 323 | void |
| 324 | tcp_tfo_gen_cookie(struct inpcb *inp, u_char *out, size_t blk_size) |
| 325 | { |
| 326 | u_char in[CCAES_BLOCK_SIZE]; |
| 327 | #if INET6 |
| 328 | int isipv6 = inp->inp_vflag & INP_IPV6; |
| 329 | #endif |
| 330 | |
| 331 | VERIFY(blk_size == CCAES_BLOCK_SIZE); |
| 332 | |
| 333 | bzero(&in[0], CCAES_BLOCK_SIZE); |
| 334 | bzero(&out[0], CCAES_BLOCK_SIZE); |
| 335 | |
| 336 | #if INET6 |
| 337 | if (isipv6) |
| 338 | memcpy(in, &inp->in6p_faddr, sizeof(struct in6_addr)); |
| 339 | else |
| 340 | #endif /* INET6 */ |
| 341 | memcpy(in, &inp->inp_faddr, sizeof(struct in_addr)); |
| 342 | |
| 343 | aes_encrypt_cbc(in, NULL, 1, out, &tfo_ctx); |
| 344 | } |
| 345 | |
| 346 | __private_extern__ int |
| 347 | tcp_sysctl_fastopenkey(__unused struct sysctl_oid *oidp, __unused void *arg1, |
| 348 | __unused int arg2, struct sysctl_req *req) |
| 349 | { |
| 350 | int error = 0; |
| 351 | /* |
| 352 | * TFO-key is expressed as a string in hex format |
| 353 | * (+1 to account for \0 char) |
| 354 | */ |
| 355 | char keystring[TCP_FASTOPEN_KEYLEN * 2 + 1]; |
| 356 | u_int32_t key[TCP_FASTOPEN_KEYLEN / sizeof(u_int32_t)]; |
| 357 | int i; |
| 358 | |
| 359 | /* -1, because newlen is len without the terminating \0 character */ |
| 360 | if (req->newlen != (sizeof(keystring) - 1)) { |
| 361 | error = EINVAL; |
| 362 | goto exit; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * sysctl_io_string copies keystring into the oldptr of the sysctl_req. |
| 367 | * Make sure everything is zero, to avoid putting garbage in there or |
| 368 | * leaking the stack. |
| 369 | */ |
| 370 | bzero(keystring, sizeof(keystring)); |
| 371 | |
| 372 | error = sysctl_io_string(req, keystring, sizeof(keystring), 0, NULL); |
| 373 | if (error) |
| 374 | goto exit; |
| 375 | |
| 376 | for (i = 0; i < (TCP_FASTOPEN_KEYLEN / sizeof(u_int32_t)); i++) { |
| 377 | /* |
| 378 | * We jump over the keystring in 8-character (4 byte in hex) |
| 379 | * steps |
| 380 | */ |
| 381 | if (sscanf(&keystring[i * 8], "%8x" , &key[i]) != 1) { |
| 382 | error = EINVAL; |
| 383 | goto exit; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | aes_encrypt_key128((u_char *)key, &tfo_ctx); |
| 388 | |
| 389 | exit: |
| 390 | return (error); |
| 391 | } |
| 392 | |
| 393 | int |
| 394 | get_inpcb_str_size(void) |
| 395 | { |
| 396 | return (sizeof(struct inpcb)); |
| 397 | } |
| 398 | |
| 399 | int |
| 400 | get_tcp_str_size(void) |
| 401 | { |
| 402 | return (sizeof(struct tcpcb)); |
| 403 | } |
| 404 | |
| 405 | static int scale_to_powerof2(int size); |
| 406 | |
| 407 | /* |
| 408 | * This helper routine returns one of the following scaled value of size: |
| 409 | * 1. Rounded down power of two value of size if the size value passed as |
| 410 | * argument is not a power of two and the rounded up value overflows. |
| 411 | * OR |
| 412 | * 2. Rounded up power of two value of size if the size value passed as |
| 413 | * argument is not a power of two and the rounded up value does not overflow |
| 414 | * OR |
| 415 | * 3. Same value as argument size if it is already a power of two. |
| 416 | */ |
| 417 | static int |
| 418 | scale_to_powerof2(int size) { |
| 419 | /* Handle special case of size = 0 */ |
| 420 | int ret = size ? size : 1; |
| 421 | |
| 422 | if (!powerof2(ret)) { |
| 423 | while (!powerof2(size)) { |
| 424 | /* |
| 425 | * Clear out least significant |
| 426 | * set bit till size is left with |
| 427 | * its highest set bit at which point |
| 428 | * it is rounded down power of two. |
| 429 | */ |
| 430 | size = size & (size -1); |
| 431 | } |
| 432 | |
| 433 | /* Check for overflow when rounding up */ |
| 434 | if (0 == (size << 1)) { |
| 435 | ret = size; |
| 436 | } else { |
| 437 | ret = size << 1; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | return (ret); |
| 442 | } |
| 443 | |
| 444 | static void |
| 445 | tcp_tfo_init(void) |
| 446 | { |
| 447 | u_char key[TCP_FASTOPEN_KEYLEN]; |
| 448 | |
| 449 | read_frandom(key, sizeof(key)); |
| 450 | aes_encrypt_key128(key, &tfo_ctx); |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * Tcp initialization |
| 455 | */ |
| 456 | void |
| 457 | tcp_init(struct protosw *pp, struct domain *dp) |
| 458 | { |
| 459 | #pragma unused(dp) |
| 460 | static int tcp_initialized = 0; |
| 461 | vm_size_t str_size; |
| 462 | struct inpcbinfo *pcbinfo; |
| 463 | |
| 464 | VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED); |
| 465 | |
| 466 | if (tcp_initialized) |
| 467 | return; |
| 468 | tcp_initialized = 1; |
| 469 | |
| 470 | tcp_ccgen = 1; |
| 471 | tcp_cleartaocache(); |
| 472 | |
| 473 | tcp_keepinit = TCPTV_KEEP_INIT; |
| 474 | tcp_keepidle = TCPTV_KEEP_IDLE; |
| 475 | tcp_keepintvl = TCPTV_KEEPINTVL; |
| 476 | tcp_keepcnt = TCPTV_KEEPCNT; |
| 477 | tcp_maxpersistidle = TCPTV_KEEP_IDLE; |
| 478 | tcp_msl = TCPTV_MSL; |
| 479 | |
| 480 | microuptime(&tcp_uptime); |
| 481 | read_frandom(&tcp_now, sizeof(tcp_now)); |
| 482 | |
| 483 | /* Starts tcp internal clock at a random value */ |
| 484 | tcp_now = tcp_now & 0x3fffffff; |
| 485 | |
| 486 | /* expose initial uptime/now via systcl for utcp to keep time sync */ |
| 487 | tcp_now_init = tcp_now; |
| 488 | tcp_microuptime_init = |
| 489 | tcp_uptime.tv_usec + (tcp_uptime.tv_sec * USEC_PER_SEC); |
| 490 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.microuptime_init, tcp_microuptime_init); |
| 491 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.now_init, tcp_now_init); |
| 492 | |
| 493 | tcp_tfo_init(); |
| 494 | |
| 495 | LIST_INIT(&tcb); |
| 496 | tcbinfo.ipi_listhead = &tcb; |
| 497 | |
| 498 | pcbinfo = &tcbinfo; |
| 499 | /* |
| 500 | * allocate lock group attribute and group for tcp pcb mutexes |
| 501 | */ |
| 502 | pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 503 | pcbinfo->ipi_lock_grp = lck_grp_alloc_init("tcppcb" , |
| 504 | pcbinfo->ipi_lock_grp_attr); |
| 505 | |
| 506 | /* |
| 507 | * allocate the lock attribute for tcp pcb mutexes |
| 508 | */ |
| 509 | pcbinfo->ipi_lock_attr = lck_attr_alloc_init(); |
| 510 | |
| 511 | if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp, |
| 512 | pcbinfo->ipi_lock_attr)) == NULL) { |
| 513 | panic("%s: unable to allocate PCB lock\n" , __func__); |
| 514 | /* NOTREACHED */ |
| 515 | } |
| 516 | |
| 517 | if (tcp_tcbhashsize == 0) { |
| 518 | /* Set to default */ |
| 519 | tcp_tcbhashsize = 512; |
| 520 | } |
| 521 | |
| 522 | if (!powerof2(tcp_tcbhashsize)) { |
| 523 | int old_hash_size = tcp_tcbhashsize; |
| 524 | tcp_tcbhashsize = scale_to_powerof2(tcp_tcbhashsize); |
| 525 | /* Lower limit of 16 */ |
| 526 | if (tcp_tcbhashsize < 16) { |
| 527 | tcp_tcbhashsize = 16; |
| 528 | } |
| 529 | printf("WARNING: TCB hash size not a power of 2, " |
| 530 | "scaled from %d to %d.\n" , |
| 531 | old_hash_size, |
| 532 | tcp_tcbhashsize); |
| 533 | } |
| 534 | |
| 535 | tcbinfo.ipi_hashbase = hashinit(tcp_tcbhashsize, M_PCB, |
| 536 | &tcbinfo.ipi_hashmask); |
| 537 | tcbinfo.ipi_porthashbase = hashinit(tcp_tcbhashsize, M_PCB, |
| 538 | &tcbinfo.ipi_porthashmask); |
| 539 | str_size = P2ROUNDUP(sizeof(struct inp_tp), sizeof(u_int64_t)); |
| 540 | tcbinfo.ipi_zone = zinit(str_size, 120000*str_size, 8192, "tcpcb" ); |
| 541 | zone_change(tcbinfo.ipi_zone, Z_CALLERACCT, FALSE); |
| 542 | zone_change(tcbinfo.ipi_zone, Z_EXPAND, TRUE); |
| 543 | |
| 544 | tcbinfo.ipi_gc = tcp_gc; |
| 545 | tcbinfo.ipi_timer = tcp_itimer; |
| 546 | in_pcbinfo_attach(&tcbinfo); |
| 547 | |
| 548 | str_size = P2ROUNDUP(sizeof(struct sackhole), sizeof(u_int64_t)); |
| 549 | sack_hole_zone = zinit(str_size, 120000*str_size, 8192, |
| 550 | "sack_hole zone" ); |
| 551 | zone_change(sack_hole_zone, Z_CALLERACCT, FALSE); |
| 552 | zone_change(sack_hole_zone, Z_EXPAND, TRUE); |
| 553 | |
| 554 | str_size = P2ROUNDUP(sizeof(struct tseg_qent), sizeof(u_int64_t)); |
| 555 | tcp_reass_zone = zinit(str_size, (nmbclusters >> 4) * str_size, |
| 556 | 0, "tcp_reass_zone" ); |
| 557 | if (tcp_reass_zone == NULL) { |
| 558 | panic("%s: failed allocating tcp_reass_zone" , __func__); |
| 559 | /* NOTREACHED */ |
| 560 | } |
| 561 | zone_change(tcp_reass_zone, Z_CALLERACCT, FALSE); |
| 562 | zone_change(tcp_reass_zone, Z_EXPAND, TRUE); |
| 563 | |
| 564 | bwmeas_elm_size = P2ROUNDUP(sizeof(struct bwmeas), sizeof(u_int64_t)); |
| 565 | tcp_bwmeas_zone = zinit(bwmeas_elm_size, (100 * bwmeas_elm_size), 0, |
| 566 | "tcp_bwmeas_zone" ); |
| 567 | if (tcp_bwmeas_zone == NULL) { |
| 568 | panic("%s: failed allocating tcp_bwmeas_zone" , __func__); |
| 569 | /* NOTREACHED */ |
| 570 | } |
| 571 | zone_change(tcp_bwmeas_zone, Z_CALLERACCT, FALSE); |
| 572 | zone_change(tcp_bwmeas_zone, Z_EXPAND, TRUE); |
| 573 | |
| 574 | str_size = P2ROUNDUP(sizeof(struct tcp_ccstate), sizeof(u_int64_t)); |
| 575 | tcp_cc_zone = zinit(str_size, 20000 * str_size, 0, "tcp_cc_zone" ); |
| 576 | zone_change(tcp_cc_zone, Z_CALLERACCT, FALSE); |
| 577 | zone_change(tcp_cc_zone, Z_EXPAND, TRUE); |
| 578 | |
| 579 | str_size = P2ROUNDUP(sizeof(struct tcp_rxt_seg), sizeof(u_int64_t)); |
| 580 | tcp_rxt_seg_zone = zinit(str_size, 10000 * str_size, 0, |
| 581 | "tcp_rxt_seg_zone" ); |
| 582 | zone_change(tcp_rxt_seg_zone, Z_CALLERACCT, FALSE); |
| 583 | zone_change(tcp_rxt_seg_zone, Z_EXPAND, TRUE); |
| 584 | |
| 585 | #if INET6 |
| 586 | #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) |
| 587 | #else /* INET6 */ |
| 588 | #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) |
| 589 | #endif /* INET6 */ |
| 590 | if (max_protohdr < TCP_MINPROTOHDR) { |
| 591 | _max_protohdr = TCP_MINPROTOHDR; |
| 592 | _max_protohdr = max_protohdr; /* round it up */ |
| 593 | } |
| 594 | if (max_linkhdr + max_protohdr > MCLBYTES) |
| 595 | panic("tcp_init" ); |
| 596 | #undef TCP_MINPROTOHDR |
| 597 | |
| 598 | /* Initialize time wait and timer lists */ |
| 599 | TAILQ_INIT(&tcp_tw_tailq); |
| 600 | |
| 601 | bzero(&tcp_timer_list, sizeof(tcp_timer_list)); |
| 602 | LIST_INIT(&tcp_timer_list.lhead); |
| 603 | /* |
| 604 | * allocate lock group attribute, group and attribute for |
| 605 | * the tcp timer list |
| 606 | */ |
| 607 | tcp_timer_list.mtx_grp_attr = lck_grp_attr_alloc_init(); |
| 608 | tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist" , |
| 609 | tcp_timer_list.mtx_grp_attr); |
| 610 | tcp_timer_list.mtx_attr = lck_attr_alloc_init(); |
| 611 | if ((tcp_timer_list.mtx = lck_mtx_alloc_init(tcp_timer_list.mtx_grp, |
| 612 | tcp_timer_list.mtx_attr)) == NULL) { |
| 613 | panic("failed to allocate memory for tcp_timer_list.mtx\n" ); |
| 614 | }; |
| 615 | tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL); |
| 616 | if (tcp_timer_list.call == NULL) { |
| 617 | panic("failed to allocate call entry 1 in tcp_init\n" ); |
| 618 | } |
| 619 | |
| 620 | /* |
| 621 | * allocate lock group attribute, group and attribute for |
| 622 | * tcp_uptime_lock |
| 623 | */ |
| 624 | tcp_uptime_mtx_grp_attr = lck_grp_attr_alloc_init(); |
| 625 | tcp_uptime_mtx_grp = lck_grp_alloc_init("tcpuptime" , |
| 626 | tcp_uptime_mtx_grp_attr); |
| 627 | tcp_uptime_mtx_attr = lck_attr_alloc_init(); |
| 628 | tcp_uptime_lock = lck_spin_alloc_init(tcp_uptime_mtx_grp, |
| 629 | tcp_uptime_mtx_attr); |
| 630 | |
| 631 | /* Initialize TCP LRO data structures */ |
| 632 | tcp_lro_init(); |
| 633 | |
| 634 | /* Initialize TCP Cache */ |
| 635 | tcp_cache_init(); |
| 636 | |
| 637 | /* |
| 638 | * If more than 60 MB of mbuf pool is available, increase the |
| 639 | * maximum allowed receive and send socket buffer size. |
| 640 | */ |
| 641 | if (nmbclusters > 30720) { |
| 642 | tcp_autorcvbuf_max = 2 * 1024 * 1024; |
| 643 | tcp_autosndbuf_max = 2 * 1024 * 1024; |
| 644 | |
| 645 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.autorcvbufmax, tcp_autorcvbuf_max); |
| 646 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.autosndbufmax, tcp_autosndbuf_max); |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. |
| 652 | * tcp_template used to store this data in mbufs, but we now recopy it out |
| 653 | * of the tcpcb each time to conserve mbufs. |
| 654 | */ |
| 655 | void |
| 656 | (struct tcpcb *tp, void *ip_ptr, void *tcp_ptr) |
| 657 | { |
| 658 | struct inpcb *inp = tp->t_inpcb; |
| 659 | struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr; |
| 660 | |
| 661 | #if INET6 |
| 662 | if ((inp->inp_vflag & INP_IPV6) != 0) { |
| 663 | struct ip6_hdr *ip6; |
| 664 | |
| 665 | ip6 = (struct ip6_hdr *)ip_ptr; |
| 666 | ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | |
| 667 | (inp->inp_flow & IPV6_FLOWINFO_MASK); |
| 668 | ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | |
| 669 | (IPV6_VERSION & IPV6_VERSION_MASK); |
| 670 | ip6->ip6_plen = htons(sizeof(struct tcphdr)); |
| 671 | ip6->ip6_nxt = IPPROTO_TCP; |
| 672 | ip6->ip6_hlim = 0; |
| 673 | ip6->ip6_src = inp->in6p_laddr; |
| 674 | ip6->ip6_dst = inp->in6p_faddr; |
| 675 | tcp_hdr->th_sum = in6_pseudo(&inp->in6p_laddr, &inp->in6p_faddr, |
| 676 | htonl(sizeof (struct tcphdr) + IPPROTO_TCP)); |
| 677 | } else |
| 678 | #endif |
| 679 | { |
| 680 | struct ip *ip = (struct ip *) ip_ptr; |
| 681 | |
| 682 | ip->ip_vhl = IP_VHL_BORING; |
| 683 | ip->ip_tos = 0; |
| 684 | ip->ip_len = 0; |
| 685 | ip->ip_id = 0; |
| 686 | ip->ip_off = 0; |
| 687 | ip->ip_ttl = 0; |
| 688 | ip->ip_sum = 0; |
| 689 | ip->ip_p = IPPROTO_TCP; |
| 690 | ip->ip_src = inp->inp_laddr; |
| 691 | ip->ip_dst = inp->inp_faddr; |
| 692 | tcp_hdr->th_sum = |
| 693 | in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, |
| 694 | htons(sizeof(struct tcphdr) + IPPROTO_TCP)); |
| 695 | } |
| 696 | |
| 697 | tcp_hdr->th_sport = inp->inp_lport; |
| 698 | tcp_hdr->th_dport = inp->inp_fport; |
| 699 | tcp_hdr->th_seq = 0; |
| 700 | tcp_hdr->th_ack = 0; |
| 701 | tcp_hdr->th_x2 = 0; |
| 702 | tcp_hdr->th_off = 5; |
| 703 | tcp_hdr->th_flags = 0; |
| 704 | tcp_hdr->th_win = 0; |
| 705 | tcp_hdr->th_urp = 0; |
| 706 | } |
| 707 | |
| 708 | /* |
| 709 | * Create template to be used to send tcp packets on a connection. |
| 710 | * Allocates an mbuf and fills in a skeletal tcp/ip header. The only |
| 711 | * use for this function is in keepalives, which use tcp_respond. |
| 712 | */ |
| 713 | struct tcptemp * |
| 714 | tcp_maketemplate(struct tcpcb *tp) |
| 715 | { |
| 716 | struct mbuf *m; |
| 717 | struct tcptemp *n; |
| 718 | |
| 719 | m = m_get(M_DONTWAIT, MT_HEADER); |
| 720 | if (m == NULL) |
| 721 | return (0); |
| 722 | m->m_len = sizeof(struct tcptemp); |
| 723 | n = mtod(m, struct tcptemp *); |
| 724 | |
| 725 | tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t); |
| 726 | return (n); |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * Send a single message to the TCP at address specified by |
| 731 | * the given TCP/IP header. If m == 0, then we make a copy |
| 732 | * of the tcpiphdr at ti and send directly to the addressed host. |
| 733 | * This is used to force keep alive messages out using the TCP |
| 734 | * template for a connection. If flags are given then we send |
| 735 | * a message back to the TCP which originated the * segment ti, |
| 736 | * and discard the mbuf containing it and any other attached mbufs. |
| 737 | * |
| 738 | * In any case the ack and sequence number of the transmitted |
| 739 | * segment are as specified by the parameters. |
| 740 | * |
| 741 | * NOTE: If m != NULL, then ti must point to *inside* the mbuf. |
| 742 | */ |
| 743 | void |
| 744 | tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, |
| 745 | tcp_seq ack, tcp_seq seq, int flags, struct tcp_respond_args *tra) |
| 746 | { |
| 747 | int tlen; |
| 748 | int win = 0; |
| 749 | struct route *ro = 0; |
| 750 | struct route sro; |
| 751 | struct ip *ip; |
| 752 | struct tcphdr *nth; |
| 753 | #if INET6 |
| 754 | struct route_in6 *ro6 = 0; |
| 755 | struct route_in6 sro6; |
| 756 | struct ip6_hdr *ip6; |
| 757 | int isipv6; |
| 758 | #endif /* INET6 */ |
| 759 | struct ifnet *outif; |
| 760 | int sotc = SO_TC_UNSPEC; |
| 761 | |
| 762 | #if INET6 |
| 763 | isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6; |
| 764 | ip6 = ipgen; |
| 765 | #endif /* INET6 */ |
| 766 | ip = ipgen; |
| 767 | |
| 768 | if (tp) { |
| 769 | if (!(flags & TH_RST)) { |
| 770 | win = tcp_sbspace(tp); |
| 771 | if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale) |
| 772 | win = (int32_t)TCP_MAXWIN << tp->rcv_scale; |
| 773 | } |
| 774 | #if INET6 |
| 775 | if (isipv6) |
| 776 | ro6 = &tp->t_inpcb->in6p_route; |
| 777 | else |
| 778 | #endif /* INET6 */ |
| 779 | ro = &tp->t_inpcb->inp_route; |
| 780 | } else { |
| 781 | #if INET6 |
| 782 | if (isipv6) { |
| 783 | ro6 = &sro6; |
| 784 | bzero(ro6, sizeof(*ro6)); |
| 785 | } else |
| 786 | #endif /* INET6 */ |
| 787 | { |
| 788 | ro = &sro; |
| 789 | bzero(ro, sizeof(*ro)); |
| 790 | } |
| 791 | } |
| 792 | if (m == 0) { |
| 793 | m = m_gethdr(M_DONTWAIT, MT_HEADER); /* MAC-OK */ |
| 794 | if (m == NULL) |
| 795 | return; |
| 796 | tlen = 0; |
| 797 | m->m_data += max_linkhdr; |
| 798 | #if INET6 |
| 799 | if (isipv6) { |
| 800 | VERIFY((MHLEN - max_linkhdr) >= |
| 801 | (sizeof (*ip6) + sizeof (*nth))); |
| 802 | bcopy((caddr_t)ip6, mtod(m, caddr_t), |
| 803 | sizeof(struct ip6_hdr)); |
| 804 | ip6 = mtod(m, struct ip6_hdr *); |
| 805 | nth = (struct tcphdr *)(void *)(ip6 + 1); |
| 806 | } else |
| 807 | #endif /* INET6 */ |
| 808 | { |
| 809 | VERIFY((MHLEN - max_linkhdr) >= |
| 810 | (sizeof (*ip) + sizeof (*nth))); |
| 811 | bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); |
| 812 | ip = mtod(m, struct ip *); |
| 813 | nth = (struct tcphdr *)(void *)(ip + 1); |
| 814 | } |
| 815 | bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); |
| 816 | #if MPTCP |
| 817 | if ((tp) && (tp->t_mpflags & TMPF_RESET)) |
| 818 | flags = (TH_RST | TH_ACK); |
| 819 | else |
| 820 | #endif |
| 821 | flags = TH_ACK; |
| 822 | } else { |
| 823 | m_freem(m->m_next); |
| 824 | m->m_next = 0; |
| 825 | m->m_data = (caddr_t)ipgen; |
| 826 | /* m_len is set later */ |
| 827 | tlen = 0; |
| 828 | #define xchg(a, b, type) { type t; t = a; a = b; b = t; } |
| 829 | #if INET6 |
| 830 | if (isipv6) { |
| 831 | /* Expect 32-bit aligned IP on strict-align platforms */ |
| 832 | IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6); |
| 833 | xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); |
| 834 | nth = (struct tcphdr *)(void *)(ip6 + 1); |
| 835 | } else |
| 836 | #endif /* INET6 */ |
| 837 | { |
| 838 | /* Expect 32-bit aligned IP on strict-align platforms */ |
| 839 | IP_HDR_STRICT_ALIGNMENT_CHECK(ip); |
| 840 | xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); |
| 841 | nth = (struct tcphdr *)(void *)(ip + 1); |
| 842 | } |
| 843 | if (th != nth) { |
| 844 | /* |
| 845 | * this is usually a case when an extension header |
| 846 | * exists between the IPv6 header and the |
| 847 | * TCP header. |
| 848 | */ |
| 849 | nth->th_sport = th->th_sport; |
| 850 | nth->th_dport = th->th_dport; |
| 851 | } |
| 852 | xchg(nth->th_dport, nth->th_sport, n_short); |
| 853 | #undef xchg |
| 854 | } |
| 855 | #if INET6 |
| 856 | if (isipv6) { |
| 857 | ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + |
| 858 | tlen)); |
| 859 | tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); |
| 860 | } else |
| 861 | #endif |
| 862 | { |
| 863 | tlen += sizeof (struct tcpiphdr); |
| 864 | ip->ip_len = tlen; |
| 865 | ip->ip_ttl = ip_defttl; |
| 866 | } |
| 867 | m->m_len = tlen; |
| 868 | m->m_pkthdr.len = tlen; |
| 869 | m->m_pkthdr.rcvif = 0; |
| 870 | #if CONFIG_MACF_NET |
| 871 | if (tp != NULL && tp->t_inpcb != NULL) { |
| 872 | /* |
| 873 | * Packet is associated with a socket, so allow the |
| 874 | * label of the response to reflect the socket label. |
| 875 | */ |
| 876 | mac_mbuf_label_associate_inpcb(tp->t_inpcb, m); |
| 877 | } else { |
| 878 | /* |
| 879 | * Packet is not associated with a socket, so possibly |
| 880 | * update the label in place. |
| 881 | */ |
| 882 | mac_netinet_tcp_reply(m); |
| 883 | } |
| 884 | #endif |
| 885 | |
| 886 | nth->th_seq = htonl(seq); |
| 887 | nth->th_ack = htonl(ack); |
| 888 | nth->th_x2 = 0; |
| 889 | nth->th_off = sizeof (struct tcphdr) >> 2; |
| 890 | nth->th_flags = flags; |
| 891 | if (tp) |
| 892 | nth->th_win = htons((u_short) (win >> tp->rcv_scale)); |
| 893 | else |
| 894 | nth->th_win = htons((u_short)win); |
| 895 | nth->th_urp = 0; |
| 896 | #if INET6 |
| 897 | if (isipv6) { |
| 898 | nth->th_sum = 0; |
| 899 | nth->th_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst, |
| 900 | htonl((tlen - sizeof (struct ip6_hdr)) + IPPROTO_TCP)); |
| 901 | m->m_pkthdr.csum_flags = CSUM_TCPIPV6; |
| 902 | m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); |
| 903 | ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, |
| 904 | ro6 && ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL); |
| 905 | } else |
| 906 | #endif /* INET6 */ |
| 907 | { |
| 908 | nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, |
| 909 | htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); |
| 910 | m->m_pkthdr.csum_flags = CSUM_TCP; |
| 911 | m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); |
| 912 | } |
| 913 | #if TCPDEBUG |
| 914 | if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) |
| 915 | tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); |
| 916 | #endif |
| 917 | |
| 918 | #if NECP |
| 919 | necp_mark_packet_from_socket(m, tp ? tp->t_inpcb : NULL, 0, 0, 0); |
| 920 | #endif /* NECP */ |
| 921 | |
| 922 | #if IPSEC |
| 923 | if (tp != NULL && tp->t_inpcb->inp_sp != NULL && |
| 924 | ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) { |
| 925 | m_freem(m); |
| 926 | return; |
| 927 | } |
| 928 | #endif |
| 929 | |
| 930 | if (tp != NULL) { |
| 931 | u_int32_t svc_flags = 0; |
| 932 | if (isipv6) { |
| 933 | svc_flags |= PKT_SCF_IPV6; |
| 934 | } |
| 935 | sotc = tp->t_inpcb->inp_socket->so_traffic_class; |
| 936 | set_packet_service_class(m, tp->t_inpcb->inp_socket, |
| 937 | sotc, svc_flags); |
| 938 | |
| 939 | /* Embed flowhash and flow control flags */ |
| 940 | m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; |
| 941 | m->m_pkthdr.pkt_flowid = tp->t_inpcb->inp_flowhash; |
| 942 | m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC | PKTF_FLOW_ADV); |
| 943 | m->m_pkthdr.pkt_proto = IPPROTO_TCP; |
| 944 | m->m_pkthdr.tx_tcp_pid = tp->t_inpcb->inp_socket->last_pid; |
| 945 | m->m_pkthdr.tx_tcp_e_pid = tp->t_inpcb->inp_socket->e_pid; |
| 946 | } |
| 947 | |
| 948 | #if INET6 |
| 949 | if (isipv6) { |
| 950 | struct ip6_out_args ip6oa; |
| 951 | bzero(&ip6oa, sizeof(ip6oa)); |
| 952 | ip6oa.ip6oa_boundif = tra->ifscope; |
| 953 | ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR; |
| 954 | ip6oa.ip6oa_sotc = SO_TC_UNSPEC; |
| 955 | ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 956 | |
| 957 | if (tra->ifscope != IFSCOPE_NONE) |
| 958 | ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF; |
| 959 | if (tra->nocell) |
| 960 | ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR; |
| 961 | if (tra->noexpensive) |
| 962 | ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE; |
| 963 | if (tra->awdl_unrestricted) |
| 964 | ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED; |
| 965 | if (tra->intcoproc_allowed) |
| 966 | ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED; |
| 967 | ip6oa.ip6oa_sotc = sotc; |
| 968 | if (tp != NULL) { |
| 969 | if ((tp->t_inpcb->inp_socket->so_flags1 & SOF1_QOSMARKING_ALLOWED)) |
| 970 | ip6oa.ip6oa_flags |= IP6OAF_QOSMARKING_ALLOWED; |
| 971 | ip6oa.ip6oa_netsvctype = tp->t_inpcb->inp_socket->so_netsvctype; |
| 972 | } |
| 973 | (void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL, |
| 974 | NULL, &ip6oa); |
| 975 | |
| 976 | if (tp != NULL && ro6 != NULL && ro6->ro_rt != NULL && |
| 977 | (outif = ro6->ro_rt->rt_ifp) != |
| 978 | tp->t_inpcb->in6p_last_outifp) { |
| 979 | tp->t_inpcb->in6p_last_outifp = outif; |
| 980 | } |
| 981 | |
| 982 | if (ro6 == &sro6) |
| 983 | ROUTE_RELEASE(ro6); |
| 984 | } else |
| 985 | #endif /* INET6 */ |
| 986 | { |
| 987 | struct ip_out_args ipoa; |
| 988 | bzero(&ipoa, sizeof(ipoa)); |
| 989 | ipoa.ipoa_boundif = tra->ifscope; |
| 990 | ipoa.ipoa_flags = IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR; |
| 991 | ipoa.ipoa_sotc = SO_TC_UNSPEC; |
| 992 | ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 993 | |
| 994 | if (tra->ifscope != IFSCOPE_NONE) |
| 995 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; |
| 996 | if (tra->nocell) |
| 997 | ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; |
| 998 | if (tra->noexpensive) |
| 999 | ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE; |
| 1000 | if (tra->awdl_unrestricted) |
| 1001 | ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED; |
| 1002 | ipoa.ipoa_sotc = sotc; |
| 1003 | if (tp != NULL) { |
| 1004 | if ((tp->t_inpcb->inp_socket->so_flags1 & SOF1_QOSMARKING_ALLOWED)) |
| 1005 | ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; |
| 1006 | ipoa.ipoa_netsvctype = tp->t_inpcb->inp_socket->so_netsvctype; |
| 1007 | } |
| 1008 | if (ro != &sro) { |
| 1009 | /* Copy the cached route and take an extra reference */ |
| 1010 | inp_route_copyout(tp->t_inpcb, &sro); |
| 1011 | } |
| 1012 | /* |
| 1013 | * For consistency, pass a local route copy. |
| 1014 | */ |
| 1015 | (void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa); |
| 1016 | |
| 1017 | if (tp != NULL && sro.ro_rt != NULL && |
| 1018 | (outif = sro.ro_rt->rt_ifp) != |
| 1019 | tp->t_inpcb->inp_last_outifp) { |
| 1020 | tp->t_inpcb->inp_last_outifp = outif; |
| 1021 | |
| 1022 | } |
| 1023 | if (ro != &sro) { |
| 1024 | /* Synchronize cached PCB route */ |
| 1025 | inp_route_copyin(tp->t_inpcb, &sro); |
| 1026 | } else { |
| 1027 | ROUTE_RELEASE(&sro); |
| 1028 | } |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * Create a new TCP control block, making an |
| 1034 | * empty reassembly queue and hooking it to the argument |
| 1035 | * protocol control block. The `inp' parameter must have |
| 1036 | * come from the zone allocator set up in tcp_init(). |
| 1037 | */ |
| 1038 | struct tcpcb * |
| 1039 | tcp_newtcpcb(struct inpcb *inp) |
| 1040 | { |
| 1041 | struct inp_tp *it; |
| 1042 | struct tcpcb *tp; |
| 1043 | struct socket *so = inp->inp_socket; |
| 1044 | #if INET6 |
| 1045 | int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; |
| 1046 | #endif /* INET6 */ |
| 1047 | |
| 1048 | calculate_tcp_clock(); |
| 1049 | |
| 1050 | if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) { |
| 1051 | it = (struct inp_tp *)(void *)inp; |
| 1052 | tp = &it->tcb; |
| 1053 | } else { |
| 1054 | tp = (struct tcpcb *)(void *)inp->inp_saved_ppcb; |
| 1055 | } |
| 1056 | |
| 1057 | bzero((char *) tp, sizeof(struct tcpcb)); |
| 1058 | LIST_INIT(&tp->t_segq); |
| 1059 | tp->t_maxseg = tp->t_maxopd = |
| 1060 | #if INET6 |
| 1061 | isipv6 ? tcp_v6mssdflt : |
| 1062 | #endif /* INET6 */ |
| 1063 | tcp_mssdflt; |
| 1064 | |
| 1065 | if (tcp_do_rfc1323) |
| 1066 | tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); |
| 1067 | if (tcp_do_sack) |
| 1068 | tp->t_flagsext |= TF_SACK_ENABLE; |
| 1069 | |
| 1070 | TAILQ_INIT(&tp->snd_holes); |
| 1071 | SLIST_INIT(&tp->t_rxt_segments); |
| 1072 | SLIST_INIT(&tp->t_notify_ack); |
| 1073 | tp->t_inpcb = inp; |
| 1074 | /* |
| 1075 | * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no |
| 1076 | * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives |
| 1077 | * reasonable initial retransmit time. |
| 1078 | */ |
| 1079 | tp->t_srtt = TCPTV_SRTTBASE; |
| 1080 | tp->t_rttvar = |
| 1081 | ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; |
| 1082 | tp->t_rttmin = tcp_TCPTV_MIN; |
| 1083 | tp->t_rxtcur = TCPTV_RTOBASE; |
| 1084 | |
| 1085 | if (tcp_use_newreno) |
| 1086 | /* use newreno by default */ |
| 1087 | tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX; |
| 1088 | else |
| 1089 | tp->tcp_cc_index = TCP_CC_ALGO_CUBIC_INDEX; |
| 1090 | |
| 1091 | tcp_cc_allocate_state(tp); |
| 1092 | |
| 1093 | if (CC_ALGO(tp)->init != NULL) |
| 1094 | CC_ALGO(tp)->init(tp); |
| 1095 | |
| 1096 | tp->snd_cwnd = TCP_CC_CWND_INIT_BYTES; |
| 1097 | tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; |
| 1098 | tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT; |
| 1099 | tp->t_rcvtime = tcp_now; |
| 1100 | tp->tentry.timer_start = tcp_now; |
| 1101 | tp->t_persist_timeout = tcp_max_persist_timeout; |
| 1102 | tp->t_persist_stop = 0; |
| 1103 | tp->t_flagsext |= TF_RCVUNACK_WAITSS; |
| 1104 | tp->t_rexmtthresh = tcprexmtthresh; |
| 1105 | |
| 1106 | /* Enable bandwidth measurement on this connection */ |
| 1107 | tp->t_flagsext |= TF_MEASURESNDBW; |
| 1108 | if (tp->t_bwmeas == NULL) { |
| 1109 | tp->t_bwmeas = tcp_bwmeas_alloc(tp); |
| 1110 | if (tp->t_bwmeas == NULL) |
| 1111 | tp->t_flagsext &= ~TF_MEASURESNDBW; |
| 1112 | } |
| 1113 | |
| 1114 | /* Clear time wait tailq entry */ |
| 1115 | tp->t_twentry.tqe_next = NULL; |
| 1116 | tp->t_twentry.tqe_prev = NULL; |
| 1117 | |
| 1118 | /* |
| 1119 | * IPv4 TTL initialization is necessary for an IPv6 socket as well, |
| 1120 | * because the socket may be bound to an IPv6 wildcard address, |
| 1121 | * which may match an IPv4-mapped IPv6 address. |
| 1122 | */ |
| 1123 | inp->inp_ip_ttl = ip_defttl; |
| 1124 | inp->inp_ppcb = (caddr_t)tp; |
| 1125 | return (tp); /* XXX */ |
| 1126 | } |
| 1127 | |
| 1128 | /* |
| 1129 | * Drop a TCP connection, reporting |
| 1130 | * the specified error. If connection is synchronized, |
| 1131 | * then send a RST to peer. |
| 1132 | */ |
| 1133 | struct tcpcb * |
| 1134 | tcp_drop(struct tcpcb *tp, int errno) |
| 1135 | { |
| 1136 | struct socket *so = tp->t_inpcb->inp_socket; |
| 1137 | #if CONFIG_DTRACE |
| 1138 | struct inpcb *inp = tp->t_inpcb; |
| 1139 | #endif |
| 1140 | |
| 1141 | if (TCPS_HAVERCVDSYN(tp->t_state)) { |
| 1142 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, |
| 1143 | struct tcpcb *, tp, int32_t, TCPS_CLOSED); |
| 1144 | tp->t_state = TCPS_CLOSED; |
| 1145 | (void) tcp_output(tp); |
| 1146 | tcpstat.tcps_drops++; |
| 1147 | } else |
| 1148 | tcpstat.tcps_conndrops++; |
| 1149 | if (errno == ETIMEDOUT && tp->t_softerror) |
| 1150 | errno = tp->t_softerror; |
| 1151 | so->so_error = errno; |
| 1152 | return (tcp_close(tp)); |
| 1153 | } |
| 1154 | |
| 1155 | void |
| 1156 | tcp_getrt_rtt(struct tcpcb *tp, struct rtentry *rt) |
| 1157 | { |
| 1158 | u_int32_t rtt = rt->rt_rmx.rmx_rtt; |
| 1159 | int isnetlocal = (tp->t_flags & TF_LOCAL); |
| 1160 | |
| 1161 | if (rtt != 0) { |
| 1162 | /* |
| 1163 | * XXX the lock bit for RTT indicates that the value |
| 1164 | * is also a minimum value; this is subject to time. |
| 1165 | */ |
| 1166 | if (rt->rt_rmx.rmx_locks & RTV_RTT) |
| 1167 | tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ); |
| 1168 | else |
| 1169 | tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : |
| 1170 | TCPTV_REXMTMIN; |
| 1171 | tp->t_srtt = |
| 1172 | rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE)); |
| 1173 | tcpstat.tcps_usedrtt++; |
| 1174 | if (rt->rt_rmx.rmx_rttvar) { |
| 1175 | tp->t_rttvar = rt->rt_rmx.rmx_rttvar / |
| 1176 | (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE)); |
| 1177 | tcpstat.tcps_usedrttvar++; |
| 1178 | } else { |
| 1179 | /* default variation is +- 1 rtt */ |
| 1180 | tp->t_rttvar = |
| 1181 | tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; |
| 1182 | } |
| 1183 | TCPT_RANGESET(tp->t_rxtcur, |
| 1184 | ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, |
| 1185 | tp->t_rttmin, TCPTV_REXMTMAX, |
| 1186 | TCP_ADD_REXMTSLOP(tp)); |
| 1187 | } |
| 1188 | } |
| 1189 | |
| 1190 | static inline void |
| 1191 | tcp_create_ifnet_stats_per_flow(struct tcpcb *tp, |
| 1192 | struct ifnet_stats_per_flow *ifs) |
| 1193 | { |
| 1194 | struct inpcb *inp; |
| 1195 | struct socket *so; |
| 1196 | if (tp == NULL || ifs == NULL) |
| 1197 | return; |
| 1198 | |
| 1199 | bzero(ifs, sizeof(*ifs)); |
| 1200 | inp = tp->t_inpcb; |
| 1201 | so = inp->inp_socket; |
| 1202 | |
| 1203 | ifs->ipv4 = (inp->inp_vflag & INP_IPV6) ? 0 : 1; |
| 1204 | ifs->local = (tp->t_flags & TF_LOCAL) ? 1 : 0; |
| 1205 | ifs->connreset = (so->so_error == ECONNRESET) ? 1 : 0; |
| 1206 | ifs->conntimeout = (so->so_error == ETIMEDOUT) ? 1 : 0; |
| 1207 | ifs->ecn_flags = tp->ecn_flags; |
| 1208 | ifs->txretransmitbytes = tp->t_stat.txretransmitbytes; |
| 1209 | ifs->rxoutoforderbytes = tp->t_stat.rxoutoforderbytes; |
| 1210 | ifs->rxmitpkts = tp->t_stat.rxmitpkts; |
| 1211 | ifs->rcvoopack = tp->t_rcvoopack; |
| 1212 | ifs->pawsdrop = tp->t_pawsdrop; |
| 1213 | ifs->sack_recovery_episodes = tp->t_sack_recovery_episode; |
| 1214 | ifs->reordered_pkts = tp->t_reordered_pkts; |
| 1215 | ifs->dsack_sent = tp->t_dsack_sent; |
| 1216 | ifs->dsack_recvd = tp->t_dsack_recvd; |
| 1217 | ifs->srtt = tp->t_srtt; |
| 1218 | ifs->rttupdated = tp->t_rttupdated; |
| 1219 | ifs->rttvar = tp->t_rttvar; |
| 1220 | ifs->rttmin = get_base_rtt(tp); |
| 1221 | if (tp->t_bwmeas != NULL && tp->t_bwmeas->bw_sndbw_max > 0) { |
| 1222 | ifs->bw_sndbw_max = tp->t_bwmeas->bw_sndbw_max; |
| 1223 | } else { |
| 1224 | ifs->bw_sndbw_max = 0; |
| 1225 | } |
| 1226 | if (tp->t_bwmeas!= NULL && tp->t_bwmeas->bw_rcvbw_max > 0) { |
| 1227 | ifs->bw_rcvbw_max = tp->t_bwmeas->bw_rcvbw_max; |
| 1228 | } else { |
| 1229 | ifs->bw_rcvbw_max = 0; |
| 1230 | } |
| 1231 | ifs->bk_txpackets = so->so_tc_stats[MBUF_TC_BK].txpackets; |
| 1232 | ifs->txpackets = inp->inp_stat->txpackets; |
| 1233 | ifs->rxpackets = inp->inp_stat->rxpackets; |
| 1234 | } |
| 1235 | |
| 1236 | static inline void |
| 1237 | tcp_flow_ecn_perf_stats(struct ifnet_stats_per_flow *ifs, |
| 1238 | struct if_tcp_ecn_perf_stat *stat) |
| 1239 | { |
| 1240 | u_int64_t curval, oldval; |
| 1241 | stat->total_txpkts += ifs->txpackets; |
| 1242 | stat->total_rxpkts += ifs->rxpackets; |
| 1243 | stat->total_rxmitpkts += ifs->rxmitpkts; |
| 1244 | stat->total_oopkts += ifs->rcvoopack; |
| 1245 | stat->total_reorderpkts += (ifs->reordered_pkts + |
| 1246 | ifs->pawsdrop + ifs->dsack_sent + ifs->dsack_recvd); |
| 1247 | |
| 1248 | /* Average RTT */ |
| 1249 | curval = ifs->srtt >> TCP_RTT_SHIFT; |
| 1250 | if (curval > 0 && ifs->rttupdated >= 16) { |
| 1251 | if (stat->rtt_avg == 0) { |
| 1252 | stat->rtt_avg = curval; |
| 1253 | } else { |
| 1254 | oldval = stat->rtt_avg; |
| 1255 | stat->rtt_avg = ((oldval << 4) - oldval + curval) >> 4; |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | /* RTT variance */ |
| 1260 | curval = ifs->rttvar >> TCP_RTTVAR_SHIFT; |
| 1261 | if (curval > 0 && ifs->rttupdated >= 16) { |
| 1262 | if (stat->rtt_var == 0) { |
| 1263 | stat->rtt_var = curval; |
| 1264 | } else { |
| 1265 | oldval = stat->rtt_var; |
| 1266 | stat->rtt_var = |
| 1267 | ((oldval << 4) - oldval + curval) >> 4; |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | /* SACK episodes */ |
| 1272 | stat->sack_episodes += ifs->sack_recovery_episodes; |
| 1273 | if (ifs->connreset) |
| 1274 | stat->rst_drop++; |
| 1275 | } |
| 1276 | |
| 1277 | static inline void |
| 1278 | tcp_flow_lim_stats(struct ifnet_stats_per_flow *ifs, |
| 1279 | struct if_lim_perf_stat *stat) |
| 1280 | { |
| 1281 | u_int64_t curval, oldval; |
| 1282 | |
| 1283 | stat->lim_total_txpkts += ifs->txpackets; |
| 1284 | stat->lim_total_rxpkts += ifs->rxpackets; |
| 1285 | stat->lim_total_retxpkts += ifs->rxmitpkts; |
| 1286 | stat->lim_total_oopkts += ifs->rcvoopack; |
| 1287 | |
| 1288 | if (ifs->bw_sndbw_max > 0) { |
| 1289 | /* convert from bytes per ms to bits per second */ |
| 1290 | ifs->bw_sndbw_max *= 8000; |
| 1291 | stat->lim_ul_max_bandwidth = max(stat->lim_ul_max_bandwidth, |
| 1292 | ifs->bw_sndbw_max); |
| 1293 | } |
| 1294 | |
| 1295 | if (ifs->bw_rcvbw_max > 0) { |
| 1296 | /* convert from bytes per ms to bits per second */ |
| 1297 | ifs->bw_rcvbw_max *= 8000; |
| 1298 | stat->lim_dl_max_bandwidth = max(stat->lim_dl_max_bandwidth, |
| 1299 | ifs->bw_rcvbw_max); |
| 1300 | } |
| 1301 | |
| 1302 | /* Average RTT */ |
| 1303 | curval = ifs->srtt >> TCP_RTT_SHIFT; |
| 1304 | if (curval > 0 && ifs->rttupdated >= 16) { |
| 1305 | if (stat->lim_rtt_average == 0) { |
| 1306 | stat->lim_rtt_average = curval; |
| 1307 | } else { |
| 1308 | oldval = stat->lim_rtt_average; |
| 1309 | stat->lim_rtt_average = |
| 1310 | ((oldval << 4) - oldval + curval) >> 4; |
| 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | /* RTT variance */ |
| 1315 | curval = ifs->rttvar >> TCP_RTTVAR_SHIFT; |
| 1316 | if (curval > 0 && ifs->rttupdated >= 16) { |
| 1317 | if (stat->lim_rtt_variance == 0) { |
| 1318 | stat->lim_rtt_variance = curval; |
| 1319 | } else { |
| 1320 | oldval = stat->lim_rtt_variance; |
| 1321 | stat->lim_rtt_variance = |
| 1322 | ((oldval << 4) - oldval + curval) >> 4; |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | if (stat->lim_rtt_min == 0) { |
| 1327 | stat->lim_rtt_min = ifs->rttmin; |
| 1328 | } else { |
| 1329 | stat->lim_rtt_min = min(stat->lim_rtt_min, ifs->rttmin); |
| 1330 | } |
| 1331 | |
| 1332 | /* connection timeouts */ |
| 1333 | stat->lim_conn_attempts++; |
| 1334 | if (ifs->conntimeout) |
| 1335 | stat->lim_conn_timeouts++; |
| 1336 | |
| 1337 | /* bytes sent using background delay-based algorithms */ |
| 1338 | stat->lim_bk_txpkts += ifs->bk_txpackets; |
| 1339 | |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * Close a TCP control block: |
| 1344 | * discard all space held by the tcp |
| 1345 | * discard internet protocol block |
| 1346 | * wake up any sleepers |
| 1347 | */ |
| 1348 | struct tcpcb * |
| 1349 | tcp_close(struct tcpcb *tp) |
| 1350 | { |
| 1351 | struct inpcb *inp = tp->t_inpcb; |
| 1352 | struct socket *so = inp->inp_socket; |
| 1353 | #if INET6 |
| 1354 | int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; |
| 1355 | #endif /* INET6 */ |
| 1356 | struct route *ro; |
| 1357 | struct rtentry *rt; |
| 1358 | int dosavessthresh; |
| 1359 | struct ifnet_stats_per_flow ifs; |
| 1360 | |
| 1361 | /* tcp_close was called previously, bail */ |
| 1362 | if (inp->inp_ppcb == NULL) |
| 1363 | return (NULL); |
| 1364 | |
| 1365 | tcp_canceltimers(tp); |
| 1366 | KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp, 0, 0, 0, 0); |
| 1367 | |
| 1368 | /* |
| 1369 | * If another thread for this tcp is currently in ip (indicated by |
| 1370 | * the TF_SENDINPROG flag), defer the cleanup until after it returns |
| 1371 | * back to tcp. This is done to serialize the close until after all |
| 1372 | * pending output is finished, in order to avoid having the PCB be |
| 1373 | * detached and the cached route cleaned, only for ip to cache the |
| 1374 | * route back into the PCB again. Note that we've cleared all the |
| 1375 | * timers at this point. Set TF_CLOSING to indicate to tcp_output() |
| 1376 | * that is should call us again once it returns from ip; at that |
| 1377 | * point both flags should be cleared and we can proceed further |
| 1378 | * with the cleanup. |
| 1379 | */ |
| 1380 | if ((tp->t_flags & TF_CLOSING) || |
| 1381 | inp->inp_sndinprog_cnt > 0) { |
| 1382 | tp->t_flags |= TF_CLOSING; |
| 1383 | return (NULL); |
| 1384 | } |
| 1385 | |
| 1386 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, |
| 1387 | struct tcpcb *, tp, int32_t, TCPS_CLOSED); |
| 1388 | |
| 1389 | #if INET6 |
| 1390 | ro = (isipv6 ? (struct route *)&inp->in6p_route : &inp->inp_route); |
| 1391 | #else |
| 1392 | ro = &inp->inp_route; |
| 1393 | #endif |
| 1394 | rt = ro->ro_rt; |
| 1395 | if (rt != NULL) |
| 1396 | RT_LOCK_SPIN(rt); |
| 1397 | |
| 1398 | /* |
| 1399 | * If we got enough samples through the srtt filter, |
| 1400 | * save the rtt and rttvar in the routing entry. |
| 1401 | * 'Enough' is arbitrarily defined as the 16 samples. |
| 1402 | * 16 samples is enough for the srtt filter to converge |
| 1403 | * to within 5% of the correct value; fewer samples and |
| 1404 | * we could save a very bogus rtt. |
| 1405 | * |
| 1406 | * Don't update the default route's characteristics and don't |
| 1407 | * update anything that the user "locked". |
| 1408 | */ |
| 1409 | if (tp->t_rttupdated >= 16) { |
| 1410 | u_int32_t i = 0; |
| 1411 | |
| 1412 | #if INET6 |
| 1413 | if (isipv6) { |
| 1414 | struct sockaddr_in6 *sin6; |
| 1415 | |
| 1416 | if (rt == NULL) |
| 1417 | goto no_valid_rt; |
| 1418 | sin6 = (struct sockaddr_in6 *)(void *)rt_key(rt); |
| 1419 | if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) |
| 1420 | goto no_valid_rt; |
| 1421 | } |
| 1422 | else |
| 1423 | #endif /* INET6 */ |
| 1424 | if (ROUTE_UNUSABLE(ro) || |
| 1425 | SIN(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) { |
| 1426 | DTRACE_TCP4(state__change, void, NULL, |
| 1427 | struct inpcb *, inp, struct tcpcb *, tp, |
| 1428 | int32_t, TCPS_CLOSED); |
| 1429 | tp->t_state = TCPS_CLOSED; |
| 1430 | goto no_valid_rt; |
| 1431 | } |
| 1432 | |
| 1433 | RT_LOCK_ASSERT_HELD(rt); |
| 1434 | if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) { |
| 1435 | i = tp->t_srtt * |
| 1436 | (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE)); |
| 1437 | if (rt->rt_rmx.rmx_rtt && i) |
| 1438 | /* |
| 1439 | * filter this update to half the old & half |
| 1440 | * the new values, converting scale. |
| 1441 | * See route.h and tcp_var.h for a |
| 1442 | * description of the scaling constants. |
| 1443 | */ |
| 1444 | rt->rt_rmx.rmx_rtt = |
| 1445 | (rt->rt_rmx.rmx_rtt + i) / 2; |
| 1446 | else |
| 1447 | rt->rt_rmx.rmx_rtt = i; |
| 1448 | tcpstat.tcps_cachedrtt++; |
| 1449 | } |
| 1450 | if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) { |
| 1451 | i = tp->t_rttvar * |
| 1452 | (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE)); |
| 1453 | if (rt->rt_rmx.rmx_rttvar && i) |
| 1454 | rt->rt_rmx.rmx_rttvar = |
| 1455 | (rt->rt_rmx.rmx_rttvar + i) / 2; |
| 1456 | else |
| 1457 | rt->rt_rmx.rmx_rttvar = i; |
| 1458 | tcpstat.tcps_cachedrttvar++; |
| 1459 | } |
| 1460 | /* |
| 1461 | * The old comment here said: |
| 1462 | * update the pipelimit (ssthresh) if it has been updated |
| 1463 | * already or if a pipesize was specified & the threshhold |
| 1464 | * got below half the pipesize. I.e., wait for bad news |
| 1465 | * before we start updating, then update on both good |
| 1466 | * and bad news. |
| 1467 | * |
| 1468 | * But we want to save the ssthresh even if no pipesize is |
| 1469 | * specified explicitly in the route, because such |
| 1470 | * connections still have an implicit pipesize specified |
| 1471 | * by the global tcp_sendspace. In the absence of a reliable |
| 1472 | * way to calculate the pipesize, it will have to do. |
| 1473 | */ |
| 1474 | i = tp->snd_ssthresh; |
| 1475 | if (rt->rt_rmx.rmx_sendpipe != 0) |
| 1476 | dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2); |
| 1477 | else |
| 1478 | dosavessthresh = (i < so->so_snd.sb_hiwat / 2); |
| 1479 | if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 && |
| 1480 | i != 0 && rt->rt_rmx.rmx_ssthresh != 0) || |
| 1481 | dosavessthresh) { |
| 1482 | /* |
| 1483 | * convert the limit from user data bytes to |
| 1484 | * packets then to packet data bytes. |
| 1485 | */ |
| 1486 | i = (i + tp->t_maxseg / 2) / tp->t_maxseg; |
| 1487 | if (i < 2) |
| 1488 | i = 2; |
| 1489 | i *= (u_int32_t)(tp->t_maxseg + |
| 1490 | #if INET6 |
| 1491 | isipv6 ? sizeof (struct ip6_hdr) + |
| 1492 | sizeof (struct tcphdr) : |
| 1493 | #endif /* INET6 */ |
| 1494 | sizeof (struct tcpiphdr)); |
| 1495 | if (rt->rt_rmx.rmx_ssthresh) |
| 1496 | rt->rt_rmx.rmx_ssthresh = |
| 1497 | (rt->rt_rmx.rmx_ssthresh + i) / 2; |
| 1498 | else |
| 1499 | rt->rt_rmx.rmx_ssthresh = i; |
| 1500 | tcpstat.tcps_cachedssthresh++; |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | /* |
| 1505 | * Mark route for deletion if no information is cached. |
| 1506 | */ |
| 1507 | if (rt != NULL && (so->so_flags & SOF_OVERFLOW) && tcp_lq_overflow) { |
| 1508 | if (!(rt->rt_rmx.rmx_locks & RTV_RTT) && |
| 1509 | rt->rt_rmx.rmx_rtt == 0) { |
| 1510 | rt->rt_flags |= RTF_DELCLONE; |
| 1511 | } |
| 1512 | } |
| 1513 | |
| 1514 | no_valid_rt: |
| 1515 | if (rt != NULL) |
| 1516 | RT_UNLOCK(rt); |
| 1517 | |
| 1518 | /* free the reassembly queue, if any */ |
| 1519 | (void) tcp_freeq(tp); |
| 1520 | |
| 1521 | /* performance stats per interface */ |
| 1522 | tcp_create_ifnet_stats_per_flow(tp, &ifs); |
| 1523 | tcp_update_stats_per_flow(&ifs, inp->inp_last_outifp); |
| 1524 | |
| 1525 | tcp_free_sackholes(tp); |
| 1526 | tcp_notify_ack_free(tp); |
| 1527 | |
| 1528 | inp_decr_sndbytes_allunsent(so, tp->snd_una); |
| 1529 | |
| 1530 | if (tp->t_bwmeas != NULL) { |
| 1531 | tcp_bwmeas_free(tp); |
| 1532 | } |
| 1533 | tcp_rxtseg_clean(tp); |
| 1534 | /* Free the packet list */ |
| 1535 | if (tp->t_pktlist_head != NULL) |
| 1536 | m_freem_list(tp->t_pktlist_head); |
| 1537 | TCP_PKTLIST_CLEAR(tp); |
| 1538 | |
| 1539 | if (so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) |
| 1540 | inp->inp_saved_ppcb = (caddr_t) tp; |
| 1541 | |
| 1542 | tp->t_state = TCPS_CLOSED; |
| 1543 | |
| 1544 | /* |
| 1545 | * Issue a wakeup before detach so that we don't miss |
| 1546 | * a wakeup |
| 1547 | */ |
| 1548 | sodisconnectwakeup(so); |
| 1549 | |
| 1550 | /* |
| 1551 | * Clean up any LRO state |
| 1552 | */ |
| 1553 | if (tp->t_flagsext & TF_LRO_OFFLOADED) { |
| 1554 | tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr, |
| 1555 | inp->inp_lport, inp->inp_fport); |
| 1556 | tp->t_flagsext &= ~TF_LRO_OFFLOADED; |
| 1557 | } |
| 1558 | |
| 1559 | /* |
| 1560 | * If this is a socket that does not want to wakeup the device |
| 1561 | * for it's traffic, the application might need to know that the |
| 1562 | * socket is closed, send a notification. |
| 1563 | */ |
| 1564 | if ((so->so_options & SO_NOWAKEFROMSLEEP) && |
| 1565 | inp->inp_state != INPCB_STATE_DEAD && |
| 1566 | !(inp->inp_flags2 & INP2_TIMEWAIT)) |
| 1567 | socket_post_kev_msg_closed(so); |
| 1568 | |
| 1569 | if (CC_ALGO(tp)->cleanup != NULL) { |
| 1570 | CC_ALGO(tp)->cleanup(tp); |
| 1571 | } |
| 1572 | |
| 1573 | if (tp->t_ccstate != NULL) { |
| 1574 | zfree(tcp_cc_zone, tp->t_ccstate); |
| 1575 | tp->t_ccstate = NULL; |
| 1576 | } |
| 1577 | tp->tcp_cc_index = TCP_CC_ALGO_NONE; |
| 1578 | |
| 1579 | /* Can happen if we close the socket before receiving the third ACK */ |
| 1580 | if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) { |
| 1581 | OSDecrementAtomic(&tcp_tfo_halfcnt); |
| 1582 | |
| 1583 | /* Panic if something has gone terribly wrong. */ |
| 1584 | VERIFY(tcp_tfo_halfcnt >= 0); |
| 1585 | |
| 1586 | tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID; |
| 1587 | } |
| 1588 | |
| 1589 | #if INET6 |
| 1590 | if (SOCK_CHECK_DOM(so, PF_INET6)) |
| 1591 | in6_pcbdetach(inp); |
| 1592 | else |
| 1593 | #endif /* INET6 */ |
| 1594 | in_pcbdetach(inp); |
| 1595 | |
| 1596 | /* |
| 1597 | * Call soisdisconnected after detach because it might unlock the socket |
| 1598 | */ |
| 1599 | soisdisconnected(so); |
| 1600 | tcpstat.tcps_closed++; |
| 1601 | KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END, |
| 1602 | tcpstat.tcps_closed, 0, 0, 0, 0); |
| 1603 | return (NULL); |
| 1604 | } |
| 1605 | |
| 1606 | int |
| 1607 | tcp_freeq(struct tcpcb *tp) |
| 1608 | { |
| 1609 | struct tseg_qent *q; |
| 1610 | int rv = 0; |
| 1611 | |
| 1612 | while ((q = LIST_FIRST(&tp->t_segq)) != NULL) { |
| 1613 | LIST_REMOVE(q, tqe_q); |
| 1614 | m_freem(q->tqe_m); |
| 1615 | zfree(tcp_reass_zone, q); |
| 1616 | rv = 1; |
| 1617 | } |
| 1618 | tp->t_reassqlen = 0; |
| 1619 | return (rv); |
| 1620 | } |
| 1621 | |
| 1622 | |
| 1623 | /* |
| 1624 | * Walk the tcpbs, if existing, and flush the reassembly queue, |
| 1625 | * if there is one when do_tcpdrain is enabled |
| 1626 | * Also defunct the extended background idle socket |
| 1627 | * Do it next time if the pcbinfo lock is in use |
| 1628 | */ |
| 1629 | void |
| 1630 | tcp_drain(void) |
| 1631 | { |
| 1632 | struct inpcb *inp; |
| 1633 | struct tcpcb *tp; |
| 1634 | |
| 1635 | if (!lck_rw_try_lock_exclusive(tcbinfo.ipi_lock)) |
| 1636 | return; |
| 1637 | |
| 1638 | LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) { |
| 1639 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != |
| 1640 | WNT_STOPUSING) { |
| 1641 | socket_lock(inp->inp_socket, 1); |
| 1642 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) |
| 1643 | == WNT_STOPUSING) { |
| 1644 | /* lost a race, try the next one */ |
| 1645 | socket_unlock(inp->inp_socket, 1); |
| 1646 | continue; |
| 1647 | } |
| 1648 | tp = intotcpcb(inp); |
| 1649 | |
| 1650 | if (do_tcpdrain) |
| 1651 | tcp_freeq(tp); |
| 1652 | |
| 1653 | so_drain_extended_bk_idle(inp->inp_socket); |
| 1654 | |
| 1655 | socket_unlock(inp->inp_socket, 1); |
| 1656 | } |
| 1657 | } |
| 1658 | lck_rw_done(tcbinfo.ipi_lock); |
| 1659 | |
| 1660 | } |
| 1661 | |
| 1662 | /* |
| 1663 | * Notify a tcp user of an asynchronous error; |
| 1664 | * store error as soft error, but wake up user |
| 1665 | * (for now, won't do anything until can select for soft error). |
| 1666 | * |
| 1667 | * Do not wake up user since there currently is no mechanism for |
| 1668 | * reporting soft errors (yet - a kqueue filter may be added). |
| 1669 | */ |
| 1670 | static void |
| 1671 | tcp_notify(struct inpcb *inp, int error) |
| 1672 | { |
| 1673 | struct tcpcb *tp; |
| 1674 | |
| 1675 | if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD)) |
| 1676 | return; /* pcb is gone already */ |
| 1677 | |
| 1678 | tp = (struct tcpcb *)inp->inp_ppcb; |
| 1679 | |
| 1680 | VERIFY(tp != NULL); |
| 1681 | /* |
| 1682 | * Ignore some errors if we are hooked up. |
| 1683 | * If connection hasn't completed, has retransmitted several times, |
| 1684 | * and receives a second error, give up now. This is better |
| 1685 | * than waiting a long time to establish a connection that |
| 1686 | * can never complete. |
| 1687 | */ |
| 1688 | if (tp->t_state == TCPS_ESTABLISHED && |
| 1689 | (error == EHOSTUNREACH || error == ENETUNREACH || |
| 1690 | error == EHOSTDOWN)) { |
| 1691 | if (inp->inp_route.ro_rt) { |
| 1692 | rtfree(inp->inp_route.ro_rt); |
| 1693 | inp->inp_route.ro_rt = (struct rtentry *)NULL; |
| 1694 | } |
| 1695 | } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && |
| 1696 | tp->t_softerror) |
| 1697 | tcp_drop(tp, error); |
| 1698 | else |
| 1699 | tp->t_softerror = error; |
| 1700 | #if 0 |
| 1701 | wakeup((caddr_t) &so->so_timeo); |
| 1702 | sorwakeup(so); |
| 1703 | sowwakeup(so); |
| 1704 | #endif |
| 1705 | } |
| 1706 | |
| 1707 | struct bwmeas * |
| 1708 | tcp_bwmeas_alloc(struct tcpcb *tp) |
| 1709 | { |
| 1710 | struct bwmeas *elm; |
| 1711 | elm = zalloc(tcp_bwmeas_zone); |
| 1712 | if (elm == NULL) |
| 1713 | return (elm); |
| 1714 | |
| 1715 | bzero(elm, bwmeas_elm_size); |
| 1716 | elm->bw_minsizepkts = TCP_BWMEAS_BURST_MINSIZE; |
| 1717 | elm->bw_minsize = elm->bw_minsizepkts * tp->t_maxseg; |
| 1718 | return (elm); |
| 1719 | } |
| 1720 | |
| 1721 | void |
| 1722 | tcp_bwmeas_free(struct tcpcb *tp) |
| 1723 | { |
| 1724 | zfree(tcp_bwmeas_zone, tp->t_bwmeas); |
| 1725 | tp->t_bwmeas = NULL; |
| 1726 | tp->t_flagsext &= ~(TF_MEASURESNDBW); |
| 1727 | } |
| 1728 | |
| 1729 | int |
| 1730 | get_tcp_inp_list(struct inpcb **inp_list, int n, inp_gen_t gencnt) |
| 1731 | { |
| 1732 | struct tcpcb *tp; |
| 1733 | struct inpcb *inp; |
| 1734 | int i = 0; |
| 1735 | |
| 1736 | LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) { |
| 1737 | if (inp->inp_gencnt <= gencnt && |
| 1738 | inp->inp_state != INPCB_STATE_DEAD) |
| 1739 | inp_list[i++] = inp; |
| 1740 | if (i >= n) |
| 1741 | break; |
| 1742 | } |
| 1743 | |
| 1744 | TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) { |
| 1745 | inp = tp->t_inpcb; |
| 1746 | if (inp->inp_gencnt <= gencnt && |
| 1747 | inp->inp_state != INPCB_STATE_DEAD) |
| 1748 | inp_list[i++] = inp; |
| 1749 | if (i >= n) |
| 1750 | break; |
| 1751 | } |
| 1752 | return (i); |
| 1753 | } |
| 1754 | |
| 1755 | /* |
| 1756 | * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format. |
| 1757 | * The otcpcb data structure is passed to user space and must not change. |
| 1758 | */ |
| 1759 | static void |
| 1760 | tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp) |
| 1761 | { |
| 1762 | otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first); |
| 1763 | otp->t_dupacks = tp->t_dupacks; |
| 1764 | otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT]; |
| 1765 | otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST]; |
| 1766 | otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP]; |
| 1767 | otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL]; |
| 1768 | otp->t_inpcb = |
| 1769 | (_TCPCB_PTR(struct inpcb *))VM_KERNEL_ADDRPERM(tp->t_inpcb); |
| 1770 | otp->t_state = tp->t_state; |
| 1771 | otp->t_flags = tp->t_flags; |
| 1772 | otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0; |
| 1773 | otp->snd_una = tp->snd_una; |
| 1774 | otp->snd_max = tp->snd_max; |
| 1775 | otp->snd_nxt = tp->snd_nxt; |
| 1776 | otp->snd_up = tp->snd_up; |
| 1777 | otp->snd_wl1 = tp->snd_wl1; |
| 1778 | otp->snd_wl2 = tp->snd_wl2; |
| 1779 | otp->iss = tp->iss; |
| 1780 | otp->irs = tp->irs; |
| 1781 | otp->rcv_nxt = tp->rcv_nxt; |
| 1782 | otp->rcv_adv = tp->rcv_adv; |
| 1783 | otp->rcv_wnd = tp->rcv_wnd; |
| 1784 | otp->rcv_up = tp->rcv_up; |
| 1785 | otp->snd_wnd = tp->snd_wnd; |
| 1786 | otp->snd_cwnd = tp->snd_cwnd; |
| 1787 | otp->snd_ssthresh = tp->snd_ssthresh; |
| 1788 | otp->t_maxopd = tp->t_maxopd; |
| 1789 | otp->t_rcvtime = tp->t_rcvtime; |
| 1790 | otp->t_starttime = tp->t_starttime; |
| 1791 | otp->t_rtttime = tp->t_rtttime; |
| 1792 | otp->t_rtseq = tp->t_rtseq; |
| 1793 | otp->t_rxtcur = tp->t_rxtcur; |
| 1794 | otp->t_maxseg = tp->t_maxseg; |
| 1795 | otp->t_srtt = tp->t_srtt; |
| 1796 | otp->t_rttvar = tp->t_rttvar; |
| 1797 | otp->t_rxtshift = tp->t_rxtshift; |
| 1798 | otp->t_rttmin = tp->t_rttmin; |
| 1799 | otp->t_rttupdated = tp->t_rttupdated; |
| 1800 | otp->max_sndwnd = tp->max_sndwnd; |
| 1801 | otp->t_softerror = tp->t_softerror; |
| 1802 | otp->t_oobflags = tp->t_oobflags; |
| 1803 | otp->t_iobc = tp->t_iobc; |
| 1804 | otp->snd_scale = tp->snd_scale; |
| 1805 | otp->rcv_scale = tp->rcv_scale; |
| 1806 | otp->request_r_scale = tp->request_r_scale; |
| 1807 | otp->requested_s_scale = tp->requested_s_scale; |
| 1808 | otp->ts_recent = tp->ts_recent; |
| 1809 | otp->ts_recent_age = tp->ts_recent_age; |
| 1810 | otp->last_ack_sent = tp->last_ack_sent; |
| 1811 | otp->cc_send = 0; |
| 1812 | otp->cc_recv = 0; |
| 1813 | otp->snd_recover = tp->snd_recover; |
| 1814 | otp->snd_cwnd_prev = tp->snd_cwnd_prev; |
| 1815 | otp->snd_ssthresh_prev = tp->snd_ssthresh_prev; |
| 1816 | otp->t_badrxtwin = 0; |
| 1817 | } |
| 1818 | |
| 1819 | static int |
| 1820 | tcp_pcblist SYSCTL_HANDLER_ARGS |
| 1821 | { |
| 1822 | #pragma unused(oidp, arg1, arg2) |
| 1823 | int error, i = 0, n; |
| 1824 | struct inpcb **inp_list; |
| 1825 | inp_gen_t gencnt; |
| 1826 | struct xinpgen xig; |
| 1827 | |
| 1828 | /* |
| 1829 | * The process of preparing the TCB list is too time-consuming and |
| 1830 | * resource-intensive to repeat twice on every request. |
| 1831 | */ |
| 1832 | lck_rw_lock_shared(tcbinfo.ipi_lock); |
| 1833 | if (req->oldptr == USER_ADDR_NULL) { |
| 1834 | n = tcbinfo.ipi_count; |
| 1835 | req->oldidx = 2 * (sizeof(xig)) |
| 1836 | + (n + n/8) * sizeof(struct xtcpcb); |
| 1837 | lck_rw_done(tcbinfo.ipi_lock); |
| 1838 | return (0); |
| 1839 | } |
| 1840 | |
| 1841 | if (req->newptr != USER_ADDR_NULL) { |
| 1842 | lck_rw_done(tcbinfo.ipi_lock); |
| 1843 | return (EPERM); |
| 1844 | } |
| 1845 | |
| 1846 | /* |
| 1847 | * OK, now we're committed to doing something. |
| 1848 | */ |
| 1849 | gencnt = tcbinfo.ipi_gencnt; |
| 1850 | n = tcbinfo.ipi_count; |
| 1851 | |
| 1852 | bzero(&xig, sizeof(xig)); |
| 1853 | xig.xig_len = sizeof(xig); |
| 1854 | xig.xig_count = n; |
| 1855 | xig.xig_gen = gencnt; |
| 1856 | xig.xig_sogen = so_gencnt; |
| 1857 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 1858 | if (error) { |
| 1859 | lck_rw_done(tcbinfo.ipi_lock); |
| 1860 | return (error); |
| 1861 | } |
| 1862 | /* |
| 1863 | * We are done if there is no pcb |
| 1864 | */ |
| 1865 | if (n == 0) { |
| 1866 | lck_rw_done(tcbinfo.ipi_lock); |
| 1867 | return (0); |
| 1868 | } |
| 1869 | |
| 1870 | inp_list = _MALLOC(n * sizeof (*inp_list), M_TEMP, M_WAITOK); |
| 1871 | if (inp_list == 0) { |
| 1872 | lck_rw_done(tcbinfo.ipi_lock); |
| 1873 | return (ENOMEM); |
| 1874 | } |
| 1875 | |
| 1876 | n = get_tcp_inp_list(inp_list, n, gencnt); |
| 1877 | |
| 1878 | error = 0; |
| 1879 | for (i = 0; i < n; i++) { |
| 1880 | struct xtcpcb xt; |
| 1881 | caddr_t inp_ppcb; |
| 1882 | struct inpcb *inp; |
| 1883 | |
| 1884 | inp = inp_list[i]; |
| 1885 | |
| 1886 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) |
| 1887 | continue; |
| 1888 | socket_lock(inp->inp_socket, 1); |
| 1889 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 1890 | socket_unlock(inp->inp_socket, 1); |
| 1891 | continue; |
| 1892 | } |
| 1893 | if (inp->inp_gencnt > gencnt) { |
| 1894 | socket_unlock(inp->inp_socket, 1); |
| 1895 | continue; |
| 1896 | } |
| 1897 | |
| 1898 | bzero(&xt, sizeof(xt)); |
| 1899 | xt.xt_len = sizeof(xt); |
| 1900 | /* XXX should avoid extra copy */ |
| 1901 | inpcb_to_compat(inp, &xt.xt_inp); |
| 1902 | inp_ppcb = inp->inp_ppcb; |
| 1903 | if (inp_ppcb != NULL) { |
| 1904 | tcpcb_to_otcpcb((struct tcpcb *)(void *)inp_ppcb, |
| 1905 | &xt.xt_tp); |
| 1906 | } else { |
| 1907 | bzero((char *) &xt.xt_tp, sizeof(xt.xt_tp)); |
| 1908 | } |
| 1909 | if (inp->inp_socket) |
| 1910 | sotoxsocket(inp->inp_socket, &xt.xt_socket); |
| 1911 | |
| 1912 | socket_unlock(inp->inp_socket, 1); |
| 1913 | |
| 1914 | error = SYSCTL_OUT(req, &xt, sizeof(xt)); |
| 1915 | } |
| 1916 | if (!error) { |
| 1917 | /* |
| 1918 | * Give the user an updated idea of our state. |
| 1919 | * If the generation differs from what we told |
| 1920 | * her before, she knows that something happened |
| 1921 | * while we were processing this request, and it |
| 1922 | * might be necessary to retry. |
| 1923 | */ |
| 1924 | bzero(&xig, sizeof(xig)); |
| 1925 | xig.xig_len = sizeof(xig); |
| 1926 | xig.xig_gen = tcbinfo.ipi_gencnt; |
| 1927 | xig.xig_sogen = so_gencnt; |
| 1928 | xig.xig_count = tcbinfo.ipi_count; |
| 1929 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 1930 | } |
| 1931 | FREE(inp_list, M_TEMP); |
| 1932 | lck_rw_done(tcbinfo.ipi_lock); |
| 1933 | return (error); |
| 1934 | } |
| 1935 | |
| 1936 | SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, |
| 1937 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 1938 | tcp_pcblist, "S,xtcpcb" , "List of active TCP connections" ); |
| 1939 | |
| 1940 | #if !CONFIG_EMBEDDED |
| 1941 | |
| 1942 | static void |
| 1943 | tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp) |
| 1944 | { |
| 1945 | otp->t_segq = (uint32_t)VM_KERNEL_ADDRPERM(tp->t_segq.lh_first); |
| 1946 | otp->t_dupacks = tp->t_dupacks; |
| 1947 | otp->t_timer[TCPT_REXMT_EXT] = tp->t_timer[TCPT_REXMT]; |
| 1948 | otp->t_timer[TCPT_PERSIST_EXT] = tp->t_timer[TCPT_PERSIST]; |
| 1949 | otp->t_timer[TCPT_KEEP_EXT] = tp->t_timer[TCPT_KEEP]; |
| 1950 | otp->t_timer[TCPT_2MSL_EXT] = tp->t_timer[TCPT_2MSL]; |
| 1951 | otp->t_state = tp->t_state; |
| 1952 | otp->t_flags = tp->t_flags; |
| 1953 | otp->t_force = (tp->t_flagsext & TF_FORCE) ? 1 : 0; |
| 1954 | otp->snd_una = tp->snd_una; |
| 1955 | otp->snd_max = tp->snd_max; |
| 1956 | otp->snd_nxt = tp->snd_nxt; |
| 1957 | otp->snd_up = tp->snd_up; |
| 1958 | otp->snd_wl1 = tp->snd_wl1; |
| 1959 | otp->snd_wl2 = tp->snd_wl2; |
| 1960 | otp->iss = tp->iss; |
| 1961 | otp->irs = tp->irs; |
| 1962 | otp->rcv_nxt = tp->rcv_nxt; |
| 1963 | otp->rcv_adv = tp->rcv_adv; |
| 1964 | otp->rcv_wnd = tp->rcv_wnd; |
| 1965 | otp->rcv_up = tp->rcv_up; |
| 1966 | otp->snd_wnd = tp->snd_wnd; |
| 1967 | otp->snd_cwnd = tp->snd_cwnd; |
| 1968 | otp->snd_ssthresh = tp->snd_ssthresh; |
| 1969 | otp->t_maxopd = tp->t_maxopd; |
| 1970 | otp->t_rcvtime = tp->t_rcvtime; |
| 1971 | otp->t_starttime = tp->t_starttime; |
| 1972 | otp->t_rtttime = tp->t_rtttime; |
| 1973 | otp->t_rtseq = tp->t_rtseq; |
| 1974 | otp->t_rxtcur = tp->t_rxtcur; |
| 1975 | otp->t_maxseg = tp->t_maxseg; |
| 1976 | otp->t_srtt = tp->t_srtt; |
| 1977 | otp->t_rttvar = tp->t_rttvar; |
| 1978 | otp->t_rxtshift = tp->t_rxtshift; |
| 1979 | otp->t_rttmin = tp->t_rttmin; |
| 1980 | otp->t_rttupdated = tp->t_rttupdated; |
| 1981 | otp->max_sndwnd = tp->max_sndwnd; |
| 1982 | otp->t_softerror = tp->t_softerror; |
| 1983 | otp->t_oobflags = tp->t_oobflags; |
| 1984 | otp->t_iobc = tp->t_iobc; |
| 1985 | otp->snd_scale = tp->snd_scale; |
| 1986 | otp->rcv_scale = tp->rcv_scale; |
| 1987 | otp->request_r_scale = tp->request_r_scale; |
| 1988 | otp->requested_s_scale = tp->requested_s_scale; |
| 1989 | otp->ts_recent = tp->ts_recent; |
| 1990 | otp->ts_recent_age = tp->ts_recent_age; |
| 1991 | otp->last_ack_sent = tp->last_ack_sent; |
| 1992 | otp->cc_send = 0; |
| 1993 | otp->cc_recv = 0; |
| 1994 | otp->snd_recover = tp->snd_recover; |
| 1995 | otp->snd_cwnd_prev = tp->snd_cwnd_prev; |
| 1996 | otp->snd_ssthresh_prev = tp->snd_ssthresh_prev; |
| 1997 | otp->t_badrxtwin = 0; |
| 1998 | } |
| 1999 | |
| 2000 | |
| 2001 | static int |
| 2002 | tcp_pcblist64 SYSCTL_HANDLER_ARGS |
| 2003 | { |
| 2004 | #pragma unused(oidp, arg1, arg2) |
| 2005 | int error, i = 0, n; |
| 2006 | struct inpcb **inp_list; |
| 2007 | inp_gen_t gencnt; |
| 2008 | struct xinpgen xig; |
| 2009 | |
| 2010 | /* |
| 2011 | * The process of preparing the TCB list is too time-consuming and |
| 2012 | * resource-intensive to repeat twice on every request. |
| 2013 | */ |
| 2014 | lck_rw_lock_shared(tcbinfo.ipi_lock); |
| 2015 | if (req->oldptr == USER_ADDR_NULL) { |
| 2016 | n = tcbinfo.ipi_count; |
| 2017 | req->oldidx = 2 * (sizeof(xig)) |
| 2018 | + (n + n/8) * sizeof(struct xtcpcb64); |
| 2019 | lck_rw_done(tcbinfo.ipi_lock); |
| 2020 | return (0); |
| 2021 | } |
| 2022 | |
| 2023 | if (req->newptr != USER_ADDR_NULL) { |
| 2024 | lck_rw_done(tcbinfo.ipi_lock); |
| 2025 | return (EPERM); |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * OK, now we're committed to doing something. |
| 2030 | */ |
| 2031 | gencnt = tcbinfo.ipi_gencnt; |
| 2032 | n = tcbinfo.ipi_count; |
| 2033 | |
| 2034 | bzero(&xig, sizeof(xig)); |
| 2035 | xig.xig_len = sizeof(xig); |
| 2036 | xig.xig_count = n; |
| 2037 | xig.xig_gen = gencnt; |
| 2038 | xig.xig_sogen = so_gencnt; |
| 2039 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 2040 | if (error) { |
| 2041 | lck_rw_done(tcbinfo.ipi_lock); |
| 2042 | return (error); |
| 2043 | } |
| 2044 | /* |
| 2045 | * We are done if there is no pcb |
| 2046 | */ |
| 2047 | if (n == 0) { |
| 2048 | lck_rw_done(tcbinfo.ipi_lock); |
| 2049 | return (0); |
| 2050 | } |
| 2051 | |
| 2052 | inp_list = _MALLOC(n * sizeof (*inp_list), M_TEMP, M_WAITOK); |
| 2053 | if (inp_list == 0) { |
| 2054 | lck_rw_done(tcbinfo.ipi_lock); |
| 2055 | return (ENOMEM); |
| 2056 | } |
| 2057 | |
| 2058 | n = get_tcp_inp_list(inp_list, n, gencnt); |
| 2059 | |
| 2060 | error = 0; |
| 2061 | for (i = 0; i < n; i++) { |
| 2062 | struct xtcpcb64 xt; |
| 2063 | struct inpcb *inp; |
| 2064 | |
| 2065 | inp = inp_list[i]; |
| 2066 | |
| 2067 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) |
| 2068 | continue; |
| 2069 | socket_lock(inp->inp_socket, 1); |
| 2070 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 2071 | socket_unlock(inp->inp_socket, 1); |
| 2072 | continue; |
| 2073 | } |
| 2074 | if (inp->inp_gencnt > gencnt) { |
| 2075 | socket_unlock(inp->inp_socket, 1); |
| 2076 | continue; |
| 2077 | } |
| 2078 | |
| 2079 | bzero(&xt, sizeof(xt)); |
| 2080 | xt.xt_len = sizeof(xt); |
| 2081 | inpcb_to_xinpcb64(inp, &xt.xt_inpcb); |
| 2082 | xt.xt_inpcb.inp_ppcb = |
| 2083 | (uint64_t)VM_KERNEL_ADDRPERM(inp->inp_ppcb); |
| 2084 | if (inp->inp_ppcb != NULL) |
| 2085 | tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb, |
| 2086 | &xt); |
| 2087 | if (inp->inp_socket) |
| 2088 | sotoxsocket64(inp->inp_socket, |
| 2089 | &xt.xt_inpcb.xi_socket); |
| 2090 | |
| 2091 | socket_unlock(inp->inp_socket, 1); |
| 2092 | |
| 2093 | error = SYSCTL_OUT(req, &xt, sizeof(xt)); |
| 2094 | } |
| 2095 | if (!error) { |
| 2096 | /* |
| 2097 | * Give the user an updated idea of our state. |
| 2098 | * If the generation differs from what we told |
| 2099 | * her before, she knows that something happened |
| 2100 | * while we were processing this request, and it |
| 2101 | * might be necessary to retry. |
| 2102 | */ |
| 2103 | bzero(&xig, sizeof(xig)); |
| 2104 | xig.xig_len = sizeof(xig); |
| 2105 | xig.xig_gen = tcbinfo.ipi_gencnt; |
| 2106 | xig.xig_sogen = so_gencnt; |
| 2107 | xig.xig_count = tcbinfo.ipi_count; |
| 2108 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 2109 | } |
| 2110 | FREE(inp_list, M_TEMP); |
| 2111 | lck_rw_done(tcbinfo.ipi_lock); |
| 2112 | return (error); |
| 2113 | } |
| 2114 | |
| 2115 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64, |
| 2116 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 2117 | tcp_pcblist64, "S,xtcpcb64" , "List of active TCP connections" ); |
| 2118 | |
| 2119 | #endif /* !CONFIG_EMBEDDED */ |
| 2120 | |
| 2121 | static int |
| 2122 | tcp_pcblist_n SYSCTL_HANDLER_ARGS |
| 2123 | { |
| 2124 | #pragma unused(oidp, arg1, arg2) |
| 2125 | int error = 0; |
| 2126 | |
| 2127 | error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo); |
| 2128 | |
| 2129 | return (error); |
| 2130 | } |
| 2131 | |
| 2132 | |
| 2133 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n, |
| 2134 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 2135 | tcp_pcblist_n, "S,xtcpcb_n" , "List of active TCP connections" ); |
| 2136 | |
| 2137 | static int |
| 2138 | tcp_progress_indicators SYSCTL_HANDLER_ARGS |
| 2139 | { |
| 2140 | #pragma unused(oidp, arg1, arg2) |
| 2141 | |
| 2142 | return (ntstat_tcp_progress_indicators(req)); |
| 2143 | } |
| 2144 | |
| 2145 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, progress, |
| 2146 | CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0, 0, |
| 2147 | tcp_progress_indicators, "S" , "Various items that indicate the current state of progress on the link" ); |
| 2148 | |
| 2149 | |
| 2150 | __private_extern__ void |
| 2151 | tcp_get_ports_used(uint32_t ifindex, int protocol, uint32_t flags, |
| 2152 | bitstr_t *bitfield) |
| 2153 | { |
| 2154 | inpcb_get_ports_used(ifindex, protocol, flags, bitfield, |
| 2155 | &tcbinfo); |
| 2156 | } |
| 2157 | |
| 2158 | __private_extern__ uint32_t |
| 2159 | tcp_count_opportunistic(unsigned int ifindex, u_int32_t flags) |
| 2160 | { |
| 2161 | return (inpcb_count_opportunistic(ifindex, &tcbinfo, flags)); |
| 2162 | } |
| 2163 | |
| 2164 | __private_extern__ uint32_t |
| 2165 | tcp_find_anypcb_byaddr(struct ifaddr *ifa) |
| 2166 | { |
| 2167 | return (inpcb_find_anypcb_byaddr(ifa, &tcbinfo)); |
| 2168 | } |
| 2169 | |
| 2170 | static void |
| 2171 | tcp_handle_msgsize(struct ip *ip, struct inpcb *inp) |
| 2172 | { |
| 2173 | struct rtentry *rt = NULL; |
| 2174 | u_short ifscope = IFSCOPE_NONE; |
| 2175 | int mtu; |
| 2176 | struct sockaddr_in icmpsrc = { |
| 2177 | sizeof (struct sockaddr_in), |
| 2178 | AF_INET, 0, { 0 }, |
| 2179 | { 0, 0, 0, 0, 0, 0, 0, 0 } }; |
| 2180 | struct icmp *icp = NULL; |
| 2181 | |
| 2182 | icp = (struct icmp *)(void *) |
| 2183 | ((caddr_t)ip - offsetof(struct icmp, icmp_ip)); |
| 2184 | |
| 2185 | icmpsrc.sin_addr = icp->icmp_ip.ip_dst; |
| 2186 | |
| 2187 | /* |
| 2188 | * MTU discovery: |
| 2189 | * If we got a needfrag and there is a host route to the |
| 2190 | * original destination, and the MTU is not locked, then |
| 2191 | * set the MTU in the route to the suggested new value |
| 2192 | * (if given) and then notify as usual. The ULPs will |
| 2193 | * notice that the MTU has changed and adapt accordingly. |
| 2194 | * If no new MTU was suggested, then we guess a new one |
| 2195 | * less than the current value. If the new MTU is |
| 2196 | * unreasonably small (defined by sysctl tcp_minmss), then |
| 2197 | * we reset the MTU to the interface value and enable the |
| 2198 | * lock bit, indicating that we are no longer doing MTU |
| 2199 | * discovery. |
| 2200 | */ |
| 2201 | if (ROUTE_UNUSABLE(&(inp->inp_route)) == false) |
| 2202 | rt = inp->inp_route.ro_rt; |
| 2203 | |
| 2204 | /* |
| 2205 | * icmp6_mtudisc_update scopes the routing lookup |
| 2206 | * to the incoming interface (delivered from mbuf |
| 2207 | * packet header. |
| 2208 | * That is mostly ok but for asymmetric networks |
| 2209 | * that may be an issue. |
| 2210 | * Frag needed OR Packet too big really communicates |
| 2211 | * MTU for the out data path. |
| 2212 | * Take the interface scope from cached route or |
| 2213 | * the last outgoing interface from inp |
| 2214 | */ |
| 2215 | if (rt != NULL) |
| 2216 | ifscope = (rt->rt_ifp != NULL) ? |
| 2217 | rt->rt_ifp->if_index : IFSCOPE_NONE; |
| 2218 | else |
| 2219 | ifscope = (inp->inp_last_outifp != NULL) ? |
| 2220 | inp->inp_last_outifp->if_index : IFSCOPE_NONE; |
| 2221 | |
| 2222 | if ((rt == NULL) || |
| 2223 | !(rt->rt_flags & RTF_HOST) || |
| 2224 | (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) { |
| 2225 | rt = rtalloc1_scoped((struct sockaddr *)&icmpsrc, 0, |
| 2226 | RTF_CLONING | RTF_PRCLONING, ifscope); |
| 2227 | } else if (rt) { |
| 2228 | RT_LOCK(rt); |
| 2229 | rtref(rt); |
| 2230 | RT_UNLOCK(rt); |
| 2231 | } |
| 2232 | |
| 2233 | if (rt != NULL) { |
| 2234 | RT_LOCK(rt); |
| 2235 | if ((rt->rt_flags & RTF_HOST) && |
| 2236 | !(rt->rt_rmx.rmx_locks & RTV_MTU)) { |
| 2237 | mtu = ntohs(icp->icmp_nextmtu); |
| 2238 | /* |
| 2239 | * XXX Stock BSD has changed the following |
| 2240 | * to compare with icp->icmp_ip.ip_len |
| 2241 | * to converge faster when sent packet |
| 2242 | * < route's MTU. We may want to adopt |
| 2243 | * that change. |
| 2244 | */ |
| 2245 | if (mtu == 0) |
| 2246 | mtu = ip_next_mtu(rt->rt_rmx. |
| 2247 | rmx_mtu, 1); |
| 2248 | #if DEBUG_MTUDISC |
| 2249 | printf("MTU for %s reduced to %d\n" , |
| 2250 | inet_ntop(AF_INET, |
| 2251 | &icmpsrc.sin_addr, ipv4str, |
| 2252 | sizeof (ipv4str)), mtu); |
| 2253 | #endif |
| 2254 | if (mtu < max(296, (tcp_minmss + |
| 2255 | sizeof (struct tcpiphdr)))) { |
| 2256 | rt->rt_rmx.rmx_locks |= RTV_MTU; |
| 2257 | } else if (rt->rt_rmx.rmx_mtu > mtu) { |
| 2258 | rt->rt_rmx.rmx_mtu = mtu; |
| 2259 | } |
| 2260 | } |
| 2261 | RT_UNLOCK(rt); |
| 2262 | rtfree(rt); |
| 2263 | } |
| 2264 | } |
| 2265 | |
| 2266 | void |
| 2267 | tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip, __unused struct ifnet *ifp) |
| 2268 | { |
| 2269 | tcp_seq icmp_tcp_seq; |
| 2270 | struct ip *ip = vip; |
| 2271 | struct in_addr faddr; |
| 2272 | struct inpcb *inp; |
| 2273 | struct tcpcb *tp; |
| 2274 | struct tcphdr *th; |
| 2275 | struct icmp *icp; |
| 2276 | void (*notify)(struct inpcb *, int) = tcp_notify; |
| 2277 | |
| 2278 | faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr; |
| 2279 | if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) |
| 2280 | return; |
| 2281 | |
| 2282 | if ((unsigned)cmd >= PRC_NCMDS) |
| 2283 | return; |
| 2284 | |
| 2285 | /* Source quench is deprecated */ |
| 2286 | if (cmd == PRC_QUENCH) |
| 2287 | return; |
| 2288 | |
| 2289 | if (cmd == PRC_MSGSIZE) |
| 2290 | notify = tcp_mtudisc; |
| 2291 | else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || |
| 2292 | cmd == PRC_UNREACH_PORT || cmd == PRC_UNREACH_PROTOCOL || |
| 2293 | cmd == PRC_TIMXCEED_INTRANS) && ip) |
| 2294 | notify = tcp_drop_syn_sent; |
| 2295 | /* |
| 2296 | * Hostdead is ugly because it goes linearly through all PCBs. |
| 2297 | * XXX: We never get this from ICMP, otherwise it makes an |
| 2298 | * excellent DoS attack on machines with many connections. |
| 2299 | */ |
| 2300 | else if (cmd == PRC_HOSTDEAD) |
| 2301 | ip = NULL; |
| 2302 | else if (inetctlerrmap[cmd] == 0 && !PRC_IS_REDIRECT(cmd)) |
| 2303 | return; |
| 2304 | |
| 2305 | |
| 2306 | if (ip == NULL) { |
| 2307 | in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify); |
| 2308 | return; |
| 2309 | } |
| 2310 | |
| 2311 | icp = (struct icmp *)(void *) |
| 2312 | ((caddr_t)ip - offsetof(struct icmp, icmp_ip)); |
| 2313 | th = (struct tcphdr *)(void *)((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2)); |
| 2314 | icmp_tcp_seq = ntohl(th->th_seq); |
| 2315 | |
| 2316 | inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport, |
| 2317 | ip->ip_src, th->th_sport, 0, NULL); |
| 2318 | |
| 2319 | if (inp == NULL || |
| 2320 | inp->inp_socket == NULL) { |
| 2321 | return; |
| 2322 | } |
| 2323 | |
| 2324 | socket_lock(inp->inp_socket, 1); |
| 2325 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == |
| 2326 | WNT_STOPUSING) { |
| 2327 | socket_unlock(inp->inp_socket, 1); |
| 2328 | return; |
| 2329 | } |
| 2330 | |
| 2331 | if (PRC_IS_REDIRECT(cmd)) { |
| 2332 | /* signal EHOSTDOWN, as it flushes the cached route */ |
| 2333 | (*notify)(inp, EHOSTDOWN); |
| 2334 | } else { |
| 2335 | tp = intotcpcb(inp); |
| 2336 | if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && |
| 2337 | SEQ_LT(icmp_tcp_seq, tp->snd_max)) { |
| 2338 | if (cmd == PRC_MSGSIZE) |
| 2339 | tcp_handle_msgsize(ip, inp); |
| 2340 | |
| 2341 | (*notify)(inp, inetctlerrmap[cmd]); |
| 2342 | } |
| 2343 | } |
| 2344 | socket_unlock(inp->inp_socket, 1); |
| 2345 | } |
| 2346 | |
| 2347 | #if INET6 |
| 2348 | void |
| 2349 | tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d, __unused struct ifnet *ifp) |
| 2350 | { |
| 2351 | tcp_seq icmp_tcp_seq; |
| 2352 | struct in6_addr *dst; |
| 2353 | struct tcphdr *th; |
| 2354 | void (*notify)(struct inpcb *, int) = tcp_notify; |
| 2355 | struct ip6_hdr *ip6; |
| 2356 | struct mbuf *m; |
| 2357 | struct inpcb *inp; |
| 2358 | struct tcpcb *tp; |
| 2359 | struct icmp6_hdr *icmp6; |
| 2360 | struct ip6ctlparam *ip6cp = NULL; |
| 2361 | const struct sockaddr_in6 *sa6_src = NULL; |
| 2362 | unsigned int mtu; |
| 2363 | unsigned int off; |
| 2364 | |
| 2365 | if (sa->sa_family != AF_INET6 || |
| 2366 | sa->sa_len != sizeof(struct sockaddr_in6)) |
| 2367 | return; |
| 2368 | |
| 2369 | /* Source quench is deprecated */ |
| 2370 | if (cmd == PRC_QUENCH) |
| 2371 | return; |
| 2372 | |
| 2373 | if ((unsigned)cmd >= PRC_NCMDS) |
| 2374 | return; |
| 2375 | |
| 2376 | /* if the parameter is from icmp6, decode it. */ |
| 2377 | if (d != NULL) { |
| 2378 | ip6cp = (struct ip6ctlparam *)d; |
| 2379 | icmp6 = ip6cp->ip6c_icmp6; |
| 2380 | m = ip6cp->ip6c_m; |
| 2381 | ip6 = ip6cp->ip6c_ip6; |
| 2382 | off = ip6cp->ip6c_off; |
| 2383 | sa6_src = ip6cp->ip6c_src; |
| 2384 | dst = ip6cp->ip6c_finaldst; |
| 2385 | } else { |
| 2386 | m = NULL; |
| 2387 | ip6 = NULL; |
| 2388 | off = 0; /* fool gcc */ |
| 2389 | sa6_src = &sa6_any; |
| 2390 | dst = NULL; |
| 2391 | } |
| 2392 | |
| 2393 | if (cmd == PRC_MSGSIZE) |
| 2394 | notify = tcp_mtudisc; |
| 2395 | else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || |
| 2396 | cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && |
| 2397 | ip6 != NULL) |
| 2398 | notify = tcp_drop_syn_sent; |
| 2399 | /* |
| 2400 | * Hostdead is ugly because it goes linearly through all PCBs. |
| 2401 | * XXX: We never get this from ICMP, otherwise it makes an |
| 2402 | * excellent DoS attack on machines with many connections. |
| 2403 | */ |
| 2404 | else if (cmd == PRC_HOSTDEAD) |
| 2405 | ip6 = NULL; |
| 2406 | else if (inet6ctlerrmap[cmd] == 0 && !PRC_IS_REDIRECT(cmd)) |
| 2407 | return; |
| 2408 | |
| 2409 | |
| 2410 | if (ip6 == NULL) { |
| 2411 | in6_pcbnotify(&tcbinfo, sa, 0, (struct sockaddr *)(size_t)sa6_src, |
| 2412 | 0, cmd, NULL, notify); |
| 2413 | return; |
| 2414 | } |
| 2415 | |
| 2416 | if (m == NULL || |
| 2417 | (m->m_pkthdr.len < (int32_t) (off + offsetof(struct tcphdr, th_ack)))) |
| 2418 | return; |
| 2419 | |
| 2420 | th = (struct tcphdr *)(void *)mtodo(m, off); |
| 2421 | icmp_tcp_seq = ntohl(th->th_seq); |
| 2422 | |
| 2423 | if (cmd == PRC_MSGSIZE) { |
| 2424 | mtu = ntohl(icmp6->icmp6_mtu); |
| 2425 | /* |
| 2426 | * If no alternative MTU was proposed, or the proposed |
| 2427 | * MTU was too small, set to the min. |
| 2428 | */ |
| 2429 | if (mtu < IPV6_MMTU) |
| 2430 | mtu = IPV6_MMTU - 8; |
| 2431 | } |
| 2432 | |
| 2433 | inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_dst, th->th_dport, |
| 2434 | &ip6->ip6_src, th->th_sport, 0, NULL); |
| 2435 | |
| 2436 | if (inp == NULL || |
| 2437 | inp->inp_socket == NULL) { |
| 2438 | return; |
| 2439 | } |
| 2440 | |
| 2441 | socket_lock(inp->inp_socket, 1); |
| 2442 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == |
| 2443 | WNT_STOPUSING) { |
| 2444 | socket_unlock(inp->inp_socket, 1); |
| 2445 | return; |
| 2446 | } |
| 2447 | |
| 2448 | if (PRC_IS_REDIRECT(cmd)) { |
| 2449 | /* signal EHOSTDOWN, as it flushes the cached route */ |
| 2450 | (*notify)(inp, EHOSTDOWN); |
| 2451 | } else { |
| 2452 | tp = intotcpcb(inp); |
| 2453 | if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && |
| 2454 | SEQ_LT(icmp_tcp_seq, tp->snd_max)) { |
| 2455 | if (cmd == PRC_MSGSIZE) { |
| 2456 | /* |
| 2457 | * Only process the offered MTU if it |
| 2458 | * is smaller than the current one. |
| 2459 | */ |
| 2460 | if (mtu < tp->t_maxseg + |
| 2461 | (sizeof (*th) + sizeof (*ip6))) |
| 2462 | (*notify)(inp, inetctlerrmap[cmd]); |
| 2463 | } else |
| 2464 | (*notify)(inp, inetctlerrmap[cmd]); |
| 2465 | } |
| 2466 | } |
| 2467 | socket_unlock(inp->inp_socket, 1); |
| 2468 | } |
| 2469 | #endif /* INET6 */ |
| 2470 | |
| 2471 | |
| 2472 | /* |
| 2473 | * Following is where TCP initial sequence number generation occurs. |
| 2474 | * |
| 2475 | * There are two places where we must use initial sequence numbers: |
| 2476 | * 1. In SYN-ACK packets. |
| 2477 | * 2. In SYN packets. |
| 2478 | * |
| 2479 | * The ISNs in SYN-ACK packets have no monotonicity requirement, |
| 2480 | * and should be as unpredictable as possible to avoid the possibility |
| 2481 | * of spoofing and/or connection hijacking. To satisfy this |
| 2482 | * requirement, SYN-ACK ISNs are generated via the arc4random() |
| 2483 | * function. If exact RFC 1948 compliance is requested via sysctl, |
| 2484 | * these ISNs will be generated just like those in SYN packets. |
| 2485 | * |
| 2486 | * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling |
| 2487 | * depends on this property. In addition, these ISNs should be |
| 2488 | * unguessable so as to prevent connection hijacking. To satisfy |
| 2489 | * the requirements of this situation, the algorithm outlined in |
| 2490 | * RFC 1948 is used to generate sequence numbers. |
| 2491 | * |
| 2492 | * For more information on the theory of operation, please see |
| 2493 | * RFC 1948. |
| 2494 | * |
| 2495 | * Implementation details: |
| 2496 | * |
| 2497 | * Time is based off the system timer, and is corrected so that it |
| 2498 | * increases by one megabyte per second. This allows for proper |
| 2499 | * recycling on high speed LANs while still leaving over an hour |
| 2500 | * before rollover. |
| 2501 | * |
| 2502 | * Two sysctls control the generation of ISNs: |
| 2503 | * |
| 2504 | * net.inet.tcp.isn_reseed_interval controls the number of seconds |
| 2505 | * between seeding of isn_secret. This is normally set to zero, |
| 2506 | * as reseeding should not be necessary. |
| 2507 | * |
| 2508 | * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed |
| 2509 | * strictly. When strict compliance is requested, reseeding is |
| 2510 | * disabled and SYN-ACKs will be generated in the same manner as |
| 2511 | * SYNs. Strict mode is disabled by default. |
| 2512 | * |
| 2513 | */ |
| 2514 | |
| 2515 | #define ISN_BYTES_PER_SECOND 1048576 |
| 2516 | |
| 2517 | tcp_seq |
| 2518 | tcp_new_isn(struct tcpcb *tp) |
| 2519 | { |
| 2520 | u_int32_t md5_buffer[4]; |
| 2521 | tcp_seq new_isn; |
| 2522 | struct timeval timenow; |
| 2523 | u_char isn_secret[32]; |
| 2524 | int isn_last_reseed = 0; |
| 2525 | MD5_CTX isn_ctx; |
| 2526 | |
| 2527 | /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */ |
| 2528 | if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT)) && |
| 2529 | tcp_strict_rfc1948 == 0) |
| 2530 | #ifdef __APPLE__ |
| 2531 | return (RandomULong()); |
| 2532 | #else |
| 2533 | return (arc4random()); |
| 2534 | #endif |
| 2535 | getmicrotime(&timenow); |
| 2536 | |
| 2537 | /* Seed if this is the first use, reseed if requested. */ |
| 2538 | if ((isn_last_reseed == 0) || |
| 2539 | ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) && |
| 2540 | (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz) |
| 2541 | < (u_int)timenow.tv_sec))) { |
| 2542 | #ifdef __APPLE__ |
| 2543 | read_frandom(&isn_secret, sizeof(isn_secret)); |
| 2544 | #else |
| 2545 | read_random_unlimited(&isn_secret, sizeof(isn_secret)); |
| 2546 | #endif |
| 2547 | isn_last_reseed = timenow.tv_sec; |
| 2548 | } |
| 2549 | |
| 2550 | /* Compute the md5 hash and return the ISN. */ |
| 2551 | MD5Init(&isn_ctx); |
| 2552 | MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, |
| 2553 | sizeof(u_short)); |
| 2554 | MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, |
| 2555 | sizeof(u_short)); |
| 2556 | #if INET6 |
| 2557 | if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { |
| 2558 | MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, |
| 2559 | sizeof(struct in6_addr)); |
| 2560 | MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, |
| 2561 | sizeof(struct in6_addr)); |
| 2562 | } else |
| 2563 | #endif |
| 2564 | { |
| 2565 | MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, |
| 2566 | sizeof(struct in_addr)); |
| 2567 | MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, |
| 2568 | sizeof(struct in_addr)); |
| 2569 | } |
| 2570 | MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret)); |
| 2571 | MD5Final((u_char *) &md5_buffer, &isn_ctx); |
| 2572 | new_isn = (tcp_seq) md5_buffer[0]; |
| 2573 | new_isn += timenow.tv_sec * (ISN_BYTES_PER_SECOND / hz); |
| 2574 | return (new_isn); |
| 2575 | } |
| 2576 | |
| 2577 | |
| 2578 | /* |
| 2579 | * When a specific ICMP unreachable message is received and the |
| 2580 | * connection state is SYN-SENT, drop the connection. This behavior |
| 2581 | * is controlled by the icmp_may_rst sysctl. |
| 2582 | */ |
| 2583 | void |
| 2584 | tcp_drop_syn_sent(struct inpcb *inp, int errno) |
| 2585 | { |
| 2586 | struct tcpcb *tp = intotcpcb(inp); |
| 2587 | |
| 2588 | if (tp && tp->t_state == TCPS_SYN_SENT) |
| 2589 | tcp_drop(tp, errno); |
| 2590 | } |
| 2591 | |
| 2592 | /* |
| 2593 | * When `need fragmentation' ICMP is received, update our idea of the MSS |
| 2594 | * based on the new value in the route. Also nudge TCP to send something, |
| 2595 | * since we know the packet we just sent was dropped. |
| 2596 | * This duplicates some code in the tcp_mss() function in tcp_input.c. |
| 2597 | */ |
| 2598 | void |
| 2599 | tcp_mtudisc( |
| 2600 | struct inpcb *inp, |
| 2601 | __unused int errno |
| 2602 | ) |
| 2603 | { |
| 2604 | struct tcpcb *tp = intotcpcb(inp); |
| 2605 | struct rtentry *rt; |
| 2606 | struct rmxp_tao *taop; |
| 2607 | struct socket *so = inp->inp_socket; |
| 2608 | int offered; |
| 2609 | int mss; |
| 2610 | u_int32_t mtu; |
| 2611 | u_int32_t protoHdrOverhead = sizeof (struct tcpiphdr); |
| 2612 | #if INET6 |
| 2613 | int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; |
| 2614 | |
| 2615 | if (isipv6) |
| 2616 | protoHdrOverhead = sizeof(struct ip6_hdr) + |
| 2617 | sizeof(struct tcphdr); |
| 2618 | #endif /* INET6 */ |
| 2619 | |
| 2620 | if (tp) { |
| 2621 | #if INET6 |
| 2622 | if (isipv6) |
| 2623 | rt = tcp_rtlookup6(inp, IFSCOPE_NONE); |
| 2624 | else |
| 2625 | #endif /* INET6 */ |
| 2626 | rt = tcp_rtlookup(inp, IFSCOPE_NONE); |
| 2627 | if (!rt || !rt->rt_rmx.rmx_mtu) { |
| 2628 | tp->t_maxopd = tp->t_maxseg = |
| 2629 | #if INET6 |
| 2630 | isipv6 ? tcp_v6mssdflt : |
| 2631 | #endif /* INET6 */ |
| 2632 | tcp_mssdflt; |
| 2633 | |
| 2634 | /* Route locked during lookup above */ |
| 2635 | if (rt != NULL) |
| 2636 | RT_UNLOCK(rt); |
| 2637 | return; |
| 2638 | } |
| 2639 | taop = rmx_taop(rt->rt_rmx); |
| 2640 | offered = taop->tao_mssopt; |
| 2641 | mtu = rt->rt_rmx.rmx_mtu; |
| 2642 | |
| 2643 | /* Route locked during lookup above */ |
| 2644 | RT_UNLOCK(rt); |
| 2645 | |
| 2646 | #if NECP |
| 2647 | // Adjust MTU if necessary. |
| 2648 | mtu = necp_socket_get_effective_mtu(inp, mtu); |
| 2649 | #endif /* NECP */ |
| 2650 | mss = mtu - protoHdrOverhead; |
| 2651 | |
| 2652 | if (offered) |
| 2653 | mss = min(mss, offered); |
| 2654 | /* |
| 2655 | * XXX - The above conditional probably violates the TCP |
| 2656 | * spec. The problem is that, since we don't know the |
| 2657 | * other end's MSS, we are supposed to use a conservative |
| 2658 | * default. But, if we do that, then MTU discovery will |
| 2659 | * never actually take place, because the conservative |
| 2660 | * default is much less than the MTUs typically seen |
| 2661 | * on the Internet today. For the moment, we'll sweep |
| 2662 | * this under the carpet. |
| 2663 | * |
| 2664 | * The conservative default might not actually be a problem |
| 2665 | * if the only case this occurs is when sending an initial |
| 2666 | * SYN with options and data to a host we've never talked |
| 2667 | * to before. Then, they will reply with an MSS value which |
| 2668 | * will get recorded and the new parameters should get |
| 2669 | * recomputed. For Further Study. |
| 2670 | */ |
| 2671 | if (tp->t_maxopd <= mss) |
| 2672 | return; |
| 2673 | tp->t_maxopd = mss; |
| 2674 | |
| 2675 | if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && |
| 2676 | (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) |
| 2677 | mss -= TCPOLEN_TSTAMP_APPA; |
| 2678 | |
| 2679 | #if MPTCP |
| 2680 | mss -= mptcp_adj_mss(tp, TRUE); |
| 2681 | #endif |
| 2682 | if (so->so_snd.sb_hiwat < mss) |
| 2683 | mss = so->so_snd.sb_hiwat; |
| 2684 | |
| 2685 | tp->t_maxseg = mss; |
| 2686 | |
| 2687 | ASSERT(tp->t_maxseg); |
| 2688 | |
| 2689 | /* |
| 2690 | * Reset the slow-start flight size as it may depends on the |
| 2691 | * new MSS |
| 2692 | */ |
| 2693 | if (CC_ALGO(tp)->cwnd_init != NULL) |
| 2694 | CC_ALGO(tp)->cwnd_init(tp); |
| 2695 | tcpstat.tcps_mturesent++; |
| 2696 | tp->t_rtttime = 0; |
| 2697 | tp->snd_nxt = tp->snd_una; |
| 2698 | tcp_output(tp); |
| 2699 | } |
| 2700 | } |
| 2701 | |
| 2702 | /* |
| 2703 | * Look-up the routing entry to the peer of this inpcb. If no route |
| 2704 | * is found and it cannot be allocated the return NULL. This routine |
| 2705 | * is called by TCP routines that access the rmx structure and by tcp_mss |
| 2706 | * to get the interface MTU. If a route is found, this routine will |
| 2707 | * hold the rtentry lock; the caller is responsible for unlocking. |
| 2708 | */ |
| 2709 | struct rtentry * |
| 2710 | tcp_rtlookup(struct inpcb *inp, unsigned int input_ifscope) |
| 2711 | { |
| 2712 | struct route *ro; |
| 2713 | struct rtentry *rt; |
| 2714 | struct tcpcb *tp; |
| 2715 | |
| 2716 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 2717 | |
| 2718 | ro = &inp->inp_route; |
| 2719 | if ((rt = ro->ro_rt) != NULL) |
| 2720 | RT_LOCK(rt); |
| 2721 | |
| 2722 | if (ROUTE_UNUSABLE(ro)) { |
| 2723 | if (rt != NULL) { |
| 2724 | RT_UNLOCK(rt); |
| 2725 | rt = NULL; |
| 2726 | } |
| 2727 | ROUTE_RELEASE(ro); |
| 2728 | /* No route yet, so try to acquire one */ |
| 2729 | if (inp->inp_faddr.s_addr != INADDR_ANY) { |
| 2730 | unsigned int ifscope; |
| 2731 | |
| 2732 | ro->ro_dst.sa_family = AF_INET; |
| 2733 | ro->ro_dst.sa_len = sizeof(struct sockaddr_in); |
| 2734 | ((struct sockaddr_in *)(void *)&ro->ro_dst)->sin_addr = |
| 2735 | inp->inp_faddr; |
| 2736 | |
| 2737 | /* |
| 2738 | * If the socket was bound to an interface, then |
| 2739 | * the bound-to-interface takes precedence over |
| 2740 | * the inbound interface passed in by the caller |
| 2741 | * (if we get here as part of the output path then |
| 2742 | * input_ifscope is IFSCOPE_NONE). |
| 2743 | */ |
| 2744 | ifscope = (inp->inp_flags & INP_BOUND_IF) ? |
| 2745 | inp->inp_boundifp->if_index : input_ifscope; |
| 2746 | |
| 2747 | rtalloc_scoped(ro, ifscope); |
| 2748 | if ((rt = ro->ro_rt) != NULL) |
| 2749 | RT_LOCK(rt); |
| 2750 | } |
| 2751 | } |
| 2752 | if (rt != NULL) |
| 2753 | RT_LOCK_ASSERT_HELD(rt); |
| 2754 | |
| 2755 | /* |
| 2756 | * Update MTU discovery determination. Don't do it if: |
| 2757 | * 1) it is disabled via the sysctl |
| 2758 | * 2) the route isn't up |
| 2759 | * 3) the MTU is locked (if it is, then discovery has been |
| 2760 | * disabled) |
| 2761 | */ |
| 2762 | |
| 2763 | tp = intotcpcb(inp); |
| 2764 | |
| 2765 | if (!path_mtu_discovery || ((rt != NULL) && |
| 2766 | (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU)))) |
| 2767 | tp->t_flags &= ~TF_PMTUD; |
| 2768 | else |
| 2769 | tp->t_flags |= TF_PMTUD; |
| 2770 | |
| 2771 | if (rt != NULL && rt->rt_ifp != NULL) { |
| 2772 | somultipages(inp->inp_socket, |
| 2773 | (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES)); |
| 2774 | tcp_set_tso(tp, rt->rt_ifp); |
| 2775 | soif2kcl(inp->inp_socket, |
| 2776 | (rt->rt_ifp->if_eflags & IFEF_2KCL)); |
| 2777 | tcp_set_ecn(tp, rt->rt_ifp); |
| 2778 | if (inp->inp_last_outifp == NULL) { |
| 2779 | inp->inp_last_outifp = rt->rt_ifp; |
| 2780 | |
| 2781 | } |
| 2782 | } |
| 2783 | |
| 2784 | /* Note if the peer is local */ |
| 2785 | if (rt != NULL && !(rt->rt_ifp->if_flags & IFF_POINTOPOINT) && |
| 2786 | (rt->rt_gateway->sa_family == AF_LINK || |
| 2787 | rt->rt_ifp->if_flags & IFF_LOOPBACK || |
| 2788 | in_localaddr(inp->inp_faddr))) { |
| 2789 | tp->t_flags |= TF_LOCAL; |
| 2790 | } |
| 2791 | |
| 2792 | /* |
| 2793 | * Caller needs to call RT_UNLOCK(rt). |
| 2794 | */ |
| 2795 | return (rt); |
| 2796 | } |
| 2797 | |
| 2798 | #if INET6 |
| 2799 | struct rtentry * |
| 2800 | tcp_rtlookup6(struct inpcb *inp, unsigned int input_ifscope) |
| 2801 | { |
| 2802 | struct route_in6 *ro6; |
| 2803 | struct rtentry *rt; |
| 2804 | struct tcpcb *tp; |
| 2805 | |
| 2806 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 2807 | |
| 2808 | ro6 = &inp->in6p_route; |
| 2809 | if ((rt = ro6->ro_rt) != NULL) |
| 2810 | RT_LOCK(rt); |
| 2811 | |
| 2812 | if (ROUTE_UNUSABLE(ro6)) { |
| 2813 | if (rt != NULL) { |
| 2814 | RT_UNLOCK(rt); |
| 2815 | rt = NULL; |
| 2816 | } |
| 2817 | ROUTE_RELEASE(ro6); |
| 2818 | /* No route yet, so try to acquire one */ |
| 2819 | if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { |
| 2820 | struct sockaddr_in6 *dst6; |
| 2821 | unsigned int ifscope; |
| 2822 | |
| 2823 | dst6 = (struct sockaddr_in6 *)&ro6->ro_dst; |
| 2824 | dst6->sin6_family = AF_INET6; |
| 2825 | dst6->sin6_len = sizeof(*dst6); |
| 2826 | dst6->sin6_addr = inp->in6p_faddr; |
| 2827 | |
| 2828 | /* |
| 2829 | * If the socket was bound to an interface, then |
| 2830 | * the bound-to-interface takes precedence over |
| 2831 | * the inbound interface passed in by the caller |
| 2832 | * (if we get here as part of the output path then |
| 2833 | * input_ifscope is IFSCOPE_NONE). |
| 2834 | */ |
| 2835 | ifscope = (inp->inp_flags & INP_BOUND_IF) ? |
| 2836 | inp->inp_boundifp->if_index : input_ifscope; |
| 2837 | |
| 2838 | rtalloc_scoped((struct route *)ro6, ifscope); |
| 2839 | if ((rt = ro6->ro_rt) != NULL) |
| 2840 | RT_LOCK(rt); |
| 2841 | } |
| 2842 | } |
| 2843 | if (rt != NULL) |
| 2844 | RT_LOCK_ASSERT_HELD(rt); |
| 2845 | |
| 2846 | /* |
| 2847 | * Update path MTU Discovery determination |
| 2848 | * while looking up the route: |
| 2849 | * 1) we have a valid route to the destination |
| 2850 | * 2) the MTU is not locked (if it is, then discovery has been |
| 2851 | * disabled) |
| 2852 | */ |
| 2853 | |
| 2854 | |
| 2855 | tp = intotcpcb(inp); |
| 2856 | |
| 2857 | /* |
| 2858 | * Update MTU discovery determination. Don't do it if: |
| 2859 | * 1) it is disabled via the sysctl |
| 2860 | * 2) the route isn't up |
| 2861 | * 3) the MTU is locked (if it is, then discovery has been |
| 2862 | * disabled) |
| 2863 | */ |
| 2864 | |
| 2865 | if (!path_mtu_discovery || ((rt != NULL) && |
| 2866 | (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU)))) |
| 2867 | tp->t_flags &= ~TF_PMTUD; |
| 2868 | else |
| 2869 | tp->t_flags |= TF_PMTUD; |
| 2870 | |
| 2871 | if (rt != NULL && rt->rt_ifp != NULL) { |
| 2872 | somultipages(inp->inp_socket, |
| 2873 | (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES)); |
| 2874 | tcp_set_tso(tp, rt->rt_ifp); |
| 2875 | soif2kcl(inp->inp_socket, |
| 2876 | (rt->rt_ifp->if_eflags & IFEF_2KCL)); |
| 2877 | tcp_set_ecn(tp, rt->rt_ifp); |
| 2878 | if (inp->inp_last_outifp == NULL) { |
| 2879 | inp->inp_last_outifp = rt->rt_ifp; |
| 2880 | } |
| 2881 | |
| 2882 | /* Note if the peer is local */ |
| 2883 | if (!(rt->rt_ifp->if_flags & IFF_POINTOPOINT) && |
| 2884 | (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) || |
| 2885 | IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) || |
| 2886 | rt->rt_gateway->sa_family == AF_LINK || |
| 2887 | in6_localaddr(&inp->in6p_faddr))) { |
| 2888 | tp->t_flags |= TF_LOCAL; |
| 2889 | } |
| 2890 | } |
| 2891 | |
| 2892 | /* |
| 2893 | * Caller needs to call RT_UNLOCK(rt). |
| 2894 | */ |
| 2895 | return (rt); |
| 2896 | } |
| 2897 | #endif /* INET6 */ |
| 2898 | |
| 2899 | #if IPSEC |
| 2900 | /* compute ESP/AH header size for TCP, including outer IP header. */ |
| 2901 | size_t |
| 2902 | ipsec_hdrsiz_tcp(struct tcpcb *tp) |
| 2903 | { |
| 2904 | struct inpcb *inp; |
| 2905 | struct mbuf *m; |
| 2906 | size_t hdrsiz; |
| 2907 | struct ip *ip; |
| 2908 | #if INET6 |
| 2909 | struct ip6_hdr *ip6 = NULL; |
| 2910 | #endif /* INET6 */ |
| 2911 | struct tcphdr *th; |
| 2912 | |
| 2913 | if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) |
| 2914 | return (0); |
| 2915 | MGETHDR(m, M_DONTWAIT, MT_DATA); /* MAC-OK */ |
| 2916 | if (!m) |
| 2917 | return (0); |
| 2918 | |
| 2919 | #if INET6 |
| 2920 | if ((inp->inp_vflag & INP_IPV6) != 0) { |
| 2921 | ip6 = mtod(m, struct ip6_hdr *); |
| 2922 | th = (struct tcphdr *)(void *)(ip6 + 1); |
| 2923 | m->m_pkthdr.len = m->m_len = |
| 2924 | sizeof(struct ip6_hdr) + sizeof(struct tcphdr); |
| 2925 | tcp_fillheaders(tp, ip6, th); |
| 2926 | hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); |
| 2927 | } else |
| 2928 | #endif /* INET6 */ |
| 2929 | { |
| 2930 | ip = mtod(m, struct ip *); |
| 2931 | th = (struct tcphdr *)(ip + 1); |
| 2932 | m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); |
| 2933 | tcp_fillheaders(tp, ip, th); |
| 2934 | hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); |
| 2935 | } |
| 2936 | m_free(m); |
| 2937 | return (hdrsiz); |
| 2938 | } |
| 2939 | #endif /* IPSEC */ |
| 2940 | |
| 2941 | /* |
| 2942 | * Return a pointer to the cached information about the remote host. |
| 2943 | * The cached information is stored in the protocol specific part of |
| 2944 | * the route metrics. |
| 2945 | */ |
| 2946 | struct rmxp_tao * |
| 2947 | tcp_gettaocache(struct inpcb *inp) |
| 2948 | { |
| 2949 | struct rtentry *rt; |
| 2950 | struct rmxp_tao *taop; |
| 2951 | |
| 2952 | #if INET6 |
| 2953 | if ((inp->inp_vflag & INP_IPV6) != 0) |
| 2954 | rt = tcp_rtlookup6(inp, IFSCOPE_NONE); |
| 2955 | else |
| 2956 | #endif /* INET6 */ |
| 2957 | rt = tcp_rtlookup(inp, IFSCOPE_NONE); |
| 2958 | |
| 2959 | /* Make sure this is a host route and is up. */ |
| 2960 | if (rt == NULL || |
| 2961 | (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) { |
| 2962 | /* Route locked during lookup above */ |
| 2963 | if (rt != NULL) |
| 2964 | RT_UNLOCK(rt); |
| 2965 | return (NULL); |
| 2966 | } |
| 2967 | |
| 2968 | taop = rmx_taop(rt->rt_rmx); |
| 2969 | /* Route locked during lookup above */ |
| 2970 | RT_UNLOCK(rt); |
| 2971 | return (taop); |
| 2972 | } |
| 2973 | |
| 2974 | /* |
| 2975 | * Clear all the TAO cache entries, called from tcp_init. |
| 2976 | * |
| 2977 | * XXX |
| 2978 | * This routine is just an empty one, because we assume that the routing |
| 2979 | * routing tables are initialized at the same time when TCP, so there is |
| 2980 | * nothing in the cache left over. |
| 2981 | */ |
| 2982 | static void |
| 2983 | tcp_cleartaocache(void) |
| 2984 | { |
| 2985 | } |
| 2986 | |
| 2987 | int |
| 2988 | tcp_lock(struct socket *so, int refcount, void *lr) |
| 2989 | { |
| 2990 | void *lr_saved; |
| 2991 | |
| 2992 | if (lr == NULL) |
| 2993 | lr_saved = __builtin_return_address(0); |
| 2994 | else |
| 2995 | lr_saved = lr; |
| 2996 | |
| 2997 | retry: |
| 2998 | if (so->so_pcb != NULL) { |
| 2999 | if (so->so_flags & SOF_MP_SUBFLOW) { |
| 3000 | struct mptcb *mp_tp = tptomptp(sototcpcb(so)); |
| 3001 | VERIFY(mp_tp); |
| 3002 | |
| 3003 | mpte_lock_assert_notheld(mp_tp->mpt_mpte); |
| 3004 | |
| 3005 | mpte_lock(mp_tp->mpt_mpte); |
| 3006 | |
| 3007 | /* |
| 3008 | * Check if we became non-MPTCP while waiting for the lock. |
| 3009 | * If yes, we have to retry to grab the right lock. |
| 3010 | */ |
| 3011 | if (!(so->so_flags & SOF_MP_SUBFLOW)) { |
| 3012 | mpte_unlock(mp_tp->mpt_mpte); |
| 3013 | goto retry; |
| 3014 | } |
| 3015 | } else { |
| 3016 | lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); |
| 3017 | |
| 3018 | if (so->so_flags & SOF_MP_SUBFLOW) { |
| 3019 | /* |
| 3020 | * While waiting for the lock, we might have |
| 3021 | * become MPTCP-enabled (see mptcp_subflow_socreate). |
| 3022 | */ |
| 3023 | lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); |
| 3024 | goto retry; |
| 3025 | } |
| 3026 | } |
| 3027 | } else { |
| 3028 | panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n" , |
| 3029 | so, lr_saved, solockhistory_nr(so)); |
| 3030 | /* NOTREACHED */ |
| 3031 | } |
| 3032 | |
| 3033 | if (so->so_usecount < 0) { |
| 3034 | panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n" , |
| 3035 | so, so->so_pcb, lr_saved, so->so_usecount, |
| 3036 | solockhistory_nr(so)); |
| 3037 | /* NOTREACHED */ |
| 3038 | } |
| 3039 | if (refcount) |
| 3040 | so->so_usecount++; |
| 3041 | so->lock_lr[so->next_lock_lr] = lr_saved; |
| 3042 | so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; |
| 3043 | return (0); |
| 3044 | } |
| 3045 | |
| 3046 | int |
| 3047 | tcp_unlock(struct socket *so, int refcount, void *lr) |
| 3048 | { |
| 3049 | void *lr_saved; |
| 3050 | |
| 3051 | if (lr == NULL) |
| 3052 | lr_saved = __builtin_return_address(0); |
| 3053 | else |
| 3054 | lr_saved = lr; |
| 3055 | |
| 3056 | #ifdef MORE_TCPLOCK_DEBUG |
| 3057 | printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x " |
| 3058 | "lr=0x%llx\n" , (uint64_t)VM_KERNEL_ADDRPERM(so), |
| 3059 | (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb), |
| 3060 | (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so)->inpcb_mtx)), |
| 3061 | so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved)); |
| 3062 | #endif |
| 3063 | if (refcount) |
| 3064 | so->so_usecount--; |
| 3065 | |
| 3066 | if (so->so_usecount < 0) { |
| 3067 | panic("tcp_unlock: so=%p usecount=%x lrh= %s\n" , |
| 3068 | so, so->so_usecount, solockhistory_nr(so)); |
| 3069 | /* NOTREACHED */ |
| 3070 | } |
| 3071 | if (so->so_pcb == NULL) { |
| 3072 | panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n" , |
| 3073 | so, so->so_usecount, lr_saved, solockhistory_nr(so)); |
| 3074 | /* NOTREACHED */ |
| 3075 | } else { |
| 3076 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
| 3077 | so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; |
| 3078 | |
| 3079 | if (so->so_flags & SOF_MP_SUBFLOW) { |
| 3080 | struct mptcb *mp_tp = tptomptp(sototcpcb(so)); |
| 3081 | |
| 3082 | VERIFY(mp_tp); |
| 3083 | mpte_lock_assert_held(mp_tp->mpt_mpte); |
| 3084 | |
| 3085 | mpte_unlock(mp_tp->mpt_mpte); |
| 3086 | } else { |
| 3087 | LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx, |
| 3088 | LCK_MTX_ASSERT_OWNED); |
| 3089 | lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); |
| 3090 | } |
| 3091 | } |
| 3092 | return (0); |
| 3093 | } |
| 3094 | |
| 3095 | lck_mtx_t * |
| 3096 | tcp_getlock(struct socket *so, int flags) |
| 3097 | { |
| 3098 | struct inpcb *inp = sotoinpcb(so); |
| 3099 | |
| 3100 | if (so->so_pcb) { |
| 3101 | if (so->so_usecount < 0) |
| 3102 | panic("tcp_getlock: so=%p usecount=%x lrh= %s\n" , |
| 3103 | so, so->so_usecount, solockhistory_nr(so)); |
| 3104 | |
| 3105 | if (so->so_flags & SOF_MP_SUBFLOW) { |
| 3106 | struct mptcb *mp_tp = tptomptp(sototcpcb(so)); |
| 3107 | |
| 3108 | return (mpte_getlock(mp_tp->mpt_mpte, flags)); |
| 3109 | } else { |
| 3110 | return (&inp->inpcb_mtx); |
| 3111 | } |
| 3112 | } else { |
| 3113 | panic("tcp_getlock: so=%p NULL so_pcb %s\n" , |
| 3114 | so, solockhistory_nr(so)); |
| 3115 | return (so->so_proto->pr_domain->dom_mtx); |
| 3116 | } |
| 3117 | } |
| 3118 | |
| 3119 | /* |
| 3120 | * Determine if we can grow the recieve socket buffer to avoid sending |
| 3121 | * a zero window update to the peer. We allow even socket buffers that |
| 3122 | * have fixed size (set by the application) to grow if the resource |
| 3123 | * constraints are met. They will also be trimmed after the application |
| 3124 | * reads data. |
| 3125 | */ |
| 3126 | static void |
| 3127 | tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb) |
| 3128 | { |
| 3129 | u_int32_t rcvbufinc = tp->t_maxseg << 4; |
| 3130 | u_int32_t rcvbuf = sb->sb_hiwat; |
| 3131 | struct socket *so = tp->t_inpcb->inp_socket; |
| 3132 | |
| 3133 | if (tcp_recv_bg == 1 || IS_TCP_RECV_BG(so)) |
| 3134 | return; |
| 3135 | /* |
| 3136 | * If message delivery is enabled, do not count |
| 3137 | * unordered bytes in receive buffer towards hiwat |
| 3138 | */ |
| 3139 | if (so->so_flags & SOF_ENABLE_MSGS) |
| 3140 | rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes; |
| 3141 | |
| 3142 | if (tcp_do_autorcvbuf == 1 && |
| 3143 | tcp_cansbgrow(sb) && |
| 3144 | (tp->t_flags & TF_SLOWLINK) == 0 && |
| 3145 | (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) == 0 && |
| 3146 | (rcvbuf - sb->sb_cc) < rcvbufinc && |
| 3147 | rcvbuf < tcp_autorcvbuf_max && |
| 3148 | (sb->sb_idealsize > 0 && |
| 3149 | sb->sb_hiwat <= (sb->sb_idealsize + rcvbufinc))) { |
| 3150 | sbreserve(sb, |
| 3151 | min((sb->sb_hiwat + rcvbufinc), tcp_autorcvbuf_max)); |
| 3152 | } |
| 3153 | } |
| 3154 | |
| 3155 | int32_t |
| 3156 | tcp_sbspace(struct tcpcb *tp) |
| 3157 | { |
| 3158 | struct socket *so = tp->t_inpcb->inp_socket; |
| 3159 | struct sockbuf *sb = &so->so_rcv; |
| 3160 | u_int32_t rcvbuf; |
| 3161 | int32_t space; |
| 3162 | int32_t pending = 0; |
| 3163 | |
| 3164 | tcp_sbrcv_grow_rwin(tp, sb); |
| 3165 | |
| 3166 | /* hiwat might have changed */ |
| 3167 | rcvbuf = sb->sb_hiwat; |
| 3168 | |
| 3169 | /* |
| 3170 | * If message delivery is enabled, do not count |
| 3171 | * unordered bytes in receive buffer towards hiwat mark. |
| 3172 | * This value is used to return correct rwnd that does |
| 3173 | * not reflect the extra unordered bytes added to the |
| 3174 | * receive socket buffer. |
| 3175 | */ |
| 3176 | if (so->so_flags & SOF_ENABLE_MSGS) |
| 3177 | rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes; |
| 3178 | |
| 3179 | space = ((int32_t) imin((rcvbuf - sb->sb_cc), |
| 3180 | (sb->sb_mbmax - sb->sb_mbcnt))); |
| 3181 | if (space < 0) |
| 3182 | space = 0; |
| 3183 | |
| 3184 | #if CONTENT_FILTER |
| 3185 | /* Compensate for data being processed by content filters */ |
| 3186 | pending = cfil_sock_data_space(sb); |
| 3187 | #endif /* CONTENT_FILTER */ |
| 3188 | if (pending > space) |
| 3189 | space = 0; |
| 3190 | else |
| 3191 | space -= pending; |
| 3192 | |
| 3193 | /* |
| 3194 | * Avoid increasing window size if the current window |
| 3195 | * is already very low, we could be in "persist" mode and |
| 3196 | * we could break some apps (see rdar://5409343) |
| 3197 | */ |
| 3198 | |
| 3199 | if (space < tp->t_maxseg) |
| 3200 | return (space); |
| 3201 | |
| 3202 | /* Clip window size for slower link */ |
| 3203 | |
| 3204 | if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0) |
| 3205 | return (imin(space, slowlink_wsize)); |
| 3206 | |
| 3207 | return (space); |
| 3208 | } |
| 3209 | /* |
| 3210 | * Checks TCP Segment Offloading capability for a given connection |
| 3211 | * and interface pair. |
| 3212 | */ |
| 3213 | void |
| 3214 | tcp_set_tso(struct tcpcb *tp, struct ifnet *ifp) |
| 3215 | { |
| 3216 | #if INET6 |
| 3217 | struct inpcb *inp; |
| 3218 | int isipv6; |
| 3219 | #endif /* INET6 */ |
| 3220 | #if MPTCP |
| 3221 | /* |
| 3222 | * We can't use TSO if this tcpcb belongs to an MPTCP session. |
| 3223 | */ |
| 3224 | if (tp->t_mpflags & TMPF_MPTCP_TRUE) { |
| 3225 | tp->t_flags &= ~TF_TSO; |
| 3226 | return; |
| 3227 | } |
| 3228 | #endif |
| 3229 | #if INET6 |
| 3230 | inp = tp->t_inpcb; |
| 3231 | isipv6 = (inp->inp_vflag & INP_IPV6) != 0; |
| 3232 | |
| 3233 | if (isipv6) { |
| 3234 | if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV6)) { |
| 3235 | tp->t_flags |= TF_TSO; |
| 3236 | if (ifp->if_tso_v6_mtu != 0) |
| 3237 | tp->tso_max_segment_size = ifp->if_tso_v6_mtu; |
| 3238 | else |
| 3239 | tp->tso_max_segment_size = TCP_MAXWIN; |
| 3240 | } else |
| 3241 | tp->t_flags &= ~TF_TSO; |
| 3242 | |
| 3243 | } else |
| 3244 | #endif /* INET6 */ |
| 3245 | |
| 3246 | { |
| 3247 | if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV4)) { |
| 3248 | tp->t_flags |= TF_TSO; |
| 3249 | if (ifp->if_tso_v4_mtu != 0) |
| 3250 | tp->tso_max_segment_size = ifp->if_tso_v4_mtu; |
| 3251 | else |
| 3252 | tp->tso_max_segment_size = TCP_MAXWIN; |
| 3253 | } else |
| 3254 | tp->t_flags &= ~TF_TSO; |
| 3255 | } |
| 3256 | } |
| 3257 | |
| 3258 | #define TIMEVAL_TO_TCPHZ(_tv_) ((_tv_).tv_sec * TCP_RETRANSHZ + \ |
| 3259 | (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC) |
| 3260 | |
| 3261 | /* |
| 3262 | * Function to calculate the tcp clock. The tcp clock will get updated |
| 3263 | * at the boundaries of the tcp layer. This is done at 3 places: |
| 3264 | * 1. Right before processing an input tcp packet |
| 3265 | * 2. Whenever a connection wants to access the network using tcp_usrreqs |
| 3266 | * 3. When a tcp timer fires or before tcp slow timeout |
| 3267 | * |
| 3268 | */ |
| 3269 | |
| 3270 | void |
| 3271 | calculate_tcp_clock(void) |
| 3272 | { |
| 3273 | struct timeval tv = tcp_uptime; |
| 3274 | struct timeval interval = {0, TCP_RETRANSHZ_TO_USEC}; |
| 3275 | struct timeval now, hold_now; |
| 3276 | uint32_t incr = 0; |
| 3277 | |
| 3278 | microuptime(&now); |
| 3279 | |
| 3280 | /* |
| 3281 | * Update coarse-grained networking timestamp (in sec.); the idea |
| 3282 | * is to update the counter returnable via net_uptime() when |
| 3283 | * we read time. |
| 3284 | */ |
| 3285 | net_update_uptime_with_time(&now); |
| 3286 | |
| 3287 | timevaladd(&tv, &interval); |
| 3288 | if (timevalcmp(&now, &tv, >)) { |
| 3289 | /* time to update the clock */ |
| 3290 | lck_spin_lock(tcp_uptime_lock); |
| 3291 | if (timevalcmp(&tcp_uptime, &now, >=)) { |
| 3292 | /* clock got updated while waiting for the lock */ |
| 3293 | lck_spin_unlock(tcp_uptime_lock); |
| 3294 | return; |
| 3295 | } |
| 3296 | |
| 3297 | microuptime(&now); |
| 3298 | hold_now = now; |
| 3299 | tv = tcp_uptime; |
| 3300 | timevalsub(&now, &tv); |
| 3301 | |
| 3302 | incr = TIMEVAL_TO_TCPHZ(now); |
| 3303 | if (incr > 0) { |
| 3304 | tcp_uptime = hold_now; |
| 3305 | tcp_now += incr; |
| 3306 | } |
| 3307 | |
| 3308 | lck_spin_unlock(tcp_uptime_lock); |
| 3309 | } |
| 3310 | } |
| 3311 | |
| 3312 | /* |
| 3313 | * Compute receive window scaling that we are going to request |
| 3314 | * for this connection based on sb_hiwat. Try to leave some |
| 3315 | * room to potentially increase the window size upto a maximum |
| 3316 | * defined by the constant tcp_autorcvbuf_max. |
| 3317 | */ |
| 3318 | void |
| 3319 | tcp_set_max_rwinscale(struct tcpcb *tp, struct socket *so, struct ifnet *ifp) |
| 3320 | { |
| 3321 | uint32_t maxsockbufsize; |
| 3322 | uint32_t rcvbuf_max; |
| 3323 | |
| 3324 | if (!tcp_do_rfc1323) { |
| 3325 | tp->request_r_scale = 0; |
| 3326 | return; |
| 3327 | } |
| 3328 | |
| 3329 | /* |
| 3330 | * When we start a connection and don't know about the interface, set |
| 3331 | * the scaling factor simply to the max - we can always announce less. |
| 3332 | */ |
| 3333 | if (!ifp || (IFNET_IS_CELLULAR(ifp) && (ifp->if_eflags & IFEF_3CA))) |
| 3334 | rcvbuf_max = (tcp_autorcvbuf_max << 1); |
| 3335 | else |
| 3336 | rcvbuf_max = tcp_autorcvbuf_max; |
| 3337 | |
| 3338 | tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale); |
| 3339 | maxsockbufsize = ((so->so_rcv.sb_flags & SB_USRSIZE) != 0) ? |
| 3340 | so->so_rcv.sb_hiwat : rcvbuf_max; |
| 3341 | |
| 3342 | while (tp->request_r_scale < TCP_MAX_WINSHIFT && |
| 3343 | (TCP_MAXWIN << tp->request_r_scale) < maxsockbufsize) |
| 3344 | tp->request_r_scale++; |
| 3345 | tp->request_r_scale = min(tp->request_r_scale, TCP_MAX_WINSHIFT); |
| 3346 | |
| 3347 | } |
| 3348 | |
| 3349 | int |
| 3350 | tcp_notsent_lowat_check(struct socket *so) |
| 3351 | { |
| 3352 | struct inpcb *inp = sotoinpcb(so); |
| 3353 | struct tcpcb *tp = NULL; |
| 3354 | int notsent = 0; |
| 3355 | |
| 3356 | if (inp != NULL) { |
| 3357 | tp = intotcpcb(inp); |
| 3358 | } |
| 3359 | |
| 3360 | if (tp == NULL) { |
| 3361 | return (0); |
| 3362 | } |
| 3363 | |
| 3364 | notsent = so->so_snd.sb_cc - |
| 3365 | (tp->snd_nxt - tp->snd_una); |
| 3366 | |
| 3367 | /* |
| 3368 | * When we send a FIN or SYN, not_sent can be negative. |
| 3369 | * In that case also we need to send a write event to the |
| 3370 | * process if it is waiting. In the FIN case, it will |
| 3371 | * get an error from send because cantsendmore will be set. |
| 3372 | */ |
| 3373 | if (notsent <= tp->t_notsent_lowat) { |
| 3374 | return (1); |
| 3375 | } |
| 3376 | |
| 3377 | /* |
| 3378 | * When Nagle's algorithm is not disabled, it is better |
| 3379 | * to wakeup the client until there is atleast one |
| 3380 | * maxseg of data to write. |
| 3381 | */ |
| 3382 | if ((tp->t_flags & TF_NODELAY) == 0 && |
| 3383 | notsent > 0 && notsent < tp->t_maxseg) { |
| 3384 | return (1); |
| 3385 | } |
| 3386 | return (0); |
| 3387 | } |
| 3388 | |
| 3389 | void |
| 3390 | tcp_rxtseg_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end) |
| 3391 | { |
| 3392 | struct tcp_rxt_seg *rxseg = NULL, *prev = NULL, *next = NULL; |
| 3393 | u_int32_t rxcount = 0; |
| 3394 | |
| 3395 | if (SLIST_EMPTY(&tp->t_rxt_segments)) |
| 3396 | tp->t_dsack_lastuna = tp->snd_una; |
| 3397 | /* |
| 3398 | * First check if there is a segment already existing for this |
| 3399 | * sequence space. |
| 3400 | */ |
| 3401 | |
| 3402 | SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) { |
| 3403 | if (SEQ_GT(rxseg->rx_start, start)) |
| 3404 | break; |
| 3405 | prev = rxseg; |
| 3406 | } |
| 3407 | next = rxseg; |
| 3408 | |
| 3409 | /* check if prev seg is for this sequence */ |
| 3410 | if (prev != NULL && SEQ_LEQ(prev->rx_start, start) && |
| 3411 | SEQ_GEQ(prev->rx_end, end)) { |
| 3412 | prev->rx_count++; |
| 3413 | return; |
| 3414 | } |
| 3415 | |
| 3416 | /* |
| 3417 | * There are a couple of possibilities at this point. |
| 3418 | * 1. prev overlaps with the beginning of this sequence |
| 3419 | * 2. next overlaps with the end of this sequence |
| 3420 | * 3. there is no overlap. |
| 3421 | */ |
| 3422 | |
| 3423 | if (prev != NULL && SEQ_GT(prev->rx_end, start)) { |
| 3424 | if (prev->rx_start == start && SEQ_GT(end, prev->rx_end)) { |
| 3425 | start = prev->rx_end + 1; |
| 3426 | prev->rx_count++; |
| 3427 | } else { |
| 3428 | prev->rx_end = (start - 1); |
| 3429 | rxcount = prev->rx_count; |
| 3430 | } |
| 3431 | } |
| 3432 | |
| 3433 | if (next != NULL && SEQ_LT(next->rx_start, end)) { |
| 3434 | if (SEQ_LEQ(next->rx_end, end)) { |
| 3435 | end = next->rx_start - 1; |
| 3436 | next->rx_count++; |
| 3437 | } else { |
| 3438 | next->rx_start = end + 1; |
| 3439 | rxcount = next->rx_count; |
| 3440 | } |
| 3441 | } |
| 3442 | if (!SEQ_LT(start, end)) |
| 3443 | return; |
| 3444 | |
| 3445 | rxseg = (struct tcp_rxt_seg *) zalloc(tcp_rxt_seg_zone); |
| 3446 | if (rxseg == NULL) { |
| 3447 | return; |
| 3448 | } |
| 3449 | bzero(rxseg, sizeof(*rxseg)); |
| 3450 | rxseg->rx_start = start; |
| 3451 | rxseg->rx_end = end; |
| 3452 | rxseg->rx_count = rxcount + 1; |
| 3453 | |
| 3454 | if (prev != NULL) { |
| 3455 | SLIST_INSERT_AFTER(prev, rxseg, rx_link); |
| 3456 | } else { |
| 3457 | SLIST_INSERT_HEAD(&tp->t_rxt_segments, rxseg, rx_link); |
| 3458 | } |
| 3459 | } |
| 3460 | |
| 3461 | struct tcp_rxt_seg * |
| 3462 | tcp_rxtseg_find(struct tcpcb *tp, tcp_seq start, tcp_seq end) |
| 3463 | { |
| 3464 | struct tcp_rxt_seg *rxseg; |
| 3465 | if (SLIST_EMPTY(&tp->t_rxt_segments)) |
| 3466 | return (NULL); |
| 3467 | |
| 3468 | SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) { |
| 3469 | if (SEQ_LEQ(rxseg->rx_start, start) && |
| 3470 | SEQ_GEQ(rxseg->rx_end, end)) |
| 3471 | return (rxseg); |
| 3472 | if (SEQ_GT(rxseg->rx_start, start)) |
| 3473 | break; |
| 3474 | } |
| 3475 | return (NULL); |
| 3476 | } |
| 3477 | |
| 3478 | void |
| 3479 | tcp_rxtseg_clean(struct tcpcb *tp) |
| 3480 | { |
| 3481 | struct tcp_rxt_seg *rxseg, *next; |
| 3482 | |
| 3483 | SLIST_FOREACH_SAFE(rxseg, &tp->t_rxt_segments, rx_link, next) { |
| 3484 | SLIST_REMOVE(&tp->t_rxt_segments, rxseg, |
| 3485 | tcp_rxt_seg, rx_link); |
| 3486 | zfree(tcp_rxt_seg_zone, rxseg); |
| 3487 | } |
| 3488 | tp->t_dsack_lastuna = tp->snd_max; |
| 3489 | } |
| 3490 | |
| 3491 | boolean_t |
| 3492 | tcp_rxtseg_detect_bad_rexmt(struct tcpcb *tp, tcp_seq th_ack) |
| 3493 | { |
| 3494 | boolean_t bad_rexmt; |
| 3495 | struct tcp_rxt_seg *rxseg; |
| 3496 | |
| 3497 | if (SLIST_EMPTY(&tp->t_rxt_segments)) |
| 3498 | return (FALSE); |
| 3499 | |
| 3500 | /* |
| 3501 | * If all of the segments in this window are not cumulatively |
| 3502 | * acknowledged, then there can still be undetected packet loss. |
| 3503 | * Do not restore congestion window in that case. |
| 3504 | */ |
| 3505 | if (SEQ_LT(th_ack, tp->snd_recover)) |
| 3506 | return (FALSE); |
| 3507 | |
| 3508 | bad_rexmt = TRUE; |
| 3509 | SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) { |
| 3510 | if (rxseg->rx_count > 1 || |
| 3511 | !(rxseg->rx_flags & TCP_RXT_SPURIOUS)) { |
| 3512 | bad_rexmt = FALSE; |
| 3513 | break; |
| 3514 | } |
| 3515 | } |
| 3516 | return (bad_rexmt); |
| 3517 | } |
| 3518 | |
| 3519 | boolean_t |
| 3520 | tcp_rxtseg_dsack_for_tlp(struct tcpcb *tp) |
| 3521 | { |
| 3522 | boolean_t dsack_for_tlp = FALSE; |
| 3523 | struct tcp_rxt_seg *rxseg; |
| 3524 | if (SLIST_EMPTY(&tp->t_rxt_segments)) |
| 3525 | return (FALSE); |
| 3526 | |
| 3527 | SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) { |
| 3528 | if (rxseg->rx_count == 1 && |
| 3529 | SLIST_NEXT(rxseg, rx_link) == NULL && |
| 3530 | (rxseg->rx_flags & TCP_RXT_DSACK_FOR_TLP)) { |
| 3531 | dsack_for_tlp = TRUE; |
| 3532 | break; |
| 3533 | } |
| 3534 | } |
| 3535 | return (dsack_for_tlp); |
| 3536 | } |
| 3537 | |
| 3538 | u_int32_t |
| 3539 | tcp_rxtseg_total_size(struct tcpcb *tp) |
| 3540 | { |
| 3541 | struct tcp_rxt_seg *rxseg; |
| 3542 | u_int32_t total_size = 0; |
| 3543 | |
| 3544 | SLIST_FOREACH(rxseg, &tp->t_rxt_segments, rx_link) { |
| 3545 | total_size += (rxseg->rx_end - rxseg->rx_start) + 1; |
| 3546 | } |
| 3547 | return (total_size); |
| 3548 | } |
| 3549 | |
| 3550 | void |
| 3551 | tcp_get_connectivity_status(struct tcpcb *tp, |
| 3552 | struct tcp_conn_status *connstatus) |
| 3553 | { |
| 3554 | if (tp == NULL || connstatus == NULL) |
| 3555 | return; |
| 3556 | bzero(connstatus, sizeof(*connstatus)); |
| 3557 | if (tp->t_rxtshift >= TCP_CONNECTIVITY_PROBES_MAX) { |
| 3558 | if (TCPS_HAVEESTABLISHED(tp->t_state)) { |
| 3559 | connstatus->write_probe_failed = 1; |
| 3560 | } else { |
| 3561 | connstatus->conn_probe_failed = 1; |
| 3562 | } |
| 3563 | } |
| 3564 | if (tp->t_rtimo_probes >= TCP_CONNECTIVITY_PROBES_MAX) |
| 3565 | connstatus->read_probe_failed = 1; |
| 3566 | if (tp->t_inpcb != NULL && tp->t_inpcb->inp_last_outifp != NULL && |
| 3567 | (tp->t_inpcb->inp_last_outifp->if_eflags & IFEF_PROBE_CONNECTIVITY)) |
| 3568 | connstatus->probe_activated = 1; |
| 3569 | } |
| 3570 | |
| 3571 | boolean_t |
| 3572 | tfo_enabled(const struct tcpcb *tp) |
| 3573 | { |
| 3574 | return ((tp->t_flagsext & TF_FASTOPEN)? TRUE : FALSE); |
| 3575 | } |
| 3576 | |
| 3577 | void |
| 3578 | tcp_disable_tfo(struct tcpcb *tp) |
| 3579 | { |
| 3580 | tp->t_flagsext &= ~TF_FASTOPEN; |
| 3581 | } |
| 3582 | |
| 3583 | static struct mbuf * |
| 3584 | tcp_make_keepalive_frame(struct tcpcb *tp, struct ifnet *ifp, |
| 3585 | boolean_t is_probe) |
| 3586 | { |
| 3587 | struct inpcb *inp = tp->t_inpcb; |
| 3588 | struct tcphdr *th; |
| 3589 | u_int8_t *data; |
| 3590 | int win = 0; |
| 3591 | struct mbuf *m; |
| 3592 | |
| 3593 | /* |
| 3594 | * The code assumes the IP + TCP headers fit in an mbuf packet header |
| 3595 | */ |
| 3596 | _CASSERT(sizeof(struct ip) + sizeof(struct tcphdr) <= _MHLEN); |
| 3597 | _CASSERT(sizeof(struct ip6_hdr) + sizeof(struct tcphdr) <= _MHLEN); |
| 3598 | |
| 3599 | MGETHDR(m, M_WAIT, MT_HEADER); |
| 3600 | if (m == NULL) { |
| 3601 | return (NULL); |
| 3602 | } |
| 3603 | m->m_pkthdr.pkt_proto = IPPROTO_TCP; |
| 3604 | |
| 3605 | data = mbuf_datastart(m); |
| 3606 | |
| 3607 | if (inp->inp_vflag & INP_IPV4) { |
| 3608 | bzero(data, sizeof(struct ip) + sizeof(struct tcphdr)); |
| 3609 | th = (struct tcphdr *)(void *) (data + sizeof(struct ip)); |
| 3610 | m->m_len = sizeof(struct ip) + sizeof(struct tcphdr); |
| 3611 | m->m_pkthdr.len = m->m_len; |
| 3612 | } else { |
| 3613 | VERIFY(inp->inp_vflag & INP_IPV6); |
| 3614 | |
| 3615 | bzero(data, sizeof(struct ip6_hdr) |
| 3616 | + sizeof(struct tcphdr)); |
| 3617 | th = (struct tcphdr *)(void *)(data + sizeof(struct ip6_hdr)); |
| 3618 | m->m_len = sizeof(struct ip6_hdr) + |
| 3619 | sizeof(struct tcphdr); |
| 3620 | m->m_pkthdr.len = m->m_len; |
| 3621 | } |
| 3622 | |
| 3623 | tcp_fillheaders(tp, data, th); |
| 3624 | |
| 3625 | if (inp->inp_vflag & INP_IPV4) { |
| 3626 | struct ip *ip; |
| 3627 | |
| 3628 | ip = (__typeof__(ip))(void *)data; |
| 3629 | |
| 3630 | ip->ip_id = rfc6864 ? 0 : ip_randomid(); |
| 3631 | ip->ip_off = htons(IP_DF); |
| 3632 | ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); |
| 3633 | ip->ip_ttl = inp->inp_ip_ttl; |
| 3634 | ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK); |
| 3635 | ip->ip_sum = in_cksum_hdr(ip); |
| 3636 | } else { |
| 3637 | struct ip6_hdr *ip6; |
| 3638 | |
| 3639 | ip6 = (__typeof__(ip6))(void *)data; |
| 3640 | |
| 3641 | ip6->ip6_plen = htons(sizeof(struct tcphdr)); |
| 3642 | ip6->ip6_hlim = in6_selecthlim(inp, ifp); |
| 3643 | ip6->ip6_flow = ip6->ip6_flow & ~IPV6_FLOW_ECN_MASK; |
| 3644 | |
| 3645 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) |
| 3646 | ip6->ip6_src.s6_addr16[1] = 0; |
| 3647 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) |
| 3648 | ip6->ip6_dst.s6_addr16[1] = 0; |
| 3649 | } |
| 3650 | th->th_flags = TH_ACK; |
| 3651 | |
| 3652 | win = tcp_sbspace(tp); |
| 3653 | if (win > ((int32_t)TCP_MAXWIN << tp->rcv_scale)) |
| 3654 | win = (int32_t)TCP_MAXWIN << tp->rcv_scale; |
| 3655 | th->th_win = htons((u_short) (win >> tp->rcv_scale)); |
| 3656 | |
| 3657 | if (is_probe) { |
| 3658 | th->th_seq = htonl(tp->snd_una - 1); |
| 3659 | } else { |
| 3660 | th->th_seq = htonl(tp->snd_una); |
| 3661 | } |
| 3662 | th->th_ack = htonl(tp->rcv_nxt); |
| 3663 | |
| 3664 | /* Force recompute TCP checksum to be the final value */ |
| 3665 | th->th_sum = 0; |
| 3666 | if (inp->inp_vflag & INP_IPV4) { |
| 3667 | th->th_sum = inet_cksum(m, IPPROTO_TCP, |
| 3668 | sizeof(struct ip), sizeof(struct tcphdr)); |
| 3669 | } else { |
| 3670 | th->th_sum = inet6_cksum(m, IPPROTO_TCP, |
| 3671 | sizeof(struct ip6_hdr), sizeof(struct tcphdr)); |
| 3672 | } |
| 3673 | |
| 3674 | return (m); |
| 3675 | } |
| 3676 | |
| 3677 | void |
| 3678 | tcp_fill_keepalive_offload_frames(ifnet_t ifp, |
| 3679 | struct ifnet_keepalive_offload_frame *frames_array, |
| 3680 | u_int32_t frames_array_count, size_t frame_data_offset, |
| 3681 | u_int32_t *used_frames_count) |
| 3682 | { |
| 3683 | struct inpcb *inp; |
| 3684 | inp_gen_t gencnt; |
| 3685 | u_int32_t frame_index = *used_frames_count; |
| 3686 | |
| 3687 | if (ifp == NULL || frames_array == NULL || |
| 3688 | frames_array_count == 0 || |
| 3689 | frame_index >= frames_array_count || |
| 3690 | frame_data_offset >= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) |
| 3691 | return; |
| 3692 | |
| 3693 | /* |
| 3694 | * This function is called outside the regular TCP processing |
| 3695 | * so we need to update the TCP clock. |
| 3696 | */ |
| 3697 | calculate_tcp_clock(); |
| 3698 | |
| 3699 | lck_rw_lock_shared(tcbinfo.ipi_lock); |
| 3700 | gencnt = tcbinfo.ipi_gencnt; |
| 3701 | LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) { |
| 3702 | struct socket *so; |
| 3703 | struct ifnet_keepalive_offload_frame *frame; |
| 3704 | struct mbuf *m = NULL; |
| 3705 | struct tcpcb *tp = intotcpcb(inp); |
| 3706 | |
| 3707 | if (frame_index >= frames_array_count) |
| 3708 | break; |
| 3709 | |
| 3710 | if (inp->inp_gencnt > gencnt || |
| 3711 | inp->inp_state == INPCB_STATE_DEAD) |
| 3712 | continue; |
| 3713 | |
| 3714 | if ((so = inp->inp_socket) == NULL || |
| 3715 | (so->so_state & SS_DEFUNCT)) |
| 3716 | continue; |
| 3717 | /* |
| 3718 | * check for keepalive offload flag without socket |
| 3719 | * lock to avoid a deadlock |
| 3720 | */ |
| 3721 | if (!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD)) { |
| 3722 | continue; |
| 3723 | } |
| 3724 | |
| 3725 | if (!(inp->inp_vflag & (INP_IPV4 | INP_IPV6))) { |
| 3726 | continue; |
| 3727 | } |
| 3728 | if (inp->inp_ppcb == NULL || |
| 3729 | in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) |
| 3730 | continue; |
| 3731 | socket_lock(so, 1); |
| 3732 | /* Release the want count */ |
| 3733 | if (inp->inp_ppcb == NULL || |
| 3734 | (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING)) { |
| 3735 | socket_unlock(so, 1); |
| 3736 | continue; |
| 3737 | } |
| 3738 | if ((inp->inp_vflag & INP_IPV4) && |
| 3739 | (inp->inp_laddr.s_addr == INADDR_ANY || |
| 3740 | inp->inp_faddr.s_addr == INADDR_ANY)) { |
| 3741 | socket_unlock(so, 1); |
| 3742 | continue; |
| 3743 | } |
| 3744 | if ((inp->inp_vflag & INP_IPV6) && |
| 3745 | (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) || |
| 3746 | IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))) { |
| 3747 | socket_unlock(so, 1); |
| 3748 | continue; |
| 3749 | } |
| 3750 | if (inp->inp_lport == 0 || inp->inp_fport == 0) { |
| 3751 | socket_unlock(so, 1); |
| 3752 | continue; |
| 3753 | } |
| 3754 | if (inp->inp_last_outifp == NULL || |
| 3755 | inp->inp_last_outifp->if_index != ifp->if_index) { |
| 3756 | socket_unlock(so, 1); |
| 3757 | continue; |
| 3758 | } |
| 3759 | if ((inp->inp_vflag & INP_IPV4) && frame_data_offset + |
| 3760 | sizeof(struct ip) + sizeof(struct tcphdr) > |
| 3761 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { |
| 3762 | socket_unlock(so, 1); |
| 3763 | continue; |
| 3764 | } else if (!(inp->inp_vflag & INP_IPV4) && frame_data_offset + |
| 3765 | sizeof(struct ip6_hdr) + sizeof(struct tcphdr) > |
| 3766 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { |
| 3767 | socket_unlock(so, 1); |
| 3768 | continue; |
| 3769 | } |
| 3770 | /* |
| 3771 | * There is no point in waking up the device for connections |
| 3772 | * that are not established. Long lived connection are meant |
| 3773 | * for processes that will sent and receive data |
| 3774 | */ |
| 3775 | if (tp->t_state != TCPS_ESTABLISHED) { |
| 3776 | socket_unlock(so, 1); |
| 3777 | continue; |
| 3778 | } |
| 3779 | /* |
| 3780 | * This inp has all the information that is needed to |
| 3781 | * generate an offload frame. |
| 3782 | */ |
| 3783 | frame = &frames_array[frame_index]; |
| 3784 | frame->type = IFNET_KEEPALIVE_OFFLOAD_FRAME_TCP; |
| 3785 | frame->ether_type = (inp->inp_vflag & INP_IPV4) ? |
| 3786 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4 : |
| 3787 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6; |
| 3788 | frame->interval = tp->t_keepidle > 0 ? tp->t_keepidle : |
| 3789 | tcp_keepidle; |
| 3790 | frame->keep_cnt = TCP_CONN_KEEPCNT(tp); |
| 3791 | frame->keep_retry = TCP_CONN_KEEPINTVL(tp); |
| 3792 | frame->local_port = ntohs(inp->inp_lport); |
| 3793 | frame->remote_port = ntohs(inp->inp_fport); |
| 3794 | frame->local_seq = tp->snd_nxt; |
| 3795 | frame->remote_seq = tp->rcv_nxt; |
| 3796 | if (inp->inp_vflag & INP_IPV4) { |
| 3797 | frame->length = frame_data_offset + |
| 3798 | sizeof(struct ip) + sizeof(struct tcphdr); |
| 3799 | frame->reply_length = frame->length; |
| 3800 | |
| 3801 | frame->addr_length = sizeof(struct in_addr); |
| 3802 | bcopy(&inp->inp_laddr, frame->local_addr, |
| 3803 | sizeof(struct in_addr)); |
| 3804 | bcopy(&inp->inp_faddr, frame->remote_addr, |
| 3805 | sizeof(struct in_addr)); |
| 3806 | } else { |
| 3807 | struct in6_addr *ip6; |
| 3808 | |
| 3809 | frame->length = frame_data_offset + |
| 3810 | sizeof(struct ip6_hdr) + sizeof(struct tcphdr); |
| 3811 | frame->reply_length = frame->length; |
| 3812 | |
| 3813 | frame->addr_length = sizeof(struct in6_addr); |
| 3814 | ip6 = (struct in6_addr *)(void *)frame->local_addr; |
| 3815 | bcopy(&inp->in6p_laddr, ip6, sizeof(struct in6_addr)); |
| 3816 | if (IN6_IS_SCOPE_EMBED(ip6)) |
| 3817 | ip6->s6_addr16[1] = 0; |
| 3818 | |
| 3819 | ip6 = (struct in6_addr *)(void *)frame->remote_addr; |
| 3820 | bcopy(&inp->in6p_faddr, ip6, sizeof(struct in6_addr)); |
| 3821 | if (IN6_IS_SCOPE_EMBED(ip6)) |
| 3822 | ip6->s6_addr16[1] = 0; |
| 3823 | } |
| 3824 | |
| 3825 | /* |
| 3826 | * First the probe |
| 3827 | */ |
| 3828 | m = tcp_make_keepalive_frame(tp, ifp, TRUE); |
| 3829 | if (m == NULL) { |
| 3830 | socket_unlock(so, 1); |
| 3831 | continue; |
| 3832 | } |
| 3833 | bcopy(m->m_data, frame->data + frame_data_offset, |
| 3834 | m->m_len); |
| 3835 | m_freem(m); |
| 3836 | |
| 3837 | /* |
| 3838 | * Now the response packet to incoming probes |
| 3839 | */ |
| 3840 | m = tcp_make_keepalive_frame(tp, ifp, FALSE); |
| 3841 | if (m == NULL) { |
| 3842 | socket_unlock(so, 1); |
| 3843 | continue; |
| 3844 | } |
| 3845 | bcopy(m->m_data, frame->reply_data + frame_data_offset, |
| 3846 | m->m_len); |
| 3847 | m_freem(m); |
| 3848 | |
| 3849 | frame_index++; |
| 3850 | socket_unlock(so, 1); |
| 3851 | } |
| 3852 | lck_rw_done(tcbinfo.ipi_lock); |
| 3853 | *used_frames_count = frame_index; |
| 3854 | } |
| 3855 | |
| 3856 | errno_t |
| 3857 | tcp_notify_ack_id_valid(struct tcpcb *tp, struct socket *so, |
| 3858 | u_int32_t notify_id) |
| 3859 | { |
| 3860 | struct tcp_notify_ack_marker *elm; |
| 3861 | |
| 3862 | if (so->so_snd.sb_cc == 0) |
| 3863 | return (ENOBUFS); |
| 3864 | |
| 3865 | SLIST_FOREACH(elm, &tp->t_notify_ack, notify_next) { |
| 3866 | /* Duplicate id is not allowed */ |
| 3867 | if (elm->notify_id == notify_id) |
| 3868 | return (EINVAL); |
| 3869 | /* Duplicate position is not allowed */ |
| 3870 | if (elm->notify_snd_una == tp->snd_una + so->so_snd.sb_cc) |
| 3871 | return (EINVAL); |
| 3872 | } |
| 3873 | return (0); |
| 3874 | } |
| 3875 | |
| 3876 | errno_t |
| 3877 | tcp_add_notify_ack_marker(struct tcpcb *tp, u_int32_t notify_id) |
| 3878 | { |
| 3879 | struct tcp_notify_ack_marker *nm, *elm = NULL; |
| 3880 | struct socket *so = tp->t_inpcb->inp_socket; |
| 3881 | |
| 3882 | MALLOC(nm, struct tcp_notify_ack_marker *, sizeof (*nm), |
| 3883 | M_TEMP, M_WAIT | M_ZERO); |
| 3884 | if (nm == NULL) |
| 3885 | return (ENOMEM); |
| 3886 | nm->notify_id = notify_id; |
| 3887 | nm->notify_snd_una = tp->snd_una + so->so_snd.sb_cc; |
| 3888 | |
| 3889 | SLIST_FOREACH(elm, &tp->t_notify_ack, notify_next) { |
| 3890 | if (SEQ_GT(nm->notify_snd_una, elm->notify_snd_una)) |
| 3891 | break; |
| 3892 | } |
| 3893 | |
| 3894 | if (elm == NULL) { |
| 3895 | VERIFY(SLIST_EMPTY(&tp->t_notify_ack)); |
| 3896 | SLIST_INSERT_HEAD(&tp->t_notify_ack, nm, notify_next); |
| 3897 | } else { |
| 3898 | SLIST_INSERT_AFTER(elm, nm, notify_next); |
| 3899 | } |
| 3900 | tp->t_notify_ack_count++; |
| 3901 | return (0); |
| 3902 | } |
| 3903 | |
| 3904 | void |
| 3905 | tcp_notify_ack_free(struct tcpcb *tp) |
| 3906 | { |
| 3907 | struct tcp_notify_ack_marker *elm, *next; |
| 3908 | if (SLIST_EMPTY(&tp->t_notify_ack)) |
| 3909 | return; |
| 3910 | |
| 3911 | SLIST_FOREACH_SAFE(elm, &tp->t_notify_ack, notify_next, next) { |
| 3912 | SLIST_REMOVE(&tp->t_notify_ack, elm, tcp_notify_ack_marker, |
| 3913 | notify_next); |
| 3914 | FREE(elm, M_TEMP); |
| 3915 | } |
| 3916 | SLIST_INIT(&tp->t_notify_ack); |
| 3917 | tp->t_notify_ack_count = 0; |
| 3918 | } |
| 3919 | |
| 3920 | inline void |
| 3921 | tcp_notify_acknowledgement(struct tcpcb *tp, struct socket *so) |
| 3922 | { |
| 3923 | struct tcp_notify_ack_marker *elm; |
| 3924 | |
| 3925 | elm = SLIST_FIRST(&tp->t_notify_ack); |
| 3926 | if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) { |
| 3927 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_NOTIFY_ACK); |
| 3928 | } |
| 3929 | } |
| 3930 | |
| 3931 | void |
| 3932 | tcp_get_notify_ack_count(struct tcpcb *tp, |
| 3933 | struct tcp_notify_ack_complete *retid) |
| 3934 | { |
| 3935 | struct tcp_notify_ack_marker *elm; |
| 3936 | size_t complete = 0; |
| 3937 | |
| 3938 | SLIST_FOREACH(elm, &tp->t_notify_ack, notify_next) { |
| 3939 | if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) |
| 3940 | complete++; |
| 3941 | else |
| 3942 | break; |
| 3943 | } |
| 3944 | retid->notify_pending = tp->t_notify_ack_count - complete; |
| 3945 | retid->notify_complete_count = min(TCP_MAX_NOTIFY_ACK, complete); |
| 3946 | } |
| 3947 | |
| 3948 | void |
| 3949 | tcp_get_notify_ack_ids(struct tcpcb *tp, |
| 3950 | struct tcp_notify_ack_complete *retid) |
| 3951 | { |
| 3952 | size_t i = 0; |
| 3953 | struct tcp_notify_ack_marker *elm, *next; |
| 3954 | |
| 3955 | SLIST_FOREACH_SAFE(elm, &tp->t_notify_ack, notify_next, next) { |
| 3956 | if (i >= retid->notify_complete_count) |
| 3957 | break; |
| 3958 | if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) { |
| 3959 | retid->notify_complete_id[i++] = elm->notify_id; |
| 3960 | SLIST_REMOVE(&tp->t_notify_ack, elm, |
| 3961 | tcp_notify_ack_marker, notify_next); |
| 3962 | FREE(elm, M_TEMP); |
| 3963 | tp->t_notify_ack_count--; |
| 3964 | } else { |
| 3965 | break; |
| 3966 | } |
| 3967 | } |
| 3968 | } |
| 3969 | |
| 3970 | bool |
| 3971 | tcp_notify_ack_active(struct socket *so) |
| 3972 | { |
| 3973 | if ((SOCK_DOM(so) == PF_INET || SOCK_DOM(so) == PF_INET6) && |
| 3974 | SOCK_TYPE(so) == SOCK_STREAM) { |
| 3975 | struct tcpcb *tp = intotcpcb(sotoinpcb(so)); |
| 3976 | |
| 3977 | if (!SLIST_EMPTY(&tp->t_notify_ack)) { |
| 3978 | struct tcp_notify_ack_marker *elm; |
| 3979 | elm = SLIST_FIRST(&tp->t_notify_ack); |
| 3980 | if (SEQ_GEQ(tp->snd_una, elm->notify_snd_una)) |
| 3981 | return (true); |
| 3982 | } |
| 3983 | } |
| 3984 | return (false); |
| 3985 | } |
| 3986 | |
| 3987 | inline int32_t |
| 3988 | inp_get_sndbytes_allunsent(struct socket *so, u_int32_t th_ack) |
| 3989 | { |
| 3990 | struct inpcb *inp = sotoinpcb(so); |
| 3991 | struct tcpcb *tp = intotcpcb(inp); |
| 3992 | |
| 3993 | if ((so->so_snd.sb_flags & SB_SNDBYTE_CNT) && |
| 3994 | so->so_snd.sb_cc > 0) { |
| 3995 | int32_t unsent, sent; |
| 3996 | sent = tp->snd_max - th_ack; |
| 3997 | if (tp->t_flags & TF_SENTFIN) |
| 3998 | sent--; |
| 3999 | unsent = so->so_snd.sb_cc - sent; |
| 4000 | return (unsent); |
| 4001 | } |
| 4002 | return (0); |
| 4003 | } |
| 4004 | |
| 4005 | #define IFP_PER_FLOW_STAT(_ipv4_, _stat_) { \ |
| 4006 | if (_ipv4_) { \ |
| 4007 | ifp->if_ipv4_stat->_stat_++; \ |
| 4008 | } else { \ |
| 4009 | ifp->if_ipv6_stat->_stat_++; \ |
| 4010 | } \ |
| 4011 | } |
| 4012 | |
| 4013 | #define FLOW_ECN_ENABLED(_flags_) \ |
| 4014 | ((_flags_ & (TE_ECN_ON)) == (TE_ECN_ON)) |
| 4015 | |
| 4016 | void tcp_update_stats_per_flow(struct ifnet_stats_per_flow *ifs, |
| 4017 | struct ifnet *ifp) |
| 4018 | { |
| 4019 | if (ifp == NULL || !IF_FULLY_ATTACHED(ifp)) |
| 4020 | return; |
| 4021 | |
| 4022 | ifnet_lock_shared(ifp); |
| 4023 | if (ifs->ecn_flags & TE_SETUPSENT) { |
| 4024 | if (ifs->ecn_flags & TE_CLIENT_SETUP) { |
| 4025 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_client_setup); |
| 4026 | if (FLOW_ECN_ENABLED(ifs->ecn_flags)) { |
| 4027 | IFP_PER_FLOW_STAT(ifs->ipv4, |
| 4028 | ecn_client_success); |
| 4029 | } else if (ifs->ecn_flags & TE_LOST_SYN) { |
| 4030 | IFP_PER_FLOW_STAT(ifs->ipv4, |
| 4031 | ecn_syn_lost); |
| 4032 | } else { |
| 4033 | IFP_PER_FLOW_STAT(ifs->ipv4, |
| 4034 | ecn_peer_nosupport); |
| 4035 | } |
| 4036 | } else { |
| 4037 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_server_setup); |
| 4038 | if (FLOW_ECN_ENABLED(ifs->ecn_flags)) { |
| 4039 | IFP_PER_FLOW_STAT(ifs->ipv4, |
| 4040 | ecn_server_success); |
| 4041 | } else if (ifs->ecn_flags & TE_LOST_SYN) { |
| 4042 | IFP_PER_FLOW_STAT(ifs->ipv4, |
| 4043 | ecn_synack_lost); |
| 4044 | } else { |
| 4045 | IFP_PER_FLOW_STAT(ifs->ipv4, |
| 4046 | ecn_peer_nosupport); |
| 4047 | } |
| 4048 | } |
| 4049 | } else { |
| 4050 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_off_conn); |
| 4051 | } |
| 4052 | if (FLOW_ECN_ENABLED(ifs->ecn_flags)) { |
| 4053 | if (ifs->ecn_flags & TE_RECV_ECN_CE) { |
| 4054 | tcpstat.tcps_ecn_conn_recv_ce++; |
| 4055 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_recv_ce); |
| 4056 | } |
| 4057 | if (ifs->ecn_flags & TE_RECV_ECN_ECE) { |
| 4058 | tcpstat.tcps_ecn_conn_recv_ece++; |
| 4059 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_recv_ece); |
| 4060 | } |
| 4061 | if (ifs->ecn_flags & (TE_RECV_ECN_CE | TE_RECV_ECN_ECE)) { |
| 4062 | if (ifs->txretransmitbytes > 0 || |
| 4063 | ifs->rxoutoforderbytes > 0) { |
| 4064 | tcpstat.tcps_ecn_conn_pl_ce++; |
| 4065 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_plce); |
| 4066 | } else { |
| 4067 | tcpstat.tcps_ecn_conn_nopl_ce++; |
| 4068 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_noplce); |
| 4069 | } |
| 4070 | } else { |
| 4071 | if (ifs->txretransmitbytes > 0 || |
| 4072 | ifs->rxoutoforderbytes > 0) { |
| 4073 | tcpstat.tcps_ecn_conn_plnoce++; |
| 4074 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_conn_plnoce); |
| 4075 | } |
| 4076 | } |
| 4077 | } |
| 4078 | |
| 4079 | /* Other stats are interesting for non-local connections only */ |
| 4080 | if (ifs->local) { |
| 4081 | ifnet_lock_done(ifp); |
| 4082 | return; |
| 4083 | } |
| 4084 | |
| 4085 | if (ifs->ipv4) { |
| 4086 | ifp->if_ipv4_stat->timestamp = net_uptime(); |
| 4087 | if (FLOW_ECN_ENABLED(ifs->ecn_flags)) { |
| 4088 | tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv4_stat->ecn_on); |
| 4089 | } else { |
| 4090 | tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv4_stat->ecn_off); |
| 4091 | } |
| 4092 | } else { |
| 4093 | ifp->if_ipv6_stat->timestamp = net_uptime(); |
| 4094 | if (FLOW_ECN_ENABLED(ifs->ecn_flags)) { |
| 4095 | tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv6_stat->ecn_on); |
| 4096 | } else { |
| 4097 | tcp_flow_ecn_perf_stats(ifs, &ifp->if_ipv6_stat->ecn_off); |
| 4098 | } |
| 4099 | } |
| 4100 | |
| 4101 | if (ifs->rxmit_drop) { |
| 4102 | if (FLOW_ECN_ENABLED(ifs->ecn_flags)) { |
| 4103 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_on.rxmit_drop); |
| 4104 | } else { |
| 4105 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_off.rxmit_drop); |
| 4106 | } |
| 4107 | } |
| 4108 | if (ifs->ecn_fallback_synloss) |
| 4109 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_synloss); |
| 4110 | if (ifs->ecn_fallback_droprst) |
| 4111 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_droprst); |
| 4112 | if (ifs->ecn_fallback_droprxmt) |
| 4113 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_droprxmt); |
| 4114 | if (ifs->ecn_fallback_ce) |
| 4115 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_ce); |
| 4116 | if (ifs->ecn_fallback_reorder) |
| 4117 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_fallback_reorder); |
| 4118 | if (ifs->ecn_recv_ce > 0) |
| 4119 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_recv_ce); |
| 4120 | if (ifs->ecn_recv_ece > 0) |
| 4121 | IFP_PER_FLOW_STAT(ifs->ipv4, ecn_recv_ece); |
| 4122 | |
| 4123 | tcp_flow_lim_stats(ifs, &ifp->if_lim_stat); |
| 4124 | ifnet_lock_done(ifp); |
| 4125 | } |
| 4126 | |