| 1 | /* |
| 2 | * Copyright (c) 2010-2014 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <sys/param.h> |
| 29 | #include <sys/systm.h> |
| 30 | #include <sys/kernel.h> |
| 31 | #include <sys/protosw.h> |
| 32 | #include <sys/mcache.h> |
| 33 | #include <sys/sysctl.h> |
| 34 | |
| 35 | #include <net/route.h> |
| 36 | #include <netinet/in.h> |
| 37 | #include <netinet/in_systm.h> |
| 38 | #include <netinet/ip.h> |
| 39 | |
| 40 | #if INET6 |
| 41 | #include <netinet/ip6.h> |
| 42 | #endif |
| 43 | #include <netinet/ip_var.h> |
| 44 | #include <netinet/tcp.h> |
| 45 | #include <netinet/tcp_fsm.h> |
| 46 | #include <netinet/tcp_timer.h> |
| 47 | #include <netinet/tcp_var.h> |
| 48 | #include <netinet/tcpip.h> |
| 49 | #include <netinet/tcp_cc.h> |
| 50 | |
| 51 | #include <libkern/OSAtomic.h> |
| 52 | |
| 53 | /* This file implements an alternate TCP congestion control algorithm |
| 54 | * for background transport developed by LEDBAT working group at IETF and |
| 55 | * described in draft: draft-ietf-ledbat-congestion-02 |
| 56 | */ |
| 57 | |
| 58 | int tcp_ledbat_init(struct tcpcb *tp); |
| 59 | int tcp_ledbat_cleanup(struct tcpcb *tp); |
| 60 | void tcp_ledbat_cwnd_init(struct tcpcb *tp); |
| 61 | void tcp_ledbat_congestion_avd(struct tcpcb *tp, struct tcphdr *th); |
| 62 | void tcp_ledbat_ack_rcvd(struct tcpcb *tp, struct tcphdr *th); |
| 63 | void tcp_ledbat_pre_fr(struct tcpcb *tp); |
| 64 | void tcp_ledbat_post_fr(struct tcpcb *tp, struct tcphdr *th); |
| 65 | void tcp_ledbat_after_idle(struct tcpcb *tp); |
| 66 | void tcp_ledbat_after_timeout(struct tcpcb *tp); |
| 67 | int tcp_ledbat_delay_ack(struct tcpcb *tp, struct tcphdr *th); |
| 68 | void tcp_ledbat_switch_cc(struct tcpcb *tp, uint16_t old_cc_index); |
| 69 | |
| 70 | struct tcp_cc_algo tcp_cc_ledbat = { |
| 71 | .name = "ledbat" , |
| 72 | .init = tcp_ledbat_init, |
| 73 | .cleanup = tcp_ledbat_cleanup, |
| 74 | .cwnd_init = tcp_ledbat_cwnd_init, |
| 75 | .congestion_avd = tcp_ledbat_congestion_avd, |
| 76 | .ack_rcvd = tcp_ledbat_ack_rcvd, |
| 77 | .pre_fr = tcp_ledbat_pre_fr, |
| 78 | .post_fr = tcp_ledbat_post_fr, |
| 79 | .after_idle = tcp_ledbat_after_idle, |
| 80 | .after_timeout = tcp_ledbat_after_timeout, |
| 81 | .delay_ack = tcp_ledbat_delay_ack, |
| 82 | .switch_to = tcp_ledbat_switch_cc |
| 83 | }; |
| 84 | |
| 85 | /* Target queuing delay in milliseconds. This includes the processing |
| 86 | * and scheduling delay on both of the end-hosts. A LEDBAT sender tries |
| 87 | * to keep queuing delay below this limit. When the queuing delay |
| 88 | * goes above this limit, a LEDBAT sender will start reducing the |
| 89 | * congestion window. |
| 90 | * |
| 91 | * The LEDBAT draft says that target queue delay MUST be 100 ms for |
| 92 | * inter-operability. |
| 93 | */ |
| 94 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_target_qdelay, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 95 | int, target_qdelay, 100, "Target queuing delay" ); |
| 96 | |
| 97 | /* Allowed increase and tether are used to place an upper bound on |
| 98 | * congestion window based on the amount of data that is outstanding. |
| 99 | * This will limit the congestion window when the amount of data in |
| 100 | * flight is little because the application is writing to the socket |
| 101 | * intermittently and is preventing the connection from becoming idle . |
| 102 | * |
| 103 | * max_allowed_cwnd = allowed_increase + (tether * flight_size) |
| 104 | * cwnd = min(cwnd, max_allowed_cwnd) |
| 105 | * |
| 106 | * 'Allowed_increase' parameter is set to 8. If the flight size is zero, then |
| 107 | * we want the congestion window to be at least 8 packets to reduce the |
| 108 | * delay induced by delayed ack. This helps when the receiver is acking |
| 109 | * more than 2 packets at a time (stretching acks for better performance). |
| 110 | * |
| 111 | * 'Tether' is also set to 2. We do not want this to limit the growth of cwnd |
| 112 | * during slow-start. |
| 113 | */ |
| 114 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_allowed_increase, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 115 | int, allowed_increase, 8, |
| 116 | "Additive constant used to calculate max allowed congestion window" ); |
| 117 | |
| 118 | /* Left shift for cwnd to get tether value of 2 */ |
| 119 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_tether_shift, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 120 | int, tether_shift, 1, "Tether shift for max allowed congestion window" ); |
| 121 | |
| 122 | /* Start with an initial window of 2. This will help to get more accurate |
| 123 | * minimum RTT measurement in the beginning. It will help to probe |
| 124 | * the path slowly and will not add to the existing delay if the path is |
| 125 | * already congested. Using 2 packets will reduce the delay induced by delayed-ack. |
| 126 | */ |
| 127 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, bg_ss_fltsz, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 128 | uint32_t, bg_ss_fltsz, 2, "Initial congestion window for background transport" ); |
| 129 | |
| 130 | extern int rtt_samples_per_slot; |
| 131 | |
| 132 | static void update_cwnd(struct tcpcb *tp, uint32_t incr) { |
| 133 | uint32_t max_allowed_cwnd = 0, flight_size = 0; |
| 134 | uint32_t base_rtt; |
| 135 | |
| 136 | base_rtt = get_base_rtt(tp); |
| 137 | |
| 138 | /* If we do not have a good RTT measurement yet, increment |
| 139 | * congestion window by the default value. |
| 140 | */ |
| 141 | if (base_rtt == 0 || tp->t_rttcur == 0) { |
| 142 | tp->snd_cwnd += incr; |
| 143 | goto check_max; |
| 144 | } |
| 145 | |
| 146 | if (tp->t_rttcur <= (base_rtt + target_qdelay)) { |
| 147 | /* |
| 148 | * Delay decreased or remained the same, we can increase |
| 149 | * the congestion window according to RFC 3465. |
| 150 | * |
| 151 | * Move background slow-start threshold to current |
| 152 | * congestion window so that the next time (after some idle |
| 153 | * period), we can attempt to do slow-start till here if there |
| 154 | * is no increase in rtt |
| 155 | */ |
| 156 | if (tp->bg_ssthresh < tp->snd_cwnd) |
| 157 | tp->bg_ssthresh = tp->snd_cwnd; |
| 158 | tp->snd_cwnd += incr; |
| 159 | |
| 160 | } else { |
| 161 | /* In response to an increase in rtt, reduce the congestion |
| 162 | * window by one-eighth. This will help to yield immediately |
| 163 | * to a competing stream. |
| 164 | */ |
| 165 | uint32_t redwin; |
| 166 | |
| 167 | redwin = tp->snd_cwnd >> 3; |
| 168 | tp->snd_cwnd -= redwin; |
| 169 | if (tp->snd_cwnd < bg_ss_fltsz * tp->t_maxseg) |
| 170 | tp->snd_cwnd = bg_ss_fltsz * tp->t_maxseg; |
| 171 | |
| 172 | /* Lower background slow-start threshold so that the connection |
| 173 | * will go into congestion avoidance phase |
| 174 | */ |
| 175 | if (tp->bg_ssthresh > tp->snd_cwnd) |
| 176 | tp->bg_ssthresh = tp->snd_cwnd; |
| 177 | } |
| 178 | check_max: |
| 179 | /* Calculate the outstanding flight size and restrict the |
| 180 | * congestion window to a factor of flight size. |
| 181 | */ |
| 182 | flight_size = tp->snd_max - tp->snd_una; |
| 183 | |
| 184 | max_allowed_cwnd = (allowed_increase * tp->t_maxseg) |
| 185 | + (flight_size << tether_shift); |
| 186 | tp->snd_cwnd = min(tp->snd_cwnd, max_allowed_cwnd); |
| 187 | return; |
| 188 | } |
| 189 | |
| 190 | int tcp_ledbat_init(struct tcpcb *tp) { |
| 191 | #pragma unused(tp) |
| 192 | OSIncrementAtomic((volatile SInt32 *)&tcp_cc_ledbat.num_sockets); |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | int tcp_ledbat_cleanup(struct tcpcb *tp) { |
| 197 | #pragma unused(tp) |
| 198 | OSDecrementAtomic((volatile SInt32 *)&tcp_cc_ledbat.num_sockets); |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | /* Initialize the congestion window for a connection |
| 203 | * |
| 204 | */ |
| 205 | |
| 206 | void |
| 207 | tcp_ledbat_cwnd_init(struct tcpcb *tp) { |
| 208 | tp->snd_cwnd = tp->t_maxseg * bg_ss_fltsz; |
| 209 | tp->bg_ssthresh = tp->snd_ssthresh; |
| 210 | } |
| 211 | |
| 212 | /* Function to handle an in-sequence ack which is fast-path processing |
| 213 | * of an in sequence ack in tcp_input function (called as header prediction). |
| 214 | * This gets called only during congestion avoidance phase. |
| 215 | */ |
| 216 | void |
| 217 | tcp_ledbat_congestion_avd(struct tcpcb *tp, struct tcphdr *th) { |
| 218 | int acked = 0; |
| 219 | u_int32_t incr = 0; |
| 220 | |
| 221 | acked = BYTES_ACKED(th, tp); |
| 222 | tp->t_bytes_acked += acked; |
| 223 | if (tp->t_bytes_acked > tp->snd_cwnd) { |
| 224 | tp->t_bytes_acked -= tp->snd_cwnd; |
| 225 | incr = tp->t_maxseg; |
| 226 | } |
| 227 | |
| 228 | if (tp->snd_cwnd < tp->snd_wnd && incr > 0) { |
| 229 | update_cwnd(tp, incr); |
| 230 | } |
| 231 | } |
| 232 | /* Function to process an ack. |
| 233 | */ |
| 234 | void |
| 235 | tcp_ledbat_ack_rcvd(struct tcpcb *tp, struct tcphdr *th) { |
| 236 | /* |
| 237 | * RFC 3465 - Appropriate Byte Counting. |
| 238 | * |
| 239 | * If the window is currently less than ssthresh, |
| 240 | * open the window by the number of bytes ACKed by |
| 241 | * the last ACK, however clamp the window increase |
| 242 | * to an upper limit "L". |
| 243 | * |
| 244 | * In congestion avoidance phase, open the window by |
| 245 | * one segment each time "bytes_acked" grows to be |
| 246 | * greater than or equal to the congestion window. |
| 247 | */ |
| 248 | |
| 249 | u_int cw = tp->snd_cwnd; |
| 250 | u_int incr = tp->t_maxseg; |
| 251 | int acked = 0; |
| 252 | |
| 253 | acked = BYTES_ACKED(th, tp); |
| 254 | tp->t_bytes_acked += acked; |
| 255 | if (cw >= tp->bg_ssthresh) { |
| 256 | /* congestion-avoidance */ |
| 257 | if (tp->t_bytes_acked < cw) { |
| 258 | /* No need to increase yet. */ |
| 259 | incr = 0; |
| 260 | } |
| 261 | } else { |
| 262 | /* |
| 263 | * If the user explicitly enables RFC3465 |
| 264 | * use 2*SMSS for the "L" param. Otherwise |
| 265 | * use the more conservative 1*SMSS. |
| 266 | * |
| 267 | * (See RFC 3465 2.3 Choosing the Limit) |
| 268 | */ |
| 269 | u_int abc_lim; |
| 270 | |
| 271 | abc_lim = (tcp_do_rfc3465_lim2 && |
| 272 | tp->snd_nxt == tp->snd_max) ? incr * 2 : incr; |
| 273 | |
| 274 | incr = lmin(acked, abc_lim); |
| 275 | } |
| 276 | if (tp->t_bytes_acked >= cw) |
| 277 | tp->t_bytes_acked -= cw; |
| 278 | if (incr > 0) |
| 279 | update_cwnd(tp, incr); |
| 280 | } |
| 281 | |
| 282 | void |
| 283 | tcp_ledbat_pre_fr(struct tcpcb *tp) { |
| 284 | uint32_t win; |
| 285 | |
| 286 | win = min(tp->snd_wnd, tp->snd_cwnd) / |
| 287 | 2 / tp->t_maxseg; |
| 288 | if ( win < 2 ) |
| 289 | win = 2; |
| 290 | tp->snd_ssthresh = win * tp->t_maxseg; |
| 291 | if (tp->bg_ssthresh > tp->snd_ssthresh) |
| 292 | tp->bg_ssthresh = tp->snd_ssthresh; |
| 293 | |
| 294 | tcp_cc_resize_sndbuf(tp); |
| 295 | } |
| 296 | |
| 297 | void |
| 298 | tcp_ledbat_post_fr(struct tcpcb *tp, struct tcphdr *th) { |
| 299 | int32_t ss; |
| 300 | |
| 301 | ss = tp->snd_max - th->th_ack; |
| 302 | |
| 303 | /* |
| 304 | * Complete ack. Inflate the congestion window to |
| 305 | * ssthresh and exit fast recovery. |
| 306 | * |
| 307 | * Window inflation should have left us with approx. |
| 308 | * snd_ssthresh outstanding data. But in case we |
| 309 | * would be inclined to send a burst, better to do |
| 310 | * it via the slow start mechanism. |
| 311 | * |
| 312 | * If the flight size is zero, then make congestion |
| 313 | * window to be worth at least 2 segments to avoid |
| 314 | * delayed acknowledgement (draft-ietf-tcpm-rfc3782-bis-05). |
| 315 | */ |
| 316 | if (ss < (int32_t)tp->snd_ssthresh) |
| 317 | tp->snd_cwnd = max(ss, tp->t_maxseg) + tp->t_maxseg; |
| 318 | else |
| 319 | tp->snd_cwnd = tp->snd_ssthresh; |
| 320 | tp->t_bytes_acked = 0; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * Function to handle connections that have been idle for |
| 325 | * some time. Slow start to get ack "clock" running again. |
| 326 | * Clear base history after idle time. |
| 327 | */ |
| 328 | void |
| 329 | tcp_ledbat_after_idle(struct tcpcb *tp) { |
| 330 | |
| 331 | /* Reset the congestion window */ |
| 332 | tp->snd_cwnd = tp->t_maxseg * bg_ss_fltsz; |
| 333 | } |
| 334 | |
| 335 | /* Function to change the congestion window when the retransmit |
| 336 | * timer fires. The behavior is the same as that for best-effort |
| 337 | * TCP, reduce congestion window to one segment and start probing |
| 338 | * the link using "slow start". The slow start threshold is set |
| 339 | * to half of the current window. Lower the background slow start |
| 340 | * threshold also. |
| 341 | */ |
| 342 | void |
| 343 | tcp_ledbat_after_timeout(struct tcpcb *tp) { |
| 344 | if (tp->t_state >= TCPS_ESTABLISHED) { |
| 345 | u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg; |
| 346 | if (win < 2) |
| 347 | win = 2; |
| 348 | tp->snd_ssthresh = win * tp->t_maxseg; |
| 349 | |
| 350 | if (tp->bg_ssthresh > tp->snd_ssthresh) |
| 351 | tp->bg_ssthresh = tp->snd_ssthresh; |
| 352 | |
| 353 | tp->snd_cwnd = tp->t_maxseg; |
| 354 | tcp_cc_resize_sndbuf(tp); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * Indicate whether this ack should be delayed. |
| 360 | * We can delay the ack if: |
| 361 | * - our last ack wasn't a 0-sized window. |
| 362 | * - the peer hasn't sent us a TH_PUSH data packet: if he did, take this |
| 363 | * as a clue that we need to ACK without any delay. This helps higher |
| 364 | * level protocols who won't send us more data even if the window is |
| 365 | * open because their last "segment" hasn't been ACKed |
| 366 | * Otherwise the receiver will ack every other full-sized segment or when the |
| 367 | * delayed ack timer fires. This will help to generate better rtt estimates for |
| 368 | * the other end if it is a ledbat sender. |
| 369 | * |
| 370 | */ |
| 371 | |
| 372 | int |
| 373 | tcp_ledbat_delay_ack(struct tcpcb *tp, struct tcphdr *th) { |
| 374 | if ((tp->t_flags & TF_RXWIN0SENT) == 0 && |
| 375 | (th->th_flags & TH_PUSH) == 0 && (tp->t_unacksegs == 1)) |
| 376 | return(1); |
| 377 | return(0); |
| 378 | } |
| 379 | |
| 380 | /* Change a connection to use ledbat. First, lower bg_ssthresh value |
| 381 | * if it needs to be. |
| 382 | */ |
| 383 | void |
| 384 | tcp_ledbat_switch_cc(struct tcpcb *tp, uint16_t old_cc_index) { |
| 385 | #pragma unused(old_cc_index) |
| 386 | uint32_t cwnd; |
| 387 | |
| 388 | if (tp->bg_ssthresh == 0 || tp->bg_ssthresh > tp->snd_ssthresh) |
| 389 | tp->bg_ssthresh = tp->snd_ssthresh; |
| 390 | |
| 391 | cwnd = min(tp->snd_wnd, tp->snd_cwnd); |
| 392 | |
| 393 | if (tp->snd_cwnd > tp->bg_ssthresh) |
| 394 | cwnd = cwnd / tp->t_maxseg; |
| 395 | else |
| 396 | cwnd = cwnd / 2 / tp->t_maxseg; |
| 397 | |
| 398 | if (cwnd < bg_ss_fltsz) |
| 399 | cwnd = bg_ss_fltsz; |
| 400 | |
| 401 | tp->snd_cwnd = cwnd * tp->t_maxseg; |
| 402 | tp->t_bytes_acked = 0; |
| 403 | |
| 404 | OSIncrementAtomic((volatile SInt32 *)&tcp_cc_ledbat.num_sockets); |
| 405 | } |
| 406 | |