| 1 | /* |
| 2 | * Copyright (c) 2015-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* TCP-cache to store and retrieve TCP-related information */ |
| 30 | |
| 31 | #include <net/flowhash.h> |
| 32 | #include <net/route.h> |
| 33 | #include <net/necp.h> |
| 34 | #include <netinet/in_pcb.h> |
| 35 | #include <netinet/mptcp_var.h> |
| 36 | #include <netinet/tcp_cache.h> |
| 37 | #include <netinet/tcp_seq.h> |
| 38 | #include <netinet/tcp_var.h> |
| 39 | #include <kern/locks.h> |
| 40 | #include <sys/queue.h> |
| 41 | #include <dev/random/randomdev.h> |
| 42 | |
| 43 | typedef union { |
| 44 | struct in_addr addr; |
| 45 | struct in6_addr addr6; |
| 46 | } in_4_6_addr; |
| 47 | |
| 48 | struct tcp_heuristic_key { |
| 49 | union { |
| 50 | uint8_t thk_net_signature[IFNET_SIGNATURELEN]; |
| 51 | in_4_6_addr thk_ip; |
| 52 | }; |
| 53 | sa_family_t thk_family; |
| 54 | }; |
| 55 | |
| 56 | struct tcp_heuristic { |
| 57 | SLIST_ENTRY(tcp_heuristic) list; |
| 58 | |
| 59 | uint32_t th_last_access; |
| 60 | |
| 61 | struct tcp_heuristic_key th_key; |
| 62 | |
| 63 | char th_val_start[0]; /* Marker for memsetting to 0 */ |
| 64 | |
| 65 | uint8_t th_tfo_data_loss; /* The number of times a SYN+data has been lost */ |
| 66 | uint8_t th_tfo_req_loss; /* The number of times a SYN+cookie-req has been lost */ |
| 67 | uint8_t th_tfo_data_rst; /* The number of times a SYN+data has received a RST */ |
| 68 | uint8_t th_tfo_req_rst; /* The number of times a SYN+cookie-req has received a RST */ |
| 69 | uint8_t th_mptcp_loss; /* The number of times a SYN+MP_CAPABLE has been lost */ |
| 70 | uint8_t th_ecn_loss; /* The number of times a SYN+ecn has been lost */ |
| 71 | uint8_t th_ecn_aggressive; /* The number of times we did an aggressive fallback */ |
| 72 | uint8_t th_ecn_droprst; /* The number of times ECN connections received a RST after first data pkt */ |
| 73 | uint8_t th_ecn_droprxmt; /* The number of times ECN connection is dropped after multiple retransmits */ |
| 74 | uint8_t th_ecn_synrst; /* number of times RST was received in response to an ECN enabled SYN */ |
| 75 | uint32_t th_tfo_enabled_time; /* The moment when we reenabled TFO after backing off */ |
| 76 | uint32_t th_tfo_backoff_until; /* Time until when we should not try out TFO */ |
| 77 | uint32_t th_tfo_backoff; /* Current backoff timer */ |
| 78 | uint32_t th_mptcp_backoff; /* Time until when we should not try out MPTCP */ |
| 79 | uint32_t th_ecn_backoff; /* Time until when we should not try out ECN */ |
| 80 | |
| 81 | uint8_t th_tfo_in_backoff:1, /* Are we avoiding TFO due to the backoff timer? */ |
| 82 | th_mptcp_in_backoff:1; /* Are we avoiding MPTCP due to the backoff timer? */ |
| 83 | |
| 84 | char th_val_end[0]; /* Marker for memsetting to 0 */ |
| 85 | }; |
| 86 | |
| 87 | struct tcp_heuristics_head { |
| 88 | SLIST_HEAD(tcp_heur_bucket, tcp_heuristic) tcp_heuristics; |
| 89 | |
| 90 | /* Per-hashbucket lock to avoid lock-contention */ |
| 91 | lck_mtx_t thh_mtx; |
| 92 | }; |
| 93 | |
| 94 | struct tcp_cache_key { |
| 95 | sa_family_t tck_family; |
| 96 | |
| 97 | struct tcp_heuristic_key tck_src; |
| 98 | in_4_6_addr tck_dst; |
| 99 | }; |
| 100 | |
| 101 | struct tcp_cache { |
| 102 | SLIST_ENTRY(tcp_cache) list; |
| 103 | |
| 104 | u_int32_t tc_last_access; |
| 105 | |
| 106 | struct tcp_cache_key tc_key; |
| 107 | |
| 108 | u_int8_t tc_tfo_cookie[TFO_COOKIE_LEN_MAX]; |
| 109 | u_int8_t tc_tfo_cookie_len; |
| 110 | }; |
| 111 | |
| 112 | struct tcp_cache_head { |
| 113 | SLIST_HEAD(tcp_cache_bucket, tcp_cache) tcp_caches; |
| 114 | |
| 115 | /* Per-hashbucket lock to avoid lock-contention */ |
| 116 | lck_mtx_t tch_mtx; |
| 117 | }; |
| 118 | |
| 119 | struct tcp_cache_key_src { |
| 120 | struct ifnet *ifp; |
| 121 | in_4_6_addr laddr; |
| 122 | in_4_6_addr faddr; |
| 123 | int af; |
| 124 | }; |
| 125 | |
| 126 | static u_int32_t tcp_cache_hash_seed; |
| 127 | |
| 128 | size_t tcp_cache_size; |
| 129 | |
| 130 | /* |
| 131 | * The maximum depth of the hash-bucket. This way we limit the tcp_cache to |
| 132 | * TCP_CACHE_BUCKET_SIZE * tcp_cache_size and have "natural" garbage collection |
| 133 | */ |
| 134 | #define TCP_CACHE_BUCKET_SIZE 5 |
| 135 | |
| 136 | static struct tcp_cache_head *tcp_cache; |
| 137 | |
| 138 | decl_lck_mtx_data(, tcp_cache_mtx); |
| 139 | |
| 140 | static lck_attr_t *tcp_cache_mtx_attr; |
| 141 | static lck_grp_t *tcp_cache_mtx_grp; |
| 142 | static lck_grp_attr_t *tcp_cache_mtx_grp_attr; |
| 143 | |
| 144 | static struct tcp_heuristics_head *tcp_heuristics; |
| 145 | |
| 146 | decl_lck_mtx_data(, tcp_heuristics_mtx); |
| 147 | |
| 148 | static lck_attr_t *tcp_heuristic_mtx_attr; |
| 149 | static lck_grp_t *tcp_heuristic_mtx_grp; |
| 150 | static lck_grp_attr_t *tcp_heuristic_mtx_grp_attr; |
| 151 | |
| 152 | static uint32_t tcp_backoff_maximum = 65536; |
| 153 | |
| 154 | SYSCTL_UINT(_net_inet_tcp, OID_AUTO, backoff_maximum, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 155 | &tcp_backoff_maximum, 0, "Maximum time for which we won't try TFO" ); |
| 156 | |
| 157 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, ecn_timeout, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 158 | static int, tcp_ecn_timeout, 60, "Initial minutes to wait before re-trying ECN" ); |
| 159 | |
| 160 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, disable_tcp_heuristics, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 161 | static int, disable_tcp_heuristics, 0, "Set to 1, to disable all TCP heuristics (TFO, ECN, MPTCP)" ); |
| 162 | |
| 163 | static uint32_t tcp_min_to_hz(uint32_t minutes) |
| 164 | { |
| 165 | if (minutes > 65536) |
| 166 | return ((uint32_t)65536 * 60 * TCP_RETRANSHZ); |
| 167 | |
| 168 | return (minutes * 60 * TCP_RETRANSHZ); |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * This number is coupled with tcp_ecn_timeout, because we want to prevent |
| 173 | * integer overflow. Need to find an unexpensive way to prevent integer overflow |
| 174 | * while still allowing a dynamic sysctl. |
| 175 | */ |
| 176 | #define TCP_CACHE_OVERFLOW_PROTECT 9 |
| 177 | |
| 178 | /* Number of SYN-losses we accept */ |
| 179 | #define TFO_MAX_COOKIE_LOSS 2 |
| 180 | #define ECN_MAX_SYN_LOSS 2 |
| 181 | #define MPTCP_MAX_SYN_LOSS 2 |
| 182 | #define ECN_MAX_DROPRST 1 |
| 183 | #define ECN_MAX_DROPRXMT 4 |
| 184 | #define ECN_MAX_SYNRST 4 |
| 185 | |
| 186 | /* Flags for setting/unsetting loss-heuristics, limited to 4 bytes */ |
| 187 | #define TCPCACHE_F_TFO_REQ 0x01 |
| 188 | #define TCPCACHE_F_TFO_DATA 0x02 |
| 189 | #define TCPCACHE_F_ECN 0x04 |
| 190 | #define TCPCACHE_F_MPTCP 0x08 |
| 191 | #define TCPCACHE_F_ECN_DROPRST 0x10 |
| 192 | #define TCPCACHE_F_ECN_DROPRXMT 0x20 |
| 193 | #define TCPCACHE_F_TFO_REQ_RST 0x40 |
| 194 | #define TCPCACHE_F_TFO_DATA_RST 0x80 |
| 195 | #define TCPCACHE_F_ECN_SYNRST 0x100 |
| 196 | |
| 197 | /* Always retry ECN after backing off to this level for some heuristics */ |
| 198 | #define ECN_RETRY_LIMIT 9 |
| 199 | |
| 200 | #define TCP_CACHE_INC_IFNET_STAT(_ifp_, _af_, _stat_) { \ |
| 201 | if ((_ifp_) != NULL) { \ |
| 202 | if ((_af_) == AF_INET6) { \ |
| 203 | (_ifp_)->if_ipv6_stat->_stat_++;\ |
| 204 | } else { \ |
| 205 | (_ifp_)->if_ipv4_stat->_stat_++;\ |
| 206 | }\ |
| 207 | }\ |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * Round up to next higher power-of 2. See "Bit Twiddling Hacks". |
| 212 | * |
| 213 | * Might be worth moving this to a library so that others |
| 214 | * (e.g., scale_to_powerof2()) can use this as well instead of a while-loop. |
| 215 | */ |
| 216 | static u_int32_t tcp_cache_roundup2(u_int32_t a) |
| 217 | { |
| 218 | a--; |
| 219 | a |= a >> 1; |
| 220 | a |= a >> 2; |
| 221 | a |= a >> 4; |
| 222 | a |= a >> 8; |
| 223 | a |= a >> 16; |
| 224 | a++; |
| 225 | |
| 226 | return a; |
| 227 | } |
| 228 | |
| 229 | static void tcp_cache_hash_src(struct tcp_cache_key_src *tcks, struct tcp_heuristic_key *key) |
| 230 | { |
| 231 | struct ifnet *ifp = tcks->ifp; |
| 232 | uint8_t len = sizeof(key->thk_net_signature); |
| 233 | uint16_t flags; |
| 234 | |
| 235 | if (tcks->af == AF_INET6) { |
| 236 | int ret; |
| 237 | |
| 238 | key->thk_family = AF_INET6; |
| 239 | ret = ifnet_get_netsignature(ifp, AF_INET6, &len, &flags, |
| 240 | key->thk_net_signature); |
| 241 | |
| 242 | /* |
| 243 | * ifnet_get_netsignature only returns EINVAL if ifn is NULL |
| 244 | * (we made sure that in the other cases it does not). So, |
| 245 | * in this case we should take the connection's address. |
| 246 | */ |
| 247 | if (ret == ENOENT || ret == EINVAL) |
| 248 | memcpy(&key->thk_ip.addr6, &tcks->laddr.addr6, sizeof(struct in6_addr)); |
| 249 | } else { |
| 250 | int ret; |
| 251 | |
| 252 | key->thk_family = AF_INET; |
| 253 | ret = ifnet_get_netsignature(ifp, AF_INET, &len, &flags, |
| 254 | key->thk_net_signature); |
| 255 | |
| 256 | /* |
| 257 | * ifnet_get_netsignature only returns EINVAL if ifn is NULL |
| 258 | * (we made sure that in the other cases it does not). So, |
| 259 | * in this case we should take the connection's address. |
| 260 | */ |
| 261 | if (ret == ENOENT || ret == EINVAL) |
| 262 | memcpy(&key->thk_ip.addr, &tcks->laddr.addr, sizeof(struct in_addr)); |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | static u_int16_t tcp_cache_hash(struct tcp_cache_key_src *tcks, struct tcp_cache_key *key) |
| 267 | { |
| 268 | u_int32_t hash; |
| 269 | |
| 270 | bzero(key, sizeof(struct tcp_cache_key)); |
| 271 | |
| 272 | tcp_cache_hash_src(tcks, &key->tck_src); |
| 273 | |
| 274 | if (tcks->af == AF_INET6) { |
| 275 | key->tck_family = AF_INET6; |
| 276 | memcpy(&key->tck_dst.addr6, &tcks->faddr.addr6, |
| 277 | sizeof(struct in6_addr)); |
| 278 | } else { |
| 279 | key->tck_family = AF_INET; |
| 280 | memcpy(&key->tck_dst.addr, &tcks->faddr.addr, |
| 281 | sizeof(struct in_addr)); |
| 282 | } |
| 283 | |
| 284 | hash = net_flowhash(key, sizeof(struct tcp_cache_key), |
| 285 | tcp_cache_hash_seed); |
| 286 | |
| 287 | return (hash & (tcp_cache_size - 1)); |
| 288 | } |
| 289 | |
| 290 | static void tcp_cache_unlock(struct tcp_cache_head *head) |
| 291 | { |
| 292 | lck_mtx_unlock(&head->tch_mtx); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * Make sure that everything that happens after tcp_getcache_with_lock() |
| 297 | * is short enough to justify that you hold the per-bucket lock!!! |
| 298 | * |
| 299 | * Otherwise, better build another lookup-function that does not hold the |
| 300 | * lock and you copy out the bits and bytes. |
| 301 | * |
| 302 | * That's why we provide the head as a "return"-pointer so that the caller |
| 303 | * can give it back to use for tcp_cache_unlock(). |
| 304 | */ |
| 305 | static struct tcp_cache *tcp_getcache_with_lock(struct tcp_cache_key_src *tcks, |
| 306 | int create, struct tcp_cache_head **headarg) |
| 307 | { |
| 308 | struct tcp_cache *tpcache = NULL; |
| 309 | struct tcp_cache_head *head; |
| 310 | struct tcp_cache_key key; |
| 311 | u_int16_t hash; |
| 312 | int i = 0; |
| 313 | |
| 314 | hash = tcp_cache_hash(tcks, &key); |
| 315 | head = &tcp_cache[hash]; |
| 316 | |
| 317 | lck_mtx_lock(&head->tch_mtx); |
| 318 | |
| 319 | /*** First step: Look for the tcp_cache in our bucket ***/ |
| 320 | SLIST_FOREACH(tpcache, &head->tcp_caches, list) { |
| 321 | if (memcmp(&tpcache->tc_key, &key, sizeof(key)) == 0) |
| 322 | break; |
| 323 | |
| 324 | i++; |
| 325 | } |
| 326 | |
| 327 | /*** Second step: If it's not there, create/recycle it ***/ |
| 328 | if ((tpcache == NULL) && create) { |
| 329 | if (i >= TCP_CACHE_BUCKET_SIZE) { |
| 330 | struct tcp_cache *oldest_cache = NULL; |
| 331 | u_int32_t max_age = 0; |
| 332 | |
| 333 | /* Look for the oldest tcp_cache in the bucket */ |
| 334 | SLIST_FOREACH(tpcache, &head->tcp_caches, list) { |
| 335 | u_int32_t age = tcp_now - tpcache->tc_last_access; |
| 336 | if (age > max_age) { |
| 337 | max_age = age; |
| 338 | oldest_cache = tpcache; |
| 339 | } |
| 340 | } |
| 341 | VERIFY(oldest_cache != NULL); |
| 342 | |
| 343 | tpcache = oldest_cache; |
| 344 | |
| 345 | /* We recycle, thus let's indicate that there is no cookie */ |
| 346 | tpcache->tc_tfo_cookie_len = 0; |
| 347 | } else { |
| 348 | /* Create a new cache and add it to the list */ |
| 349 | tpcache = _MALLOC(sizeof(struct tcp_cache), M_TEMP, |
| 350 | M_NOWAIT | M_ZERO); |
| 351 | if (tpcache == NULL) |
| 352 | goto out_null; |
| 353 | |
| 354 | SLIST_INSERT_HEAD(&head->tcp_caches, tpcache, list); |
| 355 | } |
| 356 | |
| 357 | memcpy(&tpcache->tc_key, &key, sizeof(key)); |
| 358 | } |
| 359 | |
| 360 | if (tpcache == NULL) |
| 361 | goto out_null; |
| 362 | |
| 363 | /* Update timestamp for garbage collection purposes */ |
| 364 | tpcache->tc_last_access = tcp_now; |
| 365 | *headarg = head; |
| 366 | |
| 367 | return (tpcache); |
| 368 | |
| 369 | out_null: |
| 370 | tcp_cache_unlock(head); |
| 371 | return (NULL); |
| 372 | } |
| 373 | |
| 374 | static void tcp_cache_key_src_create(struct tcpcb *tp, struct tcp_cache_key_src *tcks) |
| 375 | { |
| 376 | struct inpcb *inp = tp->t_inpcb; |
| 377 | memset(tcks, 0, sizeof(*tcks)); |
| 378 | |
| 379 | tcks->ifp = inp->inp_last_outifp; |
| 380 | |
| 381 | if (inp->inp_vflag & INP_IPV6) { |
| 382 | memcpy(&tcks->laddr.addr6, &inp->in6p_laddr, sizeof(struct in6_addr)); |
| 383 | memcpy(&tcks->faddr.addr6, &inp->in6p_faddr, sizeof(struct in6_addr)); |
| 384 | tcks->af = AF_INET6; |
| 385 | } else { |
| 386 | memcpy(&tcks->laddr.addr, &inp->inp_laddr, sizeof(struct in_addr)); |
| 387 | memcpy(&tcks->faddr.addr, &inp->inp_faddr, sizeof(struct in_addr)); |
| 388 | tcks->af = AF_INET; |
| 389 | } |
| 390 | |
| 391 | return; |
| 392 | } |
| 393 | |
| 394 | static void tcp_cache_set_cookie_common(struct tcp_cache_key_src *tcks, u_char *cookie, u_int8_t len) |
| 395 | { |
| 396 | struct tcp_cache_head *head; |
| 397 | struct tcp_cache *tpcache; |
| 398 | |
| 399 | /* Call lookup/create function */ |
| 400 | tpcache = tcp_getcache_with_lock(tcks, 1, &head); |
| 401 | if (tpcache == NULL) |
| 402 | return; |
| 403 | |
| 404 | tpcache->tc_tfo_cookie_len = len > TFO_COOKIE_LEN_MAX ? |
| 405 | TFO_COOKIE_LEN_MAX : len; |
| 406 | memcpy(tpcache->tc_tfo_cookie, cookie, tpcache->tc_tfo_cookie_len); |
| 407 | |
| 408 | tcp_cache_unlock(head); |
| 409 | } |
| 410 | |
| 411 | void tcp_cache_set_cookie(struct tcpcb *tp, u_char *cookie, u_int8_t len) |
| 412 | { |
| 413 | struct tcp_cache_key_src tcks; |
| 414 | |
| 415 | tcp_cache_key_src_create(tp, &tcks); |
| 416 | tcp_cache_set_cookie_common(&tcks, cookie, len); |
| 417 | } |
| 418 | |
| 419 | static int tcp_cache_get_cookie_common(struct tcp_cache_key_src *tcks, u_char *cookie, u_int8_t *len) |
| 420 | { |
| 421 | struct tcp_cache_head *head; |
| 422 | struct tcp_cache *tpcache; |
| 423 | |
| 424 | /* Call lookup/create function */ |
| 425 | tpcache = tcp_getcache_with_lock(tcks, 1, &head); |
| 426 | if (tpcache == NULL) { |
| 427 | return (0); |
| 428 | } |
| 429 | |
| 430 | if (tpcache->tc_tfo_cookie_len == 0) { |
| 431 | tcp_cache_unlock(head); |
| 432 | return (0); |
| 433 | } |
| 434 | |
| 435 | /* |
| 436 | * Not enough space - this should never happen as it has been checked |
| 437 | * in tcp_tfo_check. So, fail here! |
| 438 | */ |
| 439 | VERIFY(tpcache->tc_tfo_cookie_len <= *len); |
| 440 | |
| 441 | memcpy(cookie, tpcache->tc_tfo_cookie, tpcache->tc_tfo_cookie_len); |
| 442 | *len = tpcache->tc_tfo_cookie_len; |
| 443 | |
| 444 | tcp_cache_unlock(head); |
| 445 | |
| 446 | return (1); |
| 447 | } |
| 448 | |
| 449 | /* |
| 450 | * Get the cookie related to 'tp', and copy it into 'cookie', provided that len |
| 451 | * is big enough (len designates the available memory. |
| 452 | * Upon return, 'len' is set to the cookie's length. |
| 453 | * |
| 454 | * Returns 0 if we should request a cookie. |
| 455 | * Returns 1 if the cookie has been found and written. |
| 456 | */ |
| 457 | int tcp_cache_get_cookie(struct tcpcb *tp, u_char *cookie, u_int8_t *len) |
| 458 | { |
| 459 | struct tcp_cache_key_src tcks; |
| 460 | |
| 461 | tcp_cache_key_src_create(tp, &tcks); |
| 462 | return tcp_cache_get_cookie_common(&tcks, cookie, len); |
| 463 | } |
| 464 | |
| 465 | static unsigned int tcp_cache_get_cookie_len_common(struct tcp_cache_key_src *tcks) |
| 466 | { |
| 467 | struct tcp_cache_head *head; |
| 468 | struct tcp_cache *tpcache; |
| 469 | unsigned int cookie_len; |
| 470 | |
| 471 | /* Call lookup/create function */ |
| 472 | tpcache = tcp_getcache_with_lock(tcks, 1, &head); |
| 473 | if (tpcache == NULL) |
| 474 | return (0); |
| 475 | |
| 476 | cookie_len = tpcache->tc_tfo_cookie_len; |
| 477 | |
| 478 | tcp_cache_unlock(head); |
| 479 | |
| 480 | return cookie_len; |
| 481 | } |
| 482 | |
| 483 | unsigned int tcp_cache_get_cookie_len(struct tcpcb *tp) |
| 484 | { |
| 485 | struct tcp_cache_key_src tcks; |
| 486 | |
| 487 | tcp_cache_key_src_create(tp, &tcks); |
| 488 | return tcp_cache_get_cookie_len_common(&tcks); |
| 489 | } |
| 490 | |
| 491 | static u_int16_t tcp_heuristics_hash(struct tcp_cache_key_src *tcks, struct tcp_heuristic_key *key) |
| 492 | { |
| 493 | u_int32_t hash; |
| 494 | |
| 495 | bzero(key, sizeof(struct tcp_heuristic_key)); |
| 496 | |
| 497 | tcp_cache_hash_src(tcks, key); |
| 498 | |
| 499 | hash = net_flowhash(key, sizeof(struct tcp_heuristic_key), |
| 500 | tcp_cache_hash_seed); |
| 501 | |
| 502 | return (hash & (tcp_cache_size - 1)); |
| 503 | } |
| 504 | |
| 505 | static void tcp_heuristic_unlock(struct tcp_heuristics_head *head) |
| 506 | { |
| 507 | lck_mtx_unlock(&head->thh_mtx); |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * Make sure that everything that happens after tcp_getheuristic_with_lock() |
| 512 | * is short enough to justify that you hold the per-bucket lock!!! |
| 513 | * |
| 514 | * Otherwise, better build another lookup-function that does not hold the |
| 515 | * lock and you copy out the bits and bytes. |
| 516 | * |
| 517 | * That's why we provide the head as a "return"-pointer so that the caller |
| 518 | * can give it back to use for tcp_heur_unlock(). |
| 519 | * |
| 520 | * |
| 521 | * ToDo - way too much code-duplication. We should create an interface to handle |
| 522 | * bucketized hashtables with recycling of the oldest element. |
| 523 | */ |
| 524 | static struct tcp_heuristic *tcp_getheuristic_with_lock(struct tcp_cache_key_src *tcks, |
| 525 | int create, struct tcp_heuristics_head **headarg) |
| 526 | { |
| 527 | struct tcp_heuristic *tpheur = NULL; |
| 528 | struct tcp_heuristics_head *head; |
| 529 | struct tcp_heuristic_key key; |
| 530 | u_int16_t hash; |
| 531 | int i = 0; |
| 532 | |
| 533 | hash = tcp_heuristics_hash(tcks, &key); |
| 534 | head = &tcp_heuristics[hash]; |
| 535 | |
| 536 | lck_mtx_lock(&head->thh_mtx); |
| 537 | |
| 538 | /*** First step: Look for the tcp_heur in our bucket ***/ |
| 539 | SLIST_FOREACH(tpheur, &head->tcp_heuristics, list) { |
| 540 | if (memcmp(&tpheur->th_key, &key, sizeof(key)) == 0) |
| 541 | break; |
| 542 | |
| 543 | i++; |
| 544 | } |
| 545 | |
| 546 | /*** Second step: If it's not there, create/recycle it ***/ |
| 547 | if ((tpheur == NULL) && create) { |
| 548 | if (i >= TCP_CACHE_BUCKET_SIZE) { |
| 549 | struct tcp_heuristic *oldest_heur = NULL; |
| 550 | u_int32_t max_age = 0; |
| 551 | |
| 552 | /* Look for the oldest tcp_heur in the bucket */ |
| 553 | SLIST_FOREACH(tpheur, &head->tcp_heuristics, list) { |
| 554 | u_int32_t age = tcp_now - tpheur->th_last_access; |
| 555 | if (age > max_age) { |
| 556 | max_age = age; |
| 557 | oldest_heur = tpheur; |
| 558 | } |
| 559 | } |
| 560 | VERIFY(oldest_heur != NULL); |
| 561 | |
| 562 | tpheur = oldest_heur; |
| 563 | |
| 564 | /* We recycle - set everything to 0 */ |
| 565 | bzero(tpheur->th_val_start, |
| 566 | tpheur->th_val_end - tpheur->th_val_start); |
| 567 | } else { |
| 568 | /* Create a new heuristic and add it to the list */ |
| 569 | tpheur = _MALLOC(sizeof(struct tcp_heuristic), M_TEMP, |
| 570 | M_NOWAIT | M_ZERO); |
| 571 | if (tpheur == NULL) |
| 572 | goto out_null; |
| 573 | |
| 574 | SLIST_INSERT_HEAD(&head->tcp_heuristics, tpheur, list); |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * Set to tcp_now, to make sure it won't be > than tcp_now in the |
| 579 | * near future. |
| 580 | */ |
| 581 | tpheur->th_ecn_backoff = tcp_now; |
| 582 | tpheur->th_tfo_backoff_until = tcp_now; |
| 583 | tpheur->th_mptcp_backoff = tcp_now; |
| 584 | tpheur->th_tfo_backoff = tcp_min_to_hz(tcp_ecn_timeout); |
| 585 | |
| 586 | memcpy(&tpheur->th_key, &key, sizeof(key)); |
| 587 | } |
| 588 | |
| 589 | if (tpheur == NULL) |
| 590 | goto out_null; |
| 591 | |
| 592 | /* Update timestamp for garbage collection purposes */ |
| 593 | tpheur->th_last_access = tcp_now; |
| 594 | *headarg = head; |
| 595 | |
| 596 | return (tpheur); |
| 597 | |
| 598 | out_null: |
| 599 | tcp_heuristic_unlock(head); |
| 600 | return (NULL); |
| 601 | } |
| 602 | |
| 603 | static void tcp_heuristic_reset_counters(struct tcp_cache_key_src *tcks, u_int8_t flags) |
| 604 | { |
| 605 | struct tcp_heuristics_head *head; |
| 606 | struct tcp_heuristic *tpheur; |
| 607 | |
| 608 | /* |
| 609 | * Don't attempt to create it! Keep the heuristics clean if the |
| 610 | * server does not support TFO. This reduces the lookup-cost on |
| 611 | * our side. |
| 612 | */ |
| 613 | tpheur = tcp_getheuristic_with_lock(tcks, 0, &head); |
| 614 | if (tpheur == NULL) |
| 615 | return; |
| 616 | |
| 617 | if (flags & TCPCACHE_F_TFO_DATA) { |
| 618 | tpheur->th_tfo_data_loss = 0; |
| 619 | } |
| 620 | |
| 621 | if (flags & TCPCACHE_F_TFO_REQ) { |
| 622 | tpheur->th_tfo_req_loss = 0; |
| 623 | } |
| 624 | |
| 625 | if (flags & TCPCACHE_F_TFO_DATA_RST) { |
| 626 | tpheur->th_tfo_data_rst = 0; |
| 627 | } |
| 628 | |
| 629 | if (flags & TCPCACHE_F_TFO_REQ_RST) { |
| 630 | tpheur->th_tfo_req_rst = 0; |
| 631 | } |
| 632 | |
| 633 | if (flags & TCPCACHE_F_ECN) { |
| 634 | tpheur->th_ecn_loss = 0; |
| 635 | tpheur->th_ecn_synrst = 0; |
| 636 | } |
| 637 | |
| 638 | if (flags & TCPCACHE_F_MPTCP) |
| 639 | tpheur->th_mptcp_loss = 0; |
| 640 | |
| 641 | tcp_heuristic_unlock(head); |
| 642 | } |
| 643 | |
| 644 | void tcp_heuristic_tfo_success(struct tcpcb *tp) |
| 645 | { |
| 646 | struct tcp_cache_key_src tcks; |
| 647 | uint8_t flag = 0; |
| 648 | |
| 649 | tcp_cache_key_src_create(tp, &tcks); |
| 650 | |
| 651 | if (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) |
| 652 | flag = (TCPCACHE_F_TFO_DATA | TCPCACHE_F_TFO_REQ | |
| 653 | TCPCACHE_F_TFO_DATA_RST | TCPCACHE_F_TFO_REQ_RST ); |
| 654 | if (tp->t_tfo_stats & TFO_S_COOKIE_REQ) |
| 655 | flag = (TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_REQ_RST); |
| 656 | |
| 657 | tcp_heuristic_reset_counters(&tcks, flag); |
| 658 | } |
| 659 | |
| 660 | void tcp_heuristic_mptcp_success(struct tcpcb *tp) |
| 661 | { |
| 662 | struct tcp_cache_key_src tcks; |
| 663 | |
| 664 | tcp_cache_key_src_create(tp, &tcks); |
| 665 | tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_MPTCP); |
| 666 | } |
| 667 | |
| 668 | void tcp_heuristic_ecn_success(struct tcpcb *tp) |
| 669 | { |
| 670 | struct tcp_cache_key_src tcks; |
| 671 | |
| 672 | tcp_cache_key_src_create(tp, &tcks); |
| 673 | tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_ECN); |
| 674 | } |
| 675 | |
| 676 | static void __tcp_heuristic_tfo_middlebox_common(struct tcp_heuristic *tpheur) |
| 677 | { |
| 678 | if (tpheur->th_tfo_in_backoff) |
| 679 | return; |
| 680 | |
| 681 | tpheur->th_tfo_in_backoff = 1; |
| 682 | |
| 683 | if (tpheur->th_tfo_enabled_time) { |
| 684 | uint32_t old_backoff = tpheur->th_tfo_backoff; |
| 685 | |
| 686 | tpheur->th_tfo_backoff -= (tcp_now - tpheur->th_tfo_enabled_time); |
| 687 | if (tpheur->th_tfo_backoff > old_backoff) |
| 688 | tpheur->th_tfo_backoff = tcp_min_to_hz(tcp_ecn_timeout); |
| 689 | } |
| 690 | |
| 691 | tpheur->th_tfo_backoff_until = tcp_now + tpheur->th_tfo_backoff; |
| 692 | |
| 693 | /* Then, increase the backoff time */ |
| 694 | tpheur->th_tfo_backoff *= 2; |
| 695 | |
| 696 | if (tpheur->th_tfo_backoff > tcp_min_to_hz(tcp_backoff_maximum)) |
| 697 | tpheur->th_tfo_backoff = tcp_min_to_hz(tcp_ecn_timeout); |
| 698 | } |
| 699 | |
| 700 | static void tcp_heuristic_tfo_middlebox_common(struct tcp_cache_key_src *tcks) |
| 701 | { |
| 702 | struct tcp_heuristics_head *head; |
| 703 | struct tcp_heuristic *tpheur; |
| 704 | |
| 705 | tpheur = tcp_getheuristic_with_lock(tcks, 1, &head); |
| 706 | if (tpheur == NULL) |
| 707 | return; |
| 708 | |
| 709 | __tcp_heuristic_tfo_middlebox_common(tpheur); |
| 710 | |
| 711 | tcp_heuristic_unlock(head); |
| 712 | } |
| 713 | |
| 714 | static void tcp_heuristic_inc_counters(struct tcp_cache_key_src *tcks, |
| 715 | u_int32_t flags) |
| 716 | { |
| 717 | struct tcp_heuristics_head *head; |
| 718 | struct tcp_heuristic *tpheur; |
| 719 | |
| 720 | tpheur = tcp_getheuristic_with_lock(tcks, 1, &head); |
| 721 | if (tpheur == NULL) |
| 722 | return; |
| 723 | |
| 724 | /* Limit to prevent integer-overflow during exponential backoff */ |
| 725 | if ((flags & TCPCACHE_F_TFO_DATA) && tpheur->th_tfo_data_loss < TCP_CACHE_OVERFLOW_PROTECT) { |
| 726 | tpheur->th_tfo_data_loss++; |
| 727 | |
| 728 | if (tpheur->th_tfo_data_loss >= TFO_MAX_COOKIE_LOSS) |
| 729 | __tcp_heuristic_tfo_middlebox_common(tpheur); |
| 730 | } |
| 731 | |
| 732 | if ((flags & TCPCACHE_F_TFO_REQ) && tpheur->th_tfo_req_loss < TCP_CACHE_OVERFLOW_PROTECT) { |
| 733 | tpheur->th_tfo_req_loss++; |
| 734 | |
| 735 | if (tpheur->th_tfo_req_loss >= TFO_MAX_COOKIE_LOSS) |
| 736 | __tcp_heuristic_tfo_middlebox_common(tpheur); |
| 737 | } |
| 738 | |
| 739 | if ((flags & TCPCACHE_F_TFO_DATA_RST) && tpheur->th_tfo_data_rst < TCP_CACHE_OVERFLOW_PROTECT) { |
| 740 | tpheur->th_tfo_data_rst++; |
| 741 | |
| 742 | if (tpheur->th_tfo_data_rst >= TFO_MAX_COOKIE_LOSS) |
| 743 | __tcp_heuristic_tfo_middlebox_common(tpheur); |
| 744 | } |
| 745 | |
| 746 | if ((flags & TCPCACHE_F_TFO_REQ_RST) && tpheur->th_tfo_req_rst < TCP_CACHE_OVERFLOW_PROTECT) { |
| 747 | tpheur->th_tfo_req_rst++; |
| 748 | |
| 749 | if (tpheur->th_tfo_req_rst >= TFO_MAX_COOKIE_LOSS) |
| 750 | __tcp_heuristic_tfo_middlebox_common(tpheur); |
| 751 | } |
| 752 | |
| 753 | if ((flags & TCPCACHE_F_ECN) && tpheur->th_ecn_loss < TCP_CACHE_OVERFLOW_PROTECT) { |
| 754 | tpheur->th_ecn_loss++; |
| 755 | if (tpheur->th_ecn_loss >= ECN_MAX_SYN_LOSS) { |
| 756 | tcpstat.tcps_ecn_fallback_synloss++; |
| 757 | TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af, ecn_fallback_synloss); |
| 758 | tpheur->th_ecn_backoff = tcp_now + |
| 759 | (tcp_min_to_hz(tcp_ecn_timeout) << |
| 760 | (tpheur->th_ecn_loss - ECN_MAX_SYN_LOSS)); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | if ((flags & TCPCACHE_F_MPTCP) && |
| 765 | tpheur->th_mptcp_loss < TCP_CACHE_OVERFLOW_PROTECT) { |
| 766 | tpheur->th_mptcp_loss++; |
| 767 | if (tpheur->th_mptcp_loss >= MPTCP_MAX_SYN_LOSS) { |
| 768 | /* |
| 769 | * Yes, we take tcp_ecn_timeout, to avoid adding yet |
| 770 | * another sysctl that is just used for testing. |
| 771 | */ |
| 772 | tpheur->th_mptcp_backoff = tcp_now + |
| 773 | (tcp_min_to_hz(tcp_ecn_timeout) << |
| 774 | (tpheur->th_mptcp_loss - MPTCP_MAX_SYN_LOSS)); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | if ((flags & TCPCACHE_F_ECN_DROPRST) && |
| 779 | tpheur->th_ecn_droprst < TCP_CACHE_OVERFLOW_PROTECT) { |
| 780 | tpheur->th_ecn_droprst++; |
| 781 | if (tpheur->th_ecn_droprst >= ECN_MAX_DROPRST) { |
| 782 | tcpstat.tcps_ecn_fallback_droprst++; |
| 783 | TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af, |
| 784 | ecn_fallback_droprst); |
| 785 | tpheur->th_ecn_backoff = tcp_now + |
| 786 | (tcp_min_to_hz(tcp_ecn_timeout) << |
| 787 | (tpheur->th_ecn_droprst - ECN_MAX_DROPRST)); |
| 788 | |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | if ((flags & TCPCACHE_F_ECN_DROPRXMT) && |
| 793 | tpheur->th_ecn_droprxmt < TCP_CACHE_OVERFLOW_PROTECT) { |
| 794 | tpheur->th_ecn_droprxmt++; |
| 795 | if (tpheur->th_ecn_droprxmt >= ECN_MAX_DROPRXMT) { |
| 796 | tcpstat.tcps_ecn_fallback_droprxmt++; |
| 797 | TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af, |
| 798 | ecn_fallback_droprxmt); |
| 799 | tpheur->th_ecn_backoff = tcp_now + |
| 800 | (tcp_min_to_hz(tcp_ecn_timeout) << |
| 801 | (tpheur->th_ecn_droprxmt - ECN_MAX_DROPRXMT)); |
| 802 | } |
| 803 | } |
| 804 | if ((flags & TCPCACHE_F_ECN_SYNRST) && |
| 805 | tpheur->th_ecn_synrst < TCP_CACHE_OVERFLOW_PROTECT) { |
| 806 | tpheur->th_ecn_synrst++; |
| 807 | if (tpheur->th_ecn_synrst >= ECN_MAX_SYNRST) { |
| 808 | tcpstat.tcps_ecn_fallback_synrst++; |
| 809 | TCP_CACHE_INC_IFNET_STAT(tcks->ifp, tcks->af, |
| 810 | ecn_fallback_synrst); |
| 811 | tpheur->th_ecn_backoff = tcp_now + |
| 812 | (tcp_min_to_hz(tcp_ecn_timeout) << |
| 813 | (tpheur->th_ecn_synrst - ECN_MAX_SYNRST)); |
| 814 | } |
| 815 | } |
| 816 | tcp_heuristic_unlock(head); |
| 817 | } |
| 818 | |
| 819 | void tcp_heuristic_tfo_loss(struct tcpcb *tp) |
| 820 | { |
| 821 | struct tcp_cache_key_src tcks; |
| 822 | uint32_t flag = 0; |
| 823 | |
| 824 | tcp_cache_key_src_create(tp, &tcks); |
| 825 | |
| 826 | if (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) |
| 827 | flag = (TCPCACHE_F_TFO_DATA | TCPCACHE_F_TFO_REQ); |
| 828 | if (tp->t_tfo_stats & TFO_S_COOKIE_REQ) |
| 829 | flag = TCPCACHE_F_TFO_REQ; |
| 830 | |
| 831 | tcp_heuristic_inc_counters(&tcks, flag); |
| 832 | } |
| 833 | |
| 834 | void tcp_heuristic_tfo_rst(struct tcpcb *tp) |
| 835 | { |
| 836 | struct tcp_cache_key_src tcks; |
| 837 | uint32_t flag = 0; |
| 838 | |
| 839 | tcp_cache_key_src_create(tp, &tcks); |
| 840 | |
| 841 | if (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) |
| 842 | flag = (TCPCACHE_F_TFO_DATA_RST | TCPCACHE_F_TFO_REQ_RST); |
| 843 | if (tp->t_tfo_stats & TFO_S_COOKIE_REQ) |
| 844 | flag = TCPCACHE_F_TFO_REQ_RST; |
| 845 | |
| 846 | tcp_heuristic_inc_counters(&tcks, flag); |
| 847 | } |
| 848 | |
| 849 | void tcp_heuristic_mptcp_loss(struct tcpcb *tp) |
| 850 | { |
| 851 | struct tcp_cache_key_src tcks; |
| 852 | |
| 853 | tcp_cache_key_src_create(tp, &tcks); |
| 854 | |
| 855 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_MPTCP); |
| 856 | } |
| 857 | |
| 858 | void tcp_heuristic_ecn_loss(struct tcpcb *tp) |
| 859 | { |
| 860 | struct tcp_cache_key_src tcks; |
| 861 | |
| 862 | tcp_cache_key_src_create(tp, &tcks); |
| 863 | |
| 864 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN); |
| 865 | } |
| 866 | |
| 867 | void tcp_heuristic_ecn_droprst(struct tcpcb *tp) |
| 868 | { |
| 869 | struct tcp_cache_key_src tcks; |
| 870 | |
| 871 | tcp_cache_key_src_create(tp, &tcks); |
| 872 | |
| 873 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRST); |
| 874 | } |
| 875 | |
| 876 | void tcp_heuristic_ecn_droprxmt(struct tcpcb *tp) |
| 877 | { |
| 878 | struct tcp_cache_key_src tcks; |
| 879 | |
| 880 | tcp_cache_key_src_create(tp, &tcks); |
| 881 | |
| 882 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRXMT); |
| 883 | } |
| 884 | |
| 885 | void tcp_heuristic_ecn_synrst(struct tcpcb *tp) |
| 886 | { |
| 887 | struct tcp_cache_key_src tcks; |
| 888 | |
| 889 | tcp_cache_key_src_create(tp, &tcks); |
| 890 | |
| 891 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_SYNRST); |
| 892 | } |
| 893 | |
| 894 | void tcp_heuristic_tfo_middlebox(struct tcpcb *tp) |
| 895 | { |
| 896 | struct tcp_cache_key_src tcks; |
| 897 | |
| 898 | tp->t_tfo_flags |= TFO_F_HEURISTIC_DONE; |
| 899 | |
| 900 | tcp_cache_key_src_create(tp, &tcks); |
| 901 | tcp_heuristic_tfo_middlebox_common(&tcks); |
| 902 | } |
| 903 | |
| 904 | static void tcp_heuristic_ecn_aggressive_common(struct tcp_cache_key_src *tcks) |
| 905 | { |
| 906 | struct tcp_heuristics_head *head; |
| 907 | struct tcp_heuristic *tpheur; |
| 908 | |
| 909 | tpheur = tcp_getheuristic_with_lock(tcks, 1, &head); |
| 910 | if (tpheur == NULL) |
| 911 | return; |
| 912 | |
| 913 | /* Must be done before, otherwise we will start off with expo-backoff */ |
| 914 | tpheur->th_ecn_backoff = tcp_now + |
| 915 | (tcp_min_to_hz(tcp_ecn_timeout) << (tpheur->th_ecn_aggressive)); |
| 916 | |
| 917 | /* |
| 918 | * Ugly way to prevent integer overflow... limit to prevent in |
| 919 | * overflow during exp. backoff. |
| 920 | */ |
| 921 | if (tpheur->th_ecn_aggressive < TCP_CACHE_OVERFLOW_PROTECT) |
| 922 | tpheur->th_ecn_aggressive++; |
| 923 | |
| 924 | tcp_heuristic_unlock(head); |
| 925 | } |
| 926 | |
| 927 | void tcp_heuristic_ecn_aggressive(struct tcpcb *tp) |
| 928 | { |
| 929 | struct tcp_cache_key_src tcks; |
| 930 | |
| 931 | tcp_cache_key_src_create(tp, &tcks); |
| 932 | tcp_heuristic_ecn_aggressive_common(&tcks); |
| 933 | } |
| 934 | |
| 935 | static boolean_t tcp_heuristic_do_tfo_common(struct tcp_cache_key_src *tcks) |
| 936 | { |
| 937 | struct tcp_heuristics_head *head; |
| 938 | struct tcp_heuristic *tpheur; |
| 939 | |
| 940 | if (disable_tcp_heuristics) |
| 941 | return (TRUE); |
| 942 | |
| 943 | /* Get the tcp-heuristic. */ |
| 944 | tpheur = tcp_getheuristic_with_lock(tcks, 0, &head); |
| 945 | if (tpheur == NULL) |
| 946 | return (TRUE); |
| 947 | |
| 948 | if (tpheur->th_tfo_in_backoff == 0) |
| 949 | goto tfo_ok; |
| 950 | |
| 951 | if (TSTMP_GT(tcp_now, tpheur->th_tfo_backoff_until)) { |
| 952 | tpheur->th_tfo_in_backoff = 0; |
| 953 | tpheur->th_tfo_enabled_time = tcp_now; |
| 954 | |
| 955 | goto tfo_ok; |
| 956 | } |
| 957 | |
| 958 | tcp_heuristic_unlock(head); |
| 959 | return (FALSE); |
| 960 | |
| 961 | tfo_ok: |
| 962 | tcp_heuristic_unlock(head); |
| 963 | return (TRUE); |
| 964 | } |
| 965 | |
| 966 | boolean_t tcp_heuristic_do_tfo(struct tcpcb *tp) |
| 967 | { |
| 968 | struct tcp_cache_key_src tcks; |
| 969 | |
| 970 | tcp_cache_key_src_create(tp, &tcks); |
| 971 | if (tcp_heuristic_do_tfo_common(&tcks)) |
| 972 | return (TRUE); |
| 973 | |
| 974 | return (FALSE); |
| 975 | } |
| 976 | |
| 977 | boolean_t tcp_heuristic_do_mptcp(struct tcpcb *tp) |
| 978 | { |
| 979 | struct tcp_cache_key_src tcks; |
| 980 | struct tcp_heuristics_head *head = NULL; |
| 981 | struct tcp_heuristic *tpheur; |
| 982 | |
| 983 | if (disable_tcp_heuristics) |
| 984 | return (TRUE); |
| 985 | |
| 986 | tcp_cache_key_src_create(tp, &tcks); |
| 987 | |
| 988 | /* Get the tcp-heuristic. */ |
| 989 | tpheur = tcp_getheuristic_with_lock(&tcks, 0, &head); |
| 990 | if (tpheur == NULL) |
| 991 | return (TRUE); |
| 992 | |
| 993 | if (TSTMP_GT(tpheur->th_mptcp_backoff, tcp_now)) |
| 994 | goto fallback; |
| 995 | |
| 996 | tcp_heuristic_unlock(head); |
| 997 | |
| 998 | return (TRUE); |
| 999 | |
| 1000 | fallback: |
| 1001 | if (head) |
| 1002 | tcp_heuristic_unlock(head); |
| 1003 | |
| 1004 | if (tptomptp(tp)->mpt_mpte->mpte_flags & MPTE_FIRSTPARTY) |
| 1005 | tcpstat.tcps_mptcp_fp_heuristic_fallback++; |
| 1006 | else |
| 1007 | tcpstat.tcps_mptcp_heuristic_fallback++; |
| 1008 | |
| 1009 | return (FALSE); |
| 1010 | } |
| 1011 | |
| 1012 | static boolean_t tcp_heuristic_do_ecn_common(struct tcp_cache_key_src *tcks) |
| 1013 | { |
| 1014 | struct tcp_heuristics_head *head; |
| 1015 | struct tcp_heuristic *tpheur; |
| 1016 | boolean_t ret = TRUE; |
| 1017 | |
| 1018 | if (disable_tcp_heuristics) |
| 1019 | return (TRUE); |
| 1020 | |
| 1021 | /* Get the tcp-heuristic. */ |
| 1022 | tpheur = tcp_getheuristic_with_lock(tcks, 0, &head); |
| 1023 | if (tpheur == NULL) |
| 1024 | return ret; |
| 1025 | |
| 1026 | if (TSTMP_GT(tpheur->th_ecn_backoff, tcp_now)) { |
| 1027 | ret = FALSE; |
| 1028 | } else { |
| 1029 | /* Reset the following counters to start re-evaluating */ |
| 1030 | if (tpheur->th_ecn_droprst >= ECN_RETRY_LIMIT) |
| 1031 | tpheur->th_ecn_droprst = 0; |
| 1032 | if (tpheur->th_ecn_droprxmt >= ECN_RETRY_LIMIT) |
| 1033 | tpheur->th_ecn_droprxmt = 0; |
| 1034 | if (tpheur->th_ecn_synrst >= ECN_RETRY_LIMIT) |
| 1035 | tpheur->th_ecn_synrst = 0; |
| 1036 | } |
| 1037 | |
| 1038 | tcp_heuristic_unlock(head); |
| 1039 | |
| 1040 | return (ret); |
| 1041 | } |
| 1042 | |
| 1043 | boolean_t tcp_heuristic_do_ecn(struct tcpcb *tp) |
| 1044 | { |
| 1045 | struct tcp_cache_key_src tcks; |
| 1046 | |
| 1047 | tcp_cache_key_src_create(tp, &tcks); |
| 1048 | return tcp_heuristic_do_ecn_common(&tcks); |
| 1049 | } |
| 1050 | |
| 1051 | boolean_t tcp_heuristic_do_ecn_with_address(struct ifnet *ifp, |
| 1052 | union sockaddr_in_4_6 *local_address) |
| 1053 | { |
| 1054 | struct tcp_cache_key_src tcks; |
| 1055 | |
| 1056 | memset(&tcks, 0, sizeof(tcks)); |
| 1057 | tcks.ifp = ifp; |
| 1058 | |
| 1059 | calculate_tcp_clock(); |
| 1060 | |
| 1061 | if (local_address->sa.sa_family == AF_INET6) { |
| 1062 | memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr)); |
| 1063 | tcks.af = AF_INET6; |
| 1064 | } else if (local_address->sa.sa_family == AF_INET) { |
| 1065 | memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr)); |
| 1066 | tcks.af = AF_INET; |
| 1067 | } |
| 1068 | |
| 1069 | return tcp_heuristic_do_ecn_common(&tcks); |
| 1070 | } |
| 1071 | |
| 1072 | void tcp_heuristics_ecn_update(struct necp_tcp_ecn_cache *necp_buffer, |
| 1073 | struct ifnet *ifp, union sockaddr_in_4_6 *local_address) |
| 1074 | { |
| 1075 | struct tcp_cache_key_src tcks; |
| 1076 | |
| 1077 | memset(&tcks, 0, sizeof(tcks)); |
| 1078 | tcks.ifp = ifp; |
| 1079 | |
| 1080 | calculate_tcp_clock(); |
| 1081 | |
| 1082 | if (local_address->sa.sa_family == AF_INET6) { |
| 1083 | memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr)); |
| 1084 | tcks.af = AF_INET6; |
| 1085 | } else if (local_address->sa.sa_family == AF_INET) { |
| 1086 | memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr)); |
| 1087 | tcks.af = AF_INET; |
| 1088 | } |
| 1089 | |
| 1090 | if (necp_buffer->necp_tcp_ecn_heuristics_success) { |
| 1091 | tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_ECN); |
| 1092 | } else if (necp_buffer->necp_tcp_ecn_heuristics_loss) { |
| 1093 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN); |
| 1094 | } else if (necp_buffer->necp_tcp_ecn_heuristics_drop_rst) { |
| 1095 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRST); |
| 1096 | } else if (necp_buffer->necp_tcp_ecn_heuristics_drop_rxmt) { |
| 1097 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_DROPRXMT); |
| 1098 | } else if (necp_buffer->necp_tcp_ecn_heuristics_syn_rst) { |
| 1099 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_ECN_SYNRST); |
| 1100 | } else if (necp_buffer->necp_tcp_ecn_heuristics_aggressive) { |
| 1101 | tcp_heuristic_ecn_aggressive_common(&tcks); |
| 1102 | } |
| 1103 | |
| 1104 | return; |
| 1105 | } |
| 1106 | |
| 1107 | boolean_t tcp_heuristic_do_tfo_with_address(struct ifnet *ifp, |
| 1108 | union sockaddr_in_4_6 *local_address, union sockaddr_in_4_6 *remote_address, |
| 1109 | u_int8_t *cookie, u_int8_t *cookie_len) |
| 1110 | { |
| 1111 | struct tcp_cache_key_src tcks; |
| 1112 | |
| 1113 | memset(&tcks, 0, sizeof(tcks)); |
| 1114 | tcks.ifp = ifp; |
| 1115 | |
| 1116 | calculate_tcp_clock(); |
| 1117 | |
| 1118 | if (remote_address->sa.sa_family == AF_INET6) { |
| 1119 | memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr)); |
| 1120 | memcpy(&tcks.faddr.addr6, &remote_address->sin6.sin6_addr, sizeof(struct in6_addr)); |
| 1121 | tcks.af = AF_INET6; |
| 1122 | } else if (remote_address->sa.sa_family == AF_INET) { |
| 1123 | memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr)); |
| 1124 | memcpy(&tcks.faddr.addr, &remote_address->sin.sin_addr, sizeof(struct in_addr)); |
| 1125 | tcks.af = AF_INET; |
| 1126 | } |
| 1127 | |
| 1128 | if (tcp_heuristic_do_tfo_common(&tcks)) { |
| 1129 | if (!tcp_cache_get_cookie_common(&tcks, cookie, cookie_len)) { |
| 1130 | *cookie_len = 0; |
| 1131 | } |
| 1132 | return TRUE; |
| 1133 | } |
| 1134 | |
| 1135 | return FALSE; |
| 1136 | } |
| 1137 | |
| 1138 | void tcp_heuristics_tfo_update(struct necp_tcp_tfo_cache *necp_buffer, |
| 1139 | struct ifnet *ifp, union sockaddr_in_4_6 *local_address, |
| 1140 | union sockaddr_in_4_6 *remote_address) |
| 1141 | { |
| 1142 | struct tcp_cache_key_src tcks; |
| 1143 | |
| 1144 | memset(&tcks, 0, sizeof(tcks)); |
| 1145 | tcks.ifp = ifp; |
| 1146 | |
| 1147 | calculate_tcp_clock(); |
| 1148 | |
| 1149 | if (remote_address->sa.sa_family == AF_INET6) { |
| 1150 | memcpy(&tcks.laddr.addr6, &local_address->sin6.sin6_addr, sizeof(struct in6_addr)); |
| 1151 | memcpy(&tcks.faddr.addr6, &remote_address->sin6.sin6_addr, sizeof(struct in6_addr)); |
| 1152 | tcks.af = AF_INET6; |
| 1153 | } else if (remote_address->sa.sa_family == AF_INET) { |
| 1154 | memcpy(&tcks.laddr.addr, &local_address->sin.sin_addr, sizeof(struct in_addr)); |
| 1155 | memcpy(&tcks.faddr.addr, &remote_address->sin.sin_addr, sizeof(struct in_addr)); |
| 1156 | tcks.af = AF_INET; |
| 1157 | } |
| 1158 | |
| 1159 | if (necp_buffer->necp_tcp_tfo_heuristics_success) |
| 1160 | tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_DATA | |
| 1161 | TCPCACHE_F_TFO_REQ_RST | TCPCACHE_F_TFO_DATA_RST); |
| 1162 | |
| 1163 | if (necp_buffer->necp_tcp_tfo_heuristics_success_req) |
| 1164 | tcp_heuristic_reset_counters(&tcks, TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_REQ_RST); |
| 1165 | |
| 1166 | if (necp_buffer->necp_tcp_tfo_heuristics_loss) |
| 1167 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ | TCPCACHE_F_TFO_DATA); |
| 1168 | |
| 1169 | if (necp_buffer->necp_tcp_tfo_heuristics_loss_req) |
| 1170 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ); |
| 1171 | |
| 1172 | if (necp_buffer->necp_tcp_tfo_heuristics_rst_data) |
| 1173 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ_RST | TCPCACHE_F_TFO_DATA_RST); |
| 1174 | |
| 1175 | if (necp_buffer->necp_tcp_tfo_heuristics_rst_req) |
| 1176 | tcp_heuristic_inc_counters(&tcks, TCPCACHE_F_TFO_REQ_RST); |
| 1177 | |
| 1178 | if (necp_buffer->necp_tcp_tfo_heuristics_middlebox) |
| 1179 | tcp_heuristic_tfo_middlebox_common(&tcks); |
| 1180 | |
| 1181 | if (necp_buffer->necp_tcp_tfo_cookie_len != 0) { |
| 1182 | tcp_cache_set_cookie_common(&tcks, |
| 1183 | necp_buffer->necp_tcp_tfo_cookie, necp_buffer->necp_tcp_tfo_cookie_len); |
| 1184 | } |
| 1185 | |
| 1186 | return; |
| 1187 | } |
| 1188 | |
| 1189 | static void sysctl_cleartfocache(void) |
| 1190 | { |
| 1191 | int i; |
| 1192 | |
| 1193 | for (i = 0; i < tcp_cache_size; i++) { |
| 1194 | struct tcp_cache_head *head = &tcp_cache[i]; |
| 1195 | struct tcp_cache *tpcache, *tmp; |
| 1196 | struct tcp_heuristics_head *hhead = &tcp_heuristics[i]; |
| 1197 | struct tcp_heuristic *tpheur, *htmp; |
| 1198 | |
| 1199 | lck_mtx_lock(&head->tch_mtx); |
| 1200 | SLIST_FOREACH_SAFE(tpcache, &head->tcp_caches, list, tmp) { |
| 1201 | SLIST_REMOVE(&head->tcp_caches, tpcache, tcp_cache, list); |
| 1202 | _FREE(tpcache, M_TEMP); |
| 1203 | } |
| 1204 | lck_mtx_unlock(&head->tch_mtx); |
| 1205 | |
| 1206 | lck_mtx_lock(&hhead->thh_mtx); |
| 1207 | SLIST_FOREACH_SAFE(tpheur, &hhead->tcp_heuristics, list, htmp) { |
| 1208 | SLIST_REMOVE(&hhead->tcp_heuristics, tpheur, tcp_heuristic, list); |
| 1209 | _FREE(tpheur, M_TEMP); |
| 1210 | } |
| 1211 | lck_mtx_unlock(&hhead->thh_mtx); |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | /* This sysctl is useful for testing purposes only */ |
| 1216 | static int tcpcleartfo = 0; |
| 1217 | |
| 1218 | static int sysctl_cleartfo SYSCTL_HANDLER_ARGS |
| 1219 | { |
| 1220 | #pragma unused(arg1, arg2) |
| 1221 | int error = 0, val, oldval = tcpcleartfo; |
| 1222 | |
| 1223 | val = oldval; |
| 1224 | error = sysctl_handle_int(oidp, &val, 0, req); |
| 1225 | if (error || !req->newptr) |
| 1226 | return (error); |
| 1227 | |
| 1228 | /* |
| 1229 | * The actual value does not matter. If the value is set, it triggers |
| 1230 | * the clearing of the TFO cache. If a future implementation does not |
| 1231 | * use the route entry to hold the TFO cache, replace the route sysctl. |
| 1232 | */ |
| 1233 | |
| 1234 | if (val != oldval) |
| 1235 | sysctl_cleartfocache(); |
| 1236 | |
| 1237 | tcpcleartfo = val; |
| 1238 | |
| 1239 | return (error); |
| 1240 | } |
| 1241 | |
| 1242 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, clear_tfocache, CTLTYPE_INT | CTLFLAG_RW | |
| 1243 | CTLFLAG_LOCKED, &tcpcleartfo, 0, &sysctl_cleartfo, "I" , |
| 1244 | "Toggle to clear the TFO destination based heuristic cache" ); |
| 1245 | |
| 1246 | void tcp_cache_init(void) |
| 1247 | { |
| 1248 | uint64_t sane_size_meg = sane_size / 1024 / 1024; |
| 1249 | int i; |
| 1250 | |
| 1251 | /* |
| 1252 | * On machines with <100MB of memory this will result in a (full) cache-size |
| 1253 | * of 32 entries, thus 32 * 5 * 64bytes = 10KB. (about 0.01 %) |
| 1254 | * On machines with > 4GB of memory, we have a cache-size of 1024 entries, |
| 1255 | * thus about 327KB. |
| 1256 | * |
| 1257 | * Side-note: we convert to u_int32_t. If sane_size is more than |
| 1258 | * 16000 TB, we loose precision. But, who cares? :) |
| 1259 | */ |
| 1260 | tcp_cache_size = tcp_cache_roundup2((u_int32_t)(sane_size_meg >> 2)); |
| 1261 | if (tcp_cache_size < 32) |
| 1262 | tcp_cache_size = 32; |
| 1263 | else if (tcp_cache_size > 1024) |
| 1264 | tcp_cache_size = 1024; |
| 1265 | |
| 1266 | tcp_cache = _MALLOC(sizeof(struct tcp_cache_head) * tcp_cache_size, |
| 1267 | M_TEMP, M_ZERO); |
| 1268 | if (tcp_cache == NULL) |
| 1269 | panic("Allocating tcp_cache failed at boot-time!" ); |
| 1270 | |
| 1271 | tcp_cache_mtx_grp_attr = lck_grp_attr_alloc_init(); |
| 1272 | tcp_cache_mtx_grp = lck_grp_alloc_init("tcpcache" , tcp_cache_mtx_grp_attr); |
| 1273 | tcp_cache_mtx_attr = lck_attr_alloc_init(); |
| 1274 | |
| 1275 | tcp_heuristics = _MALLOC(sizeof(struct tcp_heuristics_head) * tcp_cache_size, |
| 1276 | M_TEMP, M_ZERO); |
| 1277 | if (tcp_heuristics == NULL) |
| 1278 | panic("Allocating tcp_heuristic failed at boot-time!" ); |
| 1279 | |
| 1280 | tcp_heuristic_mtx_grp_attr = lck_grp_attr_alloc_init(); |
| 1281 | tcp_heuristic_mtx_grp = lck_grp_alloc_init("tcpheuristic" , tcp_heuristic_mtx_grp_attr); |
| 1282 | tcp_heuristic_mtx_attr = lck_attr_alloc_init(); |
| 1283 | |
| 1284 | for (i = 0; i < tcp_cache_size; i++) { |
| 1285 | lck_mtx_init(&tcp_cache[i].tch_mtx, tcp_cache_mtx_grp, |
| 1286 | tcp_cache_mtx_attr); |
| 1287 | SLIST_INIT(&tcp_cache[i].tcp_caches); |
| 1288 | |
| 1289 | lck_mtx_init(&tcp_heuristics[i].thh_mtx, tcp_heuristic_mtx_grp, |
| 1290 | tcp_heuristic_mtx_attr); |
| 1291 | SLIST_INIT(&tcp_heuristics[i].tcp_heuristics); |
| 1292 | } |
| 1293 | |
| 1294 | tcp_cache_hash_seed = RandomULong(); |
| 1295 | } |
| 1296 | |