| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 |
| 61 | */ |
| 62 | /* |
| 63 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 64 | * support for mandatory and extensible security protections. This notice |
| 65 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 66 | * Version 2.0. |
| 67 | */ |
| 68 | |
| 69 | #define _IP_VHL |
| 70 | |
| 71 | #include <sys/param.h> |
| 72 | #include <sys/systm.h> |
| 73 | #include <sys/kernel.h> |
| 74 | #include <sys/malloc.h> |
| 75 | #include <sys/mbuf.h> |
| 76 | #include <sys/protosw.h> |
| 77 | #include <sys/socket.h> |
| 78 | #include <sys/socketvar.h> |
| 79 | #include <kern/locks.h> |
| 80 | #include <sys/sysctl.h> |
| 81 | #include <sys/mcache.h> |
| 82 | #include <sys/kdebug.h> |
| 83 | |
| 84 | #include <machine/endian.h> |
| 85 | #include <pexpert/pexpert.h> |
| 86 | #include <mach/sdt.h> |
| 87 | |
| 88 | #include <libkern/OSAtomic.h> |
| 89 | #include <libkern/OSByteOrder.h> |
| 90 | |
| 91 | #include <net/if.h> |
| 92 | #include <net/if_dl.h> |
| 93 | #include <net/if_types.h> |
| 94 | #include <net/route.h> |
| 95 | #include <net/ntstat.h> |
| 96 | #include <net/net_osdep.h> |
| 97 | #include <net/dlil.h> |
| 98 | #include <net/net_perf.h> |
| 99 | |
| 100 | #include <netinet/in.h> |
| 101 | #include <netinet/in_systm.h> |
| 102 | #include <netinet/ip.h> |
| 103 | #include <netinet/in_pcb.h> |
| 104 | #include <netinet/in_var.h> |
| 105 | #include <netinet/ip_var.h> |
| 106 | #include <netinet/kpi_ipfilter_var.h> |
| 107 | #include <netinet/in_tclass.h> |
| 108 | #include <netinet/udp.h> |
| 109 | |
| 110 | #include <netinet6/nd6.h> |
| 111 | |
| 112 | #if CONFIG_MACF_NET |
| 113 | #include <security/mac_framework.h> |
| 114 | #endif /* CONFIG_MACF_NET */ |
| 115 | |
| 116 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1) |
| 117 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3) |
| 118 | #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1) |
| 119 | #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1) |
| 120 | |
| 121 | #if IPSEC |
| 122 | #include <netinet6/ipsec.h> |
| 123 | #include <netkey/key.h> |
| 124 | #if IPSEC_DEBUG |
| 125 | #include <netkey/key_debug.h> |
| 126 | #else |
| 127 | #define KEYDEBUG(lev, arg) |
| 128 | #endif |
| 129 | #endif /* IPSEC */ |
| 130 | |
| 131 | #if NECP |
| 132 | #include <net/necp.h> |
| 133 | #endif /* NECP */ |
| 134 | |
| 135 | #if IPFIREWALL |
| 136 | #include <netinet/ip_fw.h> |
| 137 | #if IPDIVERT |
| 138 | #include <netinet/ip_divert.h> |
| 139 | #endif /* IPDIVERT */ |
| 140 | #endif /* IPFIREWALL */ |
| 141 | |
| 142 | #if DUMMYNET |
| 143 | #include <netinet/ip_dummynet.h> |
| 144 | #endif |
| 145 | |
| 146 | #if PF |
| 147 | #include <net/pfvar.h> |
| 148 | #endif /* PF */ |
| 149 | |
| 150 | #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG |
| 151 | #define print_ip(a) \ |
| 152 | printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \ |
| 153 | (ntohl(a.s_addr) >> 16) & 0xFF, \ |
| 154 | (ntohl(a.s_addr) >> 8) & 0xFF, \ |
| 155 | (ntohl(a.s_addr)) & 0xFF); |
| 156 | #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */ |
| 157 | |
| 158 | u_short ip_id; |
| 159 | |
| 160 | static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS; |
| 161 | static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS; |
| 162 | static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS; |
| 163 | static void ip_out_cksum_stats(int, u_int32_t); |
| 164 | static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); |
| 165 | static int ip_optcopy(struct ip *, struct ip *); |
| 166 | static int ip_pcbopts(int, struct mbuf **, struct mbuf *); |
| 167 | static void imo_trace(struct ip_moptions *, int); |
| 168 | static void ip_mloopback(struct ifnet *, struct ifnet *, struct mbuf *, |
| 169 | struct sockaddr_in *, int); |
| 170 | static struct ifaddr *in_selectsrcif(struct ip *, struct route *, unsigned int); |
| 171 | |
| 172 | extern struct ip_linklocal_stat ip_linklocal_stat; |
| 173 | |
| 174 | /* temporary: for testing */ |
| 175 | #if IPSEC |
| 176 | extern int ipsec_bypass; |
| 177 | #endif |
| 178 | |
| 179 | static int ip_maxchainsent = 0; |
| 180 | SYSCTL_INT(_net_inet_ip, OID_AUTO, maxchainsent, |
| 181 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_maxchainsent, 0, |
| 182 | "use dlil_output_list" ); |
| 183 | #if DEBUG |
| 184 | static int forge_ce = 0; |
| 185 | SYSCTL_INT(_net_inet_ip, OID_AUTO, forge_ce, |
| 186 | CTLFLAG_RW | CTLFLAG_LOCKED, &forge_ce, 0, |
| 187 | "Forge ECN CE" ); |
| 188 | #endif /* DEBUG */ |
| 189 | |
| 190 | static int ip_select_srcif_debug = 0; |
| 191 | SYSCTL_INT(_net_inet_ip, OID_AUTO, select_srcif_debug, |
| 192 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_select_srcif_debug, 0, |
| 193 | "log source interface selection debug info" ); |
| 194 | |
| 195 | static int ip_output_measure = 0; |
| 196 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf, |
| 197 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 198 | &ip_output_measure, 0, sysctl_reset_ip_output_stats, "I" , |
| 199 | "Do time measurement" ); |
| 200 | |
| 201 | static uint64_t ip_output_measure_bins = 0; |
| 202 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_bins, |
| 203 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_output_measure_bins, 0, |
| 204 | sysctl_ip_output_measure_bins, "I" , |
| 205 | "bins for chaining performance data histogram" ); |
| 206 | |
| 207 | static net_perf_t net_perf; |
| 208 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_data, |
| 209 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 210 | 0, 0, sysctl_ip_output_getperf, "S,net_perf" , |
| 211 | "IP output performance data (struct net_perf, net/net_perf.h)" ); |
| 212 | |
| 213 | __private_extern__ int rfc6864 = 1; |
| 214 | SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 215 | &rfc6864, 0, "updated ip id field behavior" ); |
| 216 | |
| 217 | #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */ |
| 218 | |
| 219 | /* For gdb */ |
| 220 | __private_extern__ unsigned int imo_trace_hist_size = IMO_TRACE_HIST_SIZE; |
| 221 | |
| 222 | struct ip_moptions_dbg { |
| 223 | struct ip_moptions imo; /* ip_moptions */ |
| 224 | u_int16_t imo_refhold_cnt; /* # of IMO_ADDREF */ |
| 225 | u_int16_t imo_refrele_cnt; /* # of IMO_REMREF */ |
| 226 | /* |
| 227 | * Alloc and free callers. |
| 228 | */ |
| 229 | ctrace_t imo_alloc; |
| 230 | ctrace_t imo_free; |
| 231 | /* |
| 232 | * Circular lists of IMO_ADDREF and IMO_REMREF callers. |
| 233 | */ |
| 234 | ctrace_t imo_refhold[IMO_TRACE_HIST_SIZE]; |
| 235 | ctrace_t imo_refrele[IMO_TRACE_HIST_SIZE]; |
| 236 | }; |
| 237 | |
| 238 | #if DEBUG |
| 239 | static unsigned int imo_debug = 1; /* debugging (enabled) */ |
| 240 | #else |
| 241 | static unsigned int imo_debug; /* debugging (disabled) */ |
| 242 | #endif /* !DEBUG */ |
| 243 | static unsigned int imo_size; /* size of zone element */ |
| 244 | static struct zone *imo_zone; /* zone for ip_moptions */ |
| 245 | |
| 246 | #define IMO_ZONE_MAX 64 /* maximum elements in zone */ |
| 247 | #define IMO_ZONE_NAME "ip_moptions" /* zone name */ |
| 248 | |
| 249 | /* |
| 250 | * IP output. The packet in mbuf chain m contains a skeletal IP |
| 251 | * header (with len, off, ttl, proto, tos, src, dst). |
| 252 | * The mbuf chain containing the packet will be freed. |
| 253 | * The mbuf opt, if present, will not be freed. |
| 254 | */ |
| 255 | int |
| 256 | ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags, |
| 257 | struct ip_moptions *imo, struct ip_out_args *ipoa) |
| 258 | { |
| 259 | return (ip_output_list(m0, 0, opt, ro, flags, imo, ipoa)); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * IP output. The packet in mbuf chain m contains a skeletal IP |
| 264 | * header (with len, off, ttl, proto, tos, src, dst). |
| 265 | * The mbuf chain containing the packet will be freed. |
| 266 | * The mbuf opt, if present, will not be freed. |
| 267 | * |
| 268 | * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be |
| 269 | * skipped and ro->ro_rt would be used. Otherwise the result of route |
| 270 | * lookup is stored in ro->ro_rt. |
| 271 | * |
| 272 | * In the IP forwarding case, the packet will arrive with options already |
| 273 | * inserted, so must have a NULL opt pointer. |
| 274 | */ |
| 275 | int |
| 276 | ip_output_list(struct mbuf *m0, int packetchain, struct mbuf *opt, |
| 277 | struct route *ro, int flags, struct ip_moptions *imo, |
| 278 | struct ip_out_args *ipoa) |
| 279 | { |
| 280 | struct ip *ip; |
| 281 | struct ifnet *ifp = NULL; /* not refcnt'd */ |
| 282 | struct mbuf *m = m0, *prevnxt = NULL, **mppn = &prevnxt; |
| 283 | int hlen = sizeof (struct ip); |
| 284 | int len = 0, error = 0; |
| 285 | struct sockaddr_in *dst = NULL; |
| 286 | struct in_ifaddr *ia = NULL, *src_ia = NULL; |
| 287 | struct in_addr pkt_dst; |
| 288 | struct ipf_pktopts *ippo = NULL; |
| 289 | ipfilter_t inject_filter_ref = NULL; |
| 290 | struct mbuf *packetlist; |
| 291 | uint32_t sw_csum, pktcnt = 0, scnt = 0, bytecnt = 0; |
| 292 | uint32_t packets_processed = 0; |
| 293 | unsigned int ifscope = IFSCOPE_NONE; |
| 294 | struct flowadv *adv = NULL; |
| 295 | struct timeval start_tv; |
| 296 | #if IPSEC |
| 297 | struct socket *so = NULL; |
| 298 | struct secpolicy *sp = NULL; |
| 299 | #endif /* IPSEC */ |
| 300 | #if NECP |
| 301 | necp_kernel_policy_result necp_result = 0; |
| 302 | necp_kernel_policy_result_parameter necp_result_parameter; |
| 303 | necp_kernel_policy_id necp_matched_policy_id = 0; |
| 304 | #endif /* NECP */ |
| 305 | #if IPFIREWALL |
| 306 | int ipfwoff; |
| 307 | struct sockaddr_in *next_hop_from_ipfwd_tag = NULL; |
| 308 | #endif /* IPFIREWALL */ |
| 309 | #if IPFIREWALL || DUMMYNET |
| 310 | struct m_tag *tag; |
| 311 | #endif /* IPFIREWALL || DUMMYNET */ |
| 312 | #if DUMMYNET |
| 313 | struct ip_out_args saved_ipoa; |
| 314 | struct sockaddr_in dst_buf; |
| 315 | #endif /* DUMMYNET */ |
| 316 | struct { |
| 317 | #if IPSEC |
| 318 | struct ipsec_output_state ipsec_state; |
| 319 | #endif /* IPSEC */ |
| 320 | #if NECP |
| 321 | struct route necp_route; |
| 322 | #endif /* NECP */ |
| 323 | #if IPFIREWALL || DUMMYNET |
| 324 | struct ip_fw_args args; |
| 325 | #endif /* IPFIREWALL || DUMMYNET */ |
| 326 | #if IPFIREWALL_FORWARD |
| 327 | struct route sro_fwd; |
| 328 | #endif /* IPFIREWALL_FORWARD */ |
| 329 | #if DUMMYNET |
| 330 | struct route saved_route; |
| 331 | #endif /* DUMMYNET */ |
| 332 | struct ipf_pktopts ipf_pktopts; |
| 333 | } ipobz; |
| 334 | #define ipsec_state ipobz.ipsec_state |
| 335 | #define necp_route ipobz.necp_route |
| 336 | #define args ipobz.args |
| 337 | #define sro_fwd ipobz.sro_fwd |
| 338 | #define saved_route ipobz.saved_route |
| 339 | #define ipf_pktopts ipobz.ipf_pktopts |
| 340 | union { |
| 341 | struct { |
| 342 | boolean_t select_srcif : 1; /* set once */ |
| 343 | boolean_t srcbound : 1; /* set once */ |
| 344 | boolean_t nocell : 1; /* set once */ |
| 345 | boolean_t isbroadcast : 1; |
| 346 | boolean_t didfilter : 1; |
| 347 | boolean_t noexpensive : 1; /* set once */ |
| 348 | boolean_t awdl_unrestricted : 1; /* set once */ |
| 349 | #if IPFIREWALL_FORWARD |
| 350 | boolean_t fwd_rewrite_src : 1; |
| 351 | #endif /* IPFIREWALL_FORWARD */ |
| 352 | }; |
| 353 | uint32_t raw; |
| 354 | } ipobf = { .raw = 0 }; |
| 355 | |
| 356 | int interface_mtu = 0; |
| 357 | |
| 358 | /* |
| 359 | * Here we check for restrictions when sending frames. |
| 360 | * N.B.: IPv4 over internal co-processor interfaces is not allowed. |
| 361 | */ |
| 362 | #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \ |
| 363 | (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \ |
| 364 | ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \ |
| 365 | (IFNET_IS_INTCOPROC(_ifp)) || \ |
| 366 | (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp))) |
| 367 | |
| 368 | if (ip_output_measure) |
| 369 | net_perf_start_time(&net_perf, &start_tv); |
| 370 | KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 371 | |
| 372 | VERIFY(m0->m_flags & M_PKTHDR); |
| 373 | packetlist = m0; |
| 374 | |
| 375 | /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */ |
| 376 | bzero(&ipobz, sizeof (ipobz)); |
| 377 | ippo = &ipf_pktopts; |
| 378 | |
| 379 | #if IPFIREWALL || DUMMYNET |
| 380 | if (SLIST_EMPTY(&m0->m_pkthdr.tags)) |
| 381 | goto ipfw_tags_done; |
| 382 | |
| 383 | /* Grab info from mtags prepended to the chain */ |
| 384 | #if DUMMYNET |
| 385 | if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, |
| 386 | KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) { |
| 387 | struct dn_pkt_tag *dn_tag; |
| 388 | |
| 389 | dn_tag = (struct dn_pkt_tag *)(tag+1); |
| 390 | args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule; |
| 391 | args.fwa_pf_rule = dn_tag->dn_pf_rule; |
| 392 | opt = NULL; |
| 393 | saved_route = dn_tag->dn_ro; |
| 394 | ro = &saved_route; |
| 395 | |
| 396 | imo = NULL; |
| 397 | bcopy(&dn_tag->dn_dst, &dst_buf, sizeof (dst_buf)); |
| 398 | dst = &dst_buf; |
| 399 | ifp = dn_tag->dn_ifp; |
| 400 | flags = dn_tag->dn_flags; |
| 401 | if ((dn_tag->dn_flags & IP_OUTARGS)) { |
| 402 | saved_ipoa = dn_tag->dn_ipoa; |
| 403 | ipoa = &saved_ipoa; |
| 404 | } |
| 405 | |
| 406 | m_tag_delete(m0, tag); |
| 407 | } |
| 408 | #endif /* DUMMYNET */ |
| 409 | |
| 410 | #if IPDIVERT |
| 411 | if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, |
| 412 | KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) { |
| 413 | struct divert_tag *div_tag; |
| 414 | |
| 415 | div_tag = (struct divert_tag *)(tag+1); |
| 416 | args.fwa_divert_rule = div_tag->cookie; |
| 417 | |
| 418 | m_tag_delete(m0, tag); |
| 419 | } |
| 420 | #endif /* IPDIVERT */ |
| 421 | |
| 422 | #if IPFIREWALL |
| 423 | if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, |
| 424 | KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) { |
| 425 | struct ip_fwd_tag *ipfwd_tag; |
| 426 | |
| 427 | ipfwd_tag = (struct ip_fwd_tag *)(tag+1); |
| 428 | next_hop_from_ipfwd_tag = ipfwd_tag->next_hop; |
| 429 | |
| 430 | m_tag_delete(m0, tag); |
| 431 | } |
| 432 | #endif /* IPFIREWALL */ |
| 433 | |
| 434 | ipfw_tags_done: |
| 435 | #endif /* IPFIREWALL || DUMMYNET */ |
| 436 | |
| 437 | m = m0; |
| 438 | m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP|PKTF_IFAINFO); |
| 439 | |
| 440 | #if IPSEC |
| 441 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { |
| 442 | /* If packet is bound to an interface, check bound policies */ |
| 443 | if ((flags & IP_OUTARGS) && (ipoa != NULL) && |
| 444 | (ipoa->ipoa_flags & IPOAF_BOUND_IF) && |
| 445 | ipoa->ipoa_boundif != IFSCOPE_NONE) { |
| 446 | if (ipsec4_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND, |
| 447 | &flags, ipoa, &sp) != 0) |
| 448 | goto bad; |
| 449 | } |
| 450 | } |
| 451 | #endif /* IPSEC */ |
| 452 | |
| 453 | VERIFY(ro != NULL); |
| 454 | |
| 455 | if (flags & IP_OUTARGS) { |
| 456 | /* |
| 457 | * In the forwarding case, only the ifscope value is used, |
| 458 | * as source interface selection doesn't take place. |
| 459 | */ |
| 460 | if ((ipobf.select_srcif = (!(flags & IP_FORWARDING) && |
| 461 | (ipoa->ipoa_flags & IPOAF_SELECT_SRCIF)))) { |
| 462 | ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF; |
| 463 | } |
| 464 | |
| 465 | if ((ipoa->ipoa_flags & IPOAF_BOUND_IF) && |
| 466 | ipoa->ipoa_boundif != IFSCOPE_NONE) { |
| 467 | ifscope = ipoa->ipoa_boundif; |
| 468 | ipf_pktopts.ippo_flags |= |
| 469 | (IPPOF_BOUND_IF | (ifscope << IPPOF_SHIFT_IFSCOPE)); |
| 470 | } |
| 471 | |
| 472 | /* double negation needed for bool bit field */ |
| 473 | ipobf.srcbound = !!(ipoa->ipoa_flags & IPOAF_BOUND_SRCADDR); |
| 474 | if (ipobf.srcbound) |
| 475 | ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR; |
| 476 | } else { |
| 477 | ipobf.select_srcif = FALSE; |
| 478 | ipobf.srcbound = FALSE; |
| 479 | ifscope = IFSCOPE_NONE; |
| 480 | if (flags & IP_OUTARGS) { |
| 481 | ipoa->ipoa_boundif = IFSCOPE_NONE; |
| 482 | ipoa->ipoa_flags &= ~(IPOAF_SELECT_SRCIF | |
| 483 | IPOAF_BOUND_IF | IPOAF_BOUND_SRCADDR); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | if (flags & IP_OUTARGS) { |
| 488 | if (ipoa->ipoa_flags & IPOAF_NO_CELLULAR) { |
| 489 | ipobf.nocell = TRUE; |
| 490 | ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR; |
| 491 | } |
| 492 | if (ipoa->ipoa_flags & IPOAF_NO_EXPENSIVE) { |
| 493 | ipobf.noexpensive = TRUE; |
| 494 | ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_EXPENSIVE; |
| 495 | } |
| 496 | if (ipoa->ipoa_flags & IPOAF_AWDL_UNRESTRICTED) |
| 497 | ipobf.awdl_unrestricted = TRUE; |
| 498 | adv = &ipoa->ipoa_flowadv; |
| 499 | adv->code = FADV_SUCCESS; |
| 500 | ipoa->ipoa_retflags = 0; |
| 501 | } |
| 502 | |
| 503 | #if IPSEC |
| 504 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { |
| 505 | so = ipsec_getsocket(m); |
| 506 | if (so != NULL) { |
| 507 | (void) ipsec_setsocket(m, NULL); |
| 508 | } |
| 509 | } |
| 510 | #endif /* IPSEC */ |
| 511 | |
| 512 | #if DUMMYNET |
| 513 | if (args.fwa_ipfw_rule != NULL || args.fwa_pf_rule != NULL) { |
| 514 | /* dummynet already saw us */ |
| 515 | ip = mtod(m, struct ip *); |
| 516 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 517 | pkt_dst = ip->ip_dst; |
| 518 | if (ro->ro_rt != NULL) { |
| 519 | RT_LOCK_SPIN(ro->ro_rt); |
| 520 | ia = (struct in_ifaddr *)ro->ro_rt->rt_ifa; |
| 521 | if (ia) { |
| 522 | /* Become a regular mutex */ |
| 523 | RT_CONVERT_LOCK(ro->ro_rt); |
| 524 | IFA_ADDREF(&ia->ia_ifa); |
| 525 | } |
| 526 | RT_UNLOCK(ro->ro_rt); |
| 527 | } |
| 528 | |
| 529 | #if IPFIREWALL |
| 530 | if (args.fwa_ipfw_rule != NULL) |
| 531 | goto skip_ipsec; |
| 532 | #endif /* IPFIREWALL */ |
| 533 | if (args.fwa_pf_rule != NULL) |
| 534 | goto sendit; |
| 535 | } |
| 536 | #endif /* DUMMYNET */ |
| 537 | |
| 538 | loopit: |
| 539 | packets_processed++; |
| 540 | ipobf.isbroadcast = FALSE; |
| 541 | ipobf.didfilter = FALSE; |
| 542 | #if IPFIREWALL_FORWARD |
| 543 | ipobf.fwd_rewrite_src = FALSE; |
| 544 | #endif /* IPFIREWALL_FORWARD */ |
| 545 | |
| 546 | VERIFY(m->m_flags & M_PKTHDR); |
| 547 | /* |
| 548 | * No need to proccess packet twice if we've already seen it. |
| 549 | */ |
| 550 | if (!SLIST_EMPTY(&m->m_pkthdr.tags)) |
| 551 | inject_filter_ref = ipf_get_inject_filter(m); |
| 552 | else |
| 553 | inject_filter_ref = NULL; |
| 554 | |
| 555 | if (opt) { |
| 556 | m = ip_insertoptions(m, opt, &len); |
| 557 | hlen = len; |
| 558 | /* Update the chain */ |
| 559 | if (m != m0) { |
| 560 | if (m0 == packetlist) |
| 561 | packetlist = m; |
| 562 | m0 = m; |
| 563 | } |
| 564 | } |
| 565 | ip = mtod(m, struct ip *); |
| 566 | |
| 567 | #if IPFIREWALL |
| 568 | /* |
| 569 | * rdar://8542331 |
| 570 | * |
| 571 | * When dealing with a packet chain, we need to reset "next_hop" |
| 572 | * because "dst" may have been changed to the gateway address below |
| 573 | * for the previous packet of the chain. This could cause the route |
| 574 | * to be inavertandly changed to the route to the gateway address |
| 575 | * (instead of the route to the destination). |
| 576 | */ |
| 577 | args.fwa_next_hop = next_hop_from_ipfwd_tag; |
| 578 | pkt_dst = args.fwa_next_hop ? args.fwa_next_hop->sin_addr : ip->ip_dst; |
| 579 | #else /* !IPFIREWALL */ |
| 580 | pkt_dst = ip->ip_dst; |
| 581 | #endif /* !IPFIREWALL */ |
| 582 | |
| 583 | /* |
| 584 | * We must not send if the packet is destined to network zero. |
| 585 | * RFC1122 3.2.1.3 (a) and (b). |
| 586 | */ |
| 587 | if (IN_ZERONET(ntohl(pkt_dst.s_addr))) { |
| 588 | error = EHOSTUNREACH; |
| 589 | goto bad; |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * Fill in IP header. |
| 594 | */ |
| 595 | if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) { |
| 596 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2); |
| 597 | ip->ip_off &= IP_DF; |
| 598 | if (rfc6864 && IP_OFF_IS_ATOMIC(ip->ip_off)) { |
| 599 | // Per RFC6864, value of ip_id is undefined for atomic ip packets |
| 600 | ip->ip_id = 0; |
| 601 | } else { |
| 602 | ip->ip_id = ip_randomid(); |
| 603 | } |
| 604 | OSAddAtomic(1, &ipstat.ips_localout); |
| 605 | } else { |
| 606 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 607 | } |
| 608 | |
| 609 | #if DEBUG |
| 610 | /* For debugging, we let the stack forge congestion */ |
| 611 | if (forge_ce != 0 && |
| 612 | ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1 || |
| 613 | (ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT0)) { |
| 614 | ip->ip_tos = (ip->ip_tos & ~IPTOS_ECN_MASK) | IPTOS_ECN_CE; |
| 615 | forge_ce--; |
| 616 | } |
| 617 | #endif /* DEBUG */ |
| 618 | |
| 619 | KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr, |
| 620 | ip->ip_p, ip->ip_off, ip->ip_len); |
| 621 | |
| 622 | dst = SIN(&ro->ro_dst); |
| 623 | |
| 624 | /* |
| 625 | * If there is a cached route, |
| 626 | * check that it is to the same destination |
| 627 | * and is still up. If not, free it and try again. |
| 628 | * The address family should also be checked in case of sharing the |
| 629 | * cache with IPv6. |
| 630 | */ |
| 631 | |
| 632 | if (ro->ro_rt != NULL) { |
| 633 | if (ROUTE_UNUSABLE(ro) && ip->ip_src.s_addr != INADDR_ANY && |
| 634 | !(flags & (IP_ROUTETOIF | IP_FORWARDING))) { |
| 635 | src_ia = ifa_foraddr(ip->ip_src.s_addr); |
| 636 | if (src_ia == NULL) { |
| 637 | error = EADDRNOTAVAIL; |
| 638 | goto bad; |
| 639 | } |
| 640 | IFA_REMREF(&src_ia->ia_ifa); |
| 641 | src_ia = NULL; |
| 642 | } |
| 643 | /* |
| 644 | * Test rt_flags without holding rt_lock for performance |
| 645 | * reasons; if the route is down it will hopefully be |
| 646 | * caught by the layer below (since it uses this route |
| 647 | * as a hint) or during the next transmit. |
| 648 | */ |
| 649 | if (ROUTE_UNUSABLE(ro) || dst->sin_family != AF_INET || |
| 650 | dst->sin_addr.s_addr != pkt_dst.s_addr) |
| 651 | ROUTE_RELEASE(ro); |
| 652 | |
| 653 | /* |
| 654 | * If we're doing source interface selection, we may not |
| 655 | * want to use this route; only synch up the generation |
| 656 | * count otherwise. |
| 657 | */ |
| 658 | if (!ipobf.select_srcif && ro->ro_rt != NULL && |
| 659 | RT_GENID_OUTOFSYNC(ro->ro_rt)) |
| 660 | RT_GENID_SYNC(ro->ro_rt); |
| 661 | } |
| 662 | if (ro->ro_rt == NULL) { |
| 663 | bzero(dst, sizeof (*dst)); |
| 664 | dst->sin_family = AF_INET; |
| 665 | dst->sin_len = sizeof (*dst); |
| 666 | dst->sin_addr = pkt_dst; |
| 667 | } |
| 668 | /* |
| 669 | * If routing to interface only, |
| 670 | * short circuit routing lookup. |
| 671 | */ |
| 672 | if (flags & IP_ROUTETOIF) { |
| 673 | if (ia != NULL) |
| 674 | IFA_REMREF(&ia->ia_ifa); |
| 675 | if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) { |
| 676 | ia = ifatoia(ifa_ifwithnet(sintosa(dst))); |
| 677 | if (ia == NULL) { |
| 678 | OSAddAtomic(1, &ipstat.ips_noroute); |
| 679 | error = ENETUNREACH; |
| 680 | /* XXX IPv6 APN fallback notification?? */ |
| 681 | goto bad; |
| 682 | } |
| 683 | } |
| 684 | ifp = ia->ia_ifp; |
| 685 | ip->ip_ttl = 1; |
| 686 | ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp); |
| 687 | /* |
| 688 | * For consistency with other cases below. Loopback |
| 689 | * multicast case is handled separately by ip_mloopback(). |
| 690 | */ |
| 691 | if ((ifp->if_flags & IFF_LOOPBACK) && |
| 692 | !IN_MULTICAST(ntohl(pkt_dst.s_addr))) { |
| 693 | m->m_pkthdr.rcvif = ifp; |
| 694 | ip_setsrcifaddr_info(m, ifp->if_index, NULL); |
| 695 | ip_setdstifaddr_info(m, ifp->if_index, NULL); |
| 696 | } |
| 697 | } else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) && |
| 698 | imo != NULL && (ifp = imo->imo_multicast_ifp) != NULL) { |
| 699 | /* |
| 700 | * Bypass the normal routing lookup for multicast |
| 701 | * packets if the interface is specified. |
| 702 | */ |
| 703 | ipobf.isbroadcast = FALSE; |
| 704 | if (ia != NULL) |
| 705 | IFA_REMREF(&ia->ia_ifa); |
| 706 | |
| 707 | /* Macro takes reference on ia */ |
| 708 | IFP_TO_IA(ifp, ia); |
| 709 | } else { |
| 710 | struct ifaddr *ia0 = NULL; |
| 711 | boolean_t cloneok = FALSE; |
| 712 | /* |
| 713 | * Perform source interface selection; the source IP address |
| 714 | * must belong to one of the addresses of the interface used |
| 715 | * by the route. For performance reasons, do this only if |
| 716 | * there is no route, or if the routing table has changed, |
| 717 | * or if we haven't done source interface selection on this |
| 718 | * route (for this PCB instance) before. |
| 719 | */ |
| 720 | if (ipobf.select_srcif && |
| 721 | ip->ip_src.s_addr != INADDR_ANY && (ROUTE_UNUSABLE(ro) || |
| 722 | !(ro->ro_flags & ROF_SRCIF_SELECTED))) { |
| 723 | /* Find the source interface */ |
| 724 | ia0 = in_selectsrcif(ip, ro, ifscope); |
| 725 | |
| 726 | /* |
| 727 | * If the source address belongs to a restricted |
| 728 | * interface and the caller forbids our using |
| 729 | * interfaces of such type, pretend that there is no |
| 730 | * route. |
| 731 | */ |
| 732 | if (ia0 != NULL && |
| 733 | IP_CHECK_RESTRICTIONS(ia0->ifa_ifp, ipobf)) { |
| 734 | IFA_REMREF(ia0); |
| 735 | ia0 = NULL; |
| 736 | error = EHOSTUNREACH; |
| 737 | if (flags & IP_OUTARGS) |
| 738 | ipoa->ipoa_retflags |= IPOARF_IFDENIED; |
| 739 | goto bad; |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * If the source address is spoofed (in the case of |
| 744 | * IP_RAWOUTPUT on an unbounded socket), or if this |
| 745 | * is destined for local/loopback, just let it go out |
| 746 | * using the interface of the route. Otherwise, |
| 747 | * there's no interface having such an address, |
| 748 | * so bail out. |
| 749 | */ |
| 750 | if (ia0 == NULL && (!(flags & IP_RAWOUTPUT) || |
| 751 | ipobf.srcbound) && ifscope != lo_ifp->if_index) { |
| 752 | error = EADDRNOTAVAIL; |
| 753 | goto bad; |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * If the caller didn't explicitly specify the scope, |
| 758 | * pick it up from the source interface. If the cached |
| 759 | * route was wrong and was blown away as part of source |
| 760 | * interface selection, don't mask out RTF_PRCLONING |
| 761 | * since that route may have been allocated by the ULP, |
| 762 | * unless the IP header was created by the caller or |
| 763 | * the destination is IPv4 LLA. The check for the |
| 764 | * latter is needed because IPv4 LLAs are never scoped |
| 765 | * in the current implementation, and we don't want to |
| 766 | * replace the resolved IPv4 LLA route with one whose |
| 767 | * gateway points to that of the default gateway on |
| 768 | * the primary interface of the system. |
| 769 | */ |
| 770 | if (ia0 != NULL) { |
| 771 | if (ifscope == IFSCOPE_NONE) |
| 772 | ifscope = ia0->ifa_ifp->if_index; |
| 773 | cloneok = (!(flags & IP_RAWOUTPUT) && |
| 774 | !(IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)))); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * If this is the case, we probably don't want to allocate |
| 780 | * a protocol-cloned route since we didn't get one from the |
| 781 | * ULP. This lets TCP do its thing, while not burdening |
| 782 | * forwarding or ICMP with the overhead of cloning a route. |
| 783 | * Of course, we still want to do any cloning requested by |
| 784 | * the link layer, as this is probably required in all cases |
| 785 | * for correct operation (as it is for ARP). |
| 786 | */ |
| 787 | if (ro->ro_rt == NULL) { |
| 788 | unsigned long ign = RTF_PRCLONING; |
| 789 | /* |
| 790 | * We make an exception here: if the destination |
| 791 | * address is INADDR_BROADCAST, allocate a protocol- |
| 792 | * cloned host route so that we end up with a route |
| 793 | * marked with the RTF_BROADCAST flag. Otherwise, |
| 794 | * we would end up referring to the default route, |
| 795 | * instead of creating a cloned host route entry. |
| 796 | * That would introduce inconsistencies between ULPs |
| 797 | * that allocate a route and those that don't. The |
| 798 | * RTF_BROADCAST route is important since we'd want |
| 799 | * to send out undirected IP broadcast packets using |
| 800 | * link-level broadcast address. Another exception |
| 801 | * is for ULP-created routes that got blown away by |
| 802 | * source interface selection (see above). |
| 803 | * |
| 804 | * These exceptions will no longer be necessary when |
| 805 | * the RTF_PRCLONING scheme is no longer present. |
| 806 | */ |
| 807 | if (cloneok || dst->sin_addr.s_addr == INADDR_BROADCAST) |
| 808 | ign &= ~RTF_PRCLONING; |
| 809 | |
| 810 | /* |
| 811 | * Loosen the route lookup criteria if the ifscope |
| 812 | * corresponds to the loopback interface; this is |
| 813 | * needed to support Application Layer Gateways |
| 814 | * listening on loopback, in conjunction with packet |
| 815 | * filter redirection rules. The final source IP |
| 816 | * address will be rewritten by the packet filter |
| 817 | * prior to the RFC1122 loopback check below. |
| 818 | */ |
| 819 | if (ifscope == lo_ifp->if_index) |
| 820 | rtalloc_ign(ro, ign); |
| 821 | else |
| 822 | rtalloc_scoped_ign(ro, ign, ifscope); |
| 823 | |
| 824 | /* |
| 825 | * If the route points to a cellular/expensive interface |
| 826 | * and the caller forbids our using interfaces of such type, |
| 827 | * pretend that there is no route. |
| 828 | */ |
| 829 | if (ro->ro_rt != NULL) { |
| 830 | RT_LOCK_SPIN(ro->ro_rt); |
| 831 | if (IP_CHECK_RESTRICTIONS(ro->ro_rt->rt_ifp, |
| 832 | ipobf)) { |
| 833 | RT_UNLOCK(ro->ro_rt); |
| 834 | ROUTE_RELEASE(ro); |
| 835 | if (flags & IP_OUTARGS) { |
| 836 | ipoa->ipoa_retflags |= |
| 837 | IPOARF_IFDENIED; |
| 838 | } |
| 839 | } else { |
| 840 | RT_UNLOCK(ro->ro_rt); |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | if (ro->ro_rt == NULL) { |
| 846 | OSAddAtomic(1, &ipstat.ips_noroute); |
| 847 | error = EHOSTUNREACH; |
| 848 | if (ia0 != NULL) { |
| 849 | IFA_REMREF(ia0); |
| 850 | ia0 = NULL; |
| 851 | } |
| 852 | goto bad; |
| 853 | } |
| 854 | |
| 855 | if (ia != NULL) |
| 856 | IFA_REMREF(&ia->ia_ifa); |
| 857 | RT_LOCK_SPIN(ro->ro_rt); |
| 858 | ia = ifatoia(ro->ro_rt->rt_ifa); |
| 859 | if (ia != NULL) { |
| 860 | /* Become a regular mutex */ |
| 861 | RT_CONVERT_LOCK(ro->ro_rt); |
| 862 | IFA_ADDREF(&ia->ia_ifa); |
| 863 | } |
| 864 | /* |
| 865 | * Note: ia_ifp may not be the same as rt_ifp; the latter |
| 866 | * is what we use for determining outbound i/f, mtu, etc. |
| 867 | */ |
| 868 | ifp = ro->ro_rt->rt_ifp; |
| 869 | ro->ro_rt->rt_use++; |
| 870 | if (ro->ro_rt->rt_flags & RTF_GATEWAY) { |
| 871 | dst = SIN(ro->ro_rt->rt_gateway); |
| 872 | } |
| 873 | if (ro->ro_rt->rt_flags & RTF_HOST) { |
| 874 | /* double negation needed for bool bit field */ |
| 875 | ipobf.isbroadcast = |
| 876 | !!(ro->ro_rt->rt_flags & RTF_BROADCAST); |
| 877 | } else { |
| 878 | /* Become a regular mutex */ |
| 879 | RT_CONVERT_LOCK(ro->ro_rt); |
| 880 | ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp); |
| 881 | } |
| 882 | /* |
| 883 | * For consistency with IPv6, as well as to ensure that |
| 884 | * IP_RECVIF is set correctly for packets that are sent |
| 885 | * to one of the local addresses. ia (rt_ifa) would have |
| 886 | * been fixed up by rt_setif for local routes. This |
| 887 | * would make it appear as if the packet arrives on the |
| 888 | * interface which owns the local address. Loopback |
| 889 | * multicast case is handled separately by ip_mloopback(). |
| 890 | */ |
| 891 | if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK) && |
| 892 | !IN_MULTICAST(ntohl(pkt_dst.s_addr))) { |
| 893 | uint32_t srcidx; |
| 894 | |
| 895 | m->m_pkthdr.rcvif = ia->ia_ifa.ifa_ifp; |
| 896 | |
| 897 | if (ia0 != NULL) |
| 898 | srcidx = ia0->ifa_ifp->if_index; |
| 899 | else if ((ro->ro_flags & ROF_SRCIF_SELECTED) && |
| 900 | ro->ro_srcia != NULL) |
| 901 | srcidx = ro->ro_srcia->ifa_ifp->if_index; |
| 902 | else |
| 903 | srcidx = 0; |
| 904 | |
| 905 | ip_setsrcifaddr_info(m, srcidx, NULL); |
| 906 | ip_setdstifaddr_info(m, 0, ia); |
| 907 | } |
| 908 | RT_UNLOCK(ro->ro_rt); |
| 909 | if (ia0 != NULL) { |
| 910 | IFA_REMREF(ia0); |
| 911 | ia0 = NULL; |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) { |
| 916 | struct ifnet *srcifp = NULL; |
| 917 | struct in_multi *inm; |
| 918 | u_int32_t vif = 0; |
| 919 | u_int8_t ttl = IP_DEFAULT_MULTICAST_TTL; |
| 920 | u_int8_t loop = IP_DEFAULT_MULTICAST_LOOP; |
| 921 | |
| 922 | m->m_flags |= M_MCAST; |
| 923 | /* |
| 924 | * IP destination address is multicast. Make sure "dst" |
| 925 | * still points to the address in "ro". (It may have been |
| 926 | * changed to point to a gateway address, above.) |
| 927 | */ |
| 928 | dst = SIN(&ro->ro_dst); |
| 929 | /* |
| 930 | * See if the caller provided any multicast options |
| 931 | */ |
| 932 | if (imo != NULL) { |
| 933 | IMO_LOCK(imo); |
| 934 | vif = imo->imo_multicast_vif; |
| 935 | ttl = imo->imo_multicast_ttl; |
| 936 | loop = imo->imo_multicast_loop; |
| 937 | if (!(flags & IP_RAWOUTPUT)) |
| 938 | ip->ip_ttl = ttl; |
| 939 | if (imo->imo_multicast_ifp != NULL) |
| 940 | ifp = imo->imo_multicast_ifp; |
| 941 | IMO_UNLOCK(imo); |
| 942 | } else if (!(flags & IP_RAWOUTPUT)) { |
| 943 | vif = -1; |
| 944 | ip->ip_ttl = ttl; |
| 945 | } |
| 946 | /* |
| 947 | * Confirm that the outgoing interface supports multicast. |
| 948 | */ |
| 949 | if (imo == NULL || vif == -1) { |
| 950 | if (!(ifp->if_flags & IFF_MULTICAST)) { |
| 951 | OSAddAtomic(1, &ipstat.ips_noroute); |
| 952 | error = ENETUNREACH; |
| 953 | goto bad; |
| 954 | } |
| 955 | } |
| 956 | /* |
| 957 | * If source address not specified yet, use address |
| 958 | * of outgoing interface. |
| 959 | */ |
| 960 | if (ip->ip_src.s_addr == INADDR_ANY) { |
| 961 | struct in_ifaddr *ia1; |
| 962 | lck_rw_lock_shared(in_ifaddr_rwlock); |
| 963 | TAILQ_FOREACH(ia1, &in_ifaddrhead, ia_link) { |
| 964 | IFA_LOCK_SPIN(&ia1->ia_ifa); |
| 965 | if (ia1->ia_ifp == ifp) { |
| 966 | ip->ip_src = IA_SIN(ia1)->sin_addr; |
| 967 | srcifp = ifp; |
| 968 | IFA_UNLOCK(&ia1->ia_ifa); |
| 969 | break; |
| 970 | } |
| 971 | IFA_UNLOCK(&ia1->ia_ifa); |
| 972 | } |
| 973 | lck_rw_done(in_ifaddr_rwlock); |
| 974 | if (ip->ip_src.s_addr == INADDR_ANY) { |
| 975 | error = ENETUNREACH; |
| 976 | goto bad; |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | in_multihead_lock_shared(); |
| 981 | IN_LOOKUP_MULTI(&pkt_dst, ifp, inm); |
| 982 | in_multihead_lock_done(); |
| 983 | if (inm != NULL && (imo == NULL || loop)) { |
| 984 | /* |
| 985 | * If we belong to the destination multicast group |
| 986 | * on the outgoing interface, and the caller did not |
| 987 | * forbid loopback, loop back a copy. |
| 988 | */ |
| 989 | if (!TAILQ_EMPTY(&ipv4_filters)) { |
| 990 | struct ipfilter *filter; |
| 991 | int seen = (inject_filter_ref == NULL); |
| 992 | |
| 993 | if (imo != NULL) { |
| 994 | ipf_pktopts.ippo_flags |= |
| 995 | IPPOF_MCAST_OPTS; |
| 996 | ipf_pktopts.ippo_mcast_ifnet = ifp; |
| 997 | ipf_pktopts.ippo_mcast_ttl = ttl; |
| 998 | ipf_pktopts.ippo_mcast_loop = loop; |
| 999 | } |
| 1000 | |
| 1001 | ipf_ref(); |
| 1002 | |
| 1003 | /* |
| 1004 | * 4135317 - always pass network byte |
| 1005 | * order to filter |
| 1006 | */ |
| 1007 | #if BYTE_ORDER != BIG_ENDIAN |
| 1008 | HTONS(ip->ip_len); |
| 1009 | HTONS(ip->ip_off); |
| 1010 | #endif |
| 1011 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { |
| 1012 | if (seen == 0) { |
| 1013 | if ((struct ipfilter *) |
| 1014 | inject_filter_ref == filter) |
| 1015 | seen = 1; |
| 1016 | } else if (filter->ipf_filter. |
| 1017 | ipf_output != NULL) { |
| 1018 | errno_t result; |
| 1019 | result = filter->ipf_filter. |
| 1020 | ipf_output(filter-> |
| 1021 | ipf_filter.cookie, |
| 1022 | (mbuf_t *)&m, ippo); |
| 1023 | if (result == EJUSTRETURN) { |
| 1024 | ipf_unref(); |
| 1025 | INM_REMREF(inm); |
| 1026 | goto done; |
| 1027 | } |
| 1028 | if (result != 0) { |
| 1029 | ipf_unref(); |
| 1030 | INM_REMREF(inm); |
| 1031 | goto bad; |
| 1032 | } |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | /* set back to host byte order */ |
| 1037 | ip = mtod(m, struct ip *); |
| 1038 | #if BYTE_ORDER != BIG_ENDIAN |
| 1039 | NTOHS(ip->ip_len); |
| 1040 | NTOHS(ip->ip_off); |
| 1041 | #endif |
| 1042 | ipf_unref(); |
| 1043 | ipobf.didfilter = TRUE; |
| 1044 | } |
| 1045 | ip_mloopback(srcifp, ifp, m, dst, hlen); |
| 1046 | } |
| 1047 | if (inm != NULL) |
| 1048 | INM_REMREF(inm); |
| 1049 | /* |
| 1050 | * Multicasts with a time-to-live of zero may be looped- |
| 1051 | * back, above, but must not be transmitted on a network. |
| 1052 | * Also, multicasts addressed to the loopback interface |
| 1053 | * are not sent -- the above call to ip_mloopback() will |
| 1054 | * loop back a copy if this host actually belongs to the |
| 1055 | * destination group on the loopback interface. |
| 1056 | */ |
| 1057 | if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { |
| 1058 | m_freem(m); |
| 1059 | goto done; |
| 1060 | } |
| 1061 | |
| 1062 | goto sendit; |
| 1063 | } |
| 1064 | /* |
| 1065 | * If source address not specified yet, use address |
| 1066 | * of outgoing interface. |
| 1067 | */ |
| 1068 | if (ip->ip_src.s_addr == INADDR_ANY) { |
| 1069 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 1070 | ip->ip_src = IA_SIN(ia)->sin_addr; |
| 1071 | IFA_UNLOCK(&ia->ia_ifa); |
| 1072 | #if IPFIREWALL_FORWARD |
| 1073 | /* |
| 1074 | * Keep note that we did this - if the firewall changes |
| 1075 | * the next-hop, our interface may change, changing the |
| 1076 | * default source IP. It's a shame so much effort happens |
| 1077 | * twice. Oh well. |
| 1078 | */ |
| 1079 | ipobf.fwd_rewrite_src = TRUE; |
| 1080 | #endif /* IPFIREWALL_FORWARD */ |
| 1081 | } |
| 1082 | |
| 1083 | /* |
| 1084 | * Look for broadcast address and |
| 1085 | * and verify user is allowed to send |
| 1086 | * such a packet. |
| 1087 | */ |
| 1088 | if (ipobf.isbroadcast) { |
| 1089 | if (!(ifp->if_flags & IFF_BROADCAST)) { |
| 1090 | error = EADDRNOTAVAIL; |
| 1091 | goto bad; |
| 1092 | } |
| 1093 | if (!(flags & IP_ALLOWBROADCAST)) { |
| 1094 | error = EACCES; |
| 1095 | goto bad; |
| 1096 | } |
| 1097 | /* don't allow broadcast messages to be fragmented */ |
| 1098 | if ((u_short)ip->ip_len > ifp->if_mtu) { |
| 1099 | error = EMSGSIZE; |
| 1100 | goto bad; |
| 1101 | } |
| 1102 | m->m_flags |= M_BCAST; |
| 1103 | } else { |
| 1104 | m->m_flags &= ~M_BCAST; |
| 1105 | } |
| 1106 | |
| 1107 | sendit: |
| 1108 | #if PF |
| 1109 | /* Invoke outbound packet filter */ |
| 1110 | if (PF_IS_ENABLED) { |
| 1111 | int rc; |
| 1112 | |
| 1113 | m0 = m; /* Save for later */ |
| 1114 | #if DUMMYNET |
| 1115 | args.fwa_m = m; |
| 1116 | args.fwa_next_hop = dst; |
| 1117 | args.fwa_oif = ifp; |
| 1118 | args.fwa_ro = ro; |
| 1119 | args.fwa_dst = dst; |
| 1120 | args.fwa_oflags = flags; |
| 1121 | if (flags & IP_OUTARGS) |
| 1122 | args.fwa_ipoa = ipoa; |
| 1123 | rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, &args); |
| 1124 | #else /* DUMMYNET */ |
| 1125 | rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, NULL); |
| 1126 | #endif /* DUMMYNET */ |
| 1127 | if (rc != 0 || m == NULL) { |
| 1128 | /* Move to the next packet */ |
| 1129 | m = *mppn; |
| 1130 | |
| 1131 | /* Skip ahead if first packet in list got dropped */ |
| 1132 | if (packetlist == m0) |
| 1133 | packetlist = m; |
| 1134 | |
| 1135 | if (m != NULL) { |
| 1136 | m0 = m; |
| 1137 | /* Next packet in the chain */ |
| 1138 | goto loopit; |
| 1139 | } else if (packetlist != NULL) { |
| 1140 | /* No more packet; send down the chain */ |
| 1141 | goto sendchain; |
| 1142 | } |
| 1143 | /* Nothing left; we're done */ |
| 1144 | goto done; |
| 1145 | } |
| 1146 | m0 = m; |
| 1147 | ip = mtod(m, struct ip *); |
| 1148 | pkt_dst = ip->ip_dst; |
| 1149 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1150 | } |
| 1151 | #endif /* PF */ |
| 1152 | /* |
| 1153 | * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt |
| 1154 | */ |
| 1155 | if (IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)) || |
| 1156 | IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { |
| 1157 | ip_linklocal_stat.iplls_out_total++; |
| 1158 | if (ip->ip_ttl != MAXTTL) { |
| 1159 | ip_linklocal_stat.iplls_out_badttl++; |
| 1160 | ip->ip_ttl = MAXTTL; |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | if (!ipobf.didfilter && !TAILQ_EMPTY(&ipv4_filters)) { |
| 1165 | struct ipfilter *filter; |
| 1166 | int seen = (inject_filter_ref == NULL); |
| 1167 | ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS; |
| 1168 | |
| 1169 | /* |
| 1170 | * Check that a TSO frame isn't passed to a filter. |
| 1171 | * This could happen if a filter is inserted while |
| 1172 | * TCP is sending the TSO packet. |
| 1173 | */ |
| 1174 | if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) { |
| 1175 | error = EMSGSIZE; |
| 1176 | goto bad; |
| 1177 | } |
| 1178 | |
| 1179 | ipf_ref(); |
| 1180 | |
| 1181 | /* 4135317 - always pass network byte order to filter */ |
| 1182 | #if BYTE_ORDER != BIG_ENDIAN |
| 1183 | HTONS(ip->ip_len); |
| 1184 | HTONS(ip->ip_off); |
| 1185 | #endif |
| 1186 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { |
| 1187 | if (seen == 0) { |
| 1188 | if ((struct ipfilter *)inject_filter_ref == |
| 1189 | filter) |
| 1190 | seen = 1; |
| 1191 | } else if (filter->ipf_filter.ipf_output) { |
| 1192 | errno_t result; |
| 1193 | result = filter->ipf_filter. |
| 1194 | ipf_output(filter->ipf_filter.cookie, |
| 1195 | (mbuf_t *)&m, ippo); |
| 1196 | if (result == EJUSTRETURN) { |
| 1197 | ipf_unref(); |
| 1198 | goto done; |
| 1199 | } |
| 1200 | if (result != 0) { |
| 1201 | ipf_unref(); |
| 1202 | goto bad; |
| 1203 | } |
| 1204 | } |
| 1205 | } |
| 1206 | /* set back to host byte order */ |
| 1207 | ip = mtod(m, struct ip *); |
| 1208 | #if BYTE_ORDER != BIG_ENDIAN |
| 1209 | NTOHS(ip->ip_len); |
| 1210 | NTOHS(ip->ip_off); |
| 1211 | #endif |
| 1212 | ipf_unref(); |
| 1213 | } |
| 1214 | |
| 1215 | #if NECP |
| 1216 | /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */ |
| 1217 | necp_matched_policy_id = necp_ip_output_find_policy_match (m, |
| 1218 | flags, (flags & IP_OUTARGS) ? ipoa : NULL, &necp_result, &necp_result_parameter); |
| 1219 | if (necp_matched_policy_id) { |
| 1220 | necp_mark_packet_from_ip(m, necp_matched_policy_id); |
| 1221 | switch (necp_result) { |
| 1222 | case NECP_KERNEL_POLICY_RESULT_PASS: |
| 1223 | /* Check if the interface is allowed */ |
| 1224 | if (!necp_packet_is_allowed_over_interface(m, ifp)) { |
| 1225 | error = EHOSTUNREACH; |
| 1226 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1227 | goto bad; |
| 1228 | } |
| 1229 | goto skip_ipsec; |
| 1230 | case NECP_KERNEL_POLICY_RESULT_DROP: |
| 1231 | case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT: |
| 1232 | /* Flow divert packets should be blocked at the IP layer */ |
| 1233 | error = EHOSTUNREACH; |
| 1234 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1235 | goto bad; |
| 1236 | case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL: { |
| 1237 | /* Verify that the packet is being routed to the tunnel */ |
| 1238 | struct ifnet *policy_ifp = necp_get_ifnet_from_result_parameter(&necp_result_parameter); |
| 1239 | if (policy_ifp == ifp) { |
| 1240 | /* Check if the interface is allowed */ |
| 1241 | if (!necp_packet_is_allowed_over_interface(m, ifp)) { |
| 1242 | error = EHOSTUNREACH; |
| 1243 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1244 | goto bad; |
| 1245 | } |
| 1246 | goto skip_ipsec; |
| 1247 | } else { |
| 1248 | if (necp_packet_can_rebind_to_ifnet(m, policy_ifp, &necp_route, AF_INET)) { |
| 1249 | /* Check if the interface is allowed */ |
| 1250 | if (!necp_packet_is_allowed_over_interface(m, policy_ifp)) { |
| 1251 | error = EHOSTUNREACH; |
| 1252 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1253 | goto bad; |
| 1254 | } |
| 1255 | |
| 1256 | /* Set ifp to the tunnel interface, since it is compatible with the packet */ |
| 1257 | ifp = policy_ifp; |
| 1258 | ro = &necp_route; |
| 1259 | goto skip_ipsec; |
| 1260 | } else { |
| 1261 | error = ENETUNREACH; |
| 1262 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1263 | goto bad; |
| 1264 | } |
| 1265 | } |
| 1266 | } |
| 1267 | default: |
| 1268 | break; |
| 1269 | } |
| 1270 | } |
| 1271 | /* Catch-all to check if the interface is allowed */ |
| 1272 | if (!necp_packet_is_allowed_over_interface(m, ifp)) { |
| 1273 | error = EHOSTUNREACH; |
| 1274 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1275 | goto bad; |
| 1276 | } |
| 1277 | #endif /* NECP */ |
| 1278 | |
| 1279 | #if IPSEC |
| 1280 | if (ipsec_bypass != 0 || (flags & IP_NOIPSEC)) |
| 1281 | goto skip_ipsec; |
| 1282 | |
| 1283 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 1284 | |
| 1285 | if (sp == NULL) { |
| 1286 | /* get SP for this packet */ |
| 1287 | if (so != NULL) { |
| 1288 | sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, |
| 1289 | so, &error); |
| 1290 | } else { |
| 1291 | sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, |
| 1292 | flags, &error); |
| 1293 | } |
| 1294 | if (sp == NULL) { |
| 1295 | IPSEC_STAT_INCREMENT(ipsecstat.out_inval); |
| 1296 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1297 | 0, 0, 0, 0, 0); |
| 1298 | goto bad; |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | error = 0; |
| 1303 | |
| 1304 | /* check policy */ |
| 1305 | switch (sp->policy) { |
| 1306 | case IPSEC_POLICY_DISCARD: |
| 1307 | case IPSEC_POLICY_GENERATE: |
| 1308 | /* |
| 1309 | * This packet is just discarded. |
| 1310 | */ |
| 1311 | IPSEC_STAT_INCREMENT(ipsecstat.out_polvio); |
| 1312 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1313 | 1, 0, 0, 0, 0); |
| 1314 | goto bad; |
| 1315 | |
| 1316 | case IPSEC_POLICY_BYPASS: |
| 1317 | case IPSEC_POLICY_NONE: |
| 1318 | /* no need to do IPsec. */ |
| 1319 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1320 | 2, 0, 0, 0, 0); |
| 1321 | goto skip_ipsec; |
| 1322 | |
| 1323 | case IPSEC_POLICY_IPSEC: |
| 1324 | if (sp->req == NULL) { |
| 1325 | /* acquire a policy */ |
| 1326 | error = key_spdacquire(sp); |
| 1327 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1328 | 3, 0, 0, 0, 0); |
| 1329 | goto bad; |
| 1330 | } |
| 1331 | if (sp->ipsec_if) { |
| 1332 | /* Verify the redirect to ipsec interface */ |
| 1333 | if (sp->ipsec_if == ifp) { |
| 1334 | goto skip_ipsec; |
| 1335 | } |
| 1336 | goto bad; |
| 1337 | } |
| 1338 | break; |
| 1339 | |
| 1340 | case IPSEC_POLICY_ENTRUST: |
| 1341 | default: |
| 1342 | printf("ip_output: Invalid policy found. %d\n" , sp->policy); |
| 1343 | } |
| 1344 | { |
| 1345 | ipsec_state.m = m; |
| 1346 | if (flags & IP_ROUTETOIF) { |
| 1347 | bzero(&ipsec_state.ro, sizeof (ipsec_state.ro)); |
| 1348 | } else { |
| 1349 | route_copyout((struct route *)&ipsec_state.ro, ro, sizeof (struct route)); |
| 1350 | } |
| 1351 | ipsec_state.dst = SA(dst); |
| 1352 | |
| 1353 | ip->ip_sum = 0; |
| 1354 | |
| 1355 | /* |
| 1356 | * XXX |
| 1357 | * delayed checksums are not currently compatible with IPsec |
| 1358 | */ |
| 1359 | if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) |
| 1360 | in_delayed_cksum(m); |
| 1361 | |
| 1362 | #if BYTE_ORDER != BIG_ENDIAN |
| 1363 | HTONS(ip->ip_len); |
| 1364 | HTONS(ip->ip_off); |
| 1365 | #endif |
| 1366 | |
| 1367 | DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL, |
| 1368 | struct ip *, ip, struct ifnet *, ifp, |
| 1369 | struct ip *, ip, struct ip6_hdr *, NULL); |
| 1370 | |
| 1371 | error = ipsec4_output(&ipsec_state, sp, flags); |
| 1372 | if (ipsec_state.tunneled == 6) { |
| 1373 | m0 = m = NULL; |
| 1374 | error = 0; |
| 1375 | goto bad; |
| 1376 | } |
| 1377 | |
| 1378 | m0 = m = ipsec_state.m; |
| 1379 | |
| 1380 | #if DUMMYNET |
| 1381 | /* |
| 1382 | * If we're about to use the route in ipsec_state |
| 1383 | * and this came from dummynet, cleaup now. |
| 1384 | */ |
| 1385 | if (ro == &saved_route && |
| 1386 | (!(flags & IP_ROUTETOIF) || ipsec_state.tunneled)) |
| 1387 | ROUTE_RELEASE(ro); |
| 1388 | #endif /* DUMMYNET */ |
| 1389 | |
| 1390 | if (flags & IP_ROUTETOIF) { |
| 1391 | /* |
| 1392 | * if we have tunnel mode SA, we may need to ignore |
| 1393 | * IP_ROUTETOIF. |
| 1394 | */ |
| 1395 | if (ipsec_state.tunneled) { |
| 1396 | flags &= ~IP_ROUTETOIF; |
| 1397 | ro = (struct route *)&ipsec_state.ro; |
| 1398 | } |
| 1399 | } else { |
| 1400 | ro = (struct route *)&ipsec_state.ro; |
| 1401 | } |
| 1402 | dst = SIN(ipsec_state.dst); |
| 1403 | if (error) { |
| 1404 | /* mbuf is already reclaimed in ipsec4_output. */ |
| 1405 | m0 = NULL; |
| 1406 | switch (error) { |
| 1407 | case EHOSTUNREACH: |
| 1408 | case ENETUNREACH: |
| 1409 | case EMSGSIZE: |
| 1410 | case ENOBUFS: |
| 1411 | case ENOMEM: |
| 1412 | break; |
| 1413 | default: |
| 1414 | printf("ip4_output (ipsec): error code %d\n" , error); |
| 1415 | /* FALLTHRU */ |
| 1416 | case ENOENT: |
| 1417 | /* don't show these error codes to the user */ |
| 1418 | error = 0; |
| 1419 | break; |
| 1420 | } |
| 1421 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1422 | 4, 0, 0, 0, 0); |
| 1423 | goto bad; |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | /* be sure to update variables that are affected by ipsec4_output() */ |
| 1428 | ip = mtod(m, struct ip *); |
| 1429 | |
| 1430 | #ifdef _IP_VHL |
| 1431 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1432 | #else /* !_IP_VHL */ |
| 1433 | hlen = ip->ip_hl << 2; |
| 1434 | #endif /* !_IP_VHL */ |
| 1435 | /* Check that there wasn't a route change and src is still valid */ |
| 1436 | if (ROUTE_UNUSABLE(ro)) { |
| 1437 | ROUTE_RELEASE(ro); |
| 1438 | VERIFY(src_ia == NULL); |
| 1439 | if (ip->ip_src.s_addr != INADDR_ANY && |
| 1440 | !(flags & (IP_ROUTETOIF | IP_FORWARDING)) && |
| 1441 | (src_ia = ifa_foraddr(ip->ip_src.s_addr)) == NULL) { |
| 1442 | error = EADDRNOTAVAIL; |
| 1443 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1444 | 5, 0, 0, 0, 0); |
| 1445 | goto bad; |
| 1446 | } |
| 1447 | if (src_ia != NULL) { |
| 1448 | IFA_REMREF(&src_ia->ia_ifa); |
| 1449 | src_ia = NULL; |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | if (ro->ro_rt == NULL) { |
| 1454 | if (!(flags & IP_ROUTETOIF)) { |
| 1455 | printf("%s: can't update route after " |
| 1456 | "IPsec processing\n" , __func__); |
| 1457 | error = EHOSTUNREACH; /* XXX */ |
| 1458 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1459 | 6, 0, 0, 0, 0); |
| 1460 | goto bad; |
| 1461 | } |
| 1462 | } else { |
| 1463 | if (ia != NULL) |
| 1464 | IFA_REMREF(&ia->ia_ifa); |
| 1465 | RT_LOCK_SPIN(ro->ro_rt); |
| 1466 | ia = ifatoia(ro->ro_rt->rt_ifa); |
| 1467 | if (ia != NULL) { |
| 1468 | /* Become a regular mutex */ |
| 1469 | RT_CONVERT_LOCK(ro->ro_rt); |
| 1470 | IFA_ADDREF(&ia->ia_ifa); |
| 1471 | } |
| 1472 | ifp = ro->ro_rt->rt_ifp; |
| 1473 | RT_UNLOCK(ro->ro_rt); |
| 1474 | } |
| 1475 | |
| 1476 | /* make it flipped, again. */ |
| 1477 | #if BYTE_ORDER != BIG_ENDIAN |
| 1478 | NTOHS(ip->ip_len); |
| 1479 | NTOHS(ip->ip_off); |
| 1480 | #endif |
| 1481 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1482 | 7, 0xff, 0xff, 0xff, 0xff); |
| 1483 | |
| 1484 | /* Pass to filters again */ |
| 1485 | if (!TAILQ_EMPTY(&ipv4_filters)) { |
| 1486 | struct ipfilter *filter; |
| 1487 | |
| 1488 | ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS; |
| 1489 | |
| 1490 | /* |
| 1491 | * Check that a TSO frame isn't passed to a filter. |
| 1492 | * This could happen if a filter is inserted while |
| 1493 | * TCP is sending the TSO packet. |
| 1494 | */ |
| 1495 | if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) { |
| 1496 | error = EMSGSIZE; |
| 1497 | goto bad; |
| 1498 | } |
| 1499 | |
| 1500 | ipf_ref(); |
| 1501 | |
| 1502 | /* 4135317 - always pass network byte order to filter */ |
| 1503 | #if BYTE_ORDER != BIG_ENDIAN |
| 1504 | HTONS(ip->ip_len); |
| 1505 | HTONS(ip->ip_off); |
| 1506 | #endif |
| 1507 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { |
| 1508 | if (filter->ipf_filter.ipf_output) { |
| 1509 | errno_t result; |
| 1510 | result = filter->ipf_filter. |
| 1511 | ipf_output(filter->ipf_filter.cookie, |
| 1512 | (mbuf_t *)&m, ippo); |
| 1513 | if (result == EJUSTRETURN) { |
| 1514 | ipf_unref(); |
| 1515 | goto done; |
| 1516 | } |
| 1517 | if (result != 0) { |
| 1518 | ipf_unref(); |
| 1519 | goto bad; |
| 1520 | } |
| 1521 | } |
| 1522 | } |
| 1523 | /* set back to host byte order */ |
| 1524 | ip = mtod(m, struct ip *); |
| 1525 | #if BYTE_ORDER != BIG_ENDIAN |
| 1526 | NTOHS(ip->ip_len); |
| 1527 | NTOHS(ip->ip_off); |
| 1528 | #endif |
| 1529 | ipf_unref(); |
| 1530 | } |
| 1531 | skip_ipsec: |
| 1532 | #endif /* IPSEC */ |
| 1533 | |
| 1534 | #if IPFIREWALL |
| 1535 | /* |
| 1536 | * Check with the firewall... |
| 1537 | * but not if we are already being fwd'd from a firewall. |
| 1538 | */ |
| 1539 | if (fw_enable && IPFW_LOADED && !args.fwa_next_hop) { |
| 1540 | struct sockaddr_in *old = dst; |
| 1541 | |
| 1542 | args.fwa_m = m; |
| 1543 | args.fwa_next_hop = dst; |
| 1544 | args.fwa_oif = ifp; |
| 1545 | ipfwoff = ip_fw_chk_ptr(&args); |
| 1546 | m = args.fwa_m; |
| 1547 | dst = args.fwa_next_hop; |
| 1548 | |
| 1549 | /* |
| 1550 | * On return we must do the following: |
| 1551 | * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new) |
| 1552 | * 1<=off<= 0xffff -> DIVERT |
| 1553 | * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe |
| 1554 | * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet |
| 1555 | * dst != old -> IPFIREWALL_FORWARD |
| 1556 | * off==0, dst==old -> accept |
| 1557 | * If some of the above modules is not compiled in, then |
| 1558 | * we should't have to check the corresponding condition |
| 1559 | * (because the ipfw control socket should not accept |
| 1560 | * unsupported rules), but better play safe and drop |
| 1561 | * packets in case of doubt. |
| 1562 | */ |
| 1563 | m0 = m; |
| 1564 | if ((ipfwoff & IP_FW_PORT_DENY_FLAG) || m == NULL) { |
| 1565 | if (m) |
| 1566 | m_freem(m); |
| 1567 | error = EACCES; |
| 1568 | goto done; |
| 1569 | } |
| 1570 | ip = mtod(m, struct ip *); |
| 1571 | |
| 1572 | if (ipfwoff == 0 && dst == old) { /* common case */ |
| 1573 | goto pass; |
| 1574 | } |
| 1575 | #if DUMMYNET |
| 1576 | if (DUMMYNET_LOADED && (ipfwoff & IP_FW_PORT_DYNT_FLAG) != 0) { |
| 1577 | /* |
| 1578 | * pass the pkt to dummynet. Need to include |
| 1579 | * pipe number, m, ifp, ro, dst because these are |
| 1580 | * not recomputed in the next pass. |
| 1581 | * All other parameters have been already used and |
| 1582 | * so they are not needed anymore. |
| 1583 | * XXX note: if the ifp or ro entry are deleted |
| 1584 | * while a pkt is in dummynet, we are in trouble! |
| 1585 | */ |
| 1586 | args.fwa_ro = ro; |
| 1587 | args.fwa_dst = dst; |
| 1588 | args.fwa_oflags = flags; |
| 1589 | if (flags & IP_OUTARGS) |
| 1590 | args.fwa_ipoa = ipoa; |
| 1591 | |
| 1592 | error = ip_dn_io_ptr(m, ipfwoff & 0xffff, DN_TO_IP_OUT, |
| 1593 | &args, DN_CLIENT_IPFW); |
| 1594 | goto done; |
| 1595 | } |
| 1596 | #endif /* DUMMYNET */ |
| 1597 | #if IPDIVERT |
| 1598 | if (ipfwoff != 0 && (ipfwoff & IP_FW_PORT_DYNT_FLAG) == 0) { |
| 1599 | struct mbuf *clone = NULL; |
| 1600 | |
| 1601 | /* Clone packet if we're doing a 'tee' */ |
| 1602 | if ((ipfwoff & IP_FW_PORT_TEE_FLAG) != 0) |
| 1603 | clone = m_dup(m, M_DONTWAIT); |
| 1604 | /* |
| 1605 | * XXX |
| 1606 | * delayed checksums are not currently compatible |
| 1607 | * with divert sockets. |
| 1608 | */ |
| 1609 | if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) |
| 1610 | in_delayed_cksum(m); |
| 1611 | |
| 1612 | /* Restore packet header fields to original values */ |
| 1613 | |
| 1614 | #if BYTE_ORDER != BIG_ENDIAN |
| 1615 | HTONS(ip->ip_len); |
| 1616 | HTONS(ip->ip_off); |
| 1617 | #endif |
| 1618 | |
| 1619 | /* Deliver packet to divert input routine */ |
| 1620 | divert_packet(m, 0, ipfwoff & 0xffff, |
| 1621 | args.fwa_divert_rule); |
| 1622 | |
| 1623 | /* If 'tee', continue with original packet */ |
| 1624 | if (clone != NULL) { |
| 1625 | m0 = m = clone; |
| 1626 | ip = mtod(m, struct ip *); |
| 1627 | goto pass; |
| 1628 | } |
| 1629 | goto done; |
| 1630 | } |
| 1631 | #endif /* IPDIVERT */ |
| 1632 | #if IPFIREWALL_FORWARD |
| 1633 | /* |
| 1634 | * Here we check dst to make sure it's directly reachable on |
| 1635 | * the interface we previously thought it was. |
| 1636 | * If it isn't (which may be likely in some situations) we have |
| 1637 | * to re-route it (ie, find a route for the next-hop and the |
| 1638 | * associated interface) and set them here. This is nested |
| 1639 | * forwarding which in most cases is undesirable, except where |
| 1640 | * such control is nigh impossible. So we do it here. |
| 1641 | * And I'm babbling. |
| 1642 | */ |
| 1643 | if (ipfwoff == 0 && old != dst) { |
| 1644 | struct in_ifaddr *ia_fw; |
| 1645 | struct route *ro_fwd = &sro_fwd; |
| 1646 | |
| 1647 | #if IPFIREWALL_FORWARD_DEBUG |
| 1648 | printf("IPFIREWALL_FORWARD: New dst ip: " ); |
| 1649 | print_ip(dst->sin_addr); |
| 1650 | printf("\n" ); |
| 1651 | #endif /* IPFIREWALL_FORWARD_DEBUG */ |
| 1652 | /* |
| 1653 | * We need to figure out if we have been forwarded |
| 1654 | * to a local socket. If so then we should somehow |
| 1655 | * "loop back" to ip_input, and get directed to the |
| 1656 | * PCB as if we had received this packet. This is |
| 1657 | * because it may be dificult to identify the packets |
| 1658 | * you want to forward until they are being output |
| 1659 | * and have selected an interface. (e.g. locally |
| 1660 | * initiated packets) If we used the loopback inteface, |
| 1661 | * we would not be able to control what happens |
| 1662 | * as the packet runs through ip_input() as |
| 1663 | * it is done through a ISR. |
| 1664 | */ |
| 1665 | lck_rw_lock_shared(in_ifaddr_rwlock); |
| 1666 | TAILQ_FOREACH(ia_fw, &in_ifaddrhead, ia_link) { |
| 1667 | /* |
| 1668 | * If the addr to forward to is one |
| 1669 | * of ours, we pretend to |
| 1670 | * be the destination for this packet. |
| 1671 | */ |
| 1672 | IFA_LOCK_SPIN(&ia_fw->ia_ifa); |
| 1673 | if (IA_SIN(ia_fw)->sin_addr.s_addr == |
| 1674 | dst->sin_addr.s_addr) { |
| 1675 | IFA_UNLOCK(&ia_fw->ia_ifa); |
| 1676 | break; |
| 1677 | } |
| 1678 | IFA_UNLOCK(&ia_fw->ia_ifa); |
| 1679 | } |
| 1680 | lck_rw_done(in_ifaddr_rwlock); |
| 1681 | if (ia_fw) { |
| 1682 | /* tell ip_input "dont filter" */ |
| 1683 | struct m_tag *fwd_tag; |
| 1684 | struct ip_fwd_tag *ipfwd_tag; |
| 1685 | |
| 1686 | fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID, |
| 1687 | KERNEL_TAG_TYPE_IPFORWARD, |
| 1688 | sizeof (*ipfwd_tag), M_NOWAIT, m); |
| 1689 | if (fwd_tag == NULL) { |
| 1690 | error = ENOBUFS; |
| 1691 | goto bad; |
| 1692 | } |
| 1693 | |
| 1694 | ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1); |
| 1695 | ipfwd_tag->next_hop = args.fwa_next_hop; |
| 1696 | |
| 1697 | m_tag_prepend(m, fwd_tag); |
| 1698 | |
| 1699 | if (m->m_pkthdr.rcvif == NULL) |
| 1700 | m->m_pkthdr.rcvif = lo_ifp; |
| 1701 | |
| 1702 | #if BYTE_ORDER != BIG_ENDIAN |
| 1703 | HTONS(ip->ip_len); |
| 1704 | HTONS(ip->ip_off); |
| 1705 | #endif |
| 1706 | mbuf_outbound_finalize(m, PF_INET, 0); |
| 1707 | |
| 1708 | /* |
| 1709 | * we need to call dlil_output to run filters |
| 1710 | * and resync to avoid recursion loops. |
| 1711 | */ |
| 1712 | if (lo_ifp) { |
| 1713 | dlil_output(lo_ifp, PF_INET, m, NULL, |
| 1714 | SA(dst), 0, adv); |
| 1715 | } else { |
| 1716 | printf("%s: no loopback ifp for " |
| 1717 | "forwarding!!!\n" , __func__); |
| 1718 | } |
| 1719 | goto done; |
| 1720 | } |
| 1721 | /* |
| 1722 | * Some of the logic for this was nicked from above. |
| 1723 | * |
| 1724 | * This rewrites the cached route in a local PCB. |
| 1725 | * Is this what we want to do? |
| 1726 | */ |
| 1727 | ROUTE_RELEASE(ro_fwd); |
| 1728 | bcopy(dst, &ro_fwd->ro_dst, sizeof (*dst)); |
| 1729 | |
| 1730 | rtalloc_ign(ro_fwd, RTF_PRCLONING, false); |
| 1731 | |
| 1732 | if (ro_fwd->ro_rt == NULL) { |
| 1733 | OSAddAtomic(1, &ipstat.ips_noroute); |
| 1734 | error = EHOSTUNREACH; |
| 1735 | goto bad; |
| 1736 | } |
| 1737 | |
| 1738 | RT_LOCK_SPIN(ro_fwd->ro_rt); |
| 1739 | ia_fw = ifatoia(ro_fwd->ro_rt->rt_ifa); |
| 1740 | if (ia_fw != NULL) { |
| 1741 | /* Become a regular mutex */ |
| 1742 | RT_CONVERT_LOCK(ro_fwd->ro_rt); |
| 1743 | IFA_ADDREF(&ia_fw->ia_ifa); |
| 1744 | } |
| 1745 | ifp = ro_fwd->ro_rt->rt_ifp; |
| 1746 | ro_fwd->ro_rt->rt_use++; |
| 1747 | if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY) |
| 1748 | dst = SIN(ro_fwd->ro_rt->rt_gateway); |
| 1749 | if (ro_fwd->ro_rt->rt_flags & RTF_HOST) { |
| 1750 | /* double negation needed for bool bit field */ |
| 1751 | ipobf.isbroadcast = |
| 1752 | !!(ro_fwd->ro_rt->rt_flags & RTF_BROADCAST); |
| 1753 | } else { |
| 1754 | /* Become a regular mutex */ |
| 1755 | RT_CONVERT_LOCK(ro_fwd->ro_rt); |
| 1756 | ipobf.isbroadcast = |
| 1757 | in_broadcast(dst->sin_addr, ifp); |
| 1758 | } |
| 1759 | RT_UNLOCK(ro_fwd->ro_rt); |
| 1760 | ROUTE_RELEASE(ro); |
| 1761 | ro->ro_rt = ro_fwd->ro_rt; |
| 1762 | ro_fwd->ro_rt = NULL; |
| 1763 | dst = SIN(&ro_fwd->ro_dst); |
| 1764 | |
| 1765 | /* |
| 1766 | * If we added a default src ip earlier, |
| 1767 | * which would have been gotten from the-then |
| 1768 | * interface, do it again, from the new one. |
| 1769 | */ |
| 1770 | if (ia_fw != NULL) { |
| 1771 | if (ipobf.fwd_rewrite_src) { |
| 1772 | IFA_LOCK_SPIN(&ia_fw->ia_ifa); |
| 1773 | ip->ip_src = IA_SIN(ia_fw)->sin_addr; |
| 1774 | IFA_UNLOCK(&ia_fw->ia_ifa); |
| 1775 | } |
| 1776 | IFA_REMREF(&ia_fw->ia_ifa); |
| 1777 | } |
| 1778 | goto pass; |
| 1779 | } |
| 1780 | #endif /* IPFIREWALL_FORWARD */ |
| 1781 | /* |
| 1782 | * if we get here, none of the above matches, and |
| 1783 | * we have to drop the pkt |
| 1784 | */ |
| 1785 | m_freem(m); |
| 1786 | error = EACCES; /* not sure this is the right error msg */ |
| 1787 | goto done; |
| 1788 | } |
| 1789 | |
| 1790 | pass: |
| 1791 | #endif /* IPFIREWALL */ |
| 1792 | |
| 1793 | /* 127/8 must not appear on wire - RFC1122 */ |
| 1794 | if (!(ifp->if_flags & IFF_LOOPBACK) && |
| 1795 | ((ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || |
| 1796 | (ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { |
| 1797 | OSAddAtomic(1, &ipstat.ips_badaddr); |
| 1798 | error = EADDRNOTAVAIL; |
| 1799 | goto bad; |
| 1800 | } |
| 1801 | |
| 1802 | if (ipoa != NULL) { |
| 1803 | u_int8_t dscp = ip->ip_tos >> IPTOS_DSCP_SHIFT; |
| 1804 | |
| 1805 | error = set_packet_qos(m, ifp, |
| 1806 | ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED ? TRUE : FALSE, |
| 1807 | ipoa->ipoa_sotc, ipoa->ipoa_netsvctype, &dscp); |
| 1808 | if (error == 0) { |
| 1809 | ip->ip_tos &= IPTOS_ECN_MASK; |
| 1810 | ip->ip_tos |= dscp << IPTOS_DSCP_SHIFT; |
| 1811 | } else { |
| 1812 | printf("%s if_dscp_for_mbuf() error %d\n" , __func__, error); |
| 1813 | error = 0; |
| 1814 | } |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * Some Wi-Fi AP implementations do not correctly handle multicast IP |
| 1819 | * packets with DSCP bits set -- see radr://9331522 -- so as a |
| 1820 | * workaround we clear the DSCP bits and set the service class to BE |
| 1821 | */ |
| 1822 | if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) && IFNET_IS_WIFI_INFRA(ifp)) { |
| 1823 | ip->ip_tos &= IPTOS_ECN_MASK; |
| 1824 | mbuf_set_service_class(m, MBUF_SC_BE); |
| 1825 | } |
| 1826 | |
| 1827 | ip_output_checksum(ifp, m, (IP_VHL_HL(ip->ip_vhl) << 2), |
| 1828 | ip->ip_len, &sw_csum); |
| 1829 | |
| 1830 | interface_mtu = ifp->if_mtu; |
| 1831 | |
| 1832 | if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { |
| 1833 | interface_mtu = IN6_LINKMTU(ifp); |
| 1834 | /* Further adjust the size for CLAT46 expansion */ |
| 1835 | interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
| 1836 | } |
| 1837 | |
| 1838 | /* |
| 1839 | * If small enough for interface, or the interface will take |
| 1840 | * care of the fragmentation for us, can just send directly. |
| 1841 | */ |
| 1842 | if ((u_short)ip->ip_len <= interface_mtu || TSO_IPV4_OK(ifp, m) || |
| 1843 | (!(ip->ip_off & IP_DF) && (ifp->if_hwassist & CSUM_FRAGMENT))) { |
| 1844 | #if BYTE_ORDER != BIG_ENDIAN |
| 1845 | HTONS(ip->ip_len); |
| 1846 | HTONS(ip->ip_off); |
| 1847 | #endif |
| 1848 | |
| 1849 | ip->ip_sum = 0; |
| 1850 | if (sw_csum & CSUM_DELAY_IP) { |
| 1851 | ip->ip_sum = ip_cksum_hdr_out(m, hlen); |
| 1852 | sw_csum &= ~CSUM_DELAY_IP; |
| 1853 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 1854 | } |
| 1855 | |
| 1856 | #if IPSEC |
| 1857 | /* clean ipsec history once it goes out of the node */ |
| 1858 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) |
| 1859 | ipsec_delaux(m); |
| 1860 | #endif /* IPSEC */ |
| 1861 | if ((m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) && |
| 1862 | (m->m_pkthdr.tso_segsz > 0)) |
| 1863 | scnt += m->m_pkthdr.len / m->m_pkthdr.tso_segsz; |
| 1864 | else |
| 1865 | scnt++; |
| 1866 | |
| 1867 | if (packetchain == 0) { |
| 1868 | if (ro->ro_rt != NULL && nstat_collect) |
| 1869 | nstat_route_tx(ro->ro_rt, scnt, |
| 1870 | m->m_pkthdr.len, 0); |
| 1871 | |
| 1872 | error = dlil_output(ifp, PF_INET, m, ro->ro_rt, |
| 1873 | SA(dst), 0, adv); |
| 1874 | if (dlil_verbose && error) { |
| 1875 | printf("dlil_output error on interface %s: %d\n" , |
| 1876 | ifp->if_xname, error); |
| 1877 | } |
| 1878 | scnt = 0; |
| 1879 | goto done; |
| 1880 | } else { |
| 1881 | /* |
| 1882 | * packet chaining allows us to reuse the |
| 1883 | * route for all packets |
| 1884 | */ |
| 1885 | bytecnt += m->m_pkthdr.len; |
| 1886 | mppn = &m->m_nextpkt; |
| 1887 | m = m->m_nextpkt; |
| 1888 | if (m == NULL) { |
| 1889 | #if PF |
| 1890 | sendchain: |
| 1891 | #endif /* PF */ |
| 1892 | if (pktcnt > ip_maxchainsent) |
| 1893 | ip_maxchainsent = pktcnt; |
| 1894 | if (ro->ro_rt != NULL && nstat_collect) |
| 1895 | nstat_route_tx(ro->ro_rt, scnt, |
| 1896 | bytecnt, 0); |
| 1897 | |
| 1898 | error = dlil_output(ifp, PF_INET, packetlist, |
| 1899 | ro->ro_rt, SA(dst), 0, adv); |
| 1900 | if (dlil_verbose && error) { |
| 1901 | printf("dlil_output error on interface %s: %d\n" , |
| 1902 | ifp->if_xname, error); |
| 1903 | } |
| 1904 | pktcnt = 0; |
| 1905 | scnt = 0; |
| 1906 | bytecnt = 0; |
| 1907 | goto done; |
| 1908 | |
| 1909 | } |
| 1910 | m0 = m; |
| 1911 | pktcnt++; |
| 1912 | goto loopit; |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | VERIFY(interface_mtu != 0); |
| 1917 | /* |
| 1918 | * Too large for interface; fragment if possible. |
| 1919 | * Must be able to put at least 8 bytes per fragment. |
| 1920 | * Balk when DF bit is set or the interface didn't support TSO. |
| 1921 | */ |
| 1922 | if ((ip->ip_off & IP_DF) || pktcnt > 0 || |
| 1923 | (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) { |
| 1924 | error = EMSGSIZE; |
| 1925 | /* |
| 1926 | * This case can happen if the user changed the MTU |
| 1927 | * of an interface after enabling IP on it. Because |
| 1928 | * most netifs don't keep track of routes pointing to |
| 1929 | * them, there is no way for one to update all its |
| 1930 | * routes when the MTU is changed. |
| 1931 | */ |
| 1932 | if (ro->ro_rt) { |
| 1933 | RT_LOCK_SPIN(ro->ro_rt); |
| 1934 | if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) && |
| 1935 | !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) && |
| 1936 | (ro->ro_rt->rt_rmx.rmx_mtu > interface_mtu)) { |
| 1937 | ro->ro_rt->rt_rmx.rmx_mtu = interface_mtu; |
| 1938 | } |
| 1939 | RT_UNLOCK(ro->ro_rt); |
| 1940 | } |
| 1941 | if (pktcnt > 0) { |
| 1942 | m0 = packetlist; |
| 1943 | } |
| 1944 | OSAddAtomic(1, &ipstat.ips_cantfrag); |
| 1945 | goto bad; |
| 1946 | } |
| 1947 | |
| 1948 | /* |
| 1949 | * XXX Only TCP seems to be passing a list of packets here. |
| 1950 | * The following issue is limited to UDP datagrams with 0 checksum. |
| 1951 | * For now limit it to the case when single packet is passed down. |
| 1952 | */ |
| 1953 | if (packetchain == 0 && IS_INTF_CLAT46(ifp)) { |
| 1954 | /* |
| 1955 | * If it is a UDP packet that has checksum set to 0 |
| 1956 | * and is also not being offloaded, compute a full checksum |
| 1957 | * and update the UDP checksum. |
| 1958 | */ |
| 1959 | if (ip->ip_p == IPPROTO_UDP && |
| 1960 | !(m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_PARTIAL))) { |
| 1961 | struct udphdr *uh = NULL; |
| 1962 | |
| 1963 | if (m->m_len < hlen + sizeof (struct udphdr)) { |
| 1964 | m = m_pullup(m, hlen + sizeof (struct udphdr)); |
| 1965 | if (m == NULL) { |
| 1966 | error = ENOBUFS; |
| 1967 | m0 = m; |
| 1968 | goto bad; |
| 1969 | } |
| 1970 | m0 = m; |
| 1971 | ip = mtod(m, struct ip *); |
| 1972 | } |
| 1973 | /* |
| 1974 | * Get UDP header and if checksum is 0, then compute the full |
| 1975 | * checksum. |
| 1976 | */ |
| 1977 | uh = (struct udphdr *)(void *)((caddr_t)ip + hlen); |
| 1978 | if (uh->uh_sum == 0) { |
| 1979 | uh->uh_sum = inet_cksum(m, IPPROTO_UDP, hlen, |
| 1980 | ip->ip_len - hlen); |
| 1981 | if (uh->uh_sum == 0) |
| 1982 | uh->uh_sum = 0xffff; |
| 1983 | } |
| 1984 | } |
| 1985 | } |
| 1986 | |
| 1987 | error = ip_fragment(m, ifp, interface_mtu, sw_csum); |
| 1988 | if (error != 0) { |
| 1989 | m0 = m = NULL; |
| 1990 | goto bad; |
| 1991 | } |
| 1992 | |
| 1993 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, |
| 1994 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); |
| 1995 | |
| 1996 | for (m = m0; m; m = m0) { |
| 1997 | m0 = m->m_nextpkt; |
| 1998 | m->m_nextpkt = 0; |
| 1999 | #if IPSEC |
| 2000 | /* clean ipsec history once it goes out of the node */ |
| 2001 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) |
| 2002 | ipsec_delaux(m); |
| 2003 | #endif /* IPSEC */ |
| 2004 | if (error == 0) { |
| 2005 | if ((packetchain != 0) && (pktcnt > 0)) { |
| 2006 | panic("%s: mix of packet in packetlist is " |
| 2007 | "wrong=%p" , __func__, packetlist); |
| 2008 | /* NOTREACHED */ |
| 2009 | } |
| 2010 | if (ro->ro_rt != NULL && nstat_collect) { |
| 2011 | nstat_route_tx(ro->ro_rt, 1, |
| 2012 | m->m_pkthdr.len, 0); |
| 2013 | } |
| 2014 | error = dlil_output(ifp, PF_INET, m, ro->ro_rt, |
| 2015 | SA(dst), 0, adv); |
| 2016 | if (dlil_verbose && error) { |
| 2017 | printf("dlil_output error on interface %s: %d\n" , |
| 2018 | ifp->if_xname, error); |
| 2019 | } |
| 2020 | } else { |
| 2021 | m_freem(m); |
| 2022 | } |
| 2023 | } |
| 2024 | |
| 2025 | if (error == 0) |
| 2026 | OSAddAtomic(1, &ipstat.ips_fragmented); |
| 2027 | |
| 2028 | done: |
| 2029 | if (ia != NULL) { |
| 2030 | IFA_REMREF(&ia->ia_ifa); |
| 2031 | ia = NULL; |
| 2032 | } |
| 2033 | #if IPSEC |
| 2034 | ROUTE_RELEASE(&ipsec_state.ro); |
| 2035 | if (sp != NULL) { |
| 2036 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
| 2037 | printf("DP ip_output call free SP:%x\n" , sp)); |
| 2038 | key_freesp(sp, KEY_SADB_UNLOCKED); |
| 2039 | } |
| 2040 | #endif /* IPSEC */ |
| 2041 | #if NECP |
| 2042 | ROUTE_RELEASE(&necp_route); |
| 2043 | #endif /* NECP */ |
| 2044 | #if DUMMYNET |
| 2045 | ROUTE_RELEASE(&saved_route); |
| 2046 | #endif /* DUMMYNET */ |
| 2047 | #if IPFIREWALL_FORWARD |
| 2048 | ROUTE_RELEASE(&sro_fwd); |
| 2049 | #endif /* IPFIREWALL_FORWARD */ |
| 2050 | |
| 2051 | KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0); |
| 2052 | if (ip_output_measure) { |
| 2053 | net_perf_measure_time(&net_perf, &start_tv, packets_processed); |
| 2054 | net_perf_histogram(&net_perf, packets_processed); |
| 2055 | } |
| 2056 | return (error); |
| 2057 | bad: |
| 2058 | if (pktcnt > 0) |
| 2059 | m0 = packetlist; |
| 2060 | m_freem_list(m0); |
| 2061 | goto done; |
| 2062 | |
| 2063 | #undef ipsec_state |
| 2064 | #undef args |
| 2065 | #undef sro_fwd |
| 2066 | #undef saved_route |
| 2067 | #undef ipf_pktopts |
| 2068 | #undef IP_CHECK_RESTRICTIONS |
| 2069 | } |
| 2070 | |
| 2071 | int |
| 2072 | ip_fragment(struct mbuf *m, struct ifnet *ifp, unsigned long mtu, int sw_csum) |
| 2073 | { |
| 2074 | struct ip *ip, *mhip; |
| 2075 | int len, hlen, mhlen, firstlen, off, error = 0; |
| 2076 | struct mbuf **mnext = &m->m_nextpkt, *m0; |
| 2077 | int nfrags = 1; |
| 2078 | |
| 2079 | ip = mtod(m, struct ip *); |
| 2080 | #ifdef _IP_VHL |
| 2081 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 2082 | #else /* !_IP_VHL */ |
| 2083 | hlen = ip->ip_hl << 2; |
| 2084 | #endif /* !_IP_VHL */ |
| 2085 | |
| 2086 | #ifdef INET6 |
| 2087 | /* |
| 2088 | * We need to adjust the fragment sizes to account |
| 2089 | * for IPv6 fragment header if it needs to be translated |
| 2090 | * from IPv4 to IPv6. |
| 2091 | */ |
| 2092 | if (IS_INTF_CLAT46(ifp)) |
| 2093 | mtu -= sizeof(struct ip6_frag); |
| 2094 | |
| 2095 | #endif |
| 2096 | firstlen = len = (mtu - hlen) &~ 7; |
| 2097 | if (len < 8) { |
| 2098 | m_freem(m); |
| 2099 | return (EMSGSIZE); |
| 2100 | } |
| 2101 | |
| 2102 | /* |
| 2103 | * if the interface will not calculate checksums on |
| 2104 | * fragmented packets, then do it here. |
| 2105 | */ |
| 2106 | if ((m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) && |
| 2107 | !(ifp->if_hwassist & CSUM_IP_FRAGS)) |
| 2108 | in_delayed_cksum(m); |
| 2109 | |
| 2110 | /* |
| 2111 | * Loop through length of segment after first fragment, |
| 2112 | * make new header and copy data of each part and link onto chain. |
| 2113 | */ |
| 2114 | m0 = m; |
| 2115 | mhlen = sizeof (struct ip); |
| 2116 | for (off = hlen + len; off < (u_short)ip->ip_len; off += len) { |
| 2117 | MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */ |
| 2118 | if (m == NULL) { |
| 2119 | error = ENOBUFS; |
| 2120 | OSAddAtomic(1, &ipstat.ips_odropped); |
| 2121 | goto sendorfree; |
| 2122 | } |
| 2123 | m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG; |
| 2124 | m->m_data += max_linkhdr; |
| 2125 | mhip = mtod(m, struct ip *); |
| 2126 | *mhip = *ip; |
| 2127 | if (hlen > sizeof (struct ip)) { |
| 2128 | mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); |
| 2129 | mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2); |
| 2130 | } |
| 2131 | m->m_len = mhlen; |
| 2132 | mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF); |
| 2133 | if (ip->ip_off & IP_MF) |
| 2134 | mhip->ip_off |= IP_MF; |
| 2135 | if (off + len >= (u_short)ip->ip_len) |
| 2136 | len = (u_short)ip->ip_len - off; |
| 2137 | else |
| 2138 | mhip->ip_off |= IP_MF; |
| 2139 | mhip->ip_len = htons((u_short)(len + mhlen)); |
| 2140 | m->m_next = m_copy(m0, off, len); |
| 2141 | if (m->m_next == NULL) { |
| 2142 | (void) m_free(m); |
| 2143 | error = ENOBUFS; /* ??? */ |
| 2144 | OSAddAtomic(1, &ipstat.ips_odropped); |
| 2145 | goto sendorfree; |
| 2146 | } |
| 2147 | m->m_pkthdr.len = mhlen + len; |
| 2148 | m->m_pkthdr.rcvif = NULL; |
| 2149 | m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags; |
| 2150 | |
| 2151 | M_COPY_CLASSIFIER(m, m0); |
| 2152 | M_COPY_PFTAG(m, m0); |
| 2153 | |
| 2154 | #if CONFIG_MACF_NET |
| 2155 | mac_netinet_fragment(m0, m); |
| 2156 | #endif /* CONFIG_MACF_NET */ |
| 2157 | |
| 2158 | #if BYTE_ORDER != BIG_ENDIAN |
| 2159 | HTONS(mhip->ip_off); |
| 2160 | #endif |
| 2161 | |
| 2162 | mhip->ip_sum = 0; |
| 2163 | if (sw_csum & CSUM_DELAY_IP) { |
| 2164 | mhip->ip_sum = ip_cksum_hdr_out(m, mhlen); |
| 2165 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 2166 | } |
| 2167 | *mnext = m; |
| 2168 | mnext = &m->m_nextpkt; |
| 2169 | nfrags++; |
| 2170 | } |
| 2171 | OSAddAtomic(nfrags, &ipstat.ips_ofragments); |
| 2172 | |
| 2173 | /* set first/last markers for fragment chain */ |
| 2174 | m->m_flags |= M_LASTFRAG; |
| 2175 | m0->m_flags |= M_FIRSTFRAG | M_FRAG; |
| 2176 | m0->m_pkthdr.csum_data = nfrags; |
| 2177 | |
| 2178 | /* |
| 2179 | * Update first fragment by trimming what's been copied out |
| 2180 | * and updating header, then send each fragment (in order). |
| 2181 | */ |
| 2182 | m = m0; |
| 2183 | m_adj(m, hlen + firstlen - (u_short)ip->ip_len); |
| 2184 | m->m_pkthdr.len = hlen + firstlen; |
| 2185 | ip->ip_len = htons((u_short)m->m_pkthdr.len); |
| 2186 | ip->ip_off |= IP_MF; |
| 2187 | |
| 2188 | #if BYTE_ORDER != BIG_ENDIAN |
| 2189 | HTONS(ip->ip_off); |
| 2190 | #endif |
| 2191 | |
| 2192 | ip->ip_sum = 0; |
| 2193 | if (sw_csum & CSUM_DELAY_IP) { |
| 2194 | ip->ip_sum = ip_cksum_hdr_out(m, hlen); |
| 2195 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 2196 | } |
| 2197 | sendorfree: |
| 2198 | if (error) |
| 2199 | m_freem_list(m0); |
| 2200 | |
| 2201 | return (error); |
| 2202 | } |
| 2203 | |
| 2204 | static void |
| 2205 | ip_out_cksum_stats(int proto, u_int32_t len) |
| 2206 | { |
| 2207 | switch (proto) { |
| 2208 | case IPPROTO_TCP: |
| 2209 | tcp_out_cksum_stats(len); |
| 2210 | break; |
| 2211 | case IPPROTO_UDP: |
| 2212 | udp_out_cksum_stats(len); |
| 2213 | break; |
| 2214 | default: |
| 2215 | /* keep only TCP or UDP stats for now */ |
| 2216 | break; |
| 2217 | } |
| 2218 | } |
| 2219 | |
| 2220 | /* |
| 2221 | * Process a delayed payload checksum calculation (outbound path.) |
| 2222 | * |
| 2223 | * hoff is the number of bytes beyond the mbuf data pointer which |
| 2224 | * points to the IP header. |
| 2225 | * |
| 2226 | * Returns a bitmask representing all the work done in software. |
| 2227 | */ |
| 2228 | uint32_t |
| 2229 | in_finalize_cksum(struct mbuf *m, uint32_t hoff, uint32_t csum_flags) |
| 2230 | { |
| 2231 | unsigned char buf[15 << 2] __attribute__((aligned(8))); |
| 2232 | struct ip *ip; |
| 2233 | uint32_t offset, _hlen, mlen, hlen, len, sw_csum; |
| 2234 | uint16_t csum, ip_len; |
| 2235 | |
| 2236 | _CASSERT(sizeof (csum) == sizeof (uint16_t)); |
| 2237 | VERIFY(m->m_flags & M_PKTHDR); |
| 2238 | |
| 2239 | sw_csum = (csum_flags & m->m_pkthdr.csum_flags); |
| 2240 | |
| 2241 | if ((sw_csum &= (CSUM_DELAY_IP | CSUM_DELAY_DATA)) == 0) |
| 2242 | goto done; |
| 2243 | |
| 2244 | mlen = m->m_pkthdr.len; /* total mbuf len */ |
| 2245 | |
| 2246 | /* sanity check (need at least simple IP header) */ |
| 2247 | if (mlen < (hoff + sizeof (*ip))) { |
| 2248 | panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr " |
| 2249 | "(%u+%u)\n" , __func__, m, mlen, hoff, |
| 2250 | (uint32_t)sizeof (*ip)); |
| 2251 | /* NOTREACHED */ |
| 2252 | } |
| 2253 | |
| 2254 | /* |
| 2255 | * In case the IP header is not contiguous, or not 32-bit aligned, |
| 2256 | * or if we're computing the IP header checksum, copy it to a local |
| 2257 | * buffer. Copy only the simple IP header here (IP options case |
| 2258 | * is handled below.) |
| 2259 | */ |
| 2260 | if ((sw_csum & CSUM_DELAY_IP) || (hoff + sizeof (*ip)) > m->m_len || |
| 2261 | !IP_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) { |
| 2262 | m_copydata(m, hoff, sizeof (*ip), (caddr_t)buf); |
| 2263 | ip = (struct ip *)(void *)buf; |
| 2264 | _hlen = sizeof (*ip); |
| 2265 | } else { |
| 2266 | ip = (struct ip *)(void *)(m->m_data + hoff); |
| 2267 | _hlen = 0; |
| 2268 | } |
| 2269 | |
| 2270 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; /* IP header len */ |
| 2271 | |
| 2272 | /* sanity check */ |
| 2273 | if (mlen < (hoff + hlen)) { |
| 2274 | panic("%s: mbuf %p pkt too short (%d) for IP header (%u), " |
| 2275 | "hoff %u" , __func__, m, mlen, hlen, hoff); |
| 2276 | /* NOTREACHED */ |
| 2277 | } |
| 2278 | |
| 2279 | /* |
| 2280 | * We could be in the context of an IP or interface filter; in the |
| 2281 | * former case, ip_len would be in host (correct) order while for |
| 2282 | * the latter it would be in network order. Because of this, we |
| 2283 | * attempt to interpret the length field by comparing it against |
| 2284 | * the actual packet length. If the comparison fails, byte swap |
| 2285 | * the length and check again. If it still fails, use the actual |
| 2286 | * packet length. This also covers the trailing bytes case. |
| 2287 | */ |
| 2288 | ip_len = ip->ip_len; |
| 2289 | if (ip_len != (mlen - hoff)) { |
| 2290 | ip_len = OSSwapInt16(ip_len); |
| 2291 | if (ip_len != (mlen - hoff)) { |
| 2292 | printf("%s: mbuf 0x%llx proto %d IP len %d (%x) " |
| 2293 | "[swapped %d (%x)] doesn't match actual packet " |
| 2294 | "length; %d is used instead\n" , __func__, |
| 2295 | (uint64_t)VM_KERNEL_ADDRPERM(m), ip->ip_p, |
| 2296 | ip->ip_len, ip->ip_len, ip_len, ip_len, |
| 2297 | (mlen - hoff)); |
| 2298 | ip_len = mlen - hoff; |
| 2299 | } |
| 2300 | } |
| 2301 | |
| 2302 | len = ip_len - hlen; /* csum span */ |
| 2303 | |
| 2304 | if (sw_csum & CSUM_DELAY_DATA) { |
| 2305 | uint16_t ulpoff; |
| 2306 | |
| 2307 | /* |
| 2308 | * offset is added to the lower 16-bit value of csum_data, |
| 2309 | * which is expected to contain the ULP offset; therefore |
| 2310 | * CSUM_PARTIAL offset adjustment must be undone. |
| 2311 | */ |
| 2312 | if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL|CSUM_DATA_VALID)) == |
| 2313 | (CSUM_PARTIAL|CSUM_DATA_VALID)) { |
| 2314 | /* |
| 2315 | * Get back the original ULP offset (this will |
| 2316 | * undo the CSUM_PARTIAL logic in ip_output.) |
| 2317 | */ |
| 2318 | m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff - |
| 2319 | m->m_pkthdr.csum_tx_start); |
| 2320 | } |
| 2321 | |
| 2322 | ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */ |
| 2323 | offset = hoff + hlen; /* ULP header */ |
| 2324 | |
| 2325 | if (mlen < (ulpoff + sizeof (csum))) { |
| 2326 | panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP " |
| 2327 | "cksum offset (%u) cksum flags 0x%x\n" , __func__, |
| 2328 | m, mlen, ip->ip_p, ulpoff, m->m_pkthdr.csum_flags); |
| 2329 | /* NOTREACHED */ |
| 2330 | } |
| 2331 | |
| 2332 | csum = inet_cksum(m, 0, offset, len); |
| 2333 | |
| 2334 | /* Update stats */ |
| 2335 | ip_out_cksum_stats(ip->ip_p, len); |
| 2336 | |
| 2337 | /* RFC1122 4.1.3.4 */ |
| 2338 | if (csum == 0 && |
| 2339 | (m->m_pkthdr.csum_flags & (CSUM_UDP|CSUM_ZERO_INVERT))) |
| 2340 | csum = 0xffff; |
| 2341 | |
| 2342 | /* Insert the checksum in the ULP csum field */ |
| 2343 | offset += ulpoff; |
| 2344 | if (offset + sizeof (csum) > m->m_len) { |
| 2345 | m_copyback(m, offset, sizeof (csum), &csum); |
| 2346 | } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) { |
| 2347 | *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum; |
| 2348 | } else { |
| 2349 | bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum)); |
| 2350 | } |
| 2351 | m->m_pkthdr.csum_flags &= ~(CSUM_DELAY_DATA | CSUM_DATA_VALID | |
| 2352 | CSUM_PARTIAL | CSUM_ZERO_INVERT); |
| 2353 | } |
| 2354 | |
| 2355 | if (sw_csum & CSUM_DELAY_IP) { |
| 2356 | /* IP header must be in the local buffer */ |
| 2357 | VERIFY(_hlen == sizeof (*ip)); |
| 2358 | if (_hlen != hlen) { |
| 2359 | VERIFY(hlen <= sizeof (buf)); |
| 2360 | m_copydata(m, hoff, hlen, (caddr_t)buf); |
| 2361 | ip = (struct ip *)(void *)buf; |
| 2362 | _hlen = hlen; |
| 2363 | } |
| 2364 | |
| 2365 | /* |
| 2366 | * Compute the IP header checksum as if the IP length |
| 2367 | * is the length which we believe is "correct"; see |
| 2368 | * how ip_len gets calculated above. Note that this |
| 2369 | * is done on the local copy and not on the real one. |
| 2370 | */ |
| 2371 | ip->ip_len = htons(ip_len); |
| 2372 | ip->ip_sum = 0; |
| 2373 | csum = in_cksum_hdr_opt(ip); |
| 2374 | |
| 2375 | /* Update stats */ |
| 2376 | ipstat.ips_snd_swcsum++; |
| 2377 | ipstat.ips_snd_swcsum_bytes += hlen; |
| 2378 | |
| 2379 | /* |
| 2380 | * Insert only the checksum in the existing IP header |
| 2381 | * csum field; all other fields are left unchanged. |
| 2382 | */ |
| 2383 | offset = hoff + offsetof(struct ip, ip_sum); |
| 2384 | if (offset + sizeof (csum) > m->m_len) { |
| 2385 | m_copyback(m, offset, sizeof (csum), &csum); |
| 2386 | } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) { |
| 2387 | *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum; |
| 2388 | } else { |
| 2389 | bcopy(&csum, (mtod(m, char *) + offset), sizeof (csum)); |
| 2390 | } |
| 2391 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 2392 | } |
| 2393 | |
| 2394 | done: |
| 2395 | return (sw_csum); |
| 2396 | } |
| 2397 | |
| 2398 | /* |
| 2399 | * Insert IP options into preformed packet. |
| 2400 | * Adjust IP destination as required for IP source routing, |
| 2401 | * as indicated by a non-zero in_addr at the start of the options. |
| 2402 | * |
| 2403 | * XXX This routine assumes that the packet has no options in place. |
| 2404 | */ |
| 2405 | static struct mbuf * |
| 2406 | ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) |
| 2407 | { |
| 2408 | struct ipoption *p = mtod(opt, struct ipoption *); |
| 2409 | struct mbuf *n; |
| 2410 | struct ip *ip = mtod(m, struct ip *); |
| 2411 | unsigned optlen; |
| 2412 | |
| 2413 | optlen = opt->m_len - sizeof (p->ipopt_dst); |
| 2414 | if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) |
| 2415 | return (m); /* XXX should fail */ |
| 2416 | if (p->ipopt_dst.s_addr) |
| 2417 | ip->ip_dst = p->ipopt_dst; |
| 2418 | if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) { |
| 2419 | MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */ |
| 2420 | if (n == NULL) |
| 2421 | return (m); |
| 2422 | n->m_pkthdr.rcvif = 0; |
| 2423 | #if CONFIG_MACF_NET |
| 2424 | mac_mbuf_label_copy(m, n); |
| 2425 | #endif /* CONFIG_MACF_NET */ |
| 2426 | n->m_pkthdr.len = m->m_pkthdr.len + optlen; |
| 2427 | m->m_len -= sizeof (struct ip); |
| 2428 | m->m_data += sizeof (struct ip); |
| 2429 | n->m_next = m; |
| 2430 | m = n; |
| 2431 | m->m_len = optlen + sizeof (struct ip); |
| 2432 | m->m_data += max_linkhdr; |
| 2433 | (void) memcpy(mtod(m, void *), ip, sizeof (struct ip)); |
| 2434 | } else { |
| 2435 | m->m_data -= optlen; |
| 2436 | m->m_len += optlen; |
| 2437 | m->m_pkthdr.len += optlen; |
| 2438 | ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof (struct ip)); |
| 2439 | } |
| 2440 | ip = mtod(m, struct ip *); |
| 2441 | bcopy(p->ipopt_list, ip + 1, optlen); |
| 2442 | *phlen = sizeof (struct ip) + optlen; |
| 2443 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2); |
| 2444 | ip->ip_len += optlen; |
| 2445 | return (m); |
| 2446 | } |
| 2447 | |
| 2448 | /* |
| 2449 | * Copy options from ip to jp, |
| 2450 | * omitting those not copied during fragmentation. |
| 2451 | */ |
| 2452 | static int |
| 2453 | ip_optcopy(struct ip *ip, struct ip *jp) |
| 2454 | { |
| 2455 | u_char *cp, *dp; |
| 2456 | int opt, optlen, cnt; |
| 2457 | |
| 2458 | cp = (u_char *)(ip + 1); |
| 2459 | dp = (u_char *)(jp + 1); |
| 2460 | cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); |
| 2461 | for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| 2462 | opt = cp[0]; |
| 2463 | if (opt == IPOPT_EOL) |
| 2464 | break; |
| 2465 | if (opt == IPOPT_NOP) { |
| 2466 | /* Preserve for IP mcast tunnel's LSRR alignment. */ |
| 2467 | *dp++ = IPOPT_NOP; |
| 2468 | optlen = 1; |
| 2469 | continue; |
| 2470 | } |
| 2471 | #if DIAGNOSTIC |
| 2472 | if (cnt < IPOPT_OLEN + sizeof (*cp)) { |
| 2473 | panic("malformed IPv4 option passed to ip_optcopy" ); |
| 2474 | /* NOTREACHED */ |
| 2475 | } |
| 2476 | #endif |
| 2477 | optlen = cp[IPOPT_OLEN]; |
| 2478 | #if DIAGNOSTIC |
| 2479 | if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt) { |
| 2480 | panic("malformed IPv4 option passed to ip_optcopy" ); |
| 2481 | /* NOTREACHED */ |
| 2482 | } |
| 2483 | #endif |
| 2484 | /* bogus lengths should have been caught by ip_dooptions */ |
| 2485 | if (optlen > cnt) |
| 2486 | optlen = cnt; |
| 2487 | if (IPOPT_COPIED(opt)) { |
| 2488 | bcopy(cp, dp, optlen); |
| 2489 | dp += optlen; |
| 2490 | } |
| 2491 | } |
| 2492 | for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) |
| 2493 | *dp++ = IPOPT_EOL; |
| 2494 | return (optlen); |
| 2495 | } |
| 2496 | |
| 2497 | /* |
| 2498 | * IP socket option processing. |
| 2499 | */ |
| 2500 | int |
| 2501 | ip_ctloutput(struct socket *so, struct sockopt *sopt) |
| 2502 | { |
| 2503 | struct inpcb *inp = sotoinpcb(so); |
| 2504 | int error, optval; |
| 2505 | |
| 2506 | error = optval = 0; |
| 2507 | if (sopt->sopt_level != IPPROTO_IP) |
| 2508 | return (EINVAL); |
| 2509 | |
| 2510 | switch (sopt->sopt_dir) { |
| 2511 | case SOPT_SET: |
| 2512 | switch (sopt->sopt_name) { |
| 2513 | #ifdef notyet |
| 2514 | case IP_RETOPTS: |
| 2515 | #endif |
| 2516 | case IP_OPTIONS: { |
| 2517 | struct mbuf *m; |
| 2518 | |
| 2519 | if (sopt->sopt_valsize > MLEN) { |
| 2520 | error = EMSGSIZE; |
| 2521 | break; |
| 2522 | } |
| 2523 | MGET(m, sopt->sopt_p != kernproc ? M_WAIT : M_DONTWAIT, |
| 2524 | MT_HEADER); |
| 2525 | if (m == NULL) { |
| 2526 | error = ENOBUFS; |
| 2527 | break; |
| 2528 | } |
| 2529 | m->m_len = sopt->sopt_valsize; |
| 2530 | error = sooptcopyin(sopt, mtod(m, char *), |
| 2531 | m->m_len, m->m_len); |
| 2532 | if (error) { |
| 2533 | m_freem(m); |
| 2534 | break; |
| 2535 | } |
| 2536 | |
| 2537 | return (ip_pcbopts(sopt->sopt_name, |
| 2538 | &inp->inp_options, m)); |
| 2539 | } |
| 2540 | |
| 2541 | case IP_TOS: |
| 2542 | case IP_TTL: |
| 2543 | case IP_RECVOPTS: |
| 2544 | case IP_RECVRETOPTS: |
| 2545 | case IP_RECVDSTADDR: |
| 2546 | case IP_RECVIF: |
| 2547 | case IP_RECVTTL: |
| 2548 | case IP_RECVPKTINFO: |
| 2549 | case IP_RECVTOS: |
| 2550 | error = sooptcopyin(sopt, &optval, sizeof (optval), |
| 2551 | sizeof (optval)); |
| 2552 | if (error) |
| 2553 | break; |
| 2554 | |
| 2555 | switch (sopt->sopt_name) { |
| 2556 | case IP_TOS: |
| 2557 | inp->inp_ip_tos = optval; |
| 2558 | break; |
| 2559 | |
| 2560 | case IP_TTL: |
| 2561 | inp->inp_ip_ttl = optval; |
| 2562 | break; |
| 2563 | #define OPTSET(bit) \ |
| 2564 | if (optval) \ |
| 2565 | inp->inp_flags |= bit; \ |
| 2566 | else \ |
| 2567 | inp->inp_flags &= ~bit; |
| 2568 | |
| 2569 | case IP_RECVOPTS: |
| 2570 | OPTSET(INP_RECVOPTS); |
| 2571 | break; |
| 2572 | |
| 2573 | case IP_RECVRETOPTS: |
| 2574 | OPTSET(INP_RECVRETOPTS); |
| 2575 | break; |
| 2576 | |
| 2577 | case IP_RECVDSTADDR: |
| 2578 | OPTSET(INP_RECVDSTADDR); |
| 2579 | break; |
| 2580 | |
| 2581 | case IP_RECVIF: |
| 2582 | OPTSET(INP_RECVIF); |
| 2583 | break; |
| 2584 | |
| 2585 | case IP_RECVTTL: |
| 2586 | OPTSET(INP_RECVTTL); |
| 2587 | break; |
| 2588 | |
| 2589 | case IP_RECVPKTINFO: |
| 2590 | OPTSET(INP_PKTINFO); |
| 2591 | break; |
| 2592 | |
| 2593 | case IP_RECVTOS: |
| 2594 | OPTSET(INP_RECVTOS); |
| 2595 | break; |
| 2596 | #undef OPTSET |
| 2597 | } |
| 2598 | break; |
| 2599 | /* |
| 2600 | * Multicast socket options are processed by the in_mcast |
| 2601 | * module. |
| 2602 | */ |
| 2603 | case IP_MULTICAST_IF: |
| 2604 | case IP_MULTICAST_IFINDEX: |
| 2605 | case IP_MULTICAST_VIF: |
| 2606 | case IP_MULTICAST_TTL: |
| 2607 | case IP_MULTICAST_LOOP: |
| 2608 | case IP_ADD_MEMBERSHIP: |
| 2609 | case IP_DROP_MEMBERSHIP: |
| 2610 | case IP_ADD_SOURCE_MEMBERSHIP: |
| 2611 | case IP_DROP_SOURCE_MEMBERSHIP: |
| 2612 | case IP_BLOCK_SOURCE: |
| 2613 | case IP_UNBLOCK_SOURCE: |
| 2614 | case IP_MSFILTER: |
| 2615 | case MCAST_JOIN_GROUP: |
| 2616 | case MCAST_LEAVE_GROUP: |
| 2617 | case MCAST_JOIN_SOURCE_GROUP: |
| 2618 | case MCAST_LEAVE_SOURCE_GROUP: |
| 2619 | case MCAST_BLOCK_SOURCE: |
| 2620 | case MCAST_UNBLOCK_SOURCE: |
| 2621 | error = inp_setmoptions(inp, sopt); |
| 2622 | break; |
| 2623 | |
| 2624 | case IP_PORTRANGE: |
| 2625 | error = sooptcopyin(sopt, &optval, sizeof (optval), |
| 2626 | sizeof (optval)); |
| 2627 | if (error) |
| 2628 | break; |
| 2629 | |
| 2630 | switch (optval) { |
| 2631 | case IP_PORTRANGE_DEFAULT: |
| 2632 | inp->inp_flags &= ~(INP_LOWPORT); |
| 2633 | inp->inp_flags &= ~(INP_HIGHPORT); |
| 2634 | break; |
| 2635 | |
| 2636 | case IP_PORTRANGE_HIGH: |
| 2637 | inp->inp_flags &= ~(INP_LOWPORT); |
| 2638 | inp->inp_flags |= INP_HIGHPORT; |
| 2639 | break; |
| 2640 | |
| 2641 | case IP_PORTRANGE_LOW: |
| 2642 | inp->inp_flags &= ~(INP_HIGHPORT); |
| 2643 | inp->inp_flags |= INP_LOWPORT; |
| 2644 | break; |
| 2645 | |
| 2646 | default: |
| 2647 | error = EINVAL; |
| 2648 | break; |
| 2649 | } |
| 2650 | break; |
| 2651 | |
| 2652 | #if IPSEC |
| 2653 | case IP_IPSEC_POLICY: { |
| 2654 | caddr_t req = NULL; |
| 2655 | size_t len = 0; |
| 2656 | int priv; |
| 2657 | struct mbuf *m; |
| 2658 | int optname; |
| 2659 | |
| 2660 | if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ |
| 2661 | break; |
| 2662 | if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ |
| 2663 | break; |
| 2664 | priv = (proc_suser(sopt->sopt_p) == 0); |
| 2665 | if (m) { |
| 2666 | req = mtod(m, caddr_t); |
| 2667 | len = m->m_len; |
| 2668 | } |
| 2669 | optname = sopt->sopt_name; |
| 2670 | error = ipsec4_set_policy(inp, optname, req, len, priv); |
| 2671 | m_freem(m); |
| 2672 | break; |
| 2673 | } |
| 2674 | #endif /* IPSEC */ |
| 2675 | |
| 2676 | #if TRAFFIC_MGT |
| 2677 | case IP_TRAFFIC_MGT_BACKGROUND: { |
| 2678 | unsigned background = 0; |
| 2679 | |
| 2680 | error = sooptcopyin(sopt, &background, |
| 2681 | sizeof (background), sizeof (background)); |
| 2682 | if (error) |
| 2683 | break; |
| 2684 | |
| 2685 | if (background) { |
| 2686 | socket_set_traffic_mgt_flags_locked(so, |
| 2687 | TRAFFIC_MGT_SO_BACKGROUND); |
| 2688 | } else { |
| 2689 | socket_clear_traffic_mgt_flags_locked(so, |
| 2690 | TRAFFIC_MGT_SO_BACKGROUND); |
| 2691 | } |
| 2692 | |
| 2693 | break; |
| 2694 | } |
| 2695 | #endif /* TRAFFIC_MGT */ |
| 2696 | |
| 2697 | /* |
| 2698 | * On a multihomed system, scoped routing can be used to |
| 2699 | * restrict the source interface used for sending packets. |
| 2700 | * The socket option IP_BOUND_IF binds a particular AF_INET |
| 2701 | * socket to an interface such that data sent on the socket |
| 2702 | * is restricted to that interface. This is unlike the |
| 2703 | * SO_DONTROUTE option where the routing table is bypassed; |
| 2704 | * therefore it allows for a greater flexibility and control |
| 2705 | * over the system behavior, and does not place any restriction |
| 2706 | * on the destination address type (e.g. unicast, multicast, |
| 2707 | * or broadcast if applicable) or whether or not the host is |
| 2708 | * directly reachable. Note that in the multicast transmit |
| 2709 | * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over |
| 2710 | * IP_BOUND_IF, since the former practically bypasses the |
| 2711 | * routing table; in this case, IP_BOUND_IF sets the default |
| 2712 | * interface used for sending multicast packets in the absence |
| 2713 | * of an explicit multicast transmit interface. |
| 2714 | */ |
| 2715 | case IP_BOUND_IF: |
| 2716 | /* This option is settable only for IPv4 */ |
| 2717 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2718 | error = EINVAL; |
| 2719 | break; |
| 2720 | } |
| 2721 | |
| 2722 | error = sooptcopyin(sopt, &optval, sizeof (optval), |
| 2723 | sizeof (optval)); |
| 2724 | |
| 2725 | if (error) |
| 2726 | break; |
| 2727 | |
| 2728 | error = inp_bindif(inp, optval, NULL); |
| 2729 | break; |
| 2730 | |
| 2731 | case IP_NO_IFT_CELLULAR: |
| 2732 | /* This option is settable only for IPv4 */ |
| 2733 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2734 | error = EINVAL; |
| 2735 | break; |
| 2736 | } |
| 2737 | |
| 2738 | error = sooptcopyin(sopt, &optval, sizeof (optval), |
| 2739 | sizeof (optval)); |
| 2740 | |
| 2741 | if (error) |
| 2742 | break; |
| 2743 | |
| 2744 | /* once set, it cannot be unset */ |
| 2745 | if (!optval && INP_NO_CELLULAR(inp)) { |
| 2746 | error = EINVAL; |
| 2747 | break; |
| 2748 | } |
| 2749 | |
| 2750 | error = so_set_restrictions(so, |
| 2751 | SO_RESTRICT_DENY_CELLULAR); |
| 2752 | break; |
| 2753 | |
| 2754 | case IP_OUT_IF: |
| 2755 | /* This option is not settable */ |
| 2756 | error = EINVAL; |
| 2757 | break; |
| 2758 | |
| 2759 | default: |
| 2760 | error = ENOPROTOOPT; |
| 2761 | break; |
| 2762 | } |
| 2763 | break; |
| 2764 | |
| 2765 | case SOPT_GET: |
| 2766 | switch (sopt->sopt_name) { |
| 2767 | case IP_OPTIONS: |
| 2768 | case IP_RETOPTS: |
| 2769 | if (inp->inp_options) { |
| 2770 | error = sooptcopyout(sopt, |
| 2771 | mtod(inp->inp_options, char *), |
| 2772 | inp->inp_options->m_len); |
| 2773 | } else { |
| 2774 | sopt->sopt_valsize = 0; |
| 2775 | } |
| 2776 | break; |
| 2777 | |
| 2778 | case IP_TOS: |
| 2779 | case IP_TTL: |
| 2780 | case IP_RECVOPTS: |
| 2781 | case IP_RECVRETOPTS: |
| 2782 | case IP_RECVDSTADDR: |
| 2783 | case IP_RECVIF: |
| 2784 | case IP_RECVTTL: |
| 2785 | case IP_PORTRANGE: |
| 2786 | case IP_RECVPKTINFO: |
| 2787 | case IP_RECVTOS: |
| 2788 | switch (sopt->sopt_name) { |
| 2789 | case IP_TOS: |
| 2790 | optval = inp->inp_ip_tos; |
| 2791 | break; |
| 2792 | |
| 2793 | case IP_TTL: |
| 2794 | optval = inp->inp_ip_ttl; |
| 2795 | break; |
| 2796 | |
| 2797 | #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) |
| 2798 | |
| 2799 | case IP_RECVOPTS: |
| 2800 | optval = OPTBIT(INP_RECVOPTS); |
| 2801 | break; |
| 2802 | |
| 2803 | case IP_RECVRETOPTS: |
| 2804 | optval = OPTBIT(INP_RECVRETOPTS); |
| 2805 | break; |
| 2806 | |
| 2807 | case IP_RECVDSTADDR: |
| 2808 | optval = OPTBIT(INP_RECVDSTADDR); |
| 2809 | break; |
| 2810 | |
| 2811 | case IP_RECVIF: |
| 2812 | optval = OPTBIT(INP_RECVIF); |
| 2813 | break; |
| 2814 | |
| 2815 | case IP_RECVTTL: |
| 2816 | optval = OPTBIT(INP_RECVTTL); |
| 2817 | break; |
| 2818 | |
| 2819 | case IP_PORTRANGE: |
| 2820 | if (inp->inp_flags & INP_HIGHPORT) |
| 2821 | optval = IP_PORTRANGE_HIGH; |
| 2822 | else if (inp->inp_flags & INP_LOWPORT) |
| 2823 | optval = IP_PORTRANGE_LOW; |
| 2824 | else |
| 2825 | optval = 0; |
| 2826 | break; |
| 2827 | |
| 2828 | case IP_RECVPKTINFO: |
| 2829 | optval = OPTBIT(INP_PKTINFO); |
| 2830 | break; |
| 2831 | |
| 2832 | case IP_RECVTOS: |
| 2833 | optval = OPTBIT(INP_RECVTOS); |
| 2834 | break; |
| 2835 | } |
| 2836 | error = sooptcopyout(sopt, &optval, sizeof (optval)); |
| 2837 | break; |
| 2838 | |
| 2839 | case IP_MULTICAST_IF: |
| 2840 | case IP_MULTICAST_IFINDEX: |
| 2841 | case IP_MULTICAST_VIF: |
| 2842 | case IP_MULTICAST_TTL: |
| 2843 | case IP_MULTICAST_LOOP: |
| 2844 | case IP_MSFILTER: |
| 2845 | error = inp_getmoptions(inp, sopt); |
| 2846 | break; |
| 2847 | |
| 2848 | #if IPSEC |
| 2849 | case IP_IPSEC_POLICY: { |
| 2850 | error = 0; /* This option is no longer supported */ |
| 2851 | break; |
| 2852 | } |
| 2853 | #endif /* IPSEC */ |
| 2854 | |
| 2855 | #if TRAFFIC_MGT |
| 2856 | case IP_TRAFFIC_MGT_BACKGROUND: { |
| 2857 | unsigned background = (so->so_flags1 & |
| 2858 | SOF1_TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0; |
| 2859 | return (sooptcopyout(sopt, &background, |
| 2860 | sizeof (background))); |
| 2861 | } |
| 2862 | #endif /* TRAFFIC_MGT */ |
| 2863 | |
| 2864 | case IP_BOUND_IF: |
| 2865 | if (inp->inp_flags & INP_BOUND_IF) |
| 2866 | optval = inp->inp_boundifp->if_index; |
| 2867 | error = sooptcopyout(sopt, &optval, sizeof (optval)); |
| 2868 | break; |
| 2869 | |
| 2870 | case IP_NO_IFT_CELLULAR: |
| 2871 | optval = INP_NO_CELLULAR(inp) ? 1 : 0; |
| 2872 | error = sooptcopyout(sopt, &optval, sizeof (optval)); |
| 2873 | break; |
| 2874 | |
| 2875 | case IP_OUT_IF: |
| 2876 | optval = (inp->inp_last_outifp != NULL) ? |
| 2877 | inp->inp_last_outifp->if_index : 0; |
| 2878 | error = sooptcopyout(sopt, &optval, sizeof (optval)); |
| 2879 | break; |
| 2880 | |
| 2881 | default: |
| 2882 | error = ENOPROTOOPT; |
| 2883 | break; |
| 2884 | } |
| 2885 | break; |
| 2886 | } |
| 2887 | return (error); |
| 2888 | } |
| 2889 | |
| 2890 | /* |
| 2891 | * Set up IP options in pcb for insertion in output packets. |
| 2892 | * Store in mbuf with pointer in pcbopt, adding pseudo-option |
| 2893 | * with destination address if source routed. |
| 2894 | */ |
| 2895 | static int |
| 2896 | ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m) |
| 2897 | { |
| 2898 | #pragma unused(optname) |
| 2899 | int cnt, optlen; |
| 2900 | u_char *cp; |
| 2901 | u_char opt; |
| 2902 | |
| 2903 | /* turn off any old options */ |
| 2904 | if (*pcbopt) |
| 2905 | (void) m_free(*pcbopt); |
| 2906 | *pcbopt = 0; |
| 2907 | if (m == (struct mbuf *)0 || m->m_len == 0) { |
| 2908 | /* |
| 2909 | * Only turning off any previous options. |
| 2910 | */ |
| 2911 | if (m) |
| 2912 | (void) m_free(m); |
| 2913 | return (0); |
| 2914 | } |
| 2915 | |
| 2916 | if (m->m_len % sizeof (int32_t)) |
| 2917 | goto bad; |
| 2918 | |
| 2919 | /* |
| 2920 | * IP first-hop destination address will be stored before |
| 2921 | * actual options; move other options back |
| 2922 | * and clear it when none present. |
| 2923 | */ |
| 2924 | if (m->m_data + m->m_len + sizeof (struct in_addr) >= &m->m_dat[MLEN]) |
| 2925 | goto bad; |
| 2926 | cnt = m->m_len; |
| 2927 | m->m_len += sizeof (struct in_addr); |
| 2928 | cp = mtod(m, u_char *) + sizeof (struct in_addr); |
| 2929 | ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt); |
| 2930 | bzero(mtod(m, caddr_t), sizeof (struct in_addr)); |
| 2931 | |
| 2932 | for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| 2933 | opt = cp[IPOPT_OPTVAL]; |
| 2934 | if (opt == IPOPT_EOL) |
| 2935 | break; |
| 2936 | if (opt == IPOPT_NOP) |
| 2937 | optlen = 1; |
| 2938 | else { |
| 2939 | if (cnt < IPOPT_OLEN + sizeof (*cp)) |
| 2940 | goto bad; |
| 2941 | optlen = cp[IPOPT_OLEN]; |
| 2942 | if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt) |
| 2943 | goto bad; |
| 2944 | } |
| 2945 | switch (opt) { |
| 2946 | |
| 2947 | default: |
| 2948 | break; |
| 2949 | |
| 2950 | case IPOPT_LSRR: |
| 2951 | case IPOPT_SSRR: |
| 2952 | /* |
| 2953 | * user process specifies route as: |
| 2954 | * ->A->B->C->D |
| 2955 | * D must be our final destination (but we can't |
| 2956 | * check that since we may not have connected yet). |
| 2957 | * A is first hop destination, which doesn't appear in |
| 2958 | * actual IP option, but is stored before the options. |
| 2959 | */ |
| 2960 | if (optlen < IPOPT_MINOFF - 1 + sizeof (struct in_addr)) |
| 2961 | goto bad; |
| 2962 | m->m_len -= sizeof (struct in_addr); |
| 2963 | cnt -= sizeof (struct in_addr); |
| 2964 | optlen -= sizeof (struct in_addr); |
| 2965 | cp[IPOPT_OLEN] = optlen; |
| 2966 | /* |
| 2967 | * Move first hop before start of options. |
| 2968 | */ |
| 2969 | bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t), |
| 2970 | sizeof (struct in_addr)); |
| 2971 | /* |
| 2972 | * Then copy rest of options back |
| 2973 | * to close up the deleted entry. |
| 2974 | */ |
| 2975 | ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] + |
| 2976 | sizeof (struct in_addr)), |
| 2977 | (caddr_t)&cp[IPOPT_OFFSET+1], |
| 2978 | (unsigned)cnt + sizeof (struct in_addr)); |
| 2979 | break; |
| 2980 | } |
| 2981 | } |
| 2982 | if (m->m_len > MAX_IPOPTLEN + sizeof (struct in_addr)) |
| 2983 | goto bad; |
| 2984 | *pcbopt = m; |
| 2985 | return (0); |
| 2986 | |
| 2987 | bad: |
| 2988 | (void) m_free(m); |
| 2989 | return (EINVAL); |
| 2990 | } |
| 2991 | |
| 2992 | void |
| 2993 | ip_moptions_init(void) |
| 2994 | { |
| 2995 | PE_parse_boot_argn("ifa_debug" , &imo_debug, sizeof (imo_debug)); |
| 2996 | |
| 2997 | imo_size = (imo_debug == 0) ? sizeof (struct ip_moptions) : |
| 2998 | sizeof (struct ip_moptions_dbg); |
| 2999 | |
| 3000 | imo_zone = zinit(imo_size, IMO_ZONE_MAX * imo_size, 0, |
| 3001 | IMO_ZONE_NAME); |
| 3002 | if (imo_zone == NULL) { |
| 3003 | panic("%s: failed allocating %s" , __func__, IMO_ZONE_NAME); |
| 3004 | /* NOTREACHED */ |
| 3005 | } |
| 3006 | zone_change(imo_zone, Z_EXPAND, TRUE); |
| 3007 | } |
| 3008 | |
| 3009 | void |
| 3010 | imo_addref(struct ip_moptions *imo, int locked) |
| 3011 | { |
| 3012 | if (!locked) |
| 3013 | IMO_LOCK(imo); |
| 3014 | else |
| 3015 | IMO_LOCK_ASSERT_HELD(imo); |
| 3016 | |
| 3017 | if (++imo->imo_refcnt == 0) { |
| 3018 | panic("%s: imo %p wraparound refcnt\n" , __func__, imo); |
| 3019 | /* NOTREACHED */ |
| 3020 | } else if (imo->imo_trace != NULL) { |
| 3021 | (*imo->imo_trace)(imo, TRUE); |
| 3022 | } |
| 3023 | |
| 3024 | if (!locked) |
| 3025 | IMO_UNLOCK(imo); |
| 3026 | } |
| 3027 | |
| 3028 | void |
| 3029 | imo_remref(struct ip_moptions *imo) |
| 3030 | { |
| 3031 | int i; |
| 3032 | |
| 3033 | IMO_LOCK(imo); |
| 3034 | if (imo->imo_refcnt == 0) { |
| 3035 | panic("%s: imo %p negative refcnt" , __func__, imo); |
| 3036 | /* NOTREACHED */ |
| 3037 | } else if (imo->imo_trace != NULL) { |
| 3038 | (*imo->imo_trace)(imo, FALSE); |
| 3039 | } |
| 3040 | |
| 3041 | --imo->imo_refcnt; |
| 3042 | if (imo->imo_refcnt > 0) { |
| 3043 | IMO_UNLOCK(imo); |
| 3044 | return; |
| 3045 | } |
| 3046 | |
| 3047 | for (i = 0; i < imo->imo_num_memberships; ++i) { |
| 3048 | struct in_mfilter *imf; |
| 3049 | |
| 3050 | imf = imo->imo_mfilters ? &imo->imo_mfilters[i] : NULL; |
| 3051 | if (imf != NULL) |
| 3052 | imf_leave(imf); |
| 3053 | |
| 3054 | (void) in_leavegroup(imo->imo_membership[i], imf); |
| 3055 | |
| 3056 | if (imf != NULL) |
| 3057 | imf_purge(imf); |
| 3058 | |
| 3059 | INM_REMREF(imo->imo_membership[i]); |
| 3060 | imo->imo_membership[i] = NULL; |
| 3061 | } |
| 3062 | imo->imo_num_memberships = 0; |
| 3063 | if (imo->imo_mfilters != NULL) { |
| 3064 | FREE(imo->imo_mfilters, M_INMFILTER); |
| 3065 | imo->imo_mfilters = NULL; |
| 3066 | } |
| 3067 | if (imo->imo_membership != NULL) { |
| 3068 | FREE(imo->imo_membership, M_IPMOPTS); |
| 3069 | imo->imo_membership = NULL; |
| 3070 | } |
| 3071 | IMO_UNLOCK(imo); |
| 3072 | |
| 3073 | lck_mtx_destroy(&imo->imo_lock, ifa_mtx_grp); |
| 3074 | |
| 3075 | if (!(imo->imo_debug & IFD_ALLOC)) { |
| 3076 | panic("%s: imo %p cannot be freed" , __func__, imo); |
| 3077 | /* NOTREACHED */ |
| 3078 | } |
| 3079 | zfree(imo_zone, imo); |
| 3080 | } |
| 3081 | |
| 3082 | static void |
| 3083 | imo_trace(struct ip_moptions *imo, int refhold) |
| 3084 | { |
| 3085 | struct ip_moptions_dbg *imo_dbg = (struct ip_moptions_dbg *)imo; |
| 3086 | ctrace_t *tr; |
| 3087 | u_int32_t idx; |
| 3088 | u_int16_t *cnt; |
| 3089 | |
| 3090 | if (!(imo->imo_debug & IFD_DEBUG)) { |
| 3091 | panic("%s: imo %p has no debug structure" , __func__, imo); |
| 3092 | /* NOTREACHED */ |
| 3093 | } |
| 3094 | if (refhold) { |
| 3095 | cnt = &imo_dbg->imo_refhold_cnt; |
| 3096 | tr = imo_dbg->imo_refhold; |
| 3097 | } else { |
| 3098 | cnt = &imo_dbg->imo_refrele_cnt; |
| 3099 | tr = imo_dbg->imo_refrele; |
| 3100 | } |
| 3101 | |
| 3102 | idx = atomic_add_16_ov(cnt, 1) % IMO_TRACE_HIST_SIZE; |
| 3103 | ctrace_record(&tr[idx]); |
| 3104 | } |
| 3105 | |
| 3106 | struct ip_moptions * |
| 3107 | ip_allocmoptions(int how) |
| 3108 | { |
| 3109 | struct ip_moptions *imo; |
| 3110 | |
| 3111 | imo = (how == M_WAITOK) ? zalloc(imo_zone) : zalloc_noblock(imo_zone); |
| 3112 | if (imo != NULL) { |
| 3113 | bzero(imo, imo_size); |
| 3114 | lck_mtx_init(&imo->imo_lock, ifa_mtx_grp, ifa_mtx_attr); |
| 3115 | imo->imo_debug |= IFD_ALLOC; |
| 3116 | if (imo_debug != 0) { |
| 3117 | imo->imo_debug |= IFD_DEBUG; |
| 3118 | imo->imo_trace = imo_trace; |
| 3119 | } |
| 3120 | IMO_ADDREF(imo); |
| 3121 | } |
| 3122 | |
| 3123 | return (imo); |
| 3124 | } |
| 3125 | |
| 3126 | /* |
| 3127 | * Routine called from ip_output() to loop back a copy of an IP multicast |
| 3128 | * packet to the input queue of a specified interface. Note that this |
| 3129 | * calls the output routine of the loopback "driver", but with an interface |
| 3130 | * pointer that might NOT be a loopback interface -- evil, but easier than |
| 3131 | * replicating that code here. |
| 3132 | */ |
| 3133 | static void |
| 3134 | ip_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m, |
| 3135 | struct sockaddr_in *dst, int hlen) |
| 3136 | { |
| 3137 | struct mbuf *copym; |
| 3138 | struct ip *ip; |
| 3139 | |
| 3140 | if (lo_ifp == NULL) |
| 3141 | return; |
| 3142 | |
| 3143 | /* |
| 3144 | * Copy the packet header as it's needed for the checksum |
| 3145 | * Make sure to deep-copy IP header portion in case the data |
| 3146 | * is in an mbuf cluster, so that we can safely override the IP |
| 3147 | * header portion later. |
| 3148 | */ |
| 3149 | copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, M_COPYM_COPY_HDR); |
| 3150 | if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < hlen)) |
| 3151 | copym = m_pullup(copym, hlen); |
| 3152 | |
| 3153 | if (copym == NULL) |
| 3154 | return; |
| 3155 | |
| 3156 | /* |
| 3157 | * We don't bother to fragment if the IP length is greater |
| 3158 | * than the interface's MTU. Can this possibly matter? |
| 3159 | */ |
| 3160 | ip = mtod(copym, struct ip *); |
| 3161 | #if BYTE_ORDER != BIG_ENDIAN |
| 3162 | HTONS(ip->ip_len); |
| 3163 | HTONS(ip->ip_off); |
| 3164 | #endif |
| 3165 | ip->ip_sum = 0; |
| 3166 | ip->ip_sum = ip_cksum_hdr_out(copym, hlen); |
| 3167 | |
| 3168 | /* |
| 3169 | * Mark checksum as valid unless receive checksum offload is |
| 3170 | * disabled; if so, compute checksum in software. If the |
| 3171 | * interface itself is lo0, this will be overridden by if_loop. |
| 3172 | */ |
| 3173 | if (hwcksum_rx) { |
| 3174 | copym->m_pkthdr.csum_flags &= ~(CSUM_PARTIAL|CSUM_ZERO_INVERT); |
| 3175 | copym->m_pkthdr.csum_flags |= |
| 3176 | CSUM_DATA_VALID | CSUM_PSEUDO_HDR; |
| 3177 | copym->m_pkthdr.csum_data = 0xffff; |
| 3178 | } else if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { |
| 3179 | #if BYTE_ORDER != BIG_ENDIAN |
| 3180 | NTOHS(ip->ip_len); |
| 3181 | #endif |
| 3182 | in_delayed_cksum(copym); |
| 3183 | #if BYTE_ORDER != BIG_ENDIAN |
| 3184 | HTONS(ip->ip_len); |
| 3185 | #endif |
| 3186 | } |
| 3187 | |
| 3188 | /* |
| 3189 | * Stuff the 'real' ifp into the pkthdr, to be used in matching |
| 3190 | * in ip_input(); we need the loopback ifp/dl_tag passed as args |
| 3191 | * to make the loopback driver compliant with the data link |
| 3192 | * requirements. |
| 3193 | */ |
| 3194 | copym->m_pkthdr.rcvif = origifp; |
| 3195 | |
| 3196 | /* |
| 3197 | * Also record the source interface (which owns the source address). |
| 3198 | * This is basically a stripped down version of ifa_foraddr(). |
| 3199 | */ |
| 3200 | if (srcifp == NULL) { |
| 3201 | struct in_ifaddr *ia; |
| 3202 | |
| 3203 | lck_rw_lock_shared(in_ifaddr_rwlock); |
| 3204 | TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_src.s_addr), ia_hash) { |
| 3205 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 3206 | if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_src.s_addr) { |
| 3207 | srcifp = ia->ia_ifp; |
| 3208 | IFA_UNLOCK(&ia->ia_ifa); |
| 3209 | break; |
| 3210 | } |
| 3211 | IFA_UNLOCK(&ia->ia_ifa); |
| 3212 | } |
| 3213 | lck_rw_done(in_ifaddr_rwlock); |
| 3214 | } |
| 3215 | if (srcifp != NULL) |
| 3216 | ip_setsrcifaddr_info(copym, srcifp->if_index, NULL); |
| 3217 | ip_setdstifaddr_info(copym, origifp->if_index, NULL); |
| 3218 | |
| 3219 | dlil_output(lo_ifp, PF_INET, copym, NULL, SA(dst), 0, NULL); |
| 3220 | } |
| 3221 | |
| 3222 | /* |
| 3223 | * Given a source IP address (and route, if available), determine the best |
| 3224 | * interface to send the packet from. Checking for (and updating) the |
| 3225 | * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done |
| 3226 | * without any locks based on the assumption that ip_output() is single- |
| 3227 | * threaded per-pcb, i.e. for any given pcb there can only be one thread |
| 3228 | * performing output at the IP layer. |
| 3229 | * |
| 3230 | * This routine is analogous to in6_selectroute() for IPv6. |
| 3231 | */ |
| 3232 | static struct ifaddr * |
| 3233 | in_selectsrcif(struct ip *ip, struct route *ro, unsigned int ifscope) |
| 3234 | { |
| 3235 | struct ifaddr *ifa = NULL; |
| 3236 | struct in_addr src = ip->ip_src; |
| 3237 | struct in_addr dst = ip->ip_dst; |
| 3238 | struct ifnet *rt_ifp; |
| 3239 | char s_src[MAX_IPv4_STR_LEN], s_dst[MAX_IPv4_STR_LEN]; |
| 3240 | |
| 3241 | VERIFY(src.s_addr != INADDR_ANY); |
| 3242 | |
| 3243 | if (ip_select_srcif_debug) { |
| 3244 | (void) inet_ntop(AF_INET, &src.s_addr, s_src, sizeof (s_src)); |
| 3245 | (void) inet_ntop(AF_INET, &dst.s_addr, s_dst, sizeof (s_dst)); |
| 3246 | } |
| 3247 | |
| 3248 | if (ro->ro_rt != NULL) |
| 3249 | RT_LOCK(ro->ro_rt); |
| 3250 | |
| 3251 | rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL; |
| 3252 | |
| 3253 | /* |
| 3254 | * Given the source IP address, find a suitable source interface |
| 3255 | * to use for transmission; if the caller has specified a scope, |
| 3256 | * optimize the search by looking at the addresses only for that |
| 3257 | * interface. This is still suboptimal, however, as we need to |
| 3258 | * traverse the per-interface list. |
| 3259 | */ |
| 3260 | if (ifscope != IFSCOPE_NONE || ro->ro_rt != NULL) { |
| 3261 | unsigned int scope = ifscope; |
| 3262 | |
| 3263 | /* |
| 3264 | * If no scope is specified and the route is stale (pointing |
| 3265 | * to a defunct interface) use the current primary interface; |
| 3266 | * this happens when switching between interfaces configured |
| 3267 | * with the same IP address. Otherwise pick up the scope |
| 3268 | * information from the route; the ULP may have looked up a |
| 3269 | * correct route and we just need to verify it here and mark |
| 3270 | * it with the ROF_SRCIF_SELECTED flag below. |
| 3271 | */ |
| 3272 | if (scope == IFSCOPE_NONE) { |
| 3273 | scope = rt_ifp->if_index; |
| 3274 | if (scope != get_primary_ifscope(AF_INET) && |
| 3275 | ROUTE_UNUSABLE(ro)) |
| 3276 | scope = get_primary_ifscope(AF_INET); |
| 3277 | } |
| 3278 | |
| 3279 | ifa = (struct ifaddr *)ifa_foraddr_scoped(src.s_addr, scope); |
| 3280 | |
| 3281 | if (ifa == NULL && ip->ip_p != IPPROTO_UDP && |
| 3282 | ip->ip_p != IPPROTO_TCP && ipforwarding) { |
| 3283 | /* |
| 3284 | * If forwarding is enabled, and if the packet isn't |
| 3285 | * TCP or UDP, check if the source address belongs |
| 3286 | * to one of our own interfaces; if so, demote the |
| 3287 | * interface scope and do a route lookup right below. |
| 3288 | */ |
| 3289 | ifa = (struct ifaddr *)ifa_foraddr(src.s_addr); |
| 3290 | if (ifa != NULL) { |
| 3291 | IFA_REMREF(ifa); |
| 3292 | ifa = NULL; |
| 3293 | ifscope = IFSCOPE_NONE; |
| 3294 | } |
| 3295 | } |
| 3296 | |
| 3297 | if (ip_select_srcif_debug && ifa != NULL) { |
| 3298 | if (ro->ro_rt != NULL) { |
| 3299 | printf("%s->%s ifscope %d->%d ifa_if %s " |
| 3300 | "ro_if %s\n" , s_src, s_dst, ifscope, |
| 3301 | scope, if_name(ifa->ifa_ifp), |
| 3302 | if_name(rt_ifp)); |
| 3303 | } else { |
| 3304 | printf("%s->%s ifscope %d->%d ifa_if %s\n" , |
| 3305 | s_src, s_dst, ifscope, scope, |
| 3306 | if_name(ifa->ifa_ifp)); |
| 3307 | } |
| 3308 | } |
| 3309 | } |
| 3310 | |
| 3311 | /* |
| 3312 | * Slow path; search for an interface having the corresponding source |
| 3313 | * IP address if the scope was not specified by the caller, and: |
| 3314 | * |
| 3315 | * 1) There currently isn't any route, or, |
| 3316 | * 2) The interface used by the route does not own that source |
| 3317 | * IP address; in this case, the route will get blown away |
| 3318 | * and we'll do a more specific scoped search using the newly |
| 3319 | * found interface. |
| 3320 | */ |
| 3321 | if (ifa == NULL && ifscope == IFSCOPE_NONE) { |
| 3322 | ifa = (struct ifaddr *)ifa_foraddr(src.s_addr); |
| 3323 | |
| 3324 | /* |
| 3325 | * If we have the IP address, but not the route, we don't |
| 3326 | * really know whether or not it belongs to the correct |
| 3327 | * interface (it could be shared across multiple interfaces.) |
| 3328 | * The only way to find out is to do a route lookup. |
| 3329 | */ |
| 3330 | if (ifa != NULL && ro->ro_rt == NULL) { |
| 3331 | struct rtentry *rt; |
| 3332 | struct sockaddr_in sin; |
| 3333 | struct ifaddr *oifa = NULL; |
| 3334 | |
| 3335 | bzero(&sin, sizeof (sin)); |
| 3336 | sin.sin_family = AF_INET; |
| 3337 | sin.sin_len = sizeof (sin); |
| 3338 | sin.sin_addr = dst; |
| 3339 | |
| 3340 | lck_mtx_lock(rnh_lock); |
| 3341 | if ((rt = rt_lookup(TRUE, SA(&sin), NULL, |
| 3342 | rt_tables[AF_INET], IFSCOPE_NONE)) != NULL) { |
| 3343 | RT_LOCK(rt); |
| 3344 | /* |
| 3345 | * If the route uses a different interface, |
| 3346 | * use that one instead. The IP address of |
| 3347 | * the ifaddr that we pick up here is not |
| 3348 | * relevant. |
| 3349 | */ |
| 3350 | if (ifa->ifa_ifp != rt->rt_ifp) { |
| 3351 | oifa = ifa; |
| 3352 | ifa = rt->rt_ifa; |
| 3353 | IFA_ADDREF(ifa); |
| 3354 | RT_UNLOCK(rt); |
| 3355 | } else { |
| 3356 | RT_UNLOCK(rt); |
| 3357 | } |
| 3358 | rtfree_locked(rt); |
| 3359 | } |
| 3360 | lck_mtx_unlock(rnh_lock); |
| 3361 | |
| 3362 | if (oifa != NULL) { |
| 3363 | struct ifaddr *iifa; |
| 3364 | |
| 3365 | /* |
| 3366 | * See if the interface pointed to by the |
| 3367 | * route is configured with the source IP |
| 3368 | * address of the packet. |
| 3369 | */ |
| 3370 | iifa = (struct ifaddr *)ifa_foraddr_scoped( |
| 3371 | src.s_addr, ifa->ifa_ifp->if_index); |
| 3372 | |
| 3373 | if (iifa != NULL) { |
| 3374 | /* |
| 3375 | * Found it; drop the original one |
| 3376 | * as well as the route interface |
| 3377 | * address, and use this instead. |
| 3378 | */ |
| 3379 | IFA_REMREF(oifa); |
| 3380 | IFA_REMREF(ifa); |
| 3381 | ifa = iifa; |
| 3382 | } else if (!ipforwarding || |
| 3383 | (rt->rt_flags & RTF_GATEWAY)) { |
| 3384 | /* |
| 3385 | * This interface doesn't have that |
| 3386 | * source IP address; drop the route |
| 3387 | * interface address and just use the |
| 3388 | * original one, and let the caller |
| 3389 | * do a scoped route lookup. |
| 3390 | */ |
| 3391 | IFA_REMREF(ifa); |
| 3392 | ifa = oifa; |
| 3393 | } else { |
| 3394 | /* |
| 3395 | * Forwarding is enabled and the source |
| 3396 | * address belongs to one of our own |
| 3397 | * interfaces which isn't the outgoing |
| 3398 | * interface, and we have a route, and |
| 3399 | * the destination is on a network that |
| 3400 | * is directly attached (onlink); drop |
| 3401 | * the original one and use the route |
| 3402 | * interface address instead. |
| 3403 | */ |
| 3404 | IFA_REMREF(oifa); |
| 3405 | } |
| 3406 | } |
| 3407 | } else if (ifa != NULL && ro->ro_rt != NULL && |
| 3408 | !(ro->ro_rt->rt_flags & RTF_GATEWAY) && |
| 3409 | ifa->ifa_ifp != ro->ro_rt->rt_ifp && ipforwarding) { |
| 3410 | /* |
| 3411 | * Forwarding is enabled and the source address belongs |
| 3412 | * to one of our own interfaces which isn't the same |
| 3413 | * as the interface used by the known route; drop the |
| 3414 | * original one and use the route interface address. |
| 3415 | */ |
| 3416 | IFA_REMREF(ifa); |
| 3417 | ifa = ro->ro_rt->rt_ifa; |
| 3418 | IFA_ADDREF(ifa); |
| 3419 | } |
| 3420 | |
| 3421 | if (ip_select_srcif_debug && ifa != NULL) { |
| 3422 | printf("%s->%s ifscope %d ifa_if %s\n" , |
| 3423 | s_src, s_dst, ifscope, if_name(ifa->ifa_ifp)); |
| 3424 | } |
| 3425 | } |
| 3426 | |
| 3427 | if (ro->ro_rt != NULL) |
| 3428 | RT_LOCK_ASSERT_HELD(ro->ro_rt); |
| 3429 | /* |
| 3430 | * If there is a non-loopback route with the wrong interface, or if |
| 3431 | * there is no interface configured with such an address, blow it |
| 3432 | * away. Except for local/loopback, we look for one with a matching |
| 3433 | * interface scope/index. |
| 3434 | */ |
| 3435 | if (ro->ro_rt != NULL && |
| 3436 | (ifa == NULL || (ifa->ifa_ifp != rt_ifp && rt_ifp != lo_ifp) || |
| 3437 | !(ro->ro_rt->rt_flags & RTF_UP))) { |
| 3438 | if (ip_select_srcif_debug) { |
| 3439 | if (ifa != NULL) { |
| 3440 | printf("%s->%s ifscope %d ro_if %s != " |
| 3441 | "ifa_if %s (cached route cleared)\n" , |
| 3442 | s_src, s_dst, ifscope, if_name(rt_ifp), |
| 3443 | if_name(ifa->ifa_ifp)); |
| 3444 | } else { |
| 3445 | printf("%s->%s ifscope %d ro_if %s " |
| 3446 | "(no ifa_if found)\n" , |
| 3447 | s_src, s_dst, ifscope, if_name(rt_ifp)); |
| 3448 | } |
| 3449 | } |
| 3450 | |
| 3451 | RT_UNLOCK(ro->ro_rt); |
| 3452 | ROUTE_RELEASE(ro); |
| 3453 | |
| 3454 | /* |
| 3455 | * If the destination is IPv4 LLA and the route's interface |
| 3456 | * doesn't match the source interface, then the source IP |
| 3457 | * address is wrong; it most likely belongs to the primary |
| 3458 | * interface associated with the IPv4 LL subnet. Drop the |
| 3459 | * packet rather than letting it go out and return an error |
| 3460 | * to the ULP. This actually applies not only to IPv4 LL |
| 3461 | * but other shared subnets; for now we explicitly test only |
| 3462 | * for the former case and save the latter for future. |
| 3463 | */ |
| 3464 | if (IN_LINKLOCAL(ntohl(dst.s_addr)) && |
| 3465 | !IN_LINKLOCAL(ntohl(src.s_addr)) && ifa != NULL) { |
| 3466 | IFA_REMREF(ifa); |
| 3467 | ifa = NULL; |
| 3468 | } |
| 3469 | } |
| 3470 | |
| 3471 | if (ip_select_srcif_debug && ifa == NULL) { |
| 3472 | printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n" , |
| 3473 | s_src, s_dst, ifscope); |
| 3474 | } |
| 3475 | |
| 3476 | /* |
| 3477 | * If there is a route, mark it accordingly. If there isn't one, |
| 3478 | * we'll get here again during the next transmit (possibly with a |
| 3479 | * route) and the flag will get set at that point. For IPv4 LLA |
| 3480 | * destination, mark it only if the route has been fully resolved; |
| 3481 | * otherwise we want to come back here again when the route points |
| 3482 | * to the interface over which the ARP reply arrives on. |
| 3483 | */ |
| 3484 | if (ro->ro_rt != NULL && (!IN_LINKLOCAL(ntohl(dst.s_addr)) || |
| 3485 | (ro->ro_rt->rt_gateway->sa_family == AF_LINK && |
| 3486 | SDL(ro->ro_rt->rt_gateway)->sdl_alen != 0))) { |
| 3487 | if (ifa != NULL) |
| 3488 | IFA_ADDREF(ifa); /* for route */ |
| 3489 | if (ro->ro_srcia != NULL) |
| 3490 | IFA_REMREF(ro->ro_srcia); |
| 3491 | ro->ro_srcia = ifa; |
| 3492 | ro->ro_flags |= ROF_SRCIF_SELECTED; |
| 3493 | RT_GENID_SYNC(ro->ro_rt); |
| 3494 | } |
| 3495 | |
| 3496 | if (ro->ro_rt != NULL) |
| 3497 | RT_UNLOCK(ro->ro_rt); |
| 3498 | |
| 3499 | return (ifa); |
| 3500 | } |
| 3501 | |
| 3502 | /* |
| 3503 | * @brief Given outgoing interface it determines what checksum needs |
| 3504 | * to be computed in software and what needs to be offloaded to the |
| 3505 | * interface. |
| 3506 | * |
| 3507 | * @param ifp Pointer to the outgoing interface |
| 3508 | * @param m Pointer to the packet |
| 3509 | * @param hlen IP header length |
| 3510 | * @param ip_len Total packet size i.e. headers + data payload |
| 3511 | * @param sw_csum Pointer to a software checksum flag set |
| 3512 | * |
| 3513 | * @return void |
| 3514 | */ |
| 3515 | void |
| 3516 | ip_output_checksum(struct ifnet *ifp, struct mbuf *m, int hlen, int ip_len, |
| 3517 | uint32_t *sw_csum) |
| 3518 | { |
| 3519 | int tso = TSO_IPV4_OK(ifp, m); |
| 3520 | uint32_t hwcap = ifp->if_hwassist; |
| 3521 | |
| 3522 | m->m_pkthdr.csum_flags |= CSUM_IP; |
| 3523 | |
| 3524 | if (!hwcksum_tx) { |
| 3525 | /* do all in software; hardware checksum offload is disabled */ |
| 3526 | *sw_csum = (CSUM_DELAY_DATA | CSUM_DELAY_IP) & |
| 3527 | m->m_pkthdr.csum_flags; |
| 3528 | } else { |
| 3529 | /* do in software what the hardware cannot */ |
| 3530 | *sw_csum = m->m_pkthdr.csum_flags & |
| 3531 | ~IF_HWASSIST_CSUM_FLAGS(hwcap); |
| 3532 | } |
| 3533 | |
| 3534 | if (hlen != sizeof (struct ip)) { |
| 3535 | *sw_csum |= ((CSUM_DELAY_DATA | CSUM_DELAY_IP) & |
| 3536 | m->m_pkthdr.csum_flags); |
| 3537 | } else if (!(*sw_csum & CSUM_DELAY_DATA) && (hwcap & CSUM_PARTIAL)) { |
| 3538 | int interface_mtu = ifp->if_mtu; |
| 3539 | |
| 3540 | if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { |
| 3541 | interface_mtu = IN6_LINKMTU(ifp); |
| 3542 | /* Further adjust the size for CLAT46 expansion */ |
| 3543 | interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
| 3544 | } |
| 3545 | |
| 3546 | /* |
| 3547 | * Partial checksum offload, if non-IP fragment, and TCP only |
| 3548 | * (no UDP support, as the hardware may not be able to convert |
| 3549 | * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface |
| 3550 | * supports "invert zero" capability.) |
| 3551 | */ |
| 3552 | if (hwcksum_tx && !tso && |
| 3553 | ((m->m_pkthdr.csum_flags & CSUM_TCP) || |
| 3554 | ((hwcap & CSUM_ZERO_INVERT) && |
| 3555 | (m->m_pkthdr.csum_flags & CSUM_ZERO_INVERT))) && |
| 3556 | ip_len <= interface_mtu) { |
| 3557 | uint16_t start = sizeof (struct ip); |
| 3558 | uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff; |
| 3559 | m->m_pkthdr.csum_flags |= |
| 3560 | (CSUM_DATA_VALID | CSUM_PARTIAL); |
| 3561 | m->m_pkthdr.csum_tx_stuff = (ulpoff + start); |
| 3562 | m->m_pkthdr.csum_tx_start = start; |
| 3563 | /* do IP hdr chksum in software */ |
| 3564 | *sw_csum = CSUM_DELAY_IP; |
| 3565 | } else { |
| 3566 | *sw_csum |= (CSUM_DELAY_DATA & m->m_pkthdr.csum_flags); |
| 3567 | } |
| 3568 | } |
| 3569 | |
| 3570 | if (*sw_csum & CSUM_DELAY_DATA) { |
| 3571 | in_delayed_cksum(m); |
| 3572 | *sw_csum &= ~CSUM_DELAY_DATA; |
| 3573 | } |
| 3574 | |
| 3575 | if (hwcksum_tx) { |
| 3576 | /* |
| 3577 | * Drop off bits that aren't supported by hardware; |
| 3578 | * also make sure to preserve non-checksum related bits. |
| 3579 | */ |
| 3580 | m->m_pkthdr.csum_flags = |
| 3581 | ((m->m_pkthdr.csum_flags & |
| 3582 | (IF_HWASSIST_CSUM_FLAGS(hwcap) | CSUM_DATA_VALID)) | |
| 3583 | (m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK)); |
| 3584 | } else { |
| 3585 | /* drop all bits; hardware checksum offload is disabled */ |
| 3586 | m->m_pkthdr.csum_flags = 0; |
| 3587 | } |
| 3588 | } |
| 3589 | |
| 3590 | /* |
| 3591 | * GRE protocol output for PPP/PPTP |
| 3592 | */ |
| 3593 | int |
| 3594 | ip_gre_output(struct mbuf *m) |
| 3595 | { |
| 3596 | struct route ro; |
| 3597 | int error; |
| 3598 | |
| 3599 | bzero(&ro, sizeof (ro)); |
| 3600 | |
| 3601 | error = ip_output(m, NULL, &ro, 0, NULL, NULL); |
| 3602 | |
| 3603 | ROUTE_RELEASE(&ro); |
| 3604 | |
| 3605 | return (error); |
| 3606 | } |
| 3607 | |
| 3608 | static int |
| 3609 | sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS |
| 3610 | { |
| 3611 | #pragma unused(arg1, arg2) |
| 3612 | int error, i; |
| 3613 | |
| 3614 | i = ip_output_measure; |
| 3615 | error = sysctl_handle_int(oidp, &i, 0, req); |
| 3616 | if (error || req->newptr == USER_ADDR_NULL) |
| 3617 | goto done; |
| 3618 | /* impose bounds */ |
| 3619 | if (i < 0 || i > 1) { |
| 3620 | error = EINVAL; |
| 3621 | goto done; |
| 3622 | } |
| 3623 | if (ip_output_measure != i && i == 1) { |
| 3624 | net_perf_initialize(&net_perf, ip_output_measure_bins); |
| 3625 | } |
| 3626 | ip_output_measure = i; |
| 3627 | done: |
| 3628 | return (error); |
| 3629 | } |
| 3630 | |
| 3631 | static int |
| 3632 | sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS |
| 3633 | { |
| 3634 | #pragma unused(arg1, arg2) |
| 3635 | int error; |
| 3636 | uint64_t i; |
| 3637 | |
| 3638 | i = ip_output_measure_bins; |
| 3639 | error = sysctl_handle_quad(oidp, &i, 0, req); |
| 3640 | if (error || req->newptr == USER_ADDR_NULL) |
| 3641 | goto done; |
| 3642 | /* validate data */ |
| 3643 | if (!net_perf_validate_bins(i)) { |
| 3644 | error = EINVAL; |
| 3645 | goto done; |
| 3646 | } |
| 3647 | ip_output_measure_bins = i; |
| 3648 | done: |
| 3649 | return (error); |
| 3650 | } |
| 3651 | |
| 3652 | static int |
| 3653 | sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS |
| 3654 | { |
| 3655 | #pragma unused(oidp, arg1, arg2) |
| 3656 | if (req->oldptr == USER_ADDR_NULL) |
| 3657 | req->oldlen = (size_t)sizeof (struct ipstat); |
| 3658 | |
| 3659 | return (SYSCTL_OUT(req, &net_perf, MIN(sizeof (net_perf), req->oldlen))); |
| 3660 | } |
| 3661 | |