| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 |
| 61 | */ |
| 62 | /* |
| 63 | * NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce |
| 64 | * support for mandatory and extensible security protections. This notice |
| 65 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 66 | * Version 2.0. |
| 67 | */ |
| 68 | |
| 69 | #define _IP_VHL |
| 70 | |
| 71 | #include <sys/param.h> |
| 72 | #include <sys/systm.h> |
| 73 | #include <sys/mbuf.h> |
| 74 | #include <sys/malloc.h> |
| 75 | #include <sys/domain.h> |
| 76 | #include <sys/protosw.h> |
| 77 | #include <sys/socket.h> |
| 78 | #include <sys/time.h> |
| 79 | #include <sys/kernel.h> |
| 80 | #include <sys/syslog.h> |
| 81 | #include <sys/sysctl.h> |
| 82 | #include <sys/mcache.h> |
| 83 | #include <sys/socketvar.h> |
| 84 | #include <sys/kdebug.h> |
| 85 | #include <mach/mach_time.h> |
| 86 | #include <mach/sdt.h> |
| 87 | |
| 88 | #include <machine/endian.h> |
| 89 | #include <dev/random/randomdev.h> |
| 90 | |
| 91 | #include <kern/queue.h> |
| 92 | #include <kern/locks.h> |
| 93 | #include <libkern/OSAtomic.h> |
| 94 | |
| 95 | #include <pexpert/pexpert.h> |
| 96 | |
| 97 | #include <net/if.h> |
| 98 | #include <net/if_var.h> |
| 99 | #include <net/if_dl.h> |
| 100 | #include <net/route.h> |
| 101 | #include <net/kpi_protocol.h> |
| 102 | #include <net/ntstat.h> |
| 103 | #include <net/dlil.h> |
| 104 | #include <net/classq/classq.h> |
| 105 | #include <net/net_perf.h> |
| 106 | #include <net/init.h> |
| 107 | #if PF |
| 108 | #include <net/pfvar.h> |
| 109 | #endif /* PF */ |
| 110 | |
| 111 | #include <netinet/in.h> |
| 112 | #include <netinet/in_systm.h> |
| 113 | #include <netinet/in_var.h> |
| 114 | #include <netinet/in_arp.h> |
| 115 | #include <netinet/ip.h> |
| 116 | #include <netinet/in_pcb.h> |
| 117 | #include <netinet/ip_var.h> |
| 118 | #include <netinet/ip_icmp.h> |
| 119 | #include <netinet/ip_fw.h> |
| 120 | #include <netinet/ip_divert.h> |
| 121 | #include <netinet/kpi_ipfilter_var.h> |
| 122 | #include <netinet/udp.h> |
| 123 | #include <netinet/udp_var.h> |
| 124 | #include <netinet/bootp.h> |
| 125 | #include <netinet/lro_ext.h> |
| 126 | |
| 127 | #if DUMMYNET |
| 128 | #include <netinet/ip_dummynet.h> |
| 129 | #endif /* DUMMYNET */ |
| 130 | |
| 131 | #if CONFIG_MACF_NET |
| 132 | #include <security/mac_framework.h> |
| 133 | #endif /* CONFIG_MACF_NET */ |
| 134 | |
| 135 | #if IPSEC |
| 136 | #include <netinet6/ipsec.h> |
| 137 | #include <netkey/key.h> |
| 138 | #endif /* IPSEC */ |
| 139 | |
| 140 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0) |
| 141 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2) |
| 142 | #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8)) |
| 143 | |
| 144 | #if IPSEC |
| 145 | extern int ipsec_bypass; |
| 146 | extern lck_mtx_t *sadb_mutex; |
| 147 | |
| 148 | lck_grp_t *sadb_stat_mutex_grp; |
| 149 | lck_grp_attr_t *sadb_stat_mutex_grp_attr; |
| 150 | lck_attr_t *sadb_stat_mutex_attr; |
| 151 | decl_lck_mtx_data(, sadb_stat_mutex_data); |
| 152 | lck_mtx_t *sadb_stat_mutex = &sadb_stat_mutex_data; |
| 153 | #endif /* IPSEC */ |
| 154 | |
| 155 | MBUFQ_HEAD(fq_head); |
| 156 | |
| 157 | static int frag_timeout_run; /* frag timer is scheduled to run */ |
| 158 | static void frag_timeout(void *); |
| 159 | static void frag_sched_timeout(void); |
| 160 | |
| 161 | static struct ipq *ipq_alloc(int); |
| 162 | static void ipq_free(struct ipq *); |
| 163 | static void ipq_updateparams(void); |
| 164 | static void ip_input_second_pass(struct mbuf *, struct ifnet *, |
| 165 | u_int32_t, int, int, struct ip_fw_in_args *, int); |
| 166 | |
| 167 | decl_lck_mtx_data(static, ipqlock); |
| 168 | static lck_attr_t *ipqlock_attr; |
| 169 | static lck_grp_t *ipqlock_grp; |
| 170 | static lck_grp_attr_t *ipqlock_grp_attr; |
| 171 | |
| 172 | /* Packet reassembly stuff */ |
| 173 | #define IPREASS_NHASH_LOG2 6 |
| 174 | #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) |
| 175 | #define IPREASS_HMASK (IPREASS_NHASH - 1) |
| 176 | #define IPREASS_HASH(x, y) \ |
| 177 | (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) |
| 178 | |
| 179 | /* IP fragment reassembly queues (protected by ipqlock) */ |
| 180 | static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; /* ip reassembly queues */ |
| 181 | static int maxnipq; /* max packets in reass queues */ |
| 182 | static u_int32_t maxfragsperpacket; /* max frags/packet in reass queues */ |
| 183 | static u_int32_t nipq; /* # of packets in reass queues */ |
| 184 | static u_int32_t ipq_limit; /* ipq allocation limit */ |
| 185 | static u_int32_t ipq_count; /* current # of allocated ipq's */ |
| 186 | |
| 187 | static int sysctl_ipforwarding SYSCTL_HANDLER_ARGS; |
| 188 | static int sysctl_maxnipq SYSCTL_HANDLER_ARGS; |
| 189 | static int sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS; |
| 190 | |
| 191 | #if (DEBUG || DEVELOPMENT) |
| 192 | static int sysctl_reset_ip_input_stats SYSCTL_HANDLER_ARGS; |
| 193 | static int sysctl_ip_input_measure_bins SYSCTL_HANDLER_ARGS; |
| 194 | static int sysctl_ip_input_getperf SYSCTL_HANDLER_ARGS; |
| 195 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 196 | |
| 197 | int ipforwarding = 0; |
| 198 | SYSCTL_PROC(_net_inet_ip, IPCTL_FORWARDING, forwarding, |
| 199 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ipforwarding, 0, |
| 200 | sysctl_ipforwarding, "I" , "Enable IP forwarding between interfaces" ); |
| 201 | |
| 202 | static int ipsendredirects = 1; /* XXX */ |
| 203 | SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, |
| 204 | CTLFLAG_RW | CTLFLAG_LOCKED, &ipsendredirects, 0, |
| 205 | "Enable sending IP redirects" ); |
| 206 | |
| 207 | int ip_defttl = IPDEFTTL; |
| 208 | SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 209 | &ip_defttl, 0, "Maximum TTL on IP packets" ); |
| 210 | |
| 211 | static int ip_dosourceroute = 0; |
| 212 | SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, |
| 213 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_dosourceroute, 0, |
| 214 | "Enable forwarding source routed IP packets" ); |
| 215 | |
| 216 | static int ip_acceptsourceroute = 0; |
| 217 | SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, |
| 218 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_acceptsourceroute, 0, |
| 219 | "Enable accepting source routed IP packets" ); |
| 220 | |
| 221 | static int ip_sendsourcequench = 0; |
| 222 | SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, |
| 223 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_sendsourcequench, 0, |
| 224 | "Enable the transmission of source quench packets" ); |
| 225 | |
| 226 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, |
| 227 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxnipq, 0, sysctl_maxnipq, |
| 228 | "I" , "Maximum number of IPv4 fragment reassembly queue entries" ); |
| 229 | |
| 230 | SYSCTL_UINT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 231 | &nipq, 0, "Current number of IPv4 fragment reassembly queue entries" ); |
| 232 | |
| 233 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragsperpacket, |
| 234 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxfragsperpacket, 0, |
| 235 | sysctl_maxfragsperpacket, "I" , |
| 236 | "Maximum number of IPv4 fragments allowed per packet" ); |
| 237 | |
| 238 | static uint32_t ip_adj_clear_hwcksum = 0; |
| 239 | SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_clear_hwcksum, |
| 240 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_clear_hwcksum, 0, |
| 241 | "Invalidate hwcksum info when adjusting length" ); |
| 242 | |
| 243 | static uint32_t ip_adj_partial_sum = 1; |
| 244 | SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_partial_sum, |
| 245 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_partial_sum, 0, |
| 246 | "Perform partial sum adjustment of trailing bytes at IP layer" ); |
| 247 | |
| 248 | /* |
| 249 | * XXX - Setting ip_checkinterface mostly implements the receive side of |
| 250 | * the Strong ES model described in RFC 1122, but since the routing table |
| 251 | * and transmit implementation do not implement the Strong ES model, |
| 252 | * setting this to 1 results in an odd hybrid. |
| 253 | * |
| 254 | * XXX - ip_checkinterface currently must be disabled if you use ipnat |
| 255 | * to translate the destination address to another local interface. |
| 256 | * |
| 257 | * XXX - ip_checkinterface must be disabled if you add IP aliases |
| 258 | * to the loopback interface instead of the interface where the |
| 259 | * packets for those addresses are received. |
| 260 | */ |
| 261 | static int ip_checkinterface = 0; |
| 262 | SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 263 | &ip_checkinterface, 0, "Verify packet arrives on correct interface" ); |
| 264 | |
| 265 | static int ip_chaining = 1; |
| 266 | SYSCTL_INT(_net_inet_ip, OID_AUTO, rx_chaining, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 267 | &ip_chaining, 1, "Do receive side ip address based chaining" ); |
| 268 | |
| 269 | static int ip_chainsz = 6; |
| 270 | SYSCTL_INT(_net_inet_ip, OID_AUTO, rx_chainsz, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 271 | &ip_chainsz, 1, "IP receive side max chaining" ); |
| 272 | |
| 273 | #if (DEBUG || DEVELOPMENT) |
| 274 | static int ip_input_measure = 0; |
| 275 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf, |
| 276 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 277 | &ip_input_measure, 0, sysctl_reset_ip_input_stats, "I" , "Do time measurement" ); |
| 278 | |
| 279 | static uint64_t ip_input_measure_bins = 0; |
| 280 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf_bins, |
| 281 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_input_measure_bins, 0, |
| 282 | sysctl_ip_input_measure_bins, "I" , |
| 283 | "bins for chaining performance data histogram" ); |
| 284 | |
| 285 | static net_perf_t net_perf; |
| 286 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf_data, |
| 287 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 288 | 0, 0, sysctl_ip_input_getperf, "S,net_perf" , |
| 289 | "IP input performance data (struct net_perf, net/net_perf.h)" ); |
| 290 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 291 | |
| 292 | #if DIAGNOSTIC |
| 293 | static int ipprintfs = 0; |
| 294 | #endif |
| 295 | |
| 296 | struct protosw *ip_protox[IPPROTO_MAX]; |
| 297 | |
| 298 | static lck_grp_attr_t *in_ifaddr_rwlock_grp_attr; |
| 299 | static lck_grp_t *in_ifaddr_rwlock_grp; |
| 300 | static lck_attr_t *in_ifaddr_rwlock_attr; |
| 301 | decl_lck_rw_data(, in_ifaddr_rwlock_data); |
| 302 | lck_rw_t *in_ifaddr_rwlock = &in_ifaddr_rwlock_data; |
| 303 | |
| 304 | /* Protected by in_ifaddr_rwlock */ |
| 305 | struct in_ifaddrhead in_ifaddrhead; /* first inet address */ |
| 306 | struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */ |
| 307 | |
| 308 | #define INADDR_NHASH 61 |
| 309 | static u_int32_t inaddr_nhash; /* hash table size */ |
| 310 | static u_int32_t inaddr_hashp; /* next largest prime */ |
| 311 | |
| 312 | static int ip_getstat SYSCTL_HANDLER_ARGS; |
| 313 | struct ipstat ipstat; |
| 314 | SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, |
| 315 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 316 | 0, 0, ip_getstat, "S,ipstat" , |
| 317 | "IP statistics (struct ipstat, netinet/ip_var.h)" ); |
| 318 | |
| 319 | #if IPCTL_DEFMTU |
| 320 | SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 321 | &ip_mtu, 0, "Default MTU" ); |
| 322 | #endif /* IPCTL_DEFMTU */ |
| 323 | |
| 324 | #if IPSTEALTH |
| 325 | static int ipstealth = 0; |
| 326 | SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 327 | &ipstealth, 0, "" ); |
| 328 | #endif /* IPSTEALTH */ |
| 329 | |
| 330 | /* Firewall hooks */ |
| 331 | #if IPFIREWALL |
| 332 | ip_fw_chk_t *ip_fw_chk_ptr; |
| 333 | int fw_enable = 1; |
| 334 | int fw_bypass = 1; |
| 335 | int fw_one_pass = 0; |
| 336 | #endif /* IPFIREWALL */ |
| 337 | |
| 338 | #if DUMMYNET |
| 339 | ip_dn_io_t *ip_dn_io_ptr; |
| 340 | #endif /* DUMMYNET */ |
| 341 | |
| 342 | SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal, |
| 343 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local" ); |
| 344 | |
| 345 | struct ip_linklocal_stat ip_linklocal_stat; |
| 346 | SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat, |
| 347 | CTLFLAG_RD | CTLFLAG_LOCKED, &ip_linklocal_stat, ip_linklocal_stat, |
| 348 | "Number of link local packets with TTL less than 255" ); |
| 349 | |
| 350 | SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in, |
| 351 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local input" ); |
| 352 | |
| 353 | int ip_linklocal_in_allowbadttl = 1; |
| 354 | SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl, |
| 355 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_linklocal_in_allowbadttl, 0, |
| 356 | "Allow incoming link local packets with TTL less than 255" ); |
| 357 | |
| 358 | |
| 359 | /* |
| 360 | * We need to save the IP options in case a protocol wants to respond |
| 361 | * to an incoming packet over the same route if the packet got here |
| 362 | * using IP source routing. This allows connection establishment and |
| 363 | * maintenance when the remote end is on a network that is not known |
| 364 | * to us. |
| 365 | */ |
| 366 | static int ip_nhops = 0; |
| 367 | static struct ip_srcrt { |
| 368 | struct in_addr dst; /* final destination */ |
| 369 | char nop; /* one NOP to align */ |
| 370 | char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ |
| 371 | struct in_addr route[MAX_IPOPTLEN / sizeof (struct in_addr)]; |
| 372 | } ip_srcrt; |
| 373 | |
| 374 | static void in_ifaddrhashtbl_init(void); |
| 375 | static void save_rte(u_char *, struct in_addr); |
| 376 | static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *); |
| 377 | static void ip_forward(struct mbuf *, int, struct sockaddr_in *); |
| 378 | static void frag_freef(struct ipqhead *, struct ipq *); |
| 379 | #if IPDIVERT |
| 380 | #ifdef IPDIVERT_44 |
| 381 | static struct mbuf *ip_reass(struct mbuf *, u_int32_t *, u_int16_t *); |
| 382 | #else /* !IPDIVERT_44 */ |
| 383 | static struct mbuf *ip_reass(struct mbuf *, u_int16_t *, u_int16_t *); |
| 384 | #endif /* !IPDIVERT_44 */ |
| 385 | #else /* !IPDIVERT */ |
| 386 | static struct mbuf *ip_reass(struct mbuf *); |
| 387 | #endif /* !IPDIVERT */ |
| 388 | static void ip_fwd_route_copyout(struct ifnet *, struct route *); |
| 389 | static void ip_fwd_route_copyin(struct ifnet *, struct route *); |
| 390 | static inline u_short ip_cksum(struct mbuf *, int); |
| 391 | |
| 392 | int ip_use_randomid = 1; |
| 393 | SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 394 | &ip_use_randomid, 0, "Randomize IP packets IDs" ); |
| 395 | |
| 396 | /* |
| 397 | * On platforms which require strict alignment (currently for anything but |
| 398 | * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not, |
| 399 | * copy the contents of the mbuf chain into a new chain, and free the original |
| 400 | * one. Create some head room in the first mbuf of the new chain, in case |
| 401 | * it's needed later on. |
| 402 | */ |
| 403 | #if defined(__i386__) || defined(__x86_64__) |
| 404 | #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0) |
| 405 | #else /* !__i386__ && !__x86_64__ */ |
| 406 | #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \ |
| 407 | if (!IP_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \ |
| 408 | struct mbuf *_n; \ |
| 409 | struct ifnet *__ifp = (_ifp); \ |
| 410 | atomic_add_64(&(__ifp)->if_alignerrs, 1); \ |
| 411 | if (((_m)->m_flags & M_PKTHDR) && \ |
| 412 | (_m)->m_pkthdr.pkt_hdr != NULL) \ |
| 413 | (_m)->m_pkthdr.pkt_hdr = NULL; \ |
| 414 | _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \ |
| 415 | if (_n == NULL) { \ |
| 416 | atomic_add_32(&ipstat.ips_toosmall, 1); \ |
| 417 | m_freem(_m); \ |
| 418 | (_m) = NULL; \ |
| 419 | _action; \ |
| 420 | } else { \ |
| 421 | VERIFY(_n != (_m)); \ |
| 422 | (_m) = _n; \ |
| 423 | } \ |
| 424 | } \ |
| 425 | } while (0) |
| 426 | #endif /* !__i386__ && !__x86_64__ */ |
| 427 | |
| 428 | /* |
| 429 | * GRE input handler function, settable via ip_gre_register_input() for PPTP. |
| 430 | */ |
| 431 | static gre_input_func_t gre_input_func; |
| 432 | |
| 433 | static void |
| 434 | ip_init_delayed(void) |
| 435 | { |
| 436 | struct ifreq ifr; |
| 437 | int error; |
| 438 | struct sockaddr_in *sin; |
| 439 | |
| 440 | bzero(&ifr, sizeof(ifr)); |
| 441 | strlcpy(ifr.ifr_name, "lo0" , sizeof(ifr.ifr_name)); |
| 442 | sin = (struct sockaddr_in *)(void *)&ifr.ifr_addr; |
| 443 | sin->sin_len = sizeof(struct sockaddr_in); |
| 444 | sin->sin_family = AF_INET; |
| 445 | sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK); |
| 446 | error = in_control(NULL, SIOCSIFADDR, (caddr_t)&ifr, lo_ifp, kernproc); |
| 447 | if (error) |
| 448 | printf("%s: failed to initialise lo0's address, error=%d\n" , |
| 449 | __func__, error); |
| 450 | } |
| 451 | |
| 452 | /* |
| 453 | * IP initialization: fill in IP protocol switch table. |
| 454 | * All protocols not implemented in kernel go to raw IP protocol handler. |
| 455 | */ |
| 456 | void |
| 457 | ip_init(struct protosw *pp, struct domain *dp) |
| 458 | { |
| 459 | static int ip_initialized = 0; |
| 460 | struct protosw *pr; |
| 461 | struct timeval tv; |
| 462 | int i; |
| 463 | |
| 464 | domain_proto_mtx_lock_assert_held(); |
| 465 | VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED); |
| 466 | |
| 467 | /* ipq_alloc() uses mbufs for IP fragment queue structures */ |
| 468 | _CASSERT(sizeof (struct ipq) <= _MLEN); |
| 469 | |
| 470 | /* |
| 471 | * Some ioctls (e.g. SIOCAIFADDR) use ifaliasreq struct, which is |
| 472 | * interchangeable with in_aliasreq; they must have the same size. |
| 473 | */ |
| 474 | _CASSERT(sizeof (struct ifaliasreq) == sizeof (struct in_aliasreq)); |
| 475 | |
| 476 | if (ip_initialized) |
| 477 | return; |
| 478 | ip_initialized = 1; |
| 479 | |
| 480 | in_ifaddr_init(); |
| 481 | |
| 482 | in_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init(); |
| 483 | in_ifaddr_rwlock_grp = lck_grp_alloc_init("in_ifaddr_rwlock" , |
| 484 | in_ifaddr_rwlock_grp_attr); |
| 485 | in_ifaddr_rwlock_attr = lck_attr_alloc_init(); |
| 486 | lck_rw_init(in_ifaddr_rwlock, in_ifaddr_rwlock_grp, |
| 487 | in_ifaddr_rwlock_attr); |
| 488 | |
| 489 | TAILQ_INIT(&in_ifaddrhead); |
| 490 | in_ifaddrhashtbl_init(); |
| 491 | |
| 492 | ip_moptions_init(); |
| 493 | |
| 494 | pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW); |
| 495 | if (pr == NULL) { |
| 496 | panic("%s: Unable to find [PF_INET,IPPROTO_RAW,SOCK_RAW]\n" , |
| 497 | __func__); |
| 498 | /* NOTREACHED */ |
| 499 | } |
| 500 | |
| 501 | /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ |
| 502 | for (i = 0; i < IPPROTO_MAX; i++) |
| 503 | ip_protox[i] = pr; |
| 504 | /* |
| 505 | * Cycle through IP protocols and put them into the appropriate place |
| 506 | * in ip_protox[], skipping protocols IPPROTO_{IP,RAW}. |
| 507 | */ |
| 508 | VERIFY(dp == inetdomain && dp->dom_family == PF_INET); |
| 509 | TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) { |
| 510 | VERIFY(pr->pr_domain == dp); |
| 511 | if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) { |
| 512 | /* Be careful to only index valid IP protocols. */ |
| 513 | if (pr->pr_protocol < IPPROTO_MAX) |
| 514 | ip_protox[pr->pr_protocol] = pr; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | /* IP fragment reassembly queue lock */ |
| 519 | ipqlock_grp_attr = lck_grp_attr_alloc_init(); |
| 520 | ipqlock_grp = lck_grp_alloc_init("ipqlock" , ipqlock_grp_attr); |
| 521 | ipqlock_attr = lck_attr_alloc_init(); |
| 522 | lck_mtx_init(&ipqlock, ipqlock_grp, ipqlock_attr); |
| 523 | |
| 524 | lck_mtx_lock(&ipqlock); |
| 525 | /* Initialize IP reassembly queue. */ |
| 526 | for (i = 0; i < IPREASS_NHASH; i++) |
| 527 | TAILQ_INIT(&ipq[i]); |
| 528 | |
| 529 | maxnipq = nmbclusters / 32; |
| 530 | maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */ |
| 531 | ipq_updateparams(); |
| 532 | lck_mtx_unlock(&ipqlock); |
| 533 | |
| 534 | getmicrotime(&tv); |
| 535 | ip_id = RandomULong() ^ tv.tv_usec; |
| 536 | ip_initid(); |
| 537 | |
| 538 | ipf_init(); |
| 539 | |
| 540 | #if IPSEC |
| 541 | sadb_stat_mutex_grp_attr = lck_grp_attr_alloc_init(); |
| 542 | sadb_stat_mutex_grp = lck_grp_alloc_init("sadb_stat" , |
| 543 | sadb_stat_mutex_grp_attr); |
| 544 | sadb_stat_mutex_attr = lck_attr_alloc_init(); |
| 545 | lck_mtx_init(sadb_stat_mutex, sadb_stat_mutex_grp, |
| 546 | sadb_stat_mutex_attr); |
| 547 | |
| 548 | #endif |
| 549 | arp_init(); |
| 550 | net_init_add(ip_init_delayed); |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * Initialize IPv4 source address hash table. |
| 555 | */ |
| 556 | static void |
| 557 | in_ifaddrhashtbl_init(void) |
| 558 | { |
| 559 | int i, k, p; |
| 560 | |
| 561 | if (in_ifaddrhashtbl != NULL) |
| 562 | return; |
| 563 | |
| 564 | PE_parse_boot_argn("inaddr_nhash" , &inaddr_nhash, |
| 565 | sizeof (inaddr_nhash)); |
| 566 | if (inaddr_nhash == 0) |
| 567 | inaddr_nhash = INADDR_NHASH; |
| 568 | |
| 569 | MALLOC(in_ifaddrhashtbl, struct in_ifaddrhashhead *, |
| 570 | inaddr_nhash * sizeof (*in_ifaddrhashtbl), |
| 571 | M_IFADDR, M_WAITOK | M_ZERO); |
| 572 | if (in_ifaddrhashtbl == NULL) |
| 573 | panic("in_ifaddrhashtbl_init allocation failed" ); |
| 574 | |
| 575 | /* |
| 576 | * Generate the next largest prime greater than inaddr_nhash. |
| 577 | */ |
| 578 | k = (inaddr_nhash % 2 == 0) ? inaddr_nhash + 1 : inaddr_nhash + 2; |
| 579 | for (;;) { |
| 580 | p = 1; |
| 581 | for (i = 3; i * i <= k; i += 2) { |
| 582 | if (k % i == 0) |
| 583 | p = 0; |
| 584 | } |
| 585 | if (p == 1) |
| 586 | break; |
| 587 | k += 2; |
| 588 | } |
| 589 | inaddr_hashp = k; |
| 590 | } |
| 591 | |
| 592 | u_int32_t |
| 593 | inaddr_hashval(u_int32_t key) |
| 594 | { |
| 595 | /* |
| 596 | * The hash index is the computed prime times the key modulo |
| 597 | * the hash size, as documented in "Introduction to Algorithms" |
| 598 | * (Cormen, Leiserson, Rivest). |
| 599 | */ |
| 600 | if (inaddr_nhash > 1) |
| 601 | return ((key * inaddr_hashp) % inaddr_nhash); |
| 602 | else |
| 603 | return (0); |
| 604 | } |
| 605 | |
| 606 | void |
| 607 | ip_proto_dispatch_in_wrapper(struct mbuf *m, int hlen, u_int8_t proto) |
| 608 | { |
| 609 | ip_proto_dispatch_in(m, hlen, proto, 0); |
| 610 | } |
| 611 | |
| 612 | __private_extern__ void |
| 613 | ip_proto_dispatch_in(struct mbuf *m, int hlen, u_int8_t proto, |
| 614 | ipfilter_t inject_ipfref) |
| 615 | { |
| 616 | struct ipfilter *filter; |
| 617 | int seen = (inject_ipfref == NULL); |
| 618 | int = 0; |
| 619 | struct ip *ip; |
| 620 | void (*pr_input)(struct mbuf *, int len); |
| 621 | |
| 622 | if (!TAILQ_EMPTY(&ipv4_filters)) { |
| 623 | ipf_ref(); |
| 624 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { |
| 625 | if (seen == 0) { |
| 626 | if ((struct ipfilter *)inject_ipfref == filter) |
| 627 | seen = 1; |
| 628 | } else if (filter->ipf_filter.ipf_input) { |
| 629 | errno_t result; |
| 630 | |
| 631 | if (changed_header == 0) { |
| 632 | /* |
| 633 | * Perform IP header alignment fixup, |
| 634 | * if needed, before passing packet |
| 635 | * into filter(s). |
| 636 | */ |
| 637 | IP_HDR_ALIGNMENT_FIXUP(m, |
| 638 | m->m_pkthdr.rcvif, ipf_unref()); |
| 639 | |
| 640 | /* ipf_unref() already called */ |
| 641 | if (m == NULL) |
| 642 | return; |
| 643 | |
| 644 | changed_header = 1; |
| 645 | ip = mtod(m, struct ip *); |
| 646 | ip->ip_len = htons(ip->ip_len + hlen); |
| 647 | ip->ip_off = htons(ip->ip_off); |
| 648 | ip->ip_sum = 0; |
| 649 | ip->ip_sum = ip_cksum_hdr_in(m, hlen); |
| 650 | } |
| 651 | result = filter->ipf_filter.ipf_input( |
| 652 | filter->ipf_filter.cookie, (mbuf_t *)&m, |
| 653 | hlen, proto); |
| 654 | if (result == EJUSTRETURN) { |
| 655 | ipf_unref(); |
| 656 | return; |
| 657 | } |
| 658 | if (result != 0) { |
| 659 | ipf_unref(); |
| 660 | m_freem(m); |
| 661 | return; |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | ipf_unref(); |
| 666 | } |
| 667 | |
| 668 | /* Perform IP header alignment fixup (post-filters), if needed */ |
| 669 | IP_HDR_ALIGNMENT_FIXUP(m, m->m_pkthdr.rcvif, return); |
| 670 | |
| 671 | /* |
| 672 | * If there isn't a specific lock for the protocol |
| 673 | * we're about to call, use the generic lock for AF_INET. |
| 674 | * otherwise let the protocol deal with its own locking |
| 675 | */ |
| 676 | ip = mtod(m, struct ip *); |
| 677 | |
| 678 | if (changed_header) { |
| 679 | ip->ip_len = ntohs(ip->ip_len) - hlen; |
| 680 | ip->ip_off = ntohs(ip->ip_off); |
| 681 | } |
| 682 | |
| 683 | if ((pr_input = ip_protox[ip->ip_p]->pr_input) == NULL) { |
| 684 | m_freem(m); |
| 685 | } else if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) { |
| 686 | lck_mtx_lock(inet_domain_mutex); |
| 687 | pr_input(m, hlen); |
| 688 | lck_mtx_unlock(inet_domain_mutex); |
| 689 | } else { |
| 690 | pr_input(m, hlen); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | struct pktchain_elm { |
| 695 | struct mbuf *pkte_head; |
| 696 | struct mbuf *pkte_tail; |
| 697 | struct in_addr pkte_saddr; |
| 698 | struct in_addr pkte_daddr; |
| 699 | uint16_t pkte_npkts; |
| 700 | uint16_t pkte_proto; |
| 701 | uint32_t pkte_nbytes; |
| 702 | }; |
| 703 | |
| 704 | typedef struct pktchain_elm pktchain_elm_t; |
| 705 | |
| 706 | /* Store upto PKTTBL_SZ unique flows on the stack */ |
| 707 | #define PKTTBL_SZ 7 |
| 708 | |
| 709 | static struct mbuf * |
| 710 | ip_chain_insert(struct mbuf *packet, pktchain_elm_t *tbl) |
| 711 | { |
| 712 | struct ip* ip; |
| 713 | int pkttbl_idx = 0; |
| 714 | |
| 715 | ip = mtod(packet, struct ip*); |
| 716 | |
| 717 | /* reusing the hash function from inaddr_hashval */ |
| 718 | pkttbl_idx = inaddr_hashval(ntohs(ip->ip_src.s_addr)) % PKTTBL_SZ; |
| 719 | if (tbl[pkttbl_idx].pkte_head == NULL) { |
| 720 | tbl[pkttbl_idx].pkte_head = packet; |
| 721 | tbl[pkttbl_idx].pkte_saddr.s_addr = ip->ip_src.s_addr; |
| 722 | tbl[pkttbl_idx].pkte_daddr.s_addr = ip->ip_dst.s_addr; |
| 723 | tbl[pkttbl_idx].pkte_proto = ip->ip_p; |
| 724 | } else { |
| 725 | if ((ip->ip_dst.s_addr == tbl[pkttbl_idx].pkte_daddr.s_addr) && |
| 726 | (ip->ip_src.s_addr == tbl[pkttbl_idx].pkte_saddr.s_addr) && |
| 727 | (ip->ip_p == tbl[pkttbl_idx].pkte_proto)) { |
| 728 | } else { |
| 729 | return (packet); |
| 730 | } |
| 731 | } |
| 732 | if (tbl[pkttbl_idx].pkte_tail != NULL) |
| 733 | mbuf_setnextpkt(tbl[pkttbl_idx].pkte_tail, packet); |
| 734 | |
| 735 | tbl[pkttbl_idx].pkte_tail = packet; |
| 736 | tbl[pkttbl_idx].pkte_npkts += 1; |
| 737 | tbl[pkttbl_idx].pkte_nbytes += packet->m_pkthdr.len; |
| 738 | return (NULL); |
| 739 | } |
| 740 | |
| 741 | /* args is a dummy variable here for backward compatibility */ |
| 742 | static void |
| 743 | ip_input_second_pass_loop_tbl(pktchain_elm_t *tbl, struct ip_fw_in_args *args) |
| 744 | { |
| 745 | int i = 0; |
| 746 | |
| 747 | for (i = 0; i < PKTTBL_SZ; i++) { |
| 748 | if (tbl[i].pkte_head != NULL) { |
| 749 | struct mbuf *m = tbl[i].pkte_head; |
| 750 | ip_input_second_pass(m, m->m_pkthdr.rcvif, 0, |
| 751 | tbl[i].pkte_npkts, tbl[i].pkte_nbytes, args, 0); |
| 752 | |
| 753 | if (tbl[i].pkte_npkts > 2) |
| 754 | ipstat.ips_rxc_chainsz_gt2++; |
| 755 | if (tbl[i].pkte_npkts > 4) |
| 756 | ipstat.ips_rxc_chainsz_gt4++; |
| 757 | #if (DEBUG || DEVELOPMENT) |
| 758 | if (ip_input_measure) |
| 759 | net_perf_histogram(&net_perf, tbl[i].pkte_npkts); |
| 760 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 761 | tbl[i].pkte_head = tbl[i].pkte_tail = NULL; |
| 762 | tbl[i].pkte_npkts = 0; |
| 763 | tbl[i].pkte_nbytes = 0; |
| 764 | /* no need to initialize address and protocol in tbl */ |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | static void |
| 770 | ip_input_cpout_args(struct ip_fw_in_args *args, struct ip_fw_args *args1, |
| 771 | boolean_t *done_init) |
| 772 | { |
| 773 | if (*done_init == FALSE) { |
| 774 | bzero(args1, sizeof(struct ip_fw_args)); |
| 775 | *done_init = TRUE; |
| 776 | } |
| 777 | args1->fwa_next_hop = args->fwai_next_hop; |
| 778 | args1->fwa_ipfw_rule = args->fwai_ipfw_rule; |
| 779 | args1->fwa_pf_rule = args->fwai_pf_rule; |
| 780 | args1->fwa_divert_rule = args->fwai_divert_rule; |
| 781 | } |
| 782 | |
| 783 | static void |
| 784 | ip_input_cpin_args(struct ip_fw_args *args1, struct ip_fw_in_args *args) |
| 785 | { |
| 786 | args->fwai_next_hop = args1->fwa_next_hop; |
| 787 | args->fwai_ipfw_rule = args1->fwa_ipfw_rule; |
| 788 | args->fwai_pf_rule = args1->fwa_pf_rule; |
| 789 | args->fwai_divert_rule = args1->fwa_divert_rule; |
| 790 | } |
| 791 | |
| 792 | typedef enum { |
| 793 | IPINPUT_DOCHAIN = 0, |
| 794 | IPINPUT_DONTCHAIN, |
| 795 | IPINPUT_FREED, |
| 796 | IPINPUT_DONE |
| 797 | } ipinput_chain_ret_t; |
| 798 | |
| 799 | static void |
| 800 | ip_input_update_nstat(struct ifnet *ifp, struct in_addr src_ip, |
| 801 | u_int32_t packets, u_int32_t bytes) |
| 802 | { |
| 803 | if (nstat_collect) { |
| 804 | struct rtentry *rt = ifnet_cached_rtlookup_inet(ifp, |
| 805 | src_ip); |
| 806 | if (rt != NULL) { |
| 807 | nstat_route_rx(rt, packets, bytes, 0); |
| 808 | rtfree(rt); |
| 809 | } |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | static void |
| 814 | ip_input_dispatch_chain(struct mbuf *m) |
| 815 | { |
| 816 | struct mbuf *tmp_mbuf = m; |
| 817 | struct mbuf *nxt_mbuf = NULL; |
| 818 | struct ip *ip = NULL; |
| 819 | unsigned int hlen; |
| 820 | |
| 821 | ip = mtod(tmp_mbuf, struct ip *); |
| 822 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 823 | while(tmp_mbuf) { |
| 824 | nxt_mbuf = mbuf_nextpkt(tmp_mbuf); |
| 825 | mbuf_setnextpkt(tmp_mbuf, NULL); |
| 826 | |
| 827 | if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) |
| 828 | tmp_mbuf = tcp_lro(tmp_mbuf, hlen); |
| 829 | if (tmp_mbuf) |
| 830 | ip_proto_dispatch_in(tmp_mbuf, hlen, ip->ip_p, 0); |
| 831 | tmp_mbuf = nxt_mbuf; |
| 832 | if (tmp_mbuf) { |
| 833 | ip = mtod(tmp_mbuf, struct ip *); |
| 834 | /* first mbuf of chain already has adjusted ip_len */ |
| 835 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 836 | ip->ip_len -= hlen; |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | static void |
| 842 | ip_input_setdst_chain(struct mbuf *m, uint32_t ifindex, struct in_ifaddr *ia) |
| 843 | { |
| 844 | struct mbuf *tmp_mbuf = m; |
| 845 | |
| 846 | while (tmp_mbuf) { |
| 847 | ip_setdstifaddr_info(tmp_mbuf, ifindex, ia); |
| 848 | tmp_mbuf = mbuf_nextpkt(tmp_mbuf); |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | static void |
| 853 | ip_input_adjust(struct mbuf *m, struct ip *ip, struct ifnet *inifp) |
| 854 | { |
| 855 | boolean_t adjust = TRUE; |
| 856 | |
| 857 | ASSERT(m_pktlen(m) > ip->ip_len); |
| 858 | |
| 859 | /* |
| 860 | * Invalidate hardware checksum info if ip_adj_clear_hwcksum |
| 861 | * is set; useful to handle buggy drivers. Note that this |
| 862 | * should not be enabled by default, as we may get here due |
| 863 | * to link-layer padding. |
| 864 | */ |
| 865 | if (ip_adj_clear_hwcksum && |
| 866 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && |
| 867 | !(inifp->if_flags & IFF_LOOPBACK) && |
| 868 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 869 | m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; |
| 870 | m->m_pkthdr.csum_data = 0; |
| 871 | ipstat.ips_adj_hwcsum_clr++; |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * If partial checksum information is available, subtract |
| 876 | * out the partial sum of postpended extraneous bytes, and |
| 877 | * update the checksum metadata accordingly. By doing it |
| 878 | * here, the upper layer transport only needs to adjust any |
| 879 | * prepended extraneous bytes (else it will do both.) |
| 880 | */ |
| 881 | if (ip_adj_partial_sum && |
| 882 | (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID|CSUM_PARTIAL)) == |
| 883 | (CSUM_DATA_VALID|CSUM_PARTIAL)) { |
| 884 | m->m_pkthdr.csum_rx_val = m_adj_sum16(m, |
| 885 | m->m_pkthdr.csum_rx_start, m->m_pkthdr.csum_rx_start, |
| 886 | (ip->ip_len - m->m_pkthdr.csum_rx_start), |
| 887 | m->m_pkthdr.csum_rx_val); |
| 888 | } else if ((m->m_pkthdr.csum_flags & |
| 889 | (CSUM_DATA_VALID|CSUM_PARTIAL)) == |
| 890 | (CSUM_DATA_VALID|CSUM_PARTIAL)) { |
| 891 | /* |
| 892 | * If packet has partial checksum info and we decided not |
| 893 | * to subtract the partial sum of postpended extraneous |
| 894 | * bytes here (not the default case), leave that work to |
| 895 | * be handled by the other layers. For now, only TCP, UDP |
| 896 | * layers are capable of dealing with this. For all other |
| 897 | * protocols (including fragments), trim and ditch the |
| 898 | * partial sum as those layers might not implement partial |
| 899 | * checksumming (or adjustment) at all. |
| 900 | */ |
| 901 | if ((ip->ip_off & (IP_MF | IP_OFFMASK)) == 0 && |
| 902 | (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_UDP)) { |
| 903 | adjust = FALSE; |
| 904 | } else { |
| 905 | m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; |
| 906 | m->m_pkthdr.csum_data = 0; |
| 907 | ipstat.ips_adj_hwcsum_clr++; |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | if (adjust) { |
| 912 | ipstat.ips_adj++; |
| 913 | if (m->m_len == m->m_pkthdr.len) { |
| 914 | m->m_len = ip->ip_len; |
| 915 | m->m_pkthdr.len = ip->ip_len; |
| 916 | } else { |
| 917 | m_adj(m, ip->ip_len - m->m_pkthdr.len); |
| 918 | } |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | /* |
| 923 | * First pass does all essential packet validation and places on a per flow |
| 924 | * queue for doing operations that have same outcome for all packets of a flow. |
| 925 | * div_info is packet divert/tee info |
| 926 | */ |
| 927 | static ipinput_chain_ret_t |
| 928 | ip_input_first_pass(struct mbuf *m, u_int32_t *div_info, |
| 929 | struct ip_fw_in_args *args, int *ours, struct mbuf **modm) |
| 930 | { |
| 931 | struct ip *ip; |
| 932 | struct ifnet *inifp; |
| 933 | unsigned int hlen; |
| 934 | int retval = IPINPUT_DOCHAIN; |
| 935 | int len = 0; |
| 936 | struct in_addr src_ip; |
| 937 | #if IPFIREWALL |
| 938 | int i; |
| 939 | #endif |
| 940 | #if IPFIREWALL || DUMMYNET |
| 941 | struct m_tag *copy; |
| 942 | struct m_tag *p; |
| 943 | boolean_t delete = FALSE; |
| 944 | struct ip_fw_args args1; |
| 945 | boolean_t init = FALSE; |
| 946 | #endif |
| 947 | ipfilter_t inject_filter_ref = NULL; |
| 948 | |
| 949 | #if !IPFIREWALL |
| 950 | #pragma unused (args) |
| 951 | #endif |
| 952 | |
| 953 | #if !IPDIVERT |
| 954 | #pragma unused (div_info) |
| 955 | #pragma unused (ours) |
| 956 | #endif |
| 957 | |
| 958 | #if !IPFIREWALL_FORWARD |
| 959 | #pragma unused (ours) |
| 960 | #endif |
| 961 | |
| 962 | /* Check if the mbuf is still valid after interface filter processing */ |
| 963 | MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif); |
| 964 | inifp = mbuf_pkthdr_rcvif(m); |
| 965 | VERIFY(inifp != NULL); |
| 966 | |
| 967 | /* Perform IP header alignment fixup, if needed */ |
| 968 | IP_HDR_ALIGNMENT_FIXUP(m, inifp, goto bad); |
| 969 | |
| 970 | m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED; |
| 971 | |
| 972 | #if IPFIREWALL || DUMMYNET |
| 973 | |
| 974 | /* |
| 975 | * Don't bother searching for tag(s) if there's none. |
| 976 | */ |
| 977 | if (SLIST_EMPTY(&m->m_pkthdr.tags)) |
| 978 | goto ipfw_tags_done; |
| 979 | |
| 980 | /* Grab info from mtags prepended to the chain */ |
| 981 | p = m_tag_first(m); |
| 982 | while (p) { |
| 983 | if (p->m_tag_id == KERNEL_MODULE_TAG_ID) { |
| 984 | #if DUMMYNET |
| 985 | if (p->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET) { |
| 986 | struct dn_pkt_tag *dn_tag; |
| 987 | |
| 988 | dn_tag = (struct dn_pkt_tag *)(p+1); |
| 989 | args->fwai_ipfw_rule = dn_tag->dn_ipfw_rule; |
| 990 | args->fwai_pf_rule = dn_tag->dn_pf_rule; |
| 991 | delete = TRUE; |
| 992 | } |
| 993 | #endif |
| 994 | |
| 995 | #if IPDIVERT |
| 996 | if (p->m_tag_type == KERNEL_TAG_TYPE_DIVERT) { |
| 997 | struct divert_tag *div_tag; |
| 998 | |
| 999 | div_tag = (struct divert_tag *)(p+1); |
| 1000 | args->fwai_divert_rule = div_tag->cookie; |
| 1001 | delete = TRUE; |
| 1002 | } |
| 1003 | #endif |
| 1004 | |
| 1005 | if (p->m_tag_type == KERNEL_TAG_TYPE_IPFORWARD) { |
| 1006 | struct ip_fwd_tag *ipfwd_tag; |
| 1007 | |
| 1008 | ipfwd_tag = (struct ip_fwd_tag *)(p+1); |
| 1009 | args->fwai_next_hop = ipfwd_tag->next_hop; |
| 1010 | delete = TRUE; |
| 1011 | } |
| 1012 | |
| 1013 | if (delete) { |
| 1014 | copy = p; |
| 1015 | p = m_tag_next(m, p); |
| 1016 | m_tag_delete(m, copy); |
| 1017 | } else { |
| 1018 | p = m_tag_next(m, p); |
| 1019 | } |
| 1020 | } else { |
| 1021 | p = m_tag_next(m, p); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | #if DIAGNOSTIC |
| 1026 | if (m == NULL || !(m->m_flags & M_PKTHDR)) |
| 1027 | panic("ip_input no HDR" ); |
| 1028 | #endif |
| 1029 | |
| 1030 | #if DUMMYNET |
| 1031 | if (args->fwai_ipfw_rule || args->fwai_pf_rule) { |
| 1032 | /* dummynet already filtered us */ |
| 1033 | ip = mtod(m, struct ip *); |
| 1034 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1035 | inject_filter_ref = ipf_get_inject_filter(m); |
| 1036 | #if IPFIREWALL |
| 1037 | if (args->fwai_ipfw_rule) |
| 1038 | goto iphack; |
| 1039 | #endif /* IPFIREWALL */ |
| 1040 | if (args->fwai_pf_rule) |
| 1041 | goto check_with_pf; |
| 1042 | } |
| 1043 | #endif /* DUMMYNET */ |
| 1044 | ipfw_tags_done: |
| 1045 | #endif /* IPFIREWALL || DUMMYNET */ |
| 1046 | |
| 1047 | /* |
| 1048 | * No need to process packet twice if we've already seen it. |
| 1049 | */ |
| 1050 | if (!SLIST_EMPTY(&m->m_pkthdr.tags)) |
| 1051 | inject_filter_ref = ipf_get_inject_filter(m); |
| 1052 | if (inject_filter_ref != NULL) { |
| 1053 | ip = mtod(m, struct ip *); |
| 1054 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1055 | |
| 1056 | DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL, |
| 1057 | struct ip *, ip, struct ifnet *, inifp, |
| 1058 | struct ip *, ip, struct ip6_hdr *, NULL); |
| 1059 | |
| 1060 | ip->ip_len = ntohs(ip->ip_len) - hlen; |
| 1061 | ip->ip_off = ntohs(ip->ip_off); |
| 1062 | ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref); |
| 1063 | return (IPINPUT_DONE); |
| 1064 | } |
| 1065 | |
| 1066 | if (m->m_pkthdr.len < sizeof (struct ip)) { |
| 1067 | OSAddAtomic(1, &ipstat.ips_total); |
| 1068 | OSAddAtomic(1, &ipstat.ips_tooshort); |
| 1069 | m_freem(m); |
| 1070 | return (IPINPUT_FREED); |
| 1071 | } |
| 1072 | |
| 1073 | if (m->m_len < sizeof (struct ip) && |
| 1074 | (m = m_pullup(m, sizeof (struct ip))) == NULL) { |
| 1075 | OSAddAtomic(1, &ipstat.ips_total); |
| 1076 | OSAddAtomic(1, &ipstat.ips_toosmall); |
| 1077 | return (IPINPUT_FREED); |
| 1078 | } |
| 1079 | |
| 1080 | ip = mtod(m, struct ip *); |
| 1081 | *modm = m; |
| 1082 | |
| 1083 | KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr, |
| 1084 | ip->ip_p, ip->ip_off, ip->ip_len); |
| 1085 | |
| 1086 | if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { |
| 1087 | OSAddAtomic(1, &ipstat.ips_total); |
| 1088 | OSAddAtomic(1, &ipstat.ips_badvers); |
| 1089 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1090 | m_freem(m); |
| 1091 | return (IPINPUT_FREED); |
| 1092 | } |
| 1093 | |
| 1094 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1095 | if (hlen < sizeof (struct ip)) { |
| 1096 | OSAddAtomic(1, &ipstat.ips_total); |
| 1097 | OSAddAtomic(1, &ipstat.ips_badhlen); |
| 1098 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1099 | m_freem(m); |
| 1100 | return (IPINPUT_FREED); |
| 1101 | } |
| 1102 | |
| 1103 | if (hlen > m->m_len) { |
| 1104 | if ((m = m_pullup(m, hlen)) == NULL) { |
| 1105 | OSAddAtomic(1, &ipstat.ips_total); |
| 1106 | OSAddAtomic(1, &ipstat.ips_badhlen); |
| 1107 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1108 | return (IPINPUT_FREED); |
| 1109 | } |
| 1110 | ip = mtod(m, struct ip *); |
| 1111 | *modm = m; |
| 1112 | } |
| 1113 | |
| 1114 | /* 127/8 must not appear on wire - RFC1122 */ |
| 1115 | if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || |
| 1116 | (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { |
| 1117 | /* |
| 1118 | * Allow for the following exceptions: |
| 1119 | * |
| 1120 | * 1. If the packet was sent to loopback (i.e. rcvif |
| 1121 | * would have been set earlier at output time.) |
| 1122 | * |
| 1123 | * 2. If the packet was sent out on loopback from a local |
| 1124 | * source address which belongs to a non-loopback |
| 1125 | * interface (i.e. rcvif may not necessarily be a |
| 1126 | * loopback interface, hence the test for PKTF_LOOP.) |
| 1127 | * Unlike IPv6, there is no interface scope ID, and |
| 1128 | * therefore we don't care so much about PKTF_IFINFO. |
| 1129 | */ |
| 1130 | if (!(inifp->if_flags & IFF_LOOPBACK) && |
| 1131 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 1132 | OSAddAtomic(1, &ipstat.ips_total); |
| 1133 | OSAddAtomic(1, &ipstat.ips_badaddr); |
| 1134 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1135 | m_freem(m); |
| 1136 | return (IPINPUT_FREED); |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | /* IPv4 Link-Local Addresses as defined in RFC3927 */ |
| 1141 | if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || |
| 1142 | IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) { |
| 1143 | ip_linklocal_stat.iplls_in_total++; |
| 1144 | if (ip->ip_ttl != MAXTTL) { |
| 1145 | OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl); |
| 1146 | /* Silently drop link local traffic with bad TTL */ |
| 1147 | if (!ip_linklocal_in_allowbadttl) { |
| 1148 | OSAddAtomic(1, &ipstat.ips_total); |
| 1149 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1150 | m_freem(m); |
| 1151 | return (IPINPUT_FREED); |
| 1152 | } |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | if (ip_cksum(m, hlen)) { |
| 1157 | OSAddAtomic(1, &ipstat.ips_total); |
| 1158 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1159 | m_freem(m); |
| 1160 | return (IPINPUT_FREED); |
| 1161 | } |
| 1162 | |
| 1163 | DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL, |
| 1164 | struct ip *, ip, struct ifnet *, inifp, |
| 1165 | struct ip *, ip, struct ip6_hdr *, NULL); |
| 1166 | |
| 1167 | /* |
| 1168 | * Convert fields to host representation. |
| 1169 | */ |
| 1170 | #if BYTE_ORDER != BIG_ENDIAN |
| 1171 | NTOHS(ip->ip_len); |
| 1172 | #endif |
| 1173 | |
| 1174 | if (ip->ip_len < hlen) { |
| 1175 | OSAddAtomic(1, &ipstat.ips_total); |
| 1176 | OSAddAtomic(1, &ipstat.ips_badlen); |
| 1177 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1178 | m_freem(m); |
| 1179 | return (IPINPUT_FREED); |
| 1180 | } |
| 1181 | |
| 1182 | #if BYTE_ORDER != BIG_ENDIAN |
| 1183 | NTOHS(ip->ip_off); |
| 1184 | #endif |
| 1185 | |
| 1186 | /* |
| 1187 | * Check that the amount of data in the buffers |
| 1188 | * is as at least much as the IP header would have us expect. |
| 1189 | * Trim mbufs if longer than we expect. |
| 1190 | * Drop packet if shorter than we expect. |
| 1191 | */ |
| 1192 | if (m->m_pkthdr.len < ip->ip_len) { |
| 1193 | OSAddAtomic(1, &ipstat.ips_total); |
| 1194 | OSAddAtomic(1, &ipstat.ips_tooshort); |
| 1195 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1196 | m_freem(m); |
| 1197 | return (IPINPUT_FREED); |
| 1198 | } |
| 1199 | |
| 1200 | if (m->m_pkthdr.len > ip->ip_len) { |
| 1201 | ip_input_adjust(m, ip, inifp); |
| 1202 | } |
| 1203 | |
| 1204 | /* for consistency */ |
| 1205 | m->m_pkthdr.pkt_proto = ip->ip_p; |
| 1206 | |
| 1207 | /* for netstat route statistics */ |
| 1208 | src_ip = ip->ip_src; |
| 1209 | len = m->m_pkthdr.len; |
| 1210 | |
| 1211 | #if DUMMYNET |
| 1212 | check_with_pf: |
| 1213 | #endif |
| 1214 | #if PF |
| 1215 | /* Invoke inbound packet filter */ |
| 1216 | if (PF_IS_ENABLED) { |
| 1217 | int error; |
| 1218 | ip_input_cpout_args(args, &args1, &init); |
| 1219 | ip = mtod(m, struct ip *); |
| 1220 | src_ip = ip->ip_src; |
| 1221 | |
| 1222 | #if DUMMYNET |
| 1223 | error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args1); |
| 1224 | #else |
| 1225 | error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL); |
| 1226 | #endif /* DUMMYNET */ |
| 1227 | if (error != 0 || m == NULL) { |
| 1228 | if (m != NULL) { |
| 1229 | panic("%s: unexpected packet %p\n" , |
| 1230 | __func__, m); |
| 1231 | /* NOTREACHED */ |
| 1232 | } |
| 1233 | /* Already freed by callee */ |
| 1234 | ip_input_update_nstat(inifp, src_ip, 1, len); |
| 1235 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1236 | OSAddAtomic(1, &ipstat.ips_total); |
| 1237 | return (IPINPUT_FREED); |
| 1238 | } |
| 1239 | ip = mtod(m, struct ip *); |
| 1240 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1241 | *modm = m; |
| 1242 | ip_input_cpin_args(&args1, args); |
| 1243 | } |
| 1244 | #endif /* PF */ |
| 1245 | |
| 1246 | #if IPSEC |
| 1247 | if (ipsec_bypass == 0 && ipsec_gethist(m, NULL)) { |
| 1248 | retval = IPINPUT_DONTCHAIN; /* XXX scope for chaining here? */ |
| 1249 | goto pass; |
| 1250 | } |
| 1251 | #endif |
| 1252 | |
| 1253 | #if IPFIREWALL |
| 1254 | #if DUMMYNET |
| 1255 | iphack: |
| 1256 | #endif /* DUMMYNET */ |
| 1257 | /* |
| 1258 | * Check if we want to allow this packet to be processed. |
| 1259 | * Consider it to be bad if not. |
| 1260 | */ |
| 1261 | if (fw_enable && IPFW_LOADED) { |
| 1262 | #if IPFIREWALL_FORWARD |
| 1263 | /* |
| 1264 | * If we've been forwarded from the output side, then |
| 1265 | * skip the firewall a second time |
| 1266 | */ |
| 1267 | if (args->fwai_next_hop) { |
| 1268 | *ours = 1; |
| 1269 | return (IPINPUT_DONTCHAIN); |
| 1270 | } |
| 1271 | #endif /* IPFIREWALL_FORWARD */ |
| 1272 | ip_input_cpout_args(args, &args1, &init); |
| 1273 | args1.fwa_m = m; |
| 1274 | |
| 1275 | i = ip_fw_chk_ptr(&args1); |
| 1276 | m = args1.fwa_m; |
| 1277 | |
| 1278 | if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */ |
| 1279 | if (m) |
| 1280 | m_freem(m); |
| 1281 | ip_input_update_nstat(inifp, src_ip, 1, len); |
| 1282 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1283 | OSAddAtomic(1, &ipstat.ips_total); |
| 1284 | return (IPINPUT_FREED); |
| 1285 | } |
| 1286 | ip = mtod(m, struct ip *); /* just in case m changed */ |
| 1287 | *modm = m; |
| 1288 | ip_input_cpin_args(&args1, args); |
| 1289 | |
| 1290 | if (i == 0 && args->fwai_next_hop == NULL) { /* common case */ |
| 1291 | goto pass; |
| 1292 | } |
| 1293 | #if DUMMYNET |
| 1294 | if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { |
| 1295 | /* Send packet to the appropriate pipe */ |
| 1296 | ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args1, |
| 1297 | DN_CLIENT_IPFW); |
| 1298 | ip_input_update_nstat(inifp, src_ip, 1, len); |
| 1299 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1300 | OSAddAtomic(1, &ipstat.ips_total); |
| 1301 | return (IPINPUT_FREED); |
| 1302 | } |
| 1303 | #endif /* DUMMYNET */ |
| 1304 | #if IPDIVERT |
| 1305 | if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { |
| 1306 | /* Divert or tee packet */ |
| 1307 | *div_info = i; |
| 1308 | *ours = 1; |
| 1309 | return (IPINPUT_DONTCHAIN); |
| 1310 | } |
| 1311 | #endif |
| 1312 | #if IPFIREWALL_FORWARD |
| 1313 | if (i == 0 && args->fwai_next_hop != NULL) { |
| 1314 | retval = IPINPUT_DONTCHAIN; |
| 1315 | goto pass; |
| 1316 | } |
| 1317 | #endif |
| 1318 | /* |
| 1319 | * if we get here, the packet must be dropped |
| 1320 | */ |
| 1321 | ip_input_update_nstat(inifp, src_ip, 1, len); |
| 1322 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1323 | m_freem(m); |
| 1324 | OSAddAtomic(1, &ipstat.ips_total); |
| 1325 | return (IPINPUT_FREED); |
| 1326 | } |
| 1327 | #endif /* IPFIREWALL */ |
| 1328 | #if IPSEC | IPFIREWALL |
| 1329 | pass: |
| 1330 | #endif |
| 1331 | /* |
| 1332 | * Process options and, if not destined for us, |
| 1333 | * ship it on. ip_dooptions returns 1 when an |
| 1334 | * error was detected (causing an icmp message |
| 1335 | * to be sent and the original packet to be freed). |
| 1336 | */ |
| 1337 | ip_nhops = 0; /* for source routed packets */ |
| 1338 | #if IPFIREWALL |
| 1339 | if (hlen > sizeof (struct ip) && |
| 1340 | ip_dooptions(m, 0, args->fwai_next_hop)) { |
| 1341 | #else /* !IPFIREWALL */ |
| 1342 | if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, NULL)) { |
| 1343 | #endif /* !IPFIREWALL */ |
| 1344 | ip_input_update_nstat(inifp, src_ip, 1, len); |
| 1345 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1346 | OSAddAtomic(1, &ipstat.ips_total); |
| 1347 | return (IPINPUT_FREED); |
| 1348 | } |
| 1349 | |
| 1350 | /* |
| 1351 | * Don't chain fragmented packets as the process of determining |
| 1352 | * if it is our fragment or someone else's plus the complexity of |
| 1353 | * divert and fw args makes it harder to do chaining. |
| 1354 | */ |
| 1355 | if (ip->ip_off & ~(IP_DF | IP_RF)) |
| 1356 | return (IPINPUT_DONTCHAIN); |
| 1357 | |
| 1358 | /* Allow DHCP/BootP responses through */ |
| 1359 | if ((inifp->if_eflags & IFEF_AUTOCONFIGURING) && |
| 1360 | hlen == sizeof (struct ip) && ip->ip_p == IPPROTO_UDP) { |
| 1361 | struct udpiphdr *ui; |
| 1362 | |
| 1363 | if (m->m_len < sizeof (struct udpiphdr) && |
| 1364 | (m = m_pullup(m, sizeof (struct udpiphdr))) == NULL) { |
| 1365 | OSAddAtomic(1, &udpstat.udps_hdrops); |
| 1366 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1367 | OSAddAtomic(1, &ipstat.ips_total); |
| 1368 | return (IPINPUT_FREED); |
| 1369 | } |
| 1370 | *modm = m; |
| 1371 | ui = mtod(m, struct udpiphdr *); |
| 1372 | if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) { |
| 1373 | ip_setdstifaddr_info(m, inifp->if_index, NULL); |
| 1374 | return (IPINPUT_DONTCHAIN); |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | /* Avoid chaining raw sockets as ipsec checks occur later for them */ |
| 1379 | if (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR) |
| 1380 | return (IPINPUT_DONTCHAIN); |
| 1381 | |
| 1382 | return (retval); |
| 1383 | #if !defined(__i386__) && !defined(__x86_64__) |
| 1384 | bad: |
| 1385 | m_freem(m); |
| 1386 | return (IPINPUT_FREED); |
| 1387 | #endif |
| 1388 | } |
| 1389 | |
| 1390 | static void |
| 1391 | ip_input_second_pass(struct mbuf *m, struct ifnet *inifp, u_int32_t div_info, |
| 1392 | int npkts_in_chain, int bytes_in_chain, struct ip_fw_in_args *args, int ours) |
| 1393 | { |
| 1394 | unsigned int checkif; |
| 1395 | struct mbuf *tmp_mbuf = NULL; |
| 1396 | struct in_ifaddr *ia = NULL; |
| 1397 | struct in_addr pkt_dst; |
| 1398 | unsigned int hlen; |
| 1399 | |
| 1400 | #if !IPFIREWALL |
| 1401 | #pragma unused (args) |
| 1402 | #endif |
| 1403 | |
| 1404 | #if !IPDIVERT |
| 1405 | #pragma unused (div_info) |
| 1406 | #endif |
| 1407 | |
| 1408 | struct ip *ip = mtod(m, struct ip *); |
| 1409 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1410 | |
| 1411 | OSAddAtomic(npkts_in_chain, &ipstat.ips_total); |
| 1412 | |
| 1413 | /* |
| 1414 | * Naively assume we can attribute inbound data to the route we would |
| 1415 | * use to send to this destination. Asymmetric routing breaks this |
| 1416 | * assumption, but it still allows us to account for traffic from |
| 1417 | * a remote node in the routing table. |
| 1418 | * this has a very significant performance impact so we bypass |
| 1419 | * if nstat_collect is disabled. We may also bypass if the |
| 1420 | * protocol is tcp in the future because tcp will have a route that |
| 1421 | * we can use to attribute the data to. That does mean we would not |
| 1422 | * account for forwarded tcp traffic. |
| 1423 | */ |
| 1424 | ip_input_update_nstat(inifp, ip->ip_src, npkts_in_chain, |
| 1425 | bytes_in_chain); |
| 1426 | |
| 1427 | if (ours) |
| 1428 | goto ours; |
| 1429 | |
| 1430 | /* |
| 1431 | * Check our list of addresses, to see if the packet is for us. |
| 1432 | * If we don't have any addresses, assume any unicast packet |
| 1433 | * we receive might be for us (and let the upper layers deal |
| 1434 | * with it). |
| 1435 | */ |
| 1436 | tmp_mbuf = m; |
| 1437 | if (TAILQ_EMPTY(&in_ifaddrhead)) { |
| 1438 | while (tmp_mbuf) { |
| 1439 | if (!(tmp_mbuf->m_flags & (M_MCAST|M_BCAST))) { |
| 1440 | ip_setdstifaddr_info(tmp_mbuf, inifp->if_index, |
| 1441 | NULL); |
| 1442 | } |
| 1443 | tmp_mbuf = mbuf_nextpkt(tmp_mbuf); |
| 1444 | } |
| 1445 | goto ours; |
| 1446 | } |
| 1447 | /* |
| 1448 | * Cache the destination address of the packet; this may be |
| 1449 | * changed by use of 'ipfw fwd'. |
| 1450 | */ |
| 1451 | #if IPFIREWALL |
| 1452 | pkt_dst = args->fwai_next_hop == NULL ? |
| 1453 | ip->ip_dst : args->fwai_next_hop->sin_addr; |
| 1454 | #else /* !IPFIREWALL */ |
| 1455 | pkt_dst = ip->ip_dst; |
| 1456 | #endif /* !IPFIREWALL */ |
| 1457 | |
| 1458 | /* |
| 1459 | * Enable a consistency check between the destination address |
| 1460 | * and the arrival interface for a unicast packet (the RFC 1122 |
| 1461 | * strong ES model) if IP forwarding is disabled and the packet |
| 1462 | * is not locally generated and the packet is not subject to |
| 1463 | * 'ipfw fwd'. |
| 1464 | * |
| 1465 | * XXX - Checking also should be disabled if the destination |
| 1466 | * address is ipnat'ed to a different interface. |
| 1467 | * |
| 1468 | * XXX - Checking is incompatible with IP aliases added |
| 1469 | * to the loopback interface instead of the interface where |
| 1470 | * the packets are received. |
| 1471 | */ |
| 1472 | checkif = ip_checkinterface && (ipforwarding == 0) && |
| 1473 | !(inifp->if_flags & IFF_LOOPBACK) && |
| 1474 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP) |
| 1475 | #if IPFIREWALL |
| 1476 | && (args->fwai_next_hop == NULL); |
| 1477 | #else /* !IPFIREWALL */ |
| 1478 | ; |
| 1479 | #endif /* !IPFIREWALL */ |
| 1480 | |
| 1481 | /* |
| 1482 | * Check for exact addresses in the hash bucket. |
| 1483 | */ |
| 1484 | lck_rw_lock_shared(in_ifaddr_rwlock); |
| 1485 | TAILQ_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { |
| 1486 | /* |
| 1487 | * If the address matches, verify that the packet |
| 1488 | * arrived via the correct interface if checking is |
| 1489 | * enabled. |
| 1490 | */ |
| 1491 | if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && |
| 1492 | (!checkif || ia->ia_ifp == inifp)) { |
| 1493 | ip_input_setdst_chain(m, 0, ia); |
| 1494 | lck_rw_done(in_ifaddr_rwlock); |
| 1495 | goto ours; |
| 1496 | } |
| 1497 | } |
| 1498 | lck_rw_done(in_ifaddr_rwlock); |
| 1499 | |
| 1500 | /* |
| 1501 | * Check for broadcast addresses. |
| 1502 | * |
| 1503 | * Only accept broadcast packets that arrive via the matching |
| 1504 | * interface. Reception of forwarded directed broadcasts would be |
| 1505 | * handled via ip_forward() and ether_frameout() with the loopback |
| 1506 | * into the stack for SIMPLEX interfaces handled by ether_frameout(). |
| 1507 | */ |
| 1508 | if (inifp->if_flags & IFF_BROADCAST) { |
| 1509 | struct ifaddr *ifa; |
| 1510 | |
| 1511 | ifnet_lock_shared(inifp); |
| 1512 | TAILQ_FOREACH(ifa, &inifp->if_addrhead, ifa_link) { |
| 1513 | if (ifa->ifa_addr->sa_family != AF_INET) { |
| 1514 | continue; |
| 1515 | } |
| 1516 | ia = ifatoia(ifa); |
| 1517 | if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == |
| 1518 | pkt_dst.s_addr || ia->ia_netbroadcast.s_addr == |
| 1519 | pkt_dst.s_addr) { |
| 1520 | ip_input_setdst_chain(m, 0, ia); |
| 1521 | ifnet_lock_done(inifp); |
| 1522 | goto ours; |
| 1523 | } |
| 1524 | } |
| 1525 | ifnet_lock_done(inifp); |
| 1526 | } |
| 1527 | |
| 1528 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { |
| 1529 | struct in_multi *inm; |
| 1530 | /* |
| 1531 | * See if we belong to the destination multicast group on the |
| 1532 | * arrival interface. |
| 1533 | */ |
| 1534 | in_multihead_lock_shared(); |
| 1535 | IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm); |
| 1536 | in_multihead_lock_done(); |
| 1537 | if (inm == NULL) { |
| 1538 | OSAddAtomic(npkts_in_chain, &ipstat.ips_notmember); |
| 1539 | m_freem_list(m); |
| 1540 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1541 | return; |
| 1542 | } |
| 1543 | ip_input_setdst_chain(m, inifp->if_index, NULL); |
| 1544 | INM_REMREF(inm); |
| 1545 | goto ours; |
| 1546 | } |
| 1547 | |
| 1548 | if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST || |
| 1549 | ip->ip_dst.s_addr == INADDR_ANY) { |
| 1550 | ip_input_setdst_chain(m, inifp->if_index, NULL); |
| 1551 | goto ours; |
| 1552 | } |
| 1553 | |
| 1554 | if (ip->ip_p == IPPROTO_UDP) { |
| 1555 | struct udpiphdr *ui; |
| 1556 | ui = mtod(m, struct udpiphdr *); |
| 1557 | if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) { |
| 1558 | goto ours; |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | tmp_mbuf = m; |
| 1563 | struct mbuf *nxt_mbuf = NULL; |
| 1564 | while (tmp_mbuf) { |
| 1565 | nxt_mbuf = mbuf_nextpkt(tmp_mbuf); |
| 1566 | /* |
| 1567 | * Not for us; forward if possible and desirable. |
| 1568 | */ |
| 1569 | mbuf_setnextpkt(tmp_mbuf, NULL); |
| 1570 | if (ipforwarding == 0) { |
| 1571 | OSAddAtomic(1, &ipstat.ips_cantforward); |
| 1572 | m_freem(tmp_mbuf); |
| 1573 | } else { |
| 1574 | #if IPFIREWALL |
| 1575 | ip_forward(tmp_mbuf, 0, args->fwai_next_hop); |
| 1576 | #else |
| 1577 | ip_forward(tmp_mbuf, 0, NULL); |
| 1578 | #endif |
| 1579 | } |
| 1580 | tmp_mbuf = nxt_mbuf; |
| 1581 | } |
| 1582 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1583 | return; |
| 1584 | ours: |
| 1585 | /* |
| 1586 | * If offset or IP_MF are set, must reassemble. |
| 1587 | */ |
| 1588 | if (ip->ip_off & ~(IP_DF | IP_RF)) { |
| 1589 | VERIFY(npkts_in_chain == 1); |
| 1590 | /* |
| 1591 | * ip_reass() will return a different mbuf, and update |
| 1592 | * the divert info in div_info and args->fwai_divert_rule. |
| 1593 | */ |
| 1594 | #if IPDIVERT |
| 1595 | m = ip_reass(m, (u_int16_t *)&div_info, &args->fwai_divert_rule); |
| 1596 | #else |
| 1597 | m = ip_reass(m); |
| 1598 | #endif |
| 1599 | if (m == NULL) |
| 1600 | return; |
| 1601 | ip = mtod(m, struct ip *); |
| 1602 | /* Get the header length of the reassembled packet */ |
| 1603 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1604 | #if IPDIVERT |
| 1605 | /* Restore original checksum before diverting packet */ |
| 1606 | if (div_info != 0) { |
| 1607 | VERIFY(npkts_in_chain == 1); |
| 1608 | #if BYTE_ORDER != BIG_ENDIAN |
| 1609 | HTONS(ip->ip_len); |
| 1610 | HTONS(ip->ip_off); |
| 1611 | #endif |
| 1612 | ip->ip_sum = 0; |
| 1613 | ip->ip_sum = ip_cksum_hdr_in(m, hlen); |
| 1614 | #if BYTE_ORDER != BIG_ENDIAN |
| 1615 | NTOHS(ip->ip_off); |
| 1616 | NTOHS(ip->ip_len); |
| 1617 | #endif |
| 1618 | } |
| 1619 | #endif |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * Further protocols expect the packet length to be w/o the |
| 1624 | * IP header. |
| 1625 | */ |
| 1626 | ip->ip_len -= hlen; |
| 1627 | |
| 1628 | #if IPDIVERT |
| 1629 | /* |
| 1630 | * Divert or tee packet to the divert protocol if required. |
| 1631 | * |
| 1632 | * If div_info is zero then cookie should be too, so we shouldn't |
| 1633 | * need to clear them here. Assume divert_packet() does so also. |
| 1634 | */ |
| 1635 | if (div_info != 0) { |
| 1636 | struct mbuf *clone = NULL; |
| 1637 | VERIFY(npkts_in_chain == 1); |
| 1638 | |
| 1639 | /* Clone packet if we're doing a 'tee' */ |
| 1640 | if (div_info & IP_FW_PORT_TEE_FLAG) |
| 1641 | clone = m_dup(m, M_DONTWAIT); |
| 1642 | |
| 1643 | /* Restore packet header fields to original values */ |
| 1644 | ip->ip_len += hlen; |
| 1645 | |
| 1646 | #if BYTE_ORDER != BIG_ENDIAN |
| 1647 | HTONS(ip->ip_len); |
| 1648 | HTONS(ip->ip_off); |
| 1649 | #endif |
| 1650 | /* Deliver packet to divert input routine */ |
| 1651 | OSAddAtomic(1, &ipstat.ips_delivered); |
| 1652 | divert_packet(m, 1, div_info & 0xffff, args->fwai_divert_rule); |
| 1653 | |
| 1654 | /* If 'tee', continue with original packet */ |
| 1655 | if (clone == NULL) { |
| 1656 | return; |
| 1657 | } |
| 1658 | m = clone; |
| 1659 | ip = mtod(m, struct ip *); |
| 1660 | } |
| 1661 | #endif |
| 1662 | |
| 1663 | #if IPSEC |
| 1664 | /* |
| 1665 | * enforce IPsec policy checking if we are seeing last header. |
| 1666 | * note that we do not visit this with protocols with pcb layer |
| 1667 | * code - like udp/tcp/raw ip. |
| 1668 | */ |
| 1669 | if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) { |
| 1670 | VERIFY(npkts_in_chain == 1); |
| 1671 | if (ipsec4_in_reject(m, NULL)) { |
| 1672 | IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); |
| 1673 | goto bad; |
| 1674 | } |
| 1675 | } |
| 1676 | #endif /* IPSEC */ |
| 1677 | |
| 1678 | /* |
| 1679 | * Switch out to protocol's input routine. |
| 1680 | */ |
| 1681 | OSAddAtomic(npkts_in_chain, &ipstat.ips_delivered); |
| 1682 | |
| 1683 | #if IPFIREWALL |
| 1684 | if (args->fwai_next_hop && ip->ip_p == IPPROTO_TCP) { |
| 1685 | /* TCP needs IPFORWARD info if available */ |
| 1686 | struct m_tag *fwd_tag; |
| 1687 | struct ip_fwd_tag *ipfwd_tag; |
| 1688 | |
| 1689 | VERIFY(npkts_in_chain == 1); |
| 1690 | fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID, |
| 1691 | KERNEL_TAG_TYPE_IPFORWARD, sizeof (*ipfwd_tag), |
| 1692 | M_NOWAIT, m); |
| 1693 | if (fwd_tag == NULL) |
| 1694 | goto bad; |
| 1695 | |
| 1696 | ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1); |
| 1697 | ipfwd_tag->next_hop = args->fwai_next_hop; |
| 1698 | |
| 1699 | m_tag_prepend(m, fwd_tag); |
| 1700 | |
| 1701 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, |
| 1702 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); |
| 1703 | |
| 1704 | /* TCP deals with its own locking */ |
| 1705 | ip_proto_dispatch_in(m, hlen, ip->ip_p, 0); |
| 1706 | } else { |
| 1707 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, |
| 1708 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); |
| 1709 | |
| 1710 | ip_input_dispatch_chain(m); |
| 1711 | |
| 1712 | } |
| 1713 | #else /* !IPFIREWALL */ |
| 1714 | ip_input_dispatch_chain(m); |
| 1715 | |
| 1716 | #endif /* !IPFIREWALL */ |
| 1717 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1718 | return; |
| 1719 | bad: |
| 1720 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 1721 | m_freem(m); |
| 1722 | } |
| 1723 | |
| 1724 | void |
| 1725 | ip_input_process_list(struct mbuf *packet_list) |
| 1726 | { |
| 1727 | pktchain_elm_t pktchain_tbl[PKTTBL_SZ]; |
| 1728 | |
| 1729 | struct mbuf *packet = NULL; |
| 1730 | struct mbuf *modm = NULL; /* modified mbuf */ |
| 1731 | int retval = 0; |
| 1732 | u_int32_t div_info = 0; |
| 1733 | int ours = 0; |
| 1734 | #if (DEBUG || DEVELOPMENT) |
| 1735 | struct timeval start_tv; |
| 1736 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 1737 | int num_pkts = 0; |
| 1738 | int chain = 0; |
| 1739 | struct ip_fw_in_args args; |
| 1740 | |
| 1741 | if (ip_chaining == 0) { |
| 1742 | struct mbuf *m = packet_list; |
| 1743 | #if (DEBUG || DEVELOPMENT) |
| 1744 | if (ip_input_measure) |
| 1745 | net_perf_start_time(&net_perf, &start_tv); |
| 1746 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 1747 | |
| 1748 | while (m) { |
| 1749 | packet_list = mbuf_nextpkt(m); |
| 1750 | mbuf_setnextpkt(m, NULL); |
| 1751 | ip_input(m); |
| 1752 | m = packet_list; |
| 1753 | num_pkts++; |
| 1754 | } |
| 1755 | #if (DEBUG || DEVELOPMENT) |
| 1756 | if (ip_input_measure) |
| 1757 | net_perf_measure_time(&net_perf, &start_tv, num_pkts); |
| 1758 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 1759 | return; |
| 1760 | } |
| 1761 | #if (DEBUG || DEVELOPMENT) |
| 1762 | if (ip_input_measure) |
| 1763 | net_perf_start_time(&net_perf, &start_tv); |
| 1764 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 1765 | |
| 1766 | bzero(&pktchain_tbl, sizeof(pktchain_tbl)); |
| 1767 | restart_list_process: |
| 1768 | chain = 0; |
| 1769 | for (packet = packet_list; packet; packet = packet_list) { |
| 1770 | packet_list = mbuf_nextpkt(packet); |
| 1771 | mbuf_setnextpkt(packet, NULL); |
| 1772 | |
| 1773 | num_pkts++; |
| 1774 | modm = NULL; |
| 1775 | div_info = 0; |
| 1776 | bzero(&args, sizeof (args)); |
| 1777 | |
| 1778 | retval = ip_input_first_pass(packet, &div_info, &args, |
| 1779 | &ours, &modm); |
| 1780 | |
| 1781 | if (retval == IPINPUT_DOCHAIN) { |
| 1782 | if (modm) |
| 1783 | packet = modm; |
| 1784 | packet = ip_chain_insert(packet, &pktchain_tbl[0]); |
| 1785 | if (packet == NULL) { |
| 1786 | ipstat.ips_rxc_chained++; |
| 1787 | chain++; |
| 1788 | if (chain > ip_chainsz) |
| 1789 | break; |
| 1790 | } else { |
| 1791 | ipstat.ips_rxc_collisions++; |
| 1792 | break; |
| 1793 | } |
| 1794 | } else if (retval == IPINPUT_DONTCHAIN) { |
| 1795 | /* in order to preserve order, exit from chaining */ |
| 1796 | if (modm) |
| 1797 | packet = modm; |
| 1798 | ipstat.ips_rxc_notchain++; |
| 1799 | break; |
| 1800 | } else { |
| 1801 | /* packet was freed or delivered, do nothing. */ |
| 1802 | } |
| 1803 | } |
| 1804 | |
| 1805 | /* do second pass here for pktchain_tbl */ |
| 1806 | if (chain) |
| 1807 | ip_input_second_pass_loop_tbl(&pktchain_tbl[0], &args); |
| 1808 | |
| 1809 | if (packet) { |
| 1810 | /* |
| 1811 | * equivalent update in chaining case if performed in |
| 1812 | * ip_input_second_pass_loop_tbl(). |
| 1813 | */ |
| 1814 | #if (DEBUG || DEVELOPMENT) |
| 1815 | if (ip_input_measure) |
| 1816 | net_perf_histogram(&net_perf, 1); |
| 1817 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 1818 | ip_input_second_pass(packet, packet->m_pkthdr.rcvif, div_info, |
| 1819 | 1, packet->m_pkthdr.len, &args, ours); |
| 1820 | } |
| 1821 | |
| 1822 | if (packet_list) |
| 1823 | goto restart_list_process; |
| 1824 | |
| 1825 | #if (DEBUG || DEVELOPMENT) |
| 1826 | if (ip_input_measure) |
| 1827 | net_perf_measure_time(&net_perf, &start_tv, num_pkts); |
| 1828 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 1829 | } |
| 1830 | /* |
| 1831 | * Ip input routine. Checksum and byte swap header. If fragmented |
| 1832 | * try to reassemble. Process options. Pass to next level. |
| 1833 | */ |
| 1834 | void |
| 1835 | ip_input(struct mbuf *m) |
| 1836 | { |
| 1837 | struct ip *ip; |
| 1838 | struct in_ifaddr *ia = NULL; |
| 1839 | unsigned int hlen, checkif; |
| 1840 | u_short sum = 0; |
| 1841 | struct in_addr pkt_dst; |
| 1842 | #if IPFIREWALL |
| 1843 | int i; |
| 1844 | u_int32_t div_info = 0; /* packet divert/tee info */ |
| 1845 | #endif |
| 1846 | #if IPFIREWALL || DUMMYNET |
| 1847 | struct ip_fw_args args; |
| 1848 | struct m_tag *tag; |
| 1849 | #endif |
| 1850 | ipfilter_t inject_filter_ref = NULL; |
| 1851 | struct ifnet *inifp; |
| 1852 | |
| 1853 | /* Check if the mbuf is still valid after interface filter processing */ |
| 1854 | MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif); |
| 1855 | inifp = m->m_pkthdr.rcvif; |
| 1856 | VERIFY(inifp != NULL); |
| 1857 | |
| 1858 | ipstat.ips_rxc_notlist++; |
| 1859 | |
| 1860 | /* Perform IP header alignment fixup, if needed */ |
| 1861 | IP_HDR_ALIGNMENT_FIXUP(m, inifp, goto bad); |
| 1862 | |
| 1863 | m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED; |
| 1864 | |
| 1865 | #if IPFIREWALL || DUMMYNET |
| 1866 | bzero(&args, sizeof (struct ip_fw_args)); |
| 1867 | |
| 1868 | /* |
| 1869 | * Don't bother searching for tag(s) if there's none. |
| 1870 | */ |
| 1871 | if (SLIST_EMPTY(&m->m_pkthdr.tags)) |
| 1872 | goto ipfw_tags_done; |
| 1873 | |
| 1874 | /* Grab info from mtags prepended to the chain */ |
| 1875 | #if DUMMYNET |
| 1876 | if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, |
| 1877 | KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) { |
| 1878 | struct dn_pkt_tag *dn_tag; |
| 1879 | |
| 1880 | dn_tag = (struct dn_pkt_tag *)(tag+1); |
| 1881 | args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule; |
| 1882 | args.fwa_pf_rule = dn_tag->dn_pf_rule; |
| 1883 | |
| 1884 | m_tag_delete(m, tag); |
| 1885 | } |
| 1886 | #endif /* DUMMYNET */ |
| 1887 | |
| 1888 | #if IPDIVERT |
| 1889 | if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, |
| 1890 | KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) { |
| 1891 | struct divert_tag *div_tag; |
| 1892 | |
| 1893 | div_tag = (struct divert_tag *)(tag+1); |
| 1894 | args.fwa_divert_rule = div_tag->cookie; |
| 1895 | |
| 1896 | m_tag_delete(m, tag); |
| 1897 | } |
| 1898 | #endif |
| 1899 | |
| 1900 | if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, |
| 1901 | KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) { |
| 1902 | struct ip_fwd_tag *ipfwd_tag; |
| 1903 | |
| 1904 | ipfwd_tag = (struct ip_fwd_tag *)(tag+1); |
| 1905 | args.fwa_next_hop = ipfwd_tag->next_hop; |
| 1906 | |
| 1907 | m_tag_delete(m, tag); |
| 1908 | } |
| 1909 | |
| 1910 | #if DIAGNOSTIC |
| 1911 | if (m == NULL || !(m->m_flags & M_PKTHDR)) |
| 1912 | panic("ip_input no HDR" ); |
| 1913 | #endif |
| 1914 | |
| 1915 | #if DUMMYNET |
| 1916 | if (args.fwa_ipfw_rule || args.fwa_pf_rule) { |
| 1917 | /* dummynet already filtered us */ |
| 1918 | ip = mtod(m, struct ip *); |
| 1919 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1920 | inject_filter_ref = ipf_get_inject_filter(m); |
| 1921 | #if IPFIREWALL |
| 1922 | if (args.fwa_ipfw_rule) |
| 1923 | goto iphack; |
| 1924 | #endif /* IPFIREWALL */ |
| 1925 | if (args.fwa_pf_rule) |
| 1926 | goto check_with_pf; |
| 1927 | } |
| 1928 | #endif /* DUMMYNET */ |
| 1929 | ipfw_tags_done: |
| 1930 | #endif /* IPFIREWALL || DUMMYNET */ |
| 1931 | |
| 1932 | /* |
| 1933 | * No need to process packet twice if we've already seen it. |
| 1934 | */ |
| 1935 | if (!SLIST_EMPTY(&m->m_pkthdr.tags)) |
| 1936 | inject_filter_ref = ipf_get_inject_filter(m); |
| 1937 | if (inject_filter_ref != NULL) { |
| 1938 | ip = mtod(m, struct ip *); |
| 1939 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1940 | |
| 1941 | DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL, |
| 1942 | struct ip *, ip, struct ifnet *, inifp, |
| 1943 | struct ip *, ip, struct ip6_hdr *, NULL); |
| 1944 | |
| 1945 | ip->ip_len = ntohs(ip->ip_len) - hlen; |
| 1946 | ip->ip_off = ntohs(ip->ip_off); |
| 1947 | ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref); |
| 1948 | return; |
| 1949 | } |
| 1950 | |
| 1951 | OSAddAtomic(1, &ipstat.ips_total); |
| 1952 | if (m->m_pkthdr.len < sizeof (struct ip)) |
| 1953 | goto tooshort; |
| 1954 | |
| 1955 | if (m->m_len < sizeof (struct ip) && |
| 1956 | (m = m_pullup(m, sizeof (struct ip))) == NULL) { |
| 1957 | OSAddAtomic(1, &ipstat.ips_toosmall); |
| 1958 | return; |
| 1959 | } |
| 1960 | ip = mtod(m, struct ip *); |
| 1961 | |
| 1962 | KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr, |
| 1963 | ip->ip_p, ip->ip_off, ip->ip_len); |
| 1964 | |
| 1965 | if (IP_VHL_V(ip->ip_vhl) != IPVERSION) { |
| 1966 | OSAddAtomic(1, &ipstat.ips_badvers); |
| 1967 | goto bad; |
| 1968 | } |
| 1969 | |
| 1970 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1971 | if (hlen < sizeof (struct ip)) { /* minimum header length */ |
| 1972 | OSAddAtomic(1, &ipstat.ips_badhlen); |
| 1973 | goto bad; |
| 1974 | } |
| 1975 | if (hlen > m->m_len) { |
| 1976 | if ((m = m_pullup(m, hlen)) == NULL) { |
| 1977 | OSAddAtomic(1, &ipstat.ips_badhlen); |
| 1978 | return; |
| 1979 | } |
| 1980 | ip = mtod(m, struct ip *); |
| 1981 | } |
| 1982 | |
| 1983 | /* 127/8 must not appear on wire - RFC1122 */ |
| 1984 | if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || |
| 1985 | (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { |
| 1986 | /* |
| 1987 | * Allow for the following exceptions: |
| 1988 | * |
| 1989 | * 1. If the packet was sent to loopback (i.e. rcvif |
| 1990 | * would have been set earlier at output time.) |
| 1991 | * |
| 1992 | * 2. If the packet was sent out on loopback from a local |
| 1993 | * source address which belongs to a non-loopback |
| 1994 | * interface (i.e. rcvif may not necessarily be a |
| 1995 | * loopback interface, hence the test for PKTF_LOOP.) |
| 1996 | * Unlike IPv6, there is no interface scope ID, and |
| 1997 | * therefore we don't care so much about PKTF_IFINFO. |
| 1998 | */ |
| 1999 | if (!(inifp->if_flags & IFF_LOOPBACK) && |
| 2000 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 2001 | OSAddAtomic(1, &ipstat.ips_badaddr); |
| 2002 | goto bad; |
| 2003 | } |
| 2004 | } |
| 2005 | |
| 2006 | /* IPv4 Link-Local Addresses as defined in RFC3927 */ |
| 2007 | if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || |
| 2008 | IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) { |
| 2009 | ip_linklocal_stat.iplls_in_total++; |
| 2010 | if (ip->ip_ttl != MAXTTL) { |
| 2011 | OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl); |
| 2012 | /* Silently drop link local traffic with bad TTL */ |
| 2013 | if (!ip_linklocal_in_allowbadttl) |
| 2014 | goto bad; |
| 2015 | } |
| 2016 | } |
| 2017 | |
| 2018 | sum = ip_cksum(m, hlen); |
| 2019 | if (sum) { |
| 2020 | goto bad; |
| 2021 | } |
| 2022 | |
| 2023 | DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL, |
| 2024 | struct ip *, ip, struct ifnet *, inifp, |
| 2025 | struct ip *, ip, struct ip6_hdr *, NULL); |
| 2026 | |
| 2027 | /* |
| 2028 | * Naively assume we can attribute inbound data to the route we would |
| 2029 | * use to send to this destination. Asymmetric routing breaks this |
| 2030 | * assumption, but it still allows us to account for traffic from |
| 2031 | * a remote node in the routing table. |
| 2032 | * this has a very significant performance impact so we bypass |
| 2033 | * if nstat_collect is disabled. We may also bypass if the |
| 2034 | * protocol is tcp in the future because tcp will have a route that |
| 2035 | * we can use to attribute the data to. That does mean we would not |
| 2036 | * account for forwarded tcp traffic. |
| 2037 | */ |
| 2038 | if (nstat_collect) { |
| 2039 | struct rtentry *rt = |
| 2040 | ifnet_cached_rtlookup_inet(inifp, ip->ip_src); |
| 2041 | if (rt != NULL) { |
| 2042 | nstat_route_rx(rt, 1, m->m_pkthdr.len, 0); |
| 2043 | rtfree(rt); |
| 2044 | } |
| 2045 | } |
| 2046 | |
| 2047 | /* |
| 2048 | * Convert fields to host representation. |
| 2049 | */ |
| 2050 | #if BYTE_ORDER != BIG_ENDIAN |
| 2051 | NTOHS(ip->ip_len); |
| 2052 | #endif |
| 2053 | |
| 2054 | if (ip->ip_len < hlen) { |
| 2055 | OSAddAtomic(1, &ipstat.ips_badlen); |
| 2056 | goto bad; |
| 2057 | } |
| 2058 | |
| 2059 | #if BYTE_ORDER != BIG_ENDIAN |
| 2060 | NTOHS(ip->ip_off); |
| 2061 | #endif |
| 2062 | /* |
| 2063 | * Check that the amount of data in the buffers |
| 2064 | * is as at least much as the IP header would have us expect. |
| 2065 | * Trim mbufs if longer than we expect. |
| 2066 | * Drop packet if shorter than we expect. |
| 2067 | */ |
| 2068 | if (m->m_pkthdr.len < ip->ip_len) { |
| 2069 | tooshort: |
| 2070 | OSAddAtomic(1, &ipstat.ips_tooshort); |
| 2071 | goto bad; |
| 2072 | } |
| 2073 | if (m->m_pkthdr.len > ip->ip_len) { |
| 2074 | ip_input_adjust(m, ip, inifp); |
| 2075 | } |
| 2076 | |
| 2077 | /* for consistency */ |
| 2078 | m->m_pkthdr.pkt_proto = ip->ip_p; |
| 2079 | |
| 2080 | #if DUMMYNET |
| 2081 | check_with_pf: |
| 2082 | #endif |
| 2083 | #if PF |
| 2084 | /* Invoke inbound packet filter */ |
| 2085 | if (PF_IS_ENABLED) { |
| 2086 | int error; |
| 2087 | #if DUMMYNET |
| 2088 | error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args); |
| 2089 | #else |
| 2090 | error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL); |
| 2091 | #endif /* DUMMYNET */ |
| 2092 | if (error != 0 || m == NULL) { |
| 2093 | if (m != NULL) { |
| 2094 | panic("%s: unexpected packet %p\n" , |
| 2095 | __func__, m); |
| 2096 | /* NOTREACHED */ |
| 2097 | } |
| 2098 | /* Already freed by callee */ |
| 2099 | return; |
| 2100 | } |
| 2101 | ip = mtod(m, struct ip *); |
| 2102 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 2103 | } |
| 2104 | #endif /* PF */ |
| 2105 | |
| 2106 | #if IPSEC |
| 2107 | if (ipsec_bypass == 0 && ipsec_gethist(m, NULL)) |
| 2108 | goto pass; |
| 2109 | #endif |
| 2110 | |
| 2111 | #if IPFIREWALL |
| 2112 | #if DUMMYNET |
| 2113 | iphack: |
| 2114 | #endif /* DUMMYNET */ |
| 2115 | /* |
| 2116 | * Check if we want to allow this packet to be processed. |
| 2117 | * Consider it to be bad if not. |
| 2118 | */ |
| 2119 | if (fw_enable && IPFW_LOADED) { |
| 2120 | #if IPFIREWALL_FORWARD |
| 2121 | /* |
| 2122 | * If we've been forwarded from the output side, then |
| 2123 | * skip the firewall a second time |
| 2124 | */ |
| 2125 | if (args.fwa_next_hop) |
| 2126 | goto ours; |
| 2127 | #endif /* IPFIREWALL_FORWARD */ |
| 2128 | |
| 2129 | args.fwa_m = m; |
| 2130 | |
| 2131 | i = ip_fw_chk_ptr(&args); |
| 2132 | m = args.fwa_m; |
| 2133 | |
| 2134 | if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */ |
| 2135 | if (m) |
| 2136 | m_freem(m); |
| 2137 | return; |
| 2138 | } |
| 2139 | ip = mtod(m, struct ip *); /* just in case m changed */ |
| 2140 | |
| 2141 | if (i == 0 && args.fwa_next_hop == NULL) { /* common case */ |
| 2142 | goto pass; |
| 2143 | } |
| 2144 | #if DUMMYNET |
| 2145 | if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) { |
| 2146 | /* Send packet to the appropriate pipe */ |
| 2147 | ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args, |
| 2148 | DN_CLIENT_IPFW); |
| 2149 | return; |
| 2150 | } |
| 2151 | #endif /* DUMMYNET */ |
| 2152 | #if IPDIVERT |
| 2153 | if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) { |
| 2154 | /* Divert or tee packet */ |
| 2155 | div_info = i; |
| 2156 | goto ours; |
| 2157 | } |
| 2158 | #endif |
| 2159 | #if IPFIREWALL_FORWARD |
| 2160 | if (i == 0 && args.fwa_next_hop != NULL) { |
| 2161 | goto pass; |
| 2162 | } |
| 2163 | #endif |
| 2164 | /* |
| 2165 | * if we get here, the packet must be dropped |
| 2166 | */ |
| 2167 | m_freem(m); |
| 2168 | return; |
| 2169 | } |
| 2170 | #endif /* IPFIREWALL */ |
| 2171 | #if IPSEC | IPFIREWALL |
| 2172 | pass: |
| 2173 | #endif |
| 2174 | /* |
| 2175 | * Process options and, if not destined for us, |
| 2176 | * ship it on. ip_dooptions returns 1 when an |
| 2177 | * error was detected (causing an icmp message |
| 2178 | * to be sent and the original packet to be freed). |
| 2179 | */ |
| 2180 | ip_nhops = 0; /* for source routed packets */ |
| 2181 | #if IPFIREWALL |
| 2182 | if (hlen > sizeof (struct ip) && |
| 2183 | ip_dooptions(m, 0, args.fwa_next_hop)) { |
| 2184 | #else /* !IPFIREWALL */ |
| 2185 | if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, NULL)) { |
| 2186 | #endif /* !IPFIREWALL */ |
| 2187 | return; |
| 2188 | } |
| 2189 | |
| 2190 | /* |
| 2191 | * Check our list of addresses, to see if the packet is for us. |
| 2192 | * If we don't have any addresses, assume any unicast packet |
| 2193 | * we receive might be for us (and let the upper layers deal |
| 2194 | * with it). |
| 2195 | */ |
| 2196 | if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST|M_BCAST))) { |
| 2197 | ip_setdstifaddr_info(m, inifp->if_index, NULL); |
| 2198 | goto ours; |
| 2199 | } |
| 2200 | |
| 2201 | /* |
| 2202 | * Cache the destination address of the packet; this may be |
| 2203 | * changed by use of 'ipfw fwd'. |
| 2204 | */ |
| 2205 | #if IPFIREWALL |
| 2206 | pkt_dst = args.fwa_next_hop == NULL ? |
| 2207 | ip->ip_dst : args.fwa_next_hop->sin_addr; |
| 2208 | #else /* !IPFIREWALL */ |
| 2209 | pkt_dst = ip->ip_dst; |
| 2210 | #endif /* !IPFIREWALL */ |
| 2211 | |
| 2212 | /* |
| 2213 | * Enable a consistency check between the destination address |
| 2214 | * and the arrival interface for a unicast packet (the RFC 1122 |
| 2215 | * strong ES model) if IP forwarding is disabled and the packet |
| 2216 | * is not locally generated and the packet is not subject to |
| 2217 | * 'ipfw fwd'. |
| 2218 | * |
| 2219 | * XXX - Checking also should be disabled if the destination |
| 2220 | * address is ipnat'ed to a different interface. |
| 2221 | * |
| 2222 | * XXX - Checking is incompatible with IP aliases added |
| 2223 | * to the loopback interface instead of the interface where |
| 2224 | * the packets are received. |
| 2225 | */ |
| 2226 | checkif = ip_checkinterface && (ipforwarding == 0) && |
| 2227 | !(inifp->if_flags & IFF_LOOPBACK) && |
| 2228 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP) |
| 2229 | #if IPFIREWALL |
| 2230 | && (args.fwa_next_hop == NULL); |
| 2231 | #else /* !IPFIREWALL */ |
| 2232 | ; |
| 2233 | #endif /* !IPFIREWALL */ |
| 2234 | |
| 2235 | /* |
| 2236 | * Check for exact addresses in the hash bucket. |
| 2237 | */ |
| 2238 | lck_rw_lock_shared(in_ifaddr_rwlock); |
| 2239 | TAILQ_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) { |
| 2240 | /* |
| 2241 | * If the address matches, verify that the packet |
| 2242 | * arrived via the correct interface if checking is |
| 2243 | * enabled. |
| 2244 | */ |
| 2245 | if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && |
| 2246 | (!checkif || ia->ia_ifp == inifp)) { |
| 2247 | ip_setdstifaddr_info(m, 0, ia); |
| 2248 | lck_rw_done(in_ifaddr_rwlock); |
| 2249 | goto ours; |
| 2250 | } |
| 2251 | } |
| 2252 | lck_rw_done(in_ifaddr_rwlock); |
| 2253 | |
| 2254 | /* |
| 2255 | * Check for broadcast addresses. |
| 2256 | * |
| 2257 | * Only accept broadcast packets that arrive via the matching |
| 2258 | * interface. Reception of forwarded directed broadcasts would be |
| 2259 | * handled via ip_forward() and ether_frameout() with the loopback |
| 2260 | * into the stack for SIMPLEX interfaces handled by ether_frameout(). |
| 2261 | */ |
| 2262 | if (inifp->if_flags & IFF_BROADCAST) { |
| 2263 | struct ifaddr *ifa; |
| 2264 | |
| 2265 | ifnet_lock_shared(inifp); |
| 2266 | TAILQ_FOREACH(ifa, &inifp->if_addrhead, ifa_link) { |
| 2267 | if (ifa->ifa_addr->sa_family != AF_INET) { |
| 2268 | continue; |
| 2269 | } |
| 2270 | ia = ifatoia(ifa); |
| 2271 | if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == |
| 2272 | pkt_dst.s_addr || ia->ia_netbroadcast.s_addr == |
| 2273 | pkt_dst.s_addr) { |
| 2274 | ip_setdstifaddr_info(m, 0, ia); |
| 2275 | ifnet_lock_done(inifp); |
| 2276 | goto ours; |
| 2277 | } |
| 2278 | } |
| 2279 | ifnet_lock_done(inifp); |
| 2280 | } |
| 2281 | |
| 2282 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { |
| 2283 | struct in_multi *inm; |
| 2284 | /* |
| 2285 | * See if we belong to the destination multicast group on the |
| 2286 | * arrival interface. |
| 2287 | */ |
| 2288 | in_multihead_lock_shared(); |
| 2289 | IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm); |
| 2290 | in_multihead_lock_done(); |
| 2291 | if (inm == NULL) { |
| 2292 | OSAddAtomic(1, &ipstat.ips_notmember); |
| 2293 | m_freem(m); |
| 2294 | return; |
| 2295 | } |
| 2296 | ip_setdstifaddr_info(m, inifp->if_index, NULL); |
| 2297 | INM_REMREF(inm); |
| 2298 | goto ours; |
| 2299 | } |
| 2300 | if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST || |
| 2301 | ip->ip_dst.s_addr == INADDR_ANY) { |
| 2302 | ip_setdstifaddr_info(m, inifp->if_index, NULL); |
| 2303 | goto ours; |
| 2304 | } |
| 2305 | |
| 2306 | /* Allow DHCP/BootP responses through */ |
| 2307 | if ((inifp->if_eflags & IFEF_AUTOCONFIGURING) && |
| 2308 | hlen == sizeof (struct ip) && ip->ip_p == IPPROTO_UDP) { |
| 2309 | struct udpiphdr *ui; |
| 2310 | |
| 2311 | if (m->m_len < sizeof (struct udpiphdr) && |
| 2312 | (m = m_pullup(m, sizeof (struct udpiphdr))) == NULL) { |
| 2313 | OSAddAtomic(1, &udpstat.udps_hdrops); |
| 2314 | return; |
| 2315 | } |
| 2316 | ui = mtod(m, struct udpiphdr *); |
| 2317 | if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) { |
| 2318 | ip_setdstifaddr_info(m, inifp->if_index, NULL); |
| 2319 | goto ours; |
| 2320 | } |
| 2321 | ip = mtod(m, struct ip *); /* in case it changed */ |
| 2322 | } |
| 2323 | |
| 2324 | /* |
| 2325 | * Not for us; forward if possible and desirable. |
| 2326 | */ |
| 2327 | if (ipforwarding == 0) { |
| 2328 | OSAddAtomic(1, &ipstat.ips_cantforward); |
| 2329 | m_freem(m); |
| 2330 | } else { |
| 2331 | #if IPFIREWALL |
| 2332 | ip_forward(m, 0, args.fwa_next_hop); |
| 2333 | #else |
| 2334 | ip_forward(m, 0, NULL); |
| 2335 | #endif |
| 2336 | } |
| 2337 | return; |
| 2338 | |
| 2339 | ours: |
| 2340 | /* |
| 2341 | * If offset or IP_MF are set, must reassemble. |
| 2342 | */ |
| 2343 | if (ip->ip_off & ~(IP_DF | IP_RF)) { |
| 2344 | /* |
| 2345 | * ip_reass() will return a different mbuf, and update |
| 2346 | * the divert info in div_info and args.fwa_divert_rule. |
| 2347 | */ |
| 2348 | #if IPDIVERT |
| 2349 | m = ip_reass(m, (u_int16_t *)&div_info, &args.fwa_divert_rule); |
| 2350 | #else |
| 2351 | m = ip_reass(m); |
| 2352 | #endif |
| 2353 | if (m == NULL) |
| 2354 | return; |
| 2355 | ip = mtod(m, struct ip *); |
| 2356 | /* Get the header length of the reassembled packet */ |
| 2357 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 2358 | #if IPDIVERT |
| 2359 | /* Restore original checksum before diverting packet */ |
| 2360 | if (div_info != 0) { |
| 2361 | #if BYTE_ORDER != BIG_ENDIAN |
| 2362 | HTONS(ip->ip_len); |
| 2363 | HTONS(ip->ip_off); |
| 2364 | #endif |
| 2365 | ip->ip_sum = 0; |
| 2366 | ip->ip_sum = ip_cksum_hdr_in(m, hlen); |
| 2367 | #if BYTE_ORDER != BIG_ENDIAN |
| 2368 | NTOHS(ip->ip_off); |
| 2369 | NTOHS(ip->ip_len); |
| 2370 | #endif |
| 2371 | } |
| 2372 | #endif |
| 2373 | } |
| 2374 | |
| 2375 | /* |
| 2376 | * Further protocols expect the packet length to be w/o the |
| 2377 | * IP header. |
| 2378 | */ |
| 2379 | ip->ip_len -= hlen; |
| 2380 | |
| 2381 | #if IPDIVERT |
| 2382 | /* |
| 2383 | * Divert or tee packet to the divert protocol if required. |
| 2384 | * |
| 2385 | * If div_info is zero then cookie should be too, so we shouldn't |
| 2386 | * need to clear them here. Assume divert_packet() does so also. |
| 2387 | */ |
| 2388 | if (div_info != 0) { |
| 2389 | struct mbuf *clone = NULL; |
| 2390 | |
| 2391 | /* Clone packet if we're doing a 'tee' */ |
| 2392 | if (div_info & IP_FW_PORT_TEE_FLAG) |
| 2393 | clone = m_dup(m, M_DONTWAIT); |
| 2394 | |
| 2395 | /* Restore packet header fields to original values */ |
| 2396 | ip->ip_len += hlen; |
| 2397 | |
| 2398 | #if BYTE_ORDER != BIG_ENDIAN |
| 2399 | HTONS(ip->ip_len); |
| 2400 | HTONS(ip->ip_off); |
| 2401 | #endif |
| 2402 | /* Deliver packet to divert input routine */ |
| 2403 | OSAddAtomic(1, &ipstat.ips_delivered); |
| 2404 | divert_packet(m, 1, div_info & 0xffff, args.fwa_divert_rule); |
| 2405 | |
| 2406 | /* If 'tee', continue with original packet */ |
| 2407 | if (clone == NULL) { |
| 2408 | return; |
| 2409 | } |
| 2410 | m = clone; |
| 2411 | ip = mtod(m, struct ip *); |
| 2412 | } |
| 2413 | #endif |
| 2414 | |
| 2415 | #if IPSEC |
| 2416 | /* |
| 2417 | * enforce IPsec policy checking if we are seeing last header. |
| 2418 | * note that we do not visit this with protocols with pcb layer |
| 2419 | * code - like udp/tcp/raw ip. |
| 2420 | */ |
| 2421 | if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) { |
| 2422 | if (ipsec4_in_reject(m, NULL)) { |
| 2423 | IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); |
| 2424 | goto bad; |
| 2425 | } |
| 2426 | } |
| 2427 | #endif /* IPSEC */ |
| 2428 | |
| 2429 | /* |
| 2430 | * Switch out to protocol's input routine. |
| 2431 | */ |
| 2432 | OSAddAtomic(1, &ipstat.ips_delivered); |
| 2433 | |
| 2434 | #if IPFIREWALL |
| 2435 | if (args.fwa_next_hop && ip->ip_p == IPPROTO_TCP) { |
| 2436 | /* TCP needs IPFORWARD info if available */ |
| 2437 | struct m_tag *fwd_tag; |
| 2438 | struct ip_fwd_tag *ipfwd_tag; |
| 2439 | |
| 2440 | fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID, |
| 2441 | KERNEL_TAG_TYPE_IPFORWARD, sizeof (*ipfwd_tag), |
| 2442 | M_NOWAIT, m); |
| 2443 | if (fwd_tag == NULL) |
| 2444 | goto bad; |
| 2445 | |
| 2446 | ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1); |
| 2447 | ipfwd_tag->next_hop = args.fwa_next_hop; |
| 2448 | |
| 2449 | m_tag_prepend(m, fwd_tag); |
| 2450 | |
| 2451 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, |
| 2452 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); |
| 2453 | |
| 2454 | /* TCP deals with its own locking */ |
| 2455 | ip_proto_dispatch_in(m, hlen, ip->ip_p, 0); |
| 2456 | } else { |
| 2457 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, |
| 2458 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); |
| 2459 | |
| 2460 | if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) { |
| 2461 | m = tcp_lro(m, hlen); |
| 2462 | if (m == NULL) |
| 2463 | return; |
| 2464 | } |
| 2465 | |
| 2466 | ip_proto_dispatch_in(m, hlen, ip->ip_p, 0); |
| 2467 | } |
| 2468 | #else /* !IPFIREWALL */ |
| 2469 | if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) { |
| 2470 | m = tcp_lro(m, hlen); |
| 2471 | if (m == NULL) |
| 2472 | return; |
| 2473 | } |
| 2474 | ip_proto_dispatch_in(m, hlen, ip->ip_p, 0); |
| 2475 | #endif /* !IPFIREWALL */ |
| 2476 | return; |
| 2477 | |
| 2478 | bad: |
| 2479 | KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0); |
| 2480 | m_freem(m); |
| 2481 | } |
| 2482 | |
| 2483 | static void |
| 2484 | ipq_updateparams(void) |
| 2485 | { |
| 2486 | LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED); |
| 2487 | /* |
| 2488 | * -1 for unlimited allocation. |
| 2489 | */ |
| 2490 | if (maxnipq < 0) |
| 2491 | ipq_limit = 0; |
| 2492 | /* |
| 2493 | * Positive number for specific bound. |
| 2494 | */ |
| 2495 | if (maxnipq > 0) |
| 2496 | ipq_limit = maxnipq; |
| 2497 | /* |
| 2498 | * Zero specifies no further fragment queue allocation -- set the |
| 2499 | * bound very low, but rely on implementation elsewhere to actually |
| 2500 | * prevent allocation and reclaim current queues. |
| 2501 | */ |
| 2502 | if (maxnipq == 0) |
| 2503 | ipq_limit = 1; |
| 2504 | /* |
| 2505 | * Arm the purge timer if not already and if there's work to do |
| 2506 | */ |
| 2507 | frag_sched_timeout(); |
| 2508 | } |
| 2509 | |
| 2510 | static int |
| 2511 | sysctl_maxnipq SYSCTL_HANDLER_ARGS |
| 2512 | { |
| 2513 | #pragma unused(arg1, arg2) |
| 2514 | int error, i; |
| 2515 | |
| 2516 | lck_mtx_lock(&ipqlock); |
| 2517 | i = maxnipq; |
| 2518 | error = sysctl_handle_int(oidp, &i, 0, req); |
| 2519 | if (error || req->newptr == USER_ADDR_NULL) |
| 2520 | goto done; |
| 2521 | /* impose bounds */ |
| 2522 | if (i < -1 || i > (nmbclusters / 4)) { |
| 2523 | error = EINVAL; |
| 2524 | goto done; |
| 2525 | } |
| 2526 | maxnipq = i; |
| 2527 | ipq_updateparams(); |
| 2528 | done: |
| 2529 | lck_mtx_unlock(&ipqlock); |
| 2530 | return (error); |
| 2531 | } |
| 2532 | |
| 2533 | static int |
| 2534 | sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS |
| 2535 | { |
| 2536 | #pragma unused(arg1, arg2) |
| 2537 | int error, i; |
| 2538 | |
| 2539 | lck_mtx_lock(&ipqlock); |
| 2540 | i = maxfragsperpacket; |
| 2541 | error = sysctl_handle_int(oidp, &i, 0, req); |
| 2542 | if (error || req->newptr == USER_ADDR_NULL) |
| 2543 | goto done; |
| 2544 | maxfragsperpacket = i; |
| 2545 | ipq_updateparams(); /* see if we need to arm timer */ |
| 2546 | done: |
| 2547 | lck_mtx_unlock(&ipqlock); |
| 2548 | return (error); |
| 2549 | } |
| 2550 | |
| 2551 | /* |
| 2552 | * Take incoming datagram fragment and try to reassemble it into |
| 2553 | * whole datagram. If a chain for reassembly of this datagram already |
| 2554 | * exists, then it is given as fp; otherwise have to make a chain. |
| 2555 | * |
| 2556 | * When IPDIVERT enabled, keep additional state with each packet that |
| 2557 | * tells us if we need to divert or tee the packet we're building. |
| 2558 | * |
| 2559 | * The IP header is *NOT* adjusted out of iplen (but in host byte order). |
| 2560 | */ |
| 2561 | static struct mbuf * |
| 2562 | #if IPDIVERT |
| 2563 | ip_reass(struct mbuf *m, |
| 2564 | #ifdef IPDIVERT_44 |
| 2565 | u_int32_t *divinfo, |
| 2566 | #else /* IPDIVERT_44 */ |
| 2567 | u_int16_t *divinfo, |
| 2568 | #endif /* IPDIVERT_44 */ |
| 2569 | u_int16_t *divcookie) |
| 2570 | #else /* IPDIVERT */ |
| 2571 | ip_reass(struct mbuf *m) |
| 2572 | #endif /* IPDIVERT */ |
| 2573 | { |
| 2574 | struct ip *ip; |
| 2575 | struct mbuf *p, *q, *nq, *t; |
| 2576 | struct ipq *fp = NULL; |
| 2577 | struct ipqhead *head; |
| 2578 | int i, hlen, next; |
| 2579 | u_int8_t ecn, ecn0; |
| 2580 | uint32_t csum, csum_flags; |
| 2581 | uint16_t hash; |
| 2582 | struct fq_head dfq; |
| 2583 | |
| 2584 | MBUFQ_INIT(&dfq); /* for deferred frees */ |
| 2585 | |
| 2586 | /* If maxnipq or maxfragsperpacket is 0, never accept fragments. */ |
| 2587 | if (maxnipq == 0 || maxfragsperpacket == 0) { |
| 2588 | ipstat.ips_fragments++; |
| 2589 | ipstat.ips_fragdropped++; |
| 2590 | m_freem(m); |
| 2591 | if (nipq > 0) { |
| 2592 | lck_mtx_lock(&ipqlock); |
| 2593 | frag_sched_timeout(); /* purge stale fragments */ |
| 2594 | lck_mtx_unlock(&ipqlock); |
| 2595 | } |
| 2596 | return (NULL); |
| 2597 | } |
| 2598 | |
| 2599 | ip = mtod(m, struct ip *); |
| 2600 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 2601 | |
| 2602 | lck_mtx_lock(&ipqlock); |
| 2603 | |
| 2604 | hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); |
| 2605 | head = &ipq[hash]; |
| 2606 | |
| 2607 | /* |
| 2608 | * Look for queue of fragments |
| 2609 | * of this datagram. |
| 2610 | */ |
| 2611 | TAILQ_FOREACH(fp, head, ipq_list) { |
| 2612 | if (ip->ip_id == fp->ipq_id && |
| 2613 | ip->ip_src.s_addr == fp->ipq_src.s_addr && |
| 2614 | ip->ip_dst.s_addr == fp->ipq_dst.s_addr && |
| 2615 | #if CONFIG_MACF_NET |
| 2616 | mac_ipq_label_compare(m, fp) && |
| 2617 | #endif |
| 2618 | ip->ip_p == fp->ipq_p) |
| 2619 | goto found; |
| 2620 | } |
| 2621 | |
| 2622 | fp = NULL; |
| 2623 | |
| 2624 | /* |
| 2625 | * Attempt to trim the number of allocated fragment queues if it |
| 2626 | * exceeds the administrative limit. |
| 2627 | */ |
| 2628 | if ((nipq > (unsigned)maxnipq) && (maxnipq > 0)) { |
| 2629 | /* |
| 2630 | * drop something from the tail of the current queue |
| 2631 | * before proceeding further |
| 2632 | */ |
| 2633 | struct ipq *fq = TAILQ_LAST(head, ipqhead); |
| 2634 | if (fq == NULL) { /* gak */ |
| 2635 | for (i = 0; i < IPREASS_NHASH; i++) { |
| 2636 | struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead); |
| 2637 | if (r) { |
| 2638 | ipstat.ips_fragtimeout += r->ipq_nfrags; |
| 2639 | frag_freef(&ipq[i], r); |
| 2640 | break; |
| 2641 | } |
| 2642 | } |
| 2643 | } else { |
| 2644 | ipstat.ips_fragtimeout += fq->ipq_nfrags; |
| 2645 | frag_freef(head, fq); |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | found: |
| 2650 | /* |
| 2651 | * Leverage partial checksum offload for IP fragments. Narrow down |
| 2652 | * the scope to cover only UDP without IP options, as that is the |
| 2653 | * most common case. |
| 2654 | * |
| 2655 | * Perform 1's complement adjustment of octets that got included/ |
| 2656 | * excluded in the hardware-calculated checksum value. Ignore cases |
| 2657 | * where the value includes the entire IPv4 header span, as the sum |
| 2658 | * for those octets would already be 0 by the time we get here; IP |
| 2659 | * has already performed its header checksum validation. Also take |
| 2660 | * care of any trailing bytes and subtract out their partial sum. |
| 2661 | */ |
| 2662 | if (ip->ip_p == IPPROTO_UDP && hlen == sizeof (struct ip) && |
| 2663 | (m->m_pkthdr.csum_flags & |
| 2664 | (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) == |
| 2665 | (CSUM_DATA_VALID | CSUM_PARTIAL)) { |
| 2666 | uint32_t start = m->m_pkthdr.csum_rx_start; |
| 2667 | int32_t trailer = (m_pktlen(m) - ip->ip_len); |
| 2668 | uint32_t swbytes = (uint32_t)trailer; |
| 2669 | |
| 2670 | csum = m->m_pkthdr.csum_rx_val; |
| 2671 | |
| 2672 | ASSERT(trailer >= 0); |
| 2673 | if ((start != 0 && start != hlen) || trailer != 0) { |
| 2674 | #if BYTE_ORDER != BIG_ENDIAN |
| 2675 | if (start < hlen) { |
| 2676 | HTONS(ip->ip_len); |
| 2677 | HTONS(ip->ip_off); |
| 2678 | } |
| 2679 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 2680 | /* callee folds in sum */ |
| 2681 | csum = m_adj_sum16(m, start, hlen, |
| 2682 | (ip->ip_len - hlen), csum); |
| 2683 | if (hlen > start) |
| 2684 | swbytes += (hlen - start); |
| 2685 | else |
| 2686 | swbytes += (start - hlen); |
| 2687 | #if BYTE_ORDER != BIG_ENDIAN |
| 2688 | if (start < hlen) { |
| 2689 | NTOHS(ip->ip_off); |
| 2690 | NTOHS(ip->ip_len); |
| 2691 | } |
| 2692 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 2693 | } |
| 2694 | csum_flags = m->m_pkthdr.csum_flags; |
| 2695 | |
| 2696 | if (swbytes != 0) |
| 2697 | udp_in_cksum_stats(swbytes); |
| 2698 | if (trailer != 0) |
| 2699 | m_adj(m, -trailer); |
| 2700 | } else { |
| 2701 | csum = 0; |
| 2702 | csum_flags = 0; |
| 2703 | } |
| 2704 | |
| 2705 | /* Invalidate checksum */ |
| 2706 | m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; |
| 2707 | |
| 2708 | ipstat.ips_fragments++; |
| 2709 | |
| 2710 | /* |
| 2711 | * Adjust ip_len to not reflect header, |
| 2712 | * convert offset of this to bytes. |
| 2713 | */ |
| 2714 | ip->ip_len -= hlen; |
| 2715 | if (ip->ip_off & IP_MF) { |
| 2716 | /* |
| 2717 | * Make sure that fragments have a data length |
| 2718 | * that's a non-zero multiple of 8 bytes. |
| 2719 | */ |
| 2720 | if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) { |
| 2721 | OSAddAtomic(1, &ipstat.ips_toosmall); |
| 2722 | /* |
| 2723 | * Reassembly queue may have been found if previous |
| 2724 | * fragments were valid; given that this one is bad, |
| 2725 | * we need to drop it. Make sure to set fp to NULL |
| 2726 | * if not already, since we don't want to decrement |
| 2727 | * ipq_nfrags as it doesn't include this packet. |
| 2728 | */ |
| 2729 | fp = NULL; |
| 2730 | goto dropfrag; |
| 2731 | } |
| 2732 | m->m_flags |= M_FRAG; |
| 2733 | } else { |
| 2734 | /* Clear the flag in case packet comes from loopback */ |
| 2735 | m->m_flags &= ~M_FRAG; |
| 2736 | } |
| 2737 | ip->ip_off <<= 3; |
| 2738 | |
| 2739 | m->m_pkthdr.pkt_hdr = ip; |
| 2740 | |
| 2741 | /* Previous ip_reass() started here. */ |
| 2742 | /* |
| 2743 | * Presence of header sizes in mbufs |
| 2744 | * would confuse code below. |
| 2745 | */ |
| 2746 | m->m_data += hlen; |
| 2747 | m->m_len -= hlen; |
| 2748 | |
| 2749 | /* |
| 2750 | * If first fragment to arrive, create a reassembly queue. |
| 2751 | */ |
| 2752 | if (fp == NULL) { |
| 2753 | fp = ipq_alloc(M_DONTWAIT); |
| 2754 | if (fp == NULL) |
| 2755 | goto dropfrag; |
| 2756 | #if CONFIG_MACF_NET |
| 2757 | if (mac_ipq_label_init(fp, M_NOWAIT) != 0) { |
| 2758 | ipq_free(fp); |
| 2759 | fp = NULL; |
| 2760 | goto dropfrag; |
| 2761 | } |
| 2762 | mac_ipq_label_associate(m, fp); |
| 2763 | #endif |
| 2764 | TAILQ_INSERT_HEAD(head, fp, ipq_list); |
| 2765 | nipq++; |
| 2766 | fp->ipq_nfrags = 1; |
| 2767 | fp->ipq_ttl = IPFRAGTTL; |
| 2768 | fp->ipq_p = ip->ip_p; |
| 2769 | fp->ipq_id = ip->ip_id; |
| 2770 | fp->ipq_src = ip->ip_src; |
| 2771 | fp->ipq_dst = ip->ip_dst; |
| 2772 | fp->ipq_frags = m; |
| 2773 | m->m_nextpkt = NULL; |
| 2774 | /* |
| 2775 | * If the first fragment has valid checksum offload |
| 2776 | * info, the rest of fragments are eligible as well. |
| 2777 | */ |
| 2778 | if (csum_flags != 0) { |
| 2779 | fp->ipq_csum = csum; |
| 2780 | fp->ipq_csum_flags = csum_flags; |
| 2781 | } |
| 2782 | #if IPDIVERT |
| 2783 | /* |
| 2784 | * Transfer firewall instructions to the fragment structure. |
| 2785 | * Only trust info in the fragment at offset 0. |
| 2786 | */ |
| 2787 | if (ip->ip_off == 0) { |
| 2788 | #ifdef IPDIVERT_44 |
| 2789 | fp->ipq_div_info = *divinfo; |
| 2790 | #else |
| 2791 | fp->ipq_divert = *divinfo; |
| 2792 | #endif |
| 2793 | fp->ipq_div_cookie = *divcookie; |
| 2794 | } |
| 2795 | *divinfo = 0; |
| 2796 | *divcookie = 0; |
| 2797 | #endif /* IPDIVERT */ |
| 2798 | m = NULL; /* nothing to return */ |
| 2799 | goto done; |
| 2800 | } else { |
| 2801 | fp->ipq_nfrags++; |
| 2802 | #if CONFIG_MACF_NET |
| 2803 | mac_ipq_label_update(m, fp); |
| 2804 | #endif |
| 2805 | } |
| 2806 | |
| 2807 | #define GETIP(m) ((struct ip *)((m)->m_pkthdr.pkt_hdr)) |
| 2808 | |
| 2809 | /* |
| 2810 | * Handle ECN by comparing this segment with the first one; |
| 2811 | * if CE is set, do not lose CE. |
| 2812 | * drop if CE and not-ECT are mixed for the same packet. |
| 2813 | */ |
| 2814 | ecn = ip->ip_tos & IPTOS_ECN_MASK; |
| 2815 | ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK; |
| 2816 | if (ecn == IPTOS_ECN_CE) { |
| 2817 | if (ecn0 == IPTOS_ECN_NOTECT) |
| 2818 | goto dropfrag; |
| 2819 | if (ecn0 != IPTOS_ECN_CE) |
| 2820 | GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE; |
| 2821 | } |
| 2822 | if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) |
| 2823 | goto dropfrag; |
| 2824 | |
| 2825 | /* |
| 2826 | * Find a segment which begins after this one does. |
| 2827 | */ |
| 2828 | for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) |
| 2829 | if (GETIP(q)->ip_off > ip->ip_off) |
| 2830 | break; |
| 2831 | |
| 2832 | /* |
| 2833 | * If there is a preceding segment, it may provide some of |
| 2834 | * our data already. If so, drop the data from the incoming |
| 2835 | * segment. If it provides all of our data, drop us, otherwise |
| 2836 | * stick new segment in the proper place. |
| 2837 | * |
| 2838 | * If some of the data is dropped from the preceding |
| 2839 | * segment, then it's checksum is invalidated. |
| 2840 | */ |
| 2841 | if (p) { |
| 2842 | i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off; |
| 2843 | if (i > 0) { |
| 2844 | if (i >= ip->ip_len) |
| 2845 | goto dropfrag; |
| 2846 | m_adj(m, i); |
| 2847 | fp->ipq_csum_flags = 0; |
| 2848 | ip->ip_off += i; |
| 2849 | ip->ip_len -= i; |
| 2850 | } |
| 2851 | m->m_nextpkt = p->m_nextpkt; |
| 2852 | p->m_nextpkt = m; |
| 2853 | } else { |
| 2854 | m->m_nextpkt = fp->ipq_frags; |
| 2855 | fp->ipq_frags = m; |
| 2856 | } |
| 2857 | |
| 2858 | /* |
| 2859 | * While we overlap succeeding segments trim them or, |
| 2860 | * if they are completely covered, dequeue them. |
| 2861 | */ |
| 2862 | for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off; |
| 2863 | q = nq) { |
| 2864 | i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off; |
| 2865 | if (i < GETIP(q)->ip_len) { |
| 2866 | GETIP(q)->ip_len -= i; |
| 2867 | GETIP(q)->ip_off += i; |
| 2868 | m_adj(q, i); |
| 2869 | fp->ipq_csum_flags = 0; |
| 2870 | break; |
| 2871 | } |
| 2872 | nq = q->m_nextpkt; |
| 2873 | m->m_nextpkt = nq; |
| 2874 | ipstat.ips_fragdropped++; |
| 2875 | fp->ipq_nfrags--; |
| 2876 | /* defer freeing until after lock is dropped */ |
| 2877 | MBUFQ_ENQUEUE(&dfq, q); |
| 2878 | } |
| 2879 | |
| 2880 | /* |
| 2881 | * If this fragment contains similar checksum offload info |
| 2882 | * as that of the existing ones, accumulate checksum. Otherwise, |
| 2883 | * invalidate checksum offload info for the entire datagram. |
| 2884 | */ |
| 2885 | if (csum_flags != 0 && csum_flags == fp->ipq_csum_flags) |
| 2886 | fp->ipq_csum += csum; |
| 2887 | else if (fp->ipq_csum_flags != 0) |
| 2888 | fp->ipq_csum_flags = 0; |
| 2889 | |
| 2890 | #if IPDIVERT |
| 2891 | /* |
| 2892 | * Transfer firewall instructions to the fragment structure. |
| 2893 | * Only trust info in the fragment at offset 0. |
| 2894 | */ |
| 2895 | if (ip->ip_off == 0) { |
| 2896 | #ifdef IPDIVERT_44 |
| 2897 | fp->ipq_div_info = *divinfo; |
| 2898 | #else |
| 2899 | fp->ipq_divert = *divinfo; |
| 2900 | #endif |
| 2901 | fp->ipq_div_cookie = *divcookie; |
| 2902 | } |
| 2903 | *divinfo = 0; |
| 2904 | *divcookie = 0; |
| 2905 | #endif /* IPDIVERT */ |
| 2906 | |
| 2907 | /* |
| 2908 | * Check for complete reassembly and perform frag per packet |
| 2909 | * limiting. |
| 2910 | * |
| 2911 | * Frag limiting is performed here so that the nth frag has |
| 2912 | * a chance to complete the packet before we drop the packet. |
| 2913 | * As a result, n+1 frags are actually allowed per packet, but |
| 2914 | * only n will ever be stored. (n = maxfragsperpacket.) |
| 2915 | * |
| 2916 | */ |
| 2917 | next = 0; |
| 2918 | for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { |
| 2919 | if (GETIP(q)->ip_off != next) { |
| 2920 | if (fp->ipq_nfrags > maxfragsperpacket) { |
| 2921 | ipstat.ips_fragdropped += fp->ipq_nfrags; |
| 2922 | frag_freef(head, fp); |
| 2923 | } |
| 2924 | m = NULL; /* nothing to return */ |
| 2925 | goto done; |
| 2926 | } |
| 2927 | next += GETIP(q)->ip_len; |
| 2928 | } |
| 2929 | /* Make sure the last packet didn't have the IP_MF flag */ |
| 2930 | if (p->m_flags & M_FRAG) { |
| 2931 | if (fp->ipq_nfrags > maxfragsperpacket) { |
| 2932 | ipstat.ips_fragdropped += fp->ipq_nfrags; |
| 2933 | frag_freef(head, fp); |
| 2934 | } |
| 2935 | m = NULL; /* nothing to return */ |
| 2936 | goto done; |
| 2937 | } |
| 2938 | |
| 2939 | /* |
| 2940 | * Reassembly is complete. Make sure the packet is a sane size. |
| 2941 | */ |
| 2942 | q = fp->ipq_frags; |
| 2943 | ip = GETIP(q); |
| 2944 | if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) { |
| 2945 | ipstat.ips_toolong++; |
| 2946 | ipstat.ips_fragdropped += fp->ipq_nfrags; |
| 2947 | frag_freef(head, fp); |
| 2948 | m = NULL; /* nothing to return */ |
| 2949 | goto done; |
| 2950 | } |
| 2951 | |
| 2952 | /* |
| 2953 | * Concatenate fragments. |
| 2954 | */ |
| 2955 | m = q; |
| 2956 | t = m->m_next; |
| 2957 | m->m_next = NULL; |
| 2958 | m_cat(m, t); |
| 2959 | nq = q->m_nextpkt; |
| 2960 | q->m_nextpkt = NULL; |
| 2961 | for (q = nq; q != NULL; q = nq) { |
| 2962 | nq = q->m_nextpkt; |
| 2963 | q->m_nextpkt = NULL; |
| 2964 | m_cat(m, q); |
| 2965 | } |
| 2966 | |
| 2967 | /* |
| 2968 | * Store partial hardware checksum info from the fragment queue; |
| 2969 | * the receive start offset is set to 20 bytes (see code at the |
| 2970 | * top of this routine.) |
| 2971 | */ |
| 2972 | if (fp->ipq_csum_flags != 0) { |
| 2973 | csum = fp->ipq_csum; |
| 2974 | |
| 2975 | ADDCARRY(csum); |
| 2976 | |
| 2977 | m->m_pkthdr.csum_rx_val = csum; |
| 2978 | m->m_pkthdr.csum_rx_start = sizeof (struct ip); |
| 2979 | m->m_pkthdr.csum_flags = fp->ipq_csum_flags; |
| 2980 | } else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) || |
| 2981 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 2982 | /* loopback checksums are always OK */ |
| 2983 | m->m_pkthdr.csum_data = 0xffff; |
| 2984 | m->m_pkthdr.csum_flags &= ~CSUM_PARTIAL; |
| 2985 | m->m_pkthdr.csum_flags = |
| 2986 | CSUM_DATA_VALID | CSUM_PSEUDO_HDR | |
| 2987 | CSUM_IP_CHECKED | CSUM_IP_VALID; |
| 2988 | } |
| 2989 | |
| 2990 | #if IPDIVERT |
| 2991 | /* |
| 2992 | * Extract firewall instructions from the fragment structure. |
| 2993 | */ |
| 2994 | #ifdef IPDIVERT_44 |
| 2995 | *divinfo = fp->ipq_div_info; |
| 2996 | #else |
| 2997 | *divinfo = fp->ipq_divert; |
| 2998 | #endif |
| 2999 | *divcookie = fp->ipq_div_cookie; |
| 3000 | #endif /* IPDIVERT */ |
| 3001 | |
| 3002 | #if CONFIG_MACF_NET |
| 3003 | mac_mbuf_label_associate_ipq(fp, m); |
| 3004 | mac_ipq_label_destroy(fp); |
| 3005 | #endif |
| 3006 | /* |
| 3007 | * Create header for new ip packet by modifying header of first |
| 3008 | * packet; dequeue and discard fragment reassembly header. |
| 3009 | * Make header visible. |
| 3010 | */ |
| 3011 | ip->ip_len = (IP_VHL_HL(ip->ip_vhl) << 2) + next; |
| 3012 | ip->ip_src = fp->ipq_src; |
| 3013 | ip->ip_dst = fp->ipq_dst; |
| 3014 | |
| 3015 | fp->ipq_frags = NULL; /* return to caller as 'm' */ |
| 3016 | frag_freef(head, fp); |
| 3017 | fp = NULL; |
| 3018 | |
| 3019 | m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2); |
| 3020 | m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2); |
| 3021 | /* some debugging cruft by sklower, below, will go away soon */ |
| 3022 | if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */ |
| 3023 | m_fixhdr(m); |
| 3024 | ipstat.ips_reassembled++; |
| 3025 | |
| 3026 | /* arm the purge timer if not already and if there's work to do */ |
| 3027 | frag_sched_timeout(); |
| 3028 | lck_mtx_unlock(&ipqlock); |
| 3029 | /* perform deferred free (if needed) now that lock is dropped */ |
| 3030 | if (!MBUFQ_EMPTY(&dfq)) |
| 3031 | MBUFQ_DRAIN(&dfq); |
| 3032 | VERIFY(MBUFQ_EMPTY(&dfq)); |
| 3033 | return (m); |
| 3034 | |
| 3035 | done: |
| 3036 | VERIFY(m == NULL); |
| 3037 | /* arm the purge timer if not already and if there's work to do */ |
| 3038 | frag_sched_timeout(); |
| 3039 | lck_mtx_unlock(&ipqlock); |
| 3040 | /* perform deferred free (if needed) */ |
| 3041 | if (!MBUFQ_EMPTY(&dfq)) |
| 3042 | MBUFQ_DRAIN(&dfq); |
| 3043 | VERIFY(MBUFQ_EMPTY(&dfq)); |
| 3044 | return (NULL); |
| 3045 | |
| 3046 | dropfrag: |
| 3047 | #if IPDIVERT |
| 3048 | *divinfo = 0; |
| 3049 | *divcookie = 0; |
| 3050 | #endif /* IPDIVERT */ |
| 3051 | ipstat.ips_fragdropped++; |
| 3052 | if (fp != NULL) |
| 3053 | fp->ipq_nfrags--; |
| 3054 | /* arm the purge timer if not already and if there's work to do */ |
| 3055 | frag_sched_timeout(); |
| 3056 | lck_mtx_unlock(&ipqlock); |
| 3057 | m_freem(m); |
| 3058 | /* perform deferred free (if needed) */ |
| 3059 | if (!MBUFQ_EMPTY(&dfq)) |
| 3060 | MBUFQ_DRAIN(&dfq); |
| 3061 | VERIFY(MBUFQ_EMPTY(&dfq)); |
| 3062 | return (NULL); |
| 3063 | #undef GETIP |
| 3064 | } |
| 3065 | |
| 3066 | /* |
| 3067 | * Free a fragment reassembly header and all |
| 3068 | * associated datagrams. |
| 3069 | */ |
| 3070 | static void |
| 3071 | frag_freef(struct ipqhead *fhp, struct ipq *fp) |
| 3072 | { |
| 3073 | LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED); |
| 3074 | |
| 3075 | fp->ipq_nfrags = 0; |
| 3076 | if (fp->ipq_frags != NULL) { |
| 3077 | m_freem_list(fp->ipq_frags); |
| 3078 | fp->ipq_frags = NULL; |
| 3079 | } |
| 3080 | TAILQ_REMOVE(fhp, fp, ipq_list); |
| 3081 | nipq--; |
| 3082 | ipq_free(fp); |
| 3083 | } |
| 3084 | |
| 3085 | /* |
| 3086 | * IP reassembly timer processing |
| 3087 | */ |
| 3088 | static void |
| 3089 | frag_timeout(void *arg) |
| 3090 | { |
| 3091 | #pragma unused(arg) |
| 3092 | struct ipq *fp; |
| 3093 | int i; |
| 3094 | |
| 3095 | /* |
| 3096 | * Update coarse-grained networking timestamp (in sec.); the idea |
| 3097 | * is to piggy-back on the timeout callout to update the counter |
| 3098 | * returnable via net_uptime(). |
| 3099 | */ |
| 3100 | net_update_uptime(); |
| 3101 | |
| 3102 | lck_mtx_lock(&ipqlock); |
| 3103 | for (i = 0; i < IPREASS_NHASH; i++) { |
| 3104 | for (fp = TAILQ_FIRST(&ipq[i]); fp; ) { |
| 3105 | struct ipq *fpp; |
| 3106 | |
| 3107 | fpp = fp; |
| 3108 | fp = TAILQ_NEXT(fp, ipq_list); |
| 3109 | if (--fpp->ipq_ttl == 0) { |
| 3110 | ipstat.ips_fragtimeout += fpp->ipq_nfrags; |
| 3111 | frag_freef(&ipq[i], fpp); |
| 3112 | } |
| 3113 | } |
| 3114 | } |
| 3115 | /* |
| 3116 | * If we are over the maximum number of fragments |
| 3117 | * (due to the limit being lowered), drain off |
| 3118 | * enough to get down to the new limit. |
| 3119 | */ |
| 3120 | if (maxnipq >= 0 && nipq > (unsigned)maxnipq) { |
| 3121 | for (i = 0; i < IPREASS_NHASH; i++) { |
| 3122 | while (nipq > (unsigned)maxnipq && |
| 3123 | !TAILQ_EMPTY(&ipq[i])) { |
| 3124 | ipstat.ips_fragdropped += |
| 3125 | TAILQ_FIRST(&ipq[i])->ipq_nfrags; |
| 3126 | frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); |
| 3127 | } |
| 3128 | } |
| 3129 | } |
| 3130 | /* re-arm the purge timer if there's work to do */ |
| 3131 | frag_timeout_run = 0; |
| 3132 | frag_sched_timeout(); |
| 3133 | lck_mtx_unlock(&ipqlock); |
| 3134 | } |
| 3135 | |
| 3136 | static void |
| 3137 | frag_sched_timeout(void) |
| 3138 | { |
| 3139 | LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED); |
| 3140 | |
| 3141 | if (!frag_timeout_run && nipq > 0) { |
| 3142 | frag_timeout_run = 1; |
| 3143 | timeout(frag_timeout, NULL, hz); |
| 3144 | } |
| 3145 | } |
| 3146 | |
| 3147 | /* |
| 3148 | * Drain off all datagram fragments. |
| 3149 | */ |
| 3150 | static void |
| 3151 | frag_drain(void) |
| 3152 | { |
| 3153 | int i; |
| 3154 | |
| 3155 | lck_mtx_lock(&ipqlock); |
| 3156 | for (i = 0; i < IPREASS_NHASH; i++) { |
| 3157 | while (!TAILQ_EMPTY(&ipq[i])) { |
| 3158 | ipstat.ips_fragdropped += |
| 3159 | TAILQ_FIRST(&ipq[i])->ipq_nfrags; |
| 3160 | frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i])); |
| 3161 | } |
| 3162 | } |
| 3163 | lck_mtx_unlock(&ipqlock); |
| 3164 | } |
| 3165 | |
| 3166 | static struct ipq * |
| 3167 | ipq_alloc(int how) |
| 3168 | { |
| 3169 | struct mbuf *t; |
| 3170 | struct ipq *fp; |
| 3171 | |
| 3172 | /* |
| 3173 | * See comments in ipq_updateparams(). Keep the count separate |
| 3174 | * from nipq since the latter represents the elements already |
| 3175 | * in the reassembly queues. |
| 3176 | */ |
| 3177 | if (ipq_limit > 0 && ipq_count > ipq_limit) |
| 3178 | return (NULL); |
| 3179 | |
| 3180 | t = m_get(how, MT_FTABLE); |
| 3181 | if (t != NULL) { |
| 3182 | atomic_add_32(&ipq_count, 1); |
| 3183 | fp = mtod(t, struct ipq *); |
| 3184 | bzero(fp, sizeof (*fp)); |
| 3185 | } else { |
| 3186 | fp = NULL; |
| 3187 | } |
| 3188 | return (fp); |
| 3189 | } |
| 3190 | |
| 3191 | static void |
| 3192 | ipq_free(struct ipq *fp) |
| 3193 | { |
| 3194 | (void) m_free(dtom(fp)); |
| 3195 | atomic_add_32(&ipq_count, -1); |
| 3196 | } |
| 3197 | |
| 3198 | /* |
| 3199 | * Drain callback |
| 3200 | */ |
| 3201 | void |
| 3202 | ip_drain(void) |
| 3203 | { |
| 3204 | frag_drain(); /* fragments */ |
| 3205 | in_rtqdrain(); /* protocol cloned routes */ |
| 3206 | in_arpdrain(NULL); /* cloned routes: ARP */ |
| 3207 | } |
| 3208 | |
| 3209 | /* |
| 3210 | * Do option processing on a datagram, |
| 3211 | * possibly discarding it if bad options are encountered, |
| 3212 | * or forwarding it if source-routed. |
| 3213 | * The pass argument is used when operating in the IPSTEALTH |
| 3214 | * mode to tell what options to process: |
| 3215 | * [LS]SRR (pass 0) or the others (pass 1). |
| 3216 | * The reason for as many as two passes is that when doing IPSTEALTH, |
| 3217 | * non-routing options should be processed only if the packet is for us. |
| 3218 | * Returns 1 if packet has been forwarded/freed, |
| 3219 | * 0 if the packet should be processed further. |
| 3220 | */ |
| 3221 | static int |
| 3222 | ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop) |
| 3223 | { |
| 3224 | #pragma unused(pass) |
| 3225 | struct ip *ip = mtod(m, struct ip *); |
| 3226 | u_char *cp; |
| 3227 | struct ip_timestamp *ipt; |
| 3228 | struct in_ifaddr *ia; |
| 3229 | int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; |
| 3230 | struct in_addr *sin, dst; |
| 3231 | u_int32_t ntime; |
| 3232 | struct sockaddr_in ipaddr = { |
| 3233 | sizeof (ipaddr), AF_INET, 0, { 0 }, { 0, } }; |
| 3234 | |
| 3235 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 3236 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 3237 | |
| 3238 | dst = ip->ip_dst; |
| 3239 | cp = (u_char *)(ip + 1); |
| 3240 | cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); |
| 3241 | for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| 3242 | opt = cp[IPOPT_OPTVAL]; |
| 3243 | if (opt == IPOPT_EOL) |
| 3244 | break; |
| 3245 | if (opt == IPOPT_NOP) |
| 3246 | optlen = 1; |
| 3247 | else { |
| 3248 | if (cnt < IPOPT_OLEN + sizeof (*cp)) { |
| 3249 | code = &cp[IPOPT_OLEN] - (u_char *)ip; |
| 3250 | goto bad; |
| 3251 | } |
| 3252 | optlen = cp[IPOPT_OLEN]; |
| 3253 | if (optlen < IPOPT_OLEN + sizeof (*cp) || |
| 3254 | optlen > cnt) { |
| 3255 | code = &cp[IPOPT_OLEN] - (u_char *)ip; |
| 3256 | goto bad; |
| 3257 | } |
| 3258 | } |
| 3259 | switch (opt) { |
| 3260 | |
| 3261 | default: |
| 3262 | break; |
| 3263 | |
| 3264 | /* |
| 3265 | * Source routing with record. |
| 3266 | * Find interface with current destination address. |
| 3267 | * If none on this machine then drop if strictly routed, |
| 3268 | * or do nothing if loosely routed. |
| 3269 | * Record interface address and bring up next address |
| 3270 | * component. If strictly routed make sure next |
| 3271 | * address is on directly accessible net. |
| 3272 | */ |
| 3273 | case IPOPT_LSRR: |
| 3274 | case IPOPT_SSRR: |
| 3275 | if (optlen < IPOPT_OFFSET + sizeof (*cp)) { |
| 3276 | code = &cp[IPOPT_OLEN] - (u_char *)ip; |
| 3277 | goto bad; |
| 3278 | } |
| 3279 | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { |
| 3280 | code = &cp[IPOPT_OFFSET] - (u_char *)ip; |
| 3281 | goto bad; |
| 3282 | } |
| 3283 | ipaddr.sin_addr = ip->ip_dst; |
| 3284 | ia = (struct in_ifaddr *)ifa_ifwithaddr(SA(&ipaddr)); |
| 3285 | if (ia == NULL) { |
| 3286 | if (opt == IPOPT_SSRR) { |
| 3287 | type = ICMP_UNREACH; |
| 3288 | code = ICMP_UNREACH_SRCFAIL; |
| 3289 | goto bad; |
| 3290 | } |
| 3291 | if (!ip_dosourceroute) |
| 3292 | goto nosourcerouting; |
| 3293 | /* |
| 3294 | * Loose routing, and not at next destination |
| 3295 | * yet; nothing to do except forward. |
| 3296 | */ |
| 3297 | break; |
| 3298 | } else { |
| 3299 | IFA_REMREF(&ia->ia_ifa); |
| 3300 | ia = NULL; |
| 3301 | } |
| 3302 | off--; /* 0 origin */ |
| 3303 | if (off > optlen - (int)sizeof (struct in_addr)) { |
| 3304 | /* |
| 3305 | * End of source route. Should be for us. |
| 3306 | */ |
| 3307 | if (!ip_acceptsourceroute) |
| 3308 | goto nosourcerouting; |
| 3309 | save_rte(cp, ip->ip_src); |
| 3310 | break; |
| 3311 | } |
| 3312 | |
| 3313 | if (!ip_dosourceroute) { |
| 3314 | if (ipforwarding) { |
| 3315 | char buf[MAX_IPv4_STR_LEN]; |
| 3316 | char buf2[MAX_IPv4_STR_LEN]; |
| 3317 | /* |
| 3318 | * Acting as a router, so generate ICMP |
| 3319 | */ |
| 3320 | nosourcerouting: |
| 3321 | log(LOG_WARNING, |
| 3322 | "attempted source route from %s " |
| 3323 | "to %s\n" , |
| 3324 | inet_ntop(AF_INET, &ip->ip_src, |
| 3325 | buf, sizeof (buf)), |
| 3326 | inet_ntop(AF_INET, &ip->ip_dst, |
| 3327 | buf2, sizeof (buf2))); |
| 3328 | type = ICMP_UNREACH; |
| 3329 | code = ICMP_UNREACH_SRCFAIL; |
| 3330 | goto bad; |
| 3331 | } else { |
| 3332 | /* |
| 3333 | * Not acting as a router, |
| 3334 | * so silently drop. |
| 3335 | */ |
| 3336 | OSAddAtomic(1, &ipstat.ips_cantforward); |
| 3337 | m_freem(m); |
| 3338 | return (1); |
| 3339 | } |
| 3340 | } |
| 3341 | |
| 3342 | /* |
| 3343 | * locate outgoing interface |
| 3344 | */ |
| 3345 | (void) memcpy(&ipaddr.sin_addr, cp + off, |
| 3346 | sizeof (ipaddr.sin_addr)); |
| 3347 | |
| 3348 | if (opt == IPOPT_SSRR) { |
| 3349 | #define INA struct in_ifaddr * |
| 3350 | if ((ia = (INA)ifa_ifwithdstaddr( |
| 3351 | SA(&ipaddr))) == NULL) { |
| 3352 | ia = (INA)ifa_ifwithnet(SA(&ipaddr)); |
| 3353 | } |
| 3354 | } else { |
| 3355 | ia = ip_rtaddr(ipaddr.sin_addr); |
| 3356 | } |
| 3357 | if (ia == NULL) { |
| 3358 | type = ICMP_UNREACH; |
| 3359 | code = ICMP_UNREACH_SRCFAIL; |
| 3360 | goto bad; |
| 3361 | } |
| 3362 | ip->ip_dst = ipaddr.sin_addr; |
| 3363 | IFA_LOCK(&ia->ia_ifa); |
| 3364 | (void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr), |
| 3365 | sizeof (struct in_addr)); |
| 3366 | IFA_UNLOCK(&ia->ia_ifa); |
| 3367 | IFA_REMREF(&ia->ia_ifa); |
| 3368 | ia = NULL; |
| 3369 | cp[IPOPT_OFFSET] += sizeof (struct in_addr); |
| 3370 | /* |
| 3371 | * Let ip_intr's mcast routing check handle mcast pkts |
| 3372 | */ |
| 3373 | forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); |
| 3374 | break; |
| 3375 | |
| 3376 | case IPOPT_RR: |
| 3377 | if (optlen < IPOPT_OFFSET + sizeof (*cp)) { |
| 3378 | code = &cp[IPOPT_OFFSET] - (u_char *)ip; |
| 3379 | goto bad; |
| 3380 | } |
| 3381 | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { |
| 3382 | code = &cp[IPOPT_OFFSET] - (u_char *)ip; |
| 3383 | goto bad; |
| 3384 | } |
| 3385 | /* |
| 3386 | * If no space remains, ignore. |
| 3387 | */ |
| 3388 | off--; /* 0 origin */ |
| 3389 | if (off > optlen - (int)sizeof (struct in_addr)) |
| 3390 | break; |
| 3391 | (void) memcpy(&ipaddr.sin_addr, &ip->ip_dst, |
| 3392 | sizeof (ipaddr.sin_addr)); |
| 3393 | /* |
| 3394 | * locate outgoing interface; if we're the destination, |
| 3395 | * use the incoming interface (should be same). |
| 3396 | */ |
| 3397 | if ((ia = (INA)ifa_ifwithaddr(SA(&ipaddr))) == NULL) { |
| 3398 | if ((ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) { |
| 3399 | type = ICMP_UNREACH; |
| 3400 | code = ICMP_UNREACH_HOST; |
| 3401 | goto bad; |
| 3402 | } |
| 3403 | } |
| 3404 | IFA_LOCK(&ia->ia_ifa); |
| 3405 | (void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr), |
| 3406 | sizeof (struct in_addr)); |
| 3407 | IFA_UNLOCK(&ia->ia_ifa); |
| 3408 | IFA_REMREF(&ia->ia_ifa); |
| 3409 | ia = NULL; |
| 3410 | cp[IPOPT_OFFSET] += sizeof (struct in_addr); |
| 3411 | break; |
| 3412 | |
| 3413 | case IPOPT_TS: |
| 3414 | code = cp - (u_char *)ip; |
| 3415 | ipt = (struct ip_timestamp *)(void *)cp; |
| 3416 | if (ipt->ipt_len < 4 || ipt->ipt_len > 40) { |
| 3417 | code = (u_char *)&ipt->ipt_len - (u_char *)ip; |
| 3418 | goto bad; |
| 3419 | } |
| 3420 | if (ipt->ipt_ptr < 5) { |
| 3421 | code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; |
| 3422 | goto bad; |
| 3423 | } |
| 3424 | if (ipt->ipt_ptr > |
| 3425 | ipt->ipt_len - (int)sizeof (int32_t)) { |
| 3426 | if (++ipt->ipt_oflw == 0) { |
| 3427 | code = (u_char *)&ipt->ipt_ptr - |
| 3428 | (u_char *)ip; |
| 3429 | goto bad; |
| 3430 | } |
| 3431 | break; |
| 3432 | } |
| 3433 | sin = (struct in_addr *)(void *)(cp + ipt->ipt_ptr - 1); |
| 3434 | switch (ipt->ipt_flg) { |
| 3435 | |
| 3436 | case IPOPT_TS_TSONLY: |
| 3437 | break; |
| 3438 | |
| 3439 | case IPOPT_TS_TSANDADDR: |
| 3440 | if (ipt->ipt_ptr - 1 + sizeof (n_time) + |
| 3441 | sizeof (struct in_addr) > ipt->ipt_len) { |
| 3442 | code = (u_char *)&ipt->ipt_ptr - |
| 3443 | (u_char *)ip; |
| 3444 | goto bad; |
| 3445 | } |
| 3446 | ipaddr.sin_addr = dst; |
| 3447 | ia = (INA)ifaof_ifpforaddr(SA(&ipaddr), |
| 3448 | m->m_pkthdr.rcvif); |
| 3449 | if (ia == NULL) |
| 3450 | continue; |
| 3451 | IFA_LOCK(&ia->ia_ifa); |
| 3452 | (void) memcpy(sin, &IA_SIN(ia)->sin_addr, |
| 3453 | sizeof (struct in_addr)); |
| 3454 | IFA_UNLOCK(&ia->ia_ifa); |
| 3455 | ipt->ipt_ptr += sizeof (struct in_addr); |
| 3456 | IFA_REMREF(&ia->ia_ifa); |
| 3457 | ia = NULL; |
| 3458 | break; |
| 3459 | |
| 3460 | case IPOPT_TS_PRESPEC: |
| 3461 | if (ipt->ipt_ptr - 1 + sizeof (n_time) + |
| 3462 | sizeof (struct in_addr) > ipt->ipt_len) { |
| 3463 | code = (u_char *)&ipt->ipt_ptr - |
| 3464 | (u_char *)ip; |
| 3465 | goto bad; |
| 3466 | } |
| 3467 | (void) memcpy(&ipaddr.sin_addr, sin, |
| 3468 | sizeof (struct in_addr)); |
| 3469 | if ((ia = (struct in_ifaddr *)ifa_ifwithaddr( |
| 3470 | SA(&ipaddr))) == NULL) |
| 3471 | continue; |
| 3472 | IFA_REMREF(&ia->ia_ifa); |
| 3473 | ia = NULL; |
| 3474 | ipt->ipt_ptr += sizeof (struct in_addr); |
| 3475 | break; |
| 3476 | |
| 3477 | default: |
| 3478 | /* XXX can't take &ipt->ipt_flg */ |
| 3479 | code = (u_char *)&ipt->ipt_ptr - |
| 3480 | (u_char *)ip + 1; |
| 3481 | goto bad; |
| 3482 | } |
| 3483 | ntime = iptime(); |
| 3484 | (void) memcpy(cp + ipt->ipt_ptr - 1, &ntime, |
| 3485 | sizeof (n_time)); |
| 3486 | ipt->ipt_ptr += sizeof (n_time); |
| 3487 | } |
| 3488 | } |
| 3489 | if (forward && ipforwarding) { |
| 3490 | ip_forward(m, 1, next_hop); |
| 3491 | return (1); |
| 3492 | } |
| 3493 | return (0); |
| 3494 | bad: |
| 3495 | icmp_error(m, type, code, 0, 0); |
| 3496 | OSAddAtomic(1, &ipstat.ips_badoptions); |
| 3497 | return (1); |
| 3498 | } |
| 3499 | |
| 3500 | /* |
| 3501 | * Check for the presence of the IP Router Alert option [RFC2113] |
| 3502 | * in the header of an IPv4 datagram. |
| 3503 | * |
| 3504 | * This call is not intended for use from the forwarding path; it is here |
| 3505 | * so that protocol domains may check for the presence of the option. |
| 3506 | * Given how FreeBSD's IPv4 stack is currently structured, the Router Alert |
| 3507 | * option does not have much relevance to the implementation, though this |
| 3508 | * may change in future. |
| 3509 | * Router alert options SHOULD be passed if running in IPSTEALTH mode and |
| 3510 | * we are not the endpoint. |
| 3511 | * Length checks on individual options should already have been peformed |
| 3512 | * by ip_dooptions() therefore they are folded under DIAGNOSTIC here. |
| 3513 | * |
| 3514 | * Return zero if not present or options are invalid, non-zero if present. |
| 3515 | */ |
| 3516 | int |
| 3517 | ip_checkrouteralert(struct mbuf *m) |
| 3518 | { |
| 3519 | struct ip *ip = mtod(m, struct ip *); |
| 3520 | u_char *cp; |
| 3521 | int opt, optlen, cnt, found_ra; |
| 3522 | |
| 3523 | found_ra = 0; |
| 3524 | cp = (u_char *)(ip + 1); |
| 3525 | cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); |
| 3526 | for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| 3527 | opt = cp[IPOPT_OPTVAL]; |
| 3528 | if (opt == IPOPT_EOL) |
| 3529 | break; |
| 3530 | if (opt == IPOPT_NOP) |
| 3531 | optlen = 1; |
| 3532 | else { |
| 3533 | #ifdef DIAGNOSTIC |
| 3534 | if (cnt < IPOPT_OLEN + sizeof (*cp)) |
| 3535 | break; |
| 3536 | #endif |
| 3537 | optlen = cp[IPOPT_OLEN]; |
| 3538 | #ifdef DIAGNOSTIC |
| 3539 | if (optlen < IPOPT_OLEN + sizeof (*cp) || optlen > cnt) |
| 3540 | break; |
| 3541 | #endif |
| 3542 | } |
| 3543 | switch (opt) { |
| 3544 | case IPOPT_RA: |
| 3545 | #ifdef DIAGNOSTIC |
| 3546 | if (optlen != IPOPT_OFFSET + sizeof (uint16_t) || |
| 3547 | (*((uint16_t *)(void *)&cp[IPOPT_OFFSET]) != 0)) |
| 3548 | break; |
| 3549 | else |
| 3550 | #endif |
| 3551 | found_ra = 1; |
| 3552 | break; |
| 3553 | default: |
| 3554 | break; |
| 3555 | } |
| 3556 | } |
| 3557 | |
| 3558 | return (found_ra); |
| 3559 | } |
| 3560 | |
| 3561 | /* |
| 3562 | * Given address of next destination (final or next hop), |
| 3563 | * return internet address info of interface to be used to get there. |
| 3564 | */ |
| 3565 | struct in_ifaddr * |
| 3566 | ip_rtaddr(struct in_addr dst) |
| 3567 | { |
| 3568 | struct sockaddr_in *sin; |
| 3569 | struct ifaddr *rt_ifa; |
| 3570 | struct route ro; |
| 3571 | |
| 3572 | bzero(&ro, sizeof (ro)); |
| 3573 | sin = SIN(&ro.ro_dst); |
| 3574 | sin->sin_family = AF_INET; |
| 3575 | sin->sin_len = sizeof (*sin); |
| 3576 | sin->sin_addr = dst; |
| 3577 | |
| 3578 | rtalloc_ign(&ro, RTF_PRCLONING); |
| 3579 | if (ro.ro_rt == NULL) { |
| 3580 | ROUTE_RELEASE(&ro); |
| 3581 | return (NULL); |
| 3582 | } |
| 3583 | |
| 3584 | RT_LOCK(ro.ro_rt); |
| 3585 | if ((rt_ifa = ro.ro_rt->rt_ifa) != NULL) |
| 3586 | IFA_ADDREF(rt_ifa); |
| 3587 | RT_UNLOCK(ro.ro_rt); |
| 3588 | ROUTE_RELEASE(&ro); |
| 3589 | |
| 3590 | return ((struct in_ifaddr *)rt_ifa); |
| 3591 | } |
| 3592 | |
| 3593 | /* |
| 3594 | * Save incoming source route for use in replies, |
| 3595 | * to be picked up later by ip_srcroute if the receiver is interested. |
| 3596 | */ |
| 3597 | void |
| 3598 | save_rte(u_char *option, struct in_addr dst) |
| 3599 | { |
| 3600 | unsigned olen; |
| 3601 | |
| 3602 | olen = option[IPOPT_OLEN]; |
| 3603 | #if DIAGNOSTIC |
| 3604 | if (ipprintfs) |
| 3605 | printf("save_rte: olen %d\n" , olen); |
| 3606 | #endif |
| 3607 | if (olen > sizeof (ip_srcrt) - (1 + sizeof (dst))) |
| 3608 | return; |
| 3609 | bcopy(option, ip_srcrt.srcopt, olen); |
| 3610 | ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof (struct in_addr); |
| 3611 | ip_srcrt.dst = dst; |
| 3612 | } |
| 3613 | |
| 3614 | /* |
| 3615 | * Retrieve incoming source route for use in replies, |
| 3616 | * in the same form used by setsockopt. |
| 3617 | * The first hop is placed before the options, will be removed later. |
| 3618 | */ |
| 3619 | struct mbuf * |
| 3620 | ip_srcroute(void) |
| 3621 | { |
| 3622 | struct in_addr *p, *q; |
| 3623 | struct mbuf *m; |
| 3624 | |
| 3625 | if (ip_nhops == 0) |
| 3626 | return (NULL); |
| 3627 | |
| 3628 | m = m_get(M_DONTWAIT, MT_HEADER); |
| 3629 | if (m == NULL) |
| 3630 | return (NULL); |
| 3631 | |
| 3632 | #define OPTSIZ (sizeof (ip_srcrt.nop) + sizeof (ip_srcrt.srcopt)) |
| 3633 | |
| 3634 | /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ |
| 3635 | m->m_len = ip_nhops * sizeof (struct in_addr) + |
| 3636 | sizeof (struct in_addr) + OPTSIZ; |
| 3637 | #if DIAGNOSTIC |
| 3638 | if (ipprintfs) |
| 3639 | printf("ip_srcroute: nhops %d mlen %d" , ip_nhops, m->m_len); |
| 3640 | #endif |
| 3641 | |
| 3642 | /* |
| 3643 | * First save first hop for return route |
| 3644 | */ |
| 3645 | p = &ip_srcrt.route[ip_nhops - 1]; |
| 3646 | *(mtod(m, struct in_addr *)) = *p--; |
| 3647 | #if DIAGNOSTIC |
| 3648 | if (ipprintfs) |
| 3649 | printf(" hops %lx" , |
| 3650 | (u_int32_t)ntohl(mtod(m, struct in_addr *)->s_addr)); |
| 3651 | #endif |
| 3652 | |
| 3653 | /* |
| 3654 | * Copy option fields and padding (nop) to mbuf. |
| 3655 | */ |
| 3656 | ip_srcrt.nop = IPOPT_NOP; |
| 3657 | ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; |
| 3658 | (void) memcpy(mtod(m, caddr_t) + sizeof (struct in_addr), |
| 3659 | &ip_srcrt.nop, OPTSIZ); |
| 3660 | q = (struct in_addr *)(void *)(mtod(m, caddr_t) + |
| 3661 | sizeof (struct in_addr) + OPTSIZ); |
| 3662 | #undef OPTSIZ |
| 3663 | /* |
| 3664 | * Record return path as an IP source route, |
| 3665 | * reversing the path (pointers are now aligned). |
| 3666 | */ |
| 3667 | while (p >= ip_srcrt.route) { |
| 3668 | #if DIAGNOSTIC |
| 3669 | if (ipprintfs) |
| 3670 | printf(" %lx" , (u_int32_t)ntohl(q->s_addr)); |
| 3671 | #endif |
| 3672 | *q++ = *p--; |
| 3673 | } |
| 3674 | /* |
| 3675 | * Last hop goes to final destination. |
| 3676 | */ |
| 3677 | *q = ip_srcrt.dst; |
| 3678 | #if DIAGNOSTIC |
| 3679 | if (ipprintfs) |
| 3680 | printf(" %lx\n" , (u_int32_t)ntohl(q->s_addr)); |
| 3681 | #endif |
| 3682 | return (m); |
| 3683 | } |
| 3684 | |
| 3685 | /* |
| 3686 | * Strip out IP options, at higher level protocol in the kernel. |
| 3687 | */ |
| 3688 | void |
| 3689 | ip_stripoptions(struct mbuf *m) |
| 3690 | { |
| 3691 | int i; |
| 3692 | struct ip *ip = mtod(m, struct ip *); |
| 3693 | caddr_t opts; |
| 3694 | int olen; |
| 3695 | |
| 3696 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 3697 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 3698 | |
| 3699 | /* use bcopy() since it supports overlapping range */ |
| 3700 | olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip); |
| 3701 | opts = (caddr_t)(ip + 1); |
| 3702 | i = m->m_len - (sizeof (struct ip) + olen); |
| 3703 | bcopy(opts + olen, opts, (unsigned)i); |
| 3704 | m->m_len -= olen; |
| 3705 | if (m->m_flags & M_PKTHDR) |
| 3706 | m->m_pkthdr.len -= olen; |
| 3707 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof (struct ip) >> 2); |
| 3708 | |
| 3709 | /* |
| 3710 | * We expect ip_{off,len} to be in host order by now, and |
| 3711 | * that the original IP header length has been subtracted |
| 3712 | * out from ip_len. Temporarily adjust ip_len for checksum |
| 3713 | * recalculation, and restore it afterwards. |
| 3714 | */ |
| 3715 | ip->ip_len += sizeof (struct ip); |
| 3716 | |
| 3717 | /* recompute checksum now that IP header is smaller */ |
| 3718 | #if BYTE_ORDER != BIG_ENDIAN |
| 3719 | HTONS(ip->ip_len); |
| 3720 | HTONS(ip->ip_off); |
| 3721 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 3722 | ip->ip_sum = in_cksum_hdr(ip); |
| 3723 | #if BYTE_ORDER != BIG_ENDIAN |
| 3724 | NTOHS(ip->ip_off); |
| 3725 | NTOHS(ip->ip_len); |
| 3726 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 3727 | |
| 3728 | ip->ip_len -= sizeof (struct ip); |
| 3729 | } |
| 3730 | |
| 3731 | u_char inetctlerrmap[PRC_NCMDS] = { |
| 3732 | 0, 0, 0, 0, |
| 3733 | 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, |
| 3734 | ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, |
| 3735 | EMSGSIZE, EHOSTUNREACH, 0, 0, |
| 3736 | 0, 0, 0, 0, |
| 3737 | ENOPROTOOPT, ECONNREFUSED |
| 3738 | }; |
| 3739 | |
| 3740 | static int |
| 3741 | sysctl_ipforwarding SYSCTL_HANDLER_ARGS |
| 3742 | { |
| 3743 | #pragma unused(arg1, arg2) |
| 3744 | int i, was_ipforwarding = ipforwarding; |
| 3745 | |
| 3746 | i = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); |
| 3747 | if (i != 0 || req->newptr == USER_ADDR_NULL) |
| 3748 | return (i); |
| 3749 | |
| 3750 | if (was_ipforwarding && !ipforwarding) { |
| 3751 | /* clean up IPv4 forwarding cached routes */ |
| 3752 | ifnet_head_lock_shared(); |
| 3753 | for (i = 0; i <= if_index; i++) { |
| 3754 | struct ifnet *ifp = ifindex2ifnet[i]; |
| 3755 | if (ifp != NULL) { |
| 3756 | lck_mtx_lock(&ifp->if_cached_route_lock); |
| 3757 | ROUTE_RELEASE(&ifp->if_fwd_route); |
| 3758 | bzero(&ifp->if_fwd_route, |
| 3759 | sizeof (ifp->if_fwd_route)); |
| 3760 | lck_mtx_unlock(&ifp->if_cached_route_lock); |
| 3761 | } |
| 3762 | } |
| 3763 | ifnet_head_done(); |
| 3764 | } |
| 3765 | |
| 3766 | return (0); |
| 3767 | } |
| 3768 | |
| 3769 | /* |
| 3770 | * Similar to inp_route_{copyout,copyin} routines except that these copy |
| 3771 | * out the cached IPv4 forwarding route from struct ifnet instead of the |
| 3772 | * inpcb. See comments for those routines for explanations. |
| 3773 | */ |
| 3774 | static void |
| 3775 | ip_fwd_route_copyout(struct ifnet *ifp, struct route *dst) |
| 3776 | { |
| 3777 | struct route *src = &ifp->if_fwd_route; |
| 3778 | |
| 3779 | lck_mtx_lock_spin(&ifp->if_cached_route_lock); |
| 3780 | lck_mtx_convert_spin(&ifp->if_cached_route_lock); |
| 3781 | |
| 3782 | /* Minor sanity check */ |
| 3783 | if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) |
| 3784 | panic("%s: wrong or corrupted route: %p" , __func__, src); |
| 3785 | |
| 3786 | route_copyout(dst, src, sizeof (*dst)); |
| 3787 | |
| 3788 | lck_mtx_unlock(&ifp->if_cached_route_lock); |
| 3789 | } |
| 3790 | |
| 3791 | static void |
| 3792 | ip_fwd_route_copyin(struct ifnet *ifp, struct route *src) |
| 3793 | { |
| 3794 | struct route *dst = &ifp->if_fwd_route; |
| 3795 | |
| 3796 | lck_mtx_lock_spin(&ifp->if_cached_route_lock); |
| 3797 | lck_mtx_convert_spin(&ifp->if_cached_route_lock); |
| 3798 | |
| 3799 | /* Minor sanity check */ |
| 3800 | if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) |
| 3801 | panic("%s: wrong or corrupted route: %p" , __func__, src); |
| 3802 | |
| 3803 | if (ifp->if_fwd_cacheok) |
| 3804 | route_copyin(src, dst, sizeof (*src)); |
| 3805 | |
| 3806 | lck_mtx_unlock(&ifp->if_cached_route_lock); |
| 3807 | } |
| 3808 | |
| 3809 | /* |
| 3810 | * Forward a packet. If some error occurs return the sender |
| 3811 | * an icmp packet. Note we can't always generate a meaningful |
| 3812 | * icmp message because icmp doesn't have a large enough repertoire |
| 3813 | * of codes and types. |
| 3814 | * |
| 3815 | * If not forwarding, just drop the packet. This could be confusing |
| 3816 | * if ipforwarding was zero but some routing protocol was advancing |
| 3817 | * us as a gateway to somewhere. However, we must let the routing |
| 3818 | * protocol deal with that. |
| 3819 | * |
| 3820 | * The srcrt parameter indicates whether the packet is being forwarded |
| 3821 | * via a source route. |
| 3822 | */ |
| 3823 | static void |
| 3824 | ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop) |
| 3825 | { |
| 3826 | #if !IPFIREWALL |
| 3827 | #pragma unused(next_hop) |
| 3828 | #endif |
| 3829 | struct ip *ip = mtod(m, struct ip *); |
| 3830 | struct sockaddr_in *sin; |
| 3831 | struct rtentry *rt; |
| 3832 | struct route fwd_rt; |
| 3833 | int error, type = 0, code = 0; |
| 3834 | struct mbuf *mcopy; |
| 3835 | n_long dest; |
| 3836 | struct in_addr pkt_dst; |
| 3837 | u_int32_t nextmtu = 0, len; |
| 3838 | struct ip_out_args ipoa; |
| 3839 | struct ifnet *rcvifp = m->m_pkthdr.rcvif; |
| 3840 | |
| 3841 | bzero(&ipoa, sizeof(ipoa)); |
| 3842 | ipoa.ipoa_boundif = IFSCOPE_NONE; |
| 3843 | ipoa.ipoa_sotc = SO_TC_UNSPEC; |
| 3844 | ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 3845 | |
| 3846 | #if IPSEC |
| 3847 | struct secpolicy *sp = NULL; |
| 3848 | int ipsecerror; |
| 3849 | #endif /* IPSEC */ |
| 3850 | #if PF |
| 3851 | struct pf_mtag *pf_mtag; |
| 3852 | #endif /* PF */ |
| 3853 | |
| 3854 | dest = 0; |
| 3855 | #if IPFIREWALL |
| 3856 | /* |
| 3857 | * Cache the destination address of the packet; this may be |
| 3858 | * changed by use of 'ipfw fwd'. |
| 3859 | */ |
| 3860 | pkt_dst = ((next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst); |
| 3861 | #else /* !IPFIREWALL */ |
| 3862 | pkt_dst = ip->ip_dst; |
| 3863 | #endif /* !IPFIREWALL */ |
| 3864 | |
| 3865 | #if DIAGNOSTIC |
| 3866 | if (ipprintfs) |
| 3867 | printf("forward: src %lx dst %lx ttl %x\n" , |
| 3868 | (u_int32_t)ip->ip_src.s_addr, (u_int32_t)pkt_dst.s_addr, |
| 3869 | ip->ip_ttl); |
| 3870 | #endif |
| 3871 | |
| 3872 | if (m->m_flags & (M_BCAST|M_MCAST) || !in_canforward(pkt_dst)) { |
| 3873 | OSAddAtomic(1, &ipstat.ips_cantforward); |
| 3874 | m_freem(m); |
| 3875 | return; |
| 3876 | } |
| 3877 | #if IPSTEALTH |
| 3878 | if (!ipstealth) { |
| 3879 | #endif /* IPSTEALTH */ |
| 3880 | if (ip->ip_ttl <= IPTTLDEC) { |
| 3881 | icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, |
| 3882 | dest, 0); |
| 3883 | return; |
| 3884 | } |
| 3885 | #if IPSTEALTH |
| 3886 | } |
| 3887 | #endif /* IPSTEALTH */ |
| 3888 | |
| 3889 | #if PF |
| 3890 | pf_mtag = pf_find_mtag(m); |
| 3891 | if (pf_mtag != NULL && pf_mtag->pftag_rtableid != IFSCOPE_NONE) { |
| 3892 | ipoa.ipoa_boundif = pf_mtag->pftag_rtableid; |
| 3893 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; |
| 3894 | } |
| 3895 | #endif /* PF */ |
| 3896 | |
| 3897 | ip_fwd_route_copyout(rcvifp, &fwd_rt); |
| 3898 | |
| 3899 | sin = SIN(&fwd_rt.ro_dst); |
| 3900 | if (ROUTE_UNUSABLE(&fwd_rt) || pkt_dst.s_addr != sin->sin_addr.s_addr) { |
| 3901 | ROUTE_RELEASE(&fwd_rt); |
| 3902 | |
| 3903 | sin->sin_family = AF_INET; |
| 3904 | sin->sin_len = sizeof (*sin); |
| 3905 | sin->sin_addr = pkt_dst; |
| 3906 | |
| 3907 | rtalloc_scoped_ign(&fwd_rt, RTF_PRCLONING, ipoa.ipoa_boundif); |
| 3908 | if (fwd_rt.ro_rt == NULL) { |
| 3909 | icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); |
| 3910 | goto done; |
| 3911 | } |
| 3912 | } |
| 3913 | rt = fwd_rt.ro_rt; |
| 3914 | |
| 3915 | /* |
| 3916 | * Save the IP header and at most 8 bytes of the payload, |
| 3917 | * in case we need to generate an ICMP message to the src. |
| 3918 | * |
| 3919 | * We don't use m_copy() because it might return a reference |
| 3920 | * to a shared cluster. Both this function and ip_output() |
| 3921 | * assume exclusive access to the IP header in `m', so any |
| 3922 | * data in a cluster may change before we reach icmp_error(). |
| 3923 | */ |
| 3924 | MGET(mcopy, M_DONTWAIT, m->m_type); |
| 3925 | if (mcopy != NULL) { |
| 3926 | M_COPY_PKTHDR(mcopy, m); |
| 3927 | mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8, |
| 3928 | (int)ip->ip_len); |
| 3929 | m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); |
| 3930 | } |
| 3931 | |
| 3932 | #if IPSTEALTH |
| 3933 | if (!ipstealth) { |
| 3934 | #endif /* IPSTEALTH */ |
| 3935 | ip->ip_ttl -= IPTTLDEC; |
| 3936 | #if IPSTEALTH |
| 3937 | } |
| 3938 | #endif /* IPSTEALTH */ |
| 3939 | |
| 3940 | /* |
| 3941 | * If forwarding packet using same interface that it came in on, |
| 3942 | * perhaps should send a redirect to sender to shortcut a hop. |
| 3943 | * Only send redirect if source is sending directly to us, |
| 3944 | * and if packet was not source routed (or has any options). |
| 3945 | * Also, don't send redirect if forwarding using a default route |
| 3946 | * or a route modified by a redirect. |
| 3947 | */ |
| 3948 | RT_LOCK_SPIN(rt); |
| 3949 | if (rt->rt_ifp == m->m_pkthdr.rcvif && |
| 3950 | !(rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) && |
| 3951 | satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY && |
| 3952 | ipsendredirects && !srcrt && rt->rt_ifa != NULL) { |
| 3953 | struct in_ifaddr *ia = (struct in_ifaddr *)rt->rt_ifa; |
| 3954 | u_int32_t src = ntohl(ip->ip_src.s_addr); |
| 3955 | |
| 3956 | /* Become a regular mutex */ |
| 3957 | RT_CONVERT_LOCK(rt); |
| 3958 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 3959 | if ((src & ia->ia_subnetmask) == ia->ia_subnet) { |
| 3960 | if (rt->rt_flags & RTF_GATEWAY) |
| 3961 | dest = satosin(rt->rt_gateway)->sin_addr.s_addr; |
| 3962 | else |
| 3963 | dest = pkt_dst.s_addr; |
| 3964 | /* |
| 3965 | * Router requirements says to only send |
| 3966 | * host redirects. |
| 3967 | */ |
| 3968 | type = ICMP_REDIRECT; |
| 3969 | code = ICMP_REDIRECT_HOST; |
| 3970 | #if DIAGNOSTIC |
| 3971 | if (ipprintfs) |
| 3972 | printf("redirect (%d) to %lx\n" , code, |
| 3973 | (u_int32_t)dest); |
| 3974 | #endif |
| 3975 | } |
| 3976 | IFA_UNLOCK(&ia->ia_ifa); |
| 3977 | } |
| 3978 | RT_UNLOCK(rt); |
| 3979 | |
| 3980 | #if IPFIREWALL |
| 3981 | if (next_hop != NULL) { |
| 3982 | /* Pass IPFORWARD info if available */ |
| 3983 | struct m_tag *tag; |
| 3984 | struct ip_fwd_tag *ipfwd_tag; |
| 3985 | |
| 3986 | tag = m_tag_create(KERNEL_MODULE_TAG_ID, |
| 3987 | KERNEL_TAG_TYPE_IPFORWARD, |
| 3988 | sizeof (*ipfwd_tag), M_NOWAIT, m); |
| 3989 | if (tag == NULL) { |
| 3990 | error = ENOBUFS; |
| 3991 | m_freem(m); |
| 3992 | goto done; |
| 3993 | } |
| 3994 | |
| 3995 | ipfwd_tag = (struct ip_fwd_tag *)(tag+1); |
| 3996 | ipfwd_tag->next_hop = next_hop; |
| 3997 | |
| 3998 | m_tag_prepend(m, tag); |
| 3999 | } |
| 4000 | #endif /* IPFIREWALL */ |
| 4001 | |
| 4002 | /* Mark this packet as being forwarded from another interface */ |
| 4003 | m->m_pkthdr.pkt_flags |= PKTF_FORWARDED; |
| 4004 | len = m_pktlen(m); |
| 4005 | |
| 4006 | error = ip_output(m, NULL, &fwd_rt, IP_FORWARDING | IP_OUTARGS, |
| 4007 | NULL, &ipoa); |
| 4008 | |
| 4009 | /* Refresh rt since the route could have changed while in IP */ |
| 4010 | rt = fwd_rt.ro_rt; |
| 4011 | |
| 4012 | if (error != 0) { |
| 4013 | OSAddAtomic(1, &ipstat.ips_cantforward); |
| 4014 | } else { |
| 4015 | /* |
| 4016 | * Increment stats on the source interface; the ones |
| 4017 | * for destination interface has been taken care of |
| 4018 | * during output above by virtue of PKTF_FORWARDED. |
| 4019 | */ |
| 4020 | rcvifp->if_fpackets++; |
| 4021 | rcvifp->if_fbytes += len; |
| 4022 | |
| 4023 | OSAddAtomic(1, &ipstat.ips_forward); |
| 4024 | if (type != 0) { |
| 4025 | OSAddAtomic(1, &ipstat.ips_redirectsent); |
| 4026 | } else { |
| 4027 | if (mcopy != NULL) { |
| 4028 | /* |
| 4029 | * If we didn't have to go thru ipflow and |
| 4030 | * the packet was successfully consumed by |
| 4031 | * ip_output, the mcopy is rather a waste; |
| 4032 | * this could be further optimized. |
| 4033 | */ |
| 4034 | m_freem(mcopy); |
| 4035 | } |
| 4036 | goto done; |
| 4037 | } |
| 4038 | } |
| 4039 | if (mcopy == NULL) |
| 4040 | goto done; |
| 4041 | |
| 4042 | switch (error) { |
| 4043 | case 0: /* forwarded, but need redirect */ |
| 4044 | /* type, code set above */ |
| 4045 | break; |
| 4046 | |
| 4047 | case ENETUNREACH: /* shouldn't happen, checked above */ |
| 4048 | case EHOSTUNREACH: |
| 4049 | case ENETDOWN: |
| 4050 | case EHOSTDOWN: |
| 4051 | default: |
| 4052 | type = ICMP_UNREACH; |
| 4053 | code = ICMP_UNREACH_HOST; |
| 4054 | break; |
| 4055 | |
| 4056 | case EMSGSIZE: |
| 4057 | type = ICMP_UNREACH; |
| 4058 | code = ICMP_UNREACH_NEEDFRAG; |
| 4059 | |
| 4060 | if (rt == NULL) { |
| 4061 | break; |
| 4062 | } else { |
| 4063 | RT_LOCK_SPIN(rt); |
| 4064 | if (rt->rt_ifp != NULL) |
| 4065 | nextmtu = rt->rt_ifp->if_mtu; |
| 4066 | RT_UNLOCK(rt); |
| 4067 | } |
| 4068 | #ifdef IPSEC |
| 4069 | if (ipsec_bypass) |
| 4070 | break; |
| 4071 | |
| 4072 | /* |
| 4073 | * If the packet is routed over IPsec tunnel, tell the |
| 4074 | * originator the tunnel MTU. |
| 4075 | * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz |
| 4076 | * XXX quickhack!!! |
| 4077 | */ |
| 4078 | sp = ipsec4_getpolicybyaddr(mcopy, IPSEC_DIR_OUTBOUND, |
| 4079 | IP_FORWARDING, &ipsecerror); |
| 4080 | |
| 4081 | if (sp == NULL) |
| 4082 | break; |
| 4083 | |
| 4084 | /* |
| 4085 | * find the correct route for outer IPv4 |
| 4086 | * header, compute tunnel MTU. |
| 4087 | */ |
| 4088 | nextmtu = 0; |
| 4089 | |
| 4090 | if (sp->req != NULL && |
| 4091 | sp->req->saidx.mode == IPSEC_MODE_TUNNEL) { |
| 4092 | struct secasindex saidx; |
| 4093 | struct secasvar *sav; |
| 4094 | struct route *ro; |
| 4095 | struct ip *ipm; |
| 4096 | int ipsechdr; |
| 4097 | |
| 4098 | /* count IPsec header size */ |
| 4099 | ipsechdr = ipsec_hdrsiz(sp); |
| 4100 | |
| 4101 | ipm = mtod(mcopy, struct ip *); |
| 4102 | bcopy(&sp->req->saidx, &saidx, sizeof (saidx)); |
| 4103 | saidx.mode = sp->req->saidx.mode; |
| 4104 | saidx.reqid = sp->req->saidx.reqid; |
| 4105 | sin = SIN(&saidx.src); |
| 4106 | if (sin->sin_len == 0) { |
| 4107 | sin->sin_len = sizeof (*sin); |
| 4108 | sin->sin_family = AF_INET; |
| 4109 | sin->sin_port = IPSEC_PORT_ANY; |
| 4110 | bcopy(&ipm->ip_src, &sin->sin_addr, |
| 4111 | sizeof (sin->sin_addr)); |
| 4112 | } |
| 4113 | sin = SIN(&saidx.dst); |
| 4114 | if (sin->sin_len == 0) { |
| 4115 | sin->sin_len = sizeof (*sin); |
| 4116 | sin->sin_family = AF_INET; |
| 4117 | sin->sin_port = IPSEC_PORT_ANY; |
| 4118 | bcopy(&ipm->ip_dst, &sin->sin_addr, |
| 4119 | sizeof (sin->sin_addr)); |
| 4120 | } |
| 4121 | sav = key_allocsa_policy(&saidx); |
| 4122 | if (sav != NULL) { |
| 4123 | lck_mtx_lock(sadb_mutex); |
| 4124 | if (sav->sah != NULL) { |
| 4125 | ro = (struct route *)&sav->sah->sa_route; |
| 4126 | if (ro->ro_rt != NULL) { |
| 4127 | RT_LOCK(ro->ro_rt); |
| 4128 | if (ro->ro_rt->rt_ifp != NULL) { |
| 4129 | nextmtu = ro->ro_rt-> |
| 4130 | rt_ifp->if_mtu; |
| 4131 | nextmtu -= ipsechdr; |
| 4132 | } |
| 4133 | RT_UNLOCK(ro->ro_rt); |
| 4134 | } |
| 4135 | } |
| 4136 | key_freesav(sav, KEY_SADB_LOCKED); |
| 4137 | lck_mtx_unlock(sadb_mutex); |
| 4138 | } |
| 4139 | } |
| 4140 | key_freesp(sp, KEY_SADB_UNLOCKED); |
| 4141 | #endif /* IPSEC */ |
| 4142 | break; |
| 4143 | |
| 4144 | case ENOBUFS: |
| 4145 | /* |
| 4146 | * A router should not generate ICMP_SOURCEQUENCH as |
| 4147 | * required in RFC1812 Requirements for IP Version 4 Routers. |
| 4148 | * Source quench could be a big problem under DoS attacks, |
| 4149 | * or if the underlying interface is rate-limited. |
| 4150 | * Those who need source quench packets may re-enable them |
| 4151 | * via the net.inet.ip.sendsourcequench sysctl. |
| 4152 | */ |
| 4153 | if (ip_sendsourcequench == 0) { |
| 4154 | m_freem(mcopy); |
| 4155 | goto done; |
| 4156 | } else { |
| 4157 | type = ICMP_SOURCEQUENCH; |
| 4158 | code = 0; |
| 4159 | } |
| 4160 | break; |
| 4161 | |
| 4162 | case EACCES: /* ipfw denied packet */ |
| 4163 | m_freem(mcopy); |
| 4164 | goto done; |
| 4165 | } |
| 4166 | |
| 4167 | if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG) |
| 4168 | OSAddAtomic(1, &ipstat.ips_cantfrag); |
| 4169 | |
| 4170 | icmp_error(mcopy, type, code, dest, nextmtu); |
| 4171 | done: |
| 4172 | ip_fwd_route_copyin(rcvifp, &fwd_rt); |
| 4173 | } |
| 4174 | |
| 4175 | int |
| 4176 | ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, |
| 4177 | struct mbuf *m) |
| 4178 | { |
| 4179 | *mp = NULL; |
| 4180 | if (inp->inp_socket->so_options & SO_TIMESTAMP) { |
| 4181 | struct timeval tv; |
| 4182 | |
| 4183 | getmicrotime(&tv); |
| 4184 | mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv), |
| 4185 | SCM_TIMESTAMP, SOL_SOCKET, mp); |
| 4186 | if (*mp == NULL) { |
| 4187 | goto no_mbufs; |
| 4188 | } |
| 4189 | } |
| 4190 | if (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) { |
| 4191 | uint64_t time; |
| 4192 | |
| 4193 | time = mach_absolute_time(); |
| 4194 | mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time), |
| 4195 | SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp); |
| 4196 | if (*mp == NULL) { |
| 4197 | goto no_mbufs; |
| 4198 | } |
| 4199 | } |
| 4200 | if (inp->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) { |
| 4201 | uint64_t time; |
| 4202 | |
| 4203 | time = mach_continuous_time(); |
| 4204 | mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time), |
| 4205 | SCM_TIMESTAMP_CONTINUOUS, SOL_SOCKET, mp); |
| 4206 | if (*mp == NULL) { |
| 4207 | goto no_mbufs; |
| 4208 | } |
| 4209 | } |
| 4210 | if (inp->inp_flags & INP_RECVDSTADDR) { |
| 4211 | mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_dst, |
| 4212 | sizeof (struct in_addr), IP_RECVDSTADDR, IPPROTO_IP, mp); |
| 4213 | if (*mp == NULL) { |
| 4214 | goto no_mbufs; |
| 4215 | } |
| 4216 | } |
| 4217 | #ifdef notyet |
| 4218 | /* |
| 4219 | * XXX |
| 4220 | * Moving these out of udp_input() made them even more broken |
| 4221 | * than they already were. |
| 4222 | */ |
| 4223 | /* options were tossed already */ |
| 4224 | if (inp->inp_flags & INP_RECVOPTS) { |
| 4225 | mp = sbcreatecontrol_mbuf((caddr_t)opts_deleted_above, |
| 4226 | sizeof (struct in_addr), IP_RECVOPTS, IPPROTO_IP, mp); |
| 4227 | if (*mp == NULL) { |
| 4228 | goto no_mbufs; |
| 4229 | } |
| 4230 | } |
| 4231 | /* ip_srcroute doesn't do what we want here, need to fix */ |
| 4232 | if (inp->inp_flags & INP_RECVRETOPTS) { |
| 4233 | mp = sbcreatecontrol_mbuf((caddr_t)ip_srcroute(), |
| 4234 | sizeof (struct in_addr), IP_RECVRETOPTS, IPPROTO_IP, mp); |
| 4235 | if (*mp == NULL) { |
| 4236 | goto no_mbufs; |
| 4237 | } |
| 4238 | } |
| 4239 | #endif /* notyet */ |
| 4240 | if (inp->inp_flags & INP_RECVIF) { |
| 4241 | struct ifnet *ifp; |
| 4242 | uint8_t sdlbuf[SOCK_MAXADDRLEN + 1]; |
| 4243 | struct sockaddr_dl *sdl2 = SDL(&sdlbuf); |
| 4244 | |
| 4245 | /* |
| 4246 | * Make sure to accomodate the largest possible |
| 4247 | * size of SA(if_lladdr)->sa_len. |
| 4248 | */ |
| 4249 | _CASSERT(sizeof (sdlbuf) == (SOCK_MAXADDRLEN + 1)); |
| 4250 | |
| 4251 | ifnet_head_lock_shared(); |
| 4252 | if ((ifp = m->m_pkthdr.rcvif) != NULL && |
| 4253 | ifp->if_index && (ifp->if_index <= if_index)) { |
| 4254 | struct ifaddr *ifa = ifnet_addrs[ifp->if_index - 1]; |
| 4255 | struct sockaddr_dl *sdp; |
| 4256 | |
| 4257 | if (!ifa || !ifa->ifa_addr) |
| 4258 | goto makedummy; |
| 4259 | |
| 4260 | IFA_LOCK_SPIN(ifa); |
| 4261 | sdp = SDL(ifa->ifa_addr); |
| 4262 | /* |
| 4263 | * Change our mind and don't try copy. |
| 4264 | */ |
| 4265 | if (sdp->sdl_family != AF_LINK) { |
| 4266 | IFA_UNLOCK(ifa); |
| 4267 | goto makedummy; |
| 4268 | } |
| 4269 | /* the above _CASSERT ensures sdl_len fits in sdlbuf */ |
| 4270 | bcopy(sdp, sdl2, sdp->sdl_len); |
| 4271 | IFA_UNLOCK(ifa); |
| 4272 | } else { |
| 4273 | makedummy: |
| 4274 | sdl2->sdl_len = |
| 4275 | offsetof(struct sockaddr_dl, sdl_data[0]); |
| 4276 | sdl2->sdl_family = AF_LINK; |
| 4277 | sdl2->sdl_index = 0; |
| 4278 | sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; |
| 4279 | } |
| 4280 | ifnet_head_done(); |
| 4281 | mp = sbcreatecontrol_mbuf((caddr_t)sdl2, sdl2->sdl_len, |
| 4282 | IP_RECVIF, IPPROTO_IP, mp); |
| 4283 | if (*mp == NULL) { |
| 4284 | goto no_mbufs; |
| 4285 | } |
| 4286 | } |
| 4287 | if (inp->inp_flags & INP_RECVTTL) { |
| 4288 | mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_ttl, |
| 4289 | sizeof (ip->ip_ttl), IP_RECVTTL, IPPROTO_IP, mp); |
| 4290 | if (*mp == NULL) { |
| 4291 | goto no_mbufs; |
| 4292 | } |
| 4293 | } |
| 4294 | if (inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) { |
| 4295 | int tc = m_get_traffic_class(m); |
| 4296 | |
| 4297 | mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc), |
| 4298 | SO_TRAFFIC_CLASS, SOL_SOCKET, mp); |
| 4299 | if (*mp == NULL) { |
| 4300 | goto no_mbufs; |
| 4301 | } |
| 4302 | } |
| 4303 | if (inp->inp_flags & INP_PKTINFO) { |
| 4304 | struct in_pktinfo pi; |
| 4305 | |
| 4306 | bzero(&pi, sizeof (struct in_pktinfo)); |
| 4307 | bcopy(&ip->ip_dst, &pi.ipi_addr, sizeof (struct in_addr)); |
| 4308 | pi.ipi_ifindex = (m != NULL && m->m_pkthdr.rcvif != NULL) ? |
| 4309 | m->m_pkthdr.rcvif->if_index : 0; |
| 4310 | |
| 4311 | mp = sbcreatecontrol_mbuf((caddr_t)&pi, |
| 4312 | sizeof (struct in_pktinfo), IP_RECVPKTINFO, IPPROTO_IP, mp); |
| 4313 | if (*mp == NULL) { |
| 4314 | goto no_mbufs; |
| 4315 | } |
| 4316 | } |
| 4317 | if (inp->inp_flags & INP_RECVTOS) { |
| 4318 | mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_tos, |
| 4319 | sizeof(u_char), IP_RECVTOS, IPPROTO_IP, mp); |
| 4320 | if (*mp == NULL) { |
| 4321 | goto no_mbufs; |
| 4322 | } |
| 4323 | } |
| 4324 | return (0); |
| 4325 | |
| 4326 | no_mbufs: |
| 4327 | ipstat.ips_pktdropcntrl++; |
| 4328 | return (ENOBUFS); |
| 4329 | } |
| 4330 | |
| 4331 | static inline u_short |
| 4332 | ip_cksum(struct mbuf *m, int hlen) |
| 4333 | { |
| 4334 | u_short sum; |
| 4335 | |
| 4336 | if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { |
| 4337 | sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); |
| 4338 | } else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) && |
| 4339 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 4340 | /* |
| 4341 | * The packet arrived on an interface which isn't capable |
| 4342 | * of performing IP header checksum; compute it now. |
| 4343 | */ |
| 4344 | sum = ip_cksum_hdr_in(m, hlen); |
| 4345 | } else { |
| 4346 | sum = 0; |
| 4347 | m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR | |
| 4348 | CSUM_IP_CHECKED | CSUM_IP_VALID); |
| 4349 | m->m_pkthdr.csum_data = 0xffff; |
| 4350 | } |
| 4351 | |
| 4352 | if (sum != 0) |
| 4353 | OSAddAtomic(1, &ipstat.ips_badsum); |
| 4354 | |
| 4355 | return (sum); |
| 4356 | } |
| 4357 | |
| 4358 | static int |
| 4359 | ip_getstat SYSCTL_HANDLER_ARGS |
| 4360 | { |
| 4361 | #pragma unused(oidp, arg1, arg2) |
| 4362 | if (req->oldptr == USER_ADDR_NULL) |
| 4363 | req->oldlen = (size_t)sizeof (struct ipstat); |
| 4364 | |
| 4365 | return (SYSCTL_OUT(req, &ipstat, MIN(sizeof (ipstat), req->oldlen))); |
| 4366 | } |
| 4367 | |
| 4368 | void |
| 4369 | ip_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in_ifaddr *ia) |
| 4370 | { |
| 4371 | VERIFY(m->m_flags & M_PKTHDR); |
| 4372 | |
| 4373 | /* |
| 4374 | * If the source ifaddr is specified, pick up the information |
| 4375 | * from there; otherwise just grab the passed-in ifindex as the |
| 4376 | * caller may not have the ifaddr available. |
| 4377 | */ |
| 4378 | if (ia != NULL) { |
| 4379 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
| 4380 | m->m_pkthdr.src_ifindex = ia->ia_ifp->if_index; |
| 4381 | } else { |
| 4382 | m->m_pkthdr.src_ifindex = src_idx; |
| 4383 | if (src_idx != 0) |
| 4384 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
| 4385 | } |
| 4386 | } |
| 4387 | |
| 4388 | void |
| 4389 | ip_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in_ifaddr *ia) |
| 4390 | { |
| 4391 | VERIFY(m->m_flags & M_PKTHDR); |
| 4392 | |
| 4393 | /* |
| 4394 | * If the destination ifaddr is specified, pick up the information |
| 4395 | * from there; otherwise just grab the passed-in ifindex as the |
| 4396 | * caller may not have the ifaddr available. |
| 4397 | */ |
| 4398 | if (ia != NULL) { |
| 4399 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
| 4400 | m->m_pkthdr.dst_ifindex = ia->ia_ifp->if_index; |
| 4401 | } else { |
| 4402 | m->m_pkthdr.dst_ifindex = dst_idx; |
| 4403 | if (dst_idx != 0) |
| 4404 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
| 4405 | } |
| 4406 | } |
| 4407 | |
| 4408 | int |
| 4409 | ip_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *iaf) |
| 4410 | { |
| 4411 | VERIFY(m->m_flags & M_PKTHDR); |
| 4412 | |
| 4413 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) |
| 4414 | return (-1); |
| 4415 | |
| 4416 | if (src_idx != NULL) |
| 4417 | *src_idx = m->m_pkthdr.src_ifindex; |
| 4418 | |
| 4419 | if (iaf != NULL) |
| 4420 | *iaf = 0; |
| 4421 | |
| 4422 | return (0); |
| 4423 | } |
| 4424 | |
| 4425 | int |
| 4426 | ip_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *iaf) |
| 4427 | { |
| 4428 | VERIFY(m->m_flags & M_PKTHDR); |
| 4429 | |
| 4430 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) |
| 4431 | return (-1); |
| 4432 | |
| 4433 | if (dst_idx != NULL) |
| 4434 | *dst_idx = m->m_pkthdr.dst_ifindex; |
| 4435 | |
| 4436 | if (iaf != NULL) |
| 4437 | *iaf = 0; |
| 4438 | |
| 4439 | return (0); |
| 4440 | } |
| 4441 | |
| 4442 | /* |
| 4443 | * Protocol input handler for IPPROTO_GRE. |
| 4444 | */ |
| 4445 | void |
| 4446 | gre_input(struct mbuf *m, int off) |
| 4447 | { |
| 4448 | gre_input_func_t fn = gre_input_func; |
| 4449 | |
| 4450 | /* |
| 4451 | * If there is a registered GRE input handler, pass mbuf to it. |
| 4452 | */ |
| 4453 | if (fn != NULL) { |
| 4454 | lck_mtx_unlock(inet_domain_mutex); |
| 4455 | m = fn(m, off, (mtod(m, struct ip *))->ip_p); |
| 4456 | lck_mtx_lock(inet_domain_mutex); |
| 4457 | } |
| 4458 | |
| 4459 | /* |
| 4460 | * If no matching tunnel that is up is found, we inject |
| 4461 | * the mbuf to raw ip socket to see if anyone picks it up. |
| 4462 | */ |
| 4463 | if (m != NULL) |
| 4464 | rip_input(m, off); |
| 4465 | } |
| 4466 | |
| 4467 | /* |
| 4468 | * Private KPI for PPP/PPTP. |
| 4469 | */ |
| 4470 | int |
| 4471 | ip_gre_register_input(gre_input_func_t fn) |
| 4472 | { |
| 4473 | lck_mtx_lock(inet_domain_mutex); |
| 4474 | gre_input_func = fn; |
| 4475 | lck_mtx_unlock(inet_domain_mutex); |
| 4476 | |
| 4477 | return (0); |
| 4478 | } |
| 4479 | |
| 4480 | #if (DEBUG || DEVELOPMENT) |
| 4481 | static int |
| 4482 | sysctl_reset_ip_input_stats SYSCTL_HANDLER_ARGS |
| 4483 | { |
| 4484 | #pragma unused(arg1, arg2) |
| 4485 | int error, i; |
| 4486 | |
| 4487 | i = ip_input_measure; |
| 4488 | error = sysctl_handle_int(oidp, &i, 0, req); |
| 4489 | if (error || req->newptr == USER_ADDR_NULL) |
| 4490 | goto done; |
| 4491 | /* impose bounds */ |
| 4492 | if (i < 0 || i > 1) { |
| 4493 | error = EINVAL; |
| 4494 | goto done; |
| 4495 | } |
| 4496 | if (ip_input_measure != i && i == 1) { |
| 4497 | net_perf_initialize(&net_perf, ip_input_measure_bins); |
| 4498 | } |
| 4499 | ip_input_measure = i; |
| 4500 | done: |
| 4501 | return (error); |
| 4502 | } |
| 4503 | |
| 4504 | static int |
| 4505 | sysctl_ip_input_measure_bins SYSCTL_HANDLER_ARGS |
| 4506 | { |
| 4507 | #pragma unused(arg1, arg2) |
| 4508 | int error; |
| 4509 | uint64_t i; |
| 4510 | |
| 4511 | i = ip_input_measure_bins; |
| 4512 | error = sysctl_handle_quad(oidp, &i, 0, req); |
| 4513 | if (error || req->newptr == USER_ADDR_NULL) |
| 4514 | goto done; |
| 4515 | /* validate data */ |
| 4516 | if (!net_perf_validate_bins(i)) { |
| 4517 | error = EINVAL; |
| 4518 | goto done; |
| 4519 | } |
| 4520 | ip_input_measure_bins = i; |
| 4521 | done: |
| 4522 | return (error); |
| 4523 | } |
| 4524 | |
| 4525 | static int |
| 4526 | sysctl_ip_input_getperf SYSCTL_HANDLER_ARGS |
| 4527 | { |
| 4528 | #pragma unused(oidp, arg1, arg2) |
| 4529 | if (req->oldptr == USER_ADDR_NULL) |
| 4530 | req->oldlen = (size_t)sizeof (struct ipstat); |
| 4531 | |
| 4532 | return (SYSCTL_OUT(req, &net_perf, MIN(sizeof (net_perf), req->oldlen))); |
| 4533 | } |
| 4534 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 4535 | |