| 1 | /* |
| 2 | * Copyright (c) 2000-2016 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1989, 1993, 1995 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. All advertising materials mentioning features or use of this software |
| 42 | * must display the following acknowledgement: |
| 43 | * This product includes software developed by the University of |
| 44 | * California, Berkeley and its contributors. |
| 45 | * 4. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)spec_vnops.c 8.14 (Berkeley) 5/21/95 |
| 62 | */ |
| 63 | |
| 64 | #include <sys/param.h> |
| 65 | #include <sys/proc_internal.h> |
| 66 | #include <sys/kauth.h> |
| 67 | #include <sys/systm.h> |
| 68 | #include <sys/kernel.h> |
| 69 | #include <sys/conf.h> |
| 70 | #include <sys/buf_internal.h> |
| 71 | #include <sys/mount_internal.h> |
| 72 | #include <sys/vnode_internal.h> |
| 73 | #include <sys/file_internal.h> |
| 74 | #include <sys/namei.h> |
| 75 | #include <sys/stat.h> |
| 76 | #include <sys/errno.h> |
| 77 | #include <sys/ioctl.h> |
| 78 | #include <sys/file.h> |
| 79 | #include <sys/user.h> |
| 80 | #include <sys/malloc.h> |
| 81 | #include <sys/disk.h> |
| 82 | #include <sys/uio_internal.h> |
| 83 | #include <sys/resource.h> |
| 84 | #include <machine/machine_routines.h> |
| 85 | #include <miscfs/specfs/specdev.h> |
| 86 | #include <vfs/vfs_support.h> |
| 87 | #include <vfs/vfs_disk_conditioner.h> |
| 88 | |
| 89 | #include <kern/assert.h> |
| 90 | #include <kern/task.h> |
| 91 | #include <kern/sched_prim.h> |
| 92 | #include <kern/thread.h> |
| 93 | #include <kern/policy_internal.h> |
| 94 | #include <kern/timer_call.h> |
| 95 | #include <kern/waitq.h> |
| 96 | |
| 97 | #include <pexpert/pexpert.h> |
| 98 | |
| 99 | #include <sys/kdebug.h> |
| 100 | #include <libkern/section_keywords.h> |
| 101 | |
| 102 | /* XXX following three prototypes should be in a header file somewhere */ |
| 103 | extern dev_t chrtoblk(dev_t dev); |
| 104 | extern boolean_t iskmemdev(dev_t dev); |
| 105 | extern int bpfkqfilter(dev_t dev, struct knote *kn); |
| 106 | extern int ptsd_kqfilter(dev_t, struct knote *); |
| 107 | extern int ptmx_kqfilter(dev_t, struct knote *); |
| 108 | |
| 109 | struct vnode *speclisth[SPECHSZ]; |
| 110 | |
| 111 | /* symbolic sleep message strings for devices */ |
| 112 | char devopn[] = "devopn" ; |
| 113 | char devio[] = "devio" ; |
| 114 | char devwait[] = "devwait" ; |
| 115 | char devin[] = "devin" ; |
| 116 | char devout[] = "devout" ; |
| 117 | char devioc[] = "devioc" ; |
| 118 | char devcls[] = "devcls" ; |
| 119 | |
| 120 | #define VOPFUNC int (*)(void *) |
| 121 | |
| 122 | int (**spec_vnodeop_p)(void *); |
| 123 | struct vnodeopv_entry_desc spec_vnodeop_entries[] = { |
| 124 | { &vnop_default_desc, (VOPFUNC)vn_default_error }, |
| 125 | { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */ |
| 126 | { &vnop_create_desc, (VOPFUNC)err_create }, /* create */ |
| 127 | { &vnop_mknod_desc, (VOPFUNC)err_mknod }, /* mknod */ |
| 128 | { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */ |
| 129 | { &vnop_close_desc, (VOPFUNC)spec_close }, /* close */ |
| 130 | { &vnop_access_desc, (VOPFUNC)spec_access }, /* access */ |
| 131 | { &vnop_getattr_desc, (VOPFUNC)spec_getattr }, /* getattr */ |
| 132 | { &vnop_setattr_desc, (VOPFUNC)spec_setattr }, /* setattr */ |
| 133 | { &vnop_read_desc, (VOPFUNC)spec_read }, /* read */ |
| 134 | { &vnop_write_desc, (VOPFUNC)spec_write }, /* write */ |
| 135 | { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */ |
| 136 | { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */ |
| 137 | { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */ |
| 138 | { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */ |
| 139 | { &vnop_fsync_desc, (VOPFUNC)spec_fsync }, /* fsync */ |
| 140 | { &vnop_remove_desc, (VOPFUNC)err_remove }, /* remove */ |
| 141 | { &vnop_link_desc, (VOPFUNC)err_link }, /* link */ |
| 142 | { &vnop_rename_desc, (VOPFUNC)err_rename }, /* rename */ |
| 143 | { &vnop_mkdir_desc, (VOPFUNC)err_mkdir }, /* mkdir */ |
| 144 | { &vnop_rmdir_desc, (VOPFUNC)err_rmdir }, /* rmdir */ |
| 145 | { &vnop_symlink_desc, (VOPFUNC)err_symlink }, /* symlink */ |
| 146 | { &vnop_readdir_desc, (VOPFUNC)err_readdir }, /* readdir */ |
| 147 | { &vnop_readlink_desc, (VOPFUNC)err_readlink }, /* readlink */ |
| 148 | { &vnop_inactive_desc, (VOPFUNC)nop_inactive }, /* inactive */ |
| 149 | { &vnop_reclaim_desc, (VOPFUNC)nop_reclaim }, /* reclaim */ |
| 150 | { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */ |
| 151 | { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */ |
| 152 | { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */ |
| 153 | { &vnop_bwrite_desc, (VOPFUNC)spec_bwrite }, /* bwrite */ |
| 154 | { &vnop_pagein_desc, (VOPFUNC)err_pagein }, /* Pagein */ |
| 155 | { &vnop_pageout_desc, (VOPFUNC)err_pageout }, /* Pageout */ |
| 156 | { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* Copyfile */ |
| 157 | { &vnop_blktooff_desc, (VOPFUNC)spec_blktooff }, /* blktooff */ |
| 158 | { &vnop_offtoblk_desc, (VOPFUNC)spec_offtoblk }, /* offtoblk */ |
| 159 | { &vnop_blockmap_desc, (VOPFUNC)spec_blockmap }, /* blockmap */ |
| 160 | { (struct vnodeop_desc*)NULL, (int(*)(void *))NULL } |
| 161 | }; |
| 162 | struct vnodeopv_desc spec_vnodeop_opv_desc = |
| 163 | { &spec_vnodeop_p, spec_vnodeop_entries }; |
| 164 | |
| 165 | |
| 166 | static void set_blocksize(vnode_t, dev_t); |
| 167 | |
| 168 | #define LOWPRI_TIER1_WINDOW_MSECS 25 |
| 169 | #define LOWPRI_TIER2_WINDOW_MSECS 100 |
| 170 | #define LOWPRI_TIER3_WINDOW_MSECS 500 |
| 171 | |
| 172 | #define LOWPRI_TIER1_IO_PERIOD_MSECS 40 |
| 173 | #define LOWPRI_TIER2_IO_PERIOD_MSECS 85 |
| 174 | #define LOWPRI_TIER3_IO_PERIOD_MSECS 200 |
| 175 | |
| 176 | #define LOWPRI_TIER1_IO_PERIOD_SSD_MSECS 5 |
| 177 | #define LOWPRI_TIER2_IO_PERIOD_SSD_MSECS 15 |
| 178 | #define LOWPRI_TIER3_IO_PERIOD_SSD_MSECS 25 |
| 179 | |
| 180 | |
| 181 | int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = { |
| 182 | 0, |
| 183 | LOWPRI_TIER1_WINDOW_MSECS, |
| 184 | LOWPRI_TIER2_WINDOW_MSECS, |
| 185 | LOWPRI_TIER3_WINDOW_MSECS, |
| 186 | }; |
| 187 | |
| 188 | int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = { |
| 189 | 0, |
| 190 | LOWPRI_TIER1_IO_PERIOD_MSECS, |
| 191 | LOWPRI_TIER2_IO_PERIOD_MSECS, |
| 192 | LOWPRI_TIER3_IO_PERIOD_MSECS, |
| 193 | }; |
| 194 | |
| 195 | int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = { |
| 196 | 0, |
| 197 | LOWPRI_TIER1_IO_PERIOD_SSD_MSECS, |
| 198 | LOWPRI_TIER2_IO_PERIOD_SSD_MSECS, |
| 199 | LOWPRI_TIER3_IO_PERIOD_SSD_MSECS, |
| 200 | }; |
| 201 | |
| 202 | |
| 203 | int throttled_count[THROTTLE_LEVEL_END + 1]; |
| 204 | |
| 205 | struct _throttle_io_info_t { |
| 206 | lck_mtx_t throttle_lock; |
| 207 | |
| 208 | struct timeval throttle_last_write_timestamp; |
| 209 | struct timeval throttle_min_timer_deadline; |
| 210 | struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1]; /* window starts at both the beginning and completion of an I/O */ |
| 211 | struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1]; |
| 212 | pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1]; |
| 213 | struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1]; |
| 214 | int32_t throttle_inflight_count[THROTTLE_LEVEL_END + 1]; |
| 215 | |
| 216 | TAILQ_HEAD( , uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */ |
| 217 | int throttle_next_wake_level; |
| 218 | |
| 219 | thread_call_t throttle_timer_call; |
| 220 | int32_t throttle_timer_ref; |
| 221 | int32_t throttle_timer_active; |
| 222 | |
| 223 | int32_t throttle_io_count; |
| 224 | int32_t throttle_io_count_begin; |
| 225 | int *throttle_io_periods; |
| 226 | uint32_t throttle_io_period_num; |
| 227 | |
| 228 | int32_t throttle_refcnt; |
| 229 | int32_t throttle_alloc; |
| 230 | int32_t throttle_disabled; |
| 231 | int32_t throttle_is_fusion_with_priority; |
| 232 | }; |
| 233 | |
| 234 | struct _throttle_io_info_t _throttle_io_info[LOWPRI_MAX_NUM_DEV]; |
| 235 | |
| 236 | |
| 237 | int lowpri_throttle_enabled = 1; |
| 238 | |
| 239 | |
| 240 | static void throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level); |
| 241 | static int throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap); |
| 242 | static int throttle_get_thread_throttle_level(uthread_t ut); |
| 243 | static int throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier); |
| 244 | void throttle_info_mount_reset_period(mount_t mp, int isssd); |
| 245 | |
| 246 | /* |
| 247 | * Trivial lookup routine that always fails. |
| 248 | */ |
| 249 | int |
| 250 | spec_lookup(struct vnop_lookup_args *ap) |
| 251 | { |
| 252 | |
| 253 | *ap->a_vpp = NULL; |
| 254 | return (ENOTDIR); |
| 255 | } |
| 256 | |
| 257 | static void |
| 258 | set_blocksize(struct vnode *vp, dev_t dev) |
| 259 | { |
| 260 | int (*size)(dev_t); |
| 261 | int rsize; |
| 262 | |
| 263 | if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) { |
| 264 | rsize = (*size)(dev); |
| 265 | if (rsize <= 0) /* did size fail? */ |
| 266 | vp->v_specsize = DEV_BSIZE; |
| 267 | else |
| 268 | vp->v_specsize = rsize; |
| 269 | } |
| 270 | else |
| 271 | vp->v_specsize = DEV_BSIZE; |
| 272 | } |
| 273 | |
| 274 | void |
| 275 | set_fsblocksize(struct vnode *vp) |
| 276 | { |
| 277 | |
| 278 | if (vp->v_type == VBLK) { |
| 279 | dev_t dev = (dev_t)vp->v_rdev; |
| 280 | int maj = major(dev); |
| 281 | |
| 282 | if ((u_int)maj >= (u_int)nblkdev) |
| 283 | return; |
| 284 | |
| 285 | vnode_lock(vp); |
| 286 | set_blocksize(vp, dev); |
| 287 | vnode_unlock(vp); |
| 288 | } |
| 289 | |
| 290 | } |
| 291 | |
| 292 | |
| 293 | /* |
| 294 | * Open a special file. |
| 295 | */ |
| 296 | int |
| 297 | spec_open(struct vnop_open_args *ap) |
| 298 | { |
| 299 | struct proc *p = vfs_context_proc(ap->a_context); |
| 300 | kauth_cred_t cred = vfs_context_ucred(ap->a_context); |
| 301 | struct vnode *vp = ap->a_vp; |
| 302 | dev_t bdev, dev = (dev_t)vp->v_rdev; |
| 303 | int maj = major(dev); |
| 304 | int error; |
| 305 | |
| 306 | /* |
| 307 | * Don't allow open if fs is mounted -nodev. |
| 308 | */ |
| 309 | if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV)) |
| 310 | return (ENXIO); |
| 311 | |
| 312 | switch (vp->v_type) { |
| 313 | |
| 314 | case VCHR: |
| 315 | if ((u_int)maj >= (u_int)nchrdev) |
| 316 | return (ENXIO); |
| 317 | if (cred != FSCRED && (ap->a_mode & FWRITE)) { |
| 318 | /* |
| 319 | * When running in very secure mode, do not allow |
| 320 | * opens for writing of any disk character devices. |
| 321 | */ |
| 322 | if (securelevel >= 2 && isdisk(dev, VCHR)) |
| 323 | return (EPERM); |
| 324 | |
| 325 | /* Never allow writing to /dev/mem or /dev/kmem */ |
| 326 | if (iskmemdev(dev)) |
| 327 | return (EPERM); |
| 328 | /* |
| 329 | * When running in secure mode, do not allow opens for |
| 330 | * writing of character devices whose corresponding block |
| 331 | * devices are currently mounted. |
| 332 | */ |
| 333 | if (securelevel >= 1) { |
| 334 | if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error)) |
| 335 | return (error); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | devsw_lock(dev, S_IFCHR); |
| 340 | error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p); |
| 341 | |
| 342 | if (error == 0) { |
| 343 | vp->v_specinfo->si_opencount++; |
| 344 | } |
| 345 | |
| 346 | devsw_unlock(dev, S_IFCHR); |
| 347 | |
| 348 | if (error == 0 && cdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) { |
| 349 | int isssd = 0; |
| 350 | uint64_t throttle_mask = 0; |
| 351 | uint32_t devbsdunit = 0; |
| 352 | |
| 353 | if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, (caddr_t)&throttle_mask, 0, NULL) == 0) { |
| 354 | |
| 355 | if (throttle_mask != 0 && |
| 356 | VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ap->a_context) == 0) { |
| 357 | /* |
| 358 | * as a reasonable approximation, only use the lowest bit of the mask |
| 359 | * to generate a disk unit number |
| 360 | */ |
| 361 | devbsdunit = num_trailing_0(throttle_mask); |
| 362 | |
| 363 | vnode_lock(vp); |
| 364 | |
| 365 | vp->v_un.vu_specinfo->si_isssd = isssd; |
| 366 | vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit; |
| 367 | vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask; |
| 368 | vp->v_un.vu_specinfo->si_throttleable = 1; |
| 369 | vp->v_un.vu_specinfo->si_initted = 1; |
| 370 | |
| 371 | vnode_unlock(vp); |
| 372 | } |
| 373 | } |
| 374 | if (vp->v_un.vu_specinfo->si_initted == 0) { |
| 375 | vnode_lock(vp); |
| 376 | vp->v_un.vu_specinfo->si_initted = 1; |
| 377 | vnode_unlock(vp); |
| 378 | } |
| 379 | } |
| 380 | return (error); |
| 381 | |
| 382 | case VBLK: |
| 383 | if ((u_int)maj >= (u_int)nblkdev) |
| 384 | return (ENXIO); |
| 385 | /* |
| 386 | * When running in very secure mode, do not allow |
| 387 | * opens for writing of any disk block devices. |
| 388 | */ |
| 389 | if (securelevel >= 2 && cred != FSCRED && |
| 390 | (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK) |
| 391 | return (EPERM); |
| 392 | /* |
| 393 | * Do not allow opens of block devices that are |
| 394 | * currently mounted. |
| 395 | */ |
| 396 | if ( (error = vfs_mountedon(vp)) ) |
| 397 | return (error); |
| 398 | |
| 399 | devsw_lock(dev, S_IFBLK); |
| 400 | error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p); |
| 401 | if (!error) { |
| 402 | vp->v_specinfo->si_opencount++; |
| 403 | } |
| 404 | devsw_unlock(dev, S_IFBLK); |
| 405 | |
| 406 | if (!error) { |
| 407 | u_int64_t blkcnt; |
| 408 | u_int32_t blksize; |
| 409 | int setsize = 0; |
| 410 | u_int32_t size512 = 512; |
| 411 | |
| 412 | |
| 413 | if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) { |
| 414 | /* Switch to 512 byte sectors (temporarily) */ |
| 415 | |
| 416 | if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, ap->a_context)) { |
| 417 | /* Get the number of 512 byte physical blocks. */ |
| 418 | if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) { |
| 419 | setsize = 1; |
| 420 | } |
| 421 | } |
| 422 | /* If it doesn't set back, we can't recover */ |
| 423 | if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context)) |
| 424 | error = ENXIO; |
| 425 | } |
| 426 | |
| 427 | |
| 428 | vnode_lock(vp); |
| 429 | set_blocksize(vp, dev); |
| 430 | |
| 431 | /* |
| 432 | * Cache the size in bytes of the block device for later |
| 433 | * use by spec_write(). |
| 434 | */ |
| 435 | if (setsize) |
| 436 | vp->v_specdevsize = blkcnt * (u_int64_t)size512; |
| 437 | else |
| 438 | vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */ |
| 439 | |
| 440 | vnode_unlock(vp); |
| 441 | |
| 442 | } |
| 443 | return(error); |
| 444 | default: |
| 445 | panic("spec_open type" ); |
| 446 | } |
| 447 | return (0); |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * Vnode op for read |
| 452 | */ |
| 453 | int |
| 454 | spec_read(struct vnop_read_args *ap) |
| 455 | { |
| 456 | struct vnode *vp = ap->a_vp; |
| 457 | struct uio *uio = ap->a_uio; |
| 458 | struct buf *bp; |
| 459 | daddr64_t bn, nextbn; |
| 460 | long bsize, bscale; |
| 461 | int devBlockSize=0; |
| 462 | int n, on; |
| 463 | int error = 0; |
| 464 | dev_t dev; |
| 465 | |
| 466 | #if DIAGNOSTIC |
| 467 | if (uio->uio_rw != UIO_READ) |
| 468 | panic("spec_read mode" ); |
| 469 | if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) |
| 470 | panic("spec_read proc" ); |
| 471 | #endif |
| 472 | if (uio_resid(uio) == 0) |
| 473 | return (0); |
| 474 | |
| 475 | switch (vp->v_type) { |
| 476 | |
| 477 | case VCHR: |
| 478 | { |
| 479 | struct _throttle_io_info_t *throttle_info = NULL; |
| 480 | int thread_throttle_level; |
| 481 | if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) { |
| 482 | throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit]; |
| 483 | thread_throttle_level = throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd, TRUE, NULL); |
| 484 | } |
| 485 | error = (*cdevsw[major(vp->v_rdev)].d_read) |
| 486 | (vp->v_rdev, uio, ap->a_ioflag); |
| 487 | |
| 488 | if (throttle_info) { |
| 489 | throttle_info_end_io_internal(throttle_info, thread_throttle_level); |
| 490 | } |
| 491 | |
| 492 | return (error); |
| 493 | } |
| 494 | |
| 495 | case VBLK: |
| 496 | if (uio->uio_offset < 0) |
| 497 | return (EINVAL); |
| 498 | |
| 499 | dev = vp->v_rdev; |
| 500 | |
| 501 | devBlockSize = vp->v_specsize; |
| 502 | |
| 503 | if (devBlockSize > PAGE_SIZE) |
| 504 | return (EINVAL); |
| 505 | |
| 506 | bscale = PAGE_SIZE / devBlockSize; |
| 507 | bsize = bscale * devBlockSize; |
| 508 | |
| 509 | do { |
| 510 | on = uio->uio_offset % bsize; |
| 511 | |
| 512 | bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ (bscale - 1)); |
| 513 | |
| 514 | if (vp->v_speclastr + bscale == bn) { |
| 515 | nextbn = bn + bscale; |
| 516 | error = buf_breadn(vp, bn, (int)bsize, &nextbn, |
| 517 | (int *)&bsize, 1, NOCRED, &bp); |
| 518 | } else |
| 519 | error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp); |
| 520 | |
| 521 | vnode_lock(vp); |
| 522 | vp->v_speclastr = bn; |
| 523 | vnode_unlock(vp); |
| 524 | |
| 525 | n = bsize - buf_resid(bp); |
| 526 | if ((on > n) || error) { |
| 527 | if (!error) |
| 528 | error = EINVAL; |
| 529 | buf_brelse(bp); |
| 530 | return (error); |
| 531 | } |
| 532 | n = min((unsigned)(n - on), uio_resid(uio)); |
| 533 | |
| 534 | error = uiomove((char *)buf_dataptr(bp) + on, n, uio); |
| 535 | if (n + on == bsize) |
| 536 | buf_markaged(bp); |
| 537 | buf_brelse(bp); |
| 538 | } while (error == 0 && uio_resid(uio) > 0 && n != 0); |
| 539 | return (error); |
| 540 | |
| 541 | default: |
| 542 | panic("spec_read type" ); |
| 543 | } |
| 544 | /* NOTREACHED */ |
| 545 | |
| 546 | return (0); |
| 547 | } |
| 548 | |
| 549 | /* |
| 550 | * Vnode op for write |
| 551 | */ |
| 552 | int |
| 553 | spec_write(struct vnop_write_args *ap) |
| 554 | { |
| 555 | struct vnode *vp = ap->a_vp; |
| 556 | struct uio *uio = ap->a_uio; |
| 557 | struct buf *bp; |
| 558 | daddr64_t bn; |
| 559 | int bsize, blkmask, bscale; |
| 560 | int io_sync; |
| 561 | int devBlockSize=0; |
| 562 | int n, on; |
| 563 | int error = 0; |
| 564 | dev_t dev; |
| 565 | |
| 566 | #if DIAGNOSTIC |
| 567 | if (uio->uio_rw != UIO_WRITE) |
| 568 | panic("spec_write mode" ); |
| 569 | if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) |
| 570 | panic("spec_write proc" ); |
| 571 | #endif |
| 572 | |
| 573 | switch (vp->v_type) { |
| 574 | |
| 575 | case VCHR: |
| 576 | { |
| 577 | struct _throttle_io_info_t *throttle_info = NULL; |
| 578 | int thread_throttle_level; |
| 579 | if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) { |
| 580 | throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit]; |
| 581 | |
| 582 | thread_throttle_level = throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd, TRUE, NULL); |
| 583 | |
| 584 | microuptime(&throttle_info->throttle_last_write_timestamp); |
| 585 | } |
| 586 | error = (*cdevsw[major(vp->v_rdev)].d_write) |
| 587 | (vp->v_rdev, uio, ap->a_ioflag); |
| 588 | |
| 589 | if (throttle_info) { |
| 590 | throttle_info_end_io_internal(throttle_info, thread_throttle_level); |
| 591 | } |
| 592 | |
| 593 | return (error); |
| 594 | } |
| 595 | |
| 596 | case VBLK: |
| 597 | if (uio_resid(uio) == 0) |
| 598 | return (0); |
| 599 | if (uio->uio_offset < 0) |
| 600 | return (EINVAL); |
| 601 | |
| 602 | io_sync = (ap->a_ioflag & IO_SYNC); |
| 603 | |
| 604 | dev = (vp->v_rdev); |
| 605 | |
| 606 | devBlockSize = vp->v_specsize; |
| 607 | if (devBlockSize > PAGE_SIZE) |
| 608 | return(EINVAL); |
| 609 | |
| 610 | bscale = PAGE_SIZE / devBlockSize; |
| 611 | blkmask = bscale - 1; |
| 612 | bsize = bscale * devBlockSize; |
| 613 | |
| 614 | |
| 615 | do { |
| 616 | bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ blkmask); |
| 617 | on = uio->uio_offset % bsize; |
| 618 | |
| 619 | n = min((unsigned)(bsize - on), uio_resid(uio)); |
| 620 | |
| 621 | /* |
| 622 | * Use buf_getblk() as an optimization IFF: |
| 623 | * |
| 624 | * 1) We are reading exactly a block on a block |
| 625 | * aligned boundary |
| 626 | * 2) We know the size of the device from spec_open |
| 627 | * 3) The read doesn't span the end of the device |
| 628 | * |
| 629 | * Otherwise, we fall back on buf_bread(). |
| 630 | */ |
| 631 | if (n == bsize && |
| 632 | vp->v_specdevsize != (u_int64_t)0 && |
| 633 | (uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) { |
| 634 | /* reduce the size of the read to what is there */ |
| 635 | n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize; |
| 636 | } |
| 637 | |
| 638 | if (n == bsize) |
| 639 | bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE); |
| 640 | else |
| 641 | error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp); |
| 642 | |
| 643 | /* Translate downstream error for upstream, if needed */ |
| 644 | if (!error) |
| 645 | error = (int)buf_error(bp); |
| 646 | if (error) { |
| 647 | buf_brelse(bp); |
| 648 | return (error); |
| 649 | } |
| 650 | n = min(n, bsize - buf_resid(bp)); |
| 651 | |
| 652 | error = uiomove((char *)buf_dataptr(bp) + on, n, uio); |
| 653 | if (error) { |
| 654 | buf_brelse(bp); |
| 655 | return (error); |
| 656 | } |
| 657 | buf_markaged(bp); |
| 658 | |
| 659 | if (io_sync) |
| 660 | error = buf_bwrite(bp); |
| 661 | else { |
| 662 | if ((n + on) == bsize) |
| 663 | error = buf_bawrite(bp); |
| 664 | else |
| 665 | error = buf_bdwrite(bp); |
| 666 | } |
| 667 | } while (error == 0 && uio_resid(uio) > 0 && n != 0); |
| 668 | return (error); |
| 669 | |
| 670 | default: |
| 671 | panic("spec_write type" ); |
| 672 | } |
| 673 | /* NOTREACHED */ |
| 674 | |
| 675 | return (0); |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * Device ioctl operation. |
| 680 | */ |
| 681 | int |
| 682 | spec_ioctl(struct vnop_ioctl_args *ap) |
| 683 | { |
| 684 | proc_t p = vfs_context_proc(ap->a_context); |
| 685 | dev_t dev = ap->a_vp->v_rdev; |
| 686 | int retval = 0; |
| 687 | |
| 688 | KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_START, |
| 689 | dev, ap->a_command, ap->a_fflag, ap->a_vp->v_type, 0); |
| 690 | |
| 691 | switch (ap->a_vp->v_type) { |
| 692 | |
| 693 | case VCHR: |
| 694 | retval = (*cdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, |
| 695 | ap->a_fflag, p); |
| 696 | break; |
| 697 | |
| 698 | case VBLK: |
| 699 | retval = (*bdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, ap->a_fflag, p); |
| 700 | if (!retval && ap->a_command == DKIOCSETBLOCKSIZE) |
| 701 | ap->a_vp->v_specsize = *(uint32_t *)ap->a_data; |
| 702 | break; |
| 703 | |
| 704 | default: |
| 705 | panic("spec_ioctl" ); |
| 706 | /* NOTREACHED */ |
| 707 | } |
| 708 | KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_END, |
| 709 | dev, ap->a_command, ap->a_fflag, retval, 0); |
| 710 | |
| 711 | return (retval); |
| 712 | } |
| 713 | |
| 714 | int |
| 715 | spec_select(struct vnop_select_args *ap) |
| 716 | { |
| 717 | proc_t p = vfs_context_proc(ap->a_context); |
| 718 | dev_t dev; |
| 719 | |
| 720 | switch (ap->a_vp->v_type) { |
| 721 | |
| 722 | default: |
| 723 | return (1); /* XXX */ |
| 724 | |
| 725 | case VCHR: |
| 726 | dev = ap->a_vp->v_rdev; |
| 727 | return (*cdevsw[major(dev)].d_select)(dev, ap->a_which, ap->a_wql, p); |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | static int filt_specattach(struct knote *kn, struct kevent_internal_s *kev); |
| 732 | |
| 733 | int |
| 734 | spec_kqfilter(vnode_t vp, struct knote *kn, struct kevent_internal_s *kev) |
| 735 | { |
| 736 | dev_t dev; |
| 737 | |
| 738 | assert(vnode_ischr(vp)); |
| 739 | |
| 740 | dev = vnode_specrdev(vp); |
| 741 | |
| 742 | #if NETWORKING |
| 743 | /* |
| 744 | * Try a bpf device, as defined in bsd/net/bpf.c |
| 745 | * If it doesn't error out the attach, then it |
| 746 | * claimed it. Otherwise, fall through and try |
| 747 | * other attaches. |
| 748 | */ |
| 749 | int32_t tmp_flags = kn->kn_flags; |
| 750 | int64_t tmp_data = kn->kn_data; |
| 751 | int res; |
| 752 | |
| 753 | res = bpfkqfilter(dev, kn); |
| 754 | if ((kn->kn_flags & EV_ERROR) == 0) { |
| 755 | return res; |
| 756 | } |
| 757 | kn->kn_flags = tmp_flags; |
| 758 | kn->kn_data = tmp_data; |
| 759 | #endif |
| 760 | |
| 761 | if (major(dev) > nchrdev) { |
| 762 | knote_set_error(kn, ENXIO); |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | kn->kn_vnode_kqok = !!(cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE); |
| 767 | kn->kn_vnode_use_ofst = !!(cdevsw_flags[major(dev)] & CDEVSW_USE_OFFSET); |
| 768 | |
| 769 | if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTS) { |
| 770 | kn->kn_filtid = EVFILTID_PTSD; |
| 771 | return ptsd_kqfilter(dev, kn); |
| 772 | } else if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTC) { |
| 773 | kn->kn_filtid = EVFILTID_PTMX; |
| 774 | return ptmx_kqfilter(dev, kn); |
| 775 | } else if (cdevsw[major(dev)].d_type == D_TTY && kn->kn_vnode_kqok) { |
| 776 | /* |
| 777 | * TTYs from drivers that use struct ttys use their own filter |
| 778 | * routines. The PTC driver doesn't use the tty for character |
| 779 | * counts, so it must go through the select fallback. |
| 780 | */ |
| 781 | kn->kn_filtid = EVFILTID_TTY; |
| 782 | return knote_fops(kn)->f_attach(kn, kev); |
| 783 | } |
| 784 | |
| 785 | /* Try to attach to other char special devices */ |
| 786 | return filt_specattach(kn, kev); |
| 787 | } |
| 788 | |
| 789 | /* |
| 790 | * Synch buffers associated with a block device |
| 791 | */ |
| 792 | int |
| 793 | spec_fsync_internal(vnode_t vp, int waitfor, __unused vfs_context_t context) |
| 794 | { |
| 795 | if (vp->v_type == VCHR) |
| 796 | return (0); |
| 797 | /* |
| 798 | * Flush all dirty buffers associated with a block device. |
| 799 | */ |
| 800 | buf_flushdirtyblks(vp, (waitfor == MNT_WAIT || waitfor == MNT_DWAIT), 0, "spec_fsync" ); |
| 801 | |
| 802 | return (0); |
| 803 | } |
| 804 | |
| 805 | int |
| 806 | spec_fsync(struct vnop_fsync_args *ap) |
| 807 | { |
| 808 | return spec_fsync_internal(ap->a_vp, ap->a_waitfor, ap->a_context); |
| 809 | } |
| 810 | |
| 811 | |
| 812 | /* |
| 813 | * Just call the device strategy routine |
| 814 | */ |
| 815 | void throttle_init(void); |
| 816 | |
| 817 | |
| 818 | #if 0 |
| 819 | #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \ |
| 820 | do { \ |
| 821 | if ((debug_info)->alloc) \ |
| 822 | printf("%s: "format, __FUNCTION__, ## args); \ |
| 823 | } while(0) |
| 824 | |
| 825 | #else |
| 826 | #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) |
| 827 | #endif |
| 828 | |
| 829 | |
| 830 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER1], 0, "" ); |
| 831 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER2], 0, "" ); |
| 832 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER3], 0, "" ); |
| 833 | |
| 834 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER1], 0, "" ); |
| 835 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER2], 0, "" ); |
| 836 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER3], 0, "" ); |
| 837 | |
| 838 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER1], 0, "" ); |
| 839 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER2], 0, "" ); |
| 840 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER3], 0, "" ); |
| 841 | |
| 842 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &lowpri_throttle_enabled, 0, "" ); |
| 843 | |
| 844 | |
| 845 | static lck_grp_t *throttle_lock_grp; |
| 846 | static lck_attr_t *throttle_lock_attr; |
| 847 | static lck_grp_attr_t *throttle_lock_grp_attr; |
| 848 | |
| 849 | |
| 850 | /* |
| 851 | * throttled I/O helper function |
| 852 | * convert the index of the lowest set bit to a device index |
| 853 | */ |
| 854 | int |
| 855 | num_trailing_0(uint64_t n) |
| 856 | { |
| 857 | /* |
| 858 | * since in most cases the number of trailing 0s is very small, |
| 859 | * we simply counting sequentially from the lowest bit |
| 860 | */ |
| 861 | if (n == 0) |
| 862 | return sizeof(n) * 8; |
| 863 | int count = 0; |
| 864 | while (!ISSET(n, 1)) { |
| 865 | n >>= 1; |
| 866 | ++count; |
| 867 | } |
| 868 | return count; |
| 869 | } |
| 870 | |
| 871 | |
| 872 | /* |
| 873 | * Release the reference and if the item was allocated and this is the last |
| 874 | * reference then free it. |
| 875 | * |
| 876 | * This routine always returns the old value. |
| 877 | */ |
| 878 | static int |
| 879 | throttle_info_rel(struct _throttle_io_info_t *info) |
| 880 | { |
| 881 | SInt32 oldValue = OSDecrementAtomic(&info->throttle_refcnt); |
| 882 | |
| 883 | DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n" , |
| 884 | info, (int)(oldValue -1), info ); |
| 885 | |
| 886 | /* The reference count just went negative, very bad */ |
| 887 | if (oldValue == 0) |
| 888 | panic("throttle info ref cnt went negative!" ); |
| 889 | |
| 890 | /* |
| 891 | * Once reference count is zero, no one else should be able to take a |
| 892 | * reference |
| 893 | */ |
| 894 | if ((info->throttle_refcnt == 0) && (info->throttle_alloc)) { |
| 895 | DEBUG_ALLOC_THROTTLE_INFO("Freeing info = %p\n" , info); |
| 896 | |
| 897 | lck_mtx_destroy(&info->throttle_lock, throttle_lock_grp); |
| 898 | FREE(info, M_TEMP); |
| 899 | } |
| 900 | return oldValue; |
| 901 | } |
| 902 | |
| 903 | |
| 904 | /* |
| 905 | * Just take a reference on the throttle info structure. |
| 906 | * |
| 907 | * This routine always returns the old value. |
| 908 | */ |
| 909 | static SInt32 |
| 910 | throttle_info_ref(struct _throttle_io_info_t *info) |
| 911 | { |
| 912 | SInt32 oldValue = OSIncrementAtomic(&info->throttle_refcnt); |
| 913 | |
| 914 | DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n" , |
| 915 | info, (int)(oldValue -1), info ); |
| 916 | /* Allocated items should never have a reference of zero */ |
| 917 | if (info->throttle_alloc && (oldValue == 0)) |
| 918 | panic("Taking a reference without calling create throttle info!\n" ); |
| 919 | |
| 920 | return oldValue; |
| 921 | } |
| 922 | |
| 923 | /* |
| 924 | * on entry the throttle_lock is held... |
| 925 | * this function is responsible for taking |
| 926 | * and dropping the reference on the info |
| 927 | * structure which will keep it from going |
| 928 | * away while the timer is running if it |
| 929 | * happens to have been dynamically allocated by |
| 930 | * a network fileystem kext which is now trying |
| 931 | * to free it |
| 932 | */ |
| 933 | static uint32_t |
| 934 | throttle_timer_start(struct _throttle_io_info_t *info, boolean_t update_io_count, int wakelevel) |
| 935 | { |
| 936 | struct timeval elapsed; |
| 937 | struct timeval now; |
| 938 | struct timeval period; |
| 939 | uint64_t elapsed_msecs; |
| 940 | int throttle_level; |
| 941 | int level; |
| 942 | int msecs; |
| 943 | boolean_t throttled = FALSE; |
| 944 | boolean_t need_timer = FALSE; |
| 945 | |
| 946 | microuptime(&now); |
| 947 | |
| 948 | if (update_io_count == TRUE) { |
| 949 | info->throttle_io_count_begin = info->throttle_io_count; |
| 950 | info->throttle_io_period_num++; |
| 951 | |
| 952 | while (wakelevel >= THROTTLE_LEVEL_THROTTLED) |
| 953 | info->throttle_start_IO_period_timestamp[wakelevel--] = now; |
| 954 | |
| 955 | info->throttle_min_timer_deadline = now; |
| 956 | |
| 957 | msecs = info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]; |
| 958 | period.tv_sec = msecs / 1000; |
| 959 | period.tv_usec = (msecs % 1000) * 1000; |
| 960 | |
| 961 | timevaladd(&info->throttle_min_timer_deadline, &period); |
| 962 | } |
| 963 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < THROTTLE_LEVEL_END; throttle_level++) { |
| 964 | |
| 965 | elapsed = now; |
| 966 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); |
| 967 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); |
| 968 | |
| 969 | for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) { |
| 970 | |
| 971 | if (!TAILQ_EMPTY(&info->throttle_uthlist[level])) { |
| 972 | |
| 973 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level] || info->throttle_inflight_count[throttle_level]) { |
| 974 | /* |
| 975 | * we had an I/O occur at a higher priority tier within |
| 976 | * this tier's throttle window |
| 977 | */ |
| 978 | throttled = TRUE; |
| 979 | } |
| 980 | /* |
| 981 | * we assume that the windows are the same or longer |
| 982 | * as we drop through the throttling tiers... thus |
| 983 | * we can stop looking once we run into a tier with |
| 984 | * threads to schedule regardless of whether it's |
| 985 | * still in its throttling window or not |
| 986 | */ |
| 987 | break; |
| 988 | } |
| 989 | } |
| 990 | if (throttled == TRUE) |
| 991 | break; |
| 992 | } |
| 993 | if (throttled == TRUE) { |
| 994 | uint64_t deadline = 0; |
| 995 | struct timeval target; |
| 996 | struct timeval min_target; |
| 997 | |
| 998 | /* |
| 999 | * we've got at least one tier still in a throttled window |
| 1000 | * so we need a timer running... compute the next deadline |
| 1001 | * and schedule it |
| 1002 | */ |
| 1003 | for (level = throttle_level+1; level <= THROTTLE_LEVEL_END; level++) { |
| 1004 | |
| 1005 | if (TAILQ_EMPTY(&info->throttle_uthlist[level])) |
| 1006 | continue; |
| 1007 | |
| 1008 | target = info->throttle_start_IO_period_timestamp[level]; |
| 1009 | |
| 1010 | msecs = info->throttle_io_periods[level]; |
| 1011 | period.tv_sec = msecs / 1000; |
| 1012 | period.tv_usec = (msecs % 1000) * 1000; |
| 1013 | |
| 1014 | timevaladd(&target, &period); |
| 1015 | |
| 1016 | if (need_timer == FALSE || timevalcmp(&target, &min_target, <)) { |
| 1017 | min_target = target; |
| 1018 | need_timer = TRUE; |
| 1019 | } |
| 1020 | } |
| 1021 | if (timevalcmp(&info->throttle_min_timer_deadline, &now, >)) { |
| 1022 | if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >)) |
| 1023 | min_target = info->throttle_min_timer_deadline; |
| 1024 | } |
| 1025 | |
| 1026 | if (info->throttle_timer_active) { |
| 1027 | if (thread_call_cancel(info->throttle_timer_call) == FALSE) { |
| 1028 | /* |
| 1029 | * couldn't kill the timer because it's already |
| 1030 | * been dispatched, so don't try to start a new |
| 1031 | * one... once we drop the lock, the timer will |
| 1032 | * proceed and eventually re-run this function |
| 1033 | */ |
| 1034 | need_timer = FALSE; |
| 1035 | } else |
| 1036 | info->throttle_timer_active = 0; |
| 1037 | } |
| 1038 | if (need_timer == TRUE) { |
| 1039 | /* |
| 1040 | * This is defined as an int (32-bit) rather than a 64-bit |
| 1041 | * value because it would need a really big period in the |
| 1042 | * order of ~500 days to overflow this. So, we let this be |
| 1043 | * 32-bit which allows us to use the clock_interval_to_deadline() |
| 1044 | * routine. |
| 1045 | */ |
| 1046 | int target_msecs; |
| 1047 | |
| 1048 | if (info->throttle_timer_ref == 0) { |
| 1049 | /* |
| 1050 | * take a reference for the timer |
| 1051 | */ |
| 1052 | throttle_info_ref(info); |
| 1053 | |
| 1054 | info->throttle_timer_ref = 1; |
| 1055 | } |
| 1056 | elapsed = min_target; |
| 1057 | timevalsub(&elapsed, &now); |
| 1058 | target_msecs = elapsed.tv_sec * 1000 + elapsed.tv_usec / 1000; |
| 1059 | |
| 1060 | if (target_msecs <= 0) { |
| 1061 | /* |
| 1062 | * we may have computed a deadline slightly in the past |
| 1063 | * due to various factors... if so, just set the timer |
| 1064 | * to go off in the near future (we don't need to be precise) |
| 1065 | */ |
| 1066 | target_msecs = 1; |
| 1067 | } |
| 1068 | clock_interval_to_deadline(target_msecs, 1000000, &deadline); |
| 1069 | |
| 1070 | thread_call_enter_delayed(info->throttle_timer_call, deadline); |
| 1071 | info->throttle_timer_active = 1; |
| 1072 | } |
| 1073 | } |
| 1074 | return (throttle_level); |
| 1075 | } |
| 1076 | |
| 1077 | |
| 1078 | static void |
| 1079 | throttle_timer(struct _throttle_io_info_t *info) |
| 1080 | { |
| 1081 | uthread_t ut, utlist; |
| 1082 | struct timeval elapsed; |
| 1083 | struct timeval now; |
| 1084 | uint64_t elapsed_msecs; |
| 1085 | int throttle_level; |
| 1086 | int level; |
| 1087 | int wake_level; |
| 1088 | caddr_t wake_address = NULL; |
| 1089 | boolean_t update_io_count = FALSE; |
| 1090 | boolean_t need_wakeup = FALSE; |
| 1091 | boolean_t need_release = FALSE; |
| 1092 | |
| 1093 | ut = NULL; |
| 1094 | lck_mtx_lock(&info->throttle_lock); |
| 1095 | |
| 1096 | info->throttle_timer_active = 0; |
| 1097 | microuptime(&now); |
| 1098 | |
| 1099 | elapsed = now; |
| 1100 | timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[THROTTLE_LEVEL_THROTTLED]); |
| 1101 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); |
| 1102 | |
| 1103 | if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]) { |
| 1104 | |
| 1105 | wake_level = info->throttle_next_wake_level; |
| 1106 | |
| 1107 | for (level = THROTTLE_LEVEL_START; level < THROTTLE_LEVEL_END; level++) { |
| 1108 | |
| 1109 | elapsed = now; |
| 1110 | timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[wake_level]); |
| 1111 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); |
| 1112 | |
| 1113 | if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[wake_level] && !TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) { |
| 1114 | /* |
| 1115 | * we're closing out the current IO period... |
| 1116 | * if we have a waiting thread, wake it up |
| 1117 | * after we have reset the I/O window info |
| 1118 | */ |
| 1119 | need_wakeup = TRUE; |
| 1120 | update_io_count = TRUE; |
| 1121 | |
| 1122 | info->throttle_next_wake_level = wake_level - 1; |
| 1123 | |
| 1124 | if (info->throttle_next_wake_level == THROTTLE_LEVEL_START) |
| 1125 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; |
| 1126 | |
| 1127 | break; |
| 1128 | } |
| 1129 | wake_level--; |
| 1130 | |
| 1131 | if (wake_level == THROTTLE_LEVEL_START) |
| 1132 | wake_level = THROTTLE_LEVEL_END; |
| 1133 | } |
| 1134 | } |
| 1135 | if (need_wakeup == TRUE) { |
| 1136 | if (!TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) { |
| 1137 | |
| 1138 | ut = (uthread_t)TAILQ_FIRST(&info->throttle_uthlist[wake_level]); |
| 1139 | TAILQ_REMOVE(&info->throttle_uthlist[wake_level], ut, uu_throttlelist); |
| 1140 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; |
| 1141 | ut->uu_is_throttled = false; |
| 1142 | |
| 1143 | wake_address = (caddr_t)&ut->uu_on_throttlelist; |
| 1144 | } |
| 1145 | } else |
| 1146 | wake_level = THROTTLE_LEVEL_START; |
| 1147 | |
| 1148 | throttle_level = throttle_timer_start(info, update_io_count, wake_level); |
| 1149 | |
| 1150 | if (wake_address != NULL) |
| 1151 | wakeup(wake_address); |
| 1152 | |
| 1153 | for (level = THROTTLE_LEVEL_THROTTLED; level <= throttle_level; level++) { |
| 1154 | |
| 1155 | TAILQ_FOREACH_SAFE(ut, &info->throttle_uthlist[level], uu_throttlelist, utlist) { |
| 1156 | |
| 1157 | TAILQ_REMOVE(&info->throttle_uthlist[level], ut, uu_throttlelist); |
| 1158 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; |
| 1159 | ut->uu_is_throttled = false; |
| 1160 | |
| 1161 | wakeup(&ut->uu_on_throttlelist); |
| 1162 | } |
| 1163 | } |
| 1164 | if (info->throttle_timer_active == 0 && info->throttle_timer_ref) { |
| 1165 | info->throttle_timer_ref = 0; |
| 1166 | need_release = TRUE; |
| 1167 | } |
| 1168 | lck_mtx_unlock(&info->throttle_lock); |
| 1169 | |
| 1170 | if (need_release == TRUE) |
| 1171 | throttle_info_rel(info); |
| 1172 | } |
| 1173 | |
| 1174 | |
| 1175 | static int |
| 1176 | throttle_add_to_list(struct _throttle_io_info_t *info, uthread_t ut, int mylevel, boolean_t insert_tail) |
| 1177 | { |
| 1178 | boolean_t start_timer = FALSE; |
| 1179 | int level = THROTTLE_LEVEL_START; |
| 1180 | |
| 1181 | if (TAILQ_EMPTY(&info->throttle_uthlist[mylevel])) { |
| 1182 | info->throttle_start_IO_period_timestamp[mylevel] = info->throttle_last_IO_timestamp[mylevel]; |
| 1183 | start_timer = TRUE; |
| 1184 | } |
| 1185 | |
| 1186 | if (insert_tail == TRUE) |
| 1187 | TAILQ_INSERT_TAIL(&info->throttle_uthlist[mylevel], ut, uu_throttlelist); |
| 1188 | else |
| 1189 | TAILQ_INSERT_HEAD(&info->throttle_uthlist[mylevel], ut, uu_throttlelist); |
| 1190 | |
| 1191 | ut->uu_on_throttlelist = mylevel; |
| 1192 | |
| 1193 | if (start_timer == TRUE) { |
| 1194 | /* we may need to start or rearm the timer */ |
| 1195 | level = throttle_timer_start(info, FALSE, THROTTLE_LEVEL_START); |
| 1196 | |
| 1197 | if (level == THROTTLE_LEVEL_END) { |
| 1198 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) { |
| 1199 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); |
| 1200 | |
| 1201 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; |
| 1202 | } |
| 1203 | } |
| 1204 | } |
| 1205 | return (level); |
| 1206 | } |
| 1207 | |
| 1208 | static void |
| 1209 | throttle_init_throttle_window(void) |
| 1210 | { |
| 1211 | int throttle_window_size; |
| 1212 | |
| 1213 | /* |
| 1214 | * The hierarchy of throttle window values is as follows: |
| 1215 | * - Global defaults |
| 1216 | * - Device tree properties |
| 1217 | * - Boot-args |
| 1218 | * All values are specified in msecs. |
| 1219 | */ |
| 1220 | |
| 1221 | /* Override global values with device-tree properties */ |
| 1222 | if (PE_get_default("kern.io_throttle_window_tier1" , &throttle_window_size, sizeof(throttle_window_size))) |
| 1223 | throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size; |
| 1224 | |
| 1225 | if (PE_get_default("kern.io_throttle_window_tier2" , &throttle_window_size, sizeof(throttle_window_size))) |
| 1226 | throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size; |
| 1227 | |
| 1228 | if (PE_get_default("kern.io_throttle_window_tier3" , &throttle_window_size, sizeof(throttle_window_size))) |
| 1229 | throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size; |
| 1230 | |
| 1231 | /* Override with boot-args */ |
| 1232 | if (PE_parse_boot_argn("io_throttle_window_tier1" , &throttle_window_size, sizeof(throttle_window_size))) |
| 1233 | throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size; |
| 1234 | |
| 1235 | if (PE_parse_boot_argn("io_throttle_window_tier2" , &throttle_window_size, sizeof(throttle_window_size))) |
| 1236 | throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size; |
| 1237 | |
| 1238 | if (PE_parse_boot_argn("io_throttle_window_tier3" , &throttle_window_size, sizeof(throttle_window_size))) |
| 1239 | throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size; |
| 1240 | } |
| 1241 | |
| 1242 | static void |
| 1243 | throttle_init_throttle_period(struct _throttle_io_info_t *info, boolean_t isssd) |
| 1244 | { |
| 1245 | int throttle_period_size; |
| 1246 | |
| 1247 | /* |
| 1248 | * The hierarchy of throttle period values is as follows: |
| 1249 | * - Global defaults |
| 1250 | * - Device tree properties |
| 1251 | * - Boot-args |
| 1252 | * All values are specified in msecs. |
| 1253 | */ |
| 1254 | |
| 1255 | /* Assign global defaults */ |
| 1256 | if ((isssd == TRUE) && (info->throttle_is_fusion_with_priority == 0)) |
| 1257 | info->throttle_io_periods = &throttle_io_period_ssd_msecs[0]; |
| 1258 | else |
| 1259 | info->throttle_io_periods = &throttle_io_period_msecs[0]; |
| 1260 | |
| 1261 | /* Override global values with device-tree properties */ |
| 1262 | if (PE_get_default("kern.io_throttle_period_tier1" , &throttle_period_size, sizeof(throttle_period_size))) |
| 1263 | info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size; |
| 1264 | |
| 1265 | if (PE_get_default("kern.io_throttle_period_tier2" , &throttle_period_size, sizeof(throttle_period_size))) |
| 1266 | info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size; |
| 1267 | |
| 1268 | if (PE_get_default("kern.io_throttle_period_tier3" , &throttle_period_size, sizeof(throttle_period_size))) |
| 1269 | info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size; |
| 1270 | |
| 1271 | /* Override with boot-args */ |
| 1272 | if (PE_parse_boot_argn("io_throttle_period_tier1" , &throttle_period_size, sizeof(throttle_period_size))) |
| 1273 | info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size; |
| 1274 | |
| 1275 | if (PE_parse_boot_argn("io_throttle_period_tier2" , &throttle_period_size, sizeof(throttle_period_size))) |
| 1276 | info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size; |
| 1277 | |
| 1278 | if (PE_parse_boot_argn("io_throttle_period_tier3" , &throttle_period_size, sizeof(throttle_period_size))) |
| 1279 | info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size; |
| 1280 | |
| 1281 | } |
| 1282 | |
| 1283 | #if CONFIG_IOSCHED |
| 1284 | extern void vm_io_reprioritize_init(void); |
| 1285 | int iosched_enabled = 1; |
| 1286 | #endif |
| 1287 | |
| 1288 | void |
| 1289 | throttle_init(void) |
| 1290 | { |
| 1291 | struct _throttle_io_info_t *info; |
| 1292 | int i; |
| 1293 | int level; |
| 1294 | #if CONFIG_IOSCHED |
| 1295 | int iosched; |
| 1296 | #endif |
| 1297 | /* |
| 1298 | * allocate lock group attribute and group |
| 1299 | */ |
| 1300 | throttle_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 1301 | throttle_lock_grp = lck_grp_alloc_init("throttle I/O" , throttle_lock_grp_attr); |
| 1302 | |
| 1303 | /* Update throttle parameters based on device tree configuration */ |
| 1304 | throttle_init_throttle_window(); |
| 1305 | |
| 1306 | /* |
| 1307 | * allocate the lock attribute |
| 1308 | */ |
| 1309 | throttle_lock_attr = lck_attr_alloc_init(); |
| 1310 | |
| 1311 | for (i = 0; i < LOWPRI_MAX_NUM_DEV; i++) { |
| 1312 | info = &_throttle_io_info[i]; |
| 1313 | |
| 1314 | lck_mtx_init(&info->throttle_lock, throttle_lock_grp, throttle_lock_attr); |
| 1315 | info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info); |
| 1316 | |
| 1317 | for (level = 0; level <= THROTTLE_LEVEL_END; level++) { |
| 1318 | TAILQ_INIT(&info->throttle_uthlist[level]); |
| 1319 | info->throttle_last_IO_pid[level] = 0; |
| 1320 | info->throttle_inflight_count[level] = 0; |
| 1321 | } |
| 1322 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; |
| 1323 | info->throttle_disabled = 0; |
| 1324 | info->throttle_is_fusion_with_priority = 0; |
| 1325 | } |
| 1326 | #if CONFIG_IOSCHED |
| 1327 | if (PE_parse_boot_argn("iosched" , &iosched, sizeof(iosched))) { |
| 1328 | iosched_enabled = iosched; |
| 1329 | } |
| 1330 | if (iosched_enabled) { |
| 1331 | /* Initialize I/O Reprioritization mechanism */ |
| 1332 | vm_io_reprioritize_init(); |
| 1333 | } |
| 1334 | #endif |
| 1335 | } |
| 1336 | |
| 1337 | void |
| 1338 | sys_override_io_throttle(boolean_t enable_override) |
| 1339 | { |
| 1340 | if (enable_override) |
| 1341 | lowpri_throttle_enabled = 0; |
| 1342 | else |
| 1343 | lowpri_throttle_enabled = 1; |
| 1344 | } |
| 1345 | |
| 1346 | int rethrottle_wakeups = 0; |
| 1347 | |
| 1348 | /* |
| 1349 | * the uu_rethrottle_lock is used to synchronize this function |
| 1350 | * with "throttle_lowpri_io" which is where a throttled thread |
| 1351 | * will block... that function will grab this lock before beginning |
| 1352 | * it's decision making process concerning the need to block, and |
| 1353 | * hold it through the assert_wait. When that thread is awakened |
| 1354 | * for any reason (timer or rethrottle), it will reacquire the |
| 1355 | * uu_rethrottle_lock before determining if it really is ok for |
| 1356 | * it to now run. This is the point at which the thread could |
| 1357 | * enter a different throttling queue and reblock or return from |
| 1358 | * the throttle w/o having waited out it's entire throttle if |
| 1359 | * the rethrottle has now moved it out of any currently |
| 1360 | * active throttle window. |
| 1361 | * |
| 1362 | * |
| 1363 | * NOTES: |
| 1364 | * 1 - This may be called with the task lock held. |
| 1365 | * 2 - This may be called with preemption and interrupts disabled |
| 1366 | * in the kqueue wakeup path so we can't take the throttle_lock which is a mutex |
| 1367 | * 3 - This cannot safely dereference uu_throttle_info, as it may |
| 1368 | * get deallocated out from under us |
| 1369 | */ |
| 1370 | |
| 1371 | void |
| 1372 | rethrottle_thread(uthread_t ut) |
| 1373 | { |
| 1374 | /* |
| 1375 | * If uthread doesn't have throttle state, then there's no chance |
| 1376 | * of it needing a rethrottle. |
| 1377 | */ |
| 1378 | if (ut->uu_throttle_info == NULL) |
| 1379 | return; |
| 1380 | |
| 1381 | boolean_t s = ml_set_interrupts_enabled(FALSE); |
| 1382 | lck_spin_lock(&ut->uu_rethrottle_lock); |
| 1383 | |
| 1384 | if (!ut->uu_is_throttled) |
| 1385 | ut->uu_was_rethrottled = true; |
| 1386 | else { |
| 1387 | int my_new_level = throttle_get_thread_throttle_level(ut); |
| 1388 | |
| 1389 | if (my_new_level != ut->uu_on_throttlelist) { |
| 1390 | /* |
| 1391 | * ut is currently blocked (as indicated by |
| 1392 | * ut->uu_is_throttled == true) |
| 1393 | * and we're changing it's throttle level, so |
| 1394 | * we need to wake it up. |
| 1395 | */ |
| 1396 | ut->uu_is_throttled = false; |
| 1397 | wakeup(&ut->uu_on_throttlelist); |
| 1398 | |
| 1399 | rethrottle_wakeups++; |
| 1400 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 102)), thread_tid(ut->uu_thread), ut->uu_on_throttlelist, my_new_level, 0, 0); |
| 1401 | } |
| 1402 | } |
| 1403 | lck_spin_unlock(&ut->uu_rethrottle_lock); |
| 1404 | ml_set_interrupts_enabled(s); |
| 1405 | } |
| 1406 | |
| 1407 | |
| 1408 | /* |
| 1409 | * KPI routine |
| 1410 | * |
| 1411 | * Create and take a reference on a throttle info structure and return a |
| 1412 | * pointer for the file system to use when calling throttle_info_update. |
| 1413 | * Calling file system must have a matching release for every create. |
| 1414 | */ |
| 1415 | void * |
| 1416 | throttle_info_create(void) |
| 1417 | { |
| 1418 | struct _throttle_io_info_t *info; |
| 1419 | int level; |
| 1420 | |
| 1421 | MALLOC(info, struct _throttle_io_info_t *, sizeof(*info), M_TEMP, M_ZERO | M_WAITOK); |
| 1422 | /* Should never happen but just in case */ |
| 1423 | if (info == NULL) |
| 1424 | return NULL; |
| 1425 | /* Mark that this one was allocated and needs to be freed */ |
| 1426 | DEBUG_ALLOC_THROTTLE_INFO("Creating info = %p\n" , info, info ); |
| 1427 | info->throttle_alloc = TRUE; |
| 1428 | |
| 1429 | lck_mtx_init(&info->throttle_lock, throttle_lock_grp, throttle_lock_attr); |
| 1430 | info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info); |
| 1431 | |
| 1432 | for (level = 0; level <= THROTTLE_LEVEL_END; level++) { |
| 1433 | TAILQ_INIT(&info->throttle_uthlist[level]); |
| 1434 | } |
| 1435 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; |
| 1436 | |
| 1437 | /* Take a reference */ |
| 1438 | OSIncrementAtomic(&info->throttle_refcnt); |
| 1439 | return info; |
| 1440 | } |
| 1441 | |
| 1442 | /* |
| 1443 | * KPI routine |
| 1444 | * |
| 1445 | * Release the throttle info pointer if all the reference are gone. Should be |
| 1446 | * called to release reference taken by throttle_info_create |
| 1447 | */ |
| 1448 | void |
| 1449 | throttle_info_release(void *throttle_info) |
| 1450 | { |
| 1451 | DEBUG_ALLOC_THROTTLE_INFO("Releaseing info = %p\n" , |
| 1452 | (struct _throttle_io_info_t *)throttle_info, |
| 1453 | (struct _throttle_io_info_t *)throttle_info); |
| 1454 | if (throttle_info) /* Just to be careful */ |
| 1455 | throttle_info_rel(throttle_info); |
| 1456 | } |
| 1457 | |
| 1458 | /* |
| 1459 | * KPI routine |
| 1460 | * |
| 1461 | * File Systems that create an info structure, need to call this routine in |
| 1462 | * their mount routine (used by cluster code). File Systems that call this in |
| 1463 | * their mount routines must call throttle_info_mount_rel in their unmount |
| 1464 | * routines. |
| 1465 | */ |
| 1466 | void |
| 1467 | throttle_info_mount_ref(mount_t mp, void *throttle_info) |
| 1468 | { |
| 1469 | if ((throttle_info == NULL) || (mp == NULL)) |
| 1470 | return; |
| 1471 | throttle_info_ref(throttle_info); |
| 1472 | |
| 1473 | /* |
| 1474 | * We already have a reference release it before adding the new one |
| 1475 | */ |
| 1476 | if (mp->mnt_throttle_info) |
| 1477 | throttle_info_rel(mp->mnt_throttle_info); |
| 1478 | mp->mnt_throttle_info = throttle_info; |
| 1479 | } |
| 1480 | |
| 1481 | /* |
| 1482 | * Private KPI routine |
| 1483 | * |
| 1484 | * return a handle for accessing throttle_info given a throttle_mask. The |
| 1485 | * handle must be released by throttle_info_rel_by_mask |
| 1486 | */ |
| 1487 | int |
| 1488 | throttle_info_ref_by_mask(uint64_t throttle_mask, throttle_info_handle_t *throttle_info_handle) |
| 1489 | { |
| 1490 | int dev_index; |
| 1491 | struct _throttle_io_info_t *info; |
| 1492 | |
| 1493 | if (throttle_info_handle == NULL) |
| 1494 | return EINVAL; |
| 1495 | |
| 1496 | dev_index = num_trailing_0(throttle_mask); |
| 1497 | info = &_throttle_io_info[dev_index]; |
| 1498 | throttle_info_ref(info); |
| 1499 | *(struct _throttle_io_info_t**)throttle_info_handle = info; |
| 1500 | |
| 1501 | return 0; |
| 1502 | } |
| 1503 | |
| 1504 | /* |
| 1505 | * Private KPI routine |
| 1506 | * |
| 1507 | * release the handle obtained by throttle_info_ref_by_mask |
| 1508 | */ |
| 1509 | void |
| 1510 | throttle_info_rel_by_mask(throttle_info_handle_t throttle_info_handle) |
| 1511 | { |
| 1512 | /* |
| 1513 | * for now the handle is just a pointer to _throttle_io_info_t |
| 1514 | */ |
| 1515 | throttle_info_rel((struct _throttle_io_info_t*)throttle_info_handle); |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * KPI routine |
| 1520 | * |
| 1521 | * File Systems that throttle_info_mount_ref, must call this routine in their |
| 1522 | * umount routine. |
| 1523 | */ |
| 1524 | void |
| 1525 | throttle_info_mount_rel(mount_t mp) |
| 1526 | { |
| 1527 | if (mp->mnt_throttle_info) |
| 1528 | throttle_info_rel(mp->mnt_throttle_info); |
| 1529 | mp->mnt_throttle_info = NULL; |
| 1530 | } |
| 1531 | |
| 1532 | /* |
| 1533 | * Reset throttling periods for the given mount point |
| 1534 | * |
| 1535 | * private interface used by disk conditioner to reset |
| 1536 | * throttling periods when 'is_ssd' status changes |
| 1537 | */ |
| 1538 | void |
| 1539 | throttle_info_mount_reset_period(mount_t mp, int isssd) |
| 1540 | { |
| 1541 | struct _throttle_io_info_t *info; |
| 1542 | |
| 1543 | if (mp == NULL) |
| 1544 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; |
| 1545 | else if (mp->mnt_throttle_info == NULL) |
| 1546 | info = &_throttle_io_info[mp->mnt_devbsdunit]; |
| 1547 | else |
| 1548 | info = mp->mnt_throttle_info; |
| 1549 | |
| 1550 | throttle_init_throttle_period(info, isssd); |
| 1551 | } |
| 1552 | |
| 1553 | void |
| 1554 | throttle_info_get_last_io_time(mount_t mp, struct timeval *tv) |
| 1555 | { |
| 1556 | struct _throttle_io_info_t *info; |
| 1557 | |
| 1558 | if (mp == NULL) |
| 1559 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; |
| 1560 | else if (mp->mnt_throttle_info == NULL) |
| 1561 | info = &_throttle_io_info[mp->mnt_devbsdunit]; |
| 1562 | else |
| 1563 | info = mp->mnt_throttle_info; |
| 1564 | |
| 1565 | *tv = info->throttle_last_write_timestamp; |
| 1566 | } |
| 1567 | |
| 1568 | void |
| 1569 | update_last_io_time(mount_t mp) |
| 1570 | { |
| 1571 | struct _throttle_io_info_t *info; |
| 1572 | |
| 1573 | if (mp == NULL) |
| 1574 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; |
| 1575 | else if (mp->mnt_throttle_info == NULL) |
| 1576 | info = &_throttle_io_info[mp->mnt_devbsdunit]; |
| 1577 | else |
| 1578 | info = mp->mnt_throttle_info; |
| 1579 | |
| 1580 | microuptime(&info->throttle_last_write_timestamp); |
| 1581 | if (mp != NULL) |
| 1582 | mp->mnt_last_write_completed_timestamp = info->throttle_last_write_timestamp; |
| 1583 | } |
| 1584 | |
| 1585 | int |
| 1586 | throttle_get_io_policy(uthread_t *ut) |
| 1587 | { |
| 1588 | if (ut != NULL) |
| 1589 | *ut = get_bsdthread_info(current_thread()); |
| 1590 | |
| 1591 | return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO)); |
| 1592 | } |
| 1593 | |
| 1594 | int |
| 1595 | throttle_get_passive_io_policy(uthread_t *ut) |
| 1596 | { |
| 1597 | if (ut != NULL) |
| 1598 | *ut = get_bsdthread_info(current_thread()); |
| 1599 | |
| 1600 | return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_PASSIVE_IO)); |
| 1601 | } |
| 1602 | |
| 1603 | |
| 1604 | static int |
| 1605 | throttle_get_thread_throttle_level(uthread_t ut) |
| 1606 | { |
| 1607 | uthread_t *ut_p = (ut == NULL) ? &ut : NULL; |
| 1608 | int io_tier = throttle_get_io_policy(ut_p); |
| 1609 | |
| 1610 | return throttle_get_thread_throttle_level_internal(ut, io_tier); |
| 1611 | } |
| 1612 | |
| 1613 | /* |
| 1614 | * Return a throttle level given an existing I/O tier (such as returned by throttle_get_io_policy) |
| 1615 | */ |
| 1616 | static int |
| 1617 | throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier) { |
| 1618 | int thread_throttle_level = io_tier; |
| 1619 | int user_idle_level; |
| 1620 | |
| 1621 | assert(ut != NULL); |
| 1622 | |
| 1623 | /* Bootcache misses should always be throttled */ |
| 1624 | if (ut->uu_throttle_bc) |
| 1625 | thread_throttle_level = THROTTLE_LEVEL_TIER3; |
| 1626 | |
| 1627 | /* |
| 1628 | * Issue tier3 I/O as tier2 when the user is idle |
| 1629 | * to allow maintenance tasks to make more progress. |
| 1630 | * |
| 1631 | * Assume any positive idle level is enough... for now it's |
| 1632 | * only ever 0 or 128 but this is not defined anywhere. |
| 1633 | */ |
| 1634 | if (thread_throttle_level >= THROTTLE_LEVEL_TIER3) { |
| 1635 | user_idle_level = timer_get_user_idle_level(); |
| 1636 | if (user_idle_level > 0) { |
| 1637 | thread_throttle_level--; |
| 1638 | } |
| 1639 | } |
| 1640 | |
| 1641 | return (thread_throttle_level); |
| 1642 | } |
| 1643 | |
| 1644 | /* |
| 1645 | * I/O will be throttled if either of the following are true: |
| 1646 | * - Higher tiers have in-flight I/O |
| 1647 | * - The time delta since the last start/completion of a higher tier is within the throttle window interval |
| 1648 | * |
| 1649 | * In-flight I/O is bookended by throttle_info_update_internal/throttle_info_end_io_internal |
| 1650 | */ |
| 1651 | static int |
| 1652 | throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level) |
| 1653 | { |
| 1654 | struct _throttle_io_info_t *info = throttle_info; |
| 1655 | struct timeval elapsed; |
| 1656 | struct timeval now; |
| 1657 | uint64_t elapsed_msecs; |
| 1658 | int thread_throttle_level; |
| 1659 | int throttle_level; |
| 1660 | |
| 1661 | if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED) |
| 1662 | return (THROTTLE_DISENGAGED); |
| 1663 | |
| 1664 | microuptime(&now); |
| 1665 | |
| 1666 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) { |
| 1667 | if (info->throttle_inflight_count[throttle_level]) { |
| 1668 | break; |
| 1669 | } |
| 1670 | elapsed = now; |
| 1671 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); |
| 1672 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); |
| 1673 | |
| 1674 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) |
| 1675 | break; |
| 1676 | } |
| 1677 | if (throttle_level >= thread_throttle_level) { |
| 1678 | /* |
| 1679 | * we're beyond all of the throttle windows |
| 1680 | * that affect the throttle level of this thread, |
| 1681 | * so go ahead and treat as normal I/O |
| 1682 | */ |
| 1683 | return (THROTTLE_DISENGAGED); |
| 1684 | } |
| 1685 | if (mylevel) |
| 1686 | *mylevel = thread_throttle_level; |
| 1687 | if (throttling_level) |
| 1688 | *throttling_level = throttle_level; |
| 1689 | |
| 1690 | if (info->throttle_io_count != info->throttle_io_count_begin) { |
| 1691 | /* |
| 1692 | * we've already issued at least one throttleable I/O |
| 1693 | * in the current I/O window, so avoid issuing another one |
| 1694 | */ |
| 1695 | return (THROTTLE_NOW); |
| 1696 | } |
| 1697 | /* |
| 1698 | * we're in the throttle window, so |
| 1699 | * cut the I/O size back |
| 1700 | */ |
| 1701 | return (THROTTLE_ENGAGED); |
| 1702 | } |
| 1703 | |
| 1704 | /* |
| 1705 | * If we have a mount point and it has a throttle info pointer then |
| 1706 | * use it to do the check, otherwise use the device unit number to find |
| 1707 | * the correct throttle info array element. |
| 1708 | */ |
| 1709 | int |
| 1710 | throttle_io_will_be_throttled(__unused int lowpri_window_msecs, mount_t mp) |
| 1711 | { |
| 1712 | struct _throttle_io_info_t *info; |
| 1713 | |
| 1714 | /* |
| 1715 | * Should we just return zero if no mount point |
| 1716 | */ |
| 1717 | if (mp == NULL) |
| 1718 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; |
| 1719 | else if (mp->mnt_throttle_info == NULL) |
| 1720 | info = &_throttle_io_info[mp->mnt_devbsdunit]; |
| 1721 | else |
| 1722 | info = mp->mnt_throttle_info; |
| 1723 | |
| 1724 | if (info->throttle_is_fusion_with_priority) { |
| 1725 | uthread_t ut = get_bsdthread_info(current_thread()); |
| 1726 | if (ut->uu_lowpri_window == 0) |
| 1727 | return (THROTTLE_DISENGAGED); |
| 1728 | } |
| 1729 | |
| 1730 | if (info->throttle_disabled) |
| 1731 | return (THROTTLE_DISENGAGED); |
| 1732 | else |
| 1733 | return throttle_io_will_be_throttled_internal(info, NULL, NULL); |
| 1734 | } |
| 1735 | |
| 1736 | /* |
| 1737 | * Routine to increment I/O throttling counters maintained in the proc |
| 1738 | */ |
| 1739 | |
| 1740 | static void |
| 1741 | throttle_update_proc_stats(pid_t throttling_pid, int count) |
| 1742 | { |
| 1743 | proc_t throttling_proc; |
| 1744 | proc_t throttled_proc = current_proc(); |
| 1745 | |
| 1746 | /* The throttled_proc is always the current proc; so we are not concerned with refs */ |
| 1747 | OSAddAtomic64(count, &(throttled_proc->was_throttled)); |
| 1748 | |
| 1749 | /* The throttling pid might have exited by now */ |
| 1750 | throttling_proc = proc_find(throttling_pid); |
| 1751 | if (throttling_proc != PROC_NULL) { |
| 1752 | OSAddAtomic64(count, &(throttling_proc->did_throttle)); |
| 1753 | proc_rele(throttling_proc); |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * Block until woken up by the throttle timer or by a rethrottle call. |
| 1759 | * As long as we hold the throttle_lock while querying the throttle tier, we're |
| 1760 | * safe against seeing an old throttle tier after a rethrottle. |
| 1761 | */ |
| 1762 | uint32_t |
| 1763 | throttle_lowpri_io(int sleep_amount) |
| 1764 | { |
| 1765 | uthread_t ut; |
| 1766 | struct _throttle_io_info_t *info; |
| 1767 | int throttle_type = 0; |
| 1768 | int mylevel = 0; |
| 1769 | int throttling_level = THROTTLE_LEVEL_NONE; |
| 1770 | int sleep_cnt = 0; |
| 1771 | uint32_t throttle_io_period_num = 0; |
| 1772 | boolean_t insert_tail = TRUE; |
| 1773 | boolean_t s; |
| 1774 | |
| 1775 | ut = get_bsdthread_info(current_thread()); |
| 1776 | |
| 1777 | if (ut->uu_lowpri_window == 0) |
| 1778 | return (0); |
| 1779 | |
| 1780 | info = ut->uu_throttle_info; |
| 1781 | |
| 1782 | if (info == NULL) { |
| 1783 | ut->uu_throttle_bc = false; |
| 1784 | ut->uu_lowpri_window = 0; |
| 1785 | return (0); |
| 1786 | } |
| 1787 | lck_mtx_lock(&info->throttle_lock); |
| 1788 | assert(ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED); |
| 1789 | |
| 1790 | if (sleep_amount == 0) |
| 1791 | goto done; |
| 1792 | |
| 1793 | if (sleep_amount == 1 && !ut->uu_throttle_bc) |
| 1794 | sleep_amount = 0; |
| 1795 | |
| 1796 | throttle_io_period_num = info->throttle_io_period_num; |
| 1797 | |
| 1798 | ut->uu_was_rethrottled = false; |
| 1799 | |
| 1800 | while ( (throttle_type = throttle_io_will_be_throttled_internal(info, &mylevel, &throttling_level)) ) { |
| 1801 | |
| 1802 | if (throttle_type == THROTTLE_ENGAGED) { |
| 1803 | if (sleep_amount == 0) |
| 1804 | break; |
| 1805 | if (info->throttle_io_period_num < throttle_io_period_num) |
| 1806 | break; |
| 1807 | if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) |
| 1808 | break; |
| 1809 | } |
| 1810 | /* |
| 1811 | * keep the same position in the list if "rethrottle_thread" changes our throttle level and |
| 1812 | * then puts us back to the original level before we get a chance to run |
| 1813 | */ |
| 1814 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED && ut->uu_on_throttlelist != mylevel) { |
| 1815 | /* |
| 1816 | * must have been awakened via "rethrottle_thread" (the timer pulls us off the list) |
| 1817 | * and we've changed our throttling level, so pull ourselves off of the appropriate list |
| 1818 | * and make sure we get put on the tail of the new list since we're starting anew w/r to |
| 1819 | * the throttling engine |
| 1820 | */ |
| 1821 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); |
| 1822 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; |
| 1823 | insert_tail = TRUE; |
| 1824 | } |
| 1825 | if (ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED) { |
| 1826 | if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END) |
| 1827 | goto done; |
| 1828 | } |
| 1829 | assert(throttling_level >= THROTTLE_LEVEL_START && throttling_level <= THROTTLE_LEVEL_END); |
| 1830 | |
| 1831 | s = ml_set_interrupts_enabled(FALSE); |
| 1832 | lck_spin_lock(&ut->uu_rethrottle_lock); |
| 1833 | |
| 1834 | /* |
| 1835 | * this is the critical section w/r to our interaction |
| 1836 | * with "rethrottle_thread" |
| 1837 | */ |
| 1838 | if (ut->uu_was_rethrottled) { |
| 1839 | |
| 1840 | lck_spin_unlock(&ut->uu_rethrottle_lock); |
| 1841 | ml_set_interrupts_enabled(s); |
| 1842 | lck_mtx_yield(&info->throttle_lock); |
| 1843 | |
| 1844 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 103)), thread_tid(ut->uu_thread), ut->uu_on_throttlelist, 0, 0, 0); |
| 1845 | |
| 1846 | ut->uu_was_rethrottled = false; |
| 1847 | continue; |
| 1848 | } |
| 1849 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, PROCESS_THROTTLED)) | DBG_FUNC_NONE, |
| 1850 | info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0); |
| 1851 | |
| 1852 | if (sleep_cnt == 0) { |
| 1853 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, |
| 1854 | throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0); |
| 1855 | throttled_count[mylevel]++; |
| 1856 | } |
| 1857 | ut->uu_wmesg = "throttle_lowpri_io" ; |
| 1858 | |
| 1859 | assert_wait((caddr_t)&ut->uu_on_throttlelist, THREAD_UNINT); |
| 1860 | |
| 1861 | ut->uu_is_throttled = true; |
| 1862 | lck_spin_unlock(&ut->uu_rethrottle_lock); |
| 1863 | ml_set_interrupts_enabled(s); |
| 1864 | |
| 1865 | lck_mtx_unlock(&info->throttle_lock); |
| 1866 | |
| 1867 | thread_block(THREAD_CONTINUE_NULL); |
| 1868 | |
| 1869 | ut->uu_wmesg = NULL; |
| 1870 | |
| 1871 | ut->uu_is_throttled = false; |
| 1872 | ut->uu_was_rethrottled = false; |
| 1873 | |
| 1874 | lck_mtx_lock(&info->throttle_lock); |
| 1875 | |
| 1876 | sleep_cnt++; |
| 1877 | |
| 1878 | if (sleep_amount == 0) |
| 1879 | insert_tail = FALSE; |
| 1880 | else if (info->throttle_io_period_num < throttle_io_period_num || |
| 1881 | (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) { |
| 1882 | insert_tail = FALSE; |
| 1883 | sleep_amount = 0; |
| 1884 | } |
| 1885 | } |
| 1886 | done: |
| 1887 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) { |
| 1888 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); |
| 1889 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; |
| 1890 | } |
| 1891 | lck_mtx_unlock(&info->throttle_lock); |
| 1892 | |
| 1893 | if (sleep_cnt) { |
| 1894 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, |
| 1895 | throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0); |
| 1896 | /* |
| 1897 | * We update the stats for the last pid which opened a throttle window for the throttled thread. |
| 1898 | * This might not be completely accurate since the multiple throttles seen by the lower tier pid |
| 1899 | * might have been caused by various higher prio pids. However, updating these stats accurately |
| 1900 | * means doing a proc_find while holding the throttle lock which leads to deadlock. |
| 1901 | */ |
| 1902 | throttle_update_proc_stats(info->throttle_last_IO_pid[throttling_level], sleep_cnt); |
| 1903 | } |
| 1904 | |
| 1905 | ut->uu_throttle_info = NULL; |
| 1906 | ut->uu_throttle_bc = false; |
| 1907 | ut->uu_lowpri_window = 0; |
| 1908 | |
| 1909 | throttle_info_rel(info); |
| 1910 | |
| 1911 | return (sleep_cnt); |
| 1912 | } |
| 1913 | |
| 1914 | /* |
| 1915 | * KPI routine |
| 1916 | * |
| 1917 | * set a kernel thread's IO policy. policy can be: |
| 1918 | * IOPOL_NORMAL, IOPOL_THROTTLE, IOPOL_PASSIVE, IOPOL_UTILITY, IOPOL_STANDARD |
| 1919 | * |
| 1920 | * explanations about these policies are in the man page of setiopolicy_np |
| 1921 | */ |
| 1922 | void throttle_set_thread_io_policy(int policy) |
| 1923 | { |
| 1924 | proc_set_thread_policy(current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL, policy); |
| 1925 | } |
| 1926 | |
| 1927 | int throttle_get_thread_effective_io_policy() |
| 1928 | { |
| 1929 | return proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO); |
| 1930 | } |
| 1931 | |
| 1932 | void throttle_info_reset_window(uthread_t ut) |
| 1933 | { |
| 1934 | struct _throttle_io_info_t *info; |
| 1935 | |
| 1936 | if (ut == NULL) |
| 1937 | ut = get_bsdthread_info(current_thread()); |
| 1938 | |
| 1939 | if ( (info = ut->uu_throttle_info) ) { |
| 1940 | throttle_info_rel(info); |
| 1941 | |
| 1942 | ut->uu_throttle_info = NULL; |
| 1943 | ut->uu_lowpri_window = 0; |
| 1944 | ut->uu_throttle_bc = false; |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | static |
| 1949 | void throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd) |
| 1950 | { |
| 1951 | if (lowpri_throttle_enabled == 0 || info->throttle_disabled) |
| 1952 | return; |
| 1953 | |
| 1954 | if (info->throttle_io_periods == 0) { |
| 1955 | throttle_init_throttle_period(info, isssd); |
| 1956 | } |
| 1957 | if (ut->uu_throttle_info == NULL) { |
| 1958 | |
| 1959 | ut->uu_throttle_info = info; |
| 1960 | throttle_info_ref(info); |
| 1961 | DEBUG_ALLOC_THROTTLE_INFO("updating info = %p\n" , info, info ); |
| 1962 | |
| 1963 | ut->uu_lowpri_window = 1; |
| 1964 | ut->uu_throttle_bc = BC_throttle; |
| 1965 | } |
| 1966 | } |
| 1967 | |
| 1968 | /* |
| 1969 | * Update inflight IO count and throttling window |
| 1970 | * Should be called when an IO is done |
| 1971 | * |
| 1972 | * Only affects IO that was sent through spec_strategy |
| 1973 | */ |
| 1974 | void throttle_info_end_io(buf_t bp) { |
| 1975 | mount_t mp; |
| 1976 | struct bufattr *bap; |
| 1977 | struct _throttle_io_info_t *info; |
| 1978 | int io_tier; |
| 1979 | |
| 1980 | bap = &bp->b_attr; |
| 1981 | if (!ISSET(bap->ba_flags, BA_STRATEGY_TRACKED_IO)) { |
| 1982 | return; |
| 1983 | } |
| 1984 | CLR(bap->ba_flags, BA_STRATEGY_TRACKED_IO); |
| 1985 | |
| 1986 | mp = buf_vnode(bp)->v_mount; |
| 1987 | if (mp != NULL) { |
| 1988 | info = &_throttle_io_info[mp->mnt_devbsdunit]; |
| 1989 | } else { |
| 1990 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; |
| 1991 | } |
| 1992 | |
| 1993 | io_tier = GET_BUFATTR_IO_TIER(bap); |
| 1994 | if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) { |
| 1995 | io_tier--; |
| 1996 | } |
| 1997 | |
| 1998 | throttle_info_end_io_internal(info, io_tier); |
| 1999 | } |
| 2000 | |
| 2001 | /* |
| 2002 | * Decrement inflight count initially incremented by throttle_info_update_internal |
| 2003 | */ |
| 2004 | static |
| 2005 | void throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level) { |
| 2006 | if (throttle_level == THROTTLE_LEVEL_NONE) { |
| 2007 | return; |
| 2008 | } |
| 2009 | |
| 2010 | microuptime(&info->throttle_window_start_timestamp[throttle_level]); |
| 2011 | OSDecrementAtomic(&info->throttle_inflight_count[throttle_level]); |
| 2012 | assert(info->throttle_inflight_count[throttle_level] >= 0); |
| 2013 | } |
| 2014 | |
| 2015 | /* |
| 2016 | * If inflight is TRUE and bap is NULL then the caller is responsible for calling |
| 2017 | * throttle_info_end_io_internal to avoid leaking in-flight I/O. |
| 2018 | */ |
| 2019 | static |
| 2020 | int throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap) |
| 2021 | { |
| 2022 | int thread_throttle_level; |
| 2023 | |
| 2024 | if (lowpri_throttle_enabled == 0 || info->throttle_disabled) |
| 2025 | return THROTTLE_LEVEL_NONE; |
| 2026 | |
| 2027 | if (ut == NULL) |
| 2028 | ut = get_bsdthread_info(current_thread()); |
| 2029 | |
| 2030 | if (bap && inflight && !ut->uu_throttle_bc) { |
| 2031 | thread_throttle_level = GET_BUFATTR_IO_TIER(bap); |
| 2032 | if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) { |
| 2033 | thread_throttle_level--; |
| 2034 | } |
| 2035 | } else { |
| 2036 | thread_throttle_level = throttle_get_thread_throttle_level(ut); |
| 2037 | } |
| 2038 | |
| 2039 | if (thread_throttle_level != THROTTLE_LEVEL_NONE) { |
| 2040 | if(!ISSET(flags, B_PASSIVE)) { |
| 2041 | info->throttle_last_IO_pid[thread_throttle_level] = proc_selfpid(); |
| 2042 | if (inflight && !ut->uu_throttle_bc) { |
| 2043 | if (NULL != bap) { |
| 2044 | SET(bap->ba_flags, BA_STRATEGY_TRACKED_IO); |
| 2045 | } |
| 2046 | OSIncrementAtomic(&info->throttle_inflight_count[thread_throttle_level]); |
| 2047 | } else { |
| 2048 | microuptime(&info->throttle_window_start_timestamp[thread_throttle_level]); |
| 2049 | } |
| 2050 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, OPEN_THROTTLE_WINDOW)) | DBG_FUNC_NONE, |
| 2051 | current_proc()->p_pid, thread_throttle_level, 0, 0, 0); |
| 2052 | } |
| 2053 | microuptime(&info->throttle_last_IO_timestamp[thread_throttle_level]); |
| 2054 | } |
| 2055 | |
| 2056 | |
| 2057 | if (thread_throttle_level >= THROTTLE_LEVEL_THROTTLED) { |
| 2058 | /* |
| 2059 | * I'd really like to do the IOSleep here, but |
| 2060 | * we may be holding all kinds of filesystem related locks |
| 2061 | * and the pages for this I/O marked 'busy'... |
| 2062 | * we don't want to cause a normal task to block on |
| 2063 | * one of these locks while we're throttling a task marked |
| 2064 | * for low priority I/O... we'll mark the uthread and |
| 2065 | * do the delay just before we return from the system |
| 2066 | * call that triggered this I/O or from vnode_pagein |
| 2067 | */ |
| 2068 | OSAddAtomic(1, &info->throttle_io_count); |
| 2069 | |
| 2070 | throttle_info_set_initial_window(ut, info, FALSE, isssd); |
| 2071 | } |
| 2072 | |
| 2073 | return thread_throttle_level; |
| 2074 | } |
| 2075 | |
| 2076 | void *throttle_info_update_by_mount(mount_t mp) |
| 2077 | { |
| 2078 | struct _throttle_io_info_t *info; |
| 2079 | uthread_t ut; |
| 2080 | boolean_t isssd = FALSE; |
| 2081 | |
| 2082 | ut = get_bsdthread_info(current_thread()); |
| 2083 | |
| 2084 | if (mp != NULL) { |
| 2085 | if (disk_conditioner_mount_is_ssd(mp)) |
| 2086 | isssd = TRUE; |
| 2087 | info = &_throttle_io_info[mp->mnt_devbsdunit]; |
| 2088 | } else |
| 2089 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; |
| 2090 | |
| 2091 | if (!ut->uu_lowpri_window) |
| 2092 | throttle_info_set_initial_window(ut, info, FALSE, isssd); |
| 2093 | |
| 2094 | return info; |
| 2095 | } |
| 2096 | |
| 2097 | |
| 2098 | /* |
| 2099 | * KPI routine |
| 2100 | * |
| 2101 | * this is usually called before every I/O, used for throttled I/O |
| 2102 | * book keeping. This routine has low overhead and does not sleep |
| 2103 | */ |
| 2104 | void throttle_info_update(void *throttle_info, int flags) |
| 2105 | { |
| 2106 | if (throttle_info) |
| 2107 | throttle_info_update_internal(throttle_info, NULL, flags, FALSE, FALSE, NULL); |
| 2108 | } |
| 2109 | |
| 2110 | /* |
| 2111 | * KPI routine |
| 2112 | * |
| 2113 | * this is usually called before every I/O, used for throttled I/O |
| 2114 | * book keeping. This routine has low overhead and does not sleep |
| 2115 | */ |
| 2116 | void throttle_info_update_by_mask(void *throttle_info_handle, int flags) |
| 2117 | { |
| 2118 | void *throttle_info = throttle_info_handle; |
| 2119 | |
| 2120 | /* |
| 2121 | * for now we only use the lowest bit of the throttle mask, so the |
| 2122 | * handle is the same as the throttle_info. Later if we store a |
| 2123 | * set of throttle infos in the handle, we will want to loop through |
| 2124 | * them and call throttle_info_update in a loop |
| 2125 | */ |
| 2126 | throttle_info_update(throttle_info, flags); |
| 2127 | } |
| 2128 | /* |
| 2129 | * KPI routine |
| 2130 | * |
| 2131 | * This routine marks the throttle info as disabled. Used for mount points which |
| 2132 | * support I/O scheduling. |
| 2133 | */ |
| 2134 | |
| 2135 | void throttle_info_disable_throttle(int devno, boolean_t isfusion) |
| 2136 | { |
| 2137 | struct _throttle_io_info_t *info; |
| 2138 | |
| 2139 | if (devno < 0 || devno >= LOWPRI_MAX_NUM_DEV) |
| 2140 | panic("Illegal devno (%d) passed into throttle_info_disable_throttle()" , devno); |
| 2141 | |
| 2142 | info = &_throttle_io_info[devno]; |
| 2143 | // don't disable software throttling on devices that are part of a fusion device |
| 2144 | // and override the software throttle periods to use HDD periods |
| 2145 | if (isfusion) { |
| 2146 | info->throttle_is_fusion_with_priority = isfusion; |
| 2147 | throttle_init_throttle_period(info, FALSE); |
| 2148 | } |
| 2149 | info->throttle_disabled = !info->throttle_is_fusion_with_priority; |
| 2150 | return; |
| 2151 | } |
| 2152 | |
| 2153 | |
| 2154 | /* |
| 2155 | * KPI routine (private) |
| 2156 | * Called to determine if this IO is being throttled to this level so that it can be treated specially |
| 2157 | */ |
| 2158 | int throttle_info_io_will_be_throttled(void * throttle_info, int policy) |
| 2159 | { |
| 2160 | struct _throttle_io_info_t *info = throttle_info; |
| 2161 | struct timeval elapsed; |
| 2162 | uint64_t elapsed_msecs; |
| 2163 | int throttle_level; |
| 2164 | int thread_throttle_level; |
| 2165 | |
| 2166 | switch (policy) { |
| 2167 | |
| 2168 | case IOPOL_THROTTLE: |
| 2169 | thread_throttle_level = THROTTLE_LEVEL_TIER3; |
| 2170 | break; |
| 2171 | case IOPOL_UTILITY: |
| 2172 | thread_throttle_level = THROTTLE_LEVEL_TIER2; |
| 2173 | break; |
| 2174 | case IOPOL_STANDARD: |
| 2175 | thread_throttle_level = THROTTLE_LEVEL_TIER1; |
| 2176 | break; |
| 2177 | default: |
| 2178 | thread_throttle_level = THROTTLE_LEVEL_TIER0; |
| 2179 | break; |
| 2180 | } |
| 2181 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) { |
| 2182 | if (info->throttle_inflight_count[throttle_level]) { |
| 2183 | break; |
| 2184 | } |
| 2185 | |
| 2186 | microuptime(&elapsed); |
| 2187 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); |
| 2188 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); |
| 2189 | |
| 2190 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) |
| 2191 | break; |
| 2192 | } |
| 2193 | if (throttle_level >= thread_throttle_level) { |
| 2194 | /* |
| 2195 | * we're beyond all of the throttle windows |
| 2196 | * so go ahead and treat as normal I/O |
| 2197 | */ |
| 2198 | return (THROTTLE_DISENGAGED); |
| 2199 | } |
| 2200 | /* |
| 2201 | * we're in the throttle window |
| 2202 | */ |
| 2203 | return (THROTTLE_ENGAGED); |
| 2204 | } |
| 2205 | |
| 2206 | int throttle_lowpri_window(void) |
| 2207 | { |
| 2208 | struct uthread *ut = get_bsdthread_info(current_thread()); |
| 2209 | return ut->uu_lowpri_window; |
| 2210 | } |
| 2211 | |
| 2212 | |
| 2213 | #if CONFIG_IOSCHED |
| 2214 | int upl_get_cached_tier(void *); |
| 2215 | #endif |
| 2216 | |
| 2217 | int |
| 2218 | spec_strategy(struct vnop_strategy_args *ap) |
| 2219 | { |
| 2220 | buf_t bp; |
| 2221 | int bflags; |
| 2222 | int io_tier; |
| 2223 | int passive; |
| 2224 | dev_t bdev; |
| 2225 | uthread_t ut; |
| 2226 | mount_t mp; |
| 2227 | struct bufattr *bap; |
| 2228 | int strategy_ret; |
| 2229 | struct _throttle_io_info_t *throttle_info; |
| 2230 | boolean_t isssd = FALSE; |
| 2231 | boolean_t inflight = FALSE; |
| 2232 | boolean_t upgrade = FALSE; |
| 2233 | int code = 0; |
| 2234 | |
| 2235 | #if !CONFIG_EMBEDDED |
| 2236 | proc_t curproc = current_proc(); |
| 2237 | #endif /* !CONFIG_EMBEDDED */ |
| 2238 | |
| 2239 | bp = ap->a_bp; |
| 2240 | bdev = buf_device(bp); |
| 2241 | mp = buf_vnode(bp)->v_mount; |
| 2242 | bap = &bp->b_attr; |
| 2243 | |
| 2244 | #if CONFIG_IOSCHED |
| 2245 | if (bp->b_flags & B_CLUSTER) { |
| 2246 | |
| 2247 | io_tier = upl_get_cached_tier(bp->b_upl); |
| 2248 | |
| 2249 | if (io_tier == -1) |
| 2250 | io_tier = throttle_get_io_policy(&ut); |
| 2251 | #if DEVELOPMENT || DEBUG |
| 2252 | else { |
| 2253 | int my_io_tier = throttle_get_io_policy(&ut); |
| 2254 | |
| 2255 | if (io_tier != my_io_tier) |
| 2256 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, IO_TIER_UPL_MISMATCH)) | DBG_FUNC_NONE, buf_kernel_addrperm_addr(bp), my_io_tier, io_tier, 0, 0); |
| 2257 | } |
| 2258 | #endif |
| 2259 | } else |
| 2260 | io_tier = throttle_get_io_policy(&ut); |
| 2261 | #else |
| 2262 | io_tier = throttle_get_io_policy(&ut); |
| 2263 | #endif |
| 2264 | passive = throttle_get_passive_io_policy(&ut); |
| 2265 | |
| 2266 | /* |
| 2267 | * Mark if the I/O was upgraded by throttle_get_thread_throttle_level |
| 2268 | * while preserving the original issued tier (throttle_get_io_policy |
| 2269 | * does not return upgraded tiers) |
| 2270 | */ |
| 2271 | if (mp && io_tier > throttle_get_thread_throttle_level_internal(ut, io_tier)) { |
| 2272 | #if CONFIG_IOSCHED |
| 2273 | if (!(mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) { |
| 2274 | upgrade = TRUE; |
| 2275 | } |
| 2276 | #else /* CONFIG_IOSCHED */ |
| 2277 | upgrade = TRUE; |
| 2278 | #endif /* CONFIG_IOSCHED */ |
| 2279 | } |
| 2280 | |
| 2281 | if (bp->b_flags & B_META) |
| 2282 | bap->ba_flags |= BA_META; |
| 2283 | |
| 2284 | #if CONFIG_IOSCHED |
| 2285 | /* |
| 2286 | * For I/O Scheduling, we currently do not have a way to track and expedite metadata I/Os. |
| 2287 | * To ensure we dont get into priority inversions due to metadata I/Os, we use the following rules: |
| 2288 | * For metadata reads, ceil all I/Os to IOSCHED_METADATA_TIER & mark them passive if the I/O tier was upgraded |
| 2289 | * For metadata writes, unconditionally mark them as IOSCHED_METADATA_TIER and passive |
| 2290 | */ |
| 2291 | if (bap->ba_flags & BA_META) { |
| 2292 | if (mp && (mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) { |
| 2293 | if (bp->b_flags & B_READ) { |
| 2294 | if (io_tier > IOSCHED_METADATA_TIER) { |
| 2295 | io_tier = IOSCHED_METADATA_TIER; |
| 2296 | passive = 1; |
| 2297 | } |
| 2298 | } else { |
| 2299 | io_tier = IOSCHED_METADATA_TIER; |
| 2300 | passive = 1; |
| 2301 | } |
| 2302 | } |
| 2303 | } |
| 2304 | #endif /* CONFIG_IOSCHED */ |
| 2305 | |
| 2306 | SET_BUFATTR_IO_TIER(bap, io_tier); |
| 2307 | |
| 2308 | if (passive) { |
| 2309 | bp->b_flags |= B_PASSIVE; |
| 2310 | bap->ba_flags |= BA_PASSIVE; |
| 2311 | } |
| 2312 | |
| 2313 | #if !CONFIG_EMBEDDED |
| 2314 | if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)) |
| 2315 | bap->ba_flags |= BA_DELAYIDLESLEEP; |
| 2316 | #endif /* !CONFIG_EMBEDDED */ |
| 2317 | |
| 2318 | bflags = bp->b_flags; |
| 2319 | |
| 2320 | if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0)) |
| 2321 | bufattr_markquickcomplete(bap); |
| 2322 | |
| 2323 | if (bflags & B_READ) |
| 2324 | code |= DKIO_READ; |
| 2325 | if (bflags & B_ASYNC) |
| 2326 | code |= DKIO_ASYNC; |
| 2327 | |
| 2328 | if (bap->ba_flags & BA_META) |
| 2329 | code |= DKIO_META; |
| 2330 | else if (bflags & B_PAGEIO) |
| 2331 | code |= DKIO_PAGING; |
| 2332 | |
| 2333 | if (io_tier != 0) |
| 2334 | code |= DKIO_THROTTLE; |
| 2335 | |
| 2336 | code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK); |
| 2337 | |
| 2338 | if (bflags & B_PASSIVE) |
| 2339 | code |= DKIO_PASSIVE; |
| 2340 | |
| 2341 | if (bap->ba_flags & BA_NOCACHE) |
| 2342 | code |= DKIO_NOCACHE; |
| 2343 | |
| 2344 | if (upgrade) { |
| 2345 | code |= DKIO_TIER_UPGRADE; |
| 2346 | SET(bap->ba_flags, BA_IO_TIER_UPGRADE); |
| 2347 | } |
| 2348 | |
| 2349 | if (kdebug_enable) { |
| 2350 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE, |
| 2351 | buf_kernel_addrperm_addr(bp), bdev, buf_blkno(bp), buf_count(bp), 0); |
| 2352 | } |
| 2353 | |
| 2354 | thread_update_io_stats(current_thread(), buf_count(bp), code); |
| 2355 | |
| 2356 | if (mp != NULL) { |
| 2357 | if (disk_conditioner_mount_is_ssd(mp)) |
| 2358 | isssd = TRUE; |
| 2359 | /* |
| 2360 | * Partially initialized mounts don't have a final devbsdunit and should not be tracked. |
| 2361 | * Verify that devbsdunit is initialized (non-zero) or that 0 is the correct initialized value |
| 2362 | * (mnt_throttle_mask is initialized and num_trailing_0 would be 0) |
| 2363 | */ |
| 2364 | if (mp->mnt_devbsdunit || (mp->mnt_throttle_mask != LOWPRI_MAX_NUM_DEV - 1 && mp->mnt_throttle_mask & 0x1)) { |
| 2365 | inflight = TRUE; |
| 2366 | } |
| 2367 | throttle_info = &_throttle_io_info[mp->mnt_devbsdunit]; |
| 2368 | |
| 2369 | } else |
| 2370 | throttle_info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; |
| 2371 | |
| 2372 | throttle_info_update_internal(throttle_info, ut, bflags, isssd, inflight, bap); |
| 2373 | |
| 2374 | if ((bflags & B_READ) == 0) { |
| 2375 | microuptime(&throttle_info->throttle_last_write_timestamp); |
| 2376 | |
| 2377 | if (mp) { |
| 2378 | mp->mnt_last_write_issued_timestamp = throttle_info->throttle_last_write_timestamp; |
| 2379 | INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_write_size); |
| 2380 | } |
| 2381 | } else if (mp) { |
| 2382 | INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_read_size); |
| 2383 | } |
| 2384 | /* |
| 2385 | * The BootCache may give us special information about |
| 2386 | * the IO, so it returns special values that we check |
| 2387 | * for here. |
| 2388 | * |
| 2389 | * IO_SATISFIED_BY_CACHE |
| 2390 | * The read has been satisfied by the boot cache. Don't |
| 2391 | * throttle the thread unnecessarily. |
| 2392 | * |
| 2393 | * IO_SHOULD_BE_THROTTLED |
| 2394 | * The boot cache is playing back a playlist and this IO |
| 2395 | * cut through. Throttle it so we're not cutting through |
| 2396 | * the boot cache too often. |
| 2397 | * |
| 2398 | * Note that typical strategy routines are defined with |
| 2399 | * a void return so we'll get garbage here. In the |
| 2400 | * unlikely case the garbage matches our special return |
| 2401 | * value, it's not a big deal since we're only adjusting |
| 2402 | * the throttling delay. |
| 2403 | */ |
| 2404 | #define IO_SATISFIED_BY_CACHE ((int)0xcafefeed) |
| 2405 | #define IO_SHOULD_BE_THROTTLED ((int)0xcafebeef) |
| 2406 | typedef int strategy_fcn_ret_t(struct buf *bp); |
| 2407 | |
| 2408 | strategy_ret = (*(strategy_fcn_ret_t*)bdevsw[major(bdev)].d_strategy)(bp); |
| 2409 | |
| 2410 | // disk conditioner needs to track when this I/O actually starts |
| 2411 | // which means track it after `strategy` which may include delays |
| 2412 | // from inflight I/Os |
| 2413 | microuptime(&bp->b_timestamp_tv); |
| 2414 | |
| 2415 | if (IO_SATISFIED_BY_CACHE == strategy_ret) { |
| 2416 | /* |
| 2417 | * If this was a throttled IO satisfied by the boot cache, |
| 2418 | * don't delay the thread. |
| 2419 | */ |
| 2420 | throttle_info_reset_window(ut); |
| 2421 | |
| 2422 | } else if (IO_SHOULD_BE_THROTTLED == strategy_ret) { |
| 2423 | /* |
| 2424 | * If the boot cache indicates this IO should be throttled, |
| 2425 | * delay the thread. |
| 2426 | */ |
| 2427 | throttle_info_set_initial_window(ut, throttle_info, TRUE, isssd); |
| 2428 | } |
| 2429 | return (0); |
| 2430 | } |
| 2431 | |
| 2432 | |
| 2433 | /* |
| 2434 | * This is a noop, simply returning what one has been given. |
| 2435 | */ |
| 2436 | int |
| 2437 | spec_blockmap(__unused struct vnop_blockmap_args *ap) |
| 2438 | { |
| 2439 | return (ENOTSUP); |
| 2440 | } |
| 2441 | |
| 2442 | |
| 2443 | /* |
| 2444 | * Device close routine |
| 2445 | */ |
| 2446 | int |
| 2447 | spec_close(struct vnop_close_args *ap) |
| 2448 | { |
| 2449 | struct vnode *vp = ap->a_vp; |
| 2450 | dev_t dev = vp->v_rdev; |
| 2451 | int error = 0; |
| 2452 | int flags = ap->a_fflag; |
| 2453 | struct proc *p = vfs_context_proc(ap->a_context); |
| 2454 | struct session *sessp; |
| 2455 | |
| 2456 | switch (vp->v_type) { |
| 2457 | |
| 2458 | case VCHR: |
| 2459 | /* |
| 2460 | * Hack: a tty device that is a controlling terminal |
| 2461 | * has a reference from the session structure. |
| 2462 | * We cannot easily tell that a character device is |
| 2463 | * a controlling terminal, unless it is the closing |
| 2464 | * process' controlling terminal. In that case, |
| 2465 | * if the reference count is 1 (this is the very |
| 2466 | * last close) |
| 2467 | */ |
| 2468 | sessp = proc_session(p); |
| 2469 | devsw_lock(dev, S_IFCHR); |
| 2470 | if (sessp != SESSION_NULL) { |
| 2471 | if (vp == sessp->s_ttyvp && vcount(vp) == 1) { |
| 2472 | struct tty *tp = TTY_NULL; |
| 2473 | |
| 2474 | devsw_unlock(dev, S_IFCHR); |
| 2475 | session_lock(sessp); |
| 2476 | if (vp == sessp->s_ttyvp) { |
| 2477 | tp = SESSION_TP(sessp); |
| 2478 | sessp->s_ttyvp = NULL; |
| 2479 | sessp->s_ttyvid = 0; |
| 2480 | sessp->s_ttyp = TTY_NULL; |
| 2481 | sessp->s_ttypgrpid = NO_PID; |
| 2482 | } |
| 2483 | session_unlock(sessp); |
| 2484 | |
| 2485 | if (tp != TTY_NULL) { |
| 2486 | /* |
| 2487 | * We may have won a race with a proc_exit |
| 2488 | * of the session leader, the winner |
| 2489 | * clears the flag (even if not set) |
| 2490 | */ |
| 2491 | tty_lock(tp); |
| 2492 | ttyclrpgrphup(tp); |
| 2493 | tty_unlock(tp); |
| 2494 | |
| 2495 | ttyfree(tp); |
| 2496 | } |
| 2497 | devsw_lock(dev, S_IFCHR); |
| 2498 | } |
| 2499 | session_rele(sessp); |
| 2500 | } |
| 2501 | |
| 2502 | if (--vp->v_specinfo->si_opencount < 0) |
| 2503 | panic("negative open count (c, %u, %u)" , major(dev), minor(dev)); |
| 2504 | |
| 2505 | /* |
| 2506 | * close on last reference or on vnode revoke call |
| 2507 | */ |
| 2508 | if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0) |
| 2509 | error = cdevsw[major(dev)].d_close(dev, flags, S_IFCHR, p); |
| 2510 | |
| 2511 | devsw_unlock(dev, S_IFCHR); |
| 2512 | break; |
| 2513 | |
| 2514 | case VBLK: |
| 2515 | /* |
| 2516 | * If there is more than one outstanding open, don't |
| 2517 | * send the close to the device. |
| 2518 | */ |
| 2519 | devsw_lock(dev, S_IFBLK); |
| 2520 | if (vcount(vp) > 1) { |
| 2521 | vp->v_specinfo->si_opencount--; |
| 2522 | devsw_unlock(dev, S_IFBLK); |
| 2523 | return (0); |
| 2524 | } |
| 2525 | devsw_unlock(dev, S_IFBLK); |
| 2526 | |
| 2527 | /* |
| 2528 | * On last close of a block device (that isn't mounted) |
| 2529 | * we must invalidate any in core blocks, so that |
| 2530 | * we can, for instance, change floppy disks. |
| 2531 | */ |
| 2532 | if ((error = spec_fsync_internal(vp, MNT_WAIT, ap->a_context))) |
| 2533 | return (error); |
| 2534 | |
| 2535 | error = buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0); |
| 2536 | if (error) |
| 2537 | return (error); |
| 2538 | |
| 2539 | devsw_lock(dev, S_IFBLK); |
| 2540 | |
| 2541 | if (--vp->v_specinfo->si_opencount < 0) |
| 2542 | panic("negative open count (b, %u, %u)" , major(dev), minor(dev)); |
| 2543 | |
| 2544 | if (vcount(vp) == 0) |
| 2545 | error = bdevsw[major(dev)].d_close(dev, flags, S_IFBLK, p); |
| 2546 | |
| 2547 | devsw_unlock(dev, S_IFBLK); |
| 2548 | break; |
| 2549 | |
| 2550 | default: |
| 2551 | panic("spec_close: not special" ); |
| 2552 | return(EBADF); |
| 2553 | } |
| 2554 | |
| 2555 | return error; |
| 2556 | } |
| 2557 | |
| 2558 | /* |
| 2559 | * Return POSIX pathconf information applicable to special devices. |
| 2560 | */ |
| 2561 | int |
| 2562 | spec_pathconf(struct vnop_pathconf_args *ap) |
| 2563 | { |
| 2564 | |
| 2565 | switch (ap->a_name) { |
| 2566 | case _PC_LINK_MAX: |
| 2567 | *ap->a_retval = LINK_MAX; |
| 2568 | return (0); |
| 2569 | case _PC_MAX_CANON: |
| 2570 | *ap->a_retval = MAX_CANON; |
| 2571 | return (0); |
| 2572 | case _PC_MAX_INPUT: |
| 2573 | *ap->a_retval = MAX_INPUT; |
| 2574 | return (0); |
| 2575 | case _PC_PIPE_BUF: |
| 2576 | *ap->a_retval = PIPE_BUF; |
| 2577 | return (0); |
| 2578 | case _PC_CHOWN_RESTRICTED: |
| 2579 | *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */ |
| 2580 | return (0); |
| 2581 | case _PC_VDISABLE: |
| 2582 | *ap->a_retval = _POSIX_VDISABLE; |
| 2583 | return (0); |
| 2584 | default: |
| 2585 | return (EINVAL); |
| 2586 | } |
| 2587 | /* NOTREACHED */ |
| 2588 | } |
| 2589 | |
| 2590 | /* |
| 2591 | * Special device failed operation |
| 2592 | */ |
| 2593 | int |
| 2594 | spec_ebadf(__unused void *dummy) |
| 2595 | { |
| 2596 | |
| 2597 | return (EBADF); |
| 2598 | } |
| 2599 | |
| 2600 | /* Blktooff derives file offset from logical block number */ |
| 2601 | int |
| 2602 | spec_blktooff(struct vnop_blktooff_args *ap) |
| 2603 | { |
| 2604 | struct vnode *vp = ap->a_vp; |
| 2605 | |
| 2606 | switch (vp->v_type) { |
| 2607 | case VCHR: |
| 2608 | *ap->a_offset = (off_t)-1; /* failure */ |
| 2609 | return (ENOTSUP); |
| 2610 | |
| 2611 | case VBLK: |
| 2612 | printf("spec_blktooff: not implemented for VBLK\n" ); |
| 2613 | *ap->a_offset = (off_t)-1; /* failure */ |
| 2614 | return (ENOTSUP); |
| 2615 | |
| 2616 | default: |
| 2617 | panic("spec_blktooff type" ); |
| 2618 | } |
| 2619 | /* NOTREACHED */ |
| 2620 | |
| 2621 | return (0); |
| 2622 | } |
| 2623 | |
| 2624 | /* Offtoblk derives logical block number from file offset */ |
| 2625 | int |
| 2626 | spec_offtoblk(struct vnop_offtoblk_args *ap) |
| 2627 | { |
| 2628 | struct vnode *vp = ap->a_vp; |
| 2629 | |
| 2630 | switch (vp->v_type) { |
| 2631 | case VCHR: |
| 2632 | *ap->a_lblkno = (daddr64_t)-1; /* failure */ |
| 2633 | return (ENOTSUP); |
| 2634 | |
| 2635 | case VBLK: |
| 2636 | printf("spec_offtoblk: not implemented for VBLK\n" ); |
| 2637 | *ap->a_lblkno = (daddr64_t)-1; /* failure */ |
| 2638 | return (ENOTSUP); |
| 2639 | |
| 2640 | default: |
| 2641 | panic("spec_offtoblk type" ); |
| 2642 | } |
| 2643 | /* NOTREACHED */ |
| 2644 | |
| 2645 | return (0); |
| 2646 | } |
| 2647 | |
| 2648 | static void filt_specdetach(struct knote *kn); |
| 2649 | static int filt_specevent(struct knote *kn, long hint); |
| 2650 | static int filt_spectouch(struct knote *kn, struct kevent_internal_s *kev); |
| 2651 | static int filt_specprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); |
| 2652 | static int filt_specpeek(struct knote *kn); |
| 2653 | |
| 2654 | SECURITY_READ_ONLY_EARLY(struct filterops) spec_filtops = { |
| 2655 | .f_isfd = 1, |
| 2656 | .f_attach = filt_specattach, |
| 2657 | .f_detach = filt_specdetach, |
| 2658 | .f_event = filt_specevent, |
| 2659 | .f_touch = filt_spectouch, |
| 2660 | .f_process = filt_specprocess, |
| 2661 | .f_peek = filt_specpeek |
| 2662 | }; |
| 2663 | |
| 2664 | |
| 2665 | /* |
| 2666 | * Given a waitq that is assumed to be embedded within a selinfo structure, |
| 2667 | * return the containing selinfo structure. While 'wq' is not really a queue |
| 2668 | * element, this macro simply does the offset_of calculation to get back to a |
| 2669 | * containing struct given the struct type and member name. |
| 2670 | */ |
| 2671 | #define selinfo_from_waitq(wq) \ |
| 2672 | qe_element((wq), struct selinfo, si_waitq) |
| 2673 | |
| 2674 | static int |
| 2675 | spec_knote_select_and_link(struct knote *kn) |
| 2676 | { |
| 2677 | uthread_t uth; |
| 2678 | vfs_context_t ctx; |
| 2679 | vnode_t vp; |
| 2680 | struct waitq_set *old_wqs; |
| 2681 | uint64_t rsvd, rsvd_arg; |
| 2682 | uint64_t *rlptr = NULL; |
| 2683 | struct selinfo *si = NULL; |
| 2684 | int selres = 0; |
| 2685 | |
| 2686 | uth = get_bsdthread_info(current_thread()); |
| 2687 | |
| 2688 | ctx = vfs_context_current(); |
| 2689 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; |
| 2690 | |
| 2691 | int error = vnode_getwithvid(vp, kn->kn_hookid); |
| 2692 | if (error != 0) { |
| 2693 | knote_set_error(kn, ENOENT); |
| 2694 | return 0; |
| 2695 | } |
| 2696 | |
| 2697 | /* |
| 2698 | * This function may be called many times to link or re-link the |
| 2699 | * underlying vnode to the kqueue. If we've already linked the two, |
| 2700 | * we will have a valid kn_hook_data which ties us to the underlying |
| 2701 | * device's waitq via a the waitq's prepost table object. However, |
| 2702 | * devices can abort any select action by calling selthreadclear(). |
| 2703 | * This is OK because the table object will be invalidated by the |
| 2704 | * driver (through a call to selthreadclear), so any attempt to access |
| 2705 | * the associated waitq will fail because the table object is invalid. |
| 2706 | * |
| 2707 | * Even if we've already registered, we need to pass a pointer |
| 2708 | * to a reserved link structure. Otherwise, selrecord() will |
| 2709 | * infer that we're in the second pass of select() and won't |
| 2710 | * actually do anything! |
| 2711 | */ |
| 2712 | rsvd = rsvd_arg = waitq_link_reserve(NULL); |
| 2713 | rlptr = (void *)&rsvd_arg; |
| 2714 | |
| 2715 | /* |
| 2716 | * Trick selrecord() into hooking kqueue's wait queue set into the device's |
| 2717 | * selinfo wait queue. |
| 2718 | */ |
| 2719 | old_wqs = uth->uu_wqset; |
| 2720 | uth->uu_wqset = &(knote_get_kq(kn)->kq_wqs); |
| 2721 | |
| 2722 | /* |
| 2723 | * Be sure that the waitq set is linked |
| 2724 | * before calling select to avoid possible |
| 2725 | * allocation under spinlocks. |
| 2726 | */ |
| 2727 | waitq_set_lazy_init_link(uth->uu_wqset); |
| 2728 | |
| 2729 | /* |
| 2730 | * Now these are the laws of VNOP_SELECT, as old and as true as the sky, |
| 2731 | * And the device that shall keep it may prosper, but the device that shall |
| 2732 | * break it must receive ENODEV: |
| 2733 | * |
| 2734 | * 1. Take a lock to protect against other selects on the same vnode. |
| 2735 | * 2. Return 1 if data is ready to be read. |
| 2736 | * 3. Return 0 and call `selrecord` on a handy `selinfo` structure if there |
| 2737 | * is no data. |
| 2738 | * 4. Call `selwakeup` when the vnode has an active `selrecord` and data |
| 2739 | * can be read or written (depending on the seltype). |
| 2740 | * 5. If there's a `selrecord` and no corresponding `selwakeup`, but the |
| 2741 | * vnode is going away, call `selthreadclear`. |
| 2742 | */ |
| 2743 | selres = VNOP_SELECT(vp, knote_get_seltype(kn), 0, rlptr, ctx); |
| 2744 | uth->uu_wqset = old_wqs; |
| 2745 | |
| 2746 | /* |
| 2747 | * Make sure to cleanup the reserved link - this guards against |
| 2748 | * drivers that may not actually call selrecord(). |
| 2749 | */ |
| 2750 | waitq_link_release(rsvd); |
| 2751 | if (rsvd != rsvd_arg) { |
| 2752 | /* The driver / handler called selrecord() */ |
| 2753 | struct waitq *wq; |
| 2754 | memcpy(&wq, rlptr, sizeof(void *)); |
| 2755 | |
| 2756 | /* |
| 2757 | * The waitq is part of the selinfo structure managed by the |
| 2758 | * driver. For certain drivers, we want to hook the knote into |
| 2759 | * the selinfo structure's si_note field so selwakeup can call |
| 2760 | * KNOTE. |
| 2761 | */ |
| 2762 | si = selinfo_from_waitq(wq); |
| 2763 | |
| 2764 | /* |
| 2765 | * The waitq_get_prepost_id() function will (potentially) |
| 2766 | * allocate a prepost table object for the waitq and return |
| 2767 | * the table object's ID to us. It will also set the |
| 2768 | * waitq_prepost_id field within the waitq structure. |
| 2769 | * |
| 2770 | * We can just overwrite kn_hook_data because it's simply a |
| 2771 | * table ID used to grab a reference when needed. |
| 2772 | * |
| 2773 | * We have a reference on the vnode, so we know that the |
| 2774 | * device won't go away while we get this ID. |
| 2775 | */ |
| 2776 | kn->kn_hook_data = waitq_get_prepost_id(wq); |
| 2777 | } else if (selres == 0) { |
| 2778 | /* |
| 2779 | * The device indicated that there's no data to read, but didn't call |
| 2780 | * `selrecord`. Nothing will be notified of changes to this vnode, so |
| 2781 | * return an error back to user space, to make it clear that the knote |
| 2782 | * is not attached. |
| 2783 | */ |
| 2784 | knote_set_error(kn, ENODEV); |
| 2785 | } |
| 2786 | |
| 2787 | vnode_put(vp); |
| 2788 | |
| 2789 | return selres; |
| 2790 | } |
| 2791 | |
| 2792 | static void filt_spec_common(struct knote *kn, int selres) |
| 2793 | { |
| 2794 | if (kn->kn_vnode_use_ofst) { |
| 2795 | if (kn->kn_fp->f_fglob->fg_offset >= (uint32_t)selres) { |
| 2796 | kn->kn_data = 0; |
| 2797 | } else { |
| 2798 | kn->kn_data = ((uint32_t)selres) - kn->kn_fp->f_fglob->fg_offset; |
| 2799 | } |
| 2800 | } else { |
| 2801 | kn->kn_data = selres; |
| 2802 | } |
| 2803 | } |
| 2804 | |
| 2805 | static int |
| 2806 | filt_specattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
| 2807 | { |
| 2808 | vnode_t vp; |
| 2809 | dev_t dev; |
| 2810 | |
| 2811 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; /* Already have iocount, and vnode is alive */ |
| 2812 | |
| 2813 | assert(vnode_ischr(vp)); |
| 2814 | |
| 2815 | dev = vnode_specrdev(vp); |
| 2816 | |
| 2817 | /* |
| 2818 | * For a few special kinds of devices, we can attach knotes with |
| 2819 | * no restrictions because their "select" vectors return the amount |
| 2820 | * of data available. Others require an explicit NOTE_LOWAT with |
| 2821 | * data of 1, indicating that the caller doesn't care about actual |
| 2822 | * data counts, just an indication that the device has data. |
| 2823 | */ |
| 2824 | if (!kn->kn_vnode_kqok && |
| 2825 | ((kn->kn_sfflags & NOTE_LOWAT) == 0 || kn->kn_sdata != 1)) { |
| 2826 | knote_set_error(kn, EINVAL); |
| 2827 | return 0; |
| 2828 | } |
| 2829 | |
| 2830 | /* |
| 2831 | * This forces the select fallback to call through VNOP_SELECT and hook |
| 2832 | * up selinfo on every filter routine. |
| 2833 | * |
| 2834 | * Pseudo-terminal controllers are opted out of native kevent support -- |
| 2835 | * remove this when they get their own EVFILTID. |
| 2836 | */ |
| 2837 | if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTC) { |
| 2838 | kn->kn_vnode_kqok = 0; |
| 2839 | } |
| 2840 | |
| 2841 | kn->kn_filtid = EVFILTID_SPEC; |
| 2842 | kn->kn_hook_data = 0; |
| 2843 | kn->kn_hookid = vnode_vid(vp); |
| 2844 | |
| 2845 | knote_markstayactive(kn); |
| 2846 | return spec_knote_select_and_link(kn); |
| 2847 | } |
| 2848 | |
| 2849 | static void |
| 2850 | filt_specdetach(struct knote *kn) |
| 2851 | { |
| 2852 | knote_clearstayactive(kn); |
| 2853 | |
| 2854 | /* |
| 2855 | * This is potentially tricky: the device's selinfo waitq that was |
| 2856 | * tricked into being part of this knote's waitq set may not be a part |
| 2857 | * of any other set, and the device itself may have revoked the memory |
| 2858 | * in which the waitq was held. We use the knote's kn_hook_data field |
| 2859 | * to keep the ID of the waitq's prepost table object. This |
| 2860 | * object keeps a pointer back to the waitq, and gives us a safe way |
| 2861 | * to decouple the dereferencing of driver allocated memory: if the |
| 2862 | * driver goes away (taking the waitq with it) then the prepost table |
| 2863 | * object will be invalidated. The waitq details are handled in the |
| 2864 | * waitq API invoked here. |
| 2865 | */ |
| 2866 | if (kn->kn_hook_data) { |
| 2867 | waitq_unlink_by_prepost_id(kn->kn_hook_data, &(knote_get_kq(kn)->kq_wqs)); |
| 2868 | kn->kn_hook_data = 0; |
| 2869 | } |
| 2870 | } |
| 2871 | |
| 2872 | static int |
| 2873 | filt_specevent(struct knote *kn, __unused long hint) |
| 2874 | { |
| 2875 | /* |
| 2876 | * Nothing should call knote or knote_vanish on this knote. |
| 2877 | */ |
| 2878 | panic("filt_specevent(%p)" , kn); |
| 2879 | return 0; |
| 2880 | } |
| 2881 | |
| 2882 | static int |
| 2883 | filt_spectouch(struct knote *kn, struct kevent_internal_s *kev) |
| 2884 | { |
| 2885 | kn->kn_sdata = kev->data; |
| 2886 | kn->kn_sfflags = kev->fflags; |
| 2887 | |
| 2888 | if (kev->flags & EV_ENABLE) { |
| 2889 | return spec_knote_select_and_link(kn); |
| 2890 | } |
| 2891 | |
| 2892 | return 0; |
| 2893 | } |
| 2894 | |
| 2895 | static int |
| 2896 | filt_specprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
| 2897 | { |
| 2898 | #pragma unused(data) |
| 2899 | vnode_t vp; |
| 2900 | uthread_t uth; |
| 2901 | vfs_context_t ctx; |
| 2902 | int res; |
| 2903 | int selres; |
| 2904 | int error; |
| 2905 | |
| 2906 | uth = get_bsdthread_info(current_thread()); |
| 2907 | ctx = vfs_context_current(); |
| 2908 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; |
| 2909 | |
| 2910 | error = vnode_getwithvid(vp, kn->kn_hookid); |
| 2911 | if (error != 0) { |
| 2912 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); |
| 2913 | *kev = kn->kn_kevent; |
| 2914 | return 1; |
| 2915 | } |
| 2916 | |
| 2917 | selres = spec_knote_select_and_link(kn); |
| 2918 | filt_spec_common(kn, selres); |
| 2919 | |
| 2920 | vnode_put(vp); |
| 2921 | |
| 2922 | res = ((kn->kn_sfflags & NOTE_LOWAT) != 0) ? |
| 2923 | (kn->kn_data >= kn->kn_sdata) : kn->kn_data; |
| 2924 | |
| 2925 | if (res) { |
| 2926 | *kev = kn->kn_kevent; |
| 2927 | if (kn->kn_flags & EV_CLEAR) { |
| 2928 | kn->kn_fflags = 0; |
| 2929 | kn->kn_data = 0; |
| 2930 | } |
| 2931 | } |
| 2932 | |
| 2933 | return res; |
| 2934 | } |
| 2935 | |
| 2936 | static int |
| 2937 | filt_specpeek(struct knote *kn) |
| 2938 | { |
| 2939 | int selres = 0; |
| 2940 | |
| 2941 | selres = spec_knote_select_and_link(kn); |
| 2942 | filt_spec_common(kn, selres); |
| 2943 | |
| 2944 | return kn->kn_data != 0; |
| 2945 | } |
| 2946 | |
| 2947 | |