| 1 | /* |
| 2 | * Copyright (c) 1998-2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1982, 1986, 1988, 1990, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. All advertising materials mentioning features or use of this software |
| 42 | * must display the following acknowledgement: |
| 43 | * This product includes software developed by the University of |
| 44 | * California, Berkeley and its contributors. |
| 45 | * 4. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 |
| 62 | */ |
| 63 | /* |
| 64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 65 | * support for mandatory and extensible security protections. This notice |
| 66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 67 | * Version 2.0. |
| 68 | */ |
| 69 | |
| 70 | #include <sys/param.h> |
| 71 | #include <sys/systm.h> |
| 72 | #include <sys/domain.h> |
| 73 | #include <sys/kernel.h> |
| 74 | #include <sys/proc_internal.h> |
| 75 | #include <sys/kauth.h> |
| 76 | #include <sys/malloc.h> |
| 77 | #include <sys/mbuf.h> |
| 78 | #include <sys/mcache.h> |
| 79 | #include <sys/protosw.h> |
| 80 | #include <sys/stat.h> |
| 81 | #include <sys/socket.h> |
| 82 | #include <sys/socketvar.h> |
| 83 | #include <sys/signalvar.h> |
| 84 | #include <sys/sysctl.h> |
| 85 | #include <sys/syslog.h> |
| 86 | #include <sys/ev.h> |
| 87 | #include <kern/locks.h> |
| 88 | #include <net/route.h> |
| 89 | #include <net/content_filter.h> |
| 90 | #include <netinet/in.h> |
| 91 | #include <netinet/in_pcb.h> |
| 92 | #include <netinet/tcp_var.h> |
| 93 | #include <sys/kdebug.h> |
| 94 | #include <libkern/OSAtomic.h> |
| 95 | |
| 96 | #if CONFIG_MACF |
| 97 | #include <security/mac_framework.h> |
| 98 | #endif |
| 99 | |
| 100 | #include <mach/vm_param.h> |
| 101 | |
| 102 | #if MPTCP |
| 103 | #include <netinet/mptcp_var.h> |
| 104 | #endif |
| 105 | |
| 106 | #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4) |
| 107 | #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5) |
| 108 | |
| 109 | SYSCTL_DECL(_kern_ipc); |
| 110 | |
| 111 | __private_extern__ u_int32_t net_io_policy_throttle_best_effort = 0; |
| 112 | SYSCTL_INT(_kern_ipc, OID_AUTO, throttle_best_effort, |
| 113 | CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttle_best_effort, 0, "" ); |
| 114 | |
| 115 | static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *); |
| 116 | static struct socket *sonewconn_internal(struct socket *, int); |
| 117 | static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *, |
| 118 | struct mbuf *); |
| 119 | static void soevent_ifdenied(struct socket *); |
| 120 | |
| 121 | /* |
| 122 | * Primitive routines for operating on sockets and socket buffers |
| 123 | */ |
| 124 | static int soqlimitcompat = 1; |
| 125 | static int soqlencomp = 0; |
| 126 | |
| 127 | /* |
| 128 | * Based on the number of mbuf clusters configured, high_sb_max and sb_max can |
| 129 | * get scaled up or down to suit that memory configuration. high_sb_max is a |
| 130 | * higher limit on sb_max that is checked when sb_max gets set through sysctl. |
| 131 | */ |
| 132 | |
| 133 | u_int32_t sb_max = SB_MAX; /* XXX should be static */ |
| 134 | u_int32_t high_sb_max = SB_MAX; |
| 135 | |
| 136 | static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */ |
| 137 | int32_t total_sbmb_cnt __attribute__((aligned(8))) = 0; |
| 138 | int32_t total_sbmb_cnt_floor __attribute__((aligned(8))) = 0; |
| 139 | int32_t total_sbmb_cnt_peak __attribute__((aligned(8))) = 0; |
| 140 | int64_t sbmb_limreached __attribute__((aligned(8))) = 0; |
| 141 | |
| 142 | u_int32_t net_io_policy_log = 0; /* log socket policy changes */ |
| 143 | #if CONFIG_PROC_UUID_POLICY |
| 144 | u_int32_t net_io_policy_uuid = 1; /* enable UUID socket policy */ |
| 145 | #endif /* CONFIG_PROC_UUID_POLICY */ |
| 146 | |
| 147 | /* |
| 148 | * Procedures to manipulate state flags of socket |
| 149 | * and do appropriate wakeups. Normal sequence from the |
| 150 | * active (originating) side is that soisconnecting() is |
| 151 | * called during processing of connect() call, |
| 152 | * resulting in an eventual call to soisconnected() if/when the |
| 153 | * connection is established. When the connection is torn down |
| 154 | * soisdisconnecting() is called during processing of disconnect() call, |
| 155 | * and soisdisconnected() is called when the connection to the peer |
| 156 | * is totally severed. The semantics of these routines are such that |
| 157 | * connectionless protocols can call soisconnected() and soisdisconnected() |
| 158 | * only, bypassing the in-progress calls when setting up a ``connection'' |
| 159 | * takes no time. |
| 160 | * |
| 161 | * From the passive side, a socket is created with |
| 162 | * two queues of sockets: so_incomp for connections in progress |
| 163 | * and so_comp for connections already made and awaiting user acceptance. |
| 164 | * As a protocol is preparing incoming connections, it creates a socket |
| 165 | * structure queued on so_incomp by calling sonewconn(). When the connection |
| 166 | * is established, soisconnected() is called, and transfers the |
| 167 | * socket structure to so_comp, making it available to accept(). |
| 168 | * |
| 169 | * If a socket is closed with sockets on either |
| 170 | * so_incomp or so_comp, these sockets are dropped. |
| 171 | * |
| 172 | * If higher level protocols are implemented in |
| 173 | * the kernel, the wakeups done here will sometimes |
| 174 | * cause software-interrupt process scheduling. |
| 175 | */ |
| 176 | void |
| 177 | soisconnecting(struct socket *so) |
| 178 | { |
| 179 | so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); |
| 180 | so->so_state |= SS_ISCONNECTING; |
| 181 | |
| 182 | sflt_notify(so, sock_evt_connecting, NULL); |
| 183 | } |
| 184 | |
| 185 | void |
| 186 | soisconnected(struct socket *so) |
| 187 | { |
| 188 | so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); |
| 189 | so->so_state |= SS_ISCONNECTED; |
| 190 | |
| 191 | soreserve_preconnect(so, 0); |
| 192 | |
| 193 | sflt_notify(so, sock_evt_connected, NULL); |
| 194 | |
| 195 | if (so->so_head != NULL && (so->so_state & SS_INCOMP)) { |
| 196 | struct socket *head = so->so_head; |
| 197 | int locked = 0; |
| 198 | |
| 199 | /* |
| 200 | * Enforce lock order when the protocol has per socket locks |
| 201 | */ |
| 202 | if (head->so_proto->pr_getlock != NULL) { |
| 203 | socket_lock(head, 1); |
| 204 | so_acquire_accept_list(head, so); |
| 205 | locked = 1; |
| 206 | } |
| 207 | if (so->so_head == head && (so->so_state & SS_INCOMP)) { |
| 208 | so->so_state &= ~SS_INCOMP; |
| 209 | so->so_state |= SS_COMP; |
| 210 | TAILQ_REMOVE(&head->so_incomp, so, so_list); |
| 211 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); |
| 212 | head->so_incqlen--; |
| 213 | |
| 214 | /* |
| 215 | * We have to release the accept list in |
| 216 | * case a socket callback calls sock_accept() |
| 217 | */ |
| 218 | if (locked != 0) { |
| 219 | so_release_accept_list(head); |
| 220 | socket_unlock(so, 0); |
| 221 | } |
| 222 | postevent(head, 0, EV_RCONN); |
| 223 | sorwakeup(head); |
| 224 | wakeup_one((caddr_t)&head->so_timeo); |
| 225 | |
| 226 | if (locked != 0) { |
| 227 | socket_unlock(head, 1); |
| 228 | socket_lock(so, 0); |
| 229 | } |
| 230 | } else if (locked != 0) { |
| 231 | so_release_accept_list(head); |
| 232 | socket_unlock(head, 1); |
| 233 | } |
| 234 | } else { |
| 235 | postevent(so, 0, EV_WCONN); |
| 236 | wakeup((caddr_t)&so->so_timeo); |
| 237 | sorwakeup(so); |
| 238 | sowwakeup(so); |
| 239 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED | |
| 240 | SO_FILT_HINT_CONNINFO_UPDATED); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | boolean_t |
| 245 | socanwrite(struct socket *so) |
| 246 | { |
| 247 | return ((so->so_state & SS_ISCONNECTED) || |
| 248 | !(so->so_proto->pr_flags & PR_CONNREQUIRED) || |
| 249 | (so->so_flags1 & SOF1_PRECONNECT_DATA)); |
| 250 | } |
| 251 | |
| 252 | void |
| 253 | soisdisconnecting(struct socket *so) |
| 254 | { |
| 255 | so->so_state &= ~SS_ISCONNECTING; |
| 256 | so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); |
| 257 | soevent(so, SO_FILT_HINT_LOCKED); |
| 258 | sflt_notify(so, sock_evt_disconnecting, NULL); |
| 259 | wakeup((caddr_t)&so->so_timeo); |
| 260 | sowwakeup(so); |
| 261 | sorwakeup(so); |
| 262 | } |
| 263 | |
| 264 | void |
| 265 | soisdisconnected(struct socket *so) |
| 266 | { |
| 267 | so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); |
| 268 | so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); |
| 269 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED | |
| 270 | SO_FILT_HINT_CONNINFO_UPDATED); |
| 271 | sflt_notify(so, sock_evt_disconnected, NULL); |
| 272 | wakeup((caddr_t)&so->so_timeo); |
| 273 | sowwakeup(so); |
| 274 | sorwakeup(so); |
| 275 | |
| 276 | #if CONTENT_FILTER |
| 277 | /* Notify content filters as soon as we cannot send/receive data */ |
| 278 | cfil_sock_notify_shutdown(so, SHUT_RDWR); |
| 279 | #endif /* CONTENT_FILTER */ |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * This function will issue a wakeup like soisdisconnected but it will not |
| 284 | * notify the socket filters. This will avoid unlocking the socket |
| 285 | * in the midst of closing it. |
| 286 | */ |
| 287 | void |
| 288 | sodisconnectwakeup(struct socket *so) |
| 289 | { |
| 290 | so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); |
| 291 | so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); |
| 292 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED | |
| 293 | SO_FILT_HINT_CONNINFO_UPDATED); |
| 294 | wakeup((caddr_t)&so->so_timeo); |
| 295 | sowwakeup(so); |
| 296 | sorwakeup(so); |
| 297 | |
| 298 | #if CONTENT_FILTER |
| 299 | /* Notify content filters as soon as we cannot send/receive data */ |
| 300 | cfil_sock_notify_shutdown(so, SHUT_RDWR); |
| 301 | #endif /* CONTENT_FILTER */ |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * When an attempt at a new connection is noted on a socket |
| 306 | * which accepts connections, sonewconn is called. If the |
| 307 | * connection is possible (subject to space constraints, etc.) |
| 308 | * then we allocate a new structure, propoerly linked into the |
| 309 | * data structure of the original socket, and return this. |
| 310 | * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. |
| 311 | */ |
| 312 | static struct socket * |
| 313 | sonewconn_internal(struct socket *head, int connstatus) |
| 314 | { |
| 315 | int so_qlen, error = 0; |
| 316 | struct socket *so; |
| 317 | lck_mtx_t *mutex_held; |
| 318 | |
| 319 | if (head->so_proto->pr_getlock != NULL) |
| 320 | mutex_held = (*head->so_proto->pr_getlock)(head, 0); |
| 321 | else |
| 322 | mutex_held = head->so_proto->pr_domain->dom_mtx; |
| 323 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 324 | |
| 325 | if (!soqlencomp) { |
| 326 | /* |
| 327 | * This is the default case; so_qlen represents the |
| 328 | * sum of both incomplete and completed queues. |
| 329 | */ |
| 330 | so_qlen = head->so_qlen; |
| 331 | } else { |
| 332 | /* |
| 333 | * When kern.ipc.soqlencomp is set to 1, so_qlen |
| 334 | * represents only the completed queue. Since we |
| 335 | * cannot let the incomplete queue goes unbounded |
| 336 | * (in case of SYN flood), we cap the incomplete |
| 337 | * queue length to at most somaxconn, and use that |
| 338 | * as so_qlen so that we fail immediately below. |
| 339 | */ |
| 340 | so_qlen = head->so_qlen - head->so_incqlen; |
| 341 | if (head->so_incqlen > somaxconn) |
| 342 | so_qlen = somaxconn; |
| 343 | } |
| 344 | |
| 345 | if (so_qlen >= |
| 346 | (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2))) |
| 347 | return ((struct socket *)0); |
| 348 | so = soalloc(1, SOCK_DOM(head), head->so_type); |
| 349 | if (so == NULL) |
| 350 | return ((struct socket *)0); |
| 351 | /* check if head was closed during the soalloc */ |
| 352 | if (head->so_proto == NULL) { |
| 353 | sodealloc(so); |
| 354 | return ((struct socket *)0); |
| 355 | } |
| 356 | |
| 357 | so->so_type = head->so_type; |
| 358 | so->so_options = head->so_options &~ SO_ACCEPTCONN; |
| 359 | so->so_linger = head->so_linger; |
| 360 | so->so_state = head->so_state | SS_NOFDREF; |
| 361 | so->so_proto = head->so_proto; |
| 362 | so->so_timeo = head->so_timeo; |
| 363 | so->so_pgid = head->so_pgid; |
| 364 | kauth_cred_ref(head->so_cred); |
| 365 | so->so_cred = head->so_cred; |
| 366 | so->last_pid = head->last_pid; |
| 367 | so->last_upid = head->last_upid; |
| 368 | memcpy(so->last_uuid, head->last_uuid, sizeof (so->last_uuid)); |
| 369 | if (head->so_flags & SOF_DELEGATED) { |
| 370 | so->e_pid = head->e_pid; |
| 371 | so->e_upid = head->e_upid; |
| 372 | memcpy(so->e_uuid, head->e_uuid, sizeof (so->e_uuid)); |
| 373 | } |
| 374 | /* inherit socket options stored in so_flags */ |
| 375 | so->so_flags = head->so_flags & |
| 376 | (SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID | |
| 377 | SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT | |
| 378 | SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS| SOF_NOTSENT_LOWAT | |
| 379 | SOF_USELRO | SOF_DELEGATED); |
| 380 | so->so_usecount = 1; |
| 381 | so->next_lock_lr = 0; |
| 382 | so->next_unlock_lr = 0; |
| 383 | |
| 384 | so->so_rcv.sb_flags |= SB_RECV; /* XXX */ |
| 385 | so->so_rcv.sb_so = so->so_snd.sb_so = so; |
| 386 | TAILQ_INIT(&so->so_evlist); |
| 387 | |
| 388 | #if CONFIG_MACF_SOCKET |
| 389 | mac_socket_label_associate_accept(head, so); |
| 390 | #endif |
| 391 | |
| 392 | /* inherit traffic management properties of listener */ |
| 393 | so->so_flags1 |= |
| 394 | head->so_flags1 & (SOF1_TRAFFIC_MGT_SO_BACKGROUND); |
| 395 | so->so_background_thread = head->so_background_thread; |
| 396 | so->so_traffic_class = head->so_traffic_class; |
| 397 | |
| 398 | if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { |
| 399 | sodealloc(so); |
| 400 | return ((struct socket *)0); |
| 401 | } |
| 402 | so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE); |
| 403 | so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE); |
| 404 | |
| 405 | /* |
| 406 | * Must be done with head unlocked to avoid deadlock |
| 407 | * for protocol with per socket mutexes. |
| 408 | */ |
| 409 | if (head->so_proto->pr_unlock) |
| 410 | socket_unlock(head, 0); |
| 411 | if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) || |
| 412 | error) { |
| 413 | sodealloc(so); |
| 414 | if (head->so_proto->pr_unlock) |
| 415 | socket_lock(head, 0); |
| 416 | return ((struct socket *)0); |
| 417 | } |
| 418 | if (head->so_proto->pr_unlock) { |
| 419 | socket_lock(head, 0); |
| 420 | /* |
| 421 | * Radar 7385998 Recheck that the head is still accepting |
| 422 | * to avoid race condition when head is getting closed. |
| 423 | */ |
| 424 | if ((head->so_options & SO_ACCEPTCONN) == 0) { |
| 425 | so->so_state &= ~SS_NOFDREF; |
| 426 | soclose(so); |
| 427 | return ((struct socket *)0); |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | atomic_add_32(&so->so_proto->pr_domain->dom_refs, 1); |
| 432 | |
| 433 | /* Insert in head appropriate lists */ |
| 434 | so_acquire_accept_list(head, NULL); |
| 435 | |
| 436 | so->so_head = head; |
| 437 | |
| 438 | /* |
| 439 | * Since this socket is going to be inserted into the incomp |
| 440 | * queue, it can be picked up by another thread in |
| 441 | * tcp_dropdropablreq to get dropped before it is setup.. |
| 442 | * To prevent this race, set in-progress flag which can be |
| 443 | * cleared later |
| 444 | */ |
| 445 | so->so_flags |= SOF_INCOMP_INPROGRESS; |
| 446 | |
| 447 | if (connstatus) { |
| 448 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); |
| 449 | so->so_state |= SS_COMP; |
| 450 | } else { |
| 451 | TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); |
| 452 | so->so_state |= SS_INCOMP; |
| 453 | head->so_incqlen++; |
| 454 | } |
| 455 | head->so_qlen++; |
| 456 | |
| 457 | so_release_accept_list(head); |
| 458 | |
| 459 | /* Attach socket filters for this protocol */ |
| 460 | sflt_initsock(so); |
| 461 | |
| 462 | if (connstatus) { |
| 463 | so->so_state |= connstatus; |
| 464 | sorwakeup(head); |
| 465 | wakeup((caddr_t)&head->so_timeo); |
| 466 | } |
| 467 | return (so); |
| 468 | } |
| 469 | |
| 470 | |
| 471 | struct socket * |
| 472 | sonewconn(struct socket *head, int connstatus, const struct sockaddr *from) |
| 473 | { |
| 474 | int error = sflt_connectin(head, from); |
| 475 | if (error) { |
| 476 | return (NULL); |
| 477 | } |
| 478 | |
| 479 | return (sonewconn_internal(head, connstatus)); |
| 480 | } |
| 481 | |
| 482 | /* |
| 483 | * Socantsendmore indicates that no more data will be sent on the |
| 484 | * socket; it would normally be applied to a socket when the user |
| 485 | * informs the system that no more data is to be sent, by the protocol |
| 486 | * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data |
| 487 | * will be received, and will normally be applied to the socket by a |
| 488 | * protocol when it detects that the peer will send no more data. |
| 489 | * Data queued for reading in the socket may yet be read. |
| 490 | */ |
| 491 | |
| 492 | void |
| 493 | socantsendmore(struct socket *so) |
| 494 | { |
| 495 | so->so_state |= SS_CANTSENDMORE; |
| 496 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE); |
| 497 | sflt_notify(so, sock_evt_cantsendmore, NULL); |
| 498 | sowwakeup(so); |
| 499 | } |
| 500 | |
| 501 | void |
| 502 | socantrcvmore(struct socket *so) |
| 503 | { |
| 504 | so->so_state |= SS_CANTRCVMORE; |
| 505 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE); |
| 506 | sflt_notify(so, sock_evt_cantrecvmore, NULL); |
| 507 | sorwakeup(so); |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * Wait for data to arrive at/drain from a socket buffer. |
| 512 | */ |
| 513 | int |
| 514 | sbwait(struct sockbuf *sb) |
| 515 | { |
| 516 | boolean_t nointr = (sb->sb_flags & SB_NOINTR); |
| 517 | void *lr_saved = __builtin_return_address(0); |
| 518 | struct socket *so = sb->sb_so; |
| 519 | lck_mtx_t *mutex_held; |
| 520 | struct timespec ts; |
| 521 | int error = 0; |
| 522 | |
| 523 | if (so == NULL) { |
| 524 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n" , |
| 525 | __func__, sb, sb->sb_flags, lr_saved); |
| 526 | /* NOTREACHED */ |
| 527 | } else if (so->so_usecount < 1) { |
| 528 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
| 529 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
| 530 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
| 531 | /* NOTREACHED */ |
| 532 | } |
| 533 | |
| 534 | if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) { |
| 535 | error = EBADF; |
| 536 | if (so->so_flags & SOF_DEFUNCT) { |
| 537 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] " |
| 538 | "(%d)\n" , __func__, proc_selfpid(), |
| 539 | proc_best_name(current_proc()), |
| 540 | (uint64_t)VM_KERNEL_ADDRPERM(so), |
| 541 | SOCK_DOM(so), SOCK_TYPE(so), error); |
| 542 | } |
| 543 | return (error); |
| 544 | } |
| 545 | |
| 546 | if (so->so_proto->pr_getlock != NULL) |
| 547 | mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK); |
| 548 | else |
| 549 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
| 550 | |
| 551 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 552 | |
| 553 | ts.tv_sec = sb->sb_timeo.tv_sec; |
| 554 | ts.tv_nsec = sb->sb_timeo.tv_usec * 1000; |
| 555 | |
| 556 | sb->sb_waiters++; |
| 557 | VERIFY(sb->sb_waiters != 0); |
| 558 | |
| 559 | error = msleep((caddr_t)&sb->sb_cc, mutex_held, |
| 560 | nointr ? PSOCK : PSOCK | PCATCH, |
| 561 | nointr ? "sbwait_nointr" : "sbwait" , &ts); |
| 562 | |
| 563 | VERIFY(sb->sb_waiters != 0); |
| 564 | sb->sb_waiters--; |
| 565 | |
| 566 | if (so->so_usecount < 1) { |
| 567 | panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
| 568 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
| 569 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
| 570 | /* NOTREACHED */ |
| 571 | } |
| 572 | |
| 573 | if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) { |
| 574 | error = EBADF; |
| 575 | if (so->so_flags & SOF_DEFUNCT) { |
| 576 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] " |
| 577 | "(%d)\n" , __func__, proc_selfpid(), |
| 578 | proc_best_name(current_proc()), |
| 579 | (uint64_t)VM_KERNEL_ADDRPERM(so), |
| 580 | SOCK_DOM(so), SOCK_TYPE(so), error); |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | return (error); |
| 585 | } |
| 586 | |
| 587 | void |
| 588 | sbwakeup(struct sockbuf *sb) |
| 589 | { |
| 590 | if (sb->sb_waiters > 0) |
| 591 | wakeup((caddr_t)&sb->sb_cc); |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * Wakeup processes waiting on a socket buffer. |
| 596 | * Do asynchronous notification via SIGIO |
| 597 | * if the socket has the SS_ASYNC flag set. |
| 598 | */ |
| 599 | void |
| 600 | sowakeup(struct socket *so, struct sockbuf *sb) |
| 601 | { |
| 602 | if (so->so_flags & SOF_DEFUNCT) { |
| 603 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] si 0x%x, " |
| 604 | "fl 0x%x [%s]\n" , __func__, proc_selfpid(), |
| 605 | proc_best_name(current_proc()), |
| 606 | (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), |
| 607 | SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags, |
| 608 | (sb->sb_flags & SB_RECV) ? "rcv" : "snd" ); |
| 609 | } |
| 610 | |
| 611 | sb->sb_flags &= ~SB_SEL; |
| 612 | selwakeup(&sb->sb_sel); |
| 613 | sbwakeup(sb); |
| 614 | if (so->so_state & SS_ASYNC) { |
| 615 | if (so->so_pgid < 0) |
| 616 | gsignal(-so->so_pgid, SIGIO); |
| 617 | else if (so->so_pgid > 0) |
| 618 | proc_signal(so->so_pgid, SIGIO); |
| 619 | } |
| 620 | if (sb->sb_flags & SB_KNOTE) { |
| 621 | KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED); |
| 622 | } |
| 623 | if (sb->sb_flags & SB_UPCALL) { |
| 624 | void (*sb_upcall)(struct socket *, void *, int); |
| 625 | caddr_t sb_upcallarg; |
| 626 | int lock = !(sb->sb_flags & SB_UPCALL_LOCK); |
| 627 | |
| 628 | sb_upcall = sb->sb_upcall; |
| 629 | sb_upcallarg = sb->sb_upcallarg; |
| 630 | /* Let close know that we're about to do an upcall */ |
| 631 | so->so_upcallusecount++; |
| 632 | |
| 633 | if (lock) |
| 634 | socket_unlock(so, 0); |
| 635 | (*sb_upcall)(so, sb_upcallarg, M_DONTWAIT); |
| 636 | if (lock) |
| 637 | socket_lock(so, 0); |
| 638 | |
| 639 | so->so_upcallusecount--; |
| 640 | /* Tell close that it's safe to proceed */ |
| 641 | if ((so->so_flags & SOF_CLOSEWAIT) && |
| 642 | so->so_upcallusecount == 0) |
| 643 | wakeup((caddr_t)&so->so_upcallusecount); |
| 644 | } |
| 645 | #if CONTENT_FILTER |
| 646 | /* |
| 647 | * Trap disconnection events for content filters |
| 648 | */ |
| 649 | if ((so->so_flags & SOF_CONTENT_FILTER) != 0) { |
| 650 | if ((sb->sb_flags & SB_RECV)) { |
| 651 | if (so->so_state & (SS_CANTRCVMORE)) |
| 652 | cfil_sock_notify_shutdown(so, SHUT_RD); |
| 653 | } else { |
| 654 | if (so->so_state & (SS_CANTSENDMORE)) |
| 655 | cfil_sock_notify_shutdown(so, SHUT_WR); |
| 656 | } |
| 657 | } |
| 658 | #endif /* CONTENT_FILTER */ |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * Socket buffer (struct sockbuf) utility routines. |
| 663 | * |
| 664 | * Each socket contains two socket buffers: one for sending data and |
| 665 | * one for receiving data. Each buffer contains a queue of mbufs, |
| 666 | * information about the number of mbufs and amount of data in the |
| 667 | * queue, and other fields allowing select() statements and notification |
| 668 | * on data availability to be implemented. |
| 669 | * |
| 670 | * Data stored in a socket buffer is maintained as a list of records. |
| 671 | * Each record is a list of mbufs chained together with the m_next |
| 672 | * field. Records are chained together with the m_nextpkt field. The upper |
| 673 | * level routine soreceive() expects the following conventions to be |
| 674 | * observed when placing information in the receive buffer: |
| 675 | * |
| 676 | * 1. If the protocol requires each message be preceded by the sender's |
| 677 | * name, then a record containing that name must be present before |
| 678 | * any associated data (mbuf's must be of type MT_SONAME). |
| 679 | * 2. If the protocol supports the exchange of ``access rights'' (really |
| 680 | * just additional data associated with the message), and there are |
| 681 | * ``rights'' to be received, then a record containing this data |
| 682 | * should be present (mbuf's must be of type MT_RIGHTS). |
| 683 | * 3. If a name or rights record exists, then it must be followed by |
| 684 | * a data record, perhaps of zero length. |
| 685 | * |
| 686 | * Before using a new socket structure it is first necessary to reserve |
| 687 | * buffer space to the socket, by calling sbreserve(). This should commit |
| 688 | * some of the available buffer space in the system buffer pool for the |
| 689 | * socket (currently, it does nothing but enforce limits). The space |
| 690 | * should be released by calling sbrelease() when the socket is destroyed. |
| 691 | */ |
| 692 | |
| 693 | /* |
| 694 | * Returns: 0 Success |
| 695 | * ENOBUFS |
| 696 | */ |
| 697 | int |
| 698 | soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc) |
| 699 | { |
| 700 | if (sbreserve(&so->so_snd, sndcc) == 0) |
| 701 | goto bad; |
| 702 | else |
| 703 | so->so_snd.sb_idealsize = sndcc; |
| 704 | |
| 705 | if (sbreserve(&so->so_rcv, rcvcc) == 0) |
| 706 | goto bad2; |
| 707 | else |
| 708 | so->so_rcv.sb_idealsize = rcvcc; |
| 709 | |
| 710 | if (so->so_rcv.sb_lowat == 0) |
| 711 | so->so_rcv.sb_lowat = 1; |
| 712 | if (so->so_snd.sb_lowat == 0) |
| 713 | so->so_snd.sb_lowat = MCLBYTES; |
| 714 | if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) |
| 715 | so->so_snd.sb_lowat = so->so_snd.sb_hiwat; |
| 716 | return (0); |
| 717 | bad2: |
| 718 | so->so_snd.sb_flags &= ~SB_SEL; |
| 719 | selthreadclear(&so->so_snd.sb_sel); |
| 720 | sbrelease(&so->so_snd); |
| 721 | bad: |
| 722 | return (ENOBUFS); |
| 723 | } |
| 724 | |
| 725 | void |
| 726 | soreserve_preconnect(struct socket *so, unsigned int pre_cc) |
| 727 | { |
| 728 | /* As of now, same bytes for both preconnect read and write */ |
| 729 | so->so_snd.sb_preconn_hiwat = pre_cc; |
| 730 | so->so_rcv.sb_preconn_hiwat = pre_cc; |
| 731 | } |
| 732 | |
| 733 | /* |
| 734 | * Allot mbufs to a sockbuf. |
| 735 | * Attempt to scale mbmax so that mbcnt doesn't become limiting |
| 736 | * if buffering efficiency is near the normal case. |
| 737 | */ |
| 738 | int |
| 739 | sbreserve(struct sockbuf *sb, u_int32_t cc) |
| 740 | { |
| 741 | if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) |
| 742 | return (0); |
| 743 | sb->sb_hiwat = cc; |
| 744 | sb->sb_mbmax = min(cc * sb_efficiency, sb_max); |
| 745 | if (sb->sb_lowat > sb->sb_hiwat) |
| 746 | sb->sb_lowat = sb->sb_hiwat; |
| 747 | return (1); |
| 748 | } |
| 749 | |
| 750 | /* |
| 751 | * Free mbufs held by a socket, and reserved mbuf space. |
| 752 | */ |
| 753 | /* WARNING needs to do selthreadclear() before calling this */ |
| 754 | void |
| 755 | sbrelease(struct sockbuf *sb) |
| 756 | { |
| 757 | sbflush(sb); |
| 758 | sb->sb_hiwat = 0; |
| 759 | sb->sb_mbmax = 0; |
| 760 | } |
| 761 | |
| 762 | /* |
| 763 | * Routines to add and remove |
| 764 | * data from an mbuf queue. |
| 765 | * |
| 766 | * The routines sbappend() or sbappendrecord() are normally called to |
| 767 | * append new mbufs to a socket buffer, after checking that adequate |
| 768 | * space is available, comparing the function sbspace() with the amount |
| 769 | * of data to be added. sbappendrecord() differs from sbappend() in |
| 770 | * that data supplied is treated as the beginning of a new record. |
| 771 | * To place a sender's address, optional access rights, and data in a |
| 772 | * socket receive buffer, sbappendaddr() should be used. To place |
| 773 | * access rights and data in a socket receive buffer, sbappendrights() |
| 774 | * should be used. In either case, the new data begins a new record. |
| 775 | * Note that unlike sbappend() and sbappendrecord(), these routines check |
| 776 | * for the caller that there will be enough space to store the data. |
| 777 | * Each fails if there is not enough space, or if it cannot find mbufs |
| 778 | * to store additional information in. |
| 779 | * |
| 780 | * Reliable protocols may use the socket send buffer to hold data |
| 781 | * awaiting acknowledgement. Data is normally copied from a socket |
| 782 | * send buffer in a protocol with m_copy for output to a peer, |
| 783 | * and then removing the data from the socket buffer with sbdrop() |
| 784 | * or sbdroprecord() when the data is acknowledged by the peer. |
| 785 | */ |
| 786 | |
| 787 | /* |
| 788 | * Append mbuf chain m to the last record in the |
| 789 | * socket buffer sb. The additional space associated |
| 790 | * the mbuf chain is recorded in sb. Empty mbufs are |
| 791 | * discarded and mbufs are compacted where possible. |
| 792 | */ |
| 793 | int |
| 794 | sbappend(struct sockbuf *sb, struct mbuf *m) |
| 795 | { |
| 796 | struct socket *so = sb->sb_so; |
| 797 | |
| 798 | if (m == NULL || (sb->sb_flags & SB_DROP)) { |
| 799 | if (m != NULL) |
| 800 | m_freem(m); |
| 801 | return (0); |
| 802 | } |
| 803 | |
| 804 | SBLASTRECORDCHK(sb, "sbappend 1" ); |
| 805 | |
| 806 | if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR)) |
| 807 | return (sbappendrecord(sb, m)); |
| 808 | |
| 809 | if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) { |
| 810 | int error = sflt_data_in(so, NULL, &m, NULL, 0); |
| 811 | SBLASTRECORDCHK(sb, "sbappend 2" ); |
| 812 | |
| 813 | #if CONTENT_FILTER |
| 814 | if (error == 0) |
| 815 | error = cfil_sock_data_in(so, NULL, m, NULL, 0); |
| 816 | #endif /* CONTENT_FILTER */ |
| 817 | |
| 818 | if (error != 0) { |
| 819 | if (error != EJUSTRETURN) |
| 820 | m_freem(m); |
| 821 | return (0); |
| 822 | } |
| 823 | } else if (m) { |
| 824 | m->m_flags &= ~M_SKIPCFIL; |
| 825 | } |
| 826 | |
| 827 | /* If this is the first record, it's also the last record */ |
| 828 | if (sb->sb_lastrecord == NULL) |
| 829 | sb->sb_lastrecord = m; |
| 830 | |
| 831 | sbcompress(sb, m, sb->sb_mbtail); |
| 832 | SBLASTRECORDCHK(sb, "sbappend 3" ); |
| 833 | return (1); |
| 834 | } |
| 835 | |
| 836 | /* |
| 837 | * Similar to sbappend, except that this is optimized for stream sockets. |
| 838 | */ |
| 839 | int |
| 840 | sbappendstream(struct sockbuf *sb, struct mbuf *m) |
| 841 | { |
| 842 | struct socket *so = sb->sb_so; |
| 843 | |
| 844 | if (m == NULL || (sb->sb_flags & SB_DROP)) { |
| 845 | if (m != NULL) |
| 846 | m_freem(m); |
| 847 | return (0); |
| 848 | } |
| 849 | |
| 850 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) { |
| 851 | panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n" , |
| 852 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); |
| 853 | /* NOTREACHED */ |
| 854 | } |
| 855 | |
| 856 | SBLASTMBUFCHK(sb, __func__); |
| 857 | |
| 858 | if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) { |
| 859 | int error = sflt_data_in(so, NULL, &m, NULL, 0); |
| 860 | SBLASTRECORDCHK(sb, "sbappendstream 1" ); |
| 861 | |
| 862 | #if CONTENT_FILTER |
| 863 | if (error == 0) |
| 864 | error = cfil_sock_data_in(so, NULL, m, NULL, 0); |
| 865 | #endif /* CONTENT_FILTER */ |
| 866 | |
| 867 | if (error != 0) { |
| 868 | if (error != EJUSTRETURN) |
| 869 | m_freem(m); |
| 870 | return (0); |
| 871 | } |
| 872 | } else if (m) { |
| 873 | m->m_flags &= ~M_SKIPCFIL; |
| 874 | } |
| 875 | |
| 876 | sbcompress(sb, m, sb->sb_mbtail); |
| 877 | sb->sb_lastrecord = sb->sb_mb; |
| 878 | SBLASTRECORDCHK(sb, "sbappendstream 2" ); |
| 879 | return (1); |
| 880 | } |
| 881 | |
| 882 | #ifdef SOCKBUF_DEBUG |
| 883 | void |
| 884 | sbcheck(struct sockbuf *sb) |
| 885 | { |
| 886 | struct mbuf *m; |
| 887 | struct mbuf *n = 0; |
| 888 | u_int32_t len = 0, mbcnt = 0; |
| 889 | lck_mtx_t *mutex_held; |
| 890 | |
| 891 | if (sb->sb_so->so_proto->pr_getlock != NULL) |
| 892 | mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0); |
| 893 | else |
| 894 | mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx; |
| 895 | |
| 896 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 897 | |
| 898 | if (sbchecking == 0) |
| 899 | return; |
| 900 | |
| 901 | for (m = sb->sb_mb; m; m = n) { |
| 902 | n = m->m_nextpkt; |
| 903 | for (; m; m = m->m_next) { |
| 904 | len += m->m_len; |
| 905 | mbcnt += MSIZE; |
| 906 | /* XXX pretty sure this is bogus */ |
| 907 | if (m->m_flags & M_EXT) |
| 908 | mbcnt += m->m_ext.ext_size; |
| 909 | } |
| 910 | } |
| 911 | if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { |
| 912 | panic("cc %ld != %ld || mbcnt %ld != %ld\n" , len, sb->sb_cc, |
| 913 | mbcnt, sb->sb_mbcnt); |
| 914 | } |
| 915 | } |
| 916 | #endif |
| 917 | |
| 918 | void |
| 919 | sblastrecordchk(struct sockbuf *sb, const char *where) |
| 920 | { |
| 921 | struct mbuf *m = sb->sb_mb; |
| 922 | |
| 923 | while (m && m->m_nextpkt) |
| 924 | m = m->m_nextpkt; |
| 925 | |
| 926 | if (m != sb->sb_lastrecord) { |
| 927 | printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx " |
| 928 | "last 0x%llx\n" , |
| 929 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb), |
| 930 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_lastrecord), |
| 931 | (uint64_t)VM_KERNEL_ADDRPERM(m)); |
| 932 | printf("packet chain:\n" ); |
| 933 | for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) |
| 934 | printf("\t0x%llx\n" , (uint64_t)VM_KERNEL_ADDRPERM(m)); |
| 935 | panic("sblastrecordchk from %s" , where); |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | void |
| 940 | sblastmbufchk(struct sockbuf *sb, const char *where) |
| 941 | { |
| 942 | struct mbuf *m = sb->sb_mb; |
| 943 | struct mbuf *n; |
| 944 | |
| 945 | while (m && m->m_nextpkt) |
| 946 | m = m->m_nextpkt; |
| 947 | |
| 948 | while (m && m->m_next) |
| 949 | m = m->m_next; |
| 950 | |
| 951 | if (m != sb->sb_mbtail) { |
| 952 | printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n" , |
| 953 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb), |
| 954 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mbtail), |
| 955 | (uint64_t)VM_KERNEL_ADDRPERM(m)); |
| 956 | printf("packet tree:\n" ); |
| 957 | for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { |
| 958 | printf("\t" ); |
| 959 | for (n = m; n != NULL; n = n->m_next) |
| 960 | printf("0x%llx " , |
| 961 | (uint64_t)VM_KERNEL_ADDRPERM(n)); |
| 962 | printf("\n" ); |
| 963 | } |
| 964 | panic("sblastmbufchk from %s" , where); |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | /* |
| 969 | * Similar to sbappend, except the mbuf chain begins a new record. |
| 970 | */ |
| 971 | int |
| 972 | sbappendrecord(struct sockbuf *sb, struct mbuf *m0) |
| 973 | { |
| 974 | struct mbuf *m; |
| 975 | int space = 0; |
| 976 | |
| 977 | if (m0 == NULL || (sb->sb_flags & SB_DROP)) { |
| 978 | if (m0 != NULL) |
| 979 | m_freem(m0); |
| 980 | return (0); |
| 981 | } |
| 982 | |
| 983 | for (m = m0; m != NULL; m = m->m_next) |
| 984 | space += m->m_len; |
| 985 | |
| 986 | if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) { |
| 987 | m_freem(m0); |
| 988 | return (0); |
| 989 | } |
| 990 | |
| 991 | if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) { |
| 992 | int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL, |
| 993 | sock_data_filt_flag_record); |
| 994 | |
| 995 | #if CONTENT_FILTER |
| 996 | if (error == 0) |
| 997 | error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0); |
| 998 | #endif /* CONTENT_FILTER */ |
| 999 | |
| 1000 | if (error != 0) { |
| 1001 | SBLASTRECORDCHK(sb, "sbappendrecord 1" ); |
| 1002 | if (error != EJUSTRETURN) |
| 1003 | m_freem(m0); |
| 1004 | return (0); |
| 1005 | } |
| 1006 | } else if (m0) { |
| 1007 | m0->m_flags &= ~M_SKIPCFIL; |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * Note this permits zero length records. |
| 1012 | */ |
| 1013 | sballoc(sb, m0); |
| 1014 | SBLASTRECORDCHK(sb, "sbappendrecord 2" ); |
| 1015 | if (sb->sb_lastrecord != NULL) { |
| 1016 | sb->sb_lastrecord->m_nextpkt = m0; |
| 1017 | } else { |
| 1018 | sb->sb_mb = m0; |
| 1019 | } |
| 1020 | sb->sb_lastrecord = m0; |
| 1021 | sb->sb_mbtail = m0; |
| 1022 | |
| 1023 | m = m0->m_next; |
| 1024 | m0->m_next = 0; |
| 1025 | if (m && (m0->m_flags & M_EOR)) { |
| 1026 | m0->m_flags &= ~M_EOR; |
| 1027 | m->m_flags |= M_EOR; |
| 1028 | } |
| 1029 | sbcompress(sb, m, m0); |
| 1030 | SBLASTRECORDCHK(sb, "sbappendrecord 3" ); |
| 1031 | return (1); |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * As above except that OOB data |
| 1036 | * is inserted at the beginning of the sockbuf, |
| 1037 | * but after any other OOB data. |
| 1038 | */ |
| 1039 | int |
| 1040 | sbinsertoob(struct sockbuf *sb, struct mbuf *m0) |
| 1041 | { |
| 1042 | struct mbuf *m; |
| 1043 | struct mbuf **mp; |
| 1044 | |
| 1045 | if (m0 == 0) |
| 1046 | return (0); |
| 1047 | |
| 1048 | SBLASTRECORDCHK(sb, "sbinsertoob 1" ); |
| 1049 | |
| 1050 | if ((sb->sb_flags & SB_RECV && !(m0->m_flags & M_SKIPCFIL)) != 0) { |
| 1051 | int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL, |
| 1052 | sock_data_filt_flag_oob); |
| 1053 | |
| 1054 | SBLASTRECORDCHK(sb, "sbinsertoob 2" ); |
| 1055 | |
| 1056 | #if CONTENT_FILTER |
| 1057 | if (error == 0) |
| 1058 | error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0); |
| 1059 | #endif /* CONTENT_FILTER */ |
| 1060 | |
| 1061 | if (error) { |
| 1062 | if (error != EJUSTRETURN) { |
| 1063 | m_freem(m0); |
| 1064 | } |
| 1065 | return (0); |
| 1066 | } |
| 1067 | } else if (m0) { |
| 1068 | m0->m_flags &= ~M_SKIPCFIL; |
| 1069 | } |
| 1070 | |
| 1071 | for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) { |
| 1072 | m = *mp; |
| 1073 | again: |
| 1074 | switch (m->m_type) { |
| 1075 | |
| 1076 | case MT_OOBDATA: |
| 1077 | continue; /* WANT next train */ |
| 1078 | |
| 1079 | case MT_CONTROL: |
| 1080 | m = m->m_next; |
| 1081 | if (m) |
| 1082 | goto again; /* inspect THIS train further */ |
| 1083 | } |
| 1084 | break; |
| 1085 | } |
| 1086 | /* |
| 1087 | * Put the first mbuf on the queue. |
| 1088 | * Note this permits zero length records. |
| 1089 | */ |
| 1090 | sballoc(sb, m0); |
| 1091 | m0->m_nextpkt = *mp; |
| 1092 | if (*mp == NULL) { |
| 1093 | /* m0 is actually the new tail */ |
| 1094 | sb->sb_lastrecord = m0; |
| 1095 | } |
| 1096 | *mp = m0; |
| 1097 | m = m0->m_next; |
| 1098 | m0->m_next = 0; |
| 1099 | if (m && (m0->m_flags & M_EOR)) { |
| 1100 | m0->m_flags &= ~M_EOR; |
| 1101 | m->m_flags |= M_EOR; |
| 1102 | } |
| 1103 | sbcompress(sb, m, m0); |
| 1104 | SBLASTRECORDCHK(sb, "sbinsertoob 3" ); |
| 1105 | return (1); |
| 1106 | } |
| 1107 | |
| 1108 | /* |
| 1109 | * Concatenate address (optional), control (optional) and data into one |
| 1110 | * single mbuf chain. If sockbuf *sb is passed in, space check will be |
| 1111 | * performed. |
| 1112 | * |
| 1113 | * Returns: mbuf chain pointer if succeeded, NULL if failed |
| 1114 | */ |
| 1115 | struct mbuf * |
| 1116 | sbconcat_mbufs(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, struct mbuf *control) |
| 1117 | { |
| 1118 | struct mbuf *m = NULL, *n = NULL; |
| 1119 | int space = 0; |
| 1120 | |
| 1121 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) |
| 1122 | panic("sbconcat_mbufs" ); |
| 1123 | |
| 1124 | if (m0) |
| 1125 | space += m0->m_pkthdr.len; |
| 1126 | for (n = control; n; n = n->m_next) { |
| 1127 | space += n->m_len; |
| 1128 | if (n->m_next == 0) /* keep pointer to last control buf */ |
| 1129 | break; |
| 1130 | } |
| 1131 | |
| 1132 | if (asa != NULL) { |
| 1133 | if (asa->sa_len > MLEN) |
| 1134 | return (NULL); |
| 1135 | space += asa->sa_len; |
| 1136 | } |
| 1137 | |
| 1138 | if (sb != NULL && space > sbspace(sb)) |
| 1139 | return (NULL); |
| 1140 | |
| 1141 | if (n) |
| 1142 | n->m_next = m0; /* concatenate data to control */ |
| 1143 | else |
| 1144 | control = m0; |
| 1145 | |
| 1146 | if (asa != NULL) { |
| 1147 | MGET(m, M_DONTWAIT, MT_SONAME); |
| 1148 | if (m == 0) { |
| 1149 | if (n) { |
| 1150 | /* unchain control and data if necessary */ |
| 1151 | n->m_next = NULL; |
| 1152 | } |
| 1153 | return (NULL); |
| 1154 | } |
| 1155 | m->m_len = asa->sa_len; |
| 1156 | bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); |
| 1157 | |
| 1158 | m->m_next = control; |
| 1159 | } else { |
| 1160 | m = control; |
| 1161 | } |
| 1162 | |
| 1163 | return (m); |
| 1164 | } |
| 1165 | |
| 1166 | /* |
| 1167 | * Queue mbuf chain to the receive queue of a socket. |
| 1168 | * Parameter space is the total len of the mbuf chain. |
| 1169 | * If passed in, sockbuf space will be checked. |
| 1170 | * |
| 1171 | * Returns: 0 Invalid mbuf chain |
| 1172 | * 1 Success |
| 1173 | */ |
| 1174 | int |
| 1175 | sbappendchain(struct sockbuf *sb, struct mbuf *m, int space) |
| 1176 | { |
| 1177 | struct mbuf *n, *nlast; |
| 1178 | |
| 1179 | if (m == NULL) |
| 1180 | return (0); |
| 1181 | |
| 1182 | if (space != 0 && space > sbspace(sb)) |
| 1183 | return (0); |
| 1184 | |
| 1185 | for (n = m; n->m_next != NULL; n = n->m_next) |
| 1186 | sballoc(sb, n); |
| 1187 | sballoc(sb, n); |
| 1188 | nlast = n; |
| 1189 | |
| 1190 | if (sb->sb_lastrecord != NULL) { |
| 1191 | sb->sb_lastrecord->m_nextpkt = m; |
| 1192 | } else { |
| 1193 | sb->sb_mb = m; |
| 1194 | } |
| 1195 | sb->sb_lastrecord = m; |
| 1196 | sb->sb_mbtail = nlast; |
| 1197 | |
| 1198 | SBLASTMBUFCHK(sb, __func__); |
| 1199 | SBLASTRECORDCHK(sb, "sbappendadddr 2" ); |
| 1200 | |
| 1201 | postevent(0, sb, EV_RWBYTES); |
| 1202 | return (1); |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Returns: 0 Error: No space/out of mbufs/etc. |
| 1207 | * 1 Success |
| 1208 | * |
| 1209 | * Imputed: (*error_out) errno for error |
| 1210 | * ENOBUFS |
| 1211 | * sflt_data_in:??? [whatever a filter author chooses] |
| 1212 | */ |
| 1213 | int |
| 1214 | sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, |
| 1215 | struct mbuf *control, int *error_out) |
| 1216 | { |
| 1217 | int result = 0; |
| 1218 | boolean_t sb_unix = (sb->sb_flags & SB_UNIX); |
| 1219 | struct mbuf *mbuf_chain = NULL; |
| 1220 | |
| 1221 | if (error_out) |
| 1222 | *error_out = 0; |
| 1223 | |
| 1224 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) |
| 1225 | panic("sbappendaddrorfree" ); |
| 1226 | |
| 1227 | if (sb->sb_flags & SB_DROP) { |
| 1228 | if (m0 != NULL) |
| 1229 | m_freem(m0); |
| 1230 | if (control != NULL && !sb_unix) |
| 1231 | m_freem(control); |
| 1232 | if (error_out != NULL) |
| 1233 | *error_out = EINVAL; |
| 1234 | return (0); |
| 1235 | } |
| 1236 | |
| 1237 | /* Call socket data in filters */ |
| 1238 | if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) { |
| 1239 | int error; |
| 1240 | error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0); |
| 1241 | SBLASTRECORDCHK(sb, __func__); |
| 1242 | |
| 1243 | #if CONTENT_FILTER |
| 1244 | if (error == 0) |
| 1245 | error = cfil_sock_data_in(sb->sb_so, asa, m0, control, |
| 1246 | 0); |
| 1247 | #endif /* CONTENT_FILTER */ |
| 1248 | |
| 1249 | if (error) { |
| 1250 | if (error != EJUSTRETURN) { |
| 1251 | if (m0) |
| 1252 | m_freem(m0); |
| 1253 | if (control != NULL && !sb_unix) |
| 1254 | m_freem(control); |
| 1255 | if (error_out) |
| 1256 | *error_out = error; |
| 1257 | } |
| 1258 | return (0); |
| 1259 | } |
| 1260 | } else if (m0) { |
| 1261 | m0->m_flags &= ~M_SKIPCFIL; |
| 1262 | } |
| 1263 | |
| 1264 | mbuf_chain = sbconcat_mbufs(sb, asa, m0, control); |
| 1265 | SBLASTRECORDCHK(sb, "sbappendadddr 1" ); |
| 1266 | result = sbappendchain(sb, mbuf_chain, 0); |
| 1267 | if (result == 0) { |
| 1268 | if (m0) |
| 1269 | m_freem(m0); |
| 1270 | if (control != NULL && !sb_unix) |
| 1271 | m_freem(control); |
| 1272 | if (error_out) |
| 1273 | *error_out = ENOBUFS; |
| 1274 | } |
| 1275 | |
| 1276 | return (result); |
| 1277 | } |
| 1278 | |
| 1279 | static int |
| 1280 | sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0, |
| 1281 | struct mbuf *control) |
| 1282 | { |
| 1283 | struct mbuf *m, *mlast, *n; |
| 1284 | int space = 0; |
| 1285 | |
| 1286 | if (control == 0) |
| 1287 | panic("sbappendcontrol" ); |
| 1288 | |
| 1289 | for (m = control; ; m = m->m_next) { |
| 1290 | space += m->m_len; |
| 1291 | if (m->m_next == 0) |
| 1292 | break; |
| 1293 | } |
| 1294 | n = m; /* save pointer to last control buffer */ |
| 1295 | for (m = m0; m; m = m->m_next) |
| 1296 | space += m->m_len; |
| 1297 | if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) |
| 1298 | return (0); |
| 1299 | n->m_next = m0; /* concatenate data to control */ |
| 1300 | SBLASTRECORDCHK(sb, "sbappendcontrol 1" ); |
| 1301 | |
| 1302 | for (m = control; m->m_next != NULL; m = m->m_next) |
| 1303 | sballoc(sb, m); |
| 1304 | sballoc(sb, m); |
| 1305 | mlast = m; |
| 1306 | |
| 1307 | if (sb->sb_lastrecord != NULL) { |
| 1308 | sb->sb_lastrecord->m_nextpkt = control; |
| 1309 | } else { |
| 1310 | sb->sb_mb = control; |
| 1311 | } |
| 1312 | sb->sb_lastrecord = control; |
| 1313 | sb->sb_mbtail = mlast; |
| 1314 | |
| 1315 | SBLASTMBUFCHK(sb, __func__); |
| 1316 | SBLASTRECORDCHK(sb, "sbappendcontrol 2" ); |
| 1317 | |
| 1318 | postevent(0, sb, EV_RWBYTES); |
| 1319 | return (1); |
| 1320 | } |
| 1321 | |
| 1322 | int |
| 1323 | sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control, |
| 1324 | int *error_out) |
| 1325 | { |
| 1326 | int result = 0; |
| 1327 | boolean_t sb_unix = (sb->sb_flags & SB_UNIX); |
| 1328 | |
| 1329 | if (error_out) |
| 1330 | *error_out = 0; |
| 1331 | |
| 1332 | if (sb->sb_flags & SB_DROP) { |
| 1333 | if (m0 != NULL) |
| 1334 | m_freem(m0); |
| 1335 | if (control != NULL && !sb_unix) |
| 1336 | m_freem(control); |
| 1337 | if (error_out != NULL) |
| 1338 | *error_out = EINVAL; |
| 1339 | return (0); |
| 1340 | } |
| 1341 | |
| 1342 | if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) { |
| 1343 | int error; |
| 1344 | |
| 1345 | error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0); |
| 1346 | SBLASTRECORDCHK(sb, __func__); |
| 1347 | |
| 1348 | #if CONTENT_FILTER |
| 1349 | if (error == 0) |
| 1350 | error = cfil_sock_data_in(sb->sb_so, NULL, m0, control, |
| 1351 | 0); |
| 1352 | #endif /* CONTENT_FILTER */ |
| 1353 | |
| 1354 | if (error) { |
| 1355 | if (error != EJUSTRETURN) { |
| 1356 | if (m0) |
| 1357 | m_freem(m0); |
| 1358 | if (control != NULL && !sb_unix) |
| 1359 | m_freem(control); |
| 1360 | if (error_out) |
| 1361 | *error_out = error; |
| 1362 | } |
| 1363 | return (0); |
| 1364 | } |
| 1365 | } else if (m0) { |
| 1366 | m0->m_flags &= ~M_SKIPCFIL; |
| 1367 | } |
| 1368 | |
| 1369 | result = sbappendcontrol_internal(sb, m0, control); |
| 1370 | if (result == 0) { |
| 1371 | if (m0) |
| 1372 | m_freem(m0); |
| 1373 | if (control != NULL && !sb_unix) |
| 1374 | m_freem(control); |
| 1375 | if (error_out) |
| 1376 | *error_out = ENOBUFS; |
| 1377 | } |
| 1378 | |
| 1379 | return (result); |
| 1380 | } |
| 1381 | |
| 1382 | /* |
| 1383 | * Append a contiguous TCP data blob with TCP sequence number as control data |
| 1384 | * as a new msg to the receive socket buffer. |
| 1385 | */ |
| 1386 | int |
| 1387 | sbappendmsgstream_rcv(struct sockbuf *sb, struct mbuf *m, uint32_t seqnum, |
| 1388 | int unordered) |
| 1389 | { |
| 1390 | struct mbuf *m_eor = NULL; |
| 1391 | u_int32_t data_len = 0; |
| 1392 | int ret = 0; |
| 1393 | struct socket *so = sb->sb_so; |
| 1394 | |
| 1395 | if (m == NULL) |
| 1396 | return (0); |
| 1397 | |
| 1398 | VERIFY((m->m_flags & M_PKTHDR) && m_pktlen(m) > 0); |
| 1399 | VERIFY(so->so_msg_state != NULL); |
| 1400 | VERIFY(sb->sb_flags & SB_RECV); |
| 1401 | |
| 1402 | /* Keep the TCP sequence number in the mbuf pkthdr */ |
| 1403 | m->m_pkthdr.msg_seq = seqnum; |
| 1404 | |
| 1405 | /* find last mbuf and set M_EOR */ |
| 1406 | for (m_eor = m; ; m_eor = m_eor->m_next) { |
| 1407 | /* |
| 1408 | * If the msg is unordered, we need to account for |
| 1409 | * these bytes in receive socket buffer size. Otherwise, |
| 1410 | * the receive window advertised will shrink because |
| 1411 | * of the additional unordered bytes added to the |
| 1412 | * receive buffer. |
| 1413 | */ |
| 1414 | if (unordered) { |
| 1415 | m_eor->m_flags |= M_UNORDERED_DATA; |
| 1416 | data_len += m_eor->m_len; |
| 1417 | so->so_msg_state->msg_uno_bytes += m_eor->m_len; |
| 1418 | } else { |
| 1419 | m_eor->m_flags &= ~M_UNORDERED_DATA; |
| 1420 | } |
| 1421 | if (m_eor->m_next == NULL) |
| 1422 | break; |
| 1423 | } |
| 1424 | |
| 1425 | /* set EOR flag at end of byte blob */ |
| 1426 | m_eor->m_flags |= M_EOR; |
| 1427 | |
| 1428 | /* expand the receive socket buffer to allow unordered data */ |
| 1429 | if (unordered && !sbreserve(sb, sb->sb_hiwat + data_len)) { |
| 1430 | /* |
| 1431 | * Could not allocate memory for unordered data, it |
| 1432 | * means this packet will have to be delivered in order |
| 1433 | */ |
| 1434 | printf("%s: could not reserve space for unordered data\n" , |
| 1435 | __func__); |
| 1436 | } |
| 1437 | |
| 1438 | if (!unordered && (sb->sb_mbtail != NULL) && |
| 1439 | !(sb->sb_mbtail->m_flags & M_UNORDERED_DATA)) { |
| 1440 | sb->sb_mbtail->m_flags &= ~M_EOR; |
| 1441 | sbcompress(sb, m, sb->sb_mbtail); |
| 1442 | ret = 1; |
| 1443 | } else { |
| 1444 | ret = sbappendrecord(sb, m); |
| 1445 | } |
| 1446 | VERIFY(sb->sb_mbtail->m_flags & M_EOR); |
| 1447 | return (ret); |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * TCP streams have message based out of order delivery support, or have |
| 1452 | * Multipath TCP support, or are regular TCP sockets |
| 1453 | */ |
| 1454 | int |
| 1455 | sbappendstream_rcvdemux(struct socket *so, struct mbuf *m, uint32_t seqnum, |
| 1456 | int unordered) |
| 1457 | { |
| 1458 | int ret = 0; |
| 1459 | |
| 1460 | if ((m != NULL) && |
| 1461 | m_pktlen(m) <= 0 && |
| 1462 | !((so->so_flags & SOF_MP_SUBFLOW) && |
| 1463 | (m->m_flags & M_PKTHDR) && |
| 1464 | (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN))) { |
| 1465 | m_freem(m); |
| 1466 | return (ret); |
| 1467 | } |
| 1468 | |
| 1469 | if (so->so_flags & SOF_ENABLE_MSGS) { |
| 1470 | ret = sbappendmsgstream_rcv(&so->so_rcv, m, seqnum, unordered); |
| 1471 | } |
| 1472 | #if MPTCP |
| 1473 | else if (so->so_flags & SOF_MP_SUBFLOW) { |
| 1474 | ret = sbappendmptcpstream_rcv(&so->so_rcv, m); |
| 1475 | } |
| 1476 | #endif /* MPTCP */ |
| 1477 | else { |
| 1478 | ret = sbappendstream(&so->so_rcv, m); |
| 1479 | } |
| 1480 | return (ret); |
| 1481 | } |
| 1482 | |
| 1483 | #if MPTCP |
| 1484 | int |
| 1485 | sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m) |
| 1486 | { |
| 1487 | struct socket *so = sb->sb_so; |
| 1488 | |
| 1489 | VERIFY(m == NULL || (m->m_flags & M_PKTHDR)); |
| 1490 | /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */ |
| 1491 | VERIFY((sb->sb_flags & (SB_RECV|SB_NOCOMPRESS)) == |
| 1492 | (SB_RECV|SB_NOCOMPRESS)); |
| 1493 | |
| 1494 | if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) || |
| 1495 | (so->so_state & SS_CANTRCVMORE)) { |
| 1496 | if (m && (m->m_flags & M_PKTHDR) && |
| 1497 | m_pktlen(m) == 0 && |
| 1498 | (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN)) { |
| 1499 | mptcp_input(tptomptp(sototcpcb(so))->mpt_mpte, m); |
| 1500 | return (1); |
| 1501 | } else if (m != NULL) { |
| 1502 | m_freem(m); |
| 1503 | } |
| 1504 | return (0); |
| 1505 | } |
| 1506 | /* the socket is not closed, so SOF_MP_SUBFLOW must be set */ |
| 1507 | VERIFY(so->so_flags & SOF_MP_SUBFLOW); |
| 1508 | |
| 1509 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) { |
| 1510 | panic("%s: nexpkt %p || mb %p != lastrecord %p\n" , __func__, |
| 1511 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); |
| 1512 | /* NOTREACHED */ |
| 1513 | } |
| 1514 | |
| 1515 | SBLASTMBUFCHK(sb, __func__); |
| 1516 | |
| 1517 | /* No filter support (SB_RECV) on mptcp subflow sockets */ |
| 1518 | |
| 1519 | sbcompress(sb, m, sb->sb_mbtail); |
| 1520 | sb->sb_lastrecord = sb->sb_mb; |
| 1521 | SBLASTRECORDCHK(sb, __func__); |
| 1522 | return (1); |
| 1523 | } |
| 1524 | #endif /* MPTCP */ |
| 1525 | |
| 1526 | /* |
| 1527 | * Append message to send socket buffer based on priority. |
| 1528 | */ |
| 1529 | int |
| 1530 | sbappendmsg_snd(struct sockbuf *sb, struct mbuf *m) |
| 1531 | { |
| 1532 | struct socket *so = sb->sb_so; |
| 1533 | struct msg_priq *priq; |
| 1534 | int set_eor = 0; |
| 1535 | |
| 1536 | VERIFY(so->so_msg_state != NULL); |
| 1537 | |
| 1538 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) |
| 1539 | panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n" , |
| 1540 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); |
| 1541 | |
| 1542 | SBLASTMBUFCHK(sb, __func__); |
| 1543 | |
| 1544 | if (m == NULL || (sb->sb_flags & SB_DROP) || so->so_msg_state == NULL) { |
| 1545 | if (m != NULL) |
| 1546 | m_freem(m); |
| 1547 | return (0); |
| 1548 | } |
| 1549 | |
| 1550 | priq = &so->so_msg_state->msg_priq[m->m_pkthdr.msg_pri]; |
| 1551 | |
| 1552 | /* note if we need to propogate M_EOR to the last mbuf */ |
| 1553 | if (m->m_flags & M_EOR) { |
| 1554 | set_eor = 1; |
| 1555 | |
| 1556 | /* Reset M_EOR from the first mbuf */ |
| 1557 | m->m_flags &= ~(M_EOR); |
| 1558 | } |
| 1559 | |
| 1560 | if (priq->msgq_head == NULL) { |
| 1561 | VERIFY(priq->msgq_tail == NULL && priq->msgq_lastmsg == NULL); |
| 1562 | priq->msgq_head = priq->msgq_lastmsg = m; |
| 1563 | } else { |
| 1564 | VERIFY(priq->msgq_tail->m_next == NULL); |
| 1565 | |
| 1566 | /* Check if the last message has M_EOR flag set */ |
| 1567 | if (priq->msgq_tail->m_flags & M_EOR) { |
| 1568 | /* Insert as a new message */ |
| 1569 | priq->msgq_lastmsg->m_nextpkt = m; |
| 1570 | |
| 1571 | /* move the lastmsg pointer */ |
| 1572 | priq->msgq_lastmsg = m; |
| 1573 | } else { |
| 1574 | /* Append to the existing message */ |
| 1575 | priq->msgq_tail->m_next = m; |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | /* Update accounting and the queue tail pointer */ |
| 1580 | |
| 1581 | while (m->m_next != NULL) { |
| 1582 | sballoc(sb, m); |
| 1583 | priq->msgq_bytes += m->m_len; |
| 1584 | m = m->m_next; |
| 1585 | } |
| 1586 | sballoc(sb, m); |
| 1587 | priq->msgq_bytes += m->m_len; |
| 1588 | |
| 1589 | if (set_eor) { |
| 1590 | m->m_flags |= M_EOR; |
| 1591 | |
| 1592 | /* |
| 1593 | * Since the user space can not write a new msg |
| 1594 | * without completing the previous one, we can |
| 1595 | * reset this flag to start sending again. |
| 1596 | */ |
| 1597 | priq->msgq_flags &= ~(MSGQ_MSG_NOTDONE); |
| 1598 | } |
| 1599 | |
| 1600 | priq->msgq_tail = m; |
| 1601 | |
| 1602 | SBLASTRECORDCHK(sb, "sbappendstream 2" ); |
| 1603 | postevent(0, sb, EV_RWBYTES); |
| 1604 | return (1); |
| 1605 | } |
| 1606 | |
| 1607 | /* |
| 1608 | * Pull data from priority queues to the serial snd queue |
| 1609 | * right before sending. |
| 1610 | */ |
| 1611 | void |
| 1612 | sbpull_unordered_data(struct socket *so, int32_t off, int32_t len) |
| 1613 | { |
| 1614 | int32_t topull, i; |
| 1615 | struct msg_priq *priq = NULL; |
| 1616 | |
| 1617 | VERIFY(so->so_msg_state != NULL); |
| 1618 | |
| 1619 | topull = (off + len) - so->so_msg_state->msg_serial_bytes; |
| 1620 | |
| 1621 | i = MSG_PRI_MAX; |
| 1622 | while (i >= MSG_PRI_MIN && topull > 0) { |
| 1623 | struct mbuf *m = NULL, *mqhead = NULL, *mend = NULL; |
| 1624 | priq = &so->so_msg_state->msg_priq[i]; |
| 1625 | if ((priq->msgq_flags & MSGQ_MSG_NOTDONE) && |
| 1626 | priq->msgq_head == NULL) { |
| 1627 | /* |
| 1628 | * We were in the middle of sending |
| 1629 | * a message and we have not seen the |
| 1630 | * end of it. |
| 1631 | */ |
| 1632 | VERIFY(priq->msgq_lastmsg == NULL && |
| 1633 | priq->msgq_tail == NULL); |
| 1634 | return; |
| 1635 | } |
| 1636 | if (priq->msgq_head != NULL) { |
| 1637 | int32_t bytes = 0, topull_tmp = topull; |
| 1638 | /* |
| 1639 | * We found a msg while scanning the priority |
| 1640 | * queue from high to low priority. |
| 1641 | */ |
| 1642 | m = priq->msgq_head; |
| 1643 | mqhead = m; |
| 1644 | mend = m; |
| 1645 | |
| 1646 | /* |
| 1647 | * Move bytes from the priority queue to the |
| 1648 | * serial queue. Compute the number of bytes |
| 1649 | * being added. |
| 1650 | */ |
| 1651 | while (mqhead->m_next != NULL && topull_tmp > 0) { |
| 1652 | bytes += mqhead->m_len; |
| 1653 | topull_tmp -= mqhead->m_len; |
| 1654 | mend = mqhead; |
| 1655 | mqhead = mqhead->m_next; |
| 1656 | } |
| 1657 | |
| 1658 | if (mqhead->m_next == NULL) { |
| 1659 | /* |
| 1660 | * If we have only one more mbuf left, |
| 1661 | * move the last mbuf of this message to |
| 1662 | * serial queue and set the head of the |
| 1663 | * queue to be the next message. |
| 1664 | */ |
| 1665 | bytes += mqhead->m_len; |
| 1666 | mend = mqhead; |
| 1667 | mqhead = m->m_nextpkt; |
| 1668 | if (!(mend->m_flags & M_EOR)) { |
| 1669 | /* |
| 1670 | * We have not seen the end of |
| 1671 | * this message, so we can not |
| 1672 | * pull anymore. |
| 1673 | */ |
| 1674 | priq->msgq_flags |= MSGQ_MSG_NOTDONE; |
| 1675 | } else { |
| 1676 | /* Reset M_EOR */ |
| 1677 | mend->m_flags &= ~(M_EOR); |
| 1678 | } |
| 1679 | } else { |
| 1680 | /* propogate the next msg pointer */ |
| 1681 | mqhead->m_nextpkt = m->m_nextpkt; |
| 1682 | } |
| 1683 | priq->msgq_head = mqhead; |
| 1684 | |
| 1685 | /* |
| 1686 | * if the lastmsg pointer points to |
| 1687 | * the mbuf that is being dequeued, update |
| 1688 | * it to point to the new head. |
| 1689 | */ |
| 1690 | if (priq->msgq_lastmsg == m) |
| 1691 | priq->msgq_lastmsg = priq->msgq_head; |
| 1692 | |
| 1693 | m->m_nextpkt = NULL; |
| 1694 | mend->m_next = NULL; |
| 1695 | |
| 1696 | if (priq->msgq_head == NULL) { |
| 1697 | /* Moved all messages, update tail */ |
| 1698 | priq->msgq_tail = NULL; |
| 1699 | VERIFY(priq->msgq_lastmsg == NULL); |
| 1700 | } |
| 1701 | |
| 1702 | /* Move it to serial sb_mb queue */ |
| 1703 | if (so->so_snd.sb_mb == NULL) { |
| 1704 | so->so_snd.sb_mb = m; |
| 1705 | } else { |
| 1706 | so->so_snd.sb_mbtail->m_next = m; |
| 1707 | } |
| 1708 | |
| 1709 | priq->msgq_bytes -= bytes; |
| 1710 | VERIFY(priq->msgq_bytes >= 0); |
| 1711 | sbwakeup(&so->so_snd); |
| 1712 | |
| 1713 | so->so_msg_state->msg_serial_bytes += bytes; |
| 1714 | so->so_snd.sb_mbtail = mend; |
| 1715 | so->so_snd.sb_lastrecord = so->so_snd.sb_mb; |
| 1716 | |
| 1717 | topull = |
| 1718 | (off + len) - so->so_msg_state->msg_serial_bytes; |
| 1719 | |
| 1720 | if (priq->msgq_flags & MSGQ_MSG_NOTDONE) |
| 1721 | break; |
| 1722 | } else { |
| 1723 | --i; |
| 1724 | } |
| 1725 | } |
| 1726 | sblastrecordchk(&so->so_snd, "sbpull_unordered_data" ); |
| 1727 | sblastmbufchk(&so->so_snd, "sbpull_unordered_data" ); |
| 1728 | } |
| 1729 | |
| 1730 | /* |
| 1731 | * Compress mbuf chain m into the socket |
| 1732 | * buffer sb following mbuf n. If n |
| 1733 | * is null, the buffer is presumed empty. |
| 1734 | */ |
| 1735 | static inline void |
| 1736 | sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) |
| 1737 | { |
| 1738 | int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS)); |
| 1739 | struct mbuf *o; |
| 1740 | |
| 1741 | if (m == NULL) { |
| 1742 | /* There is nothing to compress; just update the tail */ |
| 1743 | for (; n->m_next != NULL; n = n->m_next) |
| 1744 | ; |
| 1745 | sb->sb_mbtail = n; |
| 1746 | goto done; |
| 1747 | } |
| 1748 | |
| 1749 | while (m != NULL) { |
| 1750 | eor |= m->m_flags & M_EOR; |
| 1751 | if (compress && m->m_len == 0 && (eor == 0 || |
| 1752 | (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) { |
| 1753 | if (sb->sb_lastrecord == m) |
| 1754 | sb->sb_lastrecord = m->m_next; |
| 1755 | m = m_free(m); |
| 1756 | continue; |
| 1757 | } |
| 1758 | if (compress && n != NULL && (n->m_flags & M_EOR) == 0 && |
| 1759 | #ifndef __APPLE__ |
| 1760 | M_WRITABLE(n) && |
| 1761 | #endif |
| 1762 | m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ |
| 1763 | m->m_len <= M_TRAILINGSPACE(n) && |
| 1764 | n->m_type == m->m_type) { |
| 1765 | bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, |
| 1766 | (unsigned)m->m_len); |
| 1767 | n->m_len += m->m_len; |
| 1768 | sb->sb_cc += m->m_len; |
| 1769 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && |
| 1770 | m->m_type != MT_OOBDATA) { |
| 1771 | /* XXX: Probably don't need */ |
| 1772 | sb->sb_ctl += m->m_len; |
| 1773 | } |
| 1774 | |
| 1775 | /* update send byte count */ |
| 1776 | if (sb->sb_flags & SB_SNDBYTE_CNT) { |
| 1777 | inp_incr_sndbytes_total(sb->sb_so, |
| 1778 | m->m_len); |
| 1779 | inp_incr_sndbytes_unsent(sb->sb_so, |
| 1780 | m->m_len); |
| 1781 | } |
| 1782 | m = m_free(m); |
| 1783 | continue; |
| 1784 | } |
| 1785 | if (n != NULL) |
| 1786 | n->m_next = m; |
| 1787 | else |
| 1788 | sb->sb_mb = m; |
| 1789 | sb->sb_mbtail = m; |
| 1790 | sballoc(sb, m); |
| 1791 | n = m; |
| 1792 | m->m_flags &= ~M_EOR; |
| 1793 | m = m->m_next; |
| 1794 | n->m_next = NULL; |
| 1795 | } |
| 1796 | if (eor != 0) { |
| 1797 | if (n != NULL) |
| 1798 | n->m_flags |= eor; |
| 1799 | else |
| 1800 | printf("semi-panic: sbcompress\n" ); |
| 1801 | } |
| 1802 | done: |
| 1803 | SBLASTMBUFCHK(sb, __func__); |
| 1804 | postevent(0, sb, EV_RWBYTES); |
| 1805 | } |
| 1806 | |
| 1807 | void |
| 1808 | sb_empty_assert(struct sockbuf *sb, const char *where) |
| 1809 | { |
| 1810 | if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 && |
| 1811 | sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) { |
| 1812 | panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p " |
| 1813 | "lastrecord %p\n" , where, sb, sb->sb_so, sb->sb_cc, |
| 1814 | sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail, |
| 1815 | sb->sb_lastrecord); |
| 1816 | /* NOTREACHED */ |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | static void |
| 1821 | sbflush_priq(struct msg_priq *priq) |
| 1822 | { |
| 1823 | struct mbuf *m; |
| 1824 | m = priq->msgq_head; |
| 1825 | if (m != NULL) |
| 1826 | m_freem_list(m); |
| 1827 | priq->msgq_head = priq->msgq_tail = priq->msgq_lastmsg = NULL; |
| 1828 | priq->msgq_bytes = priq->msgq_flags = 0; |
| 1829 | } |
| 1830 | |
| 1831 | /* |
| 1832 | * Free all mbufs in a sockbuf. |
| 1833 | * Check that all resources are reclaimed. |
| 1834 | */ |
| 1835 | void |
| 1836 | sbflush(struct sockbuf *sb) |
| 1837 | { |
| 1838 | void *lr_saved = __builtin_return_address(0); |
| 1839 | struct socket *so = sb->sb_so; |
| 1840 | u_int32_t i; |
| 1841 | |
| 1842 | /* so_usecount may be 0 if we get here from sofreelastref() */ |
| 1843 | if (so == NULL) { |
| 1844 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n" , |
| 1845 | __func__, sb, sb->sb_flags, lr_saved); |
| 1846 | /* NOTREACHED */ |
| 1847 | } else if (so->so_usecount < 0) { |
| 1848 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
| 1849 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
| 1850 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
| 1851 | /* NOTREACHED */ |
| 1852 | } |
| 1853 | |
| 1854 | /* |
| 1855 | * Obtain lock on the socket buffer (SB_LOCK). This is required |
| 1856 | * to prevent the socket buffer from being unexpectedly altered |
| 1857 | * while it is used by another thread in socket send/receive. |
| 1858 | * |
| 1859 | * sblock() must not fail here, hence the assertion. |
| 1860 | */ |
| 1861 | (void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT); |
| 1862 | VERIFY(sb->sb_flags & SB_LOCK); |
| 1863 | |
| 1864 | while (sb->sb_mbcnt > 0) { |
| 1865 | /* |
| 1866 | * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: |
| 1867 | * we would loop forever. Panic instead. |
| 1868 | */ |
| 1869 | if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) |
| 1870 | break; |
| 1871 | sbdrop(sb, (int)sb->sb_cc); |
| 1872 | } |
| 1873 | |
| 1874 | if (!(sb->sb_flags & SB_RECV) && (so->so_flags & SOF_ENABLE_MSGS)) { |
| 1875 | VERIFY(so->so_msg_state != NULL); |
| 1876 | for (i = MSG_PRI_MIN; i <= MSG_PRI_MAX; ++i) { |
| 1877 | sbflush_priq(&so->so_msg_state->msg_priq[i]); |
| 1878 | } |
| 1879 | so->so_msg_state->msg_serial_bytes = 0; |
| 1880 | so->so_msg_state->msg_uno_bytes = 0; |
| 1881 | } |
| 1882 | |
| 1883 | sb_empty_assert(sb, __func__); |
| 1884 | postevent(0, sb, EV_RWBYTES); |
| 1885 | |
| 1886 | sbunlock(sb, TRUE); /* keep socket locked */ |
| 1887 | } |
| 1888 | |
| 1889 | /* |
| 1890 | * Drop data from (the front of) a sockbuf. |
| 1891 | * use m_freem_list to free the mbuf structures |
| 1892 | * under a single lock... this is done by pruning |
| 1893 | * the top of the tree from the body by keeping track |
| 1894 | * of where we get to in the tree and then zeroing the |
| 1895 | * two pertinent pointers m_nextpkt and m_next |
| 1896 | * the socket buffer is then updated to point at the new |
| 1897 | * top of the tree and the pruned area is released via |
| 1898 | * m_freem_list. |
| 1899 | */ |
| 1900 | void |
| 1901 | sbdrop(struct sockbuf *sb, int len) |
| 1902 | { |
| 1903 | struct mbuf *m, *free_list, *ml; |
| 1904 | struct mbuf *next, *last; |
| 1905 | |
| 1906 | next = (m = sb->sb_mb) ? m->m_nextpkt : 0; |
| 1907 | #if MPTCP |
| 1908 | if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) && |
| 1909 | ((sb->sb_so->so_flags & SOF_MP_SUBFLOW) || |
| 1910 | (SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH) && |
| 1911 | SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP))) && |
| 1912 | !(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) { |
| 1913 | mptcp_preproc_sbdrop(sb->sb_so, m, (unsigned int)len); |
| 1914 | } |
| 1915 | if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) && |
| 1916 | (sb->sb_so->so_flags & SOF_MP_SUBFLOW) && |
| 1917 | (sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) { |
| 1918 | mptcp_fallback_sbdrop(sb->sb_so, m, len); |
| 1919 | } |
| 1920 | #endif /* MPTCP */ |
| 1921 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0); |
| 1922 | |
| 1923 | free_list = last = m; |
| 1924 | ml = (struct mbuf *)0; |
| 1925 | |
| 1926 | while (len > 0) { |
| 1927 | if (m == NULL) { |
| 1928 | if (next == NULL) { |
| 1929 | /* |
| 1930 | * temporarily replacing this panic with printf |
| 1931 | * because it occurs occasionally when closing |
| 1932 | * a socket when there is no harm in ignoring |
| 1933 | * it. This problem will be investigated |
| 1934 | * further. |
| 1935 | */ |
| 1936 | /* panic("sbdrop"); */ |
| 1937 | printf("sbdrop - count not zero\n" ); |
| 1938 | len = 0; |
| 1939 | /* |
| 1940 | * zero the counts. if we have no mbufs, |
| 1941 | * we have no data (PR-2986815) |
| 1942 | */ |
| 1943 | sb->sb_cc = 0; |
| 1944 | sb->sb_mbcnt = 0; |
| 1945 | if (!(sb->sb_flags & SB_RECV) && |
| 1946 | (sb->sb_so->so_flags & SOF_ENABLE_MSGS)) { |
| 1947 | sb->sb_so->so_msg_state-> |
| 1948 | msg_serial_bytes = 0; |
| 1949 | } |
| 1950 | break; |
| 1951 | } |
| 1952 | m = last = next; |
| 1953 | next = m->m_nextpkt; |
| 1954 | continue; |
| 1955 | } |
| 1956 | if (m->m_len > len) { |
| 1957 | m->m_len -= len; |
| 1958 | m->m_data += len; |
| 1959 | sb->sb_cc -= len; |
| 1960 | /* update the send byte count */ |
| 1961 | if (sb->sb_flags & SB_SNDBYTE_CNT) |
| 1962 | inp_decr_sndbytes_total(sb->sb_so, len); |
| 1963 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && |
| 1964 | m->m_type != MT_OOBDATA) |
| 1965 | sb->sb_ctl -= len; |
| 1966 | break; |
| 1967 | } |
| 1968 | len -= m->m_len; |
| 1969 | sbfree(sb, m); |
| 1970 | |
| 1971 | ml = m; |
| 1972 | m = m->m_next; |
| 1973 | } |
| 1974 | while (m && m->m_len == 0) { |
| 1975 | sbfree(sb, m); |
| 1976 | |
| 1977 | ml = m; |
| 1978 | m = m->m_next; |
| 1979 | } |
| 1980 | if (ml) { |
| 1981 | ml->m_next = (struct mbuf *)0; |
| 1982 | last->m_nextpkt = (struct mbuf *)0; |
| 1983 | m_freem_list(free_list); |
| 1984 | } |
| 1985 | if (m) { |
| 1986 | sb->sb_mb = m; |
| 1987 | m->m_nextpkt = next; |
| 1988 | } else { |
| 1989 | sb->sb_mb = next; |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * First part is an inline SB_EMPTY_FIXUP(). Second part |
| 1994 | * makes sure sb_lastrecord is up-to-date if we dropped |
| 1995 | * part of the last record. |
| 1996 | */ |
| 1997 | m = sb->sb_mb; |
| 1998 | if (m == NULL) { |
| 1999 | sb->sb_mbtail = NULL; |
| 2000 | sb->sb_lastrecord = NULL; |
| 2001 | } else if (m->m_nextpkt == NULL) { |
| 2002 | sb->sb_lastrecord = m; |
| 2003 | } |
| 2004 | |
| 2005 | #if CONTENT_FILTER |
| 2006 | cfil_sock_buf_update(sb); |
| 2007 | #endif /* CONTENT_FILTER */ |
| 2008 | |
| 2009 | postevent(0, sb, EV_RWBYTES); |
| 2010 | |
| 2011 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0); |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * Drop a record off the front of a sockbuf |
| 2016 | * and move the next record to the front. |
| 2017 | */ |
| 2018 | void |
| 2019 | sbdroprecord(struct sockbuf *sb) |
| 2020 | { |
| 2021 | struct mbuf *m, *mn; |
| 2022 | |
| 2023 | m = sb->sb_mb; |
| 2024 | if (m) { |
| 2025 | sb->sb_mb = m->m_nextpkt; |
| 2026 | do { |
| 2027 | sbfree(sb, m); |
| 2028 | MFREE(m, mn); |
| 2029 | m = mn; |
| 2030 | } while (m); |
| 2031 | } |
| 2032 | SB_EMPTY_FIXUP(sb); |
| 2033 | postevent(0, sb, EV_RWBYTES); |
| 2034 | } |
| 2035 | |
| 2036 | /* |
| 2037 | * Create a "control" mbuf containing the specified data |
| 2038 | * with the specified type for presentation on a socket buffer. |
| 2039 | */ |
| 2040 | struct mbuf * |
| 2041 | sbcreatecontrol(caddr_t p, int size, int type, int level) |
| 2042 | { |
| 2043 | struct cmsghdr *cp; |
| 2044 | struct mbuf *m; |
| 2045 | |
| 2046 | if (CMSG_SPACE((u_int)size) > MLEN) |
| 2047 | return ((struct mbuf *)NULL); |
| 2048 | if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) |
| 2049 | return ((struct mbuf *)NULL); |
| 2050 | cp = mtod(m, struct cmsghdr *); |
| 2051 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); |
| 2052 | /* XXX check size? */ |
| 2053 | (void) memcpy(CMSG_DATA(cp), p, size); |
| 2054 | m->m_len = CMSG_SPACE(size); |
| 2055 | cp->cmsg_len = CMSG_LEN(size); |
| 2056 | cp->cmsg_level = level; |
| 2057 | cp->cmsg_type = type; |
| 2058 | return (m); |
| 2059 | } |
| 2060 | |
| 2061 | struct mbuf ** |
| 2062 | sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp) |
| 2063 | { |
| 2064 | struct mbuf *m; |
| 2065 | struct cmsghdr *cp; |
| 2066 | |
| 2067 | if (*mp == NULL) { |
| 2068 | *mp = sbcreatecontrol(p, size, type, level); |
| 2069 | return (mp); |
| 2070 | } |
| 2071 | |
| 2072 | if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) { |
| 2073 | mp = &(*mp)->m_next; |
| 2074 | *mp = sbcreatecontrol(p, size, type, level); |
| 2075 | return (mp); |
| 2076 | } |
| 2077 | |
| 2078 | m = *mp; |
| 2079 | |
| 2080 | cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len); |
| 2081 | /* CMSG_SPACE ensures 32-bit alignment */ |
| 2082 | VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t))); |
| 2083 | m->m_len += CMSG_SPACE(size); |
| 2084 | |
| 2085 | /* XXX check size? */ |
| 2086 | (void) memcpy(CMSG_DATA(cp), p, size); |
| 2087 | cp->cmsg_len = CMSG_LEN(size); |
| 2088 | cp->cmsg_level = level; |
| 2089 | cp->cmsg_type = type; |
| 2090 | |
| 2091 | return (mp); |
| 2092 | } |
| 2093 | |
| 2094 | |
| 2095 | /* |
| 2096 | * Some routines that return EOPNOTSUPP for entry points that are not |
| 2097 | * supported by a protocol. Fill in as needed. |
| 2098 | */ |
| 2099 | int |
| 2100 | pru_abort_notsupp(struct socket *so) |
| 2101 | { |
| 2102 | #pragma unused(so) |
| 2103 | return (EOPNOTSUPP); |
| 2104 | } |
| 2105 | |
| 2106 | int |
| 2107 | pru_accept_notsupp(struct socket *so, struct sockaddr **nam) |
| 2108 | { |
| 2109 | #pragma unused(so, nam) |
| 2110 | return (EOPNOTSUPP); |
| 2111 | } |
| 2112 | |
| 2113 | int |
| 2114 | pru_attach_notsupp(struct socket *so, int proto, struct proc *p) |
| 2115 | { |
| 2116 | #pragma unused(so, proto, p) |
| 2117 | return (EOPNOTSUPP); |
| 2118 | } |
| 2119 | |
| 2120 | int |
| 2121 | pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 2122 | { |
| 2123 | #pragma unused(so, nam, p) |
| 2124 | return (EOPNOTSUPP); |
| 2125 | } |
| 2126 | |
| 2127 | int |
| 2128 | pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 2129 | { |
| 2130 | #pragma unused(so, nam, p) |
| 2131 | return (EOPNOTSUPP); |
| 2132 | } |
| 2133 | |
| 2134 | int |
| 2135 | pru_connect2_notsupp(struct socket *so1, struct socket *so2) |
| 2136 | { |
| 2137 | #pragma unused(so1, so2) |
| 2138 | return (EOPNOTSUPP); |
| 2139 | } |
| 2140 | |
| 2141 | int |
| 2142 | pru_connectx_notsupp(struct socket *so, struct sockaddr *src, |
| 2143 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, |
| 2144 | sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, |
| 2145 | uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) |
| 2146 | { |
| 2147 | #pragma unused(so, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written) |
| 2148 | return (EOPNOTSUPP); |
| 2149 | } |
| 2150 | |
| 2151 | int |
| 2152 | pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, |
| 2153 | struct ifnet *ifp, struct proc *p) |
| 2154 | { |
| 2155 | #pragma unused(so, cmd, data, ifp, p) |
| 2156 | return (EOPNOTSUPP); |
| 2157 | } |
| 2158 | |
| 2159 | int |
| 2160 | pru_detach_notsupp(struct socket *so) |
| 2161 | { |
| 2162 | #pragma unused(so) |
| 2163 | return (EOPNOTSUPP); |
| 2164 | } |
| 2165 | |
| 2166 | int |
| 2167 | pru_disconnect_notsupp(struct socket *so) |
| 2168 | { |
| 2169 | #pragma unused(so) |
| 2170 | return (EOPNOTSUPP); |
| 2171 | } |
| 2172 | |
| 2173 | int |
| 2174 | pru_disconnectx_notsupp(struct socket *so, sae_associd_t aid, sae_connid_t cid) |
| 2175 | { |
| 2176 | #pragma unused(so, aid, cid) |
| 2177 | return (EOPNOTSUPP); |
| 2178 | } |
| 2179 | |
| 2180 | int |
| 2181 | pru_listen_notsupp(struct socket *so, struct proc *p) |
| 2182 | { |
| 2183 | #pragma unused(so, p) |
| 2184 | return (EOPNOTSUPP); |
| 2185 | } |
| 2186 | |
| 2187 | int |
| 2188 | pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) |
| 2189 | { |
| 2190 | #pragma unused(so, nam) |
| 2191 | return (EOPNOTSUPP); |
| 2192 | } |
| 2193 | |
| 2194 | int |
| 2195 | pru_rcvd_notsupp(struct socket *so, int flags) |
| 2196 | { |
| 2197 | #pragma unused(so, flags) |
| 2198 | return (EOPNOTSUPP); |
| 2199 | } |
| 2200 | |
| 2201 | int |
| 2202 | pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) |
| 2203 | { |
| 2204 | #pragma unused(so, m, flags) |
| 2205 | return (EOPNOTSUPP); |
| 2206 | } |
| 2207 | |
| 2208 | int |
| 2209 | pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, |
| 2210 | struct sockaddr *addr, struct mbuf *control, struct proc *p) |
| 2211 | { |
| 2212 | #pragma unused(so, flags, m, addr, control, p) |
| 2213 | return (EOPNOTSUPP); |
| 2214 | } |
| 2215 | |
| 2216 | int |
| 2217 | pru_send_list_notsupp(struct socket *so, int flags, struct mbuf *m, |
| 2218 | struct sockaddr *addr, struct mbuf *control, struct proc *p) |
| 2219 | { |
| 2220 | #pragma unused(so, flags, m, addr, control, p) |
| 2221 | return (EOPNOTSUPP); |
| 2222 | } |
| 2223 | |
| 2224 | /* |
| 2225 | * This isn't really a ``null'' operation, but it's the default one |
| 2226 | * and doesn't do anything destructive. |
| 2227 | */ |
| 2228 | int |
| 2229 | pru_sense_null(struct socket *so, void *ub, int isstat64) |
| 2230 | { |
| 2231 | if (isstat64 != 0) { |
| 2232 | struct stat64 *sb64; |
| 2233 | |
| 2234 | sb64 = (struct stat64 *)ub; |
| 2235 | sb64->st_blksize = so->so_snd.sb_hiwat; |
| 2236 | } else { |
| 2237 | struct stat *sb; |
| 2238 | |
| 2239 | sb = (struct stat *)ub; |
| 2240 | sb->st_blksize = so->so_snd.sb_hiwat; |
| 2241 | } |
| 2242 | |
| 2243 | return (0); |
| 2244 | } |
| 2245 | |
| 2246 | |
| 2247 | int |
| 2248 | pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, |
| 2249 | struct mbuf *top, struct mbuf *control, int flags) |
| 2250 | { |
| 2251 | #pragma unused(so, addr, uio, top, control, flags) |
| 2252 | return (EOPNOTSUPP); |
| 2253 | } |
| 2254 | |
| 2255 | int |
| 2256 | pru_sosend_list_notsupp(struct socket *so, struct uio **uio, |
| 2257 | u_int uiocnt, int flags) |
| 2258 | { |
| 2259 | #pragma unused(so, uio, uiocnt, flags) |
| 2260 | return (EOPNOTSUPP); |
| 2261 | } |
| 2262 | |
| 2263 | int |
| 2264 | pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, |
| 2265 | struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) |
| 2266 | { |
| 2267 | #pragma unused(so, paddr, uio, mp0, controlp, flagsp) |
| 2268 | return (EOPNOTSUPP); |
| 2269 | } |
| 2270 | |
| 2271 | int |
| 2272 | pru_soreceive_list_notsupp(struct socket *so, |
| 2273 | struct recv_msg_elem *recv_msg_array, u_int uiocnt, int *flagsp) |
| 2274 | { |
| 2275 | #pragma unused(so, recv_msg_array, uiocnt, flagsp) |
| 2276 | return (EOPNOTSUPP); |
| 2277 | } |
| 2278 | |
| 2279 | int |
| 2280 | pru_shutdown_notsupp(struct socket *so) |
| 2281 | { |
| 2282 | #pragma unused(so) |
| 2283 | return (EOPNOTSUPP); |
| 2284 | } |
| 2285 | |
| 2286 | int |
| 2287 | pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) |
| 2288 | { |
| 2289 | #pragma unused(so, nam) |
| 2290 | return (EOPNOTSUPP); |
| 2291 | } |
| 2292 | |
| 2293 | int |
| 2294 | pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql) |
| 2295 | { |
| 2296 | #pragma unused(so, events, cred, wql) |
| 2297 | return (EOPNOTSUPP); |
| 2298 | } |
| 2299 | |
| 2300 | int |
| 2301 | pru_socheckopt_null(struct socket *so, struct sockopt *sopt) |
| 2302 | { |
| 2303 | #pragma unused(so, sopt) |
| 2304 | /* |
| 2305 | * Allow all options for set/get by default. |
| 2306 | */ |
| 2307 | return (0); |
| 2308 | } |
| 2309 | |
| 2310 | static int |
| 2311 | pru_preconnect_null(struct socket *so) |
| 2312 | { |
| 2313 | #pragma unused(so) |
| 2314 | return (0); |
| 2315 | } |
| 2316 | |
| 2317 | void |
| 2318 | pru_sanitize(struct pr_usrreqs *pru) |
| 2319 | { |
| 2320 | #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar) |
| 2321 | DEFAULT(pru->pru_abort, pru_abort_notsupp); |
| 2322 | DEFAULT(pru->pru_accept, pru_accept_notsupp); |
| 2323 | DEFAULT(pru->pru_attach, pru_attach_notsupp); |
| 2324 | DEFAULT(pru->pru_bind, pru_bind_notsupp); |
| 2325 | DEFAULT(pru->pru_connect, pru_connect_notsupp); |
| 2326 | DEFAULT(pru->pru_connect2, pru_connect2_notsupp); |
| 2327 | DEFAULT(pru->pru_connectx, pru_connectx_notsupp); |
| 2328 | DEFAULT(pru->pru_control, pru_control_notsupp); |
| 2329 | DEFAULT(pru->pru_detach, pru_detach_notsupp); |
| 2330 | DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp); |
| 2331 | DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp); |
| 2332 | DEFAULT(pru->pru_listen, pru_listen_notsupp); |
| 2333 | DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp); |
| 2334 | DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp); |
| 2335 | DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp); |
| 2336 | DEFAULT(pru->pru_send, pru_send_notsupp); |
| 2337 | DEFAULT(pru->pru_send_list, pru_send_list_notsupp); |
| 2338 | DEFAULT(pru->pru_sense, pru_sense_null); |
| 2339 | DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp); |
| 2340 | DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp); |
| 2341 | DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp); |
| 2342 | DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp); |
| 2343 | DEFAULT(pru->pru_soreceive_list, pru_soreceive_list_notsupp); |
| 2344 | DEFAULT(pru->pru_sosend, pru_sosend_notsupp); |
| 2345 | DEFAULT(pru->pru_sosend_list, pru_sosend_list_notsupp); |
| 2346 | DEFAULT(pru->pru_socheckopt, pru_socheckopt_null); |
| 2347 | DEFAULT(pru->pru_preconnect, pru_preconnect_null); |
| 2348 | #undef DEFAULT |
| 2349 | } |
| 2350 | |
| 2351 | /* |
| 2352 | * The following are macros on BSD and functions on Darwin |
| 2353 | */ |
| 2354 | |
| 2355 | /* |
| 2356 | * Do we need to notify the other side when I/O is possible? |
| 2357 | */ |
| 2358 | |
| 2359 | int |
| 2360 | sb_notify(struct sockbuf *sb) |
| 2361 | { |
| 2362 | return (sb->sb_waiters > 0 || |
| 2363 | (sb->sb_flags & (SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE))); |
| 2364 | } |
| 2365 | |
| 2366 | /* |
| 2367 | * How much space is there in a socket buffer (so->so_snd or so->so_rcv)? |
| 2368 | * This is problematical if the fields are unsigned, as the space might |
| 2369 | * still be negative (cc > hiwat or mbcnt > mbmax). Should detect |
| 2370 | * overflow and return 0. |
| 2371 | */ |
| 2372 | int |
| 2373 | sbspace(struct sockbuf *sb) |
| 2374 | { |
| 2375 | int pending = 0; |
| 2376 | int space = imin((int)(sb->sb_hiwat - sb->sb_cc), |
| 2377 | (int)(sb->sb_mbmax - sb->sb_mbcnt)); |
| 2378 | |
| 2379 | if (sb->sb_preconn_hiwat != 0) |
| 2380 | space = imin((int)(sb->sb_preconn_hiwat - sb->sb_cc), space); |
| 2381 | |
| 2382 | if (space < 0) |
| 2383 | space = 0; |
| 2384 | |
| 2385 | /* Compensate for data being processed by content filters */ |
| 2386 | #if CONTENT_FILTER |
| 2387 | pending = cfil_sock_data_space(sb); |
| 2388 | #endif /* CONTENT_FILTER */ |
| 2389 | if (pending > space) |
| 2390 | space = 0; |
| 2391 | else |
| 2392 | space -= pending; |
| 2393 | |
| 2394 | return (space); |
| 2395 | } |
| 2396 | |
| 2397 | /* |
| 2398 | * If this socket has priority queues, check if there is enough |
| 2399 | * space in the priority queue for this msg. |
| 2400 | */ |
| 2401 | int |
| 2402 | msgq_sbspace(struct socket *so, struct mbuf *control) |
| 2403 | { |
| 2404 | int space = 0, error; |
| 2405 | u_int32_t msgpri = 0; |
| 2406 | VERIFY(so->so_type == SOCK_STREAM && |
| 2407 | SOCK_PROTO(so) == IPPROTO_TCP); |
| 2408 | if (control != NULL) { |
| 2409 | error = tcp_get_msg_priority(control, &msgpri); |
| 2410 | if (error) |
| 2411 | return (0); |
| 2412 | } else { |
| 2413 | msgpri = MSG_PRI_0; |
| 2414 | } |
| 2415 | space = (so->so_snd.sb_idealsize / MSG_PRI_COUNT) - |
| 2416 | so->so_msg_state->msg_priq[msgpri].msgq_bytes; |
| 2417 | if (space < 0) |
| 2418 | space = 0; |
| 2419 | return (space); |
| 2420 | } |
| 2421 | |
| 2422 | /* do we have to send all at once on a socket? */ |
| 2423 | int |
| 2424 | sosendallatonce(struct socket *so) |
| 2425 | { |
| 2426 | return (so->so_proto->pr_flags & PR_ATOMIC); |
| 2427 | } |
| 2428 | |
| 2429 | /* can we read something from so? */ |
| 2430 | int |
| 2431 | soreadable(struct socket *so) |
| 2432 | { |
| 2433 | return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || |
| 2434 | ((so->so_state & SS_CANTRCVMORE) |
| 2435 | #if CONTENT_FILTER |
| 2436 | && cfil_sock_data_pending(&so->so_rcv) == 0 |
| 2437 | #endif /* CONTENT_FILTER */ |
| 2438 | ) || |
| 2439 | so->so_comp.tqh_first || so->so_error); |
| 2440 | } |
| 2441 | |
| 2442 | /* can we write something to so? */ |
| 2443 | |
| 2444 | int |
| 2445 | sowriteable(struct socket *so) |
| 2446 | { |
| 2447 | if ((so->so_state & SS_CANTSENDMORE) || |
| 2448 | so->so_error > 0) |
| 2449 | return (1); |
| 2450 | if (so_wait_for_if_feedback(so) || !socanwrite(so)) |
| 2451 | return (0); |
| 2452 | if (so->so_flags1 & SOF1_PRECONNECT_DATA) |
| 2453 | return(1); |
| 2454 | |
| 2455 | if (sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat) { |
| 2456 | if (so->so_flags & SOF_NOTSENT_LOWAT) { |
| 2457 | if ((SOCK_DOM(so) == PF_INET6 || |
| 2458 | SOCK_DOM(so) == PF_INET) && |
| 2459 | so->so_type == SOCK_STREAM) { |
| 2460 | return (tcp_notsent_lowat_check(so)); |
| 2461 | } |
| 2462 | #if MPTCP |
| 2463 | else if ((SOCK_DOM(so) == PF_MULTIPATH) && |
| 2464 | (SOCK_PROTO(so) == IPPROTO_TCP)) { |
| 2465 | return (mptcp_notsent_lowat_check(so)); |
| 2466 | } |
| 2467 | #endif |
| 2468 | else { |
| 2469 | return (1); |
| 2470 | } |
| 2471 | } else { |
| 2472 | return (1); |
| 2473 | } |
| 2474 | } |
| 2475 | return (0); |
| 2476 | } |
| 2477 | |
| 2478 | /* adjust counters in sb reflecting allocation of m */ |
| 2479 | |
| 2480 | void |
| 2481 | sballoc(struct sockbuf *sb, struct mbuf *m) |
| 2482 | { |
| 2483 | u_int32_t cnt = 1; |
| 2484 | sb->sb_cc += m->m_len; |
| 2485 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && |
| 2486 | m->m_type != MT_OOBDATA) |
| 2487 | sb->sb_ctl += m->m_len; |
| 2488 | sb->sb_mbcnt += MSIZE; |
| 2489 | |
| 2490 | if (m->m_flags & M_EXT) { |
| 2491 | sb->sb_mbcnt += m->m_ext.ext_size; |
| 2492 | cnt += (m->m_ext.ext_size >> MSIZESHIFT); |
| 2493 | } |
| 2494 | OSAddAtomic(cnt, &total_sbmb_cnt); |
| 2495 | VERIFY(total_sbmb_cnt > 0); |
| 2496 | if (total_sbmb_cnt > total_sbmb_cnt_peak) |
| 2497 | total_sbmb_cnt_peak = total_sbmb_cnt; |
| 2498 | |
| 2499 | /* |
| 2500 | * If data is being added to the send socket buffer, |
| 2501 | * update the send byte count |
| 2502 | */ |
| 2503 | if (sb->sb_flags & SB_SNDBYTE_CNT) { |
| 2504 | inp_incr_sndbytes_total(sb->sb_so, m->m_len); |
| 2505 | inp_incr_sndbytes_unsent(sb->sb_so, m->m_len); |
| 2506 | } |
| 2507 | } |
| 2508 | |
| 2509 | /* adjust counters in sb reflecting freeing of m */ |
| 2510 | void |
| 2511 | sbfree(struct sockbuf *sb, struct mbuf *m) |
| 2512 | { |
| 2513 | int cnt = -1; |
| 2514 | |
| 2515 | sb->sb_cc -= m->m_len; |
| 2516 | if (m->m_type != MT_DATA && m->m_type != MT_HEADER && |
| 2517 | m->m_type != MT_OOBDATA) |
| 2518 | sb->sb_ctl -= m->m_len; |
| 2519 | sb->sb_mbcnt -= MSIZE; |
| 2520 | if (m->m_flags & M_EXT) { |
| 2521 | sb->sb_mbcnt -= m->m_ext.ext_size; |
| 2522 | cnt -= (m->m_ext.ext_size >> MSIZESHIFT); |
| 2523 | } |
| 2524 | OSAddAtomic(cnt, &total_sbmb_cnt); |
| 2525 | VERIFY(total_sbmb_cnt >= 0); |
| 2526 | if (total_sbmb_cnt < total_sbmb_cnt_floor) |
| 2527 | total_sbmb_cnt_floor = total_sbmb_cnt; |
| 2528 | |
| 2529 | /* |
| 2530 | * If data is being removed from the send socket buffer, |
| 2531 | * update the send byte count |
| 2532 | */ |
| 2533 | if (sb->sb_flags & SB_SNDBYTE_CNT) |
| 2534 | inp_decr_sndbytes_total(sb->sb_so, m->m_len); |
| 2535 | } |
| 2536 | |
| 2537 | /* |
| 2538 | * Set lock on sockbuf sb; sleep if lock is already held. |
| 2539 | * Unless SB_NOINTR is set on sockbuf, sleep is interruptible. |
| 2540 | * Returns error without lock if sleep is interrupted. |
| 2541 | */ |
| 2542 | int |
| 2543 | sblock(struct sockbuf *sb, uint32_t flags) |
| 2544 | { |
| 2545 | boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR)); |
| 2546 | void *lr_saved = __builtin_return_address(0); |
| 2547 | struct socket *so = sb->sb_so; |
| 2548 | void * wchan; |
| 2549 | int error = 0; |
| 2550 | thread_t tp = current_thread(); |
| 2551 | |
| 2552 | VERIFY((flags & SBL_VALID) == flags); |
| 2553 | |
| 2554 | /* so_usecount may be 0 if we get here from sofreelastref() */ |
| 2555 | if (so == NULL) { |
| 2556 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n" , |
| 2557 | __func__, sb, sb->sb_flags, lr_saved); |
| 2558 | /* NOTREACHED */ |
| 2559 | } else if (so->so_usecount < 0) { |
| 2560 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
| 2561 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
| 2562 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
| 2563 | /* NOTREACHED */ |
| 2564 | } |
| 2565 | |
| 2566 | /* |
| 2567 | * The content filter thread must hold the sockbuf lock |
| 2568 | */ |
| 2569 | if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) { |
| 2570 | /* |
| 2571 | * Don't panic if we are defunct because SB_LOCK has |
| 2572 | * been cleared by sodefunct() |
| 2573 | */ |
| 2574 | if (!(so->so_flags & SOF_DEFUNCT) && !(sb->sb_flags & SB_LOCK)) |
| 2575 | panic("%s: SB_LOCK not held for %p\n" , |
| 2576 | __func__, sb); |
| 2577 | |
| 2578 | /* Keep the sockbuf locked */ |
| 2579 | return (0); |
| 2580 | } |
| 2581 | |
| 2582 | if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT)) |
| 2583 | return (EWOULDBLOCK); |
| 2584 | /* |
| 2585 | * We may get here from sorflush(), in which case "sb" may not |
| 2586 | * point to the real socket buffer. Use the actual socket buffer |
| 2587 | * address from the socket instead. |
| 2588 | */ |
| 2589 | wchan = (sb->sb_flags & SB_RECV) ? |
| 2590 | &so->so_rcv.sb_flags : &so->so_snd.sb_flags; |
| 2591 | |
| 2592 | /* |
| 2593 | * A content filter thread has exclusive access to the sockbuf |
| 2594 | * until it clears the |
| 2595 | */ |
| 2596 | while ((sb->sb_flags & SB_LOCK) || |
| 2597 | ((so->so_flags & SOF_CONTENT_FILTER) && |
| 2598 | sb->sb_cfil_thread != NULL)) { |
| 2599 | lck_mtx_t *mutex_held; |
| 2600 | |
| 2601 | /* |
| 2602 | * XXX: This code should be moved up above outside of this loop; |
| 2603 | * however, we may get here as part of sofreelastref(), and |
| 2604 | * at that time pr_getlock() may no longer be able to return |
| 2605 | * us the lock. This will be fixed in future. |
| 2606 | */ |
| 2607 | if (so->so_proto->pr_getlock != NULL) |
| 2608 | mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK); |
| 2609 | else |
| 2610 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
| 2611 | |
| 2612 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 2613 | |
| 2614 | sb->sb_wantlock++; |
| 2615 | VERIFY(sb->sb_wantlock != 0); |
| 2616 | |
| 2617 | error = msleep(wchan, mutex_held, |
| 2618 | nointr ? PSOCK : PSOCK | PCATCH, |
| 2619 | nointr ? "sb_lock_nointr" : "sb_lock" , NULL); |
| 2620 | |
| 2621 | VERIFY(sb->sb_wantlock != 0); |
| 2622 | sb->sb_wantlock--; |
| 2623 | |
| 2624 | if (error == 0 && (so->so_flags & SOF_DEFUNCT) && |
| 2625 | !(flags & SBL_IGNDEFUNCT)) { |
| 2626 | error = EBADF; |
| 2627 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] " |
| 2628 | "(%d)\n" , __func__, proc_selfpid(), |
| 2629 | proc_best_name(current_proc()), |
| 2630 | (uint64_t)VM_KERNEL_ADDRPERM(so), |
| 2631 | SOCK_DOM(so), SOCK_TYPE(so), error); |
| 2632 | } |
| 2633 | |
| 2634 | if (error != 0) |
| 2635 | return (error); |
| 2636 | } |
| 2637 | sb->sb_flags |= SB_LOCK; |
| 2638 | return (0); |
| 2639 | } |
| 2640 | |
| 2641 | /* |
| 2642 | * Release lock on sockbuf sb |
| 2643 | */ |
| 2644 | void |
| 2645 | sbunlock(struct sockbuf *sb, boolean_t keeplocked) |
| 2646 | { |
| 2647 | void *lr_saved = __builtin_return_address(0); |
| 2648 | struct socket *so = sb->sb_so; |
| 2649 | thread_t tp = current_thread(); |
| 2650 | |
| 2651 | /* so_usecount may be 0 if we get here from sofreelastref() */ |
| 2652 | if (so == NULL) { |
| 2653 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n" , |
| 2654 | __func__, sb, sb->sb_flags, lr_saved); |
| 2655 | /* NOTREACHED */ |
| 2656 | } else if (so->so_usecount < 0) { |
| 2657 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
| 2658 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
| 2659 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
| 2660 | /* NOTREACHED */ |
| 2661 | } |
| 2662 | |
| 2663 | /* |
| 2664 | * The content filter thread must hold the sockbuf lock |
| 2665 | */ |
| 2666 | if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) { |
| 2667 | /* |
| 2668 | * Don't panic if we are defunct because SB_LOCK has |
| 2669 | * been cleared by sodefunct() |
| 2670 | */ |
| 2671 | if (!(so->so_flags & SOF_DEFUNCT) && |
| 2672 | !(sb->sb_flags & SB_LOCK) && |
| 2673 | !(so->so_state & SS_DEFUNCT) && |
| 2674 | !(so->so_flags1 & SOF1_DEFUNCTINPROG)) { |
| 2675 | panic("%s: SB_LOCK not held for %p\n" , |
| 2676 | __func__, sb); |
| 2677 | } |
| 2678 | /* Keep the sockbuf locked and proceed */ |
| 2679 | } else { |
| 2680 | VERIFY((sb->sb_flags & SB_LOCK) || |
| 2681 | (so->so_state & SS_DEFUNCT) || |
| 2682 | (so->so_flags1 & SOF1_DEFUNCTINPROG)); |
| 2683 | |
| 2684 | sb->sb_flags &= ~SB_LOCK; |
| 2685 | |
| 2686 | if (sb->sb_wantlock > 0) { |
| 2687 | /* |
| 2688 | * We may get here from sorflush(), in which case "sb" |
| 2689 | * may not point to the real socket buffer. Use the |
| 2690 | * actual socket buffer address from the socket instead. |
| 2691 | */ |
| 2692 | wakeup((sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags : |
| 2693 | &so->so_snd.sb_flags); |
| 2694 | } |
| 2695 | } |
| 2696 | |
| 2697 | if (!keeplocked) { /* unlock on exit */ |
| 2698 | lck_mtx_t *mutex_held; |
| 2699 | |
| 2700 | if (so->so_proto->pr_getlock != NULL) |
| 2701 | mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK); |
| 2702 | else |
| 2703 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
| 2704 | |
| 2705 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 2706 | |
| 2707 | VERIFY(so->so_usecount > 0); |
| 2708 | so->so_usecount--; |
| 2709 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
| 2710 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; |
| 2711 | lck_mtx_unlock(mutex_held); |
| 2712 | } |
| 2713 | } |
| 2714 | |
| 2715 | void |
| 2716 | sorwakeup(struct socket *so) |
| 2717 | { |
| 2718 | if (sb_notify(&so->so_rcv)) |
| 2719 | sowakeup(so, &so->so_rcv); |
| 2720 | } |
| 2721 | |
| 2722 | void |
| 2723 | sowwakeup(struct socket *so) |
| 2724 | { |
| 2725 | if (sb_notify(&so->so_snd)) |
| 2726 | sowakeup(so, &so->so_snd); |
| 2727 | } |
| 2728 | |
| 2729 | void |
| 2730 | soevent(struct socket *so, long hint) |
| 2731 | { |
| 2732 | if (so->so_flags & SOF_KNOTE) |
| 2733 | KNOTE(&so->so_klist, hint); |
| 2734 | |
| 2735 | soevupcall(so, hint); |
| 2736 | |
| 2737 | /* |
| 2738 | * Don't post an event if this a subflow socket or |
| 2739 | * the app has opted out of using cellular interface |
| 2740 | */ |
| 2741 | if ((hint & SO_FILT_HINT_IFDENIED) && |
| 2742 | !(so->so_flags & SOF_MP_SUBFLOW) && |
| 2743 | !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR) && |
| 2744 | !(so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE)) |
| 2745 | soevent_ifdenied(so); |
| 2746 | } |
| 2747 | |
| 2748 | void |
| 2749 | soevupcall(struct socket *so, u_int32_t hint) |
| 2750 | { |
| 2751 | if (so->so_event != NULL) { |
| 2752 | caddr_t so_eventarg = so->so_eventarg; |
| 2753 | |
| 2754 | hint &= so->so_eventmask; |
| 2755 | if (hint != 0) |
| 2756 | so->so_event(so, so_eventarg, hint); |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | static void |
| 2761 | soevent_ifdenied(struct socket *so) |
| 2762 | { |
| 2763 | struct kev_netpolicy_ifdenied ev_ifdenied; |
| 2764 | |
| 2765 | bzero(&ev_ifdenied, sizeof (ev_ifdenied)); |
| 2766 | /* |
| 2767 | * The event consumer is interested about the effective {upid,pid,uuid} |
| 2768 | * info which can be different than the those related to the process |
| 2769 | * that recently performed a system call on the socket, i.e. when the |
| 2770 | * socket is delegated. |
| 2771 | */ |
| 2772 | if (so->so_flags & SOF_DELEGATED) { |
| 2773 | ev_ifdenied.ev_data.eupid = so->e_upid; |
| 2774 | ev_ifdenied.ev_data.epid = so->e_pid; |
| 2775 | uuid_copy(ev_ifdenied.ev_data.euuid, so->e_uuid); |
| 2776 | } else { |
| 2777 | ev_ifdenied.ev_data.eupid = so->last_upid; |
| 2778 | ev_ifdenied.ev_data.epid = so->last_pid; |
| 2779 | uuid_copy(ev_ifdenied.ev_data.euuid, so->last_uuid); |
| 2780 | } |
| 2781 | |
| 2782 | if (++so->so_ifdenied_notifies > 1) { |
| 2783 | /* |
| 2784 | * Allow for at most one kernel event to be generated per |
| 2785 | * socket; so_ifdenied_notifies is reset upon changes in |
| 2786 | * the UUID policy. See comments in inp_update_policy. |
| 2787 | */ |
| 2788 | if (net_io_policy_log) { |
| 2789 | uuid_string_t buf; |
| 2790 | |
| 2791 | uuid_unparse(ev_ifdenied.ev_data.euuid, buf); |
| 2792 | log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d " |
| 2793 | "euuid %s%s has %d redundant events supressed\n" , |
| 2794 | __func__, so->last_pid, |
| 2795 | (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so), |
| 2796 | SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf, |
| 2797 | ((so->so_flags & SOF_DELEGATED) ? |
| 2798 | " [delegated]" : "" ), so->so_ifdenied_notifies); |
| 2799 | } |
| 2800 | } else { |
| 2801 | if (net_io_policy_log) { |
| 2802 | uuid_string_t buf; |
| 2803 | |
| 2804 | uuid_unparse(ev_ifdenied.ev_data.euuid, buf); |
| 2805 | log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d " |
| 2806 | "euuid %s%s event posted\n" , __func__, |
| 2807 | so->last_pid, (uint64_t)VM_KERNEL_ADDRPERM(so), |
| 2808 | SOCK_DOM(so), SOCK_TYPE(so), |
| 2809 | ev_ifdenied.ev_data.epid, buf, |
| 2810 | ((so->so_flags & SOF_DELEGATED) ? |
| 2811 | " [delegated]" : "" )); |
| 2812 | } |
| 2813 | netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data, |
| 2814 | sizeof (ev_ifdenied)); |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | /* |
| 2819 | * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. |
| 2820 | */ |
| 2821 | struct sockaddr * |
| 2822 | dup_sockaddr(struct sockaddr *sa, int canwait) |
| 2823 | { |
| 2824 | struct sockaddr *sa2; |
| 2825 | |
| 2826 | MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, |
| 2827 | canwait ? M_WAITOK : M_NOWAIT); |
| 2828 | if (sa2) |
| 2829 | bcopy(sa, sa2, sa->sa_len); |
| 2830 | return (sa2); |
| 2831 | } |
| 2832 | |
| 2833 | /* |
| 2834 | * Create an external-format (``xsocket'') structure using the information |
| 2835 | * in the kernel-format socket structure pointed to by so. This is done |
| 2836 | * to reduce the spew of irrelevant information over this interface, |
| 2837 | * to isolate user code from changes in the kernel structure, and |
| 2838 | * potentially to provide information-hiding if we decide that |
| 2839 | * some of this information should be hidden from users. |
| 2840 | */ |
| 2841 | void |
| 2842 | sotoxsocket(struct socket *so, struct xsocket *xso) |
| 2843 | { |
| 2844 | xso->xso_len = sizeof (*xso); |
| 2845 | xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so); |
| 2846 | xso->so_type = so->so_type; |
| 2847 | xso->so_options = (short)(so->so_options & 0xffff); |
| 2848 | xso->so_linger = so->so_linger; |
| 2849 | xso->so_state = so->so_state; |
| 2850 | xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb); |
| 2851 | if (so->so_proto) { |
| 2852 | xso->xso_protocol = SOCK_PROTO(so); |
| 2853 | xso->xso_family = SOCK_DOM(so); |
| 2854 | } else { |
| 2855 | xso->xso_protocol = xso->xso_family = 0; |
| 2856 | } |
| 2857 | xso->so_qlen = so->so_qlen; |
| 2858 | xso->so_incqlen = so->so_incqlen; |
| 2859 | xso->so_qlimit = so->so_qlimit; |
| 2860 | xso->so_timeo = so->so_timeo; |
| 2861 | xso->so_error = so->so_error; |
| 2862 | xso->so_pgid = so->so_pgid; |
| 2863 | xso->so_oobmark = so->so_oobmark; |
| 2864 | sbtoxsockbuf(&so->so_snd, &xso->so_snd); |
| 2865 | sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); |
| 2866 | xso->so_uid = kauth_cred_getuid(so->so_cred); |
| 2867 | } |
| 2868 | |
| 2869 | |
| 2870 | #if !CONFIG_EMBEDDED |
| 2871 | |
| 2872 | void |
| 2873 | sotoxsocket64(struct socket *so, struct xsocket64 *xso) |
| 2874 | { |
| 2875 | xso->xso_len = sizeof (*xso); |
| 2876 | xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so); |
| 2877 | xso->so_type = so->so_type; |
| 2878 | xso->so_options = (short)(so->so_options & 0xffff); |
| 2879 | xso->so_linger = so->so_linger; |
| 2880 | xso->so_state = so->so_state; |
| 2881 | xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb); |
| 2882 | if (so->so_proto) { |
| 2883 | xso->xso_protocol = SOCK_PROTO(so); |
| 2884 | xso->xso_family = SOCK_DOM(so); |
| 2885 | } else { |
| 2886 | xso->xso_protocol = xso->xso_family = 0; |
| 2887 | } |
| 2888 | xso->so_qlen = so->so_qlen; |
| 2889 | xso->so_incqlen = so->so_incqlen; |
| 2890 | xso->so_qlimit = so->so_qlimit; |
| 2891 | xso->so_timeo = so->so_timeo; |
| 2892 | xso->so_error = so->so_error; |
| 2893 | xso->so_pgid = so->so_pgid; |
| 2894 | xso->so_oobmark = so->so_oobmark; |
| 2895 | sbtoxsockbuf(&so->so_snd, &xso->so_snd); |
| 2896 | sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); |
| 2897 | xso->so_uid = kauth_cred_getuid(so->so_cred); |
| 2898 | } |
| 2899 | |
| 2900 | #endif /* !CONFIG_EMBEDDED */ |
| 2901 | |
| 2902 | /* |
| 2903 | * This does the same for sockbufs. Note that the xsockbuf structure, |
| 2904 | * since it is always embedded in a socket, does not include a self |
| 2905 | * pointer nor a length. We make this entry point public in case |
| 2906 | * some other mechanism needs it. |
| 2907 | */ |
| 2908 | void |
| 2909 | sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) |
| 2910 | { |
| 2911 | xsb->sb_cc = sb->sb_cc; |
| 2912 | xsb->sb_hiwat = sb->sb_hiwat; |
| 2913 | xsb->sb_mbcnt = sb->sb_mbcnt; |
| 2914 | xsb->sb_mbmax = sb->sb_mbmax; |
| 2915 | xsb->sb_lowat = sb->sb_lowat; |
| 2916 | xsb->sb_flags = sb->sb_flags; |
| 2917 | xsb->sb_timeo = (short) |
| 2918 | (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick; |
| 2919 | if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0) |
| 2920 | xsb->sb_timeo = 1; |
| 2921 | } |
| 2922 | |
| 2923 | /* |
| 2924 | * Based on the policy set by an all knowing decison maker, throttle sockets |
| 2925 | * that either have been marked as belonging to "background" process. |
| 2926 | */ |
| 2927 | inline int |
| 2928 | soisthrottled(struct socket *so) |
| 2929 | { |
| 2930 | return (so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND); |
| 2931 | } |
| 2932 | |
| 2933 | inline int |
| 2934 | soisprivilegedtraffic(struct socket *so) |
| 2935 | { |
| 2936 | return ((so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0); |
| 2937 | } |
| 2938 | |
| 2939 | inline int |
| 2940 | soissrcbackground(struct socket *so) |
| 2941 | { |
| 2942 | return ((so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND) || |
| 2943 | IS_SO_TC_BACKGROUND(so->so_traffic_class)); |
| 2944 | } |
| 2945 | |
| 2946 | inline int |
| 2947 | soissrcrealtime(struct socket *so) |
| 2948 | { |
| 2949 | return (so->so_traffic_class >= SO_TC_AV && |
| 2950 | so->so_traffic_class <= SO_TC_VO); |
| 2951 | } |
| 2952 | |
| 2953 | inline int |
| 2954 | soissrcbesteffort(struct socket *so) |
| 2955 | { |
| 2956 | return (so->so_traffic_class == SO_TC_BE || |
| 2957 | so->so_traffic_class == SO_TC_RD || |
| 2958 | so->so_traffic_class == SO_TC_OAM); |
| 2959 | } |
| 2960 | |
| 2961 | void |
| 2962 | soclearfastopen(struct socket *so) |
| 2963 | { |
| 2964 | if (so->so_flags1 & SOF1_PRECONNECT_DATA) |
| 2965 | so->so_flags1 &= ~SOF1_PRECONNECT_DATA; |
| 2966 | |
| 2967 | if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) |
| 2968 | so->so_flags1 &= ~SOF1_DATA_IDEMPOTENT; |
| 2969 | } |
| 2970 | |
| 2971 | void |
| 2972 | sonullevent(struct socket *so, void *arg, uint32_t hint) |
| 2973 | { |
| 2974 | #pragma unused(so, arg, hint) |
| 2975 | } |
| 2976 | |
| 2977 | /* |
| 2978 | * Here is the definition of some of the basic objects in the kern.ipc |
| 2979 | * branch of the MIB. |
| 2980 | */ |
| 2981 | SYSCTL_NODE(_kern, KERN_IPC, ipc, |
| 2982 | CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, 0, "IPC" ); |
| 2983 | |
| 2984 | /* Check that the maximum socket buffer size is within a range */ |
| 2985 | |
| 2986 | static int |
| 2987 | sysctl_sb_max SYSCTL_HANDLER_ARGS |
| 2988 | { |
| 2989 | #pragma unused(oidp, arg1, arg2) |
| 2990 | u_int32_t new_value; |
| 2991 | int changed = 0; |
| 2992 | int error = sysctl_io_number(req, sb_max, sizeof (u_int32_t), |
| 2993 | &new_value, &changed); |
| 2994 | if (!error && changed) { |
| 2995 | if (new_value > LOW_SB_MAX && new_value <= high_sb_max) { |
| 2996 | sb_max = new_value; |
| 2997 | } else { |
| 2998 | error = ERANGE; |
| 2999 | } |
| 3000 | } |
| 3001 | return (error); |
| 3002 | } |
| 3003 | |
| 3004 | SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, |
| 3005 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 3006 | &sb_max, 0, &sysctl_sb_max, "IU" , "Maximum socket buffer size" ); |
| 3007 | |
| 3008 | SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, |
| 3009 | CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, "" ); |
| 3010 | |
| 3011 | SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, |
| 3012 | CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, "" ); |
| 3013 | |
| 3014 | SYSCTL_INT(_kern_ipc, OID_AUTO, njcl, |
| 3015 | CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "" ); |
| 3016 | |
| 3017 | SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes, |
| 3018 | CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "" ); |
| 3019 | |
| 3020 | SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat, |
| 3021 | CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1, |
| 3022 | "Enable socket queue limit compatibility" ); |
| 3023 | |
| 3024 | /* |
| 3025 | * Hack alert -- rdar://33572856 |
| 3026 | * A loopback test we cannot change was failing because it sets |
| 3027 | * SO_SENDTIMEO to 5 seconds and that's also the value |
| 3028 | * of the minimum persist timer. Because of the persist timer, |
| 3029 | * the connection was not idle for 5 seconds and SO_SNDTIMEO |
| 3030 | * was not triggering at 5 seconds causing the test failure. |
| 3031 | * As a workaround we check the sysctl soqlencomp the test is already |
| 3032 | * setting to set disable auto tuning of the receive buffer. |
| 3033 | */ |
| 3034 | |
| 3035 | extern u_int32_t tcp_do_autorcvbuf; |
| 3036 | |
| 3037 | static int |
| 3038 | sysctl_soqlencomp SYSCTL_HANDLER_ARGS |
| 3039 | { |
| 3040 | #pragma unused(oidp, arg1, arg2) |
| 3041 | u_int32_t new_value; |
| 3042 | int changed = 0; |
| 3043 | int error = sysctl_io_number(req, soqlencomp, sizeof (u_int32_t), |
| 3044 | &new_value, &changed); |
| 3045 | if (!error && changed) { |
| 3046 | soqlencomp = new_value; |
| 3047 | if (new_value != 0) { |
| 3048 | tcp_do_autorcvbuf = 0; |
| 3049 | tcptv_persmin_val = 6 * TCP_RETRANSHZ; |
| 3050 | } |
| 3051 | } |
| 3052 | return (error); |
| 3053 | } |
| 3054 | SYSCTL_PROC(_kern_ipc, OID_AUTO, soqlencomp, |
| 3055 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 3056 | &soqlencomp, 0, &sysctl_soqlencomp, "IU" , "" ); |
| 3057 | |
| 3058 | SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 3059 | &total_sbmb_cnt, 0, "" ); |
| 3060 | SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt_peak, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 3061 | &total_sbmb_cnt_peak, 0, "" ); |
| 3062 | SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt_floor, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 3063 | &total_sbmb_cnt_floor, 0, "" ); |
| 3064 | SYSCTL_QUAD(_kern_ipc, OID_AUTO, sbmb_limreached, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 3065 | &sbmb_limreached, "" ); |
| 3066 | |
| 3067 | |
| 3068 | SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy" ); |
| 3069 | |
| 3070 | SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 3071 | &net_io_policy_log, 0, "" ); |
| 3072 | |
| 3073 | #if CONFIG_PROC_UUID_POLICY |
| 3074 | SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 3075 | &net_io_policy_uuid, 0, "" ); |
| 3076 | #endif /* CONFIG_PROC_UUID_POLICY */ |
| 3077 | |