| 1 | /* |
| 2 | * Copyright (c) 1998-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1982, 1986, 1988, 1991, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. All advertising materials mentioning features or use of this software |
| 42 | * must display the following acknowledgement: |
| 43 | * This product includes software developed by the University of |
| 44 | * California, Berkeley and its contributors. |
| 45 | * 4. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 |
| 62 | */ |
| 63 | /* |
| 64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 65 | * support for mandatory and extensible security protections. This notice |
| 66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 67 | * Version 2.0. |
| 68 | */ |
| 69 | |
| 70 | #include <sys/param.h> |
| 71 | #include <sys/systm.h> |
| 72 | #include <sys/malloc.h> |
| 73 | #include <sys/mbuf.h> |
| 74 | #include <sys/kernel.h> |
| 75 | #include <sys/sysctl.h> |
| 76 | #include <sys/syslog.h> |
| 77 | #include <sys/protosw.h> |
| 78 | #include <sys/domain.h> |
| 79 | #include <sys/queue.h> |
| 80 | #include <sys/proc.h> |
| 81 | |
| 82 | #include <dev/random/randomdev.h> |
| 83 | |
| 84 | #include <kern/kern_types.h> |
| 85 | #include <kern/simple_lock.h> |
| 86 | #include <kern/queue.h> |
| 87 | #include <kern/sched_prim.h> |
| 88 | #include <kern/backtrace.h> |
| 89 | #include <kern/cpu_number.h> |
| 90 | #include <kern/zalloc.h> |
| 91 | |
| 92 | #include <libkern/OSAtomic.h> |
| 93 | #include <libkern/OSDebug.h> |
| 94 | #include <libkern/libkern.h> |
| 95 | |
| 96 | #include <os/log.h> |
| 97 | |
| 98 | #include <IOKit/IOMapper.h> |
| 99 | |
| 100 | #include <machine/limits.h> |
| 101 | #include <machine/machine_routines.h> |
| 102 | |
| 103 | #if CONFIG_MACF_NET |
| 104 | #include <security/mac_framework.h> |
| 105 | #endif /* MAC_NET */ |
| 106 | |
| 107 | #include <sys/mcache.h> |
| 108 | #include <net/ntstat.h> |
| 109 | |
| 110 | /* |
| 111 | * MBUF IMPLEMENTATION NOTES. |
| 112 | * |
| 113 | * There is a total of 5 per-CPU caches: |
| 114 | * |
| 115 | * MC_MBUF: |
| 116 | * This is a cache of rudimentary objects of MSIZE in size; each |
| 117 | * object represents an mbuf structure. This cache preserves only |
| 118 | * the m_type field of the mbuf during its transactions. |
| 119 | * |
| 120 | * MC_CL: |
| 121 | * This is a cache of rudimentary objects of MCLBYTES in size; each |
| 122 | * object represents a mcluster structure. This cache does not |
| 123 | * preserve the contents of the objects during its transactions. |
| 124 | * |
| 125 | * MC_BIGCL: |
| 126 | * This is a cache of rudimentary objects of MBIGCLBYTES in size; each |
| 127 | * object represents a mbigcluster structure. This cache does not |
| 128 | * preserve the contents of the objects during its transaction. |
| 129 | * |
| 130 | * MC_MBUF_CL: |
| 131 | * This is a cache of mbufs each having a cluster attached to it. |
| 132 | * It is backed by MC_MBUF and MC_CL rudimentary caches. Several |
| 133 | * fields of the mbuf related to the external cluster are preserved |
| 134 | * during transactions. |
| 135 | * |
| 136 | * MC_MBUF_BIGCL: |
| 137 | * This is a cache of mbufs each having a big cluster attached to it. |
| 138 | * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several |
| 139 | * fields of the mbuf related to the external cluster are preserved |
| 140 | * during transactions. |
| 141 | * |
| 142 | * OBJECT ALLOCATION: |
| 143 | * |
| 144 | * Allocation requests are handled first at the per-CPU (mcache) layer |
| 145 | * before falling back to the slab layer. Performance is optimal when |
| 146 | * the request is satisfied at the CPU layer because global data/lock |
| 147 | * never gets accessed. When the slab layer is entered for allocation, |
| 148 | * the slab freelist will be checked first for available objects before |
| 149 | * the VM backing store is invoked. Slab layer operations are serialized |
| 150 | * for all of the caches as the mbuf global lock is held most of the time. |
| 151 | * Allocation paths are different depending on the class of objects: |
| 152 | * |
| 153 | * a. Rudimentary object: |
| 154 | * |
| 155 | * { m_get_common(), m_clattach(), m_mclget(), |
| 156 | * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(), |
| 157 | * composite object allocation } |
| 158 | * | ^ |
| 159 | * | | |
| 160 | * | +-----------------------+ |
| 161 | * v | |
| 162 | * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit() |
| 163 | * | ^ |
| 164 | * v | |
| 165 | * [CPU cache] -------> (found?) -------+ |
| 166 | * | | |
| 167 | * v | |
| 168 | * mbuf_slab_alloc() | |
| 169 | * | | |
| 170 | * v | |
| 171 | * +---------> [freelist] -------> (found?) -------+ |
| 172 | * | | |
| 173 | * | v |
| 174 | * | m_clalloc() |
| 175 | * | | |
| 176 | * | v |
| 177 | * +---<<---- kmem_mb_alloc() |
| 178 | * |
| 179 | * b. Composite object: |
| 180 | * |
| 181 | * { m_getpackets_internal(), m_allocpacket_internal() } |
| 182 | * | ^ |
| 183 | * | | |
| 184 | * | +------ (done) ---------+ |
| 185 | * v | |
| 186 | * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit() |
| 187 | * | ^ |
| 188 | * v | |
| 189 | * [CPU cache] -------> (found?) -------+ |
| 190 | * | | |
| 191 | * v | |
| 192 | * mbuf_cslab_alloc() | |
| 193 | * | | |
| 194 | * v | |
| 195 | * [freelist] -------> (found?) -------+ |
| 196 | * | | |
| 197 | * v | |
| 198 | * (rudimentary object) | |
| 199 | * mcache_alloc/mcache_alloc_ext() ------>>-----+ |
| 200 | * |
| 201 | * Auditing notes: If auditing is enabled, buffers will be subjected to |
| 202 | * integrity checks by the audit routine. This is done by verifying their |
| 203 | * contents against DEADBEEF (free) pattern before returning them to caller. |
| 204 | * As part of this step, the routine will also record the transaction and |
| 205 | * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will |
| 206 | * also restore any constructed data structure fields if necessary. |
| 207 | * |
| 208 | * OBJECT DEALLOCATION: |
| 209 | * |
| 210 | * Freeing an object simply involves placing it into the CPU cache; this |
| 211 | * pollutes the cache to benefit subsequent allocations. The slab layer |
| 212 | * will only be entered if the object is to be purged out of the cache. |
| 213 | * During normal operations, this happens only when the CPU layer resizes |
| 214 | * its bucket while it's adjusting to the allocation load. Deallocation |
| 215 | * paths are different depending on the class of objects: |
| 216 | * |
| 217 | * a. Rudimentary object: |
| 218 | * |
| 219 | * { m_free(), m_freem_list(), composite object deallocation } |
| 220 | * | ^ |
| 221 | * | | |
| 222 | * | +------ (done) ---------+ |
| 223 | * v | |
| 224 | * mcache_free/mcache_free_ext() | |
| 225 | * | | |
| 226 | * v | |
| 227 | * mbuf_slab_audit() | |
| 228 | * | | |
| 229 | * v | |
| 230 | * [CPU cache] ---> (not purging?) -----+ |
| 231 | * | | |
| 232 | * v | |
| 233 | * mbuf_slab_free() | |
| 234 | * | | |
| 235 | * v | |
| 236 | * [freelist] ----------->>------------+ |
| 237 | * (objects get purged to VM only on demand) |
| 238 | * |
| 239 | * b. Composite object: |
| 240 | * |
| 241 | * { m_free(), m_freem_list() } |
| 242 | * | ^ |
| 243 | * | | |
| 244 | * | +------ (done) ---------+ |
| 245 | * v | |
| 246 | * mcache_free/mcache_free_ext() | |
| 247 | * | | |
| 248 | * v | |
| 249 | * mbuf_cslab_audit() | |
| 250 | * | | |
| 251 | * v | |
| 252 | * [CPU cache] ---> (not purging?) -----+ |
| 253 | * | | |
| 254 | * v | |
| 255 | * mbuf_cslab_free() | |
| 256 | * | | |
| 257 | * v | |
| 258 | * [freelist] ---> (not purging?) -----+ |
| 259 | * | | |
| 260 | * v | |
| 261 | * (rudimentary object) | |
| 262 | * mcache_free/mcache_free_ext() ------->>------+ |
| 263 | * |
| 264 | * Auditing notes: If auditing is enabled, the audit routine will save |
| 265 | * any constructed data structure fields (if necessary) before filling the |
| 266 | * contents of the buffers with DEADBEEF (free) pattern and recording the |
| 267 | * transaction. Buffers that are freed (whether at CPU or slab layer) are |
| 268 | * expected to contain the free pattern. |
| 269 | * |
| 270 | * DEBUGGING: |
| 271 | * |
| 272 | * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this |
| 273 | * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally, |
| 274 | * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag, |
| 275 | * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak |
| 276 | * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g. |
| 277 | * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory. |
| 278 | * |
| 279 | * Each object is associated with exactly one mcache_audit_t structure that |
| 280 | * contains the information related to its last buffer transaction. Given |
| 281 | * an address of an object, the audit structure can be retrieved by finding |
| 282 | * the position of the object relevant to the base address of the cluster: |
| 283 | * |
| 284 | * +------------+ +=============+ |
| 285 | * | mbuf addr | | mclaudit[i] | |
| 286 | * +------------+ +=============+ |
| 287 | * | | cl_audit[0] | |
| 288 | * i = MTOBG(addr) +-------------+ |
| 289 | * | +-----> | cl_audit[1] | -----> mcache_audit_t |
| 290 | * b = BGTOM(i) | +-------------+ |
| 291 | * | | | ... | |
| 292 | * x = MCLIDX(b, addr) | +-------------+ |
| 293 | * | | | cl_audit[7] | |
| 294 | * +-----------------+ +-------------+ |
| 295 | * (e.g. x == 1) |
| 296 | * |
| 297 | * The mclaudit[] array is allocated at initialization time, but its contents |
| 298 | * get populated when the corresponding cluster is created. Because a page |
| 299 | * can be turned into NMBPG number of mbufs, we preserve enough space for the |
| 300 | * mbufs so that there is a 1-to-1 mapping between them. A page that never |
| 301 | * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the |
| 302 | * remaining entries unused. For 16KB cluster, only one entry from the first |
| 303 | * page is allocated and used for the entire object. |
| 304 | */ |
| 305 | |
| 306 | /* TODO: should be in header file */ |
| 307 | /* kernel translater */ |
| 308 | extern vm_offset_t kmem_mb_alloc(vm_map_t, int, int, kern_return_t *); |
| 309 | extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va); |
| 310 | extern vm_map_t mb_map; /* special map */ |
| 311 | |
| 312 | static uint32_t mb_kmem_contig_failed; |
| 313 | static uint32_t mb_kmem_failed; |
| 314 | static uint32_t mb_kmem_one_failed; |
| 315 | /* Timestamp of allocation failures. */ |
| 316 | static uint64_t mb_kmem_contig_failed_ts; |
| 317 | static uint64_t mb_kmem_failed_ts; |
| 318 | static uint64_t mb_kmem_one_failed_ts; |
| 319 | static uint64_t mb_kmem_contig_failed_size; |
| 320 | static uint64_t mb_kmem_failed_size; |
| 321 | static uint32_t mb_kmem_stats[6]; |
| 322 | static const char *mb_kmem_stats_labels[] = { "INVALID_ARGUMENT" , |
| 323 | "INVALID_ADDRESS" , |
| 324 | "RESOURCE_SHORTAGE" , |
| 325 | "NO_SPACE" , |
| 326 | "KERN_FAILURE" , |
| 327 | "OTHERS" }; |
| 328 | |
| 329 | /* Global lock */ |
| 330 | decl_lck_mtx_data(static, mbuf_mlock_data); |
| 331 | static lck_mtx_t *mbuf_mlock = &mbuf_mlock_data; |
| 332 | static lck_attr_t *mbuf_mlock_attr; |
| 333 | static lck_grp_t *mbuf_mlock_grp; |
| 334 | static lck_grp_attr_t *mbuf_mlock_grp_attr; |
| 335 | |
| 336 | /* Back-end (common) layer */ |
| 337 | static uint64_t mb_expand_cnt; |
| 338 | static uint64_t mb_expand_cl_cnt; |
| 339 | static uint64_t mb_expand_cl_total; |
| 340 | static uint64_t mb_expand_bigcl_cnt; |
| 341 | static uint64_t mb_expand_bigcl_total; |
| 342 | static uint64_t mb_expand_16kcl_cnt; |
| 343 | static uint64_t mb_expand_16kcl_total; |
| 344 | static boolean_t mbuf_worker_needs_wakeup; /* wait channel for mbuf worker */ |
| 345 | static uint32_t mbuf_worker_run_cnt; |
| 346 | static uint64_t mbuf_worker_last_runtime; |
| 347 | static uint64_t mbuf_drain_last_runtime; |
| 348 | static int mbuf_worker_ready; /* worker thread is runnable */ |
| 349 | static int ncpu; /* number of CPUs */ |
| 350 | static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */ |
| 351 | static ppnum_t mcl_pages; /* Size of array (# physical pages) */ |
| 352 | static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */ |
| 353 | static mcache_t *ref_cache; /* Cache of cluster reference & flags */ |
| 354 | static mcache_t *mcl_audit_con_cache; /* Audit contents cache */ |
| 355 | static unsigned int mbuf_debug; /* patchable mbuf mcache flags */ |
| 356 | static unsigned int mb_normalized; /* number of packets "normalized" */ |
| 357 | |
| 358 | #define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */ |
| 359 | #define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */ |
| 360 | |
| 361 | typedef enum { |
| 362 | MC_MBUF = 0, /* Regular mbuf */ |
| 363 | MC_CL, /* Cluster */ |
| 364 | MC_BIGCL, /* Large (4KB) cluster */ |
| 365 | MC_16KCL, /* Jumbo (16KB) cluster */ |
| 366 | MC_MBUF_CL, /* mbuf + cluster */ |
| 367 | MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */ |
| 368 | MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */ |
| 369 | } mbuf_class_t; |
| 370 | |
| 371 | #define MBUF_CLASS_MIN MC_MBUF |
| 372 | #define MBUF_CLASS_MAX MC_MBUF_16KCL |
| 373 | #define MBUF_CLASS_LAST MC_16KCL |
| 374 | #define MBUF_CLASS_VALID(c) \ |
| 375 | ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX) |
| 376 | #define MBUF_CLASS_COMPOSITE(c) \ |
| 377 | ((int)(c) > MBUF_CLASS_LAST) |
| 378 | |
| 379 | |
| 380 | /* |
| 381 | * mbuf specific mcache allocation request flags. |
| 382 | */ |
| 383 | #define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */ |
| 384 | |
| 385 | /* |
| 386 | * Per-cluster slab structure. |
| 387 | * |
| 388 | * A slab is a cluster control structure that contains one or more object |
| 389 | * chunks; the available chunks are chained in the slab's freelist (sl_head). |
| 390 | * Each time a chunk is taken out of the slab, the slab's reference count |
| 391 | * gets incremented. When all chunks have been taken out, the empty slab |
| 392 | * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is |
| 393 | * returned to a slab causes the slab's reference count to be decremented; |
| 394 | * it also causes the slab to be reinserted back to class's slab list, if |
| 395 | * it's not already done. |
| 396 | * |
| 397 | * Compartmentalizing of the object chunks into slabs allows us to easily |
| 398 | * merge one or more slabs together when the adjacent slabs are idle, as |
| 399 | * well as to convert or move a slab from one class to another; e.g. the |
| 400 | * mbuf cluster slab can be converted to a regular cluster slab when all |
| 401 | * mbufs in the slab have been freed. |
| 402 | * |
| 403 | * A slab may also span across multiple clusters for chunks larger than |
| 404 | * a cluster's size. In this case, only the slab of the first cluster is |
| 405 | * used. The rest of the slabs are marked with SLF_PARTIAL to indicate |
| 406 | * that they are part of the larger slab. |
| 407 | * |
| 408 | * Each slab controls a page of memory. |
| 409 | */ |
| 410 | typedef struct mcl_slab { |
| 411 | struct mcl_slab *sl_next; /* neighboring slab */ |
| 412 | u_int8_t sl_class; /* controlling mbuf class */ |
| 413 | int8_t sl_refcnt; /* outstanding allocations */ |
| 414 | int8_t sl_chunks; /* chunks (bufs) in this slab */ |
| 415 | u_int16_t sl_flags; /* slab flags (see below) */ |
| 416 | u_int16_t sl_len; /* slab length */ |
| 417 | void *sl_base; /* base of allocated memory */ |
| 418 | void *sl_head; /* first free buffer */ |
| 419 | TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */ |
| 420 | } mcl_slab_t; |
| 421 | |
| 422 | #define SLF_MAPPED 0x0001 /* backed by a mapped page */ |
| 423 | #define SLF_PARTIAL 0x0002 /* part of another slab */ |
| 424 | #define SLF_DETACHED 0x0004 /* not in slab freelist */ |
| 425 | |
| 426 | /* |
| 427 | * The array of slabs are broken into groups of arrays per 1MB of kernel |
| 428 | * memory to reduce the footprint. Each group is allocated on demand |
| 429 | * whenever a new piece of memory mapped in from the VM crosses the 1MB |
| 430 | * boundary. |
| 431 | */ |
| 432 | #define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT) |
| 433 | |
| 434 | typedef struct mcl_slabg { |
| 435 | mcl_slab_t *slg_slab; /* group of slabs */ |
| 436 | } mcl_slabg_t; |
| 437 | |
| 438 | /* |
| 439 | * Number of slabs needed to control a 16KB cluster object. |
| 440 | */ |
| 441 | #define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT) |
| 442 | |
| 443 | /* |
| 444 | * Per-cluster audit structure. |
| 445 | */ |
| 446 | typedef struct { |
| 447 | mcache_audit_t **cl_audit; /* array of audits */ |
| 448 | } mcl_audit_t; |
| 449 | |
| 450 | typedef struct { |
| 451 | struct thread *msa_thread; /* thread doing transaction */ |
| 452 | struct thread *msa_pthread; /* previous transaction thread */ |
| 453 | uint32_t msa_tstamp; /* transaction timestamp (ms) */ |
| 454 | uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */ |
| 455 | uint16_t msa_depth; /* pc stack depth */ |
| 456 | uint16_t msa_pdepth; /* previous transaction pc stack */ |
| 457 | void *msa_stack[MCACHE_STACK_DEPTH]; |
| 458 | void *msa_pstack[MCACHE_STACK_DEPTH]; |
| 459 | } mcl_scratch_audit_t; |
| 460 | |
| 461 | typedef struct { |
| 462 | /* |
| 463 | * Size of data from the beginning of an mbuf that covers m_hdr, |
| 464 | * pkthdr and m_ext structures. If auditing is enabled, we allocate |
| 465 | * a shadow mbuf structure of this size inside each audit structure, |
| 466 | * and the contents of the real mbuf gets copied into it when the mbuf |
| 467 | * is freed. This allows us to pattern-fill the mbuf for integrity |
| 468 | * check, and to preserve any constructed mbuf fields (e.g. mbuf + |
| 469 | * cluster cache case). Note that we don't save the contents of |
| 470 | * clusters when they are freed; we simply pattern-fill them. |
| 471 | */ |
| 472 | u_int8_t sc_mbuf[(MSIZE - _MHLEN) + sizeof (_m_ext_t)]; |
| 473 | mcl_scratch_audit_t sc_scratch __attribute__((aligned(8))); |
| 474 | } mcl_saved_contents_t; |
| 475 | |
| 476 | #define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t)) |
| 477 | |
| 478 | #define MCA_SAVED_MBUF_PTR(_mca) \ |
| 479 | ((struct mbuf *)(void *)((mcl_saved_contents_t *) \ |
| 480 | (_mca)->mca_contents)->sc_mbuf) |
| 481 | #define MCA_SAVED_MBUF_SIZE \ |
| 482 | (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf)) |
| 483 | #define MCA_SAVED_SCRATCH_PTR(_mca) \ |
| 484 | (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch) |
| 485 | |
| 486 | /* |
| 487 | * mbuf specific mcache audit flags |
| 488 | */ |
| 489 | #define MB_INUSE 0x01 /* object has not been returned to slab */ |
| 490 | #define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */ |
| 491 | #define MB_SCVALID 0x04 /* object has valid saved contents */ |
| 492 | |
| 493 | /* |
| 494 | * Each of the following two arrays hold up to nmbclusters elements. |
| 495 | */ |
| 496 | static mcl_audit_t *mclaudit; /* array of cluster audit information */ |
| 497 | static unsigned int maxclaudit; /* max # of entries in audit table */ |
| 498 | static mcl_slabg_t **slabstbl; /* cluster slabs table */ |
| 499 | static unsigned int maxslabgrp; /* max # of entries in slabs table */ |
| 500 | static unsigned int slabgrp; /* # of entries in slabs table */ |
| 501 | |
| 502 | /* Globals */ |
| 503 | int nclusters; /* # of clusters for non-jumbo (legacy) sizes */ |
| 504 | int njcl; /* # of clusters for jumbo sizes */ |
| 505 | int njclbytes; /* size of a jumbo cluster */ |
| 506 | unsigned char *mbutl; /* first mapped cluster address */ |
| 507 | unsigned char *embutl; /* ending virtual address of mclusters */ |
| 508 | int _max_linkhdr; /* largest link-level header */ |
| 509 | int _max_protohdr; /* largest protocol header */ |
| 510 | int max_hdr; /* largest link+protocol header */ |
| 511 | int max_datalen; /* MHLEN - max_hdr */ |
| 512 | |
| 513 | static boolean_t mclverify; /* debug: pattern-checking */ |
| 514 | static boolean_t mcltrace; /* debug: stack tracing */ |
| 515 | static boolean_t mclfindleak; /* debug: leak detection */ |
| 516 | static boolean_t mclexpleak; /* debug: expose leak info to user space */ |
| 517 | |
| 518 | static struct timeval mb_start; /* beginning of time */ |
| 519 | |
| 520 | /* mbuf leak detection variables */ |
| 521 | static struct mleak_table mleak_table; |
| 522 | static mleak_stat_t *mleak_stat; |
| 523 | |
| 524 | #define MLEAK_STAT_SIZE(n) \ |
| 525 | __builtin_offsetof(mleak_stat_t, ml_trace[n]) |
| 526 | |
| 527 | struct mallocation { |
| 528 | mcache_obj_t *element; /* the alloc'ed element, NULL if unused */ |
| 529 | u_int32_t trace_index; /* mtrace index for corresponding backtrace */ |
| 530 | u_int32_t count; /* How many objects were requested */ |
| 531 | u_int64_t hitcount; /* for determining hash effectiveness */ |
| 532 | }; |
| 533 | |
| 534 | struct mtrace { |
| 535 | u_int64_t collisions; |
| 536 | u_int64_t hitcount; |
| 537 | u_int64_t allocs; |
| 538 | u_int64_t depth; |
| 539 | uintptr_t addr[MLEAK_STACK_DEPTH]; |
| 540 | }; |
| 541 | |
| 542 | /* Size must be a power of two for the zhash to be able to just mask off bits */ |
| 543 | #define MLEAK_ALLOCATION_MAP_NUM 512 |
| 544 | #define MLEAK_TRACE_MAP_NUM 256 |
| 545 | |
| 546 | /* |
| 547 | * Sample factor for how often to record a trace. This is overwritable |
| 548 | * by the boot-arg mleak_sample_factor. |
| 549 | */ |
| 550 | #define MLEAK_SAMPLE_FACTOR 500 |
| 551 | |
| 552 | /* |
| 553 | * Number of top leakers recorded. |
| 554 | */ |
| 555 | #define MLEAK_NUM_TRACES 5 |
| 556 | |
| 557 | #define MB_LEAK_SPACING_64 " " |
| 558 | #define MB_LEAK_SPACING_32 " " |
| 559 | |
| 560 | |
| 561 | #define MB_LEAK_HDR_32 "\n\ |
| 562 | trace [1] trace [2] trace [3] trace [4] trace [5] \n\ |
| 563 | ---------- ---------- ---------- ---------- ---------- \n\ |
| 564 | " |
| 565 | |
| 566 | #define MB_LEAK_HDR_64 "\n\ |
| 567 | trace [1] trace [2] trace [3] \ |
| 568 | trace [4] trace [5] \n\ |
| 569 | ------------------ ------------------ ------------------ \ |
| 570 | ------------------ ------------------ \n\ |
| 571 | " |
| 572 | |
| 573 | static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM; |
| 574 | static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM; |
| 575 | |
| 576 | /* Hashmaps of allocations and their corresponding traces */ |
| 577 | static struct mallocation *mleak_allocations; |
| 578 | static struct mtrace *mleak_traces; |
| 579 | static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES]; |
| 580 | |
| 581 | /* Lock to protect mleak tables from concurrent modification */ |
| 582 | decl_lck_mtx_data(static, mleak_lock_data); |
| 583 | static lck_mtx_t *mleak_lock = &mleak_lock_data; |
| 584 | static lck_attr_t *mleak_lock_attr; |
| 585 | static lck_grp_t *mleak_lock_grp; |
| 586 | static lck_grp_attr_t *mleak_lock_grp_attr; |
| 587 | |
| 588 | /* *Failed* large allocations. */ |
| 589 | struct mtracelarge { |
| 590 | uint64_t size; |
| 591 | uint64_t depth; |
| 592 | uintptr_t addr[MLEAK_STACK_DEPTH]; |
| 593 | }; |
| 594 | |
| 595 | #define MTRACELARGE_NUM_TRACES 5 |
| 596 | static struct mtracelarge mtracelarge_table[MTRACELARGE_NUM_TRACES]; |
| 597 | |
| 598 | static void mtracelarge_register(size_t size); |
| 599 | |
| 600 | /* Lock to protect the completion callback table */ |
| 601 | static lck_grp_attr_t *mbuf_tx_compl_tbl_lck_grp_attr = NULL; |
| 602 | static lck_attr_t *mbuf_tx_compl_tbl_lck_attr = NULL; |
| 603 | static lck_grp_t *mbuf_tx_compl_tbl_lck_grp = NULL; |
| 604 | decl_lck_rw_data(, mbuf_tx_compl_tbl_lck_rw_data); |
| 605 | lck_rw_t *mbuf_tx_compl_tbl_lock = &mbuf_tx_compl_tbl_lck_rw_data; |
| 606 | |
| 607 | extern u_int32_t high_sb_max; |
| 608 | |
| 609 | /* The minimum number of objects that are allocated, to start. */ |
| 610 | #define MINCL 32 |
| 611 | #define MINBIGCL (MINCL >> 1) |
| 612 | #define MIN16KCL (MINCL >> 2) |
| 613 | |
| 614 | /* Low watermarks (only map in pages once free counts go below) */ |
| 615 | #define MBIGCL_LOWAT MINBIGCL |
| 616 | #define M16KCL_LOWAT MIN16KCL |
| 617 | |
| 618 | typedef struct { |
| 619 | mbuf_class_t mtbl_class; /* class type */ |
| 620 | mcache_t *mtbl_cache; /* mcache for this buffer class */ |
| 621 | TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */ |
| 622 | mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */ |
| 623 | mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */ |
| 624 | u_int32_t mtbl_maxsize; /* maximum buffer size */ |
| 625 | int mtbl_minlimit; /* minimum allowed */ |
| 626 | int mtbl_maxlimit; /* maximum allowed */ |
| 627 | u_int32_t mtbl_wantpurge; /* purge during next reclaim */ |
| 628 | uint32_t mtbl_avgtotal; /* average total on iOS */ |
| 629 | u_int32_t mtbl_expand; /* worker should expand the class */ |
| 630 | } mbuf_table_t; |
| 631 | |
| 632 | #define m_class(c) mbuf_table[c].mtbl_class |
| 633 | #define m_cache(c) mbuf_table[c].mtbl_cache |
| 634 | #define m_slablist(c) mbuf_table[c].mtbl_slablist |
| 635 | #define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist |
| 636 | #define m_maxsize(c) mbuf_table[c].mtbl_maxsize |
| 637 | #define m_minlimit(c) mbuf_table[c].mtbl_minlimit |
| 638 | #define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit |
| 639 | #define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge |
| 640 | #define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname |
| 641 | #define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size |
| 642 | #define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total |
| 643 | #define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active |
| 644 | #define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree |
| 645 | #define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt |
| 646 | #define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt |
| 647 | #define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt |
| 648 | #define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified |
| 649 | #define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt |
| 650 | #define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt |
| 651 | #define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal |
| 652 | #define m_peak(c) mbuf_table[c].mtbl_stats->mbcl_peak_reported |
| 653 | #define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt |
| 654 | #define m_region_expand(c) mbuf_table[c].mtbl_expand |
| 655 | |
| 656 | static mbuf_table_t mbuf_table[] = { |
| 657 | /* |
| 658 | * The caches for mbufs, regular clusters and big clusters. |
| 659 | * The average total values were based on data gathered by actual |
| 660 | * usage patterns on iOS. |
| 661 | */ |
| 662 | { MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)), |
| 663 | NULL, NULL, 0, 0, 0, 0, 3000, 0 }, |
| 664 | { MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)), |
| 665 | NULL, NULL, 0, 0, 0, 0, 2000, 0 }, |
| 666 | { MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)), |
| 667 | NULL, NULL, 0, 0, 0, 0, 1000, 0 }, |
| 668 | { MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)), |
| 669 | NULL, NULL, 0, 0, 0, 0, 200, 0 }, |
| 670 | /* |
| 671 | * The following are special caches; they serve as intermediate |
| 672 | * caches backed by the above rudimentary caches. Each object |
| 673 | * in the cache is an mbuf with a cluster attached to it. Unlike |
| 674 | * the above caches, these intermediate caches do not directly |
| 675 | * deal with the slab structures; instead, the constructed |
| 676 | * cached elements are simply stored in the freelists. |
| 677 | */ |
| 678 | { MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 2000, 0 }, |
| 679 | { MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000, 0 }, |
| 680 | { MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 200, 0 }, |
| 681 | }; |
| 682 | |
| 683 | #define NELEM(a) (sizeof (a) / sizeof ((a)[0])) |
| 684 | |
| 685 | |
| 686 | static uint32_t |
| 687 | m_avgtotal(mbuf_class_t c) |
| 688 | { |
| 689 | return (mbuf_table[c].mtbl_avgtotal); |
| 690 | } |
| 691 | |
| 692 | static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */ |
| 693 | static int mb_waiters; /* number of waiters */ |
| 694 | |
| 695 | boolean_t mb_peak_newreport = FALSE; |
| 696 | boolean_t mb_peak_firstreport = FALSE; |
| 697 | |
| 698 | /* generate a report by default after 1 week of uptime */ |
| 699 | #define MBUF_PEAK_FIRST_REPORT_THRESHOLD 604800 |
| 700 | |
| 701 | #define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */ |
| 702 | static struct timeval mb_wdtstart; /* watchdog start timestamp */ |
| 703 | static char *mbuf_dump_buf; |
| 704 | |
| 705 | #define MBUF_DUMP_BUF_SIZE 4096 |
| 706 | |
| 707 | /* |
| 708 | * mbuf watchdog is enabled by default on embedded platforms. It is |
| 709 | * also toggeable via the kern.ipc.mb_watchdog sysctl. |
| 710 | * Garbage collection is also enabled by default on embedded platforms. |
| 711 | * mb_drain_maxint controls the amount of time to wait (in seconds) before |
| 712 | * consecutive calls to mbuf_drain(). |
| 713 | */ |
| 714 | #if CONFIG_EMBEDDED |
| 715 | static unsigned int mb_watchdog = 1; |
| 716 | static unsigned int mb_drain_maxint = 60; |
| 717 | #else |
| 718 | static unsigned int mb_watchdog = 0; |
| 719 | static unsigned int mb_drain_maxint = 0; |
| 720 | #endif /* CONFIG_EMBEDDED */ |
| 721 | |
| 722 | uintptr_t mb_obscure_extfree __attribute__((visibility("hidden" ))); |
| 723 | uintptr_t mb_obscure_extref __attribute__((visibility("hidden" ))); |
| 724 | |
| 725 | /* Red zone */ |
| 726 | static u_int32_t mb_redzone_cookie; |
| 727 | static void m_redzone_init(struct mbuf *); |
| 728 | static void m_redzone_verify(struct mbuf *m); |
| 729 | |
| 730 | /* The following are used to serialize m_clalloc() */ |
| 731 | static boolean_t mb_clalloc_busy; |
| 732 | static void *mb_clalloc_waitchan = &mb_clalloc_busy; |
| 733 | static int mb_clalloc_waiters; |
| 734 | |
| 735 | static void mbuf_mtypes_sync(boolean_t); |
| 736 | static int mbstat_sysctl SYSCTL_HANDLER_ARGS; |
| 737 | static void mbuf_stat_sync(void); |
| 738 | static int mb_stat_sysctl SYSCTL_HANDLER_ARGS; |
| 739 | static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS; |
| 740 | static int mleak_table_sysctl SYSCTL_HANDLER_ARGS; |
| 741 | static char *mbuf_dump(void); |
| 742 | static void mbuf_table_init(void); |
| 743 | static inline void m_incref(struct mbuf *); |
| 744 | static inline u_int16_t m_decref(struct mbuf *); |
| 745 | static int m_clalloc(const u_int32_t, const int, const u_int32_t); |
| 746 | static void mbuf_worker_thread_init(void); |
| 747 | static mcache_obj_t *slab_alloc(mbuf_class_t, int); |
| 748 | static void slab_free(mbuf_class_t, mcache_obj_t *); |
| 749 | static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***, |
| 750 | unsigned int, int); |
| 751 | static void mbuf_slab_free(void *, mcache_obj_t *, int); |
| 752 | static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t); |
| 753 | static void mbuf_slab_notify(void *, u_int32_t); |
| 754 | static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***, |
| 755 | unsigned int); |
| 756 | static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int); |
| 757 | static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***, |
| 758 | unsigned int, int); |
| 759 | static void mbuf_cslab_free(void *, mcache_obj_t *, int); |
| 760 | static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t); |
| 761 | static int freelist_populate(mbuf_class_t, unsigned int, int); |
| 762 | static void freelist_init(mbuf_class_t); |
| 763 | static boolean_t mbuf_cached_above(mbuf_class_t, int); |
| 764 | static boolean_t mbuf_steal(mbuf_class_t, unsigned int); |
| 765 | static void m_reclaim(mbuf_class_t, unsigned int, boolean_t); |
| 766 | static int m_howmany(int, size_t); |
| 767 | static void mbuf_worker_thread(void); |
| 768 | static void mbuf_watchdog(void); |
| 769 | static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int); |
| 770 | |
| 771 | static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **, |
| 772 | size_t, unsigned int); |
| 773 | static void mcl_audit_free(void *, unsigned int); |
| 774 | static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *); |
| 775 | static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t); |
| 776 | static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t, |
| 777 | boolean_t); |
| 778 | static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t); |
| 779 | static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *); |
| 780 | static void mcl_audit_scratch(mcache_audit_t *); |
| 781 | static void mcl_audit_mcheck_panic(struct mbuf *); |
| 782 | static void mcl_audit_verify_nextptr(void *, mcache_audit_t *); |
| 783 | |
| 784 | static void mleak_activate(void); |
| 785 | static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t); |
| 786 | static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int); |
| 787 | static void mleak_free(mcache_obj_t *); |
| 788 | static void mleak_sort_traces(void); |
| 789 | static void mleak_update_stats(void); |
| 790 | |
| 791 | static mcl_slab_t *slab_get(void *); |
| 792 | static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t, |
| 793 | void *, void *, unsigned int, int, int); |
| 794 | static void slab_insert(mcl_slab_t *, mbuf_class_t); |
| 795 | static void slab_remove(mcl_slab_t *, mbuf_class_t); |
| 796 | static boolean_t slab_inrange(mcl_slab_t *, void *); |
| 797 | static void slab_nextptr_panic(mcl_slab_t *, void *); |
| 798 | static void slab_detach(mcl_slab_t *); |
| 799 | static boolean_t slab_is_detached(mcl_slab_t *); |
| 800 | |
| 801 | static int m_copyback0(struct mbuf **, int, int, const void *, int, int); |
| 802 | static struct mbuf *m_split0(struct mbuf *, int, int, int); |
| 803 | __private_extern__ void mbuf_report_peak_usage(void); |
| 804 | static boolean_t mbuf_report_usage(mbuf_class_t); |
| 805 | #if DEBUG || DEVELOPMENT |
| 806 | #define mbwdog_logger(fmt, ...) _mbwdog_logger(__func__, __LINE__, fmt, ## __VA_ARGS__) |
| 807 | static void _mbwdog_logger(const char *func, const int line, const char *fmt, ...); |
| 808 | static char *mbwdog_logging; |
| 809 | const unsigned mbwdog_logging_size = 4096; |
| 810 | static size_t mbwdog_logging_used; |
| 811 | #else |
| 812 | #define mbwdog_logger(fmt, ...) do { } while (0) |
| 813 | #endif |
| 814 | static void mbuf_drain_locked(boolean_t); |
| 815 | |
| 816 | /* flags for m_copyback0 */ |
| 817 | #define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */ |
| 818 | #define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */ |
| 819 | #define M_COPYBACK0_COW 0x0004 /* do copy-on-write */ |
| 820 | #define M_COPYBACK0_EXTEND 0x0008 /* extend chain */ |
| 821 | |
| 822 | /* |
| 823 | * This flag is set for all mbufs that come out of and into the composite |
| 824 | * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that |
| 825 | * are marked with such a flag have clusters attached to them, and will be |
| 826 | * treated differently when they are freed; instead of being placed back |
| 827 | * into the mbuf and cluster freelists, the composite mbuf + cluster objects |
| 828 | * are placed back into the appropriate composite cache's freelist, and the |
| 829 | * actual freeing is deferred until the composite objects are purged. At |
| 830 | * such a time, this flag will be cleared from the mbufs and the objects |
| 831 | * will be freed into their own separate freelists. |
| 832 | */ |
| 833 | #define EXTF_COMPOSITE 0x1 |
| 834 | |
| 835 | /* |
| 836 | * This flag indicates that the external cluster is read-only, i.e. it is |
| 837 | * or was referred to by more than one mbufs. Once set, this flag is never |
| 838 | * cleared. |
| 839 | */ |
| 840 | #define EXTF_READONLY 0x2 |
| 841 | /* |
| 842 | * This flag indicates that the external cluster is paired with the mbuf. |
| 843 | * Pairing implies an external free routine defined which will be invoked |
| 844 | * when the reference count drops to the minimum at m_free time. This |
| 845 | * flag is never cleared. |
| 846 | */ |
| 847 | #define EXTF_PAIRED 0x4 |
| 848 | |
| 849 | #define EXTF_MASK \ |
| 850 | (EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED) |
| 851 | |
| 852 | #define MEXT_MINREF(m) ((m_get_rfa(m))->minref) |
| 853 | #define MEXT_REF(m) ((m_get_rfa(m))->refcnt) |
| 854 | #define MEXT_PREF(m) ((m_get_rfa(m))->prefcnt) |
| 855 | #define MEXT_FLAGS(m) ((m_get_rfa(m))->flags) |
| 856 | #define MEXT_PRIV(m) ((m_get_rfa(m))->priv) |
| 857 | #define MEXT_PMBUF(m) ((m_get_rfa(m))->paired) |
| 858 | #define MEXT_TOKEN(m) ((m_get_rfa(m))->ext_token) |
| 859 | #define MBUF_IS_COMPOSITE(m) \ |
| 860 | (MEXT_REF(m) == MEXT_MINREF(m) && \ |
| 861 | (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE) |
| 862 | /* |
| 863 | * This macro can be used to test if the mbuf is paired to an external |
| 864 | * cluster. The test for MEXT_PMBUF being equal to the mbuf in subject |
| 865 | * is important, as EXTF_PAIRED alone is insufficient since it is immutable, |
| 866 | * and thus survives calls to m_free_paired. |
| 867 | */ |
| 868 | #define MBUF_IS_PAIRED(m) \ |
| 869 | (((m)->m_flags & M_EXT) && \ |
| 870 | (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \ |
| 871 | MEXT_PMBUF(m) == (m)) |
| 872 | |
| 873 | /* |
| 874 | * Macros used to verify the integrity of the mbuf. |
| 875 | */ |
| 876 | #define _MCHECK(m) { \ |
| 877 | if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \ |
| 878 | if (mclaudit == NULL) \ |
| 879 | panic("MCHECK: m_type=%d m=%p", \ |
| 880 | (u_int16_t)(m)->m_type, m); \ |
| 881 | else \ |
| 882 | mcl_audit_mcheck_panic(m); \ |
| 883 | } \ |
| 884 | } |
| 885 | |
| 886 | #define MBUF_IN_MAP(addr) \ |
| 887 | ((unsigned char *)(addr) >= mbutl && \ |
| 888 | (unsigned char *)(addr) < embutl) |
| 889 | |
| 890 | #define MRANGE(addr) { \ |
| 891 | if (!MBUF_IN_MAP(addr)) \ |
| 892 | panic("MRANGE: address out of range 0x%p", addr); \ |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Macro version of mtod. |
| 897 | */ |
| 898 | #define MTOD(m, t) ((t)((m)->m_data)) |
| 899 | |
| 900 | /* |
| 901 | * Macros to obtain page index given a base cluster address |
| 902 | */ |
| 903 | #define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT) |
| 904 | #define PGTOM(x) (mbutl + (x << PAGE_SHIFT)) |
| 905 | |
| 906 | /* |
| 907 | * Macro to find the mbuf index relative to a base. |
| 908 | */ |
| 909 | #define MBPAGEIDX(c, m) \ |
| 910 | (((unsigned char *)(m) - (unsigned char *)(c)) >> MSIZESHIFT) |
| 911 | |
| 912 | /* |
| 913 | * Same thing for 2KB cluster index. |
| 914 | */ |
| 915 | #define CLPAGEIDX(c, m) \ |
| 916 | (((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT) |
| 917 | |
| 918 | /* |
| 919 | * Macro to find 4KB cluster index relative to a base |
| 920 | */ |
| 921 | #define BCLPAGEIDX(c, m) \ |
| 922 | (((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT) |
| 923 | |
| 924 | /* |
| 925 | * Macros used during mbuf and cluster initialization. |
| 926 | */ |
| 927 | #define MBUF_INIT_PKTHDR(m) { \ |
| 928 | (m)->m_pkthdr.rcvif = NULL; \ |
| 929 | (m)->m_pkthdr.pkt_hdr = NULL; \ |
| 930 | (m)->m_pkthdr.len = 0; \ |
| 931 | (m)->m_pkthdr.csum_flags = 0; \ |
| 932 | (m)->m_pkthdr.csum_data = 0; \ |
| 933 | (m)->m_pkthdr.vlan_tag = 0; \ |
| 934 | m_classifier_init(m, 0); \ |
| 935 | m_tag_init(m, 1); \ |
| 936 | m_scratch_init(m); \ |
| 937 | m_redzone_init(m); \ |
| 938 | } |
| 939 | |
| 940 | #define MBUF_INIT(m, pkthdr, type) { \ |
| 941 | _MCHECK(m); \ |
| 942 | (m)->m_next = (m)->m_nextpkt = NULL; \ |
| 943 | (m)->m_len = 0; \ |
| 944 | (m)->m_type = type; \ |
| 945 | if ((pkthdr) == 0) { \ |
| 946 | (m)->m_data = (m)->m_dat; \ |
| 947 | (m)->m_flags = 0; \ |
| 948 | } else { \ |
| 949 | (m)->m_data = (m)->m_pktdat; \ |
| 950 | (m)->m_flags = M_PKTHDR; \ |
| 951 | MBUF_INIT_PKTHDR(m); \ |
| 952 | } \ |
| 953 | } |
| 954 | |
| 955 | #define MEXT_INIT(m, buf, size, free, arg, rfa, min, ref, pref, flag, \ |
| 956 | priv, pm) { \ |
| 957 | (m)->m_data = (m)->m_ext.ext_buf = (buf); \ |
| 958 | (m)->m_flags |= M_EXT; \ |
| 959 | m_set_ext((m), (rfa), (free), (arg)); \ |
| 960 | (m)->m_ext.ext_size = (size); \ |
| 961 | MEXT_MINREF(m) = (min); \ |
| 962 | MEXT_REF(m) = (ref); \ |
| 963 | MEXT_PREF(m) = (pref); \ |
| 964 | MEXT_FLAGS(m) = (flag); \ |
| 965 | MEXT_PRIV(m) = (priv); \ |
| 966 | MEXT_PMBUF(m) = (pm); \ |
| 967 | } |
| 968 | |
| 969 | #define MBUF_CL_INIT(m, buf, rfa, ref, flag) \ |
| 970 | MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \ |
| 971 | ref, 0, flag, 0, NULL) |
| 972 | |
| 973 | #define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \ |
| 974 | MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \ |
| 975 | ref, 0, flag, 0, NULL) |
| 976 | |
| 977 | #define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \ |
| 978 | MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \ |
| 979 | ref, 0, flag, 0, NULL) |
| 980 | |
| 981 | /* |
| 982 | * Macro to convert BSD malloc sleep flag to mcache's |
| 983 | */ |
| 984 | #define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP) |
| 985 | |
| 986 | /* |
| 987 | * The structure that holds all mbuf class statistics exportable via sysctl. |
| 988 | * Similar to mbstat structure, the mb_stat structure is protected by the |
| 989 | * global mbuf lock. It contains additional information about the classes |
| 990 | * that allows for a more accurate view of the state of the allocator. |
| 991 | */ |
| 992 | struct mb_stat *mb_stat; |
| 993 | struct omb_stat *omb_stat; /* For backwards compatibility */ |
| 994 | |
| 995 | #define MB_STAT_SIZE(n) \ |
| 996 | __builtin_offsetof(mb_stat_t, mbs_class[n]) |
| 997 | #define OMB_STAT_SIZE(n) \ |
| 998 | ((size_t)(&((struct omb_stat *)0)->mbs_class[n])) |
| 999 | |
| 1000 | /* |
| 1001 | * The legacy structure holding all of the mbuf allocation statistics. |
| 1002 | * The actual statistics used by the kernel are stored in the mbuf_table |
| 1003 | * instead, and are updated atomically while the global mbuf lock is held. |
| 1004 | * They are mirrored in mbstat to support legacy applications (e.g. netstat). |
| 1005 | * Unlike before, the kernel no longer relies on the contents of mbstat for |
| 1006 | * its operations (e.g. cluster expansion) because the structure is exposed |
| 1007 | * to outside and could possibly be modified, therefore making it unsafe. |
| 1008 | * With the exception of the mbstat.m_mtypes array (see below), all of the |
| 1009 | * statistics are updated as they change. |
| 1010 | */ |
| 1011 | struct mbstat mbstat; |
| 1012 | |
| 1013 | #define MBSTAT_MTYPES_MAX \ |
| 1014 | (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0])) |
| 1015 | |
| 1016 | /* |
| 1017 | * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated |
| 1018 | * atomically and stored in a per-CPU structure which is lock-free; this is |
| 1019 | * done in order to avoid writing to the global mbstat data structure which |
| 1020 | * would cause false sharing. During sysctl request for kern.ipc.mbstat, |
| 1021 | * the statistics across all CPUs will be converged into the mbstat.m_mtypes |
| 1022 | * array and returned to the application. Any updates for types greater or |
| 1023 | * equal than MT_MAX would be done atomically to the mbstat; this slows down |
| 1024 | * performance but is okay since the kernel uses only up to MT_MAX-1 while |
| 1025 | * anything beyond that (up to type 255) is considered a corner case. |
| 1026 | */ |
| 1027 | typedef struct { |
| 1028 | unsigned int cpu_mtypes[MT_MAX]; |
| 1029 | } __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE), packed)) mtypes_cpu_t; |
| 1030 | |
| 1031 | typedef struct { |
| 1032 | mtypes_cpu_t mbs_cpu[1]; |
| 1033 | } mbuf_mtypes_t; |
| 1034 | |
| 1035 | static mbuf_mtypes_t *mbuf_mtypes; /* per-CPU statistics */ |
| 1036 | |
| 1037 | #define MBUF_MTYPES_SIZE(n) \ |
| 1038 | ((size_t)(&((mbuf_mtypes_t *)0)->mbs_cpu[n])) |
| 1039 | |
| 1040 | #define MTYPES_CPU(p) \ |
| 1041 | ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number()))) |
| 1042 | |
| 1043 | #define mtype_stat_add(type, n) { \ |
| 1044 | if ((unsigned)(type) < MT_MAX) { \ |
| 1045 | mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \ |
| 1046 | atomic_add_32(&mbs->cpu_mtypes[type], n); \ |
| 1047 | } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \ |
| 1048 | atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \ |
| 1049 | } \ |
| 1050 | } |
| 1051 | |
| 1052 | #define mtype_stat_sub(t, n) mtype_stat_add(t, -(n)) |
| 1053 | #define mtype_stat_inc(t) mtype_stat_add(t, 1) |
| 1054 | #define mtype_stat_dec(t) mtype_stat_sub(t, 1) |
| 1055 | |
| 1056 | static void |
| 1057 | mbuf_mtypes_sync(boolean_t locked) |
| 1058 | { |
| 1059 | int m, n; |
| 1060 | mtypes_cpu_t mtc; |
| 1061 | |
| 1062 | if (locked) |
| 1063 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 1064 | |
| 1065 | bzero(&mtc, sizeof (mtc)); |
| 1066 | for (m = 0; m < ncpu; m++) { |
| 1067 | mtypes_cpu_t *scp = &mbuf_mtypes->mbs_cpu[m]; |
| 1068 | mtypes_cpu_t temp; |
| 1069 | |
| 1070 | bcopy(&scp->cpu_mtypes, &temp.cpu_mtypes, |
| 1071 | sizeof (temp.cpu_mtypes)); |
| 1072 | |
| 1073 | for (n = 0; n < MT_MAX; n++) |
| 1074 | mtc.cpu_mtypes[n] += temp.cpu_mtypes[n]; |
| 1075 | } |
| 1076 | if (!locked) |
| 1077 | lck_mtx_lock(mbuf_mlock); |
| 1078 | for (n = 0; n < MT_MAX; n++) |
| 1079 | mbstat.m_mtypes[n] = mtc.cpu_mtypes[n]; |
| 1080 | if (!locked) |
| 1081 | lck_mtx_unlock(mbuf_mlock); |
| 1082 | } |
| 1083 | |
| 1084 | static int |
| 1085 | mbstat_sysctl SYSCTL_HANDLER_ARGS |
| 1086 | { |
| 1087 | #pragma unused(oidp, arg1, arg2) |
| 1088 | mbuf_mtypes_sync(FALSE); |
| 1089 | |
| 1090 | return (SYSCTL_OUT(req, &mbstat, sizeof (mbstat))); |
| 1091 | } |
| 1092 | |
| 1093 | static void |
| 1094 | mbuf_stat_sync(void) |
| 1095 | { |
| 1096 | mb_class_stat_t *sp; |
| 1097 | mcache_cpu_t *ccp; |
| 1098 | mcache_t *cp; |
| 1099 | int k, m, bktsize; |
| 1100 | |
| 1101 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 1102 | |
| 1103 | for (k = 0; k < NELEM(mbuf_table); k++) { |
| 1104 | cp = m_cache(k); |
| 1105 | ccp = &cp->mc_cpu[0]; |
| 1106 | bktsize = ccp->cc_bktsize; |
| 1107 | sp = mbuf_table[k].mtbl_stats; |
| 1108 | |
| 1109 | if (cp->mc_flags & MCF_NOCPUCACHE) |
| 1110 | sp->mbcl_mc_state = MCS_DISABLED; |
| 1111 | else if (cp->mc_purge_cnt > 0) |
| 1112 | sp->mbcl_mc_state = MCS_PURGING; |
| 1113 | else if (bktsize == 0) |
| 1114 | sp->mbcl_mc_state = MCS_OFFLINE; |
| 1115 | else |
| 1116 | sp->mbcl_mc_state = MCS_ONLINE; |
| 1117 | |
| 1118 | sp->mbcl_mc_cached = 0; |
| 1119 | for (m = 0; m < ncpu; m++) { |
| 1120 | ccp = &cp->mc_cpu[m]; |
| 1121 | if (ccp->cc_objs > 0) |
| 1122 | sp->mbcl_mc_cached += ccp->cc_objs; |
| 1123 | if (ccp->cc_pobjs > 0) |
| 1124 | sp->mbcl_mc_cached += ccp->cc_pobjs; |
| 1125 | } |
| 1126 | sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize); |
| 1127 | sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached - |
| 1128 | sp->mbcl_infree; |
| 1129 | |
| 1130 | sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt; |
| 1131 | sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt; |
| 1132 | sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt; |
| 1133 | |
| 1134 | /* Calculate total count specific to each class */ |
| 1135 | sp->mbcl_ctotal = sp->mbcl_total; |
| 1136 | switch (m_class(k)) { |
| 1137 | case MC_MBUF: |
| 1138 | /* Deduct mbufs used in composite caches */ |
| 1139 | sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) + |
| 1140 | m_total(MC_MBUF_BIGCL)); |
| 1141 | break; |
| 1142 | |
| 1143 | case MC_CL: |
| 1144 | /* Deduct clusters used in composite cache */ |
| 1145 | sp->mbcl_ctotal -= m_total(MC_MBUF_CL); |
| 1146 | break; |
| 1147 | |
| 1148 | case MC_BIGCL: |
| 1149 | /* Deduct clusters used in composite cache */ |
| 1150 | sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL); |
| 1151 | break; |
| 1152 | |
| 1153 | case MC_16KCL: |
| 1154 | /* Deduct clusters used in composite cache */ |
| 1155 | sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL); |
| 1156 | break; |
| 1157 | |
| 1158 | default: |
| 1159 | break; |
| 1160 | } |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | static int |
| 1165 | mb_stat_sysctl SYSCTL_HANDLER_ARGS |
| 1166 | { |
| 1167 | #pragma unused(oidp, arg1, arg2) |
| 1168 | void *statp; |
| 1169 | int k, statsz, proc64 = proc_is64bit(req->p); |
| 1170 | |
| 1171 | lck_mtx_lock(mbuf_mlock); |
| 1172 | mbuf_stat_sync(); |
| 1173 | |
| 1174 | if (!proc64) { |
| 1175 | struct omb_class_stat *oc; |
| 1176 | struct mb_class_stat *c; |
| 1177 | |
| 1178 | omb_stat->mbs_cnt = mb_stat->mbs_cnt; |
| 1179 | oc = &omb_stat->mbs_class[0]; |
| 1180 | c = &mb_stat->mbs_class[0]; |
| 1181 | for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) { |
| 1182 | (void) snprintf(oc->mbcl_cname, sizeof (oc->mbcl_cname), |
| 1183 | "%s" , c->mbcl_cname); |
| 1184 | oc->mbcl_size = c->mbcl_size; |
| 1185 | oc->mbcl_total = c->mbcl_total; |
| 1186 | oc->mbcl_active = c->mbcl_active; |
| 1187 | oc->mbcl_infree = c->mbcl_infree; |
| 1188 | oc->mbcl_slab_cnt = c->mbcl_slab_cnt; |
| 1189 | oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt; |
| 1190 | oc->mbcl_free_cnt = c->mbcl_free_cnt; |
| 1191 | oc->mbcl_notified = c->mbcl_notified; |
| 1192 | oc->mbcl_purge_cnt = c->mbcl_purge_cnt; |
| 1193 | oc->mbcl_fail_cnt = c->mbcl_fail_cnt; |
| 1194 | oc->mbcl_ctotal = c->mbcl_ctotal; |
| 1195 | oc->mbcl_release_cnt = c->mbcl_release_cnt; |
| 1196 | oc->mbcl_mc_state = c->mbcl_mc_state; |
| 1197 | oc->mbcl_mc_cached = c->mbcl_mc_cached; |
| 1198 | oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt; |
| 1199 | oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt; |
| 1200 | oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt; |
| 1201 | } |
| 1202 | statp = omb_stat; |
| 1203 | statsz = OMB_STAT_SIZE(NELEM(mbuf_table)); |
| 1204 | } else { |
| 1205 | statp = mb_stat; |
| 1206 | statsz = MB_STAT_SIZE(NELEM(mbuf_table)); |
| 1207 | } |
| 1208 | |
| 1209 | lck_mtx_unlock(mbuf_mlock); |
| 1210 | |
| 1211 | return (SYSCTL_OUT(req, statp, statsz)); |
| 1212 | } |
| 1213 | |
| 1214 | static int |
| 1215 | mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS |
| 1216 | { |
| 1217 | #pragma unused(oidp, arg1, arg2) |
| 1218 | int i; |
| 1219 | |
| 1220 | /* Ensure leak tracing turned on */ |
| 1221 | if (!mclfindleak || !mclexpleak) |
| 1222 | return (ENXIO); |
| 1223 | |
| 1224 | lck_mtx_lock(mleak_lock); |
| 1225 | mleak_update_stats(); |
| 1226 | i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES)); |
| 1227 | lck_mtx_unlock(mleak_lock); |
| 1228 | |
| 1229 | return (i); |
| 1230 | } |
| 1231 | |
| 1232 | static int |
| 1233 | mleak_table_sysctl SYSCTL_HANDLER_ARGS |
| 1234 | { |
| 1235 | #pragma unused(oidp, arg1, arg2) |
| 1236 | int i = 0; |
| 1237 | |
| 1238 | /* Ensure leak tracing turned on */ |
| 1239 | if (!mclfindleak || !mclexpleak) |
| 1240 | return (ENXIO); |
| 1241 | |
| 1242 | lck_mtx_lock(mleak_lock); |
| 1243 | i = SYSCTL_OUT(req, &mleak_table, sizeof (mleak_table)); |
| 1244 | lck_mtx_unlock(mleak_lock); |
| 1245 | |
| 1246 | return (i); |
| 1247 | } |
| 1248 | |
| 1249 | static inline void |
| 1250 | m_incref(struct mbuf *m) |
| 1251 | { |
| 1252 | UInt16 old, new; |
| 1253 | volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m); |
| 1254 | |
| 1255 | do { |
| 1256 | old = *addr; |
| 1257 | new = old + 1; |
| 1258 | ASSERT(new != 0); |
| 1259 | } while (!OSCompareAndSwap16(old, new, addr)); |
| 1260 | |
| 1261 | /* |
| 1262 | * If cluster is shared, mark it with (sticky) EXTF_READONLY; |
| 1263 | * we don't clear the flag when the refcount goes back to the |
| 1264 | * minimum, to simplify code calling m_mclhasreference(). |
| 1265 | */ |
| 1266 | if (new > (MEXT_MINREF(m) + 1) && !(MEXT_FLAGS(m) & EXTF_READONLY)) |
| 1267 | (void) OSBitOrAtomic16(EXTF_READONLY, &MEXT_FLAGS(m)); |
| 1268 | } |
| 1269 | |
| 1270 | static inline u_int16_t |
| 1271 | m_decref(struct mbuf *m) |
| 1272 | { |
| 1273 | UInt16 old, new; |
| 1274 | volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m); |
| 1275 | |
| 1276 | do { |
| 1277 | old = *addr; |
| 1278 | new = old - 1; |
| 1279 | ASSERT(old != 0); |
| 1280 | } while (!OSCompareAndSwap16(old, new, addr)); |
| 1281 | |
| 1282 | return (new); |
| 1283 | } |
| 1284 | |
| 1285 | static void |
| 1286 | mbuf_table_init(void) |
| 1287 | { |
| 1288 | unsigned int b, c, s; |
| 1289 | int m, config_mbuf_jumbo = 0; |
| 1290 | |
| 1291 | MALLOC(omb_stat, struct omb_stat *, OMB_STAT_SIZE(NELEM(mbuf_table)), |
| 1292 | M_TEMP, M_WAITOK | M_ZERO); |
| 1293 | VERIFY(omb_stat != NULL); |
| 1294 | |
| 1295 | MALLOC(mb_stat, mb_stat_t *, MB_STAT_SIZE(NELEM(mbuf_table)), |
| 1296 | M_TEMP, M_WAITOK | M_ZERO); |
| 1297 | VERIFY(mb_stat != NULL); |
| 1298 | |
| 1299 | mb_stat->mbs_cnt = NELEM(mbuf_table); |
| 1300 | for (m = 0; m < NELEM(mbuf_table); m++) |
| 1301 | mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m]; |
| 1302 | |
| 1303 | #if CONFIG_MBUF_JUMBO |
| 1304 | config_mbuf_jumbo = 1; |
| 1305 | #endif /* CONFIG_MBUF_JUMBO */ |
| 1306 | |
| 1307 | if (config_mbuf_jumbo == 1 || PAGE_SIZE == M16KCLBYTES) { |
| 1308 | /* |
| 1309 | * Set aside 1/3 of the mbuf cluster map for jumbo |
| 1310 | * clusters; we do this only on platforms where jumbo |
| 1311 | * cluster pool is enabled. |
| 1312 | */ |
| 1313 | njcl = nmbclusters / 3; |
| 1314 | njclbytes = M16KCLBYTES; |
| 1315 | } |
| 1316 | |
| 1317 | /* |
| 1318 | * nclusters holds both the 2KB and 4KB pools, so ensure it's |
| 1319 | * a multiple of 4KB clusters. |
| 1320 | */ |
| 1321 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG); |
| 1322 | if (njcl > 0) { |
| 1323 | /* |
| 1324 | * Each jumbo cluster takes 8 2KB clusters, so make |
| 1325 | * sure that the pool size is evenly divisible by 8; |
| 1326 | * njcl is in 2KB unit, hence treated as such. |
| 1327 | */ |
| 1328 | njcl = P2ROUNDDOWN(nmbclusters - nclusters, NCLPJCL); |
| 1329 | |
| 1330 | /* Update nclusters with rounded down value of njcl */ |
| 1331 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG); |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * njcl is valid only on platforms with 16KB jumbo clusters or |
| 1336 | * with 16KB pages, where it is configured to 1/3 of the pool |
| 1337 | * size. On these platforms, the remaining is used for 2KB |
| 1338 | * and 4KB clusters. On platforms without 16KB jumbo clusters, |
| 1339 | * the entire pool is used for both 2KB and 4KB clusters. A 4KB |
| 1340 | * cluster can either be splitted into 16 mbufs, or into 2 2KB |
| 1341 | * clusters. |
| 1342 | * |
| 1343 | * +---+---+------------ ... -----------+------- ... -------+ |
| 1344 | * | c | b | s | njcl | |
| 1345 | * +---+---+------------ ... -----------+------- ... -------+ |
| 1346 | * |
| 1347 | * 1/32th of the shared region is reserved for pure 2KB and 4KB |
| 1348 | * clusters (1/64th each.) |
| 1349 | */ |
| 1350 | c = P2ROUNDDOWN((nclusters >> 6), NCLPG); /* in 2KB unit */ |
| 1351 | b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), NBCLPG); /* in 4KB unit */ |
| 1352 | s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */ |
| 1353 | |
| 1354 | /* |
| 1355 | * 1/64th (c) is reserved for 2KB clusters. |
| 1356 | */ |
| 1357 | m_minlimit(MC_CL) = c; |
| 1358 | m_maxlimit(MC_CL) = s + c; /* in 2KB unit */ |
| 1359 | m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES; |
| 1360 | (void) snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl" ); |
| 1361 | |
| 1362 | /* |
| 1363 | * Another 1/64th (b) of the map is reserved for 4KB clusters. |
| 1364 | * It cannot be turned into 2KB clusters or mbufs. |
| 1365 | */ |
| 1366 | m_minlimit(MC_BIGCL) = b; |
| 1367 | m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */ |
| 1368 | m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES; |
| 1369 | (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl" ); |
| 1370 | |
| 1371 | /* |
| 1372 | * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB) |
| 1373 | */ |
| 1374 | m_minlimit(MC_MBUF) = 0; |
| 1375 | m_maxlimit(MC_MBUF) = (s << NMBPCLSHIFT); /* in mbuf unit */ |
| 1376 | m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE; |
| 1377 | (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf" ); |
| 1378 | |
| 1379 | /* |
| 1380 | * Set limits for the composite classes. |
| 1381 | */ |
| 1382 | m_minlimit(MC_MBUF_CL) = 0; |
| 1383 | m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL); |
| 1384 | m_maxsize(MC_MBUF_CL) = MCLBYTES; |
| 1385 | m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL); |
| 1386 | (void) snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl" ); |
| 1387 | |
| 1388 | m_minlimit(MC_MBUF_BIGCL) = 0; |
| 1389 | m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL); |
| 1390 | m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES; |
| 1391 | m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL); |
| 1392 | (void) snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl" ); |
| 1393 | |
| 1394 | /* |
| 1395 | * And for jumbo classes. |
| 1396 | */ |
| 1397 | m_minlimit(MC_16KCL) = 0; |
| 1398 | m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */ |
| 1399 | m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES; |
| 1400 | (void) snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl" ); |
| 1401 | |
| 1402 | m_minlimit(MC_MBUF_16KCL) = 0; |
| 1403 | m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL); |
| 1404 | m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES; |
| 1405 | m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL); |
| 1406 | (void) snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl" ); |
| 1407 | |
| 1408 | /* |
| 1409 | * Initialize the legacy mbstat structure. |
| 1410 | */ |
| 1411 | bzero(&mbstat, sizeof (mbstat)); |
| 1412 | mbstat.m_msize = m_maxsize(MC_MBUF); |
| 1413 | mbstat.m_mclbytes = m_maxsize(MC_CL); |
| 1414 | mbstat.m_minclsize = MINCLSIZE; |
| 1415 | mbstat.m_mlen = MLEN; |
| 1416 | mbstat.m_mhlen = MHLEN; |
| 1417 | mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL); |
| 1418 | } |
| 1419 | |
| 1420 | #if defined(__LP64__) |
| 1421 | typedef struct ncl_tbl { |
| 1422 | uint64_t nt_maxmem; /* memory (sane) size */ |
| 1423 | uint32_t nt_mbpool; /* mbuf pool size */ |
| 1424 | } ncl_tbl_t; |
| 1425 | |
| 1426 | /* Non-server */ |
| 1427 | static ncl_tbl_t ncl_table[] = { |
| 1428 | { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ }, |
| 1429 | { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (96 << MBSHIFT) /* 96 MB */ }, |
| 1430 | { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (128 << MBSHIFT) /* 128 MB */ }, |
| 1431 | { 0, 0 } |
| 1432 | }; |
| 1433 | |
| 1434 | /* Server */ |
| 1435 | static ncl_tbl_t ncl_table_srv[] = { |
| 1436 | { (1ULL << GBSHIFT) /* 1 GB */, (96 << MBSHIFT) /* 96 MB */ }, |
| 1437 | { (1ULL << (GBSHIFT + 2)) /* 4 GB */, (128 << MBSHIFT) /* 128 MB */ }, |
| 1438 | { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (160 << MBSHIFT) /* 160 MB */ }, |
| 1439 | { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (192 << MBSHIFT) /* 192 MB */ }, |
| 1440 | { (1ULL << (GBSHIFT + 5)) /* 32 GB */, (256 << MBSHIFT) /* 256 MB */ }, |
| 1441 | { (1ULL << (GBSHIFT + 6)) /* 64 GB */, (384 << MBSHIFT) /* 384 MB */ }, |
| 1442 | { 0, 0 } |
| 1443 | }; |
| 1444 | #endif /* __LP64__ */ |
| 1445 | |
| 1446 | __private_extern__ unsigned int |
| 1447 | mbuf_default_ncl(int server, uint64_t mem) |
| 1448 | { |
| 1449 | #if !defined(__LP64__) |
| 1450 | #pragma unused(server) |
| 1451 | unsigned int n; |
| 1452 | /* |
| 1453 | * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM). |
| 1454 | */ |
| 1455 | if ((n = ((mem / 16) / MCLBYTES)) > 32768) |
| 1456 | n = 32768; |
| 1457 | #else |
| 1458 | unsigned int n, i; |
| 1459 | ncl_tbl_t *tbl = (server ? ncl_table_srv : ncl_table); |
| 1460 | /* |
| 1461 | * 64-bit kernel (mbuf pool size based on table). |
| 1462 | */ |
| 1463 | n = tbl[0].nt_mbpool; |
| 1464 | for (i = 0; tbl[i].nt_mbpool != 0; i++) { |
| 1465 | if (mem < tbl[i].nt_maxmem) |
| 1466 | break; |
| 1467 | n = tbl[i].nt_mbpool; |
| 1468 | } |
| 1469 | n >>= MCLSHIFT; |
| 1470 | #endif /* !__LP64__ */ |
| 1471 | return (n); |
| 1472 | } |
| 1473 | |
| 1474 | __private_extern__ void |
| 1475 | mbinit(void) |
| 1476 | { |
| 1477 | unsigned int m; |
| 1478 | unsigned int initmcl = 0; |
| 1479 | void *buf; |
| 1480 | thread_t thread = THREAD_NULL; |
| 1481 | |
| 1482 | microuptime(&mb_start); |
| 1483 | |
| 1484 | /* |
| 1485 | * These MBUF_ values must be equal to their private counterparts. |
| 1486 | */ |
| 1487 | _CASSERT(MBUF_EXT == M_EXT); |
| 1488 | _CASSERT(MBUF_PKTHDR == M_PKTHDR); |
| 1489 | _CASSERT(MBUF_EOR == M_EOR); |
| 1490 | _CASSERT(MBUF_LOOP == M_LOOP); |
| 1491 | _CASSERT(MBUF_BCAST == M_BCAST); |
| 1492 | _CASSERT(MBUF_MCAST == M_MCAST); |
| 1493 | _CASSERT(MBUF_FRAG == M_FRAG); |
| 1494 | _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG); |
| 1495 | _CASSERT(MBUF_LASTFRAG == M_LASTFRAG); |
| 1496 | _CASSERT(MBUF_PROMISC == M_PROMISC); |
| 1497 | _CASSERT(MBUF_HASFCS == M_HASFCS); |
| 1498 | |
| 1499 | _CASSERT(MBUF_TYPE_FREE == MT_FREE); |
| 1500 | _CASSERT(MBUF_TYPE_DATA == MT_DATA); |
| 1501 | _CASSERT(MBUF_TYPE_HEADER == MT_HEADER); |
| 1502 | _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET); |
| 1503 | _CASSERT(MBUF_TYPE_PCB == MT_PCB); |
| 1504 | _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE); |
| 1505 | _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE); |
| 1506 | _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE); |
| 1507 | _CASSERT(MBUF_TYPE_SONAME == MT_SONAME); |
| 1508 | _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS); |
| 1509 | _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE); |
| 1510 | _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS); |
| 1511 | _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR); |
| 1512 | _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL); |
| 1513 | _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA); |
| 1514 | |
| 1515 | _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4); |
| 1516 | _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6); |
| 1517 | _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL); |
| 1518 | _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16); |
| 1519 | _CASSERT(MBUF_CSUM_REQ_ZERO_INVERT == CSUM_ZERO_INVERT); |
| 1520 | _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP); |
| 1521 | _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP); |
| 1522 | _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP); |
| 1523 | _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6); |
| 1524 | _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6); |
| 1525 | _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED); |
| 1526 | _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID); |
| 1527 | _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID); |
| 1528 | _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR); |
| 1529 | |
| 1530 | _CASSERT(MBUF_WAITOK == M_WAIT); |
| 1531 | _CASSERT(MBUF_DONTWAIT == M_DONTWAIT); |
| 1532 | _CASSERT(MBUF_COPYALL == M_COPYALL); |
| 1533 | |
| 1534 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK); |
| 1535 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK); |
| 1536 | _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE); |
| 1537 | _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE); |
| 1538 | _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE); |
| 1539 | _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI); |
| 1540 | _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI); |
| 1541 | _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI); |
| 1542 | _CASSERT(MBUF_SC2TC(MBUF_SC_SIG) == MBUF_TC_VI); |
| 1543 | _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO); |
| 1544 | _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO); |
| 1545 | |
| 1546 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK); |
| 1547 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE); |
| 1548 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI); |
| 1549 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO); |
| 1550 | |
| 1551 | /* Module specific scratch space (32-bit alignment requirement) */ |
| 1552 | _CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) % |
| 1553 | sizeof (uint32_t))); |
| 1554 | |
| 1555 | /* Initialize random red zone cookie value */ |
| 1556 | _CASSERT(sizeof (mb_redzone_cookie) == |
| 1557 | sizeof (((struct pkthdr *)0)->redzone)); |
| 1558 | read_random(&mb_redzone_cookie, sizeof (mb_redzone_cookie)); |
| 1559 | read_random(&mb_obscure_extref, sizeof (mb_obscure_extref)); |
| 1560 | read_random(&mb_obscure_extfree, sizeof (mb_obscure_extfree)); |
| 1561 | mb_obscure_extref |= 0x3; |
| 1562 | mb_obscure_extfree |= 0x3; |
| 1563 | |
| 1564 | /* Make sure we don't save more than we should */ |
| 1565 | _CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof (struct mbuf)); |
| 1566 | |
| 1567 | if (nmbclusters == 0) |
| 1568 | nmbclusters = NMBCLUSTERS; |
| 1569 | |
| 1570 | /* This should be a sane (at least even) value by now */ |
| 1571 | VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1)); |
| 1572 | |
| 1573 | /* Setup the mbuf table */ |
| 1574 | mbuf_table_init(); |
| 1575 | |
| 1576 | /* Global lock for common layer */ |
| 1577 | mbuf_mlock_grp_attr = lck_grp_attr_alloc_init(); |
| 1578 | mbuf_mlock_grp = lck_grp_alloc_init("mbuf" , mbuf_mlock_grp_attr); |
| 1579 | mbuf_mlock_attr = lck_attr_alloc_init(); |
| 1580 | lck_mtx_init(mbuf_mlock, mbuf_mlock_grp, mbuf_mlock_attr); |
| 1581 | |
| 1582 | /* |
| 1583 | * Allocate cluster slabs table: |
| 1584 | * |
| 1585 | * maxslabgrp = (N * 2048) / (1024 * 1024) |
| 1586 | * |
| 1587 | * Where N is nmbclusters rounded up to the nearest 512. This yields |
| 1588 | * mcl_slab_g_t units, each one representing a MB of memory. |
| 1589 | */ |
| 1590 | maxslabgrp = |
| 1591 | (P2ROUNDUP(nmbclusters, (MBSIZE >> MCLSHIFT)) << MCLSHIFT) >> MBSHIFT; |
| 1592 | MALLOC(slabstbl, mcl_slabg_t **, maxslabgrp * sizeof (mcl_slabg_t *), |
| 1593 | M_TEMP, M_WAITOK | M_ZERO); |
| 1594 | VERIFY(slabstbl != NULL); |
| 1595 | |
| 1596 | /* |
| 1597 | * Allocate audit structures, if needed: |
| 1598 | * |
| 1599 | * maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE |
| 1600 | * |
| 1601 | * This yields mcl_audit_t units, each one representing a page. |
| 1602 | */ |
| 1603 | PE_parse_boot_argn("mbuf_debug" , &mbuf_debug, sizeof (mbuf_debug)); |
| 1604 | mbuf_debug |= mcache_getflags(); |
| 1605 | if (mbuf_debug & MCF_DEBUG) { |
| 1606 | int l; |
| 1607 | mcl_audit_t *mclad; |
| 1608 | maxclaudit = ((maxslabgrp << MBSHIFT) >> PAGE_SHIFT); |
| 1609 | MALLOC(mclaudit, mcl_audit_t *, maxclaudit * sizeof (*mclaudit), |
| 1610 | M_TEMP, M_WAITOK | M_ZERO); |
| 1611 | VERIFY(mclaudit != NULL); |
| 1612 | for (l = 0, mclad = mclaudit; l < maxclaudit; l++) { |
| 1613 | MALLOC(mclad[l].cl_audit, mcache_audit_t **, |
| 1614 | NMBPG * sizeof(mcache_audit_t *), |
| 1615 | M_TEMP, M_WAITOK | M_ZERO); |
| 1616 | VERIFY(mclad[l].cl_audit != NULL); |
| 1617 | } |
| 1618 | |
| 1619 | mcl_audit_con_cache = mcache_create("mcl_audit_contents" , |
| 1620 | AUDIT_CONTENTS_SIZE, sizeof (u_int64_t), 0, MCR_SLEEP); |
| 1621 | VERIFY(mcl_audit_con_cache != NULL); |
| 1622 | } |
| 1623 | mclverify = (mbuf_debug & MCF_VERIFY); |
| 1624 | mcltrace = (mbuf_debug & MCF_TRACE); |
| 1625 | mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG); |
| 1626 | mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG); |
| 1627 | |
| 1628 | /* Enable mbuf leak logging, with a lock to protect the tables */ |
| 1629 | |
| 1630 | mleak_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 1631 | mleak_lock_grp = lck_grp_alloc_init("mleak_lock" , mleak_lock_grp_attr); |
| 1632 | mleak_lock_attr = lck_attr_alloc_init(); |
| 1633 | lck_mtx_init(mleak_lock, mleak_lock_grp, mleak_lock_attr); |
| 1634 | |
| 1635 | mleak_activate(); |
| 1636 | |
| 1637 | /* |
| 1638 | * Allocate structure for per-CPU statistics that's aligned |
| 1639 | * on the CPU cache boundary; this code assumes that we never |
| 1640 | * uninitialize this framework, since the original address |
| 1641 | * before alignment is not saved. |
| 1642 | */ |
| 1643 | ncpu = ml_get_max_cpus(); |
| 1644 | MALLOC(buf, void *, MBUF_MTYPES_SIZE(ncpu) + CPU_CACHE_LINE_SIZE, |
| 1645 | M_TEMP, M_WAITOK); |
| 1646 | VERIFY(buf != NULL); |
| 1647 | |
| 1648 | mbuf_mtypes = (mbuf_mtypes_t *)P2ROUNDUP((intptr_t)buf, |
| 1649 | CPU_CACHE_LINE_SIZE); |
| 1650 | bzero(mbuf_mtypes, MBUF_MTYPES_SIZE(ncpu)); |
| 1651 | |
| 1652 | /* Calculate the number of pages assigned to the cluster pool */ |
| 1653 | mcl_pages = (nmbclusters << MCLSHIFT) / PAGE_SIZE; |
| 1654 | MALLOC(mcl_paddr, ppnum_t *, mcl_pages * sizeof (ppnum_t), |
| 1655 | M_TEMP, M_WAITOK); |
| 1656 | VERIFY(mcl_paddr != NULL); |
| 1657 | |
| 1658 | /* Register with the I/O Bus mapper */ |
| 1659 | mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages); |
| 1660 | bzero((char *)mcl_paddr, mcl_pages * sizeof (ppnum_t)); |
| 1661 | |
| 1662 | embutl = (mbutl + (nmbclusters * MCLBYTES)); |
| 1663 | VERIFY(((embutl - mbutl) % MBIGCLBYTES) == 0); |
| 1664 | |
| 1665 | /* Prime up the freelist */ |
| 1666 | PE_parse_boot_argn("initmcl" , &initmcl, sizeof (initmcl)); |
| 1667 | if (initmcl != 0) { |
| 1668 | initmcl >>= NCLPBGSHIFT; /* become a 4K unit */ |
| 1669 | if (initmcl > m_maxlimit(MC_BIGCL)) |
| 1670 | initmcl = m_maxlimit(MC_BIGCL); |
| 1671 | } |
| 1672 | if (initmcl < m_minlimit(MC_BIGCL)) |
| 1673 | initmcl = m_minlimit(MC_BIGCL); |
| 1674 | |
| 1675 | lck_mtx_lock(mbuf_mlock); |
| 1676 | |
| 1677 | /* |
| 1678 | * For classes with non-zero minimum limits, populate their freelists |
| 1679 | * so that m_total(class) is at least m_minlimit(class). |
| 1680 | */ |
| 1681 | VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0); |
| 1682 | freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT); |
| 1683 | VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL)); |
| 1684 | freelist_init(m_class(MC_CL)); |
| 1685 | |
| 1686 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 1687 | /* Make sure we didn't miss any */ |
| 1688 | VERIFY(m_minlimit(m_class(m)) == 0 || |
| 1689 | m_total(m_class(m)) >= m_minlimit(m_class(m))); |
| 1690 | |
| 1691 | /* populate the initial sizes and report from there on */ |
| 1692 | m_peak(m_class(m)) = m_total(m_class(m)); |
| 1693 | } |
| 1694 | mb_peak_newreport = FALSE; |
| 1695 | |
| 1696 | lck_mtx_unlock(mbuf_mlock); |
| 1697 | |
| 1698 | (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init, |
| 1699 | NULL, &thread); |
| 1700 | thread_deallocate(thread); |
| 1701 | |
| 1702 | ref_cache = mcache_create("mext_ref" , sizeof (struct ext_ref), |
| 1703 | 0, 0, MCR_SLEEP); |
| 1704 | |
| 1705 | /* Create the cache for each class */ |
| 1706 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 1707 | void *allocfunc, *freefunc, *auditfunc, *logfunc; |
| 1708 | u_int32_t flags; |
| 1709 | |
| 1710 | flags = mbuf_debug; |
| 1711 | if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL || |
| 1712 | m_class(m) == MC_MBUF_16KCL) { |
| 1713 | allocfunc = mbuf_cslab_alloc; |
| 1714 | freefunc = mbuf_cslab_free; |
| 1715 | auditfunc = mbuf_cslab_audit; |
| 1716 | logfunc = mleak_logger; |
| 1717 | } else { |
| 1718 | allocfunc = mbuf_slab_alloc; |
| 1719 | freefunc = mbuf_slab_free; |
| 1720 | auditfunc = mbuf_slab_audit; |
| 1721 | logfunc = mleak_logger; |
| 1722 | } |
| 1723 | |
| 1724 | /* |
| 1725 | * Disable per-CPU caches for jumbo classes if there |
| 1726 | * is no jumbo cluster pool available in the system. |
| 1727 | * The cache itself is still created (but will never |
| 1728 | * be populated) since it simplifies the code. |
| 1729 | */ |
| 1730 | if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) && |
| 1731 | njcl == 0) |
| 1732 | flags |= MCF_NOCPUCACHE; |
| 1733 | |
| 1734 | if (!mclfindleak) |
| 1735 | flags |= MCF_NOLEAKLOG; |
| 1736 | |
| 1737 | m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m), |
| 1738 | allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify, |
| 1739 | (void *)(uintptr_t)m, flags, MCR_SLEEP); |
| 1740 | } |
| 1741 | |
| 1742 | /* |
| 1743 | * Set the max limit on sb_max to be 1/16 th of the size of |
| 1744 | * memory allocated for mbuf clusters. |
| 1745 | */ |
| 1746 | high_sb_max = (nmbclusters << (MCLSHIFT - 4)); |
| 1747 | if (high_sb_max < sb_max) { |
| 1748 | /* sb_max is too large for this configuration, scale it down */ |
| 1749 | if (high_sb_max > (1 << MBSHIFT)) { |
| 1750 | /* We have atleast 16 M of mbuf pool */ |
| 1751 | sb_max = high_sb_max; |
| 1752 | } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) { |
| 1753 | /* |
| 1754 | * If we have more than 1M of mbufpool, cap the size of |
| 1755 | * max sock buf at 1M |
| 1756 | */ |
| 1757 | sb_max = high_sb_max = (1 << MBSHIFT); |
| 1758 | } else { |
| 1759 | sb_max = high_sb_max; |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | /* allocate space for mbuf_dump_buf */ |
| 1764 | MALLOC(mbuf_dump_buf, char *, MBUF_DUMP_BUF_SIZE, M_TEMP, M_WAITOK); |
| 1765 | VERIFY(mbuf_dump_buf != NULL); |
| 1766 | |
| 1767 | if (mbuf_debug & MCF_DEBUG) { |
| 1768 | printf("%s: MLEN %d, MHLEN %d\n" , __func__, |
| 1769 | (int)_MLEN, (int)_MHLEN); |
| 1770 | } |
| 1771 | |
| 1772 | printf("%s: done [%d MB total pool size, (%d/%d) split]\n" , __func__, |
| 1773 | (nmbclusters << MCLSHIFT) >> MBSHIFT, |
| 1774 | (nclusters << MCLSHIFT) >> MBSHIFT, |
| 1775 | (njcl << MCLSHIFT) >> MBSHIFT); |
| 1776 | |
| 1777 | /* initialize lock form tx completion callback table */ |
| 1778 | mbuf_tx_compl_tbl_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 1779 | if (mbuf_tx_compl_tbl_lck_grp_attr == NULL) { |
| 1780 | panic("%s: lck_grp_attr_alloc_init failed" , __func__); |
| 1781 | /* NOTREACHED */ |
| 1782 | } |
| 1783 | mbuf_tx_compl_tbl_lck_grp = lck_grp_alloc_init("mbuf_tx_compl_tbl" , |
| 1784 | mbuf_tx_compl_tbl_lck_grp_attr); |
| 1785 | if (mbuf_tx_compl_tbl_lck_grp == NULL) { |
| 1786 | panic("%s: lck_grp_alloc_init failed" , __func__); |
| 1787 | /* NOTREACHED */ |
| 1788 | } |
| 1789 | mbuf_tx_compl_tbl_lck_attr = lck_attr_alloc_init(); |
| 1790 | if (mbuf_tx_compl_tbl_lck_attr == NULL) { |
| 1791 | panic("%s: lck_attr_alloc_init failed" , __func__); |
| 1792 | /* NOTREACHED */ |
| 1793 | } |
| 1794 | lck_rw_init(mbuf_tx_compl_tbl_lock, mbuf_tx_compl_tbl_lck_grp, |
| 1795 | mbuf_tx_compl_tbl_lck_attr); |
| 1796 | |
| 1797 | } |
| 1798 | |
| 1799 | /* |
| 1800 | * Obtain a slab of object(s) from the class's freelist. |
| 1801 | */ |
| 1802 | static mcache_obj_t * |
| 1803 | slab_alloc(mbuf_class_t class, int wait) |
| 1804 | { |
| 1805 | mcl_slab_t *sp; |
| 1806 | mcache_obj_t *buf; |
| 1807 | |
| 1808 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 1809 | |
| 1810 | /* This should always be NULL for us */ |
| 1811 | VERIFY(m_cobjlist(class) == NULL); |
| 1812 | |
| 1813 | /* |
| 1814 | * Treat composite objects as having longer lifespan by using |
| 1815 | * a slab from the reverse direction, in hoping that this could |
| 1816 | * reduce the probability of fragmentation for slabs that hold |
| 1817 | * more than one buffer chunks (e.g. mbuf slabs). For other |
| 1818 | * slabs, this probably doesn't make much of a difference. |
| 1819 | */ |
| 1820 | if ((class == MC_MBUF || class == MC_CL || class == MC_BIGCL) |
| 1821 | && (wait & MCR_COMP)) |
| 1822 | sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead); |
| 1823 | else |
| 1824 | sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class)); |
| 1825 | |
| 1826 | if (sp == NULL) { |
| 1827 | VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0); |
| 1828 | /* The slab list for this class is empty */ |
| 1829 | return (NULL); |
| 1830 | } |
| 1831 | |
| 1832 | VERIFY(m_infree(class) > 0); |
| 1833 | VERIFY(!slab_is_detached(sp)); |
| 1834 | VERIFY(sp->sl_class == class && |
| 1835 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); |
| 1836 | buf = sp->sl_head; |
| 1837 | VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf)); |
| 1838 | sp->sl_head = buf->obj_next; |
| 1839 | /* Increment slab reference */ |
| 1840 | sp->sl_refcnt++; |
| 1841 | |
| 1842 | VERIFY(sp->sl_head != NULL || sp->sl_refcnt == sp->sl_chunks); |
| 1843 | |
| 1844 | if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) { |
| 1845 | slab_nextptr_panic(sp, sp->sl_head); |
| 1846 | /* In case sl_head is in the map but not in the slab */ |
| 1847 | VERIFY(slab_inrange(sp, sp->sl_head)); |
| 1848 | /* NOTREACHED */ |
| 1849 | } |
| 1850 | |
| 1851 | if (mclaudit != NULL) { |
| 1852 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); |
| 1853 | mca->mca_uflags = 0; |
| 1854 | /* Save contents on mbuf objects only */ |
| 1855 | if (class == MC_MBUF) |
| 1856 | mca->mca_uflags |= MB_SCVALID; |
| 1857 | } |
| 1858 | |
| 1859 | if (class == MC_CL) { |
| 1860 | mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL); |
| 1861 | /* |
| 1862 | * A 2K cluster slab can have at most NCLPG references. |
| 1863 | */ |
| 1864 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPG && |
| 1865 | sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE); |
| 1866 | VERIFY(sp->sl_refcnt < NCLPG || sp->sl_head == NULL); |
| 1867 | } else if (class == MC_BIGCL) { |
| 1868 | mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) + |
| 1869 | m_infree(MC_MBUF_BIGCL); |
| 1870 | /* |
| 1871 | * A 4K cluster slab can have NBCLPG references. |
| 1872 | */ |
| 1873 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_chunks == NBCLPG && |
| 1874 | sp->sl_len == PAGE_SIZE && |
| 1875 | (sp->sl_refcnt < NBCLPG || sp->sl_head == NULL)); |
| 1876 | } else if (class == MC_16KCL) { |
| 1877 | mcl_slab_t *nsp; |
| 1878 | int k; |
| 1879 | |
| 1880 | --m_infree(MC_16KCL); |
| 1881 | VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 && |
| 1882 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
| 1883 | /* |
| 1884 | * Increment 2nd-Nth slab reference, where N is NSLABSP16KB. |
| 1885 | * A 16KB big cluster takes NSLABSP16KB slabs, each having at |
| 1886 | * most 1 reference. |
| 1887 | */ |
| 1888 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
| 1889 | nsp = nsp->sl_next; |
| 1890 | /* Next slab must already be present */ |
| 1891 | VERIFY(nsp != NULL); |
| 1892 | nsp->sl_refcnt++; |
| 1893 | VERIFY(!slab_is_detached(nsp)); |
| 1894 | VERIFY(nsp->sl_class == MC_16KCL && |
| 1895 | nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) && |
| 1896 | nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 && |
| 1897 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && |
| 1898 | nsp->sl_head == NULL); |
| 1899 | } |
| 1900 | } else { |
| 1901 | VERIFY(class == MC_MBUF); |
| 1902 | --m_infree(MC_MBUF); |
| 1903 | /* |
| 1904 | * If auditing is turned on, this check is |
| 1905 | * deferred until later in mbuf_slab_audit(). |
| 1906 | */ |
| 1907 | if (mclaudit == NULL) |
| 1908 | _MCHECK((struct mbuf *)buf); |
| 1909 | /* |
| 1910 | * Since we have incremented the reference count above, |
| 1911 | * an mbuf slab (formerly a 4KB cluster slab that was cut |
| 1912 | * up into mbufs) must have a reference count between 1 |
| 1913 | * and NMBPG at this point. |
| 1914 | */ |
| 1915 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPG && |
| 1916 | sp->sl_chunks == NMBPG && |
| 1917 | sp->sl_len == PAGE_SIZE); |
| 1918 | VERIFY(sp->sl_refcnt < NMBPG || sp->sl_head == NULL); |
| 1919 | } |
| 1920 | |
| 1921 | /* If empty, remove this slab from the class's freelist */ |
| 1922 | if (sp->sl_head == NULL) { |
| 1923 | VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPG); |
| 1924 | VERIFY(class != MC_CL || sp->sl_refcnt == NCLPG); |
| 1925 | VERIFY(class != MC_BIGCL || sp->sl_refcnt == NBCLPG); |
| 1926 | slab_remove(sp, class); |
| 1927 | } |
| 1928 | |
| 1929 | return (buf); |
| 1930 | } |
| 1931 | |
| 1932 | /* |
| 1933 | * Place a slab of object(s) back into a class's slab list. |
| 1934 | */ |
| 1935 | static void |
| 1936 | slab_free(mbuf_class_t class, mcache_obj_t *buf) |
| 1937 | { |
| 1938 | mcl_slab_t *sp; |
| 1939 | boolean_t reinit_supercl = false; |
| 1940 | mbuf_class_t super_class; |
| 1941 | |
| 1942 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 1943 | |
| 1944 | VERIFY(class != MC_16KCL || njcl > 0); |
| 1945 | VERIFY(buf->obj_next == NULL); |
| 1946 | |
| 1947 | /* |
| 1948 | * Synchronizing with m_clalloc, as it reads m_total, while we here |
| 1949 | * are modifying m_total. |
| 1950 | */ |
| 1951 | while (mb_clalloc_busy) { |
| 1952 | mb_clalloc_waiters++; |
| 1953 | (void) msleep(mb_clalloc_waitchan, mbuf_mlock, |
| 1954 | (PZERO-1), "m_clalloc" , NULL); |
| 1955 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 1956 | } |
| 1957 | |
| 1958 | /* We are busy now; tell everyone else to go away */ |
| 1959 | mb_clalloc_busy = TRUE; |
| 1960 | |
| 1961 | sp = slab_get(buf); |
| 1962 | VERIFY(sp->sl_class == class && slab_inrange(sp, buf) && |
| 1963 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); |
| 1964 | |
| 1965 | /* Decrement slab reference */ |
| 1966 | sp->sl_refcnt--; |
| 1967 | |
| 1968 | if (class == MC_CL) { |
| 1969 | VERIFY(IS_P2ALIGNED(buf, MCLBYTES)); |
| 1970 | /* |
| 1971 | * A slab that has been splitted for 2KB clusters can have |
| 1972 | * at most 1 outstanding reference at this point. |
| 1973 | */ |
| 1974 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPG - 1) && |
| 1975 | sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE); |
| 1976 | VERIFY(sp->sl_refcnt < (NCLPG - 1) || |
| 1977 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
| 1978 | } else if (class == MC_BIGCL) { |
| 1979 | VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES)); |
| 1980 | |
| 1981 | /* A 4KB cluster slab can have NBCLPG references at most */ |
| 1982 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_chunks == NBCLPG); |
| 1983 | VERIFY(sp->sl_refcnt < (NBCLPG - 1) || |
| 1984 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
| 1985 | } else if (class == MC_16KCL) { |
| 1986 | mcl_slab_t *nsp; |
| 1987 | int k; |
| 1988 | /* |
| 1989 | * A 16KB cluster takes NSLABSP16KB slabs, all must |
| 1990 | * now have 0 reference. |
| 1991 | */ |
| 1992 | VERIFY(IS_P2ALIGNED(buf, PAGE_SIZE)); |
| 1993 | VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 && |
| 1994 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
| 1995 | VERIFY(slab_is_detached(sp)); |
| 1996 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
| 1997 | nsp = nsp->sl_next; |
| 1998 | /* Next slab must already be present */ |
| 1999 | VERIFY(nsp != NULL); |
| 2000 | nsp->sl_refcnt--; |
| 2001 | VERIFY(slab_is_detached(nsp)); |
| 2002 | VERIFY(nsp->sl_class == MC_16KCL && |
| 2003 | (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) && |
| 2004 | nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 && |
| 2005 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && |
| 2006 | nsp->sl_head == NULL); |
| 2007 | } |
| 2008 | } else { |
| 2009 | /* |
| 2010 | * A slab that has been splitted for mbufs has at most |
| 2011 | * NMBPG reference counts. Since we have decremented |
| 2012 | * one reference above, it must now be between 0 and |
| 2013 | * NMBPG-1. |
| 2014 | */ |
| 2015 | VERIFY(class == MC_MBUF); |
| 2016 | VERIFY(sp->sl_refcnt >= 0 && |
| 2017 | sp->sl_refcnt <= (NMBPG - 1) && |
| 2018 | sp->sl_chunks == NMBPG && |
| 2019 | sp->sl_len == PAGE_SIZE); |
| 2020 | VERIFY(sp->sl_refcnt < (NMBPG - 1) || |
| 2021 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
| 2022 | } |
| 2023 | |
| 2024 | /* |
| 2025 | * When auditing is enabled, ensure that the buffer still |
| 2026 | * contains the free pattern. Otherwise it got corrupted |
| 2027 | * while at the CPU cache layer. |
| 2028 | */ |
| 2029 | if (mclaudit != NULL) { |
| 2030 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); |
| 2031 | if (mclverify) { |
| 2032 | mcache_audit_free_verify(mca, buf, 0, |
| 2033 | m_maxsize(class)); |
| 2034 | } |
| 2035 | mca->mca_uflags &= ~MB_SCVALID; |
| 2036 | } |
| 2037 | |
| 2038 | if (class == MC_CL) { |
| 2039 | mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL); |
| 2040 | buf->obj_next = sp->sl_head; |
| 2041 | } else if (class == MC_BIGCL) { |
| 2042 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + |
| 2043 | m_infree(MC_MBUF_BIGCL); |
| 2044 | buf->obj_next = sp->sl_head; |
| 2045 | } else if (class == MC_16KCL) { |
| 2046 | ++m_infree(MC_16KCL); |
| 2047 | } else { |
| 2048 | ++m_infree(MC_MBUF); |
| 2049 | buf->obj_next = sp->sl_head; |
| 2050 | } |
| 2051 | sp->sl_head = buf; |
| 2052 | |
| 2053 | /* |
| 2054 | * If a slab has been split to either one which holds 2KB clusters, |
| 2055 | * or one which holds mbufs, turn it back to one which holds a |
| 2056 | * 4 or 16 KB cluster depending on the page size. |
| 2057 | */ |
| 2058 | if (m_maxsize(MC_BIGCL) == PAGE_SIZE) { |
| 2059 | super_class = MC_BIGCL; |
| 2060 | } else { |
| 2061 | VERIFY(PAGE_SIZE == m_maxsize(MC_16KCL)); |
| 2062 | super_class = MC_16KCL; |
| 2063 | } |
| 2064 | if (class == MC_MBUF && sp->sl_refcnt == 0 && |
| 2065 | m_total(class) >= (m_minlimit(class) + NMBPG) && |
| 2066 | m_total(super_class) < m_maxlimit(super_class)) { |
| 2067 | int i = NMBPG; |
| 2068 | |
| 2069 | m_total(MC_MBUF) -= NMBPG; |
| 2070 | mbstat.m_mbufs = m_total(MC_MBUF); |
| 2071 | m_infree(MC_MBUF) -= NMBPG; |
| 2072 | mtype_stat_add(MT_FREE, -((unsigned)NMBPG)); |
| 2073 | |
| 2074 | while (i--) { |
| 2075 | struct mbuf *m = sp->sl_head; |
| 2076 | VERIFY(m != NULL); |
| 2077 | sp->sl_head = m->m_next; |
| 2078 | m->m_next = NULL; |
| 2079 | } |
| 2080 | reinit_supercl = true; |
| 2081 | } else if (class == MC_CL && sp->sl_refcnt == 0 && |
| 2082 | m_total(class) >= (m_minlimit(class) + NCLPG) && |
| 2083 | m_total(super_class) < m_maxlimit(super_class)) { |
| 2084 | int i = NCLPG; |
| 2085 | |
| 2086 | m_total(MC_CL) -= NCLPG; |
| 2087 | mbstat.m_clusters = m_total(MC_CL); |
| 2088 | m_infree(MC_CL) -= NCLPG; |
| 2089 | |
| 2090 | while (i--) { |
| 2091 | union mcluster *c = sp->sl_head; |
| 2092 | VERIFY(c != NULL); |
| 2093 | sp->sl_head = c->mcl_next; |
| 2094 | c->mcl_next = NULL; |
| 2095 | } |
| 2096 | reinit_supercl = true; |
| 2097 | } else if (class == MC_BIGCL && super_class != MC_BIGCL && |
| 2098 | sp->sl_refcnt == 0 && |
| 2099 | m_total(class) >= (m_minlimit(class) + NBCLPG) && |
| 2100 | m_total(super_class) < m_maxlimit(super_class)) { |
| 2101 | int i = NBCLPG; |
| 2102 | |
| 2103 | VERIFY(super_class == MC_16KCL); |
| 2104 | m_total(MC_BIGCL) -= NBCLPG; |
| 2105 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 2106 | m_infree(MC_BIGCL) -= NBCLPG; |
| 2107 | |
| 2108 | while (i--) { |
| 2109 | union mbigcluster *bc = sp->sl_head; |
| 2110 | VERIFY(bc != NULL); |
| 2111 | sp->sl_head = bc->mbc_next; |
| 2112 | bc->mbc_next = NULL; |
| 2113 | } |
| 2114 | reinit_supercl = true; |
| 2115 | } |
| 2116 | |
| 2117 | if (reinit_supercl) { |
| 2118 | VERIFY(sp->sl_head == NULL); |
| 2119 | VERIFY(m_total(class) >= m_minlimit(class)); |
| 2120 | slab_remove(sp, class); |
| 2121 | |
| 2122 | /* Reinitialize it as a cluster for the super class */ |
| 2123 | m_total(super_class)++; |
| 2124 | m_infree(super_class)++; |
| 2125 | VERIFY(sp->sl_flags == (SLF_MAPPED | SLF_DETACHED) && |
| 2126 | sp->sl_len == PAGE_SIZE && sp->sl_refcnt == 0); |
| 2127 | |
| 2128 | slab_init(sp, super_class, SLF_MAPPED, sp->sl_base, |
| 2129 | sp->sl_base, PAGE_SIZE, 0, 1); |
| 2130 | if (mclverify) |
| 2131 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
| 2132 | (caddr_t)sp->sl_base, sp->sl_len); |
| 2133 | ((mcache_obj_t *)(sp->sl_base))->obj_next = NULL; |
| 2134 | |
| 2135 | if (super_class == MC_BIGCL) { |
| 2136 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 2137 | mbstat.m_bigclfree = m_infree(MC_BIGCL) + |
| 2138 | m_infree(MC_MBUF_BIGCL); |
| 2139 | } |
| 2140 | |
| 2141 | VERIFY(slab_is_detached(sp)); |
| 2142 | VERIFY(m_total(super_class) <= m_maxlimit(super_class)); |
| 2143 | |
| 2144 | /* And finally switch class */ |
| 2145 | class = super_class; |
| 2146 | } |
| 2147 | |
| 2148 | /* Reinsert the slab to the class's slab list */ |
| 2149 | if (slab_is_detached(sp)) |
| 2150 | slab_insert(sp, class); |
| 2151 | |
| 2152 | /* We're done; let others enter */ |
| 2153 | mb_clalloc_busy = FALSE; |
| 2154 | if (mb_clalloc_waiters > 0) { |
| 2155 | mb_clalloc_waiters = 0; |
| 2156 | wakeup(mb_clalloc_waitchan); |
| 2157 | } |
| 2158 | } |
| 2159 | |
| 2160 | /* |
| 2161 | * Common allocator for rudimentary objects called by the CPU cache layer |
| 2162 | * during an allocation request whenever there is no available element in the |
| 2163 | * bucket layer. It returns one or more elements from the appropriate global |
| 2164 | * freelist. If the freelist is empty, it will attempt to populate it and |
| 2165 | * retry the allocation. |
| 2166 | */ |
| 2167 | static unsigned int |
| 2168 | mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait) |
| 2169 | { |
| 2170 | mbuf_class_t class = (mbuf_class_t)arg; |
| 2171 | unsigned int need = num; |
| 2172 | mcache_obj_t **list = *plist; |
| 2173 | |
| 2174 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); |
| 2175 | ASSERT(need > 0); |
| 2176 | |
| 2177 | lck_mtx_lock(mbuf_mlock); |
| 2178 | |
| 2179 | for (;;) { |
| 2180 | if ((*list = slab_alloc(class, wait)) != NULL) { |
| 2181 | (*list)->obj_next = NULL; |
| 2182 | list = *plist = &(*list)->obj_next; |
| 2183 | |
| 2184 | if (--need == 0) { |
| 2185 | /* |
| 2186 | * If the number of elements in freelist has |
| 2187 | * dropped below low watermark, asynchronously |
| 2188 | * populate the freelist now rather than doing |
| 2189 | * it later when we run out of elements. |
| 2190 | */ |
| 2191 | if (!mbuf_cached_above(class, wait) && |
| 2192 | m_infree(class) < (m_total(class) >> 5)) { |
| 2193 | (void) freelist_populate(class, 1, |
| 2194 | M_DONTWAIT); |
| 2195 | } |
| 2196 | break; |
| 2197 | } |
| 2198 | } else { |
| 2199 | VERIFY(m_infree(class) == 0 || class == MC_CL); |
| 2200 | |
| 2201 | (void) freelist_populate(class, 1, |
| 2202 | (wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT); |
| 2203 | |
| 2204 | if (m_infree(class) > 0) |
| 2205 | continue; |
| 2206 | |
| 2207 | /* Check if there's anything at the cache layer */ |
| 2208 | if (mbuf_cached_above(class, wait)) |
| 2209 | break; |
| 2210 | |
| 2211 | /* watchdog checkpoint */ |
| 2212 | mbuf_watchdog(); |
| 2213 | |
| 2214 | /* We have nothing and cannot block; give up */ |
| 2215 | if (wait & MCR_NOSLEEP) { |
| 2216 | if (!(wait & MCR_TRYHARD)) { |
| 2217 | m_fail_cnt(class)++; |
| 2218 | mbstat.m_drops++; |
| 2219 | break; |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | /* |
| 2224 | * If the freelist is still empty and the caller is |
| 2225 | * willing to be blocked, sleep on the wait channel |
| 2226 | * until an element is available. Otherwise, if |
| 2227 | * MCR_TRYHARD is set, do our best to satisfy the |
| 2228 | * request without having to go to sleep. |
| 2229 | */ |
| 2230 | if (mbuf_worker_ready && |
| 2231 | mbuf_sleep(class, need, wait)) |
| 2232 | break; |
| 2233 | |
| 2234 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2235 | } |
| 2236 | } |
| 2237 | |
| 2238 | m_alloc_cnt(class) += num - need; |
| 2239 | lck_mtx_unlock(mbuf_mlock); |
| 2240 | |
| 2241 | return (num - need); |
| 2242 | } |
| 2243 | |
| 2244 | /* |
| 2245 | * Common de-allocator for rudimentary objects called by the CPU cache |
| 2246 | * layer when one or more elements need to be returned to the appropriate |
| 2247 | * global freelist. |
| 2248 | */ |
| 2249 | static void |
| 2250 | mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged) |
| 2251 | { |
| 2252 | mbuf_class_t class = (mbuf_class_t)arg; |
| 2253 | mcache_obj_t *nlist; |
| 2254 | unsigned int num = 0; |
| 2255 | int w; |
| 2256 | |
| 2257 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); |
| 2258 | |
| 2259 | lck_mtx_lock(mbuf_mlock); |
| 2260 | |
| 2261 | for (;;) { |
| 2262 | nlist = list->obj_next; |
| 2263 | list->obj_next = NULL; |
| 2264 | slab_free(class, list); |
| 2265 | ++num; |
| 2266 | if ((list = nlist) == NULL) |
| 2267 | break; |
| 2268 | } |
| 2269 | m_free_cnt(class) += num; |
| 2270 | |
| 2271 | if ((w = mb_waiters) > 0) |
| 2272 | mb_waiters = 0; |
| 2273 | if (w) { |
| 2274 | mbwdog_logger("waking up all threads" ); |
| 2275 | } |
| 2276 | lck_mtx_unlock(mbuf_mlock); |
| 2277 | |
| 2278 | if (w != 0) |
| 2279 | wakeup(mb_waitchan); |
| 2280 | } |
| 2281 | |
| 2282 | /* |
| 2283 | * Common auditor for rudimentary objects called by the CPU cache layer |
| 2284 | * during an allocation or free request. For the former, this is called |
| 2285 | * after the objects are obtained from either the bucket or slab layer |
| 2286 | * and before they are returned to the caller. For the latter, this is |
| 2287 | * called immediately during free and before placing the objects into |
| 2288 | * the bucket or slab layer. |
| 2289 | */ |
| 2290 | static void |
| 2291 | mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) |
| 2292 | { |
| 2293 | mbuf_class_t class = (mbuf_class_t)arg; |
| 2294 | mcache_audit_t *mca; |
| 2295 | |
| 2296 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); |
| 2297 | |
| 2298 | while (list != NULL) { |
| 2299 | lck_mtx_lock(mbuf_mlock); |
| 2300 | mca = mcl_audit_buf2mca(class, list); |
| 2301 | |
| 2302 | /* Do the sanity checks */ |
| 2303 | if (class == MC_MBUF) { |
| 2304 | mcl_audit_mbuf(mca, list, FALSE, alloc); |
| 2305 | ASSERT(mca->mca_uflags & MB_SCVALID); |
| 2306 | } else { |
| 2307 | mcl_audit_cluster(mca, list, m_maxsize(class), |
| 2308 | alloc, TRUE); |
| 2309 | ASSERT(!(mca->mca_uflags & MB_SCVALID)); |
| 2310 | } |
| 2311 | /* Record this transaction */ |
| 2312 | if (mcltrace) |
| 2313 | mcache_buffer_log(mca, list, m_cache(class), &mb_start); |
| 2314 | |
| 2315 | if (alloc) |
| 2316 | mca->mca_uflags |= MB_INUSE; |
| 2317 | else |
| 2318 | mca->mca_uflags &= ~MB_INUSE; |
| 2319 | /* Unpair the object (unconditionally) */ |
| 2320 | mca->mca_uptr = NULL; |
| 2321 | lck_mtx_unlock(mbuf_mlock); |
| 2322 | |
| 2323 | list = list->obj_next; |
| 2324 | } |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * Common notify routine for all caches. It is called by mcache when |
| 2329 | * one or more objects get freed. We use this indication to trigger |
| 2330 | * the wakeup of any sleeping threads so that they can retry their |
| 2331 | * allocation requests. |
| 2332 | */ |
| 2333 | static void |
| 2334 | mbuf_slab_notify(void *arg, u_int32_t reason) |
| 2335 | { |
| 2336 | mbuf_class_t class = (mbuf_class_t)arg; |
| 2337 | int w; |
| 2338 | |
| 2339 | ASSERT(MBUF_CLASS_VALID(class)); |
| 2340 | |
| 2341 | if (reason != MCN_RETRYALLOC) |
| 2342 | return; |
| 2343 | |
| 2344 | lck_mtx_lock(mbuf_mlock); |
| 2345 | if ((w = mb_waiters) > 0) { |
| 2346 | m_notified(class)++; |
| 2347 | mb_waiters = 0; |
| 2348 | } |
| 2349 | if (w) { |
| 2350 | mbwdog_logger("waking up all threads" ); |
| 2351 | } |
| 2352 | lck_mtx_unlock(mbuf_mlock); |
| 2353 | |
| 2354 | if (w != 0) |
| 2355 | wakeup(mb_waitchan); |
| 2356 | } |
| 2357 | |
| 2358 | /* |
| 2359 | * Obtain object(s) from the composite class's freelist. |
| 2360 | */ |
| 2361 | static unsigned int |
| 2362 | cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num) |
| 2363 | { |
| 2364 | unsigned int need = num; |
| 2365 | mcl_slab_t *sp, *clsp, *nsp; |
| 2366 | struct mbuf *m; |
| 2367 | mcache_obj_t **list = *plist; |
| 2368 | void *cl; |
| 2369 | |
| 2370 | VERIFY(need > 0); |
| 2371 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); |
| 2372 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2373 | |
| 2374 | /* Get what we can from the freelist */ |
| 2375 | while ((*list = m_cobjlist(class)) != NULL) { |
| 2376 | MRANGE(*list); |
| 2377 | |
| 2378 | m = (struct mbuf *)*list; |
| 2379 | sp = slab_get(m); |
| 2380 | cl = m->m_ext.ext_buf; |
| 2381 | clsp = slab_get(cl); |
| 2382 | VERIFY(m->m_flags == M_EXT && cl != NULL); |
| 2383 | VERIFY(m_get_rfa(m) != NULL && MBUF_IS_COMPOSITE(m)); |
| 2384 | |
| 2385 | if (class == MC_MBUF_CL) { |
| 2386 | VERIFY(clsp->sl_refcnt >= 1 && |
| 2387 | clsp->sl_refcnt <= NCLPG); |
| 2388 | } else { |
| 2389 | VERIFY(clsp->sl_refcnt >= 1 && |
| 2390 | clsp->sl_refcnt <= NBCLPG); |
| 2391 | } |
| 2392 | |
| 2393 | if (class == MC_MBUF_16KCL) { |
| 2394 | int k; |
| 2395 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
| 2396 | nsp = nsp->sl_next; |
| 2397 | /* Next slab must already be present */ |
| 2398 | VERIFY(nsp != NULL); |
| 2399 | VERIFY(nsp->sl_refcnt == 1); |
| 2400 | } |
| 2401 | } |
| 2402 | |
| 2403 | if ((m_cobjlist(class) = (*list)->obj_next) != NULL && |
| 2404 | !MBUF_IN_MAP(m_cobjlist(class))) { |
| 2405 | slab_nextptr_panic(sp, m_cobjlist(class)); |
| 2406 | /* NOTREACHED */ |
| 2407 | } |
| 2408 | (*list)->obj_next = NULL; |
| 2409 | list = *plist = &(*list)->obj_next; |
| 2410 | |
| 2411 | if (--need == 0) |
| 2412 | break; |
| 2413 | } |
| 2414 | m_infree(class) -= (num - need); |
| 2415 | |
| 2416 | return (num - need); |
| 2417 | } |
| 2418 | |
| 2419 | /* |
| 2420 | * Place object(s) back into a composite class's freelist. |
| 2421 | */ |
| 2422 | static unsigned int |
| 2423 | cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged) |
| 2424 | { |
| 2425 | mcache_obj_t *o, *tail; |
| 2426 | unsigned int num = 0; |
| 2427 | struct mbuf *m, *ms; |
| 2428 | mcache_audit_t *mca = NULL; |
| 2429 | mcache_obj_t *ref_list = NULL; |
| 2430 | mcl_slab_t *clsp, *nsp; |
| 2431 | void *cl; |
| 2432 | mbuf_class_t cl_class; |
| 2433 | |
| 2434 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 2435 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); |
| 2436 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2437 | |
| 2438 | if (class == MC_MBUF_CL) { |
| 2439 | cl_class = MC_CL; |
| 2440 | } else if (class == MC_MBUF_BIGCL) { |
| 2441 | cl_class = MC_BIGCL; |
| 2442 | } else { |
| 2443 | VERIFY(class == MC_MBUF_16KCL); |
| 2444 | cl_class = MC_16KCL; |
| 2445 | } |
| 2446 | |
| 2447 | o = tail = list; |
| 2448 | |
| 2449 | while ((m = ms = (struct mbuf *)o) != NULL) { |
| 2450 | mcache_obj_t *rfa, *nexto = o->obj_next; |
| 2451 | |
| 2452 | /* Do the mbuf sanity checks */ |
| 2453 | if (mclaudit != NULL) { |
| 2454 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 2455 | if (mclverify) { |
| 2456 | mcache_audit_free_verify(mca, m, 0, |
| 2457 | m_maxsize(MC_MBUF)); |
| 2458 | } |
| 2459 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 2460 | } |
| 2461 | |
| 2462 | /* Do the cluster sanity checks */ |
| 2463 | cl = ms->m_ext.ext_buf; |
| 2464 | clsp = slab_get(cl); |
| 2465 | if (mclverify) { |
| 2466 | size_t size = m_maxsize(cl_class); |
| 2467 | mcache_audit_free_verify(mcl_audit_buf2mca(cl_class, |
| 2468 | (mcache_obj_t *)cl), cl, 0, size); |
| 2469 | } |
| 2470 | VERIFY(ms->m_type == MT_FREE); |
| 2471 | VERIFY(ms->m_flags == M_EXT); |
| 2472 | VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms)); |
| 2473 | if (cl_class == MC_CL) { |
| 2474 | VERIFY(clsp->sl_refcnt >= 1 && |
| 2475 | clsp->sl_refcnt <= NCLPG); |
| 2476 | } else { |
| 2477 | VERIFY(clsp->sl_refcnt >= 1 && |
| 2478 | clsp->sl_refcnt <= NBCLPG); |
| 2479 | } |
| 2480 | if (cl_class == MC_16KCL) { |
| 2481 | int k; |
| 2482 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
| 2483 | nsp = nsp->sl_next; |
| 2484 | /* Next slab must already be present */ |
| 2485 | VERIFY(nsp != NULL); |
| 2486 | VERIFY(nsp->sl_refcnt == 1); |
| 2487 | } |
| 2488 | } |
| 2489 | |
| 2490 | /* |
| 2491 | * If we're asked to purge, restore the actual mbuf using |
| 2492 | * contents of the shadow structure (if auditing is enabled) |
| 2493 | * and clear EXTF_COMPOSITE flag from the mbuf, as we are |
| 2494 | * about to free it and the attached cluster into their caches. |
| 2495 | */ |
| 2496 | if (purged) { |
| 2497 | /* Restore constructed mbuf fields */ |
| 2498 | if (mclaudit != NULL) |
| 2499 | mcl_audit_restore_mbuf(m, mca, TRUE); |
| 2500 | |
| 2501 | MEXT_MINREF(m) = 0; |
| 2502 | MEXT_REF(m) = 0; |
| 2503 | MEXT_PREF(m) = 0; |
| 2504 | MEXT_FLAGS(m) = 0; |
| 2505 | MEXT_PRIV(m) = 0; |
| 2506 | MEXT_PMBUF(m) = NULL; |
| 2507 | MEXT_TOKEN(m) = 0; |
| 2508 | |
| 2509 | rfa = (mcache_obj_t *)(void *)m_get_rfa(m); |
| 2510 | m_set_ext(m, NULL, NULL, NULL); |
| 2511 | rfa->obj_next = ref_list; |
| 2512 | ref_list = rfa; |
| 2513 | |
| 2514 | m->m_type = MT_FREE; |
| 2515 | m->m_flags = m->m_len = 0; |
| 2516 | m->m_next = m->m_nextpkt = NULL; |
| 2517 | |
| 2518 | /* Save mbuf fields and make auditing happy */ |
| 2519 | if (mclaudit != NULL) |
| 2520 | mcl_audit_mbuf(mca, o, FALSE, FALSE); |
| 2521 | |
| 2522 | VERIFY(m_total(class) > 0); |
| 2523 | m_total(class)--; |
| 2524 | |
| 2525 | /* Free the mbuf */ |
| 2526 | o->obj_next = NULL; |
| 2527 | slab_free(MC_MBUF, o); |
| 2528 | |
| 2529 | /* And free the cluster */ |
| 2530 | ((mcache_obj_t *)cl)->obj_next = NULL; |
| 2531 | if (class == MC_MBUF_CL) |
| 2532 | slab_free(MC_CL, cl); |
| 2533 | else if (class == MC_MBUF_BIGCL) |
| 2534 | slab_free(MC_BIGCL, cl); |
| 2535 | else |
| 2536 | slab_free(MC_16KCL, cl); |
| 2537 | } |
| 2538 | |
| 2539 | ++num; |
| 2540 | tail = o; |
| 2541 | o = nexto; |
| 2542 | } |
| 2543 | |
| 2544 | if (!purged) { |
| 2545 | tail->obj_next = m_cobjlist(class); |
| 2546 | m_cobjlist(class) = list; |
| 2547 | m_infree(class) += num; |
| 2548 | } else if (ref_list != NULL) { |
| 2549 | mcache_free_ext(ref_cache, ref_list); |
| 2550 | } |
| 2551 | |
| 2552 | return (num); |
| 2553 | } |
| 2554 | |
| 2555 | /* |
| 2556 | * Common allocator for composite objects called by the CPU cache layer |
| 2557 | * during an allocation request whenever there is no available element in |
| 2558 | * the bucket layer. It returns one or more composite elements from the |
| 2559 | * appropriate global freelist. If the freelist is empty, it will attempt |
| 2560 | * to obtain the rudimentary objects from their caches and construct them |
| 2561 | * into composite mbuf + cluster objects. |
| 2562 | */ |
| 2563 | static unsigned int |
| 2564 | mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed, |
| 2565 | int wait) |
| 2566 | { |
| 2567 | mbuf_class_t class = (mbuf_class_t)arg; |
| 2568 | mbuf_class_t cl_class = 0; |
| 2569 | unsigned int num = 0, cnum = 0, want = needed; |
| 2570 | mcache_obj_t *ref_list = NULL; |
| 2571 | mcache_obj_t *mp_list = NULL; |
| 2572 | mcache_obj_t *clp_list = NULL; |
| 2573 | mcache_obj_t **list; |
| 2574 | struct ext_ref *rfa; |
| 2575 | struct mbuf *m; |
| 2576 | void *cl; |
| 2577 | |
| 2578 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 2579 | ASSERT(needed > 0); |
| 2580 | |
| 2581 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); |
| 2582 | |
| 2583 | /* There should not be any slab for this class */ |
| 2584 | VERIFY(m_slab_cnt(class) == 0 && |
| 2585 | m_slablist(class).tqh_first == NULL && |
| 2586 | m_slablist(class).tqh_last == NULL); |
| 2587 | |
| 2588 | lck_mtx_lock(mbuf_mlock); |
| 2589 | |
| 2590 | /* Try using the freelist first */ |
| 2591 | num = cslab_alloc(class, plist, needed); |
| 2592 | list = *plist; |
| 2593 | if (num == needed) { |
| 2594 | m_alloc_cnt(class) += num; |
| 2595 | lck_mtx_unlock(mbuf_mlock); |
| 2596 | return (needed); |
| 2597 | } |
| 2598 | |
| 2599 | lck_mtx_unlock(mbuf_mlock); |
| 2600 | |
| 2601 | /* |
| 2602 | * We could not satisfy the request using the freelist alone; |
| 2603 | * allocate from the appropriate rudimentary caches and use |
| 2604 | * whatever we can get to construct the composite objects. |
| 2605 | */ |
| 2606 | needed -= num; |
| 2607 | |
| 2608 | /* |
| 2609 | * Mark these allocation requests as coming from a composite cache. |
| 2610 | * Also, if the caller is willing to be blocked, mark the request |
| 2611 | * with MCR_FAILOK such that we don't end up sleeping at the mbuf |
| 2612 | * slab layer waiting for the individual object when one or more |
| 2613 | * of the already-constructed composite objects are available. |
| 2614 | */ |
| 2615 | wait |= MCR_COMP; |
| 2616 | if (!(wait & MCR_NOSLEEP)) |
| 2617 | wait |= MCR_FAILOK; |
| 2618 | |
| 2619 | /* allocate mbufs */ |
| 2620 | needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait); |
| 2621 | if (needed == 0) { |
| 2622 | ASSERT(mp_list == NULL); |
| 2623 | goto fail; |
| 2624 | } |
| 2625 | |
| 2626 | /* allocate clusters */ |
| 2627 | if (class == MC_MBUF_CL) { |
| 2628 | cl_class = MC_CL; |
| 2629 | } else if (class == MC_MBUF_BIGCL) { |
| 2630 | cl_class = MC_BIGCL; |
| 2631 | } else { |
| 2632 | VERIFY(class == MC_MBUF_16KCL); |
| 2633 | cl_class = MC_16KCL; |
| 2634 | } |
| 2635 | needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait); |
| 2636 | if (needed == 0) { |
| 2637 | ASSERT(clp_list == NULL); |
| 2638 | goto fail; |
| 2639 | } |
| 2640 | |
| 2641 | needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait); |
| 2642 | if (needed == 0) { |
| 2643 | ASSERT(ref_list == NULL); |
| 2644 | goto fail; |
| 2645 | } |
| 2646 | |
| 2647 | /* |
| 2648 | * By this time "needed" is MIN(mbuf, cluster, ref). Any left |
| 2649 | * overs will get freed accordingly before we return to caller. |
| 2650 | */ |
| 2651 | for (cnum = 0; cnum < needed; cnum++) { |
| 2652 | struct mbuf *ms; |
| 2653 | |
| 2654 | m = ms = (struct mbuf *)mp_list; |
| 2655 | mp_list = mp_list->obj_next; |
| 2656 | |
| 2657 | cl = clp_list; |
| 2658 | clp_list = clp_list->obj_next; |
| 2659 | ((mcache_obj_t *)cl)->obj_next = NULL; |
| 2660 | |
| 2661 | rfa = (struct ext_ref *)ref_list; |
| 2662 | ref_list = ref_list->obj_next; |
| 2663 | ((mcache_obj_t *)(void *)rfa)->obj_next = NULL; |
| 2664 | |
| 2665 | /* |
| 2666 | * If auditing is enabled, construct the shadow mbuf |
| 2667 | * in the audit structure instead of in the actual one. |
| 2668 | * mbuf_cslab_audit() will take care of restoring the |
| 2669 | * contents after the integrity check. |
| 2670 | */ |
| 2671 | if (mclaudit != NULL) { |
| 2672 | mcache_audit_t *mca, *cl_mca; |
| 2673 | |
| 2674 | lck_mtx_lock(mbuf_mlock); |
| 2675 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 2676 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 2677 | cl_mca = mcl_audit_buf2mca(cl_class, |
| 2678 | (mcache_obj_t *)cl); |
| 2679 | |
| 2680 | /* |
| 2681 | * Pair them up. Note that this is done at the time |
| 2682 | * the mbuf+cluster objects are constructed. This |
| 2683 | * information should be treated as "best effort" |
| 2684 | * debugging hint since more than one mbufs can refer |
| 2685 | * to a cluster. In that case, the cluster might not |
| 2686 | * be freed along with the mbuf it was paired with. |
| 2687 | */ |
| 2688 | mca->mca_uptr = cl_mca; |
| 2689 | cl_mca->mca_uptr = mca; |
| 2690 | |
| 2691 | ASSERT(mca->mca_uflags & MB_SCVALID); |
| 2692 | ASSERT(!(cl_mca->mca_uflags & MB_SCVALID)); |
| 2693 | lck_mtx_unlock(mbuf_mlock); |
| 2694 | |
| 2695 | /* Technically, they are in the freelist */ |
| 2696 | if (mclverify) { |
| 2697 | size_t size; |
| 2698 | |
| 2699 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, |
| 2700 | m_maxsize(MC_MBUF)); |
| 2701 | |
| 2702 | if (class == MC_MBUF_CL) |
| 2703 | size = m_maxsize(MC_CL); |
| 2704 | else if (class == MC_MBUF_BIGCL) |
| 2705 | size = m_maxsize(MC_BIGCL); |
| 2706 | else |
| 2707 | size = m_maxsize(MC_16KCL); |
| 2708 | |
| 2709 | mcache_set_pattern(MCACHE_FREE_PATTERN, cl, |
| 2710 | size); |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | MBUF_INIT(ms, 0, MT_FREE); |
| 2715 | if (class == MC_MBUF_16KCL) { |
| 2716 | MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); |
| 2717 | } else if (class == MC_MBUF_BIGCL) { |
| 2718 | MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); |
| 2719 | } else { |
| 2720 | MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); |
| 2721 | } |
| 2722 | VERIFY(ms->m_flags == M_EXT); |
| 2723 | VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms)); |
| 2724 | |
| 2725 | *list = (mcache_obj_t *)m; |
| 2726 | (*list)->obj_next = NULL; |
| 2727 | list = *plist = &(*list)->obj_next; |
| 2728 | } |
| 2729 | |
| 2730 | fail: |
| 2731 | /* |
| 2732 | * Free up what's left of the above. |
| 2733 | */ |
| 2734 | if (mp_list != NULL) |
| 2735 | mcache_free_ext(m_cache(MC_MBUF), mp_list); |
| 2736 | if (clp_list != NULL) |
| 2737 | mcache_free_ext(m_cache(cl_class), clp_list); |
| 2738 | if (ref_list != NULL) |
| 2739 | mcache_free_ext(ref_cache, ref_list); |
| 2740 | |
| 2741 | lck_mtx_lock(mbuf_mlock); |
| 2742 | if (num > 0 || cnum > 0) { |
| 2743 | m_total(class) += cnum; |
| 2744 | VERIFY(m_total(class) <= m_maxlimit(class)); |
| 2745 | m_alloc_cnt(class) += num + cnum; |
| 2746 | } |
| 2747 | if ((num + cnum) < want) |
| 2748 | m_fail_cnt(class) += (want - (num + cnum)); |
| 2749 | lck_mtx_unlock(mbuf_mlock); |
| 2750 | |
| 2751 | return (num + cnum); |
| 2752 | } |
| 2753 | |
| 2754 | /* |
| 2755 | * Common de-allocator for composite objects called by the CPU cache |
| 2756 | * layer when one or more elements need to be returned to the appropriate |
| 2757 | * global freelist. |
| 2758 | */ |
| 2759 | static void |
| 2760 | mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged) |
| 2761 | { |
| 2762 | mbuf_class_t class = (mbuf_class_t)arg; |
| 2763 | unsigned int num; |
| 2764 | int w; |
| 2765 | |
| 2766 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 2767 | |
| 2768 | lck_mtx_lock(mbuf_mlock); |
| 2769 | |
| 2770 | num = cslab_free(class, list, purged); |
| 2771 | m_free_cnt(class) += num; |
| 2772 | |
| 2773 | if ((w = mb_waiters) > 0) |
| 2774 | mb_waiters = 0; |
| 2775 | if (w) { |
| 2776 | mbwdog_logger("waking up all threads" ); |
| 2777 | } |
| 2778 | |
| 2779 | lck_mtx_unlock(mbuf_mlock); |
| 2780 | |
| 2781 | if (w != 0) |
| 2782 | wakeup(mb_waitchan); |
| 2783 | } |
| 2784 | |
| 2785 | /* |
| 2786 | * Common auditor for composite objects called by the CPU cache layer |
| 2787 | * during an allocation or free request. For the former, this is called |
| 2788 | * after the objects are obtained from either the bucket or slab layer |
| 2789 | * and before they are returned to the caller. For the latter, this is |
| 2790 | * called immediately during free and before placing the objects into |
| 2791 | * the bucket or slab layer. |
| 2792 | */ |
| 2793 | static void |
| 2794 | mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) |
| 2795 | { |
| 2796 | mbuf_class_t class = (mbuf_class_t)arg, cl_class; |
| 2797 | mcache_audit_t *mca; |
| 2798 | struct mbuf *m, *ms; |
| 2799 | mcl_slab_t *clsp, *nsp; |
| 2800 | size_t cl_size; |
| 2801 | void *cl; |
| 2802 | |
| 2803 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 2804 | if (class == MC_MBUF_CL) |
| 2805 | cl_class = MC_CL; |
| 2806 | else if (class == MC_MBUF_BIGCL) |
| 2807 | cl_class = MC_BIGCL; |
| 2808 | else |
| 2809 | cl_class = MC_16KCL; |
| 2810 | cl_size = m_maxsize(cl_class); |
| 2811 | |
| 2812 | while ((m = ms = (struct mbuf *)list) != NULL) { |
| 2813 | lck_mtx_lock(mbuf_mlock); |
| 2814 | /* Do the mbuf sanity checks and record its transaction */ |
| 2815 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 2816 | mcl_audit_mbuf(mca, m, TRUE, alloc); |
| 2817 | if (mcltrace) |
| 2818 | mcache_buffer_log(mca, m, m_cache(class), &mb_start); |
| 2819 | |
| 2820 | if (alloc) |
| 2821 | mca->mca_uflags |= MB_COMP_INUSE; |
| 2822 | else |
| 2823 | mca->mca_uflags &= ~MB_COMP_INUSE; |
| 2824 | |
| 2825 | /* |
| 2826 | * Use the shadow mbuf in the audit structure if we are |
| 2827 | * freeing, since the contents of the actual mbuf has been |
| 2828 | * pattern-filled by the above call to mcl_audit_mbuf(). |
| 2829 | */ |
| 2830 | if (!alloc && mclverify) |
| 2831 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 2832 | |
| 2833 | /* Do the cluster sanity checks and record its transaction */ |
| 2834 | cl = ms->m_ext.ext_buf; |
| 2835 | clsp = slab_get(cl); |
| 2836 | VERIFY(ms->m_flags == M_EXT && cl != NULL); |
| 2837 | VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms)); |
| 2838 | if (class == MC_MBUF_CL) |
| 2839 | VERIFY(clsp->sl_refcnt >= 1 && |
| 2840 | clsp->sl_refcnt <= NCLPG); |
| 2841 | else |
| 2842 | VERIFY(clsp->sl_refcnt >= 1 && |
| 2843 | clsp->sl_refcnt <= NBCLPG); |
| 2844 | |
| 2845 | if (class == MC_MBUF_16KCL) { |
| 2846 | int k; |
| 2847 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
| 2848 | nsp = nsp->sl_next; |
| 2849 | /* Next slab must already be present */ |
| 2850 | VERIFY(nsp != NULL); |
| 2851 | VERIFY(nsp->sl_refcnt == 1); |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | |
| 2856 | mca = mcl_audit_buf2mca(cl_class, cl); |
| 2857 | mcl_audit_cluster(mca, cl, cl_size, alloc, FALSE); |
| 2858 | if (mcltrace) |
| 2859 | mcache_buffer_log(mca, cl, m_cache(class), &mb_start); |
| 2860 | |
| 2861 | if (alloc) |
| 2862 | mca->mca_uflags |= MB_COMP_INUSE; |
| 2863 | else |
| 2864 | mca->mca_uflags &= ~MB_COMP_INUSE; |
| 2865 | lck_mtx_unlock(mbuf_mlock); |
| 2866 | |
| 2867 | list = list->obj_next; |
| 2868 | } |
| 2869 | } |
| 2870 | |
| 2871 | static void |
| 2872 | m_vm_error_stats(uint32_t *cnt, uint64_t *ts, uint64_t *size, |
| 2873 | uint64_t alloc_size, kern_return_t error) |
| 2874 | { |
| 2875 | |
| 2876 | *cnt = *cnt + 1; |
| 2877 | *ts = net_uptime(); |
| 2878 | if (size) { |
| 2879 | *size = alloc_size; |
| 2880 | } |
| 2881 | _CASSERT(sizeof(mb_kmem_stats) / sizeof(mb_kmem_stats[0]) == |
| 2882 | sizeof(mb_kmem_stats_labels) / sizeof(mb_kmem_stats_labels[0])); |
| 2883 | switch (error) { |
| 2884 | case KERN_SUCCESS: |
| 2885 | break; |
| 2886 | case KERN_INVALID_ARGUMENT: |
| 2887 | mb_kmem_stats[0]++; |
| 2888 | break; |
| 2889 | case KERN_INVALID_ADDRESS: |
| 2890 | mb_kmem_stats[1]++; |
| 2891 | break; |
| 2892 | case KERN_RESOURCE_SHORTAGE: |
| 2893 | mb_kmem_stats[2]++; |
| 2894 | break; |
| 2895 | case KERN_NO_SPACE: |
| 2896 | mb_kmem_stats[3]++; |
| 2897 | break; |
| 2898 | case KERN_FAILURE: |
| 2899 | mb_kmem_stats[4]++; |
| 2900 | break; |
| 2901 | default: |
| 2902 | mb_kmem_stats[5]++; |
| 2903 | break; |
| 2904 | } |
| 2905 | } |
| 2906 | |
| 2907 | /* |
| 2908 | * Allocate some number of mbuf clusters and place on cluster freelist. |
| 2909 | */ |
| 2910 | static int |
| 2911 | m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize) |
| 2912 | { |
| 2913 | int i, count = 0; |
| 2914 | vm_size_t size = 0; |
| 2915 | int numpages = 0, large_buffer; |
| 2916 | vm_offset_t page = 0; |
| 2917 | mcache_audit_t *mca_list = NULL; |
| 2918 | mcache_obj_t *con_list = NULL; |
| 2919 | mcl_slab_t *sp; |
| 2920 | mbuf_class_t class; |
| 2921 | kern_return_t error; |
| 2922 | |
| 2923 | /* Set if a buffer allocation needs allocation of multiple pages */ |
| 2924 | large_buffer = ((bufsize == m_maxsize(MC_16KCL)) && |
| 2925 | PAGE_SIZE < M16KCLBYTES); |
| 2926 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || |
| 2927 | bufsize == m_maxsize(MC_16KCL)); |
| 2928 | |
| 2929 | VERIFY((bufsize == PAGE_SIZE) || |
| 2930 | (bufsize > PAGE_SIZE && bufsize == m_maxsize(MC_16KCL))); |
| 2931 | |
| 2932 | if (bufsize == m_size(MC_BIGCL)) |
| 2933 | class = MC_BIGCL; |
| 2934 | else |
| 2935 | class = MC_16KCL; |
| 2936 | |
| 2937 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2938 | |
| 2939 | /* |
| 2940 | * Multiple threads may attempt to populate the cluster map one |
| 2941 | * after another. Since we drop the lock below prior to acquiring |
| 2942 | * the physical page(s), our view of the cluster map may no longer |
| 2943 | * be accurate, and we could end up over-committing the pages beyond |
| 2944 | * the maximum allowed for each class. To prevent it, this entire |
| 2945 | * operation (including the page mapping) is serialized. |
| 2946 | */ |
| 2947 | while (mb_clalloc_busy) { |
| 2948 | mb_clalloc_waiters++; |
| 2949 | (void) msleep(mb_clalloc_waitchan, mbuf_mlock, |
| 2950 | (PZERO-1), "m_clalloc" , NULL); |
| 2951 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2952 | } |
| 2953 | |
| 2954 | /* We are busy now; tell everyone else to go away */ |
| 2955 | mb_clalloc_busy = TRUE; |
| 2956 | |
| 2957 | /* |
| 2958 | * Honor the caller's wish to block or not block. We have a way |
| 2959 | * to grow the pool asynchronously using the mbuf worker thread. |
| 2960 | */ |
| 2961 | i = m_howmany(num, bufsize); |
| 2962 | if (i <= 0 || (wait & M_DONTWAIT)) |
| 2963 | goto out; |
| 2964 | |
| 2965 | lck_mtx_unlock(mbuf_mlock); |
| 2966 | |
| 2967 | size = round_page(i * bufsize); |
| 2968 | page = kmem_mb_alloc(mb_map, size, large_buffer, &error); |
| 2969 | |
| 2970 | /* |
| 2971 | * If we did ask for "n" 16KB physically contiguous chunks |
| 2972 | * and didn't get them, then please try again without this |
| 2973 | * restriction. |
| 2974 | */ |
| 2975 | net_update_uptime(); |
| 2976 | if (large_buffer && page == 0) { |
| 2977 | m_vm_error_stats(&mb_kmem_contig_failed, |
| 2978 | &mb_kmem_contig_failed_ts, |
| 2979 | &mb_kmem_contig_failed_size, |
| 2980 | size, error); |
| 2981 | page = kmem_mb_alloc(mb_map, size, 0, &error); |
| 2982 | } |
| 2983 | |
| 2984 | if (page == 0) { |
| 2985 | m_vm_error_stats(&mb_kmem_failed, |
| 2986 | &mb_kmem_failed_ts, |
| 2987 | &mb_kmem_failed_size, |
| 2988 | size, error); |
| 2989 | #if PAGE_SIZE == 4096 |
| 2990 | if (bufsize == m_maxsize(MC_BIGCL)) { |
| 2991 | #else |
| 2992 | if (bufsize >= m_maxsize(MC_BIGCL)) { |
| 2993 | #endif |
| 2994 | /* Try for 1 page if failed */ |
| 2995 | size = PAGE_SIZE; |
| 2996 | page = kmem_mb_alloc(mb_map, size, 0, &error); |
| 2997 | if (page == 0) { |
| 2998 | m_vm_error_stats(&mb_kmem_one_failed, |
| 2999 | &mb_kmem_one_failed_ts, |
| 3000 | NULL, size, error); |
| 3001 | } |
| 3002 | } |
| 3003 | |
| 3004 | if (page == 0) { |
| 3005 | lck_mtx_lock(mbuf_mlock); |
| 3006 | goto out; |
| 3007 | } |
| 3008 | } |
| 3009 | |
| 3010 | VERIFY(IS_P2ALIGNED(page, PAGE_SIZE)); |
| 3011 | numpages = size / PAGE_SIZE; |
| 3012 | |
| 3013 | /* If auditing is enabled, allocate the audit structures now */ |
| 3014 | if (mclaudit != NULL) { |
| 3015 | int needed; |
| 3016 | |
| 3017 | /* |
| 3018 | * Yes, I realize this is a waste of memory for clusters |
| 3019 | * that never get transformed into mbufs, as we may end |
| 3020 | * up with NMBPG-1 unused audit structures per cluster. |
| 3021 | * But doing so tremendously simplifies the allocation |
| 3022 | * strategy, since at this point we are not holding the |
| 3023 | * mbuf lock and the caller is okay to be blocked. |
| 3024 | */ |
| 3025 | if (bufsize == PAGE_SIZE) { |
| 3026 | needed = numpages * NMBPG; |
| 3027 | |
| 3028 | i = mcache_alloc_ext(mcl_audit_con_cache, |
| 3029 | &con_list, needed, MCR_SLEEP); |
| 3030 | |
| 3031 | VERIFY(con_list != NULL && i == needed); |
| 3032 | } else { |
| 3033 | /* |
| 3034 | * if multiple 4K pages are being used for a |
| 3035 | * 16K cluster |
| 3036 | */ |
| 3037 | needed = numpages / NSLABSP16KB; |
| 3038 | } |
| 3039 | |
| 3040 | i = mcache_alloc_ext(mcache_audit_cache, |
| 3041 | (mcache_obj_t **)&mca_list, needed, MCR_SLEEP); |
| 3042 | |
| 3043 | VERIFY(mca_list != NULL && i == needed); |
| 3044 | } |
| 3045 | |
| 3046 | lck_mtx_lock(mbuf_mlock); |
| 3047 | |
| 3048 | for (i = 0; i < numpages; i++, page += PAGE_SIZE) { |
| 3049 | ppnum_t offset = |
| 3050 | ((unsigned char *)page - mbutl) >> PAGE_SHIFT; |
| 3051 | ppnum_t new_page = pmap_find_phys(kernel_pmap, page); |
| 3052 | |
| 3053 | /* |
| 3054 | * If there is a mapper the appropriate I/O page is |
| 3055 | * returned; zero out the page to discard its past |
| 3056 | * contents to prevent exposing leftover kernel memory. |
| 3057 | */ |
| 3058 | VERIFY(offset < mcl_pages); |
| 3059 | if (mcl_paddr_base != 0) { |
| 3060 | bzero((void *)(uintptr_t) page, PAGE_SIZE); |
| 3061 | new_page = IOMapperInsertPage(mcl_paddr_base, |
| 3062 | offset, new_page); |
| 3063 | } |
| 3064 | mcl_paddr[offset] = new_page; |
| 3065 | |
| 3066 | /* Pattern-fill this fresh page */ |
| 3067 | if (mclverify) { |
| 3068 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
| 3069 | (caddr_t)page, PAGE_SIZE); |
| 3070 | } |
| 3071 | if (bufsize == PAGE_SIZE) { |
| 3072 | mcache_obj_t *buf; |
| 3073 | /* One for the entire page */ |
| 3074 | sp = slab_get((void *)page); |
| 3075 | if (mclaudit != NULL) { |
| 3076 | mcl_audit_init((void *)page, |
| 3077 | &mca_list, &con_list, |
| 3078 | AUDIT_CONTENTS_SIZE, NMBPG); |
| 3079 | } |
| 3080 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); |
| 3081 | slab_init(sp, class, SLF_MAPPED, (void *)page, |
| 3082 | (void *)page, PAGE_SIZE, 0, 1); |
| 3083 | buf = (mcache_obj_t *)page; |
| 3084 | buf->obj_next = NULL; |
| 3085 | |
| 3086 | /* Insert this slab */ |
| 3087 | slab_insert(sp, class); |
| 3088 | |
| 3089 | /* Update stats now since slab_get drops the lock */ |
| 3090 | ++m_infree(class); |
| 3091 | ++m_total(class); |
| 3092 | VERIFY(m_total(class) <= m_maxlimit(class)); |
| 3093 | if (class == MC_BIGCL) { |
| 3094 | mbstat.m_bigclfree = m_infree(MC_BIGCL) + |
| 3095 | m_infree(MC_MBUF_BIGCL); |
| 3096 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 3097 | } |
| 3098 | ++count; |
| 3099 | } else if ((bufsize > PAGE_SIZE) && |
| 3100 | (i % NSLABSP16KB) == 0) { |
| 3101 | union m16kcluster *m16kcl = (union m16kcluster *)page; |
| 3102 | mcl_slab_t *nsp; |
| 3103 | int k; |
| 3104 | |
| 3105 | /* One for the entire 16KB */ |
| 3106 | sp = slab_get(m16kcl); |
| 3107 | if (mclaudit != NULL) |
| 3108 | mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1); |
| 3109 | |
| 3110 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); |
| 3111 | slab_init(sp, MC_16KCL, SLF_MAPPED, |
| 3112 | m16kcl, m16kcl, bufsize, 0, 1); |
| 3113 | m16kcl->m16kcl_next = NULL; |
| 3114 | |
| 3115 | /* |
| 3116 | * 2nd-Nth page's slab is part of the first one, |
| 3117 | * where N is NSLABSP16KB. |
| 3118 | */ |
| 3119 | for (k = 1; k < NSLABSP16KB; k++) { |
| 3120 | nsp = slab_get(((union mbigcluster *)page) + k); |
| 3121 | VERIFY(nsp->sl_refcnt == 0 && |
| 3122 | nsp->sl_flags == 0); |
| 3123 | slab_init(nsp, MC_16KCL, |
| 3124 | SLF_MAPPED | SLF_PARTIAL, |
| 3125 | m16kcl, NULL, 0, 0, 0); |
| 3126 | } |
| 3127 | /* Insert this slab */ |
| 3128 | slab_insert(sp, MC_16KCL); |
| 3129 | |
| 3130 | /* Update stats now since slab_get drops the lock */ |
| 3131 | ++m_infree(MC_16KCL); |
| 3132 | ++m_total(MC_16KCL); |
| 3133 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); |
| 3134 | ++count; |
| 3135 | } |
| 3136 | } |
| 3137 | VERIFY(mca_list == NULL && con_list == NULL); |
| 3138 | |
| 3139 | if (!mb_peak_newreport && mbuf_report_usage(class)) |
| 3140 | mb_peak_newreport = TRUE; |
| 3141 | |
| 3142 | /* We're done; let others enter */ |
| 3143 | mb_clalloc_busy = FALSE; |
| 3144 | if (mb_clalloc_waiters > 0) { |
| 3145 | mb_clalloc_waiters = 0; |
| 3146 | wakeup(mb_clalloc_waitchan); |
| 3147 | } |
| 3148 | |
| 3149 | return (count); |
| 3150 | out: |
| 3151 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3152 | |
| 3153 | mtracelarge_register(size); |
| 3154 | |
| 3155 | /* We're done; let others enter */ |
| 3156 | mb_clalloc_busy = FALSE; |
| 3157 | if (mb_clalloc_waiters > 0) { |
| 3158 | mb_clalloc_waiters = 0; |
| 3159 | wakeup(mb_clalloc_waitchan); |
| 3160 | } |
| 3161 | |
| 3162 | /* |
| 3163 | * When non-blocking we kick a thread if we have to grow the |
| 3164 | * pool or if the number of free clusters is less than requested. |
| 3165 | */ |
| 3166 | if (i > 0 && mbuf_worker_ready && mbuf_worker_needs_wakeup) { |
| 3167 | mbwdog_logger("waking up the worker thread to to grow %s by %d" , |
| 3168 | m_cname(class), i); |
| 3169 | wakeup((caddr_t)&mbuf_worker_needs_wakeup); |
| 3170 | mbuf_worker_needs_wakeup = FALSE; |
| 3171 | } |
| 3172 | if (class == MC_BIGCL) { |
| 3173 | if (i > 0) { |
| 3174 | /* |
| 3175 | * Remember total number of 4KB clusters needed |
| 3176 | * at this time. |
| 3177 | */ |
| 3178 | i += m_total(MC_BIGCL); |
| 3179 | if (i > m_region_expand(MC_BIGCL)) { |
| 3180 | m_region_expand(MC_BIGCL) = i; |
| 3181 | } |
| 3182 | } |
| 3183 | if (m_infree(MC_BIGCL) >= num) |
| 3184 | return (1); |
| 3185 | } else { |
| 3186 | if (i > 0) { |
| 3187 | /* |
| 3188 | * Remember total number of 16KB clusters needed |
| 3189 | * at this time. |
| 3190 | */ |
| 3191 | i += m_total(MC_16KCL); |
| 3192 | if (i > m_region_expand(MC_16KCL)) { |
| 3193 | m_region_expand(MC_16KCL) = i; |
| 3194 | } |
| 3195 | } |
| 3196 | if (m_infree(MC_16KCL) >= num) |
| 3197 | return (1); |
| 3198 | } |
| 3199 | return (0); |
| 3200 | } |
| 3201 | |
| 3202 | /* |
| 3203 | * Populate the global freelist of the corresponding buffer class. |
| 3204 | */ |
| 3205 | static int |
| 3206 | freelist_populate(mbuf_class_t class, unsigned int num, int wait) |
| 3207 | { |
| 3208 | mcache_obj_t *o = NULL; |
| 3209 | int i, numpages = 0, count; |
| 3210 | mbuf_class_t super_class; |
| 3211 | |
| 3212 | VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL || |
| 3213 | class == MC_16KCL); |
| 3214 | |
| 3215 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3216 | |
| 3217 | VERIFY(PAGE_SIZE == m_maxsize(MC_BIGCL) || |
| 3218 | PAGE_SIZE == m_maxsize(MC_16KCL)); |
| 3219 | |
| 3220 | if (m_maxsize(class) >= PAGE_SIZE) |
| 3221 | return(m_clalloc(num, wait, m_maxsize(class)) != 0); |
| 3222 | |
| 3223 | /* |
| 3224 | * The rest of the function will allocate pages and will slice |
| 3225 | * them up into the right size |
| 3226 | */ |
| 3227 | |
| 3228 | numpages = (num * m_size(class) + PAGE_SIZE - 1) / PAGE_SIZE; |
| 3229 | |
| 3230 | /* Currently assume that pages are 4K or 16K */ |
| 3231 | if (PAGE_SIZE == m_maxsize(MC_BIGCL)) |
| 3232 | super_class = MC_BIGCL; |
| 3233 | else |
| 3234 | super_class = MC_16KCL; |
| 3235 | |
| 3236 | i = m_clalloc(numpages, wait, m_maxsize(super_class)); |
| 3237 | |
| 3238 | /* how many objects will we cut the page into? */ |
| 3239 | int numobj = PAGE_SIZE / m_maxsize(class); |
| 3240 | |
| 3241 | for (count = 0; count < numpages; count++) { |
| 3242 | /* respect totals, minlimit, maxlimit */ |
| 3243 | if (m_total(super_class) <= m_minlimit(super_class) || |
| 3244 | m_total(class) >= m_maxlimit(class)) |
| 3245 | break; |
| 3246 | |
| 3247 | if ((o = slab_alloc(super_class, wait)) == NULL) |
| 3248 | break; |
| 3249 | |
| 3250 | struct mbuf *m = (struct mbuf *)o; |
| 3251 | union mcluster *c = (union mcluster *)o; |
| 3252 | union mbigcluster *mbc = (union mbigcluster *)o; |
| 3253 | mcl_slab_t *sp = slab_get(o); |
| 3254 | mcache_audit_t *mca = NULL; |
| 3255 | |
| 3256 | /* |
| 3257 | * since one full page will be converted to MC_MBUF or |
| 3258 | * MC_CL, verify that the reference count will match that |
| 3259 | * assumption |
| 3260 | */ |
| 3261 | VERIFY(sp->sl_refcnt == 1 && slab_is_detached(sp)); |
| 3262 | VERIFY((sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); |
| 3263 | /* |
| 3264 | * Make sure that the cluster is unmolested |
| 3265 | * while in freelist |
| 3266 | */ |
| 3267 | if (mclverify) { |
| 3268 | mca = mcl_audit_buf2mca(super_class, |
| 3269 | (mcache_obj_t *)o); |
| 3270 | mcache_audit_free_verify(mca, |
| 3271 | (mcache_obj_t *)o, 0, m_maxsize(super_class)); |
| 3272 | } |
| 3273 | |
| 3274 | /* Reinitialize it as an mbuf or 2K or 4K slab */ |
| 3275 | slab_init(sp, class, sp->sl_flags, |
| 3276 | sp->sl_base, NULL, PAGE_SIZE, 0, numobj); |
| 3277 | |
| 3278 | VERIFY(sp->sl_head == NULL); |
| 3279 | |
| 3280 | VERIFY(m_total(super_class) >= 1); |
| 3281 | m_total(super_class)--; |
| 3282 | |
| 3283 | if (super_class == MC_BIGCL) |
| 3284 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 3285 | |
| 3286 | m_total(class) += numobj; |
| 3287 | VERIFY(m_total(class) <= m_maxlimit(class)); |
| 3288 | m_infree(class) += numobj; |
| 3289 | |
| 3290 | if (!mb_peak_newreport && mbuf_report_usage(class)) |
| 3291 | mb_peak_newreport = TRUE; |
| 3292 | |
| 3293 | i = numobj; |
| 3294 | if (class == MC_MBUF) { |
| 3295 | mbstat.m_mbufs = m_total(MC_MBUF); |
| 3296 | mtype_stat_add(MT_FREE, NMBPG); |
| 3297 | while (i--) { |
| 3298 | /* |
| 3299 | * If auditing is enabled, construct the |
| 3300 | * shadow mbuf in the audit structure |
| 3301 | * instead of the actual one. |
| 3302 | * mbuf_slab_audit() will take care of |
| 3303 | * restoring the contents after the |
| 3304 | * integrity check. |
| 3305 | */ |
| 3306 | if (mclaudit != NULL) { |
| 3307 | struct mbuf *ms; |
| 3308 | mca = mcl_audit_buf2mca(MC_MBUF, |
| 3309 | (mcache_obj_t *)m); |
| 3310 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 3311 | ms->m_type = MT_FREE; |
| 3312 | } else { |
| 3313 | m->m_type = MT_FREE; |
| 3314 | } |
| 3315 | m->m_next = sp->sl_head; |
| 3316 | sp->sl_head = (void *)m++; |
| 3317 | } |
| 3318 | } else if (class == MC_CL) { /* MC_CL */ |
| 3319 | mbstat.m_clfree = |
| 3320 | m_infree(MC_CL) + m_infree(MC_MBUF_CL); |
| 3321 | mbstat.m_clusters = m_total(MC_CL); |
| 3322 | while (i--) { |
| 3323 | c->mcl_next = sp->sl_head; |
| 3324 | sp->sl_head = (void *)c++; |
| 3325 | } |
| 3326 | } else { |
| 3327 | VERIFY(class == MC_BIGCL); |
| 3328 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 3329 | mbstat.m_bigclfree = m_infree(MC_BIGCL) + |
| 3330 | m_infree(MC_MBUF_BIGCL); |
| 3331 | while (i--) { |
| 3332 | mbc->mbc_next = sp->sl_head; |
| 3333 | sp->sl_head = (void *)mbc++; |
| 3334 | } |
| 3335 | } |
| 3336 | |
| 3337 | /* Insert into the mbuf or 2k or 4k slab list */ |
| 3338 | slab_insert(sp, class); |
| 3339 | |
| 3340 | if ((i = mb_waiters) > 0) |
| 3341 | mb_waiters = 0; |
| 3342 | if (i != 0) { |
| 3343 | mbwdog_logger("waking up all threads" ); |
| 3344 | wakeup(mb_waitchan); |
| 3345 | } |
| 3346 | } |
| 3347 | return (count != 0); |
| 3348 | } |
| 3349 | |
| 3350 | /* |
| 3351 | * For each class, initialize the freelist to hold m_minlimit() objects. |
| 3352 | */ |
| 3353 | static void |
| 3354 | freelist_init(mbuf_class_t class) |
| 3355 | { |
| 3356 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3357 | |
| 3358 | VERIFY(class == MC_CL || class == MC_BIGCL); |
| 3359 | VERIFY(m_total(class) == 0); |
| 3360 | VERIFY(m_minlimit(class) > 0); |
| 3361 | |
| 3362 | while (m_total(class) < m_minlimit(class)) |
| 3363 | (void) freelist_populate(class, m_minlimit(class), M_WAIT); |
| 3364 | |
| 3365 | VERIFY(m_total(class) >= m_minlimit(class)); |
| 3366 | } |
| 3367 | |
| 3368 | /* |
| 3369 | * (Inaccurately) check if it might be worth a trip back to the |
| 3370 | * mcache layer due the availability of objects there. We'll |
| 3371 | * end up back here if there's nothing up there. |
| 3372 | */ |
| 3373 | static boolean_t |
| 3374 | mbuf_cached_above(mbuf_class_t class, int wait) |
| 3375 | { |
| 3376 | switch (class) { |
| 3377 | case MC_MBUF: |
| 3378 | if (wait & MCR_COMP) |
| 3379 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL)) || |
| 3380 | !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL))); |
| 3381 | break; |
| 3382 | |
| 3383 | case MC_CL: |
| 3384 | if (wait & MCR_COMP) |
| 3385 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL))); |
| 3386 | break; |
| 3387 | |
| 3388 | case MC_BIGCL: |
| 3389 | if (wait & MCR_COMP) |
| 3390 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL))); |
| 3391 | break; |
| 3392 | |
| 3393 | case MC_16KCL: |
| 3394 | if (wait & MCR_COMP) |
| 3395 | return (!mcache_bkt_isempty(m_cache(MC_MBUF_16KCL))); |
| 3396 | break; |
| 3397 | |
| 3398 | case MC_MBUF_CL: |
| 3399 | case MC_MBUF_BIGCL: |
| 3400 | case MC_MBUF_16KCL: |
| 3401 | break; |
| 3402 | |
| 3403 | default: |
| 3404 | VERIFY(0); |
| 3405 | /* NOTREACHED */ |
| 3406 | } |
| 3407 | |
| 3408 | return (!mcache_bkt_isempty(m_cache(class))); |
| 3409 | } |
| 3410 | |
| 3411 | /* |
| 3412 | * If possible, convert constructed objects to raw ones. |
| 3413 | */ |
| 3414 | static boolean_t |
| 3415 | mbuf_steal(mbuf_class_t class, unsigned int num) |
| 3416 | { |
| 3417 | mcache_obj_t *top = NULL; |
| 3418 | mcache_obj_t **list = ⊤ |
| 3419 | unsigned int tot = 0; |
| 3420 | |
| 3421 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3422 | |
| 3423 | switch (class) { |
| 3424 | case MC_MBUF: |
| 3425 | case MC_CL: |
| 3426 | case MC_BIGCL: |
| 3427 | case MC_16KCL: |
| 3428 | return (FALSE); |
| 3429 | |
| 3430 | case MC_MBUF_CL: |
| 3431 | case MC_MBUF_BIGCL: |
| 3432 | case MC_MBUF_16KCL: |
| 3433 | /* Get the required number of constructed objects if possible */ |
| 3434 | if (m_infree(class) > m_minlimit(class)) { |
| 3435 | tot = cslab_alloc(class, &list, |
| 3436 | MIN(num, m_infree(class))); |
| 3437 | } |
| 3438 | |
| 3439 | /* And destroy them to get back the raw objects */ |
| 3440 | if (top != NULL) |
| 3441 | (void) cslab_free(class, top, 1); |
| 3442 | break; |
| 3443 | |
| 3444 | default: |
| 3445 | VERIFY(0); |
| 3446 | /* NOTREACHED */ |
| 3447 | } |
| 3448 | |
| 3449 | return (tot == num); |
| 3450 | } |
| 3451 | |
| 3452 | static void |
| 3453 | m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp) |
| 3454 | { |
| 3455 | int m, bmap = 0; |
| 3456 | |
| 3457 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3458 | |
| 3459 | VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL)); |
| 3460 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); |
| 3461 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); |
| 3462 | |
| 3463 | /* |
| 3464 | * This logic can be made smarter; for now, simply mark |
| 3465 | * all other related classes as potential victims. |
| 3466 | */ |
| 3467 | switch (class) { |
| 3468 | case MC_MBUF: |
| 3469 | m_wantpurge(MC_CL)++; |
| 3470 | m_wantpurge(MC_BIGCL)++; |
| 3471 | m_wantpurge(MC_MBUF_CL)++; |
| 3472 | m_wantpurge(MC_MBUF_BIGCL)++; |
| 3473 | break; |
| 3474 | |
| 3475 | case MC_CL: |
| 3476 | m_wantpurge(MC_MBUF)++; |
| 3477 | m_wantpurge(MC_BIGCL)++; |
| 3478 | m_wantpurge(MC_MBUF_BIGCL)++; |
| 3479 | if (!comp) |
| 3480 | m_wantpurge(MC_MBUF_CL)++; |
| 3481 | break; |
| 3482 | |
| 3483 | case MC_BIGCL: |
| 3484 | m_wantpurge(MC_MBUF)++; |
| 3485 | m_wantpurge(MC_CL)++; |
| 3486 | m_wantpurge(MC_MBUF_CL)++; |
| 3487 | if (!comp) |
| 3488 | m_wantpurge(MC_MBUF_BIGCL)++; |
| 3489 | break; |
| 3490 | |
| 3491 | case MC_16KCL: |
| 3492 | if (!comp) |
| 3493 | m_wantpurge(MC_MBUF_16KCL)++; |
| 3494 | break; |
| 3495 | |
| 3496 | default: |
| 3497 | VERIFY(0); |
| 3498 | /* NOTREACHED */ |
| 3499 | } |
| 3500 | |
| 3501 | /* |
| 3502 | * Run through each marked class and check if we really need to |
| 3503 | * purge (and therefore temporarily disable) the per-CPU caches |
| 3504 | * layer used by the class. If so, remember the classes since |
| 3505 | * we are going to drop the lock below prior to purging. |
| 3506 | */ |
| 3507 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 3508 | if (m_wantpurge(m) > 0) { |
| 3509 | m_wantpurge(m) = 0; |
| 3510 | /* |
| 3511 | * Try hard to steal the required number of objects |
| 3512 | * from the freelist of other mbuf classes. Only |
| 3513 | * purge and disable the per-CPU caches layer when |
| 3514 | * we don't have enough; it's the last resort. |
| 3515 | */ |
| 3516 | if (!mbuf_steal(m, num)) |
| 3517 | bmap |= (1 << m); |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | lck_mtx_unlock(mbuf_mlock); |
| 3522 | |
| 3523 | if (bmap != 0) { |
| 3524 | /* signal the domains to drain */ |
| 3525 | net_drain_domains(); |
| 3526 | |
| 3527 | /* Sigh; we have no other choices but to ask mcache to purge */ |
| 3528 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 3529 | if ((bmap & (1 << m)) && |
| 3530 | mcache_purge_cache(m_cache(m), TRUE)) { |
| 3531 | lck_mtx_lock(mbuf_mlock); |
| 3532 | m_purge_cnt(m)++; |
| 3533 | mbstat.m_drain++; |
| 3534 | lck_mtx_unlock(mbuf_mlock); |
| 3535 | } |
| 3536 | } |
| 3537 | } else { |
| 3538 | /* |
| 3539 | * Request mcache to reap extra elements from all of its caches; |
| 3540 | * note that all reaps are serialized and happen only at a fixed |
| 3541 | * interval. |
| 3542 | */ |
| 3543 | mcache_reap(); |
| 3544 | } |
| 3545 | lck_mtx_lock(mbuf_mlock); |
| 3546 | } |
| 3547 | |
| 3548 | static inline struct mbuf * |
| 3549 | m_get_common(int wait, short type, int hdr) |
| 3550 | { |
| 3551 | struct mbuf *m; |
| 3552 | int mcflags = MSLEEPF(wait); |
| 3553 | |
| 3554 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 3555 | if (mcflags & MCR_NOSLEEP) |
| 3556 | mcflags |= MCR_TRYHARD; |
| 3557 | |
| 3558 | m = mcache_alloc(m_cache(MC_MBUF), mcflags); |
| 3559 | if (m != NULL) { |
| 3560 | MBUF_INIT(m, hdr, type); |
| 3561 | mtype_stat_inc(type); |
| 3562 | mtype_stat_dec(MT_FREE); |
| 3563 | #if CONFIG_MACF_NET |
| 3564 | if (hdr && mac_init_mbuf(m, wait) != 0) { |
| 3565 | m_free(m); |
| 3566 | return (NULL); |
| 3567 | } |
| 3568 | #endif /* MAC_NET */ |
| 3569 | } |
| 3570 | return (m); |
| 3571 | } |
| 3572 | |
| 3573 | /* |
| 3574 | * Space allocation routines; these are also available as macros |
| 3575 | * for critical paths. |
| 3576 | */ |
| 3577 | #define _M_GET(wait, type) m_get_common(wait, type, 0) |
| 3578 | #define _M_GETHDR(wait, type) m_get_common(wait, type, 1) |
| 3579 | #define _M_RETRY(wait, type) _M_GET(wait, type) |
| 3580 | #define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type) |
| 3581 | #define _MGET(m, how, type) ((m) = _M_GET(how, type)) |
| 3582 | #define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type)) |
| 3583 | |
| 3584 | struct mbuf * |
| 3585 | m_get(int wait, int type) |
| 3586 | { |
| 3587 | return (_M_GET(wait, type)); |
| 3588 | } |
| 3589 | |
| 3590 | struct mbuf * |
| 3591 | m_gethdr(int wait, int type) |
| 3592 | { |
| 3593 | return (_M_GETHDR(wait, type)); |
| 3594 | } |
| 3595 | |
| 3596 | struct mbuf * |
| 3597 | m_retry(int wait, int type) |
| 3598 | { |
| 3599 | return (_M_RETRY(wait, type)); |
| 3600 | } |
| 3601 | |
| 3602 | struct mbuf * |
| 3603 | m_retryhdr(int wait, int type) |
| 3604 | { |
| 3605 | return (_M_RETRYHDR(wait, type)); |
| 3606 | } |
| 3607 | |
| 3608 | struct mbuf * |
| 3609 | m_getclr(int wait, int type) |
| 3610 | { |
| 3611 | struct mbuf *m; |
| 3612 | |
| 3613 | _MGET(m, wait, type); |
| 3614 | if (m != NULL) |
| 3615 | bzero(MTOD(m, caddr_t), MLEN); |
| 3616 | return (m); |
| 3617 | } |
| 3618 | |
| 3619 | static int |
| 3620 | m_free_paired(struct mbuf *m) |
| 3621 | { |
| 3622 | VERIFY((m->m_flags & M_EXT) && (MEXT_FLAGS(m) & EXTF_PAIRED)); |
| 3623 | |
| 3624 | membar_sync(); |
| 3625 | if (MEXT_PMBUF(m) == m) { |
| 3626 | volatile UInt16 *addr = (volatile UInt16 *)&MEXT_PREF(m); |
| 3627 | int16_t oprefcnt, prefcnt; |
| 3628 | |
| 3629 | /* |
| 3630 | * Paired ref count might be negative in case we lose |
| 3631 | * against another thread clearing MEXT_PMBUF, in the |
| 3632 | * event it occurs after the above memory barrier sync. |
| 3633 | * In that case just ignore as things have been unpaired. |
| 3634 | */ |
| 3635 | do { |
| 3636 | oprefcnt = *addr; |
| 3637 | prefcnt = oprefcnt - 1; |
| 3638 | } while (!OSCompareAndSwap16(oprefcnt, prefcnt, addr)); |
| 3639 | |
| 3640 | if (prefcnt > 1) { |
| 3641 | return (1); |
| 3642 | } else if (prefcnt == 1) { |
| 3643 | (*(m_get_ext_free(m)))(m->m_ext.ext_buf, |
| 3644 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 3645 | return (1); |
| 3646 | } else if (prefcnt == 0) { |
| 3647 | VERIFY(MBUF_IS_PAIRED(m)); |
| 3648 | |
| 3649 | /* |
| 3650 | * Restore minref to its natural value, so that |
| 3651 | * the caller will be able to free the cluster |
| 3652 | * as appropriate. |
| 3653 | */ |
| 3654 | MEXT_MINREF(m) = 0; |
| 3655 | |
| 3656 | /* |
| 3657 | * Clear MEXT_PMBUF, but leave EXTF_PAIRED intact |
| 3658 | * as it is immutable. atomic_set_ptr also causes |
| 3659 | * memory barrier sync. |
| 3660 | */ |
| 3661 | atomic_set_ptr(&MEXT_PMBUF(m), NULL); |
| 3662 | |
| 3663 | switch (m->m_ext.ext_size) { |
| 3664 | case MCLBYTES: |
| 3665 | m_set_ext(m, m_get_rfa(m), NULL, NULL); |
| 3666 | break; |
| 3667 | |
| 3668 | case MBIGCLBYTES: |
| 3669 | m_set_ext(m, m_get_rfa(m), m_bigfree, NULL); |
| 3670 | break; |
| 3671 | |
| 3672 | case M16KCLBYTES: |
| 3673 | m_set_ext(m, m_get_rfa(m), m_16kfree, NULL); |
| 3674 | break; |
| 3675 | |
| 3676 | default: |
| 3677 | VERIFY(0); |
| 3678 | /* NOTREACHED */ |
| 3679 | } |
| 3680 | } |
| 3681 | } |
| 3682 | |
| 3683 | /* |
| 3684 | * Tell caller the unpair has occurred, and that the reference |
| 3685 | * count on the external cluster held for the paired mbuf should |
| 3686 | * now be dropped. |
| 3687 | */ |
| 3688 | return (0); |
| 3689 | } |
| 3690 | |
| 3691 | struct mbuf * |
| 3692 | m_free(struct mbuf *m) |
| 3693 | { |
| 3694 | struct mbuf *n = m->m_next; |
| 3695 | |
| 3696 | if (m->m_type == MT_FREE) |
| 3697 | panic("m_free: freeing an already freed mbuf" ); |
| 3698 | |
| 3699 | if (m->m_flags & M_PKTHDR) { |
| 3700 | /* Check for scratch area overflow */ |
| 3701 | m_redzone_verify(m); |
| 3702 | /* Free the aux data and tags if there is any */ |
| 3703 | m_tag_delete_chain(m, NULL); |
| 3704 | |
| 3705 | m_do_tx_compl_callback(m, NULL); |
| 3706 | } |
| 3707 | |
| 3708 | if (m->m_flags & M_EXT) { |
| 3709 | u_int16_t refcnt; |
| 3710 | u_int32_t composite; |
| 3711 | m_ext_free_func_t m_free_func; |
| 3712 | |
| 3713 | if (MBUF_IS_PAIRED(m) && m_free_paired(m)) |
| 3714 | return (n); |
| 3715 | |
| 3716 | refcnt = m_decref(m); |
| 3717 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
| 3718 | m_free_func = m_get_ext_free(m); |
| 3719 | |
| 3720 | if (refcnt == MEXT_MINREF(m) && !composite) { |
| 3721 | if (m_free_func == NULL) { |
| 3722 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); |
| 3723 | } else if (m_free_func == m_bigfree) { |
| 3724 | mcache_free(m_cache(MC_BIGCL), |
| 3725 | m->m_ext.ext_buf); |
| 3726 | } else if (m_free_func == m_16kfree) { |
| 3727 | mcache_free(m_cache(MC_16KCL), |
| 3728 | m->m_ext.ext_buf); |
| 3729 | } else { |
| 3730 | (*m_free_func)(m->m_ext.ext_buf, |
| 3731 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 3732 | } |
| 3733 | mcache_free(ref_cache, m_get_rfa(m)); |
| 3734 | m_set_ext(m, NULL, NULL, NULL); |
| 3735 | } else if (refcnt == MEXT_MINREF(m) && composite) { |
| 3736 | VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED)); |
| 3737 | VERIFY(m->m_type != MT_FREE); |
| 3738 | |
| 3739 | mtype_stat_dec(m->m_type); |
| 3740 | mtype_stat_inc(MT_FREE); |
| 3741 | |
| 3742 | m->m_type = MT_FREE; |
| 3743 | m->m_flags = M_EXT; |
| 3744 | m->m_len = 0; |
| 3745 | m->m_next = m->m_nextpkt = NULL; |
| 3746 | |
| 3747 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
| 3748 | |
| 3749 | /* "Free" into the intermediate cache */ |
| 3750 | if (m_free_func == NULL) { |
| 3751 | mcache_free(m_cache(MC_MBUF_CL), m); |
| 3752 | } else if (m_free_func == m_bigfree) { |
| 3753 | mcache_free(m_cache(MC_MBUF_BIGCL), m); |
| 3754 | } else { |
| 3755 | VERIFY(m_free_func == m_16kfree); |
| 3756 | mcache_free(m_cache(MC_MBUF_16KCL), m); |
| 3757 | } |
| 3758 | return (n); |
| 3759 | } |
| 3760 | } |
| 3761 | |
| 3762 | if (m->m_type != MT_FREE) { |
| 3763 | mtype_stat_dec(m->m_type); |
| 3764 | mtype_stat_inc(MT_FREE); |
| 3765 | } |
| 3766 | |
| 3767 | m->m_type = MT_FREE; |
| 3768 | m->m_flags = m->m_len = 0; |
| 3769 | m->m_next = m->m_nextpkt = NULL; |
| 3770 | |
| 3771 | mcache_free(m_cache(MC_MBUF), m); |
| 3772 | |
| 3773 | return (n); |
| 3774 | } |
| 3775 | |
| 3776 | __private_extern__ struct mbuf * |
| 3777 | m_clattach(struct mbuf *m, int type, caddr_t extbuf, |
| 3778 | void (*extfree)(caddr_t, u_int, caddr_t), u_int extsize, caddr_t extarg, |
| 3779 | int wait, int pair) |
| 3780 | { |
| 3781 | struct ext_ref *rfa = NULL; |
| 3782 | |
| 3783 | /* |
| 3784 | * If pairing is requested and an existing mbuf is provided, reject |
| 3785 | * it if it's already been paired to another cluster. Otherwise, |
| 3786 | * allocate a new one or free any existing below. |
| 3787 | */ |
| 3788 | if ((m != NULL && MBUF_IS_PAIRED(m)) || |
| 3789 | (m == NULL && (m = _M_GETHDR(wait, type)) == NULL)) |
| 3790 | return (NULL); |
| 3791 | |
| 3792 | if (m->m_flags & M_EXT) { |
| 3793 | u_int16_t refcnt; |
| 3794 | u_int32_t composite; |
| 3795 | m_ext_free_func_t m_free_func; |
| 3796 | |
| 3797 | refcnt = m_decref(m); |
| 3798 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
| 3799 | VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED) && MEXT_PMBUF(m) == NULL); |
| 3800 | m_free_func = m_get_ext_free(m); |
| 3801 | if (refcnt == MEXT_MINREF(m) && !composite) { |
| 3802 | if (m_free_func == NULL) { |
| 3803 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); |
| 3804 | } else if (m_free_func == m_bigfree) { |
| 3805 | mcache_free(m_cache(MC_BIGCL), |
| 3806 | m->m_ext.ext_buf); |
| 3807 | } else if (m_free_func == m_16kfree) { |
| 3808 | mcache_free(m_cache(MC_16KCL), |
| 3809 | m->m_ext.ext_buf); |
| 3810 | } else { |
| 3811 | (*m_free_func)(m->m_ext.ext_buf, |
| 3812 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 3813 | } |
| 3814 | /* Re-use the reference structure */ |
| 3815 | rfa = m_get_rfa(m); |
| 3816 | } else if (refcnt == MEXT_MINREF(m) && composite) { |
| 3817 | VERIFY(m->m_type != MT_FREE); |
| 3818 | |
| 3819 | mtype_stat_dec(m->m_type); |
| 3820 | mtype_stat_inc(MT_FREE); |
| 3821 | |
| 3822 | m->m_type = MT_FREE; |
| 3823 | m->m_flags = M_EXT; |
| 3824 | m->m_len = 0; |
| 3825 | m->m_next = m->m_nextpkt = NULL; |
| 3826 | |
| 3827 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
| 3828 | |
| 3829 | /* "Free" into the intermediate cache */ |
| 3830 | if (m_free_func == NULL) { |
| 3831 | mcache_free(m_cache(MC_MBUF_CL), m); |
| 3832 | } else if (m_free_func == m_bigfree) { |
| 3833 | mcache_free(m_cache(MC_MBUF_BIGCL), m); |
| 3834 | } else { |
| 3835 | VERIFY(m_free_func == m_16kfree); |
| 3836 | mcache_free(m_cache(MC_MBUF_16KCL), m); |
| 3837 | } |
| 3838 | /* |
| 3839 | * Allocate a new mbuf, since we didn't divorce |
| 3840 | * the composite mbuf + cluster pair above. |
| 3841 | */ |
| 3842 | if ((m = _M_GETHDR(wait, type)) == NULL) |
| 3843 | return (NULL); |
| 3844 | } |
| 3845 | } |
| 3846 | |
| 3847 | if (rfa == NULL && |
| 3848 | (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) { |
| 3849 | m_free(m); |
| 3850 | return (NULL); |
| 3851 | } |
| 3852 | |
| 3853 | if (!pair) { |
| 3854 | MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa, |
| 3855 | 0, 1, 0, 0, 0, NULL); |
| 3856 | } else { |
| 3857 | MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa, |
| 3858 | 1, 1, 1, EXTF_PAIRED, 0, m); |
| 3859 | } |
| 3860 | |
| 3861 | return (m); |
| 3862 | } |
| 3863 | |
| 3864 | /* |
| 3865 | * Perform `fast' allocation mbuf clusters from a cache of recently-freed |
| 3866 | * clusters. (If the cache is empty, new clusters are allocated en-masse.) |
| 3867 | */ |
| 3868 | struct mbuf * |
| 3869 | m_getcl(int wait, int type, int flags) |
| 3870 | { |
| 3871 | struct mbuf *m; |
| 3872 | int mcflags = MSLEEPF(wait); |
| 3873 | int hdr = (flags & M_PKTHDR); |
| 3874 | |
| 3875 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 3876 | if (mcflags & MCR_NOSLEEP) |
| 3877 | mcflags |= MCR_TRYHARD; |
| 3878 | |
| 3879 | m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags); |
| 3880 | if (m != NULL) { |
| 3881 | u_int16_t flag; |
| 3882 | struct ext_ref *rfa; |
| 3883 | void *cl; |
| 3884 | |
| 3885 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); |
| 3886 | cl = m->m_ext.ext_buf; |
| 3887 | rfa = m_get_rfa(m); |
| 3888 | |
| 3889 | ASSERT(cl != NULL && rfa != NULL); |
| 3890 | VERIFY(MBUF_IS_COMPOSITE(m) && m_get_ext_free(m) == NULL); |
| 3891 | |
| 3892 | flag = MEXT_FLAGS(m); |
| 3893 | |
| 3894 | MBUF_INIT(m, hdr, type); |
| 3895 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
| 3896 | |
| 3897 | mtype_stat_inc(type); |
| 3898 | mtype_stat_dec(MT_FREE); |
| 3899 | #if CONFIG_MACF_NET |
| 3900 | if (hdr && mac_init_mbuf(m, wait) != 0) { |
| 3901 | m_freem(m); |
| 3902 | return (NULL); |
| 3903 | } |
| 3904 | #endif /* MAC_NET */ |
| 3905 | } |
| 3906 | return (m); |
| 3907 | } |
| 3908 | |
| 3909 | /* m_mclget() add an mbuf cluster to a normal mbuf */ |
| 3910 | struct mbuf * |
| 3911 | m_mclget(struct mbuf *m, int wait) |
| 3912 | { |
| 3913 | struct ext_ref *rfa; |
| 3914 | |
| 3915 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) |
| 3916 | return (m); |
| 3917 | |
| 3918 | m->m_ext.ext_buf = m_mclalloc(wait); |
| 3919 | if (m->m_ext.ext_buf != NULL) { |
| 3920 | MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); |
| 3921 | } else { |
| 3922 | mcache_free(ref_cache, rfa); |
| 3923 | } |
| 3924 | return (m); |
| 3925 | } |
| 3926 | |
| 3927 | /* Allocate an mbuf cluster */ |
| 3928 | caddr_t |
| 3929 | m_mclalloc(int wait) |
| 3930 | { |
| 3931 | int mcflags = MSLEEPF(wait); |
| 3932 | |
| 3933 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 3934 | if (mcflags & MCR_NOSLEEP) |
| 3935 | mcflags |= MCR_TRYHARD; |
| 3936 | |
| 3937 | return (mcache_alloc(m_cache(MC_CL), mcflags)); |
| 3938 | } |
| 3939 | |
| 3940 | /* Free an mbuf cluster */ |
| 3941 | void |
| 3942 | m_mclfree(caddr_t p) |
| 3943 | { |
| 3944 | mcache_free(m_cache(MC_CL), p); |
| 3945 | } |
| 3946 | |
| 3947 | /* |
| 3948 | * mcl_hasreference() checks if a cluster of an mbuf is referenced by |
| 3949 | * another mbuf; see comments in m_incref() regarding EXTF_READONLY. |
| 3950 | */ |
| 3951 | int |
| 3952 | m_mclhasreference(struct mbuf *m) |
| 3953 | { |
| 3954 | if (!(m->m_flags & M_EXT)) |
| 3955 | return (0); |
| 3956 | |
| 3957 | ASSERT(m_get_rfa(m) != NULL); |
| 3958 | |
| 3959 | return ((MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0); |
| 3960 | } |
| 3961 | |
| 3962 | __private_extern__ caddr_t |
| 3963 | m_bigalloc(int wait) |
| 3964 | { |
| 3965 | int mcflags = MSLEEPF(wait); |
| 3966 | |
| 3967 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 3968 | if (mcflags & MCR_NOSLEEP) |
| 3969 | mcflags |= MCR_TRYHARD; |
| 3970 | |
| 3971 | return (mcache_alloc(m_cache(MC_BIGCL), mcflags)); |
| 3972 | } |
| 3973 | |
| 3974 | __private_extern__ void |
| 3975 | m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg) |
| 3976 | { |
| 3977 | mcache_free(m_cache(MC_BIGCL), p); |
| 3978 | } |
| 3979 | |
| 3980 | /* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */ |
| 3981 | __private_extern__ struct mbuf * |
| 3982 | m_mbigget(struct mbuf *m, int wait) |
| 3983 | { |
| 3984 | struct ext_ref *rfa; |
| 3985 | |
| 3986 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) |
| 3987 | return (m); |
| 3988 | |
| 3989 | m->m_ext.ext_buf = m_bigalloc(wait); |
| 3990 | if (m->m_ext.ext_buf != NULL) { |
| 3991 | MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); |
| 3992 | } else { |
| 3993 | mcache_free(ref_cache, rfa); |
| 3994 | } |
| 3995 | return (m); |
| 3996 | } |
| 3997 | |
| 3998 | __private_extern__ caddr_t |
| 3999 | m_16kalloc(int wait) |
| 4000 | { |
| 4001 | int mcflags = MSLEEPF(wait); |
| 4002 | |
| 4003 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 4004 | if (mcflags & MCR_NOSLEEP) |
| 4005 | mcflags |= MCR_TRYHARD; |
| 4006 | |
| 4007 | return (mcache_alloc(m_cache(MC_16KCL), mcflags)); |
| 4008 | } |
| 4009 | |
| 4010 | __private_extern__ void |
| 4011 | m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg) |
| 4012 | { |
| 4013 | mcache_free(m_cache(MC_16KCL), p); |
| 4014 | } |
| 4015 | |
| 4016 | /* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */ |
| 4017 | __private_extern__ struct mbuf * |
| 4018 | m_m16kget(struct mbuf *m, int wait) |
| 4019 | { |
| 4020 | struct ext_ref *rfa; |
| 4021 | |
| 4022 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) |
| 4023 | return (m); |
| 4024 | |
| 4025 | m->m_ext.ext_buf = m_16kalloc(wait); |
| 4026 | if (m->m_ext.ext_buf != NULL) { |
| 4027 | MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); |
| 4028 | } else { |
| 4029 | mcache_free(ref_cache, rfa); |
| 4030 | } |
| 4031 | return (m); |
| 4032 | } |
| 4033 | |
| 4034 | /* |
| 4035 | * "Move" mbuf pkthdr from "from" to "to". |
| 4036 | * "from" must have M_PKTHDR set, and "to" must be empty. |
| 4037 | */ |
| 4038 | void |
| 4039 | m_copy_pkthdr(struct mbuf *to, struct mbuf *from) |
| 4040 | { |
| 4041 | VERIFY(from->m_flags & M_PKTHDR); |
| 4042 | |
| 4043 | /* Check for scratch area overflow */ |
| 4044 | m_redzone_verify(from); |
| 4045 | |
| 4046 | if (to->m_flags & M_PKTHDR) { |
| 4047 | /* Check for scratch area overflow */ |
| 4048 | m_redzone_verify(to); |
| 4049 | /* We will be taking over the tags of 'to' */ |
| 4050 | m_tag_delete_chain(to, NULL); |
| 4051 | } |
| 4052 | to->m_pkthdr = from->m_pkthdr; /* especially tags */ |
| 4053 | m_classifier_init(from, 0); /* purge classifier info */ |
| 4054 | m_tag_init(from, 1); /* purge all tags from src */ |
| 4055 | m_scratch_init(from); /* clear src scratch area */ |
| 4056 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
| 4057 | if ((to->m_flags & M_EXT) == 0) |
| 4058 | to->m_data = to->m_pktdat; |
| 4059 | m_redzone_init(to); /* setup red zone on dst */ |
| 4060 | } |
| 4061 | |
| 4062 | /* |
| 4063 | * Duplicate "from"'s mbuf pkthdr in "to". |
| 4064 | * "from" must have M_PKTHDR set, and "to" must be empty. |
| 4065 | * In particular, this does a deep copy of the packet tags. |
| 4066 | */ |
| 4067 | static int |
| 4068 | m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) |
| 4069 | { |
| 4070 | VERIFY(from->m_flags & M_PKTHDR); |
| 4071 | |
| 4072 | /* Check for scratch area overflow */ |
| 4073 | m_redzone_verify(from); |
| 4074 | |
| 4075 | if (to->m_flags & M_PKTHDR) { |
| 4076 | /* Check for scratch area overflow */ |
| 4077 | m_redzone_verify(to); |
| 4078 | /* We will be taking over the tags of 'to' */ |
| 4079 | m_tag_delete_chain(to, NULL); |
| 4080 | } |
| 4081 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
| 4082 | if ((to->m_flags & M_EXT) == 0) |
| 4083 | to->m_data = to->m_pktdat; |
| 4084 | to->m_pkthdr = from->m_pkthdr; |
| 4085 | m_redzone_init(to); /* setup red zone on dst */ |
| 4086 | m_tag_init(to, 0); /* preserve dst static tags */ |
| 4087 | return (m_tag_copy_chain(to, from, how)); |
| 4088 | } |
| 4089 | |
| 4090 | void |
| 4091 | m_copy_pftag(struct mbuf *to, struct mbuf *from) |
| 4092 | { |
| 4093 | memcpy(m_pftag(to), m_pftag(from), sizeof(struct pf_mtag)); |
| 4094 | #if PF_ECN |
| 4095 | m_pftag(to)->pftag_hdr = NULL; |
| 4096 | m_pftag(to)->pftag_flags &= ~(PF_TAG_HDR_INET|PF_TAG_HDR_INET6); |
| 4097 | #endif /* PF_ECN */ |
| 4098 | } |
| 4099 | |
| 4100 | void |
| 4101 | m_classifier_init(struct mbuf *m, uint32_t pktf_mask) |
| 4102 | { |
| 4103 | VERIFY(m->m_flags & M_PKTHDR); |
| 4104 | |
| 4105 | m->m_pkthdr.pkt_proto = 0; |
| 4106 | m->m_pkthdr.pkt_flowsrc = 0; |
| 4107 | m->m_pkthdr.pkt_flowid = 0; |
| 4108 | m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */ |
| 4109 | /* preserve service class and interface info for loopback packets */ |
| 4110 | if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) |
| 4111 | (void) m_set_service_class(m, MBUF_SC_BE); |
| 4112 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) |
| 4113 | m->m_pkthdr.pkt_ifainfo = 0; |
| 4114 | /* |
| 4115 | * Preserve timestamp if requested |
| 4116 | */ |
| 4117 | if (!(m->m_pkthdr.pkt_flags & PKTF_TS_VALID)) |
| 4118 | m->m_pkthdr.pkt_timestamp = 0; |
| 4119 | } |
| 4120 | |
| 4121 | void |
| 4122 | m_copy_classifier(struct mbuf *to, struct mbuf *from) |
| 4123 | { |
| 4124 | VERIFY(to->m_flags & M_PKTHDR); |
| 4125 | VERIFY(from->m_flags & M_PKTHDR); |
| 4126 | |
| 4127 | to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto; |
| 4128 | to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc; |
| 4129 | to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid; |
| 4130 | to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags; |
| 4131 | (void) m_set_service_class(to, from->m_pkthdr.pkt_svc); |
| 4132 | to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo; |
| 4133 | } |
| 4134 | |
| 4135 | /* |
| 4136 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
| 4137 | * if wantall is not set, return whatever number were available. Set up the |
| 4138 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these |
| 4139 | * are chained on the m_nextpkt field. Any packets requested beyond this |
| 4140 | * are chained onto the last packet header's m_next field. The size of |
| 4141 | * the cluster is controlled by the parameter bufsize. |
| 4142 | */ |
| 4143 | __private_extern__ struct mbuf * |
| 4144 | m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs, |
| 4145 | int wait, int wantall, size_t bufsize) |
| 4146 | { |
| 4147 | struct mbuf *m; |
| 4148 | struct mbuf **np, *top; |
| 4149 | unsigned int pnum, needed = *num_needed; |
| 4150 | mcache_obj_t *mp_list = NULL; |
| 4151 | int mcflags = MSLEEPF(wait); |
| 4152 | u_int16_t flag; |
| 4153 | struct ext_ref *rfa; |
| 4154 | mcache_t *cp; |
| 4155 | void *cl; |
| 4156 | |
| 4157 | ASSERT(bufsize == m_maxsize(MC_CL) || |
| 4158 | bufsize == m_maxsize(MC_BIGCL) || |
| 4159 | bufsize == m_maxsize(MC_16KCL)); |
| 4160 | |
| 4161 | /* |
| 4162 | * Caller must first check for njcl because this |
| 4163 | * routine is internal and not exposed/used via KPI. |
| 4164 | */ |
| 4165 | VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0); |
| 4166 | |
| 4167 | top = NULL; |
| 4168 | np = ⊤ |
| 4169 | pnum = 0; |
| 4170 | |
| 4171 | /* |
| 4172 | * The caller doesn't want all the requested buffers; only some. |
| 4173 | * Try hard to get what we can, but don't block. This effectively |
| 4174 | * overrides MCR_SLEEP, since this thread will not go to sleep |
| 4175 | * if we can't get all the buffers. |
| 4176 | */ |
| 4177 | if (!wantall || (mcflags & MCR_NOSLEEP)) |
| 4178 | mcflags |= MCR_TRYHARD; |
| 4179 | |
| 4180 | /* Allocate the composite mbuf + cluster elements from the cache */ |
| 4181 | if (bufsize == m_maxsize(MC_CL)) |
| 4182 | cp = m_cache(MC_MBUF_CL); |
| 4183 | else if (bufsize == m_maxsize(MC_BIGCL)) |
| 4184 | cp = m_cache(MC_MBUF_BIGCL); |
| 4185 | else |
| 4186 | cp = m_cache(MC_MBUF_16KCL); |
| 4187 | needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags); |
| 4188 | |
| 4189 | for (pnum = 0; pnum < needed; pnum++) { |
| 4190 | m = (struct mbuf *)mp_list; |
| 4191 | mp_list = mp_list->obj_next; |
| 4192 | |
| 4193 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); |
| 4194 | cl = m->m_ext.ext_buf; |
| 4195 | rfa = m_get_rfa(m); |
| 4196 | |
| 4197 | ASSERT(cl != NULL && rfa != NULL); |
| 4198 | VERIFY(MBUF_IS_COMPOSITE(m)); |
| 4199 | |
| 4200 | flag = MEXT_FLAGS(m); |
| 4201 | |
| 4202 | MBUF_INIT(m, num_with_pkthdrs, MT_DATA); |
| 4203 | if (bufsize == m_maxsize(MC_16KCL)) { |
| 4204 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); |
| 4205 | } else if (bufsize == m_maxsize(MC_BIGCL)) { |
| 4206 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); |
| 4207 | } else { |
| 4208 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
| 4209 | } |
| 4210 | |
| 4211 | if (num_with_pkthdrs > 0) { |
| 4212 | --num_with_pkthdrs; |
| 4213 | #if CONFIG_MACF_NET |
| 4214 | if (mac_mbuf_label_init(m, wait) != 0) { |
| 4215 | m_freem(m); |
| 4216 | break; |
| 4217 | } |
| 4218 | #endif /* MAC_NET */ |
| 4219 | } |
| 4220 | |
| 4221 | *np = m; |
| 4222 | if (num_with_pkthdrs > 0) |
| 4223 | np = &m->m_nextpkt; |
| 4224 | else |
| 4225 | np = &m->m_next; |
| 4226 | } |
| 4227 | ASSERT(pnum != *num_needed || mp_list == NULL); |
| 4228 | if (mp_list != NULL) |
| 4229 | mcache_free_ext(cp, mp_list); |
| 4230 | |
| 4231 | if (pnum > 0) { |
| 4232 | mtype_stat_add(MT_DATA, pnum); |
| 4233 | mtype_stat_sub(MT_FREE, pnum); |
| 4234 | } |
| 4235 | |
| 4236 | if (wantall && (pnum != *num_needed)) { |
| 4237 | if (top != NULL) |
| 4238 | m_freem_list(top); |
| 4239 | return (NULL); |
| 4240 | } |
| 4241 | |
| 4242 | if (pnum > *num_needed) { |
| 4243 | printf("%s: File a radar related to <rdar://10146739>. \ |
| 4244 | needed = %u, pnum = %u, num_needed = %u \n" , |
| 4245 | __func__, needed, pnum, *num_needed); |
| 4246 | } |
| 4247 | |
| 4248 | *num_needed = pnum; |
| 4249 | return (top); |
| 4250 | } |
| 4251 | |
| 4252 | /* |
| 4253 | * Return list of mbuf linked by m_nextpkt. Try for numlist, and if |
| 4254 | * wantall is not set, return whatever number were available. The size of |
| 4255 | * each mbuf in the list is controlled by the parameter packetlen. Each |
| 4256 | * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf |
| 4257 | * in the chain is called a segment. If maxsegments is not null and the |
| 4258 | * value pointed to is not null, this specify the maximum number of segments |
| 4259 | * for a chain of mbufs. If maxsegments is zero or the value pointed to |
| 4260 | * is zero the caller does not have any restriction on the number of segments. |
| 4261 | * The actual number of segments of a mbuf chain is return in the value |
| 4262 | * pointed to by maxsegments. |
| 4263 | */ |
| 4264 | __private_extern__ struct mbuf * |
| 4265 | m_allocpacket_internal(unsigned int *numlist, size_t packetlen, |
| 4266 | unsigned int *maxsegments, int wait, int wantall, size_t wantsize) |
| 4267 | { |
| 4268 | struct mbuf **np, *top, *first = NULL; |
| 4269 | size_t bufsize, r_bufsize; |
| 4270 | unsigned int num = 0; |
| 4271 | unsigned int nsegs = 0; |
| 4272 | unsigned int needed, resid; |
| 4273 | int mcflags = MSLEEPF(wait); |
| 4274 | mcache_obj_t *mp_list = NULL, *rmp_list = NULL; |
| 4275 | mcache_t *cp = NULL, *rcp = NULL; |
| 4276 | |
| 4277 | if (*numlist == 0) |
| 4278 | return (NULL); |
| 4279 | |
| 4280 | top = NULL; |
| 4281 | np = ⊤ |
| 4282 | |
| 4283 | if (wantsize == 0) { |
| 4284 | if (packetlen <= MINCLSIZE) { |
| 4285 | bufsize = packetlen; |
| 4286 | } else if (packetlen > m_maxsize(MC_CL)) { |
| 4287 | /* Use 4KB if jumbo cluster pool isn't available */ |
| 4288 | if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0) |
| 4289 | bufsize = m_maxsize(MC_BIGCL); |
| 4290 | else |
| 4291 | bufsize = m_maxsize(MC_16KCL); |
| 4292 | } else { |
| 4293 | bufsize = m_maxsize(MC_CL); |
| 4294 | } |
| 4295 | } else if (wantsize == m_maxsize(MC_CL) || |
| 4296 | wantsize == m_maxsize(MC_BIGCL) || |
| 4297 | (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) { |
| 4298 | bufsize = wantsize; |
| 4299 | } else { |
| 4300 | return (NULL); |
| 4301 | } |
| 4302 | |
| 4303 | if (bufsize <= MHLEN) { |
| 4304 | nsegs = 1; |
| 4305 | } else if (bufsize <= MINCLSIZE) { |
| 4306 | if (maxsegments != NULL && *maxsegments == 1) { |
| 4307 | bufsize = m_maxsize(MC_CL); |
| 4308 | nsegs = 1; |
| 4309 | } else { |
| 4310 | nsegs = 2; |
| 4311 | } |
| 4312 | } else if (bufsize == m_maxsize(MC_16KCL)) { |
| 4313 | VERIFY(njcl > 0); |
| 4314 | nsegs = ((packetlen - 1) >> M16KCLSHIFT) + 1; |
| 4315 | } else if (bufsize == m_maxsize(MC_BIGCL)) { |
| 4316 | nsegs = ((packetlen - 1) >> MBIGCLSHIFT) + 1; |
| 4317 | } else { |
| 4318 | nsegs = ((packetlen - 1) >> MCLSHIFT) + 1; |
| 4319 | } |
| 4320 | if (maxsegments != NULL) { |
| 4321 | if (*maxsegments && nsegs > *maxsegments) { |
| 4322 | *maxsegments = nsegs; |
| 4323 | return (NULL); |
| 4324 | } |
| 4325 | *maxsegments = nsegs; |
| 4326 | } |
| 4327 | |
| 4328 | /* |
| 4329 | * The caller doesn't want all the requested buffers; only some. |
| 4330 | * Try hard to get what we can, but don't block. This effectively |
| 4331 | * overrides MCR_SLEEP, since this thread will not go to sleep |
| 4332 | * if we can't get all the buffers. |
| 4333 | */ |
| 4334 | if (!wantall || (mcflags & MCR_NOSLEEP)) |
| 4335 | mcflags |= MCR_TRYHARD; |
| 4336 | |
| 4337 | /* |
| 4338 | * Simple case where all elements in the lists/chains are mbufs. |
| 4339 | * Unless bufsize is greater than MHLEN, each segment chain is made |
| 4340 | * up of exactly 1 mbuf. Otherwise, each segment chain is made up |
| 4341 | * of 2 mbufs; the second one is used for the residual data, i.e. |
| 4342 | * the remaining data that cannot fit into the first mbuf. |
| 4343 | */ |
| 4344 | if (bufsize <= MINCLSIZE) { |
| 4345 | /* Allocate the elements in one shot from the mbuf cache */ |
| 4346 | ASSERT(bufsize <= MHLEN || nsegs == 2); |
| 4347 | cp = m_cache(MC_MBUF); |
| 4348 | needed = mcache_alloc_ext(cp, &mp_list, |
| 4349 | (*numlist) * nsegs, mcflags); |
| 4350 | |
| 4351 | /* |
| 4352 | * The number of elements must be even if we are to use an |
| 4353 | * mbuf (instead of a cluster) to store the residual data. |
| 4354 | * If we couldn't allocate the requested number of mbufs, |
| 4355 | * trim the number down (if it's odd) in order to avoid |
| 4356 | * creating a partial segment chain. |
| 4357 | */ |
| 4358 | if (bufsize > MHLEN && (needed & 0x1)) |
| 4359 | needed--; |
| 4360 | |
| 4361 | while (num < needed) { |
| 4362 | struct mbuf *m; |
| 4363 | |
| 4364 | m = (struct mbuf *)mp_list; |
| 4365 | mp_list = mp_list->obj_next; |
| 4366 | ASSERT(m != NULL); |
| 4367 | |
| 4368 | MBUF_INIT(m, 1, MT_DATA); |
| 4369 | #if CONFIG_MACF_NET |
| 4370 | if (mac_init_mbuf(m, wait) != 0) { |
| 4371 | m_free(m); |
| 4372 | break; |
| 4373 | } |
| 4374 | #endif /* MAC_NET */ |
| 4375 | num++; |
| 4376 | if (bufsize > MHLEN) { |
| 4377 | /* A second mbuf for this segment chain */ |
| 4378 | m->m_next = (struct mbuf *)mp_list; |
| 4379 | mp_list = mp_list->obj_next; |
| 4380 | ASSERT(m->m_next != NULL); |
| 4381 | |
| 4382 | MBUF_INIT(m->m_next, 0, MT_DATA); |
| 4383 | num++; |
| 4384 | } |
| 4385 | *np = m; |
| 4386 | np = &m->m_nextpkt; |
| 4387 | } |
| 4388 | ASSERT(num != *numlist || mp_list == NULL); |
| 4389 | |
| 4390 | if (num > 0) { |
| 4391 | mtype_stat_add(MT_DATA, num); |
| 4392 | mtype_stat_sub(MT_FREE, num); |
| 4393 | } |
| 4394 | num /= nsegs; |
| 4395 | |
| 4396 | /* We've got them all; return to caller */ |
| 4397 | if (num == *numlist) |
| 4398 | return (top); |
| 4399 | |
| 4400 | goto fail; |
| 4401 | } |
| 4402 | |
| 4403 | /* |
| 4404 | * Complex cases where elements are made up of one or more composite |
| 4405 | * mbufs + cluster, depending on packetlen. Each N-segment chain can |
| 4406 | * be illustrated as follows: |
| 4407 | * |
| 4408 | * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N] |
| 4409 | * |
| 4410 | * Every composite mbuf + cluster element comes from the intermediate |
| 4411 | * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency, |
| 4412 | * the last composite element will come from the MC_MBUF_CL cache, |
| 4413 | * unless the residual data is larger than 2KB where we use the |
| 4414 | * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual |
| 4415 | * data is defined as extra data beyond the first element that cannot |
| 4416 | * fit into the previous element, i.e. there is no residual data if |
| 4417 | * the chain only has 1 segment. |
| 4418 | */ |
| 4419 | r_bufsize = bufsize; |
| 4420 | resid = packetlen > bufsize ? packetlen % bufsize : 0; |
| 4421 | if (resid > 0) { |
| 4422 | /* There is residual data; figure out the cluster size */ |
| 4423 | if (wantsize == 0 && packetlen > MINCLSIZE) { |
| 4424 | /* |
| 4425 | * Caller didn't request that all of the segments |
| 4426 | * in the chain use the same cluster size; use the |
| 4427 | * smaller of the cluster sizes. |
| 4428 | */ |
| 4429 | if (njcl > 0 && resid > m_maxsize(MC_BIGCL)) |
| 4430 | r_bufsize = m_maxsize(MC_16KCL); |
| 4431 | else if (resid > m_maxsize(MC_CL)) |
| 4432 | r_bufsize = m_maxsize(MC_BIGCL); |
| 4433 | else |
| 4434 | r_bufsize = m_maxsize(MC_CL); |
| 4435 | } else { |
| 4436 | /* Use the same cluster size as the other segments */ |
| 4437 | resid = 0; |
| 4438 | } |
| 4439 | } |
| 4440 | |
| 4441 | needed = *numlist; |
| 4442 | if (resid > 0) { |
| 4443 | /* |
| 4444 | * Attempt to allocate composite mbuf + cluster elements for |
| 4445 | * the residual data in each chain; record the number of such |
| 4446 | * elements that can be allocated so that we know how many |
| 4447 | * segment chains we can afford to create. |
| 4448 | */ |
| 4449 | if (r_bufsize <= m_maxsize(MC_CL)) |
| 4450 | rcp = m_cache(MC_MBUF_CL); |
| 4451 | else if (r_bufsize <= m_maxsize(MC_BIGCL)) |
| 4452 | rcp = m_cache(MC_MBUF_BIGCL); |
| 4453 | else |
| 4454 | rcp = m_cache(MC_MBUF_16KCL); |
| 4455 | needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags); |
| 4456 | |
| 4457 | if (needed == 0) |
| 4458 | goto fail; |
| 4459 | |
| 4460 | /* This is temporarily reduced for calculation */ |
| 4461 | ASSERT(nsegs > 1); |
| 4462 | nsegs--; |
| 4463 | } |
| 4464 | |
| 4465 | /* |
| 4466 | * Attempt to allocate the rest of the composite mbuf + cluster |
| 4467 | * elements for the number of segment chains that we need. |
| 4468 | */ |
| 4469 | if (bufsize <= m_maxsize(MC_CL)) |
| 4470 | cp = m_cache(MC_MBUF_CL); |
| 4471 | else if (bufsize <= m_maxsize(MC_BIGCL)) |
| 4472 | cp = m_cache(MC_MBUF_BIGCL); |
| 4473 | else |
| 4474 | cp = m_cache(MC_MBUF_16KCL); |
| 4475 | needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags); |
| 4476 | |
| 4477 | /* Round it down to avoid creating a partial segment chain */ |
| 4478 | needed = (needed / nsegs) * nsegs; |
| 4479 | if (needed == 0) |
| 4480 | goto fail; |
| 4481 | |
| 4482 | if (resid > 0) { |
| 4483 | /* |
| 4484 | * We're about to construct the chain(s); take into account |
| 4485 | * the number of segments we have created above to hold the |
| 4486 | * residual data for each chain, as well as restore the |
| 4487 | * original count of segments per chain. |
| 4488 | */ |
| 4489 | ASSERT(nsegs > 0); |
| 4490 | needed += needed / nsegs; |
| 4491 | nsegs++; |
| 4492 | } |
| 4493 | |
| 4494 | for (;;) { |
| 4495 | struct mbuf *m; |
| 4496 | u_int16_t flag; |
| 4497 | struct ext_ref *rfa; |
| 4498 | void *cl; |
| 4499 | int pkthdr; |
| 4500 | m_ext_free_func_t m_free_func; |
| 4501 | |
| 4502 | ++num; |
| 4503 | if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) { |
| 4504 | m = (struct mbuf *)mp_list; |
| 4505 | mp_list = mp_list->obj_next; |
| 4506 | } else { |
| 4507 | m = (struct mbuf *)rmp_list; |
| 4508 | rmp_list = rmp_list->obj_next; |
| 4509 | } |
| 4510 | m_free_func = m_get_ext_free(m); |
| 4511 | ASSERT(m != NULL); |
| 4512 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); |
| 4513 | VERIFY(m_free_func == NULL || m_free_func == m_bigfree || |
| 4514 | m_free_func == m_16kfree); |
| 4515 | |
| 4516 | cl = m->m_ext.ext_buf; |
| 4517 | rfa = m_get_rfa(m); |
| 4518 | |
| 4519 | ASSERT(cl != NULL && rfa != NULL); |
| 4520 | VERIFY(MBUF_IS_COMPOSITE(m)); |
| 4521 | |
| 4522 | flag = MEXT_FLAGS(m); |
| 4523 | |
| 4524 | pkthdr = (nsegs == 1 || (num % nsegs) == 1); |
| 4525 | if (pkthdr) |
| 4526 | first = m; |
| 4527 | MBUF_INIT(m, pkthdr, MT_DATA); |
| 4528 | if (m_free_func == m_16kfree) { |
| 4529 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); |
| 4530 | } else if (m_free_func == m_bigfree) { |
| 4531 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); |
| 4532 | } else { |
| 4533 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
| 4534 | } |
| 4535 | #if CONFIG_MACF_NET |
| 4536 | if (pkthdr && mac_init_mbuf(m, wait) != 0) { |
| 4537 | --num; |
| 4538 | m_freem(m); |
| 4539 | break; |
| 4540 | } |
| 4541 | #endif /* MAC_NET */ |
| 4542 | |
| 4543 | *np = m; |
| 4544 | if ((num % nsegs) == 0) |
| 4545 | np = &first->m_nextpkt; |
| 4546 | else |
| 4547 | np = &m->m_next; |
| 4548 | |
| 4549 | if (num == needed) |
| 4550 | break; |
| 4551 | } |
| 4552 | |
| 4553 | if (num > 0) { |
| 4554 | mtype_stat_add(MT_DATA, num); |
| 4555 | mtype_stat_sub(MT_FREE, num); |
| 4556 | } |
| 4557 | |
| 4558 | num /= nsegs; |
| 4559 | |
| 4560 | /* We've got them all; return to caller */ |
| 4561 | if (num == *numlist) { |
| 4562 | ASSERT(mp_list == NULL && rmp_list == NULL); |
| 4563 | return (top); |
| 4564 | } |
| 4565 | |
| 4566 | fail: |
| 4567 | /* Free up what's left of the above */ |
| 4568 | if (mp_list != NULL) |
| 4569 | mcache_free_ext(cp, mp_list); |
| 4570 | if (rmp_list != NULL) |
| 4571 | mcache_free_ext(rcp, rmp_list); |
| 4572 | if (wantall && top != NULL) { |
| 4573 | m_freem(top); |
| 4574 | return (NULL); |
| 4575 | } |
| 4576 | *numlist = num; |
| 4577 | return (top); |
| 4578 | } |
| 4579 | |
| 4580 | /* |
| 4581 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated |
| 4582 | * packets on receive ring. |
| 4583 | */ |
| 4584 | __private_extern__ struct mbuf * |
| 4585 | m_getpacket_how(int wait) |
| 4586 | { |
| 4587 | unsigned int num_needed = 1; |
| 4588 | |
| 4589 | return (m_getpackets_internal(&num_needed, 1, wait, 1, |
| 4590 | m_maxsize(MC_CL))); |
| 4591 | } |
| 4592 | |
| 4593 | /* |
| 4594 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated |
| 4595 | * packets on receive ring. |
| 4596 | */ |
| 4597 | struct mbuf * |
| 4598 | m_getpacket(void) |
| 4599 | { |
| 4600 | unsigned int num_needed = 1; |
| 4601 | |
| 4602 | return (m_getpackets_internal(&num_needed, 1, M_WAIT, 1, |
| 4603 | m_maxsize(MC_CL))); |
| 4604 | } |
| 4605 | |
| 4606 | /* |
| 4607 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
| 4608 | * if this can't be met, return whatever number were available. Set up the |
| 4609 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These |
| 4610 | * are chained on the m_nextpkt field. Any packets requested beyond this are |
| 4611 | * chained onto the last packet header's m_next field. |
| 4612 | */ |
| 4613 | struct mbuf * |
| 4614 | m_getpackets(int num_needed, int num_with_pkthdrs, int how) |
| 4615 | { |
| 4616 | unsigned int n = num_needed; |
| 4617 | |
| 4618 | return (m_getpackets_internal(&n, num_with_pkthdrs, how, 0, |
| 4619 | m_maxsize(MC_CL))); |
| 4620 | } |
| 4621 | |
| 4622 | /* |
| 4623 | * Return a list of mbuf hdrs set up as packet hdrs chained together |
| 4624 | * on the m_nextpkt field |
| 4625 | */ |
| 4626 | struct mbuf * |
| 4627 | m_getpackethdrs(int num_needed, int how) |
| 4628 | { |
| 4629 | struct mbuf *m; |
| 4630 | struct mbuf **np, *top; |
| 4631 | |
| 4632 | top = NULL; |
| 4633 | np = ⊤ |
| 4634 | |
| 4635 | while (num_needed--) { |
| 4636 | m = _M_RETRYHDR(how, MT_DATA); |
| 4637 | if (m == NULL) |
| 4638 | break; |
| 4639 | |
| 4640 | *np = m; |
| 4641 | np = &m->m_nextpkt; |
| 4642 | } |
| 4643 | |
| 4644 | return (top); |
| 4645 | } |
| 4646 | |
| 4647 | /* |
| 4648 | * Free an mbuf list (m_nextpkt) while following m_next. Returns the count |
| 4649 | * for mbufs packets freed. Used by the drivers. |
| 4650 | */ |
| 4651 | int |
| 4652 | m_freem_list(struct mbuf *m) |
| 4653 | { |
| 4654 | struct mbuf *nextpkt; |
| 4655 | mcache_obj_t *mp_list = NULL; |
| 4656 | mcache_obj_t *mcl_list = NULL; |
| 4657 | mcache_obj_t *mbc_list = NULL; |
| 4658 | mcache_obj_t *m16k_list = NULL; |
| 4659 | mcache_obj_t *m_mcl_list = NULL; |
| 4660 | mcache_obj_t *m_mbc_list = NULL; |
| 4661 | mcache_obj_t *m_m16k_list = NULL; |
| 4662 | mcache_obj_t *ref_list = NULL; |
| 4663 | int pktcount = 0; |
| 4664 | int mt_free = 0, mt_data = 0, = 0, mt_soname = 0, mt_tag = 0; |
| 4665 | |
| 4666 | while (m != NULL) { |
| 4667 | pktcount++; |
| 4668 | |
| 4669 | nextpkt = m->m_nextpkt; |
| 4670 | m->m_nextpkt = NULL; |
| 4671 | |
| 4672 | while (m != NULL) { |
| 4673 | struct mbuf *next = m->m_next; |
| 4674 | mcache_obj_t *o, *rfa; |
| 4675 | u_int32_t composite; |
| 4676 | u_int16_t refcnt; |
| 4677 | m_ext_free_func_t m_free_func; |
| 4678 | |
| 4679 | if (m->m_type == MT_FREE) |
| 4680 | panic("m_free: freeing an already freed mbuf" ); |
| 4681 | |
| 4682 | if (m->m_flags & M_PKTHDR) { |
| 4683 | /* Check for scratch area overflow */ |
| 4684 | m_redzone_verify(m); |
| 4685 | /* Free the aux data and tags if there is any */ |
| 4686 | m_tag_delete_chain(m, NULL); |
| 4687 | } |
| 4688 | |
| 4689 | if (!(m->m_flags & M_EXT)) { |
| 4690 | mt_free++; |
| 4691 | goto simple_free; |
| 4692 | } |
| 4693 | |
| 4694 | if (MBUF_IS_PAIRED(m) && m_free_paired(m)) { |
| 4695 | m = next; |
| 4696 | continue; |
| 4697 | } |
| 4698 | |
| 4699 | mt_free++; |
| 4700 | |
| 4701 | o = (mcache_obj_t *)(void *)m->m_ext.ext_buf; |
| 4702 | refcnt = m_decref(m); |
| 4703 | composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
| 4704 | m_free_func = m_get_ext_free(m); |
| 4705 | if (refcnt == MEXT_MINREF(m) && !composite) { |
| 4706 | if (m_free_func == NULL) { |
| 4707 | o->obj_next = mcl_list; |
| 4708 | mcl_list = o; |
| 4709 | } else if (m_free_func == m_bigfree) { |
| 4710 | o->obj_next = mbc_list; |
| 4711 | mbc_list = o; |
| 4712 | } else if (m_free_func == m_16kfree) { |
| 4713 | o->obj_next = m16k_list; |
| 4714 | m16k_list = o; |
| 4715 | } else { |
| 4716 | (*(m_free_func))((caddr_t)o, |
| 4717 | m->m_ext.ext_size, |
| 4718 | m_get_ext_arg(m)); |
| 4719 | } |
| 4720 | rfa = (mcache_obj_t *)(void *)m_get_rfa(m); |
| 4721 | rfa->obj_next = ref_list; |
| 4722 | ref_list = rfa; |
| 4723 | m_set_ext(m, NULL, NULL, NULL); |
| 4724 | } else if (refcnt == MEXT_MINREF(m) && composite) { |
| 4725 | VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED)); |
| 4726 | VERIFY(m->m_type != MT_FREE); |
| 4727 | /* |
| 4728 | * Amortize the costs of atomic operations |
| 4729 | * by doing them at the end, if possible. |
| 4730 | */ |
| 4731 | if (m->m_type == MT_DATA) |
| 4732 | mt_data++; |
| 4733 | else if (m->m_type == MT_HEADER) |
| 4734 | mt_header++; |
| 4735 | else if (m->m_type == MT_SONAME) |
| 4736 | mt_soname++; |
| 4737 | else if (m->m_type == MT_TAG) |
| 4738 | mt_tag++; |
| 4739 | else |
| 4740 | mtype_stat_dec(m->m_type); |
| 4741 | |
| 4742 | m->m_type = MT_FREE; |
| 4743 | m->m_flags = M_EXT; |
| 4744 | m->m_len = 0; |
| 4745 | m->m_next = m->m_nextpkt = NULL; |
| 4746 | |
| 4747 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
| 4748 | |
| 4749 | /* "Free" into the intermediate cache */ |
| 4750 | o = (mcache_obj_t *)m; |
| 4751 | if (m_free_func == NULL) { |
| 4752 | o->obj_next = m_mcl_list; |
| 4753 | m_mcl_list = o; |
| 4754 | } else if (m_free_func == m_bigfree) { |
| 4755 | o->obj_next = m_mbc_list; |
| 4756 | m_mbc_list = o; |
| 4757 | } else { |
| 4758 | VERIFY(m_free_func == m_16kfree); |
| 4759 | o->obj_next = m_m16k_list; |
| 4760 | m_m16k_list = o; |
| 4761 | } |
| 4762 | m = next; |
| 4763 | continue; |
| 4764 | } |
| 4765 | simple_free: |
| 4766 | /* |
| 4767 | * Amortize the costs of atomic operations |
| 4768 | * by doing them at the end, if possible. |
| 4769 | */ |
| 4770 | if (m->m_type == MT_DATA) |
| 4771 | mt_data++; |
| 4772 | else if (m->m_type == MT_HEADER) |
| 4773 | mt_header++; |
| 4774 | else if (m->m_type == MT_SONAME) |
| 4775 | mt_soname++; |
| 4776 | else if (m->m_type == MT_TAG) |
| 4777 | mt_tag++; |
| 4778 | else if (m->m_type != MT_FREE) |
| 4779 | mtype_stat_dec(m->m_type); |
| 4780 | |
| 4781 | m->m_type = MT_FREE; |
| 4782 | m->m_flags = m->m_len = 0; |
| 4783 | m->m_next = m->m_nextpkt = NULL; |
| 4784 | |
| 4785 | ((mcache_obj_t *)m)->obj_next = mp_list; |
| 4786 | mp_list = (mcache_obj_t *)m; |
| 4787 | |
| 4788 | m = next; |
| 4789 | } |
| 4790 | |
| 4791 | m = nextpkt; |
| 4792 | } |
| 4793 | |
| 4794 | if (mt_free > 0) |
| 4795 | mtype_stat_add(MT_FREE, mt_free); |
| 4796 | if (mt_data > 0) |
| 4797 | mtype_stat_sub(MT_DATA, mt_data); |
| 4798 | if (mt_header > 0) |
| 4799 | mtype_stat_sub(MT_HEADER, mt_header); |
| 4800 | if (mt_soname > 0) |
| 4801 | mtype_stat_sub(MT_SONAME, mt_soname); |
| 4802 | if (mt_tag > 0) |
| 4803 | mtype_stat_sub(MT_TAG, mt_tag); |
| 4804 | |
| 4805 | if (mp_list != NULL) |
| 4806 | mcache_free_ext(m_cache(MC_MBUF), mp_list); |
| 4807 | if (mcl_list != NULL) |
| 4808 | mcache_free_ext(m_cache(MC_CL), mcl_list); |
| 4809 | if (mbc_list != NULL) |
| 4810 | mcache_free_ext(m_cache(MC_BIGCL), mbc_list); |
| 4811 | if (m16k_list != NULL) |
| 4812 | mcache_free_ext(m_cache(MC_16KCL), m16k_list); |
| 4813 | if (m_mcl_list != NULL) |
| 4814 | mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list); |
| 4815 | if (m_mbc_list != NULL) |
| 4816 | mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list); |
| 4817 | if (m_m16k_list != NULL) |
| 4818 | mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list); |
| 4819 | if (ref_list != NULL) |
| 4820 | mcache_free_ext(ref_cache, ref_list); |
| 4821 | |
| 4822 | return (pktcount); |
| 4823 | } |
| 4824 | |
| 4825 | void |
| 4826 | m_freem(struct mbuf *m) |
| 4827 | { |
| 4828 | while (m != NULL) |
| 4829 | m = m_free(m); |
| 4830 | } |
| 4831 | |
| 4832 | /* |
| 4833 | * Mbuffer utility routines. |
| 4834 | */ |
| 4835 | /* |
| 4836 | * Set the m_data pointer of a newly allocated mbuf to place an object of the |
| 4837 | * specified size at the end of the mbuf, longword aligned. |
| 4838 | * |
| 4839 | * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as |
| 4840 | * separate macros, each asserting that it was called at the proper moment. |
| 4841 | * This required callers to themselves test the storage type and call the |
| 4842 | * right one. Rather than require callers to be aware of those layout |
| 4843 | * decisions, we centralize here. |
| 4844 | */ |
| 4845 | void |
| 4846 | m_align(struct mbuf *m, int len) |
| 4847 | { |
| 4848 | int adjust = 0; |
| 4849 | |
| 4850 | /* At this point data must point to start */ |
| 4851 | VERIFY(m->m_data == M_START(m)); |
| 4852 | VERIFY(len >= 0); |
| 4853 | VERIFY(len <= M_SIZE(m)); |
| 4854 | adjust = M_SIZE(m) - len; |
| 4855 | m->m_data += adjust &~ (sizeof(long) - 1); |
| 4856 | } |
| 4857 | |
| 4858 | /* |
| 4859 | * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain, |
| 4860 | * copy junk along. Does not adjust packet header length. |
| 4861 | */ |
| 4862 | struct mbuf * |
| 4863 | m_prepend(struct mbuf *m, int len, int how) |
| 4864 | { |
| 4865 | struct mbuf *mn; |
| 4866 | |
| 4867 | _MGET(mn, how, m->m_type); |
| 4868 | if (mn == NULL) { |
| 4869 | m_freem(m); |
| 4870 | return (NULL); |
| 4871 | } |
| 4872 | if (m->m_flags & M_PKTHDR) { |
| 4873 | M_COPY_PKTHDR(mn, m); |
| 4874 | m->m_flags &= ~M_PKTHDR; |
| 4875 | } |
| 4876 | mn->m_next = m; |
| 4877 | m = mn; |
| 4878 | if (m->m_flags & M_PKTHDR) { |
| 4879 | VERIFY(len <= MHLEN); |
| 4880 | MH_ALIGN(m, len); |
| 4881 | } else { |
| 4882 | VERIFY(len <= MLEN); |
| 4883 | M_ALIGN(m, len); |
| 4884 | } |
| 4885 | m->m_len = len; |
| 4886 | return (m); |
| 4887 | } |
| 4888 | |
| 4889 | /* |
| 4890 | * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to |
| 4891 | * chain, copy junk along, and adjust length. |
| 4892 | */ |
| 4893 | struct mbuf * |
| 4894 | m_prepend_2(struct mbuf *m, int len, int how, int align) |
| 4895 | { |
| 4896 | if (M_LEADINGSPACE(m) >= len && |
| 4897 | (!align || IS_P2ALIGNED((m->m_data - len), sizeof(u_int32_t)))) { |
| 4898 | m->m_data -= len; |
| 4899 | m->m_len += len; |
| 4900 | } else { |
| 4901 | m = m_prepend(m, len, how); |
| 4902 | } |
| 4903 | if ((m) && (m->m_flags & M_PKTHDR)) |
| 4904 | m->m_pkthdr.len += len; |
| 4905 | return (m); |
| 4906 | } |
| 4907 | |
| 4908 | /* |
| 4909 | * Make a copy of an mbuf chain starting "off0" bytes from the beginning, |
| 4910 | * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. |
| 4911 | * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller. |
| 4912 | */ |
| 4913 | int MCFail; |
| 4914 | |
| 4915 | struct mbuf * |
| 4916 | m_copym_mode(struct mbuf *m, int off0, int len, int wait, uint32_t mode) |
| 4917 | { |
| 4918 | struct mbuf *n, *mhdr = NULL, **np; |
| 4919 | int off = off0; |
| 4920 | struct mbuf *top; |
| 4921 | int copyhdr = 0; |
| 4922 | |
| 4923 | if (off < 0 || len < 0) |
| 4924 | panic("m_copym: invalid offset %d or len %d" , off, len); |
| 4925 | |
| 4926 | VERIFY((mode != M_COPYM_MUST_COPY_HDR && |
| 4927 | mode != M_COPYM_MUST_MOVE_HDR) || (m->m_flags & M_PKTHDR)); |
| 4928 | |
| 4929 | if ((off == 0 && (m->m_flags & M_PKTHDR)) || |
| 4930 | mode == M_COPYM_MUST_COPY_HDR || mode == M_COPYM_MUST_MOVE_HDR) { |
| 4931 | mhdr = m; |
| 4932 | copyhdr = 1; |
| 4933 | } |
| 4934 | |
| 4935 | while (off >= m->m_len) { |
| 4936 | if (m->m_next == NULL) |
| 4937 | panic("m_copym: invalid mbuf chain" ); |
| 4938 | off -= m->m_len; |
| 4939 | m = m->m_next; |
| 4940 | } |
| 4941 | np = ⊤ |
| 4942 | top = NULL; |
| 4943 | |
| 4944 | while (len > 0) { |
| 4945 | if (m == NULL) { |
| 4946 | if (len != M_COPYALL) |
| 4947 | panic("m_copym: len != M_COPYALL" ); |
| 4948 | break; |
| 4949 | } |
| 4950 | |
| 4951 | if (copyhdr) |
| 4952 | n = _M_RETRYHDR(wait, m->m_type); |
| 4953 | else |
| 4954 | n = _M_RETRY(wait, m->m_type); |
| 4955 | *np = n; |
| 4956 | |
| 4957 | if (n == NULL) |
| 4958 | goto nospace; |
| 4959 | |
| 4960 | if (copyhdr != 0) { |
| 4961 | if ((mode == M_COPYM_MOVE_HDR) || |
| 4962 | (mode == M_COPYM_MUST_MOVE_HDR)) { |
| 4963 | M_COPY_PKTHDR(n, mhdr); |
| 4964 | } else if ((mode == M_COPYM_COPY_HDR) || |
| 4965 | (mode == M_COPYM_MUST_COPY_HDR)) { |
| 4966 | if (m_dup_pkthdr(n, mhdr, wait) == 0) |
| 4967 | goto nospace; |
| 4968 | } |
| 4969 | if (len == M_COPYALL) |
| 4970 | n->m_pkthdr.len -= off0; |
| 4971 | else |
| 4972 | n->m_pkthdr.len = len; |
| 4973 | copyhdr = 0; |
| 4974 | /* |
| 4975 | * There is data to copy from the packet header mbuf |
| 4976 | * if it is empty or it is before the starting offset |
| 4977 | */ |
| 4978 | if (mhdr != m) { |
| 4979 | np = &n->m_next; |
| 4980 | continue; |
| 4981 | } |
| 4982 | } |
| 4983 | n->m_len = MIN(len, (m->m_len - off)); |
| 4984 | if (m->m_flags & M_EXT) { |
| 4985 | n->m_ext = m->m_ext; |
| 4986 | m_incref(m); |
| 4987 | n->m_data = m->m_data + off; |
| 4988 | n->m_flags |= M_EXT; |
| 4989 | } else { |
| 4990 | /* |
| 4991 | * Limit to the capacity of the destination |
| 4992 | */ |
| 4993 | if (n->m_flags & M_PKTHDR) |
| 4994 | n->m_len = MIN(n->m_len, MHLEN); |
| 4995 | else |
| 4996 | n->m_len = MIN(n->m_len, MLEN); |
| 4997 | |
| 4998 | if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) |
| 4999 | panic("%s n %p copy overflow" , |
| 5000 | __func__, n); |
| 5001 | |
| 5002 | bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t), |
| 5003 | (unsigned)n->m_len); |
| 5004 | } |
| 5005 | if (len != M_COPYALL) |
| 5006 | len -= n->m_len; |
| 5007 | off = 0; |
| 5008 | m = m->m_next; |
| 5009 | np = &n->m_next; |
| 5010 | } |
| 5011 | |
| 5012 | if (top == NULL) |
| 5013 | MCFail++; |
| 5014 | |
| 5015 | return (top); |
| 5016 | nospace: |
| 5017 | |
| 5018 | m_freem(top); |
| 5019 | MCFail++; |
| 5020 | return (NULL); |
| 5021 | } |
| 5022 | |
| 5023 | |
| 5024 | struct mbuf * |
| 5025 | m_copym(struct mbuf *m, int off0, int len, int wait) |
| 5026 | { |
| 5027 | return (m_copym_mode(m, off0, len, wait, M_COPYM_MOVE_HDR)); |
| 5028 | } |
| 5029 | |
| 5030 | /* |
| 5031 | * Equivalent to m_copym except that all necessary mbuf hdrs are allocated |
| 5032 | * within this routine also, the last mbuf and offset accessed are passed |
| 5033 | * out and can be passed back in to avoid having to rescan the entire mbuf |
| 5034 | * list (normally hung off of the socket) |
| 5035 | */ |
| 5036 | struct mbuf * |
| 5037 | m_copym_with_hdrs(struct mbuf *m0, int off0, int len0, int wait, |
| 5038 | struct mbuf **m_lastm, int *m_off, uint32_t mode) |
| 5039 | { |
| 5040 | struct mbuf *m = m0, *n, **np = NULL; |
| 5041 | int off = off0, len = len0; |
| 5042 | struct mbuf *top = NULL; |
| 5043 | int mcflags = MSLEEPF(wait); |
| 5044 | int copyhdr = 0; |
| 5045 | int type = 0; |
| 5046 | mcache_obj_t *list = NULL; |
| 5047 | int needed = 0; |
| 5048 | |
| 5049 | if (off == 0 && (m->m_flags & M_PKTHDR)) |
| 5050 | copyhdr = 1; |
| 5051 | |
| 5052 | if (m_lastm != NULL && *m_lastm != NULL) { |
| 5053 | m = *m_lastm; |
| 5054 | off = *m_off; |
| 5055 | } else { |
| 5056 | while (off >= m->m_len) { |
| 5057 | off -= m->m_len; |
| 5058 | m = m->m_next; |
| 5059 | } |
| 5060 | } |
| 5061 | |
| 5062 | n = m; |
| 5063 | while (len > 0) { |
| 5064 | needed++; |
| 5065 | ASSERT(n != NULL); |
| 5066 | len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0))); |
| 5067 | n = n->m_next; |
| 5068 | } |
| 5069 | needed++; |
| 5070 | len = len0; |
| 5071 | |
| 5072 | /* |
| 5073 | * If the caller doesn't want to be put to sleep, mark it with |
| 5074 | * MCR_TRYHARD so that we may reclaim buffers from other places |
| 5075 | * before giving up. |
| 5076 | */ |
| 5077 | if (mcflags & MCR_NOSLEEP) |
| 5078 | mcflags |= MCR_TRYHARD; |
| 5079 | |
| 5080 | if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed, |
| 5081 | mcflags) != needed) |
| 5082 | goto nospace; |
| 5083 | |
| 5084 | needed = 0; |
| 5085 | while (len > 0) { |
| 5086 | n = (struct mbuf *)list; |
| 5087 | list = list->obj_next; |
| 5088 | ASSERT(n != NULL && m != NULL); |
| 5089 | |
| 5090 | type = (top == NULL) ? MT_HEADER : m->m_type; |
| 5091 | MBUF_INIT(n, (top == NULL), type); |
| 5092 | #if CONFIG_MACF_NET |
| 5093 | if (top == NULL && mac_mbuf_label_init(n, wait) != 0) { |
| 5094 | mtype_stat_inc(MT_HEADER); |
| 5095 | mtype_stat_dec(MT_FREE); |
| 5096 | m_free(n); |
| 5097 | goto nospace; |
| 5098 | } |
| 5099 | #endif /* MAC_NET */ |
| 5100 | |
| 5101 | if (top == NULL) { |
| 5102 | top = n; |
| 5103 | np = &top->m_next; |
| 5104 | continue; |
| 5105 | } else { |
| 5106 | needed++; |
| 5107 | *np = n; |
| 5108 | } |
| 5109 | |
| 5110 | if (copyhdr) { |
| 5111 | if ((mode == M_COPYM_MOVE_HDR) || |
| 5112 | (mode == M_COPYM_MUST_MOVE_HDR)) { |
| 5113 | M_COPY_PKTHDR(n, m); |
| 5114 | } else if ((mode == M_COPYM_COPY_HDR) || |
| 5115 | (mode == M_COPYM_MUST_COPY_HDR)) { |
| 5116 | if (m_dup_pkthdr(n, m, wait) == 0) |
| 5117 | goto nospace; |
| 5118 | } |
| 5119 | n->m_pkthdr.len = len; |
| 5120 | copyhdr = 0; |
| 5121 | } |
| 5122 | n->m_len = MIN(len, (m->m_len - off)); |
| 5123 | |
| 5124 | if (m->m_flags & M_EXT) { |
| 5125 | n->m_ext = m->m_ext; |
| 5126 | m_incref(m); |
| 5127 | n->m_data = m->m_data + off; |
| 5128 | n->m_flags |= M_EXT; |
| 5129 | } else { |
| 5130 | if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE) |
| 5131 | panic("%s n %p copy overflow" , |
| 5132 | __func__, n); |
| 5133 | |
| 5134 | bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t), |
| 5135 | (unsigned)n->m_len); |
| 5136 | } |
| 5137 | len -= n->m_len; |
| 5138 | |
| 5139 | if (len == 0) { |
| 5140 | if (m_lastm != NULL && m_off != NULL) { |
| 5141 | if ((off + n->m_len) == m->m_len) { |
| 5142 | *m_lastm = m->m_next; |
| 5143 | *m_off = 0; |
| 5144 | } else { |
| 5145 | *m_lastm = m; |
| 5146 | *m_off = off + n->m_len; |
| 5147 | } |
| 5148 | } |
| 5149 | break; |
| 5150 | } |
| 5151 | off = 0; |
| 5152 | m = m->m_next; |
| 5153 | np = &n->m_next; |
| 5154 | } |
| 5155 | |
| 5156 | mtype_stat_inc(MT_HEADER); |
| 5157 | mtype_stat_add(type, needed); |
| 5158 | mtype_stat_sub(MT_FREE, needed + 1); |
| 5159 | |
| 5160 | ASSERT(list == NULL); |
| 5161 | return (top); |
| 5162 | |
| 5163 | nospace: |
| 5164 | if (list != NULL) |
| 5165 | mcache_free_ext(m_cache(MC_MBUF), list); |
| 5166 | if (top != NULL) |
| 5167 | m_freem(top); |
| 5168 | MCFail++; |
| 5169 | return (NULL); |
| 5170 | } |
| 5171 | |
| 5172 | /* |
| 5173 | * Copy data from an mbuf chain starting "off" bytes from the beginning, |
| 5174 | * continuing for "len" bytes, into the indicated buffer. |
| 5175 | */ |
| 5176 | void |
| 5177 | m_copydata(struct mbuf *m, int off, int len, void *vp) |
| 5178 | { |
| 5179 | int off0 = off, len0 = len; |
| 5180 | struct mbuf *m0 = m; |
| 5181 | unsigned count; |
| 5182 | char *cp = vp; |
| 5183 | |
| 5184 | if (__improbable(off < 0 || len < 0)) { |
| 5185 | panic("%s: invalid offset %d or len %d" , __func__, off, len); |
| 5186 | /* NOTREACHED */ |
| 5187 | } |
| 5188 | |
| 5189 | while (off > 0) { |
| 5190 | if (__improbable(m == NULL)) { |
| 5191 | panic("%s: invalid mbuf chain %p [off %d, len %d]" , |
| 5192 | __func__, m0, off0, len0); |
| 5193 | /* NOTREACHED */ |
| 5194 | } |
| 5195 | if (off < m->m_len) |
| 5196 | break; |
| 5197 | off -= m->m_len; |
| 5198 | m = m->m_next; |
| 5199 | } |
| 5200 | while (len > 0) { |
| 5201 | if (__improbable(m == NULL)) { |
| 5202 | panic("%s: invalid mbuf chain %p [off %d, len %d]" , |
| 5203 | __func__, m0, off0, len0); |
| 5204 | /* NOTREACHED */ |
| 5205 | } |
| 5206 | count = MIN(m->m_len - off, len); |
| 5207 | bcopy(MTOD(m, caddr_t) + off, cp, count); |
| 5208 | len -= count; |
| 5209 | cp += count; |
| 5210 | off = 0; |
| 5211 | m = m->m_next; |
| 5212 | } |
| 5213 | } |
| 5214 | |
| 5215 | /* |
| 5216 | * Concatenate mbuf chain n to m. Both chains must be of the same type |
| 5217 | * (e.g. MT_DATA). Any m_pkthdr is not updated. |
| 5218 | */ |
| 5219 | void |
| 5220 | m_cat(struct mbuf *m, struct mbuf *n) |
| 5221 | { |
| 5222 | while (m->m_next) |
| 5223 | m = m->m_next; |
| 5224 | while (n) { |
| 5225 | if ((m->m_flags & M_EXT) || |
| 5226 | m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) { |
| 5227 | /* just join the two chains */ |
| 5228 | m->m_next = n; |
| 5229 | return; |
| 5230 | } |
| 5231 | /* splat the data from one into the other */ |
| 5232 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, |
| 5233 | (u_int)n->m_len); |
| 5234 | m->m_len += n->m_len; |
| 5235 | n = m_free(n); |
| 5236 | } |
| 5237 | } |
| 5238 | |
| 5239 | void |
| 5240 | m_adj(struct mbuf *mp, int req_len) |
| 5241 | { |
| 5242 | int len = req_len; |
| 5243 | struct mbuf *m; |
| 5244 | int count; |
| 5245 | |
| 5246 | if ((m = mp) == NULL) |
| 5247 | return; |
| 5248 | if (len >= 0) { |
| 5249 | /* |
| 5250 | * Trim from head. |
| 5251 | */ |
| 5252 | while (m != NULL && len > 0) { |
| 5253 | if (m->m_len <= len) { |
| 5254 | len -= m->m_len; |
| 5255 | m->m_len = 0; |
| 5256 | m = m->m_next; |
| 5257 | } else { |
| 5258 | m->m_len -= len; |
| 5259 | m->m_data += len; |
| 5260 | len = 0; |
| 5261 | } |
| 5262 | } |
| 5263 | m = mp; |
| 5264 | if (m->m_flags & M_PKTHDR) |
| 5265 | m->m_pkthdr.len -= (req_len - len); |
| 5266 | } else { |
| 5267 | /* |
| 5268 | * Trim from tail. Scan the mbuf chain, |
| 5269 | * calculating its length and finding the last mbuf. |
| 5270 | * If the adjustment only affects this mbuf, then just |
| 5271 | * adjust and return. Otherwise, rescan and truncate |
| 5272 | * after the remaining size. |
| 5273 | */ |
| 5274 | len = -len; |
| 5275 | count = 0; |
| 5276 | for (;;) { |
| 5277 | count += m->m_len; |
| 5278 | if (m->m_next == (struct mbuf *)0) |
| 5279 | break; |
| 5280 | m = m->m_next; |
| 5281 | } |
| 5282 | if (m->m_len >= len) { |
| 5283 | m->m_len -= len; |
| 5284 | m = mp; |
| 5285 | if (m->m_flags & M_PKTHDR) |
| 5286 | m->m_pkthdr.len -= len; |
| 5287 | return; |
| 5288 | } |
| 5289 | count -= len; |
| 5290 | if (count < 0) |
| 5291 | count = 0; |
| 5292 | /* |
| 5293 | * Correct length for chain is "count". |
| 5294 | * Find the mbuf with last data, adjust its length, |
| 5295 | * and toss data from remaining mbufs on chain. |
| 5296 | */ |
| 5297 | m = mp; |
| 5298 | if (m->m_flags & M_PKTHDR) |
| 5299 | m->m_pkthdr.len = count; |
| 5300 | for (; m; m = m->m_next) { |
| 5301 | if (m->m_len >= count) { |
| 5302 | m->m_len = count; |
| 5303 | break; |
| 5304 | } |
| 5305 | count -= m->m_len; |
| 5306 | } |
| 5307 | while ((m = m->m_next)) |
| 5308 | m->m_len = 0; |
| 5309 | } |
| 5310 | } |
| 5311 | |
| 5312 | /* |
| 5313 | * Rearange an mbuf chain so that len bytes are contiguous |
| 5314 | * and in the data area of an mbuf (so that mtod and dtom |
| 5315 | * will work for a structure of size len). Returns the resulting |
| 5316 | * mbuf chain on success, frees it and returns null on failure. |
| 5317 | * If there is room, it will add up to max_protohdr-len extra bytes to the |
| 5318 | * contiguous region in an attempt to avoid being called next time. |
| 5319 | */ |
| 5320 | int MPFail; |
| 5321 | |
| 5322 | struct mbuf * |
| 5323 | m_pullup(struct mbuf *n, int len) |
| 5324 | { |
| 5325 | struct mbuf *m; |
| 5326 | int count; |
| 5327 | int space; |
| 5328 | |
| 5329 | /* check invalid arguments */ |
| 5330 | if (n == NULL) { |
| 5331 | panic("%s: n == NULL" , __func__); |
| 5332 | } |
| 5333 | if (len < 0) { |
| 5334 | os_log_info(OS_LOG_DEFAULT, "%s: failed negative len %d" , |
| 5335 | __func__, len); |
| 5336 | goto bad; |
| 5337 | } |
| 5338 | if (len > MLEN) { |
| 5339 | os_log_info(OS_LOG_DEFAULT, "%s: failed len %d too big" , |
| 5340 | __func__, len); |
| 5341 | goto bad; |
| 5342 | } |
| 5343 | if ((n->m_flags & M_EXT) == 0 && |
| 5344 | n->m_data >= &n->m_dat[MLEN]) { |
| 5345 | os_log_info(OS_LOG_DEFAULT, "%s: m_data out of bounds" , |
| 5346 | __func__); |
| 5347 | goto bad; |
| 5348 | } |
| 5349 | |
| 5350 | /* |
| 5351 | * If first mbuf has no cluster, and has room for len bytes |
| 5352 | * without shifting current data, pullup into it, |
| 5353 | * otherwise allocate a new mbuf to prepend to the chain. |
| 5354 | */ |
| 5355 | if ((n->m_flags & M_EXT) == 0 && |
| 5356 | len < &n->m_dat[MLEN] - n->m_data && n->m_next != NULL) { |
| 5357 | if (n->m_len >= len) |
| 5358 | return (n); |
| 5359 | m = n; |
| 5360 | n = n->m_next; |
| 5361 | len -= m->m_len; |
| 5362 | } else { |
| 5363 | if (len > MHLEN) |
| 5364 | goto bad; |
| 5365 | _MGET(m, M_DONTWAIT, n->m_type); |
| 5366 | if (m == 0) |
| 5367 | goto bad; |
| 5368 | m->m_len = 0; |
| 5369 | if (n->m_flags & M_PKTHDR) { |
| 5370 | M_COPY_PKTHDR(m, n); |
| 5371 | n->m_flags &= ~M_PKTHDR; |
| 5372 | } |
| 5373 | } |
| 5374 | space = &m->m_dat[MLEN] - (m->m_data + m->m_len); |
| 5375 | do { |
| 5376 | count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len); |
| 5377 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, |
| 5378 | (unsigned)count); |
| 5379 | len -= count; |
| 5380 | m->m_len += count; |
| 5381 | n->m_len -= count; |
| 5382 | space -= count; |
| 5383 | if (n->m_len != 0) |
| 5384 | n->m_data += count; |
| 5385 | else |
| 5386 | n = m_free(n); |
| 5387 | } while (len > 0 && n != NULL); |
| 5388 | if (len > 0) { |
| 5389 | (void) m_free(m); |
| 5390 | goto bad; |
| 5391 | } |
| 5392 | m->m_next = n; |
| 5393 | return (m); |
| 5394 | bad: |
| 5395 | m_freem(n); |
| 5396 | MPFail++; |
| 5397 | return (0); |
| 5398 | } |
| 5399 | |
| 5400 | /* |
| 5401 | * Like m_pullup(), except a new mbuf is always allocated, and we allow |
| 5402 | * the amount of empty space before the data in the new mbuf to be specified |
| 5403 | * (in the event that the caller expects to prepend later). |
| 5404 | */ |
| 5405 | __private_extern__ int MSFail = 0; |
| 5406 | |
| 5407 | __private_extern__ struct mbuf * |
| 5408 | m_copyup(struct mbuf *n, int len, int dstoff) |
| 5409 | { |
| 5410 | struct mbuf *m; |
| 5411 | int count, space; |
| 5412 | |
| 5413 | if (len > (MHLEN - dstoff)) |
| 5414 | goto bad; |
| 5415 | MGET(m, M_DONTWAIT, n->m_type); |
| 5416 | if (m == NULL) |
| 5417 | goto bad; |
| 5418 | m->m_len = 0; |
| 5419 | if (n->m_flags & M_PKTHDR) { |
| 5420 | m_copy_pkthdr(m, n); |
| 5421 | n->m_flags &= ~M_PKTHDR; |
| 5422 | } |
| 5423 | m->m_data += dstoff; |
| 5424 | space = &m->m_dat[MLEN] - (m->m_data + m->m_len); |
| 5425 | do { |
| 5426 | count = min(min(max(len, max_protohdr), space), n->m_len); |
| 5427 | memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), |
| 5428 | (unsigned)count); |
| 5429 | len -= count; |
| 5430 | m->m_len += count; |
| 5431 | n->m_len -= count; |
| 5432 | space -= count; |
| 5433 | if (n->m_len) |
| 5434 | n->m_data += count; |
| 5435 | else |
| 5436 | n = m_free(n); |
| 5437 | } while (len > 0 && n); |
| 5438 | if (len > 0) { |
| 5439 | (void) m_free(m); |
| 5440 | goto bad; |
| 5441 | } |
| 5442 | m->m_next = n; |
| 5443 | return (m); |
| 5444 | bad: |
| 5445 | m_freem(n); |
| 5446 | MSFail++; |
| 5447 | return (NULL); |
| 5448 | } |
| 5449 | |
| 5450 | /* |
| 5451 | * Partition an mbuf chain in two pieces, returning the tail -- |
| 5452 | * all but the first len0 bytes. In case of failure, it returns NULL and |
| 5453 | * attempts to restore the chain to its original state. |
| 5454 | */ |
| 5455 | struct mbuf * |
| 5456 | m_split(struct mbuf *m0, int len0, int wait) |
| 5457 | { |
| 5458 | return (m_split0(m0, len0, wait, 1)); |
| 5459 | } |
| 5460 | |
| 5461 | static struct mbuf * |
| 5462 | m_split0(struct mbuf *m0, int len0, int wait, int copyhdr) |
| 5463 | { |
| 5464 | struct mbuf *m, *n; |
| 5465 | unsigned len = len0, remain; |
| 5466 | |
| 5467 | /* |
| 5468 | * First iterate to the mbuf which contains the first byte of |
| 5469 | * data at offset len0 |
| 5470 | */ |
| 5471 | for (m = m0; m && len > m->m_len; m = m->m_next) |
| 5472 | len -= m->m_len; |
| 5473 | if (m == NULL) |
| 5474 | return (NULL); |
| 5475 | /* |
| 5476 | * len effectively is now the offset in the current |
| 5477 | * mbuf where we have to perform split. |
| 5478 | * |
| 5479 | * remain becomes the tail length. |
| 5480 | * Note that len can also be == m->m_len |
| 5481 | */ |
| 5482 | remain = m->m_len - len; |
| 5483 | |
| 5484 | /* |
| 5485 | * If current mbuf len contains the entire remaining offset len, |
| 5486 | * just make the second mbuf chain pointing to next mbuf onwards |
| 5487 | * and return after making necessary adjustments |
| 5488 | */ |
| 5489 | if (copyhdr && (m0->m_flags & M_PKTHDR) && remain == 0) { |
| 5490 | _MGETHDR(n, wait, m0->m_type); |
| 5491 | if (n == NULL) |
| 5492 | return (NULL); |
| 5493 | n->m_next = m->m_next; |
| 5494 | m->m_next = NULL; |
| 5495 | n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; |
| 5496 | n->m_pkthdr.len = m0->m_pkthdr.len - len0; |
| 5497 | m0->m_pkthdr.len = len0; |
| 5498 | return (n); |
| 5499 | } if (copyhdr && (m0->m_flags & M_PKTHDR)) { |
| 5500 | _MGETHDR(n, wait, m0->m_type); |
| 5501 | if (n == NULL) |
| 5502 | return (NULL); |
| 5503 | n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; |
| 5504 | n->m_pkthdr.len = m0->m_pkthdr.len - len0; |
| 5505 | m0->m_pkthdr.len = len0; |
| 5506 | |
| 5507 | /* |
| 5508 | * If current points to external storage |
| 5509 | * then it can be shared by making last mbuf |
| 5510 | * of head chain and first mbuf of current chain |
| 5511 | * pointing to different data offsets |
| 5512 | */ |
| 5513 | if (m->m_flags & M_EXT) |
| 5514 | goto extpacket; |
| 5515 | if (remain > MHLEN) { |
| 5516 | /* m can't be the lead packet */ |
| 5517 | MH_ALIGN(n, 0); |
| 5518 | n->m_next = m_split(m, len, wait); |
| 5519 | if (n->m_next == NULL) { |
| 5520 | (void) m_free(n); |
| 5521 | return (NULL); |
| 5522 | } else |
| 5523 | return (n); |
| 5524 | } else |
| 5525 | MH_ALIGN(n, remain); |
| 5526 | } else if (remain == 0) { |
| 5527 | n = m->m_next; |
| 5528 | m->m_next = NULL; |
| 5529 | return (n); |
| 5530 | } else { |
| 5531 | _MGET(n, wait, m->m_type); |
| 5532 | if (n == NULL) |
| 5533 | return (NULL); |
| 5534 | |
| 5535 | if ((m->m_flags & M_EXT) == 0) { |
| 5536 | VERIFY(remain <= MLEN); |
| 5537 | M_ALIGN(n, remain); |
| 5538 | } |
| 5539 | } |
| 5540 | extpacket: |
| 5541 | if (m->m_flags & M_EXT) { |
| 5542 | n->m_flags |= M_EXT; |
| 5543 | n->m_ext = m->m_ext; |
| 5544 | m_incref(m); |
| 5545 | n->m_data = m->m_data + len; |
| 5546 | } else { |
| 5547 | bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain); |
| 5548 | } |
| 5549 | n->m_len = remain; |
| 5550 | m->m_len = len; |
| 5551 | n->m_next = m->m_next; |
| 5552 | m->m_next = NULL; |
| 5553 | return (n); |
| 5554 | } |
| 5555 | |
| 5556 | /* |
| 5557 | * Routine to copy from device local memory into mbufs. |
| 5558 | */ |
| 5559 | struct mbuf * |
| 5560 | m_devget(char *buf, int totlen, int off0, struct ifnet *ifp, |
| 5561 | void (*copy)(const void *, void *, size_t)) |
| 5562 | { |
| 5563 | struct mbuf *m; |
| 5564 | struct mbuf *top = NULL, **mp = ⊤ |
| 5565 | int off = off0, len; |
| 5566 | char *cp; |
| 5567 | char *epkt; |
| 5568 | |
| 5569 | cp = buf; |
| 5570 | epkt = cp + totlen; |
| 5571 | if (off) { |
| 5572 | /* |
| 5573 | * If 'off' is non-zero, packet is trailer-encapsulated, |
| 5574 | * so we have to skip the type and length fields. |
| 5575 | */ |
| 5576 | cp += off + 2 * sizeof (u_int16_t); |
| 5577 | totlen -= 2 * sizeof (u_int16_t); |
| 5578 | } |
| 5579 | _MGETHDR(m, M_DONTWAIT, MT_DATA); |
| 5580 | if (m == NULL) |
| 5581 | return (NULL); |
| 5582 | m->m_pkthdr.rcvif = ifp; |
| 5583 | m->m_pkthdr.len = totlen; |
| 5584 | m->m_len = MHLEN; |
| 5585 | |
| 5586 | while (totlen > 0) { |
| 5587 | if (top != NULL) { |
| 5588 | _MGET(m, M_DONTWAIT, MT_DATA); |
| 5589 | if (m == NULL) { |
| 5590 | m_freem(top); |
| 5591 | return (NULL); |
| 5592 | } |
| 5593 | m->m_len = MLEN; |
| 5594 | } |
| 5595 | len = MIN(totlen, epkt - cp); |
| 5596 | if (len >= MINCLSIZE) { |
| 5597 | MCLGET(m, M_DONTWAIT); |
| 5598 | if (m->m_flags & M_EXT) { |
| 5599 | m->m_len = len = MIN(len, m_maxsize(MC_CL)); |
| 5600 | } else { |
| 5601 | /* give up when it's out of cluster mbufs */ |
| 5602 | if (top != NULL) |
| 5603 | m_freem(top); |
| 5604 | m_freem(m); |
| 5605 | return (NULL); |
| 5606 | } |
| 5607 | } else { |
| 5608 | /* |
| 5609 | * Place initial small packet/header at end of mbuf. |
| 5610 | */ |
| 5611 | if (len < m->m_len) { |
| 5612 | if (top == NULL && |
| 5613 | len + max_linkhdr <= m->m_len) |
| 5614 | m->m_data += max_linkhdr; |
| 5615 | m->m_len = len; |
| 5616 | } else { |
| 5617 | len = m->m_len; |
| 5618 | } |
| 5619 | } |
| 5620 | if (copy) |
| 5621 | copy(cp, MTOD(m, caddr_t), (unsigned)len); |
| 5622 | else |
| 5623 | bcopy(cp, MTOD(m, caddr_t), (unsigned)len); |
| 5624 | cp += len; |
| 5625 | *mp = m; |
| 5626 | mp = &m->m_next; |
| 5627 | totlen -= len; |
| 5628 | if (cp == epkt) |
| 5629 | cp = buf; |
| 5630 | } |
| 5631 | return (top); |
| 5632 | } |
| 5633 | |
| 5634 | #ifndef MBUF_GROWTH_NORMAL_THRESH |
| 5635 | #define MBUF_GROWTH_NORMAL_THRESH 25 |
| 5636 | #endif |
| 5637 | |
| 5638 | /* |
| 5639 | * Cluster freelist allocation check. |
| 5640 | */ |
| 5641 | static int |
| 5642 | m_howmany(int num, size_t bufsize) |
| 5643 | { |
| 5644 | int i = 0, j = 0; |
| 5645 | u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters; |
| 5646 | u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree; |
| 5647 | u_int32_t sumclusters, freeclusters; |
| 5648 | u_int32_t percent_pool, percent_kmem; |
| 5649 | u_int32_t mb_growth, mb_growth_thresh; |
| 5650 | |
| 5651 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || |
| 5652 | bufsize == m_maxsize(MC_16KCL)); |
| 5653 | |
| 5654 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 5655 | |
| 5656 | /* Numbers in 2K cluster units */ |
| 5657 | m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT; |
| 5658 | m_clusters = m_total(MC_CL); |
| 5659 | m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT; |
| 5660 | m_16kclusters = m_total(MC_16KCL); |
| 5661 | sumclusters = m_mbclusters + m_clusters + m_bigclusters; |
| 5662 | |
| 5663 | m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT; |
| 5664 | m_clfree = m_infree(MC_CL); |
| 5665 | m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT; |
| 5666 | m_16kclfree = m_infree(MC_16KCL); |
| 5667 | freeclusters = m_mbfree + m_clfree + m_bigclfree; |
| 5668 | |
| 5669 | /* Bail if we've maxed out the mbuf memory map */ |
| 5670 | if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) || |
| 5671 | (njcl > 0 && bufsize == m_maxsize(MC_16KCL) && |
| 5672 | (m_16kclusters << NCLPJCLSHIFT) >= njcl)) { |
| 5673 | mbwdog_logger("maxed out nclusters (%u >= %u) or njcl (%u >= %u)" , |
| 5674 | sumclusters, nclusters, |
| 5675 | (m_16kclusters << NCLPJCLSHIFT), njcl); |
| 5676 | return (0); |
| 5677 | } |
| 5678 | |
| 5679 | if (bufsize == m_maxsize(MC_BIGCL)) { |
| 5680 | /* Under minimum */ |
| 5681 | if (m_bigclusters < m_minlimit(MC_BIGCL)) |
| 5682 | return (m_minlimit(MC_BIGCL) - m_bigclusters); |
| 5683 | |
| 5684 | percent_pool = |
| 5685 | ((sumclusters - freeclusters) * 100) / sumclusters; |
| 5686 | percent_kmem = (sumclusters * 100) / nclusters; |
| 5687 | |
| 5688 | /* |
| 5689 | * If a light/normal user, grow conservatively (75%) |
| 5690 | * If a heavy user, grow aggressively (50%) |
| 5691 | */ |
| 5692 | if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH) |
| 5693 | mb_growth = MB_GROWTH_NORMAL; |
| 5694 | else |
| 5695 | mb_growth = MB_GROWTH_AGGRESSIVE; |
| 5696 | |
| 5697 | if (percent_kmem < 5) { |
| 5698 | /* For initial allocations */ |
| 5699 | i = num; |
| 5700 | } else { |
| 5701 | /* Return if >= MBIGCL_LOWAT clusters available */ |
| 5702 | if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT && |
| 5703 | m_total(MC_BIGCL) >= |
| 5704 | MBIGCL_LOWAT + m_minlimit(MC_BIGCL)) |
| 5705 | return (0); |
| 5706 | |
| 5707 | /* Ensure at least num clusters are accessible */ |
| 5708 | if (num >= m_infree(MC_BIGCL)) |
| 5709 | i = num - m_infree(MC_BIGCL); |
| 5710 | if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL)) |
| 5711 | j = num - (m_total(MC_BIGCL) - |
| 5712 | m_minlimit(MC_BIGCL)); |
| 5713 | |
| 5714 | i = MAX(i, j); |
| 5715 | |
| 5716 | /* |
| 5717 | * Grow pool if percent_pool > 75 (normal growth) |
| 5718 | * or percent_pool > 50 (aggressive growth). |
| 5719 | */ |
| 5720 | mb_growth_thresh = 100 - (100 / (1 << mb_growth)); |
| 5721 | if (percent_pool > mb_growth_thresh) |
| 5722 | j = ((sumclusters + num) >> mb_growth) - |
| 5723 | freeclusters; |
| 5724 | i = MAX(i, j); |
| 5725 | } |
| 5726 | |
| 5727 | /* Check to ensure we didn't go over limits */ |
| 5728 | if (i + m_bigclusters >= m_maxlimit(MC_BIGCL)) |
| 5729 | i = m_maxlimit(MC_BIGCL) - m_bigclusters; |
| 5730 | if ((i << 1) + sumclusters >= nclusters) |
| 5731 | i = (nclusters - sumclusters) >> 1; |
| 5732 | VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL)); |
| 5733 | VERIFY(sumclusters + (i << 1) <= nclusters); |
| 5734 | |
| 5735 | } else { /* 16K CL */ |
| 5736 | VERIFY(njcl > 0); |
| 5737 | /* Ensure at least num clusters are available */ |
| 5738 | if (num >= m_16kclfree) |
| 5739 | i = num - m_16kclfree; |
| 5740 | |
| 5741 | /* Always grow 16KCL pool aggressively */ |
| 5742 | if (((m_16kclusters + num) >> 1) > m_16kclfree) |
| 5743 | j = ((m_16kclusters + num) >> 1) - m_16kclfree; |
| 5744 | i = MAX(i, j); |
| 5745 | |
| 5746 | /* Check to ensure we don't go over limit */ |
| 5747 | if ((i + m_total(MC_16KCL)) >= m_maxlimit(MC_16KCL)) |
| 5748 | i = m_maxlimit(MC_16KCL) - m_total(MC_16KCL); |
| 5749 | } |
| 5750 | return (i); |
| 5751 | } |
| 5752 | /* |
| 5753 | * Return the number of bytes in the mbuf chain, m. |
| 5754 | */ |
| 5755 | unsigned int |
| 5756 | m_length(struct mbuf *m) |
| 5757 | { |
| 5758 | struct mbuf *m0; |
| 5759 | unsigned int pktlen; |
| 5760 | |
| 5761 | if (m->m_flags & M_PKTHDR) |
| 5762 | return (m->m_pkthdr.len); |
| 5763 | |
| 5764 | pktlen = 0; |
| 5765 | for (m0 = m; m0 != NULL; m0 = m0->m_next) |
| 5766 | pktlen += m0->m_len; |
| 5767 | return (pktlen); |
| 5768 | } |
| 5769 | |
| 5770 | /* |
| 5771 | * Copy data from a buffer back into the indicated mbuf chain, |
| 5772 | * starting "off" bytes from the beginning, extending the mbuf |
| 5773 | * chain if necessary. |
| 5774 | */ |
| 5775 | void |
| 5776 | m_copyback(struct mbuf *m0, int off, int len, const void *cp) |
| 5777 | { |
| 5778 | #if DEBUG |
| 5779 | struct mbuf *origm = m0; |
| 5780 | int error; |
| 5781 | #endif /* DEBUG */ |
| 5782 | |
| 5783 | if (m0 == NULL) |
| 5784 | return; |
| 5785 | |
| 5786 | #if DEBUG |
| 5787 | error = |
| 5788 | #endif /* DEBUG */ |
| 5789 | m_copyback0(&m0, off, len, cp, |
| 5790 | M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT); |
| 5791 | |
| 5792 | #if DEBUG |
| 5793 | if (error != 0 || (m0 != NULL && origm != m0)) |
| 5794 | panic("m_copyback" ); |
| 5795 | #endif /* DEBUG */ |
| 5796 | } |
| 5797 | |
| 5798 | struct mbuf * |
| 5799 | m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how) |
| 5800 | { |
| 5801 | int error; |
| 5802 | |
| 5803 | /* don't support chain expansion */ |
| 5804 | VERIFY(off + len <= m_length(m0)); |
| 5805 | |
| 5806 | error = m_copyback0(&m0, off, len, cp, |
| 5807 | M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how); |
| 5808 | if (error) { |
| 5809 | /* |
| 5810 | * no way to recover from partial success. |
| 5811 | * just free the chain. |
| 5812 | */ |
| 5813 | m_freem(m0); |
| 5814 | return (NULL); |
| 5815 | } |
| 5816 | return (m0); |
| 5817 | } |
| 5818 | |
| 5819 | /* |
| 5820 | * m_makewritable: ensure the specified range writable. |
| 5821 | */ |
| 5822 | int |
| 5823 | m_makewritable(struct mbuf **mp, int off, int len, int how) |
| 5824 | { |
| 5825 | int error; |
| 5826 | #if DEBUG |
| 5827 | struct mbuf *n; |
| 5828 | int origlen, reslen; |
| 5829 | |
| 5830 | origlen = m_length(*mp); |
| 5831 | #endif /* DEBUG */ |
| 5832 | |
| 5833 | #if 0 /* M_COPYALL is large enough */ |
| 5834 | if (len == M_COPYALL) |
| 5835 | len = m_length(*mp) - off; /* XXX */ |
| 5836 | #endif |
| 5837 | |
| 5838 | error = m_copyback0(mp, off, len, NULL, |
| 5839 | M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how); |
| 5840 | |
| 5841 | #if DEBUG |
| 5842 | reslen = 0; |
| 5843 | for (n = *mp; n; n = n->m_next) |
| 5844 | reslen += n->m_len; |
| 5845 | if (origlen != reslen) |
| 5846 | panic("m_makewritable: length changed" ); |
| 5847 | if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len) |
| 5848 | panic("m_makewritable: inconsist" ); |
| 5849 | #endif /* DEBUG */ |
| 5850 | |
| 5851 | return (error); |
| 5852 | } |
| 5853 | |
| 5854 | static int |
| 5855 | m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags, |
| 5856 | int how) |
| 5857 | { |
| 5858 | int mlen; |
| 5859 | struct mbuf *m, *n; |
| 5860 | struct mbuf **mp; |
| 5861 | int totlen = 0; |
| 5862 | const char *cp = vp; |
| 5863 | |
| 5864 | VERIFY(mp0 != NULL); |
| 5865 | VERIFY(*mp0 != NULL); |
| 5866 | VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL); |
| 5867 | VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL); |
| 5868 | |
| 5869 | /* |
| 5870 | * we don't bother to update "totlen" in the case of M_COPYBACK0_COW, |
| 5871 | * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive. |
| 5872 | */ |
| 5873 | |
| 5874 | VERIFY((~flags & (M_COPYBACK0_EXTEND|M_COPYBACK0_COW)) != 0); |
| 5875 | |
| 5876 | mp = mp0; |
| 5877 | m = *mp; |
| 5878 | while (off > (mlen = m->m_len)) { |
| 5879 | off -= mlen; |
| 5880 | totlen += mlen; |
| 5881 | if (m->m_next == NULL) { |
| 5882 | int tspace; |
| 5883 | extend: |
| 5884 | if (!(flags & M_COPYBACK0_EXTEND)) |
| 5885 | goto out; |
| 5886 | |
| 5887 | /* |
| 5888 | * try to make some space at the end of "m". |
| 5889 | */ |
| 5890 | |
| 5891 | mlen = m->m_len; |
| 5892 | if (off + len >= MINCLSIZE && |
| 5893 | !(m->m_flags & M_EXT) && m->m_len == 0) { |
| 5894 | MCLGET(m, how); |
| 5895 | } |
| 5896 | tspace = M_TRAILINGSPACE(m); |
| 5897 | if (tspace > 0) { |
| 5898 | tspace = MIN(tspace, off + len); |
| 5899 | VERIFY(tspace > 0); |
| 5900 | bzero(mtod(m, char *) + m->m_len, |
| 5901 | MIN(off, tspace)); |
| 5902 | m->m_len += tspace; |
| 5903 | off += mlen; |
| 5904 | totlen -= mlen; |
| 5905 | continue; |
| 5906 | } |
| 5907 | |
| 5908 | /* |
| 5909 | * need to allocate an mbuf. |
| 5910 | */ |
| 5911 | |
| 5912 | if (off + len >= MINCLSIZE) { |
| 5913 | n = m_getcl(how, m->m_type, 0); |
| 5914 | } else { |
| 5915 | n = _M_GET(how, m->m_type); |
| 5916 | } |
| 5917 | if (n == NULL) { |
| 5918 | goto out; |
| 5919 | } |
| 5920 | n->m_len = 0; |
| 5921 | n->m_len = MIN(M_TRAILINGSPACE(n), off + len); |
| 5922 | bzero(mtod(n, char *), MIN(n->m_len, off)); |
| 5923 | m->m_next = n; |
| 5924 | } |
| 5925 | mp = &m->m_next; |
| 5926 | m = m->m_next; |
| 5927 | } |
| 5928 | while (len > 0) { |
| 5929 | mlen = m->m_len - off; |
| 5930 | if (mlen != 0 && m_mclhasreference(m)) { |
| 5931 | char *datap; |
| 5932 | int eatlen; |
| 5933 | |
| 5934 | /* |
| 5935 | * this mbuf is read-only. |
| 5936 | * allocate a new writable mbuf and try again. |
| 5937 | */ |
| 5938 | |
| 5939 | #if DIAGNOSTIC |
| 5940 | if (!(flags & M_COPYBACK0_COW)) |
| 5941 | panic("m_copyback0: read-only" ); |
| 5942 | #endif /* DIAGNOSTIC */ |
| 5943 | |
| 5944 | /* |
| 5945 | * if we're going to write into the middle of |
| 5946 | * a mbuf, split it first. |
| 5947 | */ |
| 5948 | if (off > 0 && len < mlen) { |
| 5949 | n = m_split0(m, off, how, 0); |
| 5950 | if (n == NULL) |
| 5951 | goto enobufs; |
| 5952 | m->m_next = n; |
| 5953 | mp = &m->m_next; |
| 5954 | m = n; |
| 5955 | off = 0; |
| 5956 | continue; |
| 5957 | } |
| 5958 | |
| 5959 | /* |
| 5960 | * XXX TODO coalesce into the trailingspace of |
| 5961 | * the previous mbuf when possible. |
| 5962 | */ |
| 5963 | |
| 5964 | /* |
| 5965 | * allocate a new mbuf. copy packet header if needed. |
| 5966 | */ |
| 5967 | n = _M_GET(how, m->m_type); |
| 5968 | if (n == NULL) |
| 5969 | goto enobufs; |
| 5970 | if (off == 0 && (m->m_flags & M_PKTHDR)) { |
| 5971 | M_COPY_PKTHDR(n, m); |
| 5972 | n->m_len = MHLEN; |
| 5973 | } else { |
| 5974 | if (len >= MINCLSIZE) |
| 5975 | MCLGET(n, M_DONTWAIT); |
| 5976 | n->m_len = |
| 5977 | (n->m_flags & M_EXT) ? MCLBYTES : MLEN; |
| 5978 | } |
| 5979 | if (n->m_len > len) |
| 5980 | n->m_len = len; |
| 5981 | |
| 5982 | /* |
| 5983 | * free the region which has been overwritten. |
| 5984 | * copying data from old mbufs if requested. |
| 5985 | */ |
| 5986 | if (flags & M_COPYBACK0_PRESERVE) |
| 5987 | datap = mtod(n, char *); |
| 5988 | else |
| 5989 | datap = NULL; |
| 5990 | eatlen = n->m_len; |
| 5991 | VERIFY(off == 0 || eatlen >= mlen); |
| 5992 | if (off > 0) { |
| 5993 | VERIFY(len >= mlen); |
| 5994 | m->m_len = off; |
| 5995 | m->m_next = n; |
| 5996 | if (datap) { |
| 5997 | m_copydata(m, off, mlen, datap); |
| 5998 | datap += mlen; |
| 5999 | } |
| 6000 | eatlen -= mlen; |
| 6001 | mp = &m->m_next; |
| 6002 | m = m->m_next; |
| 6003 | } |
| 6004 | while (m != NULL && m_mclhasreference(m) && |
| 6005 | n->m_type == m->m_type && eatlen > 0) { |
| 6006 | mlen = MIN(eatlen, m->m_len); |
| 6007 | if (datap) { |
| 6008 | m_copydata(m, 0, mlen, datap); |
| 6009 | datap += mlen; |
| 6010 | } |
| 6011 | m->m_data += mlen; |
| 6012 | m->m_len -= mlen; |
| 6013 | eatlen -= mlen; |
| 6014 | if (m->m_len == 0) |
| 6015 | *mp = m = m_free(m); |
| 6016 | } |
| 6017 | if (eatlen > 0) |
| 6018 | n->m_len -= eatlen; |
| 6019 | n->m_next = m; |
| 6020 | *mp = m = n; |
| 6021 | continue; |
| 6022 | } |
| 6023 | mlen = MIN(mlen, len); |
| 6024 | if (flags & M_COPYBACK0_COPYBACK) { |
| 6025 | bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen); |
| 6026 | cp += mlen; |
| 6027 | } |
| 6028 | len -= mlen; |
| 6029 | mlen += off; |
| 6030 | off = 0; |
| 6031 | totlen += mlen; |
| 6032 | if (len == 0) |
| 6033 | break; |
| 6034 | if (m->m_next == NULL) { |
| 6035 | goto extend; |
| 6036 | } |
| 6037 | mp = &m->m_next; |
| 6038 | m = m->m_next; |
| 6039 | } |
| 6040 | out: |
| 6041 | if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) { |
| 6042 | VERIFY(flags & M_COPYBACK0_EXTEND); |
| 6043 | m->m_pkthdr.len = totlen; |
| 6044 | } |
| 6045 | |
| 6046 | return (0); |
| 6047 | |
| 6048 | enobufs: |
| 6049 | return (ENOBUFS); |
| 6050 | } |
| 6051 | |
| 6052 | uint64_t |
| 6053 | mcl_to_paddr(char *addr) |
| 6054 | { |
| 6055 | vm_offset_t base_phys; |
| 6056 | |
| 6057 | if (!MBUF_IN_MAP(addr)) |
| 6058 | return (0); |
| 6059 | base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)]; |
| 6060 | |
| 6061 | if (base_phys == 0) |
| 6062 | return (0); |
| 6063 | return ((uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK))); |
| 6064 | } |
| 6065 | |
| 6066 | /* |
| 6067 | * Dup the mbuf chain passed in. The whole thing. No cute additional cruft. |
| 6068 | * And really copy the thing. That way, we don't "precompute" checksums |
| 6069 | * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for |
| 6070 | * small packets, don't dup into a cluster. That way received packets |
| 6071 | * don't take up too much room in the sockbuf (cf. sbspace()). |
| 6072 | */ |
| 6073 | int MDFail; |
| 6074 | |
| 6075 | struct mbuf * |
| 6076 | m_dup(struct mbuf *m, int how) |
| 6077 | { |
| 6078 | struct mbuf *n, **np; |
| 6079 | struct mbuf *top; |
| 6080 | int copyhdr = 0; |
| 6081 | |
| 6082 | np = ⊤ |
| 6083 | top = NULL; |
| 6084 | if (m->m_flags & M_PKTHDR) |
| 6085 | copyhdr = 1; |
| 6086 | |
| 6087 | /* |
| 6088 | * Quick check: if we have one mbuf and its data fits in an |
| 6089 | * mbuf with packet header, just copy and go. |
| 6090 | */ |
| 6091 | if (m->m_next == NULL) { |
| 6092 | /* Then just move the data into an mbuf and be done... */ |
| 6093 | if (copyhdr) { |
| 6094 | if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) { |
| 6095 | if ((n = _M_GETHDR(how, m->m_type)) == NULL) |
| 6096 | return (NULL); |
| 6097 | n->m_len = m->m_len; |
| 6098 | m_dup_pkthdr(n, m, how); |
| 6099 | bcopy(m->m_data, n->m_data, m->m_len); |
| 6100 | return (n); |
| 6101 | } |
| 6102 | } else if (m->m_len <= MLEN) { |
| 6103 | if ((n = _M_GET(how, m->m_type)) == NULL) |
| 6104 | return (NULL); |
| 6105 | bcopy(m->m_data, n->m_data, m->m_len); |
| 6106 | n->m_len = m->m_len; |
| 6107 | return (n); |
| 6108 | } |
| 6109 | } |
| 6110 | while (m != NULL) { |
| 6111 | #if BLUE_DEBUG |
| 6112 | printf("<%x: %x, %x, %x\n" , m, m->m_flags, m->m_len, |
| 6113 | m->m_data); |
| 6114 | #endif |
| 6115 | if (copyhdr) |
| 6116 | n = _M_GETHDR(how, m->m_type); |
| 6117 | else |
| 6118 | n = _M_GET(how, m->m_type); |
| 6119 | if (n == NULL) |
| 6120 | goto nospace; |
| 6121 | if (m->m_flags & M_EXT) { |
| 6122 | if (m->m_len <= m_maxsize(MC_CL)) |
| 6123 | MCLGET(n, how); |
| 6124 | else if (m->m_len <= m_maxsize(MC_BIGCL)) |
| 6125 | n = m_mbigget(n, how); |
| 6126 | else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0) |
| 6127 | n = m_m16kget(n, how); |
| 6128 | if (!(n->m_flags & M_EXT)) { |
| 6129 | (void) m_free(n); |
| 6130 | goto nospace; |
| 6131 | } |
| 6132 | } |
| 6133 | *np = n; |
| 6134 | if (copyhdr) { |
| 6135 | /* Don't use M_COPY_PKTHDR: preserve m_data */ |
| 6136 | m_dup_pkthdr(n, m, how); |
| 6137 | copyhdr = 0; |
| 6138 | if (!(n->m_flags & M_EXT)) |
| 6139 | n->m_data = n->m_pktdat; |
| 6140 | } |
| 6141 | n->m_len = m->m_len; |
| 6142 | /* |
| 6143 | * Get the dup on the same bdry as the original |
| 6144 | * Assume that the two mbufs have the same offset to data area |
| 6145 | * (up to word boundaries) |
| 6146 | */ |
| 6147 | bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), (unsigned)n->m_len); |
| 6148 | m = m->m_next; |
| 6149 | np = &n->m_next; |
| 6150 | #if BLUE_DEBUG |
| 6151 | printf(">%x: %x, %x, %x\n" , n, n->m_flags, n->m_len, |
| 6152 | n->m_data); |
| 6153 | #endif |
| 6154 | } |
| 6155 | |
| 6156 | if (top == NULL) |
| 6157 | MDFail++; |
| 6158 | return (top); |
| 6159 | |
| 6160 | nospace: |
| 6161 | m_freem(top); |
| 6162 | MDFail++; |
| 6163 | return (NULL); |
| 6164 | } |
| 6165 | |
| 6166 | #define MBUF_MULTIPAGES(m) \ |
| 6167 | (((m)->m_flags & M_EXT) && \ |
| 6168 | ((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \ |
| 6169 | && (m)->m_len > PAGE_SIZE) || \ |
| 6170 | (!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \ |
| 6171 | P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len)))) |
| 6172 | |
| 6173 | static struct mbuf * |
| 6174 | m_expand(struct mbuf *m, struct mbuf **last) |
| 6175 | { |
| 6176 | struct mbuf *top = NULL; |
| 6177 | struct mbuf **nm = ⊤ |
| 6178 | uintptr_t data0, data; |
| 6179 | unsigned int len0, len; |
| 6180 | |
| 6181 | VERIFY(MBUF_MULTIPAGES(m)); |
| 6182 | VERIFY(m->m_next == NULL); |
| 6183 | data0 = (uintptr_t)m->m_data; |
| 6184 | len0 = m->m_len; |
| 6185 | *last = top; |
| 6186 | |
| 6187 | for (;;) { |
| 6188 | struct mbuf *n; |
| 6189 | |
| 6190 | data = data0; |
| 6191 | if (IS_P2ALIGNED(data, PAGE_SIZE) && len0 > PAGE_SIZE) |
| 6192 | len = PAGE_SIZE; |
| 6193 | else if (!IS_P2ALIGNED(data, PAGE_SIZE) && |
| 6194 | P2ROUNDUP(data, PAGE_SIZE) < (data + len0)) |
| 6195 | len = P2ROUNDUP(data, PAGE_SIZE) - data; |
| 6196 | else |
| 6197 | len = len0; |
| 6198 | |
| 6199 | VERIFY(len > 0); |
| 6200 | VERIFY(m->m_flags & M_EXT); |
| 6201 | m->m_data = (void *)data; |
| 6202 | m->m_len = len; |
| 6203 | |
| 6204 | *nm = *last = m; |
| 6205 | nm = &m->m_next; |
| 6206 | m->m_next = NULL; |
| 6207 | |
| 6208 | data0 += len; |
| 6209 | len0 -= len; |
| 6210 | if (len0 == 0) |
| 6211 | break; |
| 6212 | |
| 6213 | n = _M_RETRY(M_DONTWAIT, MT_DATA); |
| 6214 | if (n == NULL) { |
| 6215 | m_freem(top); |
| 6216 | top = *last = NULL; |
| 6217 | break; |
| 6218 | } |
| 6219 | |
| 6220 | n->m_ext = m->m_ext; |
| 6221 | m_incref(m); |
| 6222 | n->m_flags |= M_EXT; |
| 6223 | m = n; |
| 6224 | } |
| 6225 | return (top); |
| 6226 | } |
| 6227 | |
| 6228 | struct mbuf * |
| 6229 | m_normalize(struct mbuf *m) |
| 6230 | { |
| 6231 | struct mbuf *top = NULL; |
| 6232 | struct mbuf **nm = ⊤ |
| 6233 | boolean_t expanded = FALSE; |
| 6234 | |
| 6235 | while (m != NULL) { |
| 6236 | struct mbuf *n; |
| 6237 | |
| 6238 | n = m->m_next; |
| 6239 | m->m_next = NULL; |
| 6240 | |
| 6241 | /* Does the data cross one or more page boundaries? */ |
| 6242 | if (MBUF_MULTIPAGES(m)) { |
| 6243 | struct mbuf *last; |
| 6244 | if ((m = m_expand(m, &last)) == NULL) { |
| 6245 | m_freem(n); |
| 6246 | m_freem(top); |
| 6247 | top = NULL; |
| 6248 | break; |
| 6249 | } |
| 6250 | *nm = m; |
| 6251 | nm = &last->m_next; |
| 6252 | expanded = TRUE; |
| 6253 | } else { |
| 6254 | *nm = m; |
| 6255 | nm = &m->m_next; |
| 6256 | } |
| 6257 | m = n; |
| 6258 | } |
| 6259 | if (expanded) |
| 6260 | atomic_add_32(&mb_normalized, 1); |
| 6261 | return (top); |
| 6262 | } |
| 6263 | |
| 6264 | /* |
| 6265 | * Append the specified data to the indicated mbuf chain, |
| 6266 | * Extend the mbuf chain if the new data does not fit in |
| 6267 | * existing space. |
| 6268 | * |
| 6269 | * Return 1 if able to complete the job; otherwise 0. |
| 6270 | */ |
| 6271 | int |
| 6272 | m_append(struct mbuf *m0, int len, caddr_t cp) |
| 6273 | { |
| 6274 | struct mbuf *m, *n; |
| 6275 | int remainder, space; |
| 6276 | |
| 6277 | for (m = m0; m->m_next != NULL; m = m->m_next) |
| 6278 | ; |
| 6279 | remainder = len; |
| 6280 | space = M_TRAILINGSPACE(m); |
| 6281 | if (space > 0) { |
| 6282 | /* |
| 6283 | * Copy into available space. |
| 6284 | */ |
| 6285 | if (space > remainder) |
| 6286 | space = remainder; |
| 6287 | bcopy(cp, mtod(m, caddr_t) + m->m_len, space); |
| 6288 | m->m_len += space; |
| 6289 | cp += space; |
| 6290 | remainder -= space; |
| 6291 | } |
| 6292 | while (remainder > 0) { |
| 6293 | /* |
| 6294 | * Allocate a new mbuf; could check space |
| 6295 | * and allocate a cluster instead. |
| 6296 | */ |
| 6297 | n = m_get(M_WAITOK, m->m_type); |
| 6298 | if (n == NULL) |
| 6299 | break; |
| 6300 | n->m_len = min(MLEN, remainder); |
| 6301 | bcopy(cp, mtod(n, caddr_t), n->m_len); |
| 6302 | cp += n->m_len; |
| 6303 | remainder -= n->m_len; |
| 6304 | m->m_next = n; |
| 6305 | m = n; |
| 6306 | } |
| 6307 | if (m0->m_flags & M_PKTHDR) |
| 6308 | m0->m_pkthdr.len += len - remainder; |
| 6309 | return (remainder == 0); |
| 6310 | } |
| 6311 | |
| 6312 | struct mbuf * |
| 6313 | m_last(struct mbuf *m) |
| 6314 | { |
| 6315 | while (m->m_next != NULL) |
| 6316 | m = m->m_next; |
| 6317 | return (m); |
| 6318 | } |
| 6319 | |
| 6320 | unsigned int |
| 6321 | m_fixhdr(struct mbuf *m0) |
| 6322 | { |
| 6323 | u_int len; |
| 6324 | |
| 6325 | VERIFY(m0->m_flags & M_PKTHDR); |
| 6326 | |
| 6327 | len = m_length2(m0, NULL); |
| 6328 | m0->m_pkthdr.len = len; |
| 6329 | return (len); |
| 6330 | } |
| 6331 | |
| 6332 | unsigned int |
| 6333 | m_length2(struct mbuf *m0, struct mbuf **last) |
| 6334 | { |
| 6335 | struct mbuf *m; |
| 6336 | u_int len; |
| 6337 | |
| 6338 | len = 0; |
| 6339 | for (m = m0; m != NULL; m = m->m_next) { |
| 6340 | len += m->m_len; |
| 6341 | if (m->m_next == NULL) |
| 6342 | break; |
| 6343 | } |
| 6344 | if (last != NULL) |
| 6345 | *last = m; |
| 6346 | return (len); |
| 6347 | } |
| 6348 | |
| 6349 | /* |
| 6350 | * Defragment a mbuf chain, returning the shortest possible chain of mbufs |
| 6351 | * and clusters. If allocation fails and this cannot be completed, NULL will |
| 6352 | * be returned, but the passed in chain will be unchanged. Upon success, |
| 6353 | * the original chain will be freed, and the new chain will be returned. |
| 6354 | * |
| 6355 | * If a non-packet header is passed in, the original mbuf (chain?) will |
| 6356 | * be returned unharmed. |
| 6357 | * |
| 6358 | * If offset is specfied, the first mbuf in the chain will have a leading |
| 6359 | * space of the amount stated by the "off" parameter. |
| 6360 | * |
| 6361 | * This routine requires that the m_pkthdr.header field of the original |
| 6362 | * mbuf chain is cleared by the caller. |
| 6363 | */ |
| 6364 | struct mbuf * |
| 6365 | m_defrag_offset(struct mbuf *m0, u_int32_t off, int how) |
| 6366 | { |
| 6367 | struct mbuf *m_new = NULL, *m_final = NULL; |
| 6368 | int progress = 0, length, pktlen; |
| 6369 | |
| 6370 | if (!(m0->m_flags & M_PKTHDR)) |
| 6371 | return (m0); |
| 6372 | |
| 6373 | VERIFY(off < MHLEN); |
| 6374 | m_fixhdr(m0); /* Needed sanity check */ |
| 6375 | |
| 6376 | pktlen = m0->m_pkthdr.len + off; |
| 6377 | if (pktlen > MHLEN) |
| 6378 | m_final = m_getcl(how, MT_DATA, M_PKTHDR); |
| 6379 | else |
| 6380 | m_final = m_gethdr(how, MT_DATA); |
| 6381 | |
| 6382 | if (m_final == NULL) |
| 6383 | goto nospace; |
| 6384 | |
| 6385 | if (off > 0) { |
| 6386 | pktlen -= off; |
| 6387 | m_final->m_data += off; |
| 6388 | } |
| 6389 | |
| 6390 | /* |
| 6391 | * Caller must have handled the contents pointed to by this |
| 6392 | * pointer before coming here, as otherwise it will point to |
| 6393 | * the original mbuf which will get freed upon success. |
| 6394 | */ |
| 6395 | VERIFY(m0->m_pkthdr.pkt_hdr == NULL); |
| 6396 | |
| 6397 | if (m_dup_pkthdr(m_final, m0, how) == 0) |
| 6398 | goto nospace; |
| 6399 | |
| 6400 | m_new = m_final; |
| 6401 | |
| 6402 | while (progress < pktlen) { |
| 6403 | length = pktlen - progress; |
| 6404 | if (length > MCLBYTES) |
| 6405 | length = MCLBYTES; |
| 6406 | length -= ((m_new == m_final) ? off : 0); |
| 6407 | if (length < 0) |
| 6408 | goto nospace; |
| 6409 | |
| 6410 | if (m_new == NULL) { |
| 6411 | if (length > MLEN) |
| 6412 | m_new = m_getcl(how, MT_DATA, 0); |
| 6413 | else |
| 6414 | m_new = m_get(how, MT_DATA); |
| 6415 | if (m_new == NULL) |
| 6416 | goto nospace; |
| 6417 | } |
| 6418 | |
| 6419 | m_copydata(m0, progress, length, mtod(m_new, caddr_t)); |
| 6420 | progress += length; |
| 6421 | m_new->m_len = length; |
| 6422 | if (m_new != m_final) |
| 6423 | m_cat(m_final, m_new); |
| 6424 | m_new = NULL; |
| 6425 | } |
| 6426 | m_freem(m0); |
| 6427 | m0 = m_final; |
| 6428 | return (m0); |
| 6429 | nospace: |
| 6430 | if (m_final) |
| 6431 | m_freem(m_final); |
| 6432 | return (NULL); |
| 6433 | } |
| 6434 | |
| 6435 | struct mbuf * |
| 6436 | m_defrag(struct mbuf *m0, int how) |
| 6437 | { |
| 6438 | return (m_defrag_offset(m0, 0, how)); |
| 6439 | } |
| 6440 | |
| 6441 | void |
| 6442 | m_mchtype(struct mbuf *m, int t) |
| 6443 | { |
| 6444 | mtype_stat_inc(t); |
| 6445 | mtype_stat_dec(m->m_type); |
| 6446 | (m)->m_type = t; |
| 6447 | } |
| 6448 | |
| 6449 | void * |
| 6450 | m_mtod(struct mbuf *m) |
| 6451 | { |
| 6452 | return (MTOD(m, void *)); |
| 6453 | } |
| 6454 | |
| 6455 | struct mbuf * |
| 6456 | m_dtom(void *x) |
| 6457 | { |
| 6458 | return ((struct mbuf *)((uintptr_t)(x) & ~(MSIZE-1))); |
| 6459 | } |
| 6460 | |
| 6461 | void |
| 6462 | m_mcheck(struct mbuf *m) |
| 6463 | { |
| 6464 | _MCHECK(m); |
| 6465 | } |
| 6466 | |
| 6467 | /* |
| 6468 | * Return a pointer to mbuf/offset of location in mbuf chain. |
| 6469 | */ |
| 6470 | struct mbuf * |
| 6471 | m_getptr(struct mbuf *m, int loc, int *off) |
| 6472 | { |
| 6473 | |
| 6474 | while (loc >= 0) { |
| 6475 | /* Normal end of search. */ |
| 6476 | if (m->m_len > loc) { |
| 6477 | *off = loc; |
| 6478 | return (m); |
| 6479 | } else { |
| 6480 | loc -= m->m_len; |
| 6481 | if (m->m_next == NULL) { |
| 6482 | if (loc == 0) { |
| 6483 | /* Point at the end of valid data. */ |
| 6484 | *off = m->m_len; |
| 6485 | return (m); |
| 6486 | } |
| 6487 | return (NULL); |
| 6488 | } |
| 6489 | m = m->m_next; |
| 6490 | } |
| 6491 | } |
| 6492 | return (NULL); |
| 6493 | } |
| 6494 | |
| 6495 | /* |
| 6496 | * Inform the corresponding mcache(s) that there's a waiter below. |
| 6497 | */ |
| 6498 | static void |
| 6499 | mbuf_waiter_inc(mbuf_class_t class, boolean_t comp) |
| 6500 | { |
| 6501 | mcache_waiter_inc(m_cache(class)); |
| 6502 | if (comp) { |
| 6503 | if (class == MC_CL) { |
| 6504 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); |
| 6505 | } else if (class == MC_BIGCL) { |
| 6506 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); |
| 6507 | } else if (class == MC_16KCL) { |
| 6508 | mcache_waiter_inc(m_cache(MC_MBUF_16KCL)); |
| 6509 | } else { |
| 6510 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); |
| 6511 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); |
| 6512 | } |
| 6513 | } |
| 6514 | } |
| 6515 | |
| 6516 | /* |
| 6517 | * Inform the corresponding mcache(s) that there's no more waiter below. |
| 6518 | */ |
| 6519 | static void |
| 6520 | mbuf_waiter_dec(mbuf_class_t class, boolean_t comp) |
| 6521 | { |
| 6522 | mcache_waiter_dec(m_cache(class)); |
| 6523 | if (comp) { |
| 6524 | if (class == MC_CL) { |
| 6525 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); |
| 6526 | } else if (class == MC_BIGCL) { |
| 6527 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); |
| 6528 | } else if (class == MC_16KCL) { |
| 6529 | mcache_waiter_dec(m_cache(MC_MBUF_16KCL)); |
| 6530 | } else { |
| 6531 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); |
| 6532 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); |
| 6533 | } |
| 6534 | } |
| 6535 | } |
| 6536 | |
| 6537 | /* |
| 6538 | * Called during slab (blocking and non-blocking) allocation. If there |
| 6539 | * is at least one waiter, and the time since the first waiter is blocked |
| 6540 | * is greater than the watchdog timeout, panic the system. |
| 6541 | */ |
| 6542 | static void |
| 6543 | mbuf_watchdog(void) |
| 6544 | { |
| 6545 | struct timeval now; |
| 6546 | unsigned int since; |
| 6547 | |
| 6548 | if (mb_waiters == 0 || !mb_watchdog) |
| 6549 | return; |
| 6550 | |
| 6551 | microuptime(&now); |
| 6552 | since = now.tv_sec - mb_wdtstart.tv_sec; |
| 6553 | if (since >= MB_WDT_MAXTIME) { |
| 6554 | panic_plain("%s: %d waiters stuck for %u secs\n%s" , __func__, |
| 6555 | mb_waiters, since, mbuf_dump()); |
| 6556 | /* NOTREACHED */ |
| 6557 | } |
| 6558 | } |
| 6559 | |
| 6560 | /* |
| 6561 | * Called during blocking allocation. Returns TRUE if one or more objects |
| 6562 | * are available at the per-CPU caches layer and that allocation should be |
| 6563 | * retried at that level. |
| 6564 | */ |
| 6565 | static boolean_t |
| 6566 | mbuf_sleep(mbuf_class_t class, unsigned int num, int wait) |
| 6567 | { |
| 6568 | boolean_t mcache_retry = FALSE; |
| 6569 | |
| 6570 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 6571 | |
| 6572 | /* Check if there's anything at the cache layer */ |
| 6573 | if (mbuf_cached_above(class, wait)) { |
| 6574 | mcache_retry = TRUE; |
| 6575 | goto done; |
| 6576 | } |
| 6577 | |
| 6578 | /* Nothing? Then try hard to get it from somewhere */ |
| 6579 | m_reclaim(class, num, (wait & MCR_COMP)); |
| 6580 | |
| 6581 | /* We tried hard and got something? */ |
| 6582 | if (m_infree(class) > 0) { |
| 6583 | mbstat.m_wait++; |
| 6584 | goto done; |
| 6585 | } else if (mbuf_cached_above(class, wait)) { |
| 6586 | mbstat.m_wait++; |
| 6587 | mcache_retry = TRUE; |
| 6588 | goto done; |
| 6589 | } else if (wait & MCR_TRYHARD) { |
| 6590 | mcache_retry = TRUE; |
| 6591 | goto done; |
| 6592 | } |
| 6593 | |
| 6594 | /* |
| 6595 | * There's really nothing for us right now; inform the |
| 6596 | * cache(s) that there is a waiter below and go to sleep. |
| 6597 | */ |
| 6598 | mbuf_waiter_inc(class, (wait & MCR_COMP)); |
| 6599 | |
| 6600 | VERIFY(!(wait & MCR_NOSLEEP)); |
| 6601 | |
| 6602 | /* |
| 6603 | * If this is the first waiter, arm the watchdog timer. Otherwise |
| 6604 | * check if we need to panic the system due to watchdog timeout. |
| 6605 | */ |
| 6606 | if (mb_waiters == 0) |
| 6607 | microuptime(&mb_wdtstart); |
| 6608 | else |
| 6609 | mbuf_watchdog(); |
| 6610 | |
| 6611 | mb_waiters++; |
| 6612 | m_region_expand(class) += m_total(class) + num; |
| 6613 | /* wake up the worker thread */ |
| 6614 | if (mbuf_worker_ready && |
| 6615 | mbuf_worker_needs_wakeup) { |
| 6616 | wakeup((caddr_t)&mbuf_worker_needs_wakeup); |
| 6617 | mbuf_worker_needs_wakeup = FALSE; |
| 6618 | } |
| 6619 | mbwdog_logger("waiting (%d mbufs in class %s)" , num, m_cname(class)); |
| 6620 | (void) msleep(mb_waitchan, mbuf_mlock, (PZERO-1), m_cname(class), NULL); |
| 6621 | mbwdog_logger("woke up (%d mbufs in class %s) " , num, m_cname(class)); |
| 6622 | |
| 6623 | /* We are now up; stop getting notified until next round */ |
| 6624 | mbuf_waiter_dec(class, (wait & MCR_COMP)); |
| 6625 | |
| 6626 | /* We waited and got something */ |
| 6627 | if (m_infree(class) > 0) { |
| 6628 | mbstat.m_wait++; |
| 6629 | goto done; |
| 6630 | } else if (mbuf_cached_above(class, wait)) { |
| 6631 | mbstat.m_wait++; |
| 6632 | mcache_retry = TRUE; |
| 6633 | } |
| 6634 | done: |
| 6635 | return (mcache_retry); |
| 6636 | } |
| 6637 | |
| 6638 | __attribute__((noreturn)) |
| 6639 | static void |
| 6640 | mbuf_worker_thread(void) |
| 6641 | { |
| 6642 | int mbuf_expand; |
| 6643 | |
| 6644 | while (1) { |
| 6645 | lck_mtx_lock(mbuf_mlock); |
| 6646 | mbwdog_logger("worker thread running" ); |
| 6647 | mbuf_worker_run_cnt++; |
| 6648 | mbuf_expand = 0; |
| 6649 | /* |
| 6650 | * Allocations are based on page size, so if we have depleted |
| 6651 | * the reserved spaces, try to free mbufs from the major classes. |
| 6652 | */ |
| 6653 | #if PAGE_SIZE == 4096 |
| 6654 | uint32_t m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT; |
| 6655 | uint32_t m_clusters = m_total(MC_CL); |
| 6656 | uint32_t m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT; |
| 6657 | uint32_t sumclusters = m_mbclusters + m_clusters + m_bigclusters; |
| 6658 | if (sumclusters >= nclusters) { |
| 6659 | mbwdog_logger("reclaiming bigcl" ); |
| 6660 | mbuf_drain_locked(TRUE); |
| 6661 | m_reclaim(MC_BIGCL, 4, FALSE); |
| 6662 | } |
| 6663 | #else |
| 6664 | uint32_t m_16kclusters = m_total(MC_16KCL); |
| 6665 | if (njcl > 0 && (m_16kclusters << NCLPJCLSHIFT) >= njcl) { |
| 6666 | mbwdog_logger("reclaiming 16kcl" ); |
| 6667 | mbuf_drain_locked(TRUE); |
| 6668 | m_reclaim(MC_16KCL, 4, FALSE); |
| 6669 | } |
| 6670 | #endif |
| 6671 | if (m_region_expand(MC_CL) > 0) { |
| 6672 | int n; |
| 6673 | mb_expand_cl_cnt++; |
| 6674 | /* Adjust to current number of cluster in use */ |
| 6675 | n = m_region_expand(MC_CL) - |
| 6676 | (m_total(MC_CL) - m_infree(MC_CL)); |
| 6677 | if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL)) |
| 6678 | n = m_maxlimit(MC_CL) - m_total(MC_CL); |
| 6679 | if (n > 0) { |
| 6680 | mb_expand_cl_total += n; |
| 6681 | } |
| 6682 | m_region_expand(MC_CL) = 0; |
| 6683 | |
| 6684 | if (n > 0) { |
| 6685 | mbwdog_logger("expanding MC_CL by %d" , n); |
| 6686 | freelist_populate(MC_CL, n, M_WAIT); |
| 6687 | } |
| 6688 | } |
| 6689 | if (m_region_expand(MC_BIGCL) > 0) { |
| 6690 | int n; |
| 6691 | mb_expand_bigcl_cnt++; |
| 6692 | /* Adjust to current number of 4 KB cluster in use */ |
| 6693 | n = m_region_expand(MC_BIGCL) - |
| 6694 | (m_total(MC_BIGCL) - m_infree(MC_BIGCL)); |
| 6695 | if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL)) |
| 6696 | n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL); |
| 6697 | if (n > 0) { |
| 6698 | mb_expand_bigcl_total += n; |
| 6699 | } |
| 6700 | m_region_expand(MC_BIGCL) = 0; |
| 6701 | |
| 6702 | if (n > 0) { |
| 6703 | mbwdog_logger("expanding MC_BIGCL by %d" , n); |
| 6704 | freelist_populate(MC_BIGCL, n, M_WAIT); |
| 6705 | } |
| 6706 | } |
| 6707 | if (m_region_expand(MC_16KCL) > 0) { |
| 6708 | int n; |
| 6709 | mb_expand_16kcl_cnt++; |
| 6710 | /* Adjust to current number of 16 KB cluster in use */ |
| 6711 | n = m_region_expand(MC_16KCL) - |
| 6712 | (m_total(MC_16KCL) - m_infree(MC_16KCL)); |
| 6713 | if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL)) |
| 6714 | n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL); |
| 6715 | if (n > 0) { |
| 6716 | mb_expand_16kcl_total += n; |
| 6717 | } |
| 6718 | m_region_expand(MC_16KCL) = 0; |
| 6719 | |
| 6720 | if (n > 0) { |
| 6721 | mbwdog_logger("expanding MC_16KCL by %d" , n); |
| 6722 | (void) freelist_populate(MC_16KCL, n, M_WAIT); |
| 6723 | } |
| 6724 | } |
| 6725 | |
| 6726 | /* |
| 6727 | * Because we can run out of memory before filling the mbuf |
| 6728 | * map, we should not allocate more clusters than they are |
| 6729 | * mbufs -- otherwise we could have a large number of useless |
| 6730 | * clusters allocated. |
| 6731 | */ |
| 6732 | mbwdog_logger("totals: MC_MBUF %d MC_BIGCL %d MC_CL %d MC_16KCL %d" , |
| 6733 | m_total(MC_MBUF), m_total(MC_BIGCL), m_total(MC_CL), |
| 6734 | m_total(MC_16KCL)); |
| 6735 | uint32_t total_mbufs = m_total(MC_MBUF); |
| 6736 | uint32_t total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) + |
| 6737 | m_total(MC_16KCL); |
| 6738 | if (total_mbufs < total_clusters) { |
| 6739 | mbwdog_logger("expanding MC_MBUF by %d" , |
| 6740 | total_clusters - total_mbufs); |
| 6741 | } |
| 6742 | while (total_mbufs < total_clusters) { |
| 6743 | mb_expand_cnt++; |
| 6744 | if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0) |
| 6745 | break; |
| 6746 | total_mbufs = m_total(MC_MBUF); |
| 6747 | total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) + |
| 6748 | m_total(MC_16KCL); |
| 6749 | } |
| 6750 | |
| 6751 | mbuf_worker_needs_wakeup = TRUE; |
| 6752 | /* |
| 6753 | * If there's a deadlock and we're not sending / receiving |
| 6754 | * packets, net_uptime() won't be updated. Update it here |
| 6755 | * so we are sure it's correct. |
| 6756 | */ |
| 6757 | net_update_uptime(); |
| 6758 | mbuf_worker_last_runtime = net_uptime(); |
| 6759 | assert_wait((caddr_t)&mbuf_worker_needs_wakeup, |
| 6760 | THREAD_UNINT); |
| 6761 | mbwdog_logger("worker thread sleeping" ); |
| 6762 | lck_mtx_unlock(mbuf_mlock); |
| 6763 | (void) thread_block((thread_continue_t)mbuf_worker_thread); |
| 6764 | } |
| 6765 | } |
| 6766 | |
| 6767 | __attribute__((noreturn)) |
| 6768 | static void |
| 6769 | mbuf_worker_thread_init(void) |
| 6770 | { |
| 6771 | mbuf_worker_ready++; |
| 6772 | mbuf_worker_thread(); |
| 6773 | } |
| 6774 | |
| 6775 | static mcl_slab_t * |
| 6776 | slab_get(void *buf) |
| 6777 | { |
| 6778 | mcl_slabg_t *slg; |
| 6779 | unsigned int ix, k; |
| 6780 | |
| 6781 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 6782 | |
| 6783 | VERIFY(MBUF_IN_MAP(buf)); |
| 6784 | ix = ((unsigned char *)buf - mbutl) >> MBSHIFT; |
| 6785 | VERIFY(ix < maxslabgrp); |
| 6786 | |
| 6787 | if ((slg = slabstbl[ix]) == NULL) { |
| 6788 | /* |
| 6789 | * In the current implementation, we never shrink the slabs |
| 6790 | * table; if we attempt to reallocate a cluster group when |
| 6791 | * it's already allocated, panic since this is a sign of a |
| 6792 | * memory corruption (slabstbl[ix] got nullified). |
| 6793 | */ |
| 6794 | ++slabgrp; |
| 6795 | VERIFY(ix < slabgrp); |
| 6796 | /* |
| 6797 | * Slabs expansion can only be done single threaded; when |
| 6798 | * we get here, it must be as a result of m_clalloc() which |
| 6799 | * is serialized and therefore mb_clalloc_busy must be set. |
| 6800 | */ |
| 6801 | VERIFY(mb_clalloc_busy); |
| 6802 | lck_mtx_unlock(mbuf_mlock); |
| 6803 | |
| 6804 | /* This is a new buffer; create the slabs group for it */ |
| 6805 | MALLOC(slg, mcl_slabg_t *, sizeof (*slg), M_TEMP, |
| 6806 | M_WAITOK | M_ZERO); |
| 6807 | MALLOC(slg->slg_slab, mcl_slab_t *, sizeof(mcl_slab_t) * NSLABSPMB, |
| 6808 | M_TEMP, M_WAITOK | M_ZERO); |
| 6809 | VERIFY(slg != NULL && slg->slg_slab != NULL); |
| 6810 | |
| 6811 | lck_mtx_lock(mbuf_mlock); |
| 6812 | /* |
| 6813 | * No other thread could have gone into m_clalloc() after |
| 6814 | * we dropped the lock above, so verify that it's true. |
| 6815 | */ |
| 6816 | VERIFY(mb_clalloc_busy); |
| 6817 | |
| 6818 | slabstbl[ix] = slg; |
| 6819 | |
| 6820 | /* Chain each slab in the group to its forward neighbor */ |
| 6821 | for (k = 1; k < NSLABSPMB; k++) |
| 6822 | slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k]; |
| 6823 | VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL); |
| 6824 | |
| 6825 | /* And chain the last slab in the previous group to this */ |
| 6826 | if (ix > 0) { |
| 6827 | VERIFY(slabstbl[ix - 1]-> |
| 6828 | slg_slab[NSLABSPMB - 1].sl_next == NULL); |
| 6829 | slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next = |
| 6830 | &slg->slg_slab[0]; |
| 6831 | } |
| 6832 | } |
| 6833 | |
| 6834 | ix = MTOPG(buf) % NSLABSPMB; |
| 6835 | VERIFY(ix < NSLABSPMB); |
| 6836 | |
| 6837 | return (&slg->slg_slab[ix]); |
| 6838 | } |
| 6839 | |
| 6840 | static void |
| 6841 | slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags, |
| 6842 | void *base, void *head, unsigned int len, int refcnt, int chunks) |
| 6843 | { |
| 6844 | sp->sl_class = class; |
| 6845 | sp->sl_flags = flags; |
| 6846 | sp->sl_base = base; |
| 6847 | sp->sl_head = head; |
| 6848 | sp->sl_len = len; |
| 6849 | sp->sl_refcnt = refcnt; |
| 6850 | sp->sl_chunks = chunks; |
| 6851 | slab_detach(sp); |
| 6852 | } |
| 6853 | |
| 6854 | static void |
| 6855 | slab_insert(mcl_slab_t *sp, mbuf_class_t class) |
| 6856 | { |
| 6857 | VERIFY(slab_is_detached(sp)); |
| 6858 | m_slab_cnt(class)++; |
| 6859 | TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link); |
| 6860 | sp->sl_flags &= ~SLF_DETACHED; |
| 6861 | |
| 6862 | /* |
| 6863 | * If a buffer spans multiple contiguous pages then mark them as |
| 6864 | * detached too |
| 6865 | */ |
| 6866 | if (class == MC_16KCL) { |
| 6867 | int k; |
| 6868 | for (k = 1; k < NSLABSP16KB; k++) { |
| 6869 | sp = sp->sl_next; |
| 6870 | /* Next slab must already be present */ |
| 6871 | VERIFY(sp != NULL && slab_is_detached(sp)); |
| 6872 | sp->sl_flags &= ~SLF_DETACHED; |
| 6873 | } |
| 6874 | } |
| 6875 | } |
| 6876 | |
| 6877 | static void |
| 6878 | slab_remove(mcl_slab_t *sp, mbuf_class_t class) |
| 6879 | { |
| 6880 | int k; |
| 6881 | VERIFY(!slab_is_detached(sp)); |
| 6882 | VERIFY(m_slab_cnt(class) > 0); |
| 6883 | m_slab_cnt(class)--; |
| 6884 | TAILQ_REMOVE(&m_slablist(class), sp, sl_link); |
| 6885 | slab_detach(sp); |
| 6886 | if (class == MC_16KCL) { |
| 6887 | for (k = 1; k < NSLABSP16KB; k++) { |
| 6888 | sp = sp->sl_next; |
| 6889 | /* Next slab must already be present */ |
| 6890 | VERIFY(sp != NULL); |
| 6891 | VERIFY(!slab_is_detached(sp)); |
| 6892 | slab_detach(sp); |
| 6893 | } |
| 6894 | } |
| 6895 | } |
| 6896 | |
| 6897 | static boolean_t |
| 6898 | slab_inrange(mcl_slab_t *sp, void *buf) |
| 6899 | { |
| 6900 | return ((uintptr_t)buf >= (uintptr_t)sp->sl_base && |
| 6901 | (uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len)); |
| 6902 | } |
| 6903 | |
| 6904 | #undef panic |
| 6905 | |
| 6906 | static void |
| 6907 | slab_nextptr_panic(mcl_slab_t *sp, void *addr) |
| 6908 | { |
| 6909 | int i; |
| 6910 | unsigned int chunk_len = sp->sl_len / sp->sl_chunks; |
| 6911 | uintptr_t buf = (uintptr_t)sp->sl_base; |
| 6912 | |
| 6913 | for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) { |
| 6914 | void *next = ((mcache_obj_t *)buf)->obj_next; |
| 6915 | if (next != addr) |
| 6916 | continue; |
| 6917 | if (!mclverify) { |
| 6918 | if (next != NULL && !MBUF_IN_MAP(next)) { |
| 6919 | mcache_t *cp = m_cache(sp->sl_class); |
| 6920 | panic("%s: %s buffer %p in slab %p modified " |
| 6921 | "after free at offset 0: %p out of range " |
| 6922 | "[%p-%p)\n" , __func__, cp->mc_name, |
| 6923 | (void *)buf, sp, next, mbutl, embutl); |
| 6924 | /* NOTREACHED */ |
| 6925 | } |
| 6926 | } else { |
| 6927 | mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class, |
| 6928 | (mcache_obj_t *)buf); |
| 6929 | mcl_audit_verify_nextptr(next, mca); |
| 6930 | } |
| 6931 | } |
| 6932 | } |
| 6933 | |
| 6934 | static void |
| 6935 | slab_detach(mcl_slab_t *sp) |
| 6936 | { |
| 6937 | sp->sl_link.tqe_next = (mcl_slab_t *)-1; |
| 6938 | sp->sl_link.tqe_prev = (mcl_slab_t **)-1; |
| 6939 | sp->sl_flags |= SLF_DETACHED; |
| 6940 | } |
| 6941 | |
| 6942 | static boolean_t |
| 6943 | slab_is_detached(mcl_slab_t *sp) |
| 6944 | { |
| 6945 | return ((intptr_t)sp->sl_link.tqe_next == -1 && |
| 6946 | (intptr_t)sp->sl_link.tqe_prev == -1 && |
| 6947 | (sp->sl_flags & SLF_DETACHED)); |
| 6948 | } |
| 6949 | |
| 6950 | static void |
| 6951 | mcl_audit_init(void *buf, mcache_audit_t **mca_list, |
| 6952 | mcache_obj_t **con_list, size_t con_size, unsigned int num) |
| 6953 | { |
| 6954 | mcache_audit_t *mca, *mca_tail; |
| 6955 | mcache_obj_t *con = NULL; |
| 6956 | boolean_t save_contents = (con_list != NULL); |
| 6957 | unsigned int i, ix; |
| 6958 | |
| 6959 | ASSERT(num <= NMBPG); |
| 6960 | ASSERT(con_list == NULL || con_size != 0); |
| 6961 | |
| 6962 | ix = MTOPG(buf); |
| 6963 | VERIFY(ix < maxclaudit); |
| 6964 | |
| 6965 | /* Make sure we haven't been here before */ |
| 6966 | for (i = 0; i < num; i++) |
| 6967 | VERIFY(mclaudit[ix].cl_audit[i] == NULL); |
| 6968 | |
| 6969 | mca = mca_tail = *mca_list; |
| 6970 | if (save_contents) |
| 6971 | con = *con_list; |
| 6972 | |
| 6973 | for (i = 0; i < num; i++) { |
| 6974 | mcache_audit_t *next; |
| 6975 | |
| 6976 | next = mca->mca_next; |
| 6977 | bzero(mca, sizeof (*mca)); |
| 6978 | mca->mca_next = next; |
| 6979 | mclaudit[ix].cl_audit[i] = mca; |
| 6980 | |
| 6981 | /* Attach the contents buffer if requested */ |
| 6982 | if (save_contents) { |
| 6983 | mcl_saved_contents_t *msc = |
| 6984 | (mcl_saved_contents_t *)(void *)con; |
| 6985 | |
| 6986 | VERIFY(msc != NULL); |
| 6987 | VERIFY(IS_P2ALIGNED(msc, sizeof (u_int64_t))); |
| 6988 | VERIFY(con_size == sizeof (*msc)); |
| 6989 | mca->mca_contents_size = con_size; |
| 6990 | mca->mca_contents = msc; |
| 6991 | con = con->obj_next; |
| 6992 | bzero(mca->mca_contents, mca->mca_contents_size); |
| 6993 | } |
| 6994 | |
| 6995 | mca_tail = mca; |
| 6996 | mca = mca->mca_next; |
| 6997 | } |
| 6998 | |
| 6999 | if (save_contents) |
| 7000 | *con_list = con; |
| 7001 | |
| 7002 | *mca_list = mca_tail->mca_next; |
| 7003 | mca_tail->mca_next = NULL; |
| 7004 | } |
| 7005 | |
| 7006 | static void |
| 7007 | mcl_audit_free(void *buf, unsigned int num) |
| 7008 | { |
| 7009 | unsigned int i, ix; |
| 7010 | mcache_audit_t *mca, *mca_list; |
| 7011 | |
| 7012 | ix = MTOPG(buf); |
| 7013 | VERIFY(ix < maxclaudit); |
| 7014 | |
| 7015 | if (mclaudit[ix].cl_audit[0] != NULL) { |
| 7016 | mca_list = mclaudit[ix].cl_audit[0]; |
| 7017 | for (i = 0; i < num; i++) { |
| 7018 | mca = mclaudit[ix].cl_audit[i]; |
| 7019 | mclaudit[ix].cl_audit[i] = NULL; |
| 7020 | if (mca->mca_contents) |
| 7021 | mcache_free(mcl_audit_con_cache, |
| 7022 | mca->mca_contents); |
| 7023 | } |
| 7024 | mcache_free_ext(mcache_audit_cache, |
| 7025 | (mcache_obj_t *)mca_list); |
| 7026 | } |
| 7027 | } |
| 7028 | |
| 7029 | /* |
| 7030 | * Given an address of a buffer (mbuf/2KB/4KB/16KB), return |
| 7031 | * the corresponding audit structure for that buffer. |
| 7032 | */ |
| 7033 | static mcache_audit_t * |
| 7034 | mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *mobj) |
| 7035 | { |
| 7036 | mcache_audit_t *mca = NULL; |
| 7037 | int ix = MTOPG(mobj), m_idx = 0; |
| 7038 | unsigned char *page_addr; |
| 7039 | |
| 7040 | VERIFY(ix < maxclaudit); |
| 7041 | VERIFY(IS_P2ALIGNED(mobj, MIN(m_maxsize(class), PAGE_SIZE))); |
| 7042 | |
| 7043 | page_addr = PGTOM(ix); |
| 7044 | |
| 7045 | switch (class) { |
| 7046 | case MC_MBUF: |
| 7047 | /* |
| 7048 | * For the mbuf case, find the index of the page |
| 7049 | * used by the mbuf and use that index to locate the |
| 7050 | * base address of the page. Then find out the |
| 7051 | * mbuf index relative to the page base and use |
| 7052 | * it to locate the audit structure. |
| 7053 | */ |
| 7054 | m_idx = MBPAGEIDX(page_addr, mobj); |
| 7055 | VERIFY(m_idx < (int)NMBPG); |
| 7056 | mca = mclaudit[ix].cl_audit[m_idx]; |
| 7057 | break; |
| 7058 | |
| 7059 | case MC_CL: |
| 7060 | /* |
| 7061 | * Same thing as above, but for 2KB clusters in a page. |
| 7062 | */ |
| 7063 | m_idx = CLPAGEIDX(page_addr, mobj); |
| 7064 | VERIFY(m_idx < (int)NCLPG); |
| 7065 | mca = mclaudit[ix].cl_audit[m_idx]; |
| 7066 | break; |
| 7067 | |
| 7068 | case MC_BIGCL: |
| 7069 | m_idx = BCLPAGEIDX(page_addr, mobj); |
| 7070 | VERIFY(m_idx < (int)NBCLPG); |
| 7071 | mca = mclaudit[ix].cl_audit[m_idx]; |
| 7072 | break; |
| 7073 | case MC_16KCL: |
| 7074 | /* |
| 7075 | * Same as above, but only return the first element. |
| 7076 | */ |
| 7077 | mca = mclaudit[ix].cl_audit[0]; |
| 7078 | break; |
| 7079 | |
| 7080 | default: |
| 7081 | VERIFY(0); |
| 7082 | /* NOTREACHED */ |
| 7083 | } |
| 7084 | |
| 7085 | return (mca); |
| 7086 | } |
| 7087 | |
| 7088 | static void |
| 7089 | mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite, |
| 7090 | boolean_t alloc) |
| 7091 | { |
| 7092 | struct mbuf *m = addr; |
| 7093 | mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next; |
| 7094 | |
| 7095 | VERIFY(mca->mca_contents != NULL && |
| 7096 | mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
| 7097 | |
| 7098 | if (mclverify) |
| 7099 | mcl_audit_verify_nextptr(next, mca); |
| 7100 | |
| 7101 | if (!alloc) { |
| 7102 | /* Save constructed mbuf fields */ |
| 7103 | mcl_audit_save_mbuf(m, mca); |
| 7104 | if (mclverify) { |
| 7105 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, |
| 7106 | m_maxsize(MC_MBUF)); |
| 7107 | } |
| 7108 | ((mcache_obj_t *)m)->obj_next = next; |
| 7109 | return; |
| 7110 | } |
| 7111 | |
| 7112 | /* Check if the buffer has been corrupted while in freelist */ |
| 7113 | if (mclverify) { |
| 7114 | mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF)); |
| 7115 | } |
| 7116 | /* Restore constructed mbuf fields */ |
| 7117 | mcl_audit_restore_mbuf(m, mca, composite); |
| 7118 | } |
| 7119 | |
| 7120 | static void |
| 7121 | mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite) |
| 7122 | { |
| 7123 | struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca); |
| 7124 | |
| 7125 | if (composite) { |
| 7126 | struct mbuf *next = m->m_next; |
| 7127 | VERIFY(ms->m_flags == M_EXT && m_get_rfa(ms) != NULL && |
| 7128 | MBUF_IS_COMPOSITE(ms)); |
| 7129 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
| 7130 | /* |
| 7131 | * We could have hand-picked the mbuf fields and restore |
| 7132 | * them individually, but that will be a maintenance |
| 7133 | * headache. Instead, restore everything that was saved; |
| 7134 | * the mbuf layer will recheck and reinitialize anyway. |
| 7135 | */ |
| 7136 | bcopy(ms, m, MCA_SAVED_MBUF_SIZE); |
| 7137 | m->m_next = next; |
| 7138 | } else { |
| 7139 | /* |
| 7140 | * For a regular mbuf (no cluster attached) there's nothing |
| 7141 | * to restore other than the type field, which is expected |
| 7142 | * to be MT_FREE. |
| 7143 | */ |
| 7144 | m->m_type = ms->m_type; |
| 7145 | } |
| 7146 | _MCHECK(m); |
| 7147 | } |
| 7148 | |
| 7149 | static void |
| 7150 | mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca) |
| 7151 | { |
| 7152 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
| 7153 | _MCHECK(m); |
| 7154 | bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE); |
| 7155 | } |
| 7156 | |
| 7157 | static void |
| 7158 | mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc, |
| 7159 | boolean_t save_next) |
| 7160 | { |
| 7161 | mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next; |
| 7162 | |
| 7163 | if (!alloc) { |
| 7164 | if (mclverify) { |
| 7165 | mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size); |
| 7166 | } |
| 7167 | if (save_next) { |
| 7168 | mcl_audit_verify_nextptr(next, mca); |
| 7169 | ((mcache_obj_t *)addr)->obj_next = next; |
| 7170 | } |
| 7171 | } else if (mclverify) { |
| 7172 | /* Check if the buffer has been corrupted while in freelist */ |
| 7173 | mcl_audit_verify_nextptr(next, mca); |
| 7174 | mcache_audit_free_verify_set(mca, addr, 0, size); |
| 7175 | } |
| 7176 | } |
| 7177 | |
| 7178 | static void |
| 7179 | mcl_audit_scratch(mcache_audit_t *mca) |
| 7180 | { |
| 7181 | void *stack[MCACHE_STACK_DEPTH + 1]; |
| 7182 | mcl_scratch_audit_t *msa; |
| 7183 | struct timeval now; |
| 7184 | |
| 7185 | VERIFY(mca->mca_contents != NULL); |
| 7186 | msa = MCA_SAVED_SCRATCH_PTR(mca); |
| 7187 | |
| 7188 | msa->msa_pthread = msa->msa_thread; |
| 7189 | msa->msa_thread = current_thread(); |
| 7190 | bcopy(msa->msa_stack, msa->msa_pstack, sizeof (msa->msa_pstack)); |
| 7191 | msa->msa_pdepth = msa->msa_depth; |
| 7192 | bzero(stack, sizeof (stack)); |
| 7193 | msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1; |
| 7194 | bcopy(&stack[1], msa->msa_stack, sizeof (msa->msa_stack)); |
| 7195 | |
| 7196 | msa->msa_ptstamp = msa->msa_tstamp; |
| 7197 | microuptime(&now); |
| 7198 | /* tstamp is in ms relative to base_ts */ |
| 7199 | msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000); |
| 7200 | if ((now.tv_sec - mb_start.tv_sec) > 0) |
| 7201 | msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000); |
| 7202 | } |
| 7203 | |
| 7204 | static void |
| 7205 | mcl_audit_mcheck_panic(struct mbuf *m) |
| 7206 | { |
| 7207 | mcache_audit_t *mca; |
| 7208 | |
| 7209 | MRANGE(m); |
| 7210 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 7211 | |
| 7212 | panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n" , |
| 7213 | m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(mca)); |
| 7214 | /* NOTREACHED */ |
| 7215 | } |
| 7216 | |
| 7217 | static void |
| 7218 | mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca) |
| 7219 | { |
| 7220 | if (next != NULL && !MBUF_IN_MAP(next) && |
| 7221 | (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) { |
| 7222 | panic("mcl_audit: buffer %p modified after free at offset 0: " |
| 7223 | "%p out of range [%p-%p)\n%s\n" , |
| 7224 | mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(mca)); |
| 7225 | /* NOTREACHED */ |
| 7226 | } |
| 7227 | } |
| 7228 | |
| 7229 | /* This function turns on mbuf leak detection */ |
| 7230 | static void |
| 7231 | mleak_activate(void) |
| 7232 | { |
| 7233 | mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR; |
| 7234 | PE_parse_boot_argn("mleak_sample_factor" , |
| 7235 | &mleak_table.mleak_sample_factor, |
| 7236 | sizeof (mleak_table.mleak_sample_factor)); |
| 7237 | |
| 7238 | if (mleak_table.mleak_sample_factor == 0) |
| 7239 | mclfindleak = 0; |
| 7240 | |
| 7241 | if (mclfindleak == 0) |
| 7242 | return; |
| 7243 | |
| 7244 | vm_size_t alloc_size = |
| 7245 | mleak_alloc_buckets * sizeof (struct mallocation); |
| 7246 | vm_size_t trace_size = mleak_trace_buckets * sizeof (struct mtrace); |
| 7247 | |
| 7248 | MALLOC(mleak_allocations, struct mallocation *, alloc_size, |
| 7249 | M_TEMP, M_WAITOK | M_ZERO); |
| 7250 | VERIFY(mleak_allocations != NULL); |
| 7251 | |
| 7252 | MALLOC(mleak_traces, struct mtrace *, trace_size, |
| 7253 | M_TEMP, M_WAITOK | M_ZERO); |
| 7254 | VERIFY(mleak_traces != NULL); |
| 7255 | |
| 7256 | MALLOC(mleak_stat, mleak_stat_t *, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES), |
| 7257 | M_TEMP, M_WAITOK | M_ZERO); |
| 7258 | VERIFY(mleak_stat != NULL); |
| 7259 | mleak_stat->ml_cnt = MLEAK_NUM_TRACES; |
| 7260 | #ifdef __LP64__ |
| 7261 | mleak_stat->ml_isaddr64 = 1; |
| 7262 | #endif /* __LP64__ */ |
| 7263 | } |
| 7264 | |
| 7265 | static void |
| 7266 | mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc) |
| 7267 | { |
| 7268 | int temp; |
| 7269 | |
| 7270 | if (mclfindleak == 0) |
| 7271 | return; |
| 7272 | |
| 7273 | if (!alloc) |
| 7274 | return (mleak_free(addr)); |
| 7275 | |
| 7276 | temp = atomic_add_32_ov(&mleak_table.mleak_capture, 1); |
| 7277 | |
| 7278 | if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) { |
| 7279 | uintptr_t bt[MLEAK_STACK_DEPTH]; |
| 7280 | int logged = backtrace(bt, MLEAK_STACK_DEPTH); |
| 7281 | mleak_log(bt, addr, logged, num); |
| 7282 | } |
| 7283 | } |
| 7284 | |
| 7285 | /* |
| 7286 | * This function records the allocation in the mleak_allocations table |
| 7287 | * and the backtrace in the mleak_traces table; if allocation slot is in use, |
| 7288 | * replace old allocation with new one if the trace slot is in use, return |
| 7289 | * (or increment refcount if same trace). |
| 7290 | */ |
| 7291 | static boolean_t |
| 7292 | mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num) |
| 7293 | { |
| 7294 | struct mallocation *allocation; |
| 7295 | struct mtrace *trace; |
| 7296 | uint32_t trace_index; |
| 7297 | |
| 7298 | /* Quit if someone else modifying the tables */ |
| 7299 | if (!lck_mtx_try_lock_spin(mleak_lock)) { |
| 7300 | mleak_table.total_conflicts++; |
| 7301 | return (FALSE); |
| 7302 | } |
| 7303 | |
| 7304 | allocation = &mleak_allocations[hashaddr((uintptr_t)addr, |
| 7305 | mleak_alloc_buckets)]; |
| 7306 | trace_index = hashbacktrace(bt, depth, mleak_trace_buckets); |
| 7307 | trace = &mleak_traces[trace_index]; |
| 7308 | |
| 7309 | VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]); |
| 7310 | VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]); |
| 7311 | |
| 7312 | allocation->hitcount++; |
| 7313 | trace->hitcount++; |
| 7314 | |
| 7315 | /* |
| 7316 | * If the allocation bucket we want is occupied |
| 7317 | * and the occupier has the same trace, just bail. |
| 7318 | */ |
| 7319 | if (allocation->element != NULL && |
| 7320 | trace_index == allocation->trace_index) { |
| 7321 | mleak_table.alloc_collisions++; |
| 7322 | lck_mtx_unlock(mleak_lock); |
| 7323 | return (TRUE); |
| 7324 | } |
| 7325 | |
| 7326 | /* |
| 7327 | * Store the backtrace in the traces array; |
| 7328 | * Size of zero = trace bucket is free. |
| 7329 | */ |
| 7330 | if (trace->allocs > 0 && |
| 7331 | bcmp(trace->addr, bt, (depth * sizeof (uintptr_t))) != 0) { |
| 7332 | /* Different, unique trace, but the same hash! Bail out. */ |
| 7333 | trace->collisions++; |
| 7334 | mleak_table.trace_collisions++; |
| 7335 | lck_mtx_unlock(mleak_lock); |
| 7336 | return (TRUE); |
| 7337 | } else if (trace->allocs > 0) { |
| 7338 | /* Same trace, already added, so increment refcount */ |
| 7339 | trace->allocs++; |
| 7340 | } else { |
| 7341 | /* Found an unused trace bucket, so record the trace here */ |
| 7342 | if (trace->depth != 0) { |
| 7343 | /* this slot previously used but not currently in use */ |
| 7344 | mleak_table.trace_overwrites++; |
| 7345 | } |
| 7346 | mleak_table.trace_recorded++; |
| 7347 | trace->allocs = 1; |
| 7348 | memcpy(trace->addr, bt, (depth * sizeof (uintptr_t))); |
| 7349 | trace->depth = depth; |
| 7350 | trace->collisions = 0; |
| 7351 | } |
| 7352 | |
| 7353 | /* Step 2: Store the allocation record in the allocations array */ |
| 7354 | if (allocation->element != NULL) { |
| 7355 | /* |
| 7356 | * Replace an existing allocation. No need to preserve |
| 7357 | * because only a subset of the allocations are being |
| 7358 | * recorded anyway. |
| 7359 | */ |
| 7360 | mleak_table.alloc_collisions++; |
| 7361 | } else if (allocation->trace_index != 0) { |
| 7362 | mleak_table.alloc_overwrites++; |
| 7363 | } |
| 7364 | allocation->element = addr; |
| 7365 | allocation->trace_index = trace_index; |
| 7366 | allocation->count = num; |
| 7367 | mleak_table.alloc_recorded++; |
| 7368 | mleak_table.outstanding_allocs++; |
| 7369 | |
| 7370 | lck_mtx_unlock(mleak_lock); |
| 7371 | return (TRUE); |
| 7372 | } |
| 7373 | |
| 7374 | static void |
| 7375 | mleak_free(mcache_obj_t *addr) |
| 7376 | { |
| 7377 | while (addr != NULL) { |
| 7378 | struct mallocation *allocation = &mleak_allocations |
| 7379 | [hashaddr((uintptr_t)addr, mleak_alloc_buckets)]; |
| 7380 | |
| 7381 | if (allocation->element == addr && |
| 7382 | allocation->trace_index < mleak_trace_buckets) { |
| 7383 | lck_mtx_lock_spin(mleak_lock); |
| 7384 | if (allocation->element == addr && |
| 7385 | allocation->trace_index < mleak_trace_buckets) { |
| 7386 | struct mtrace *trace; |
| 7387 | trace = &mleak_traces[allocation->trace_index]; |
| 7388 | /* allocs = 0 means trace bucket is unused */ |
| 7389 | if (trace->allocs > 0) |
| 7390 | trace->allocs--; |
| 7391 | if (trace->allocs == 0) |
| 7392 | trace->depth = 0; |
| 7393 | /* NULL element means alloc bucket is unused */ |
| 7394 | allocation->element = NULL; |
| 7395 | mleak_table.outstanding_allocs--; |
| 7396 | } |
| 7397 | lck_mtx_unlock(mleak_lock); |
| 7398 | } |
| 7399 | addr = addr->obj_next; |
| 7400 | } |
| 7401 | } |
| 7402 | |
| 7403 | static void |
| 7404 | mleak_sort_traces() |
| 7405 | { |
| 7406 | int i, j, k; |
| 7407 | struct mtrace *swap; |
| 7408 | |
| 7409 | for(i = 0; i < MLEAK_NUM_TRACES; i++) |
| 7410 | mleak_top_trace[i] = NULL; |
| 7411 | |
| 7412 | for(i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++) |
| 7413 | { |
| 7414 | if (mleak_traces[i].allocs <= 0) |
| 7415 | continue; |
| 7416 | |
| 7417 | mleak_top_trace[j] = &mleak_traces[i]; |
| 7418 | for (k = j; k > 0; k--) { |
| 7419 | if (mleak_top_trace[k]->allocs <= |
| 7420 | mleak_top_trace[k-1]->allocs) |
| 7421 | break; |
| 7422 | |
| 7423 | swap = mleak_top_trace[k-1]; |
| 7424 | mleak_top_trace[k-1] = mleak_top_trace[k]; |
| 7425 | mleak_top_trace[k] = swap; |
| 7426 | } |
| 7427 | j++; |
| 7428 | } |
| 7429 | |
| 7430 | j--; |
| 7431 | for(; i < mleak_trace_buckets; i++) { |
| 7432 | if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs) |
| 7433 | continue; |
| 7434 | |
| 7435 | mleak_top_trace[j] = &mleak_traces[i]; |
| 7436 | |
| 7437 | for (k = j; k > 0; k--) { |
| 7438 | if (mleak_top_trace[k]->allocs <= |
| 7439 | mleak_top_trace[k-1]->allocs) |
| 7440 | break; |
| 7441 | |
| 7442 | swap = mleak_top_trace[k-1]; |
| 7443 | mleak_top_trace[k-1] = mleak_top_trace[k]; |
| 7444 | mleak_top_trace[k] = swap; |
| 7445 | } |
| 7446 | } |
| 7447 | } |
| 7448 | |
| 7449 | static void |
| 7450 | mleak_update_stats() |
| 7451 | { |
| 7452 | mleak_trace_stat_t *mltr; |
| 7453 | int i; |
| 7454 | |
| 7455 | VERIFY(mleak_stat != NULL); |
| 7456 | #ifdef __LP64__ |
| 7457 | VERIFY(mleak_stat->ml_isaddr64); |
| 7458 | #else |
| 7459 | VERIFY(!mleak_stat->ml_isaddr64); |
| 7460 | #endif /* !__LP64__ */ |
| 7461 | VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES); |
| 7462 | |
| 7463 | mleak_sort_traces(); |
| 7464 | |
| 7465 | mltr = &mleak_stat->ml_trace[0]; |
| 7466 | bzero(mltr, sizeof (*mltr) * MLEAK_NUM_TRACES); |
| 7467 | for (i = 0; i < MLEAK_NUM_TRACES; i++) { |
| 7468 | int j; |
| 7469 | |
| 7470 | if (mleak_top_trace[i] == NULL || |
| 7471 | mleak_top_trace[i]->allocs == 0) |
| 7472 | continue; |
| 7473 | |
| 7474 | mltr->mltr_collisions = mleak_top_trace[i]->collisions; |
| 7475 | mltr->mltr_hitcount = mleak_top_trace[i]->hitcount; |
| 7476 | mltr->mltr_allocs = mleak_top_trace[i]->allocs; |
| 7477 | mltr->mltr_depth = mleak_top_trace[i]->depth; |
| 7478 | |
| 7479 | VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH); |
| 7480 | for (j = 0; j < mltr->mltr_depth; j++) |
| 7481 | mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j]; |
| 7482 | |
| 7483 | mltr++; |
| 7484 | } |
| 7485 | } |
| 7486 | |
| 7487 | static struct mbtypes { |
| 7488 | int mt_type; |
| 7489 | const char *mt_name; |
| 7490 | } mbtypes[] = { |
| 7491 | { MT_DATA, "data" }, |
| 7492 | { MT_OOBDATA, "oob data" }, |
| 7493 | { MT_CONTROL, "ancillary data" }, |
| 7494 | { MT_HEADER, "packet headers" }, |
| 7495 | { MT_SOCKET, "socket structures" }, |
| 7496 | { MT_PCB, "protocol control blocks" }, |
| 7497 | { MT_RTABLE, "routing table entries" }, |
| 7498 | { MT_HTABLE, "IMP host table entries" }, |
| 7499 | { MT_ATABLE, "address resolution tables" }, |
| 7500 | { MT_FTABLE, "fragment reassembly queue headers" }, |
| 7501 | { MT_SONAME, "socket names and addresses" }, |
| 7502 | { MT_SOOPTS, "socket options" }, |
| 7503 | { MT_RIGHTS, "access rights" }, |
| 7504 | { MT_IFADDR, "interface addresses" }, |
| 7505 | { MT_TAG, "packet tags" }, |
| 7506 | { 0, NULL } |
| 7507 | }; |
| 7508 | |
| 7509 | #define MBUF_DUMP_BUF_CHK() { \ |
| 7510 | clen -= k; \ |
| 7511 | if (clen < 1) \ |
| 7512 | goto done; \ |
| 7513 | c += k; \ |
| 7514 | } |
| 7515 | |
| 7516 | static char * |
| 7517 | mbuf_dump(void) |
| 7518 | { |
| 7519 | unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct, |
| 7520 | totreturned = 0; |
| 7521 | u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0; |
| 7522 | u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0; |
| 7523 | u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0; |
| 7524 | int nmbtypes = sizeof (mbstat.m_mtypes) / sizeof (short); |
| 7525 | uint8_t seen[256]; |
| 7526 | struct mbtypes *mp; |
| 7527 | mb_class_stat_t *sp; |
| 7528 | mleak_trace_stat_t *mltr; |
| 7529 | char *c = mbuf_dump_buf; |
| 7530 | int i, j, k, clen = MBUF_DUMP_BUF_SIZE; |
| 7531 | bool printed_banner = false; |
| 7532 | |
| 7533 | mbuf_dump_buf[0] = '\0'; |
| 7534 | |
| 7535 | /* synchronize all statistics in the mbuf table */ |
| 7536 | mbuf_stat_sync(); |
| 7537 | mbuf_mtypes_sync(TRUE); |
| 7538 | |
| 7539 | sp = &mb_stat->mbs_class[0]; |
| 7540 | for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) { |
| 7541 | u_int32_t mem; |
| 7542 | |
| 7543 | if (m_class(i) == MC_MBUF) { |
| 7544 | m_mbufs = sp->mbcl_active; |
| 7545 | } else if (m_class(i) == MC_CL) { |
| 7546 | m_clfree = sp->mbcl_total - sp->mbcl_active; |
| 7547 | } else if (m_class(i) == MC_BIGCL) { |
| 7548 | m_bigclfree = sp->mbcl_total - sp->mbcl_active; |
| 7549 | } else if (njcl > 0 && m_class(i) == MC_16KCL) { |
| 7550 | m_16kclfree = sp->mbcl_total - sp->mbcl_active; |
| 7551 | m_16kclusters = sp->mbcl_total; |
| 7552 | } else if (m_class(i) == MC_MBUF_CL) { |
| 7553 | m_mbufclfree = sp->mbcl_total - sp->mbcl_active; |
| 7554 | } else if (m_class(i) == MC_MBUF_BIGCL) { |
| 7555 | m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active; |
| 7556 | } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) { |
| 7557 | m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active; |
| 7558 | } |
| 7559 | |
| 7560 | mem = sp->mbcl_ctotal * sp->mbcl_size; |
| 7561 | totmem += mem; |
| 7562 | totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) * |
| 7563 | sp->mbcl_size; |
| 7564 | totreturned += sp->mbcl_release_cnt; |
| 7565 | |
| 7566 | } |
| 7567 | |
| 7568 | /* adjust free counts to include composite caches */ |
| 7569 | m_clfree += m_mbufclfree; |
| 7570 | m_bigclfree += m_mbufbigclfree; |
| 7571 | m_16kclfree += m_mbuf16kclfree; |
| 7572 | |
| 7573 | totmbufs = 0; |
| 7574 | for (mp = mbtypes; mp->mt_name != NULL; mp++) |
| 7575 | totmbufs += mbstat.m_mtypes[mp->mt_type]; |
| 7576 | if (totmbufs > m_mbufs) |
| 7577 | totmbufs = m_mbufs; |
| 7578 | k = snprintf(c, clen, "%lu/%u mbufs in use:\n" , totmbufs, m_mbufs); |
| 7579 | MBUF_DUMP_BUF_CHK(); |
| 7580 | |
| 7581 | bzero(&seen, sizeof (seen)); |
| 7582 | for (mp = mbtypes; mp->mt_name != NULL; mp++) { |
| 7583 | if (mbstat.m_mtypes[mp->mt_type] != 0) { |
| 7584 | seen[mp->mt_type] = 1; |
| 7585 | k = snprintf(c, clen, "\t%u mbufs allocated to %s\n" , |
| 7586 | mbstat.m_mtypes[mp->mt_type], mp->mt_name); |
| 7587 | MBUF_DUMP_BUF_CHK(); |
| 7588 | } |
| 7589 | } |
| 7590 | seen[MT_FREE] = 1; |
| 7591 | for (i = 0; i < nmbtypes; i++) |
| 7592 | if (!seen[i] && mbstat.m_mtypes[i] != 0) { |
| 7593 | k = snprintf(c, clen, "\t%u mbufs allocated to " |
| 7594 | "<mbuf type %d>\n" , mbstat.m_mtypes[i], i); |
| 7595 | MBUF_DUMP_BUF_CHK(); |
| 7596 | } |
| 7597 | if ((m_mbufs - totmbufs) > 0) { |
| 7598 | k = snprintf(c, clen, "\t%lu mbufs allocated to caches\n" , |
| 7599 | m_mbufs - totmbufs); |
| 7600 | MBUF_DUMP_BUF_CHK(); |
| 7601 | } |
| 7602 | k = snprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n" |
| 7603 | "%u/%u mbuf 4KB clusters in use\n" , |
| 7604 | (unsigned int)(mbstat.m_clusters - m_clfree), |
| 7605 | (unsigned int)mbstat.m_clusters, |
| 7606 | (unsigned int)(mbstat.m_bigclusters - m_bigclfree), |
| 7607 | (unsigned int)mbstat.m_bigclusters); |
| 7608 | MBUF_DUMP_BUF_CHK(); |
| 7609 | |
| 7610 | if (njcl > 0) { |
| 7611 | k = snprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n" , |
| 7612 | m_16kclusters - m_16kclfree, m_16kclusters, |
| 7613 | njclbytes / 1024); |
| 7614 | MBUF_DUMP_BUF_CHK(); |
| 7615 | } |
| 7616 | totused = totmem - totfree; |
| 7617 | if (totmem == 0) { |
| 7618 | totpct = 0; |
| 7619 | } else if (totused < (ULONG_MAX / 100)) { |
| 7620 | totpct = (totused * 100) / totmem; |
| 7621 | } else { |
| 7622 | u_long totmem1 = totmem / 100; |
| 7623 | u_long totused1 = totused / 100; |
| 7624 | totpct = (totused1 * 100) / totmem1; |
| 7625 | } |
| 7626 | k = snprintf(c, clen, "%lu KB allocated to network (approx. %lu%% " |
| 7627 | "in use)\n" , totmem / 1024, totpct); |
| 7628 | MBUF_DUMP_BUF_CHK(); |
| 7629 | k = snprintf(c, clen, "%lu KB returned to the system\n" , |
| 7630 | totreturned / 1024); |
| 7631 | MBUF_DUMP_BUF_CHK(); |
| 7632 | |
| 7633 | net_update_uptime(); |
| 7634 | k = snprintf(c, clen, |
| 7635 | "VM allocation failures: contiguous %u, normal %u, one page %u\n" , |
| 7636 | mb_kmem_contig_failed, mb_kmem_failed, mb_kmem_one_failed); |
| 7637 | MBUF_DUMP_BUF_CHK(); |
| 7638 | if (mb_kmem_contig_failed_ts || mb_kmem_failed_ts || |
| 7639 | mb_kmem_one_failed_ts) { |
| 7640 | k = snprintf(c, clen, |
| 7641 | "VM allocation failure timestamps: contiguous %llu " |
| 7642 | "(size %llu), normal %llu (size %llu), one page %llu " |
| 7643 | "(now %llu)\n" , |
| 7644 | mb_kmem_contig_failed_ts, mb_kmem_contig_failed_size, |
| 7645 | mb_kmem_failed_ts, mb_kmem_failed_size, |
| 7646 | mb_kmem_one_failed_ts, net_uptime()); |
| 7647 | MBUF_DUMP_BUF_CHK(); |
| 7648 | k = snprintf(c, clen, |
| 7649 | "VM return codes: " ); |
| 7650 | MBUF_DUMP_BUF_CHK(); |
| 7651 | for (i = 0; |
| 7652 | i < sizeof(mb_kmem_stats) / sizeof(mb_kmem_stats[0]); |
| 7653 | i++) { |
| 7654 | k = snprintf(c, clen, "%s: %u " , mb_kmem_stats_labels[i], |
| 7655 | mb_kmem_stats[i]); |
| 7656 | MBUF_DUMP_BUF_CHK(); |
| 7657 | } |
| 7658 | k = snprintf(c, clen, "\n" ); |
| 7659 | MBUF_DUMP_BUF_CHK(); |
| 7660 | } |
| 7661 | k = snprintf(c, clen, |
| 7662 | "worker thread runs: %u, expansions: %llu, cl %llu/%llu, " |
| 7663 | "bigcl %llu/%llu, 16k %llu/%llu\n" , mbuf_worker_run_cnt, |
| 7664 | mb_expand_cnt, mb_expand_cl_cnt, mb_expand_cl_total, |
| 7665 | mb_expand_bigcl_cnt, mb_expand_bigcl_total, mb_expand_16kcl_cnt, |
| 7666 | mb_expand_16kcl_total); |
| 7667 | MBUF_DUMP_BUF_CHK(); |
| 7668 | if (mbuf_worker_last_runtime != 0) { |
| 7669 | k = snprintf(c, clen, "worker thread last run time: " |
| 7670 | "%llu (%llu seconds ago)\n" , |
| 7671 | mbuf_worker_last_runtime, |
| 7672 | net_uptime() - mbuf_worker_last_runtime); |
| 7673 | MBUF_DUMP_BUF_CHK(); |
| 7674 | } |
| 7675 | if (mbuf_drain_last_runtime != 0) { |
| 7676 | k = snprintf(c, clen, "drain routine last run time: " |
| 7677 | "%llu (%llu seconds ago)\n" , |
| 7678 | mbuf_drain_last_runtime, |
| 7679 | net_uptime() - mbuf_drain_last_runtime); |
| 7680 | MBUF_DUMP_BUF_CHK(); |
| 7681 | } |
| 7682 | |
| 7683 | #if DEBUG || DEVELOPMENT |
| 7684 | k = snprintf(c, clen, "\nworker thread log:\n%s\n" , mbwdog_logging); |
| 7685 | MBUF_DUMP_BUF_CHK(); |
| 7686 | #endif |
| 7687 | |
| 7688 | for (j = 0; j < MTRACELARGE_NUM_TRACES; j++) { |
| 7689 | struct mtracelarge *trace = &mtracelarge_table[j]; |
| 7690 | if (trace->size == 0 || trace->depth == 0) |
| 7691 | continue; |
| 7692 | if (printed_banner == false) { |
| 7693 | k = snprintf(c, clen, |
| 7694 | "\nlargest allocation failure backtraces:\n" ); |
| 7695 | MBUF_DUMP_BUF_CHK(); |
| 7696 | printed_banner = true; |
| 7697 | } |
| 7698 | k = snprintf(c, clen, "size %llu: < " , trace->size); |
| 7699 | MBUF_DUMP_BUF_CHK(); |
| 7700 | for (i = 0; i < trace->depth; i++) { |
| 7701 | if (mleak_stat->ml_isaddr64) { |
| 7702 | k = snprintf(c, clen, "0x%0llx " , |
| 7703 | (uint64_t)VM_KERNEL_UNSLIDE( |
| 7704 | trace->addr[i])); |
| 7705 | } else { |
| 7706 | k = snprintf(c, clen, |
| 7707 | "0x%08x " , |
| 7708 | (uint32_t)VM_KERNEL_UNSLIDE( |
| 7709 | trace->addr[i])); |
| 7710 | } |
| 7711 | MBUF_DUMP_BUF_CHK(); |
| 7712 | } |
| 7713 | k = snprintf(c, clen, ">\n" ); |
| 7714 | MBUF_DUMP_BUF_CHK(); |
| 7715 | } |
| 7716 | |
| 7717 | /* mbuf leak detection statistics */ |
| 7718 | mleak_update_stats(); |
| 7719 | |
| 7720 | k = snprintf(c, clen, "\nmbuf leak detection table:\n" ); |
| 7721 | MBUF_DUMP_BUF_CHK(); |
| 7722 | k = snprintf(c, clen, "\ttotal captured: %u (one per %u)\n" , |
| 7723 | mleak_table.mleak_capture / mleak_table.mleak_sample_factor, |
| 7724 | mleak_table.mleak_sample_factor); |
| 7725 | MBUF_DUMP_BUF_CHK(); |
| 7726 | k = snprintf(c, clen, "\ttotal allocs outstanding: %llu\n" , |
| 7727 | mleak_table.outstanding_allocs); |
| 7728 | MBUF_DUMP_BUF_CHK(); |
| 7729 | k = snprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n" , |
| 7730 | mleak_table.alloc_recorded, mleak_table.trace_recorded); |
| 7731 | MBUF_DUMP_BUF_CHK(); |
| 7732 | k = snprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n" , |
| 7733 | mleak_table.alloc_collisions, mleak_table.trace_collisions); |
| 7734 | MBUF_DUMP_BUF_CHK(); |
| 7735 | k = snprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n" , |
| 7736 | mleak_table.alloc_overwrites, mleak_table.trace_overwrites); |
| 7737 | MBUF_DUMP_BUF_CHK(); |
| 7738 | k = snprintf(c, clen, "\tlock conflicts: %llu\n\n" , |
| 7739 | mleak_table.total_conflicts); |
| 7740 | MBUF_DUMP_BUF_CHK(); |
| 7741 | |
| 7742 | k = snprintf(c, clen, "top %d outstanding traces:\n" , |
| 7743 | mleak_stat->ml_cnt); |
| 7744 | MBUF_DUMP_BUF_CHK(); |
| 7745 | for (i = 0; i < mleak_stat->ml_cnt; i++) { |
| 7746 | mltr = &mleak_stat->ml_trace[i]; |
| 7747 | k = snprintf(c, clen, "[%d] %llu outstanding alloc(s), " |
| 7748 | "%llu hit(s), %llu collision(s)\n" , (i + 1), |
| 7749 | mltr->mltr_allocs, mltr->mltr_hitcount, |
| 7750 | mltr->mltr_collisions); |
| 7751 | MBUF_DUMP_BUF_CHK(); |
| 7752 | } |
| 7753 | |
| 7754 | if (mleak_stat->ml_isaddr64) |
| 7755 | k = snprintf(c, clen, MB_LEAK_HDR_64); |
| 7756 | else |
| 7757 | k = snprintf(c, clen, MB_LEAK_HDR_32); |
| 7758 | MBUF_DUMP_BUF_CHK(); |
| 7759 | |
| 7760 | for (i = 0; i < MLEAK_STACK_DEPTH; i++) { |
| 7761 | k = snprintf(c, clen, "%2d: " , (i + 1)); |
| 7762 | MBUF_DUMP_BUF_CHK(); |
| 7763 | for (j = 0; j < mleak_stat->ml_cnt; j++) { |
| 7764 | mltr = &mleak_stat->ml_trace[j]; |
| 7765 | if (i < mltr->mltr_depth) { |
| 7766 | if (mleak_stat->ml_isaddr64) { |
| 7767 | k = snprintf(c, clen, "0x%0llx " , |
| 7768 | (uint64_t)VM_KERNEL_UNSLIDE( |
| 7769 | mltr->mltr_addr[i])); |
| 7770 | } else { |
| 7771 | k = snprintf(c, clen, |
| 7772 | "0x%08x " , |
| 7773 | (uint32_t)VM_KERNEL_UNSLIDE( |
| 7774 | mltr->mltr_addr[i])); |
| 7775 | } |
| 7776 | } else { |
| 7777 | if (mleak_stat->ml_isaddr64) |
| 7778 | k = snprintf(c, clen, |
| 7779 | MB_LEAK_SPACING_64); |
| 7780 | else |
| 7781 | k = snprintf(c, clen, |
| 7782 | MB_LEAK_SPACING_32); |
| 7783 | } |
| 7784 | MBUF_DUMP_BUF_CHK(); |
| 7785 | } |
| 7786 | k = snprintf(c, clen, "\n" ); |
| 7787 | MBUF_DUMP_BUF_CHK(); |
| 7788 | } |
| 7789 | done: |
| 7790 | return (mbuf_dump_buf); |
| 7791 | } |
| 7792 | |
| 7793 | #undef MBUF_DUMP_BUF_CHK |
| 7794 | |
| 7795 | /* |
| 7796 | * Convert between a regular and a packet header mbuf. Caller is responsible |
| 7797 | * for setting or clearing M_PKTHDR; this routine does the rest of the work. |
| 7798 | */ |
| 7799 | int |
| 7800 | m_reinit(struct mbuf *m, int hdr) |
| 7801 | { |
| 7802 | int ret = 0; |
| 7803 | |
| 7804 | if (hdr) { |
| 7805 | VERIFY(!(m->m_flags & M_PKTHDR)); |
| 7806 | if (!(m->m_flags & M_EXT) && |
| 7807 | (m->m_data != m->m_dat || m->m_len > 0)) { |
| 7808 | /* |
| 7809 | * If there's no external cluster attached and the |
| 7810 | * mbuf appears to contain user data, we cannot |
| 7811 | * safely convert this to a packet header mbuf, |
| 7812 | * as the packet header structure might overlap |
| 7813 | * with the data. |
| 7814 | */ |
| 7815 | printf("%s: cannot set M_PKTHDR on altered mbuf %llx, " |
| 7816 | "m_data %llx (expected %llx), " |
| 7817 | "m_len %d (expected 0)\n" , |
| 7818 | __func__, |
| 7819 | (uint64_t)VM_KERNEL_ADDRPERM(m), |
| 7820 | (uint64_t)VM_KERNEL_ADDRPERM(m->m_data), |
| 7821 | (uint64_t)VM_KERNEL_ADDRPERM(m->m_dat), m->m_len); |
| 7822 | ret = EBUSY; |
| 7823 | } else { |
| 7824 | VERIFY((m->m_flags & M_EXT) || m->m_data == m->m_dat); |
| 7825 | m->m_flags |= M_PKTHDR; |
| 7826 | MBUF_INIT_PKTHDR(m); |
| 7827 | } |
| 7828 | } else { |
| 7829 | /* Check for scratch area overflow */ |
| 7830 | m_redzone_verify(m); |
| 7831 | /* Free the aux data and tags if there is any */ |
| 7832 | m_tag_delete_chain(m, NULL); |
| 7833 | m->m_flags &= ~M_PKTHDR; |
| 7834 | } |
| 7835 | |
| 7836 | return (ret); |
| 7837 | } |
| 7838 | |
| 7839 | int |
| 7840 | m_ext_set_prop(struct mbuf *m, uint32_t o, uint32_t n) |
| 7841 | { |
| 7842 | ASSERT(m->m_flags & M_EXT); |
| 7843 | return (atomic_test_set_32(&MEXT_PRIV(m), o, n)); |
| 7844 | } |
| 7845 | |
| 7846 | uint32_t |
| 7847 | m_ext_get_prop(struct mbuf *m) |
| 7848 | { |
| 7849 | ASSERT(m->m_flags & M_EXT); |
| 7850 | return (MEXT_PRIV(m)); |
| 7851 | } |
| 7852 | |
| 7853 | int |
| 7854 | m_ext_paired_is_active(struct mbuf *m) |
| 7855 | { |
| 7856 | return (MBUF_IS_PAIRED(m) ? (MEXT_PREF(m) > MEXT_MINREF(m)) : 1); |
| 7857 | } |
| 7858 | |
| 7859 | void |
| 7860 | m_ext_paired_activate(struct mbuf *m) |
| 7861 | { |
| 7862 | struct ext_ref *rfa; |
| 7863 | int hdr, type; |
| 7864 | caddr_t extbuf; |
| 7865 | m_ext_free_func_t extfree; |
| 7866 | u_int extsize; |
| 7867 | |
| 7868 | VERIFY(MBUF_IS_PAIRED(m)); |
| 7869 | VERIFY(MEXT_REF(m) == MEXT_MINREF(m)); |
| 7870 | VERIFY(MEXT_PREF(m) == MEXT_MINREF(m)); |
| 7871 | |
| 7872 | hdr = (m->m_flags & M_PKTHDR); |
| 7873 | type = m->m_type; |
| 7874 | extbuf = m->m_ext.ext_buf; |
| 7875 | extfree = m_get_ext_free(m); |
| 7876 | extsize = m->m_ext.ext_size; |
| 7877 | rfa = m_get_rfa(m); |
| 7878 | |
| 7879 | VERIFY(extbuf != NULL && rfa != NULL); |
| 7880 | |
| 7881 | /* |
| 7882 | * Safe to reinitialize packet header tags, since it's |
| 7883 | * already taken care of at m_free() time. Similar to |
| 7884 | * what's done in m_clattach() for the cluster. Bump |
| 7885 | * up MEXT_PREF to indicate activation. |
| 7886 | */ |
| 7887 | MBUF_INIT(m, hdr, type); |
| 7888 | MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa, |
| 7889 | 1, 1, 2, EXTF_PAIRED, MEXT_PRIV(m), m); |
| 7890 | } |
| 7891 | |
| 7892 | void |
| 7893 | m_scratch_init(struct mbuf *m) |
| 7894 | { |
| 7895 | struct pkthdr *pkt = &m->m_pkthdr; |
| 7896 | |
| 7897 | VERIFY(m->m_flags & M_PKTHDR); |
| 7898 | |
| 7899 | /* See comments in <rdar://problem/14040693> */ |
| 7900 | if (pkt->pkt_flags & PKTF_PRIV_GUARDED) { |
| 7901 | panic_plain("Invalid attempt to modify guarded module-private " |
| 7902 | "area: mbuf %p, pkt_flags 0x%x\n" , m, pkt->pkt_flags); |
| 7903 | /* NOTREACHED */ |
| 7904 | } |
| 7905 | |
| 7906 | bzero(&pkt->pkt_mpriv, sizeof (pkt->pkt_mpriv)); |
| 7907 | } |
| 7908 | |
| 7909 | /* |
| 7910 | * This routine is reserved for mbuf_get_driver_scratch(); clients inside |
| 7911 | * xnu that intend on utilizing the module-private area should directly |
| 7912 | * refer to the pkt_mpriv structure in the pkthdr. They are also expected |
| 7913 | * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior |
| 7914 | * to handing it off to another module, respectively. |
| 7915 | */ |
| 7916 | u_int32_t |
| 7917 | m_scratch_get(struct mbuf *m, u_int8_t **p) |
| 7918 | { |
| 7919 | struct pkthdr *pkt = &m->m_pkthdr; |
| 7920 | |
| 7921 | VERIFY(m->m_flags & M_PKTHDR); |
| 7922 | |
| 7923 | /* See comments in <rdar://problem/14040693> */ |
| 7924 | if (pkt->pkt_flags & PKTF_PRIV_GUARDED) { |
| 7925 | panic_plain("Invalid attempt to access guarded module-private " |
| 7926 | "area: mbuf %p, pkt_flags 0x%x\n" , m, pkt->pkt_flags); |
| 7927 | /* NOTREACHED */ |
| 7928 | } |
| 7929 | |
| 7930 | if (mcltrace) { |
| 7931 | mcache_audit_t *mca; |
| 7932 | |
| 7933 | lck_mtx_lock(mbuf_mlock); |
| 7934 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 7935 | if (mca->mca_uflags & MB_SCVALID) |
| 7936 | mcl_audit_scratch(mca); |
| 7937 | lck_mtx_unlock(mbuf_mlock); |
| 7938 | } |
| 7939 | |
| 7940 | *p = (u_int8_t *)&pkt->pkt_mpriv; |
| 7941 | return (sizeof (pkt->pkt_mpriv)); |
| 7942 | } |
| 7943 | |
| 7944 | static void |
| 7945 | m_redzone_init(struct mbuf *m) |
| 7946 | { |
| 7947 | VERIFY(m->m_flags & M_PKTHDR); |
| 7948 | /* |
| 7949 | * Each mbuf has a unique red zone pattern, which is a XOR |
| 7950 | * of the red zone cookie and the address of the mbuf. |
| 7951 | */ |
| 7952 | m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; |
| 7953 | } |
| 7954 | |
| 7955 | static void |
| 7956 | m_redzone_verify(struct mbuf *m) |
| 7957 | { |
| 7958 | u_int32_t mb_redzone; |
| 7959 | |
| 7960 | VERIFY(m->m_flags & M_PKTHDR); |
| 7961 | |
| 7962 | mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; |
| 7963 | if (m->m_pkthdr.redzone != mb_redzone) { |
| 7964 | panic("mbuf %p redzone violation with value 0x%x " |
| 7965 | "(instead of 0x%x, using cookie 0x%x)\n" , |
| 7966 | m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie); |
| 7967 | /* NOTREACHED */ |
| 7968 | } |
| 7969 | } |
| 7970 | |
| 7971 | __private_extern__ inline void |
| 7972 | m_set_ext(struct mbuf *m, struct ext_ref *rfa, m_ext_free_func_t ext_free, |
| 7973 | caddr_t ext_arg) |
| 7974 | { |
| 7975 | VERIFY(m->m_flags & M_EXT); |
| 7976 | if (rfa != NULL) { |
| 7977 | m->m_ext.ext_refflags = |
| 7978 | (struct ext_ref *)(((uintptr_t)rfa) ^ mb_obscure_extref); |
| 7979 | if (ext_free != NULL) { |
| 7980 | rfa->ext_token = ((uintptr_t)&rfa->ext_token) ^ |
| 7981 | mb_obscure_extfree; |
| 7982 | m->m_ext.ext_free = (m_ext_free_func_t) |
| 7983 | (((uintptr_t)ext_free) ^ rfa->ext_token); |
| 7984 | if (ext_arg != NULL) { |
| 7985 | m->m_ext.ext_arg = |
| 7986 | (caddr_t)(((uintptr_t)ext_arg) ^ rfa->ext_token); |
| 7987 | } else { |
| 7988 | m->m_ext.ext_arg = NULL; |
| 7989 | } |
| 7990 | } else { |
| 7991 | rfa->ext_token = 0; |
| 7992 | m->m_ext.ext_free = NULL; |
| 7993 | m->m_ext.ext_arg = NULL; |
| 7994 | } |
| 7995 | } else { |
| 7996 | /* |
| 7997 | * If we are going to loose the cookie in ext_token by |
| 7998 | * resetting the rfa, we should use the global cookie |
| 7999 | * to obscure the ext_free and ext_arg pointers. |
| 8000 | */ |
| 8001 | if (ext_free != NULL) { |
| 8002 | m->m_ext.ext_free = |
| 8003 | (m_ext_free_func_t)((uintptr_t)ext_free ^ |
| 8004 | mb_obscure_extfree); |
| 8005 | if (ext_arg != NULL) { |
| 8006 | m->m_ext.ext_arg = |
| 8007 | (caddr_t)((uintptr_t)ext_arg ^ |
| 8008 | mb_obscure_extfree); |
| 8009 | } else { |
| 8010 | m->m_ext.ext_arg = NULL; |
| 8011 | } |
| 8012 | } else { |
| 8013 | m->m_ext.ext_free = NULL; |
| 8014 | m->m_ext.ext_arg = NULL; |
| 8015 | } |
| 8016 | m->m_ext.ext_refflags = NULL; |
| 8017 | } |
| 8018 | } |
| 8019 | |
| 8020 | __private_extern__ inline struct ext_ref * |
| 8021 | m_get_rfa(struct mbuf *m) |
| 8022 | { |
| 8023 | if (m->m_ext.ext_refflags == NULL) |
| 8024 | return (NULL); |
| 8025 | else |
| 8026 | return ((struct ext_ref *)(((uintptr_t)m->m_ext.ext_refflags) ^ mb_obscure_extref)); |
| 8027 | } |
| 8028 | |
| 8029 | __private_extern__ inline m_ext_free_func_t |
| 8030 | m_get_ext_free(struct mbuf *m) |
| 8031 | { |
| 8032 | struct ext_ref *rfa; |
| 8033 | if (m->m_ext.ext_free == NULL) |
| 8034 | return (NULL); |
| 8035 | |
| 8036 | rfa = m_get_rfa(m); |
| 8037 | if (rfa == NULL) |
| 8038 | return ((m_ext_free_func_t)((uintptr_t)m->m_ext.ext_free ^ mb_obscure_extfree)); |
| 8039 | else |
| 8040 | return ((m_ext_free_func_t)(((uintptr_t)m->m_ext.ext_free) |
| 8041 | ^ rfa->ext_token)); |
| 8042 | } |
| 8043 | |
| 8044 | __private_extern__ inline caddr_t |
| 8045 | m_get_ext_arg(struct mbuf *m) |
| 8046 | { |
| 8047 | struct ext_ref *rfa; |
| 8048 | if (m->m_ext.ext_arg == NULL) |
| 8049 | return (NULL); |
| 8050 | |
| 8051 | rfa = m_get_rfa(m); |
| 8052 | if (rfa == NULL) { |
| 8053 | return ((caddr_t)((uintptr_t)m->m_ext.ext_arg ^ mb_obscure_extfree)); |
| 8054 | } else { |
| 8055 | return ((caddr_t)(((uintptr_t)m->m_ext.ext_arg) ^ |
| 8056 | rfa->ext_token)); |
| 8057 | } |
| 8058 | } |
| 8059 | |
| 8060 | /* |
| 8061 | * Send a report of mbuf usage if the usage is at least 6% of max limit |
| 8062 | * or if there has been at least 3% increase since the last report. |
| 8063 | * |
| 8064 | * The values 6% and 3% are chosen so that we can do simple arithmetic |
| 8065 | * with shift operations. |
| 8066 | */ |
| 8067 | static boolean_t |
| 8068 | mbuf_report_usage(mbuf_class_t cl) |
| 8069 | { |
| 8070 | /* if a report is already in progress, nothing to do */ |
| 8071 | if (mb_peak_newreport) |
| 8072 | return (TRUE); |
| 8073 | |
| 8074 | if (m_total(cl) > m_peak(cl) && |
| 8075 | m_total(cl) >= (m_maxlimit(cl) >> 4) && |
| 8076 | (m_total(cl) - m_peak(cl)) >= (m_peak(cl) >> 5)) |
| 8077 | return (TRUE); |
| 8078 | return (FALSE); |
| 8079 | } |
| 8080 | |
| 8081 | __private_extern__ void |
| 8082 | mbuf_report_peak_usage(void) |
| 8083 | { |
| 8084 | int i = 0; |
| 8085 | u_int64_t uptime; |
| 8086 | struct nstat_sysinfo_data ns_data; |
| 8087 | uint32_t memreleased = 0; |
| 8088 | static uint32_t prevmemreleased; |
| 8089 | |
| 8090 | uptime = net_uptime(); |
| 8091 | lck_mtx_lock(mbuf_mlock); |
| 8092 | |
| 8093 | /* Generate an initial report after 1 week of uptime */ |
| 8094 | if (!mb_peak_firstreport && |
| 8095 | uptime > MBUF_PEAK_FIRST_REPORT_THRESHOLD) { |
| 8096 | mb_peak_newreport = TRUE; |
| 8097 | mb_peak_firstreport = TRUE; |
| 8098 | } |
| 8099 | |
| 8100 | if (!mb_peak_newreport) { |
| 8101 | lck_mtx_unlock(mbuf_mlock); |
| 8102 | return; |
| 8103 | } |
| 8104 | |
| 8105 | /* |
| 8106 | * Since a report is being generated before 1 week, |
| 8107 | * we do not need to force another one later |
| 8108 | */ |
| 8109 | if (uptime < MBUF_PEAK_FIRST_REPORT_THRESHOLD) |
| 8110 | mb_peak_firstreport = TRUE; |
| 8111 | |
| 8112 | for (i = 0; i < NELEM(mbuf_table); i++) { |
| 8113 | m_peak(m_class(i)) = m_total(m_class(i)); |
| 8114 | memreleased += m_release_cnt(i); |
| 8115 | } |
| 8116 | memreleased = memreleased - prevmemreleased; |
| 8117 | prevmemreleased = memreleased; |
| 8118 | mb_peak_newreport = FALSE; |
| 8119 | lck_mtx_unlock(mbuf_mlock); |
| 8120 | |
| 8121 | bzero(&ns_data, sizeof(ns_data)); |
| 8122 | ns_data.flags = NSTAT_SYSINFO_MBUF_STATS; |
| 8123 | ns_data.u.mb_stats.total_256b = m_peak(MC_MBUF); |
| 8124 | ns_data.u.mb_stats.total_2kb = m_peak(MC_CL); |
| 8125 | ns_data.u.mb_stats.total_4kb = m_peak(MC_BIGCL); |
| 8126 | ns_data.u.mb_stats.total_16kb = m_peak(MC_16KCL); |
| 8127 | ns_data.u.mb_stats.sbmb_total = total_sbmb_cnt_peak; |
| 8128 | ns_data.u.mb_stats.sb_atmbuflimit = sbmb_limreached; |
| 8129 | ns_data.u.mb_stats.draincnt = mbstat.m_drain; |
| 8130 | ns_data.u.mb_stats.memreleased = memreleased; |
| 8131 | ns_data.u.mb_stats.sbmb_floor = total_sbmb_cnt_floor; |
| 8132 | |
| 8133 | nstat_sysinfo_send_data(&ns_data); |
| 8134 | |
| 8135 | /* |
| 8136 | * Reset the floor whenever we report a new |
| 8137 | * peak to track the trend (increase peek usage |
| 8138 | * is not a leak if mbufs get released |
| 8139 | * between reports and the floor stays low) |
| 8140 | */ |
| 8141 | total_sbmb_cnt_floor = total_sbmb_cnt_peak; |
| 8142 | } |
| 8143 | |
| 8144 | /* |
| 8145 | * Simple routine to avoid taking the lock when we can't run the |
| 8146 | * mbuf drain. |
| 8147 | */ |
| 8148 | static int |
| 8149 | mbuf_drain_checks(boolean_t ignore_waiters) |
| 8150 | { |
| 8151 | |
| 8152 | if (mb_drain_maxint == 0) |
| 8153 | return 0; |
| 8154 | if (!ignore_waiters && mb_waiters != 0) |
| 8155 | return 0; |
| 8156 | |
| 8157 | return 1; |
| 8158 | } |
| 8159 | |
| 8160 | /* |
| 8161 | * Called by the VM when there's memory pressure or when we exhausted |
| 8162 | * the 4k/16k reserved space. |
| 8163 | */ |
| 8164 | static void |
| 8165 | mbuf_drain_locked(boolean_t ignore_waiters) |
| 8166 | { |
| 8167 | mbuf_class_t mc; |
| 8168 | mcl_slab_t *sp, *sp_tmp, *nsp; |
| 8169 | unsigned int num, k, interval, released = 0; |
| 8170 | unsigned long total_mem = 0, use_mem = 0; |
| 8171 | boolean_t ret, purge_caches = FALSE; |
| 8172 | ppnum_t offset; |
| 8173 | mcache_obj_t *obj; |
| 8174 | unsigned long per; |
| 8175 | static unsigned char scratch[32]; |
| 8176 | static ppnum_t scratch_pa = 0; |
| 8177 | |
| 8178 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 8179 | if (!mbuf_drain_checks(ignore_waiters)) |
| 8180 | return; |
| 8181 | if (scratch_pa == 0) { |
| 8182 | bzero(scratch, sizeof(scratch)); |
| 8183 | scratch_pa = pmap_find_phys(kernel_pmap, (addr64_t)scratch); |
| 8184 | VERIFY(scratch_pa); |
| 8185 | } else if (mclverify) { |
| 8186 | /* |
| 8187 | * Panic if a driver wrote to our scratch memory. |
| 8188 | */ |
| 8189 | for (k = 0; k < sizeof(scratch); k++) |
| 8190 | if (scratch[k]) |
| 8191 | panic("suspect DMA to freed address" ); |
| 8192 | } |
| 8193 | /* |
| 8194 | * Don't free memory too often as that could cause excessive |
| 8195 | * waiting times for mbufs. Purge caches if we were asked to drain |
| 8196 | * in the last 5 minutes. |
| 8197 | */ |
| 8198 | if (mbuf_drain_last_runtime != 0) { |
| 8199 | interval = net_uptime() - mbuf_drain_last_runtime; |
| 8200 | if (interval <= mb_drain_maxint) { |
| 8201 | return; |
| 8202 | } |
| 8203 | if (interval <= mb_drain_maxint * 5) |
| 8204 | purge_caches = TRUE; |
| 8205 | } |
| 8206 | mbuf_drain_last_runtime = net_uptime(); |
| 8207 | /* |
| 8208 | * Don't free any memory if we're using 60% or more. |
| 8209 | */ |
| 8210 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { |
| 8211 | total_mem += m_total(mc) * m_maxsize(mc); |
| 8212 | use_mem += m_active(mc) * m_maxsize(mc); |
| 8213 | } |
| 8214 | per = (use_mem * 100) / total_mem; |
| 8215 | if (per >= 60) { |
| 8216 | return; |
| 8217 | } |
| 8218 | /* |
| 8219 | * Purge all the caches. This effectively disables |
| 8220 | * caching for a few seconds, but the mbuf worker thread will |
| 8221 | * re-enable them again. |
| 8222 | */ |
| 8223 | if (purge_caches == TRUE) |
| 8224 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { |
| 8225 | if (m_total(mc) < m_avgtotal(mc)) |
| 8226 | continue; |
| 8227 | lck_mtx_unlock(mbuf_mlock); |
| 8228 | ret = mcache_purge_cache(m_cache(mc), FALSE); |
| 8229 | lck_mtx_lock(mbuf_mlock); |
| 8230 | if (ret == TRUE) |
| 8231 | m_purge_cnt(mc)++; |
| 8232 | } |
| 8233 | /* |
| 8234 | * Move the objects from the composite class freelist to |
| 8235 | * the rudimentary slabs list, but keep at least 10% of the average |
| 8236 | * total in the freelist. |
| 8237 | */ |
| 8238 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { |
| 8239 | while (m_cobjlist(mc) && |
| 8240 | m_total(mc) < m_avgtotal(mc) && |
| 8241 | m_infree(mc) > 0.1 * m_avgtotal(mc) + m_minlimit(mc)) { |
| 8242 | obj = m_cobjlist(mc); |
| 8243 | m_cobjlist(mc) = obj->obj_next; |
| 8244 | obj->obj_next = NULL; |
| 8245 | num = cslab_free(mc, obj, 1); |
| 8246 | VERIFY(num == 1); |
| 8247 | m_free_cnt(mc)++; |
| 8248 | m_infree(mc)--; |
| 8249 | /* cslab_free() handles m_total */ |
| 8250 | } |
| 8251 | } |
| 8252 | /* |
| 8253 | * Free the buffers present in the slab list up to 10% of the total |
| 8254 | * average per class. |
| 8255 | * |
| 8256 | * We walk the list backwards in an attempt to reduce fragmentation. |
| 8257 | */ |
| 8258 | for (mc = NELEM(mbuf_table) - 1; (int)mc >= 0; mc--) { |
| 8259 | TAILQ_FOREACH_SAFE(sp, &m_slablist(mc), sl_link, sp_tmp) { |
| 8260 | /* |
| 8261 | * Process only unused slabs occupying memory. |
| 8262 | */ |
| 8263 | if (sp->sl_refcnt != 0 || sp->sl_len == 0 || |
| 8264 | sp->sl_base == NULL) |
| 8265 | continue; |
| 8266 | if (m_total(mc) < m_avgtotal(mc) || |
| 8267 | m_infree(mc) < 0.1 * m_avgtotal(mc) + m_minlimit(mc)) |
| 8268 | break; |
| 8269 | slab_remove(sp, mc); |
| 8270 | switch (mc) { |
| 8271 | case MC_MBUF: |
| 8272 | m_infree(mc) -= NMBPG; |
| 8273 | m_total(mc) -= NMBPG; |
| 8274 | if (mclaudit != NULL) |
| 8275 | mcl_audit_free(sp->sl_base, NMBPG); |
| 8276 | break; |
| 8277 | case MC_CL: |
| 8278 | m_infree(mc) -= NCLPG; |
| 8279 | m_total(mc) -= NCLPG; |
| 8280 | if (mclaudit != NULL) |
| 8281 | mcl_audit_free(sp->sl_base, NMBPG); |
| 8282 | break; |
| 8283 | case MC_BIGCL: |
| 8284 | { |
| 8285 | m_infree(mc) -= NBCLPG; |
| 8286 | m_total(mc) -= NBCLPG; |
| 8287 | if (mclaudit != NULL) |
| 8288 | mcl_audit_free(sp->sl_base, NMBPG); |
| 8289 | break; |
| 8290 | } |
| 8291 | case MC_16KCL: |
| 8292 | m_infree(mc)--; |
| 8293 | m_total(mc)--; |
| 8294 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
| 8295 | nsp = nsp->sl_next; |
| 8296 | VERIFY(nsp->sl_refcnt == 0 && |
| 8297 | nsp->sl_base != NULL && |
| 8298 | nsp->sl_len == 0); |
| 8299 | slab_init(nsp, 0, 0, NULL, NULL, 0, 0, |
| 8300 | 0); |
| 8301 | nsp->sl_flags = 0; |
| 8302 | } |
| 8303 | if (mclaudit != NULL) { |
| 8304 | if (sp->sl_len == PAGE_SIZE) { |
| 8305 | mcl_audit_free(sp->sl_base, |
| 8306 | NMBPG); |
| 8307 | } else { |
| 8308 | mcl_audit_free(sp->sl_base, 1); |
| 8309 | } |
| 8310 | } |
| 8311 | break; |
| 8312 | default: |
| 8313 | /* |
| 8314 | * The composite classes have their own |
| 8315 | * freelist (m_cobjlist), so we only |
| 8316 | * process rudimentary classes here. |
| 8317 | */ |
| 8318 | VERIFY(0); |
| 8319 | } |
| 8320 | m_release_cnt(mc) += m_size(mc); |
| 8321 | released += m_size(mc); |
| 8322 | VERIFY(sp->sl_base != NULL && |
| 8323 | sp->sl_len >= PAGE_SIZE); |
| 8324 | offset = MTOPG(sp->sl_base); |
| 8325 | /* |
| 8326 | * Make sure the IOMapper points to a valid, but |
| 8327 | * bogus, address. This should prevent further DMA |
| 8328 | * accesses to freed memory. |
| 8329 | */ |
| 8330 | IOMapperInsertPage(mcl_paddr_base, offset, scratch_pa); |
| 8331 | mcl_paddr[offset] = 0; |
| 8332 | kmem_free(mb_map, (vm_offset_t)sp->sl_base, |
| 8333 | sp->sl_len); |
| 8334 | slab_init(sp, 0, 0, NULL, NULL, 0, 0, 0); |
| 8335 | sp->sl_flags = 0; |
| 8336 | } |
| 8337 | } |
| 8338 | mbstat.m_drain++; |
| 8339 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 8340 | mbstat.m_clusters = m_total(MC_CL); |
| 8341 | mbstat.m_mbufs = m_total(MC_MBUF); |
| 8342 | mbuf_stat_sync(); |
| 8343 | mbuf_mtypes_sync(TRUE); |
| 8344 | } |
| 8345 | |
| 8346 | __private_extern__ void |
| 8347 | mbuf_drain(boolean_t ignore_waiters) |
| 8348 | { |
| 8349 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_NOTOWNED); |
| 8350 | if (!mbuf_drain_checks(ignore_waiters)) |
| 8351 | return; |
| 8352 | lck_mtx_lock(mbuf_mlock); |
| 8353 | mbuf_drain_locked(ignore_waiters); |
| 8354 | lck_mtx_unlock(mbuf_mlock); |
| 8355 | } |
| 8356 | |
| 8357 | |
| 8358 | static int |
| 8359 | m_drain_force_sysctl SYSCTL_HANDLER_ARGS |
| 8360 | { |
| 8361 | #pragma unused(arg1, arg2) |
| 8362 | int val = 0, err; |
| 8363 | |
| 8364 | err = sysctl_handle_int(oidp, &val, 0, req); |
| 8365 | if (err != 0 || req->newptr == USER_ADDR_NULL) |
| 8366 | return (err); |
| 8367 | if (val) { |
| 8368 | mbuf_drain(TRUE); |
| 8369 | } |
| 8370 | |
| 8371 | return (err); |
| 8372 | } |
| 8373 | |
| 8374 | #if DEBUG || DEVELOPMENT |
| 8375 | static void |
| 8376 | _mbwdog_logger(const char *func, const int line, const char *fmt, ...) |
| 8377 | { |
| 8378 | va_list ap; |
| 8379 | struct timeval now; |
| 8380 | char str[384], p[256]; |
| 8381 | int len; |
| 8382 | |
| 8383 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 8384 | if (mbwdog_logging == NULL) { |
| 8385 | mbwdog_logging = _MALLOC(mbwdog_logging_size, |
| 8386 | M_TEMP, M_ZERO|M_NOWAIT); |
| 8387 | if (mbwdog_logging == NULL) |
| 8388 | return; |
| 8389 | } |
| 8390 | va_start(ap, fmt); |
| 8391 | vsnprintf(p, sizeof(p), fmt, ap); |
| 8392 | va_end(ap); |
| 8393 | microuptime(&now); |
| 8394 | len = snprintf(str, sizeof(str), |
| 8395 | "\n%ld.%d (%d/%llx) %s:%d %s" , |
| 8396 | now.tv_sec, now.tv_usec, |
| 8397 | current_proc()->p_pid, |
| 8398 | (uint64_t)VM_KERNEL_ADDRPERM(current_thread()), |
| 8399 | func, line, p); |
| 8400 | if (len < 0) |
| 8401 | return; |
| 8402 | if (mbwdog_logging_used + len > mbwdog_logging_size) { |
| 8403 | mbwdog_logging_used = mbwdog_logging_used / 2; |
| 8404 | memmove(mbwdog_logging, mbwdog_logging + mbwdog_logging_used, |
| 8405 | mbwdog_logging_size - mbwdog_logging_used); |
| 8406 | mbwdog_logging[mbwdog_logging_used] = 0; |
| 8407 | } |
| 8408 | strlcat(mbwdog_logging, str, mbwdog_logging_size); |
| 8409 | mbwdog_logging_used += len; |
| 8410 | } |
| 8411 | |
| 8412 | static int |
| 8413 | sysctl_mbwdog_log SYSCTL_HANDLER_ARGS |
| 8414 | { |
| 8415 | #pragma unused(oidp, arg1, arg2) |
| 8416 | return SYSCTL_OUT(req, mbwdog_logging, mbwdog_logging_used); |
| 8417 | } |
| 8418 | SYSCTL_DECL(_kern_ipc); |
| 8419 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mbwdog_log, |
| 8420 | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 8421 | 0, 0, sysctl_mbwdog_log, "A" , "" ); |
| 8422 | |
| 8423 | static int mbtest_val; |
| 8424 | static int mbtest_running; |
| 8425 | |
| 8426 | static void mbtest_thread(__unused void *arg) |
| 8427 | { |
| 8428 | int i; |
| 8429 | int scale_down = 1; |
| 8430 | int iterations = 250; |
| 8431 | int allocations = nmbclusters; |
| 8432 | iterations = iterations / scale_down; |
| 8433 | allocations = allocations / scale_down; |
| 8434 | printf("%s thread starting\n" , __func__); |
| 8435 | for (i = 0; i < iterations; i++) { |
| 8436 | unsigned int needed = allocations; |
| 8437 | struct mbuf *m1, *m2, *m3; |
| 8438 | |
| 8439 | if (njcl > 0) { |
| 8440 | needed = allocations; |
| 8441 | m3 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, M16KCLBYTES); |
| 8442 | m_freem_list(m3); |
| 8443 | } |
| 8444 | |
| 8445 | needed = allocations; |
| 8446 | m2 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, MBIGCLBYTES); |
| 8447 | m_freem_list(m2); |
| 8448 | |
| 8449 | m1 = m_getpackets_internal(&needed, 0, M_DONTWAIT, 0, MCLBYTES); |
| 8450 | m_freem_list(m1); |
| 8451 | } |
| 8452 | |
| 8453 | printf("%s thread ending\n" , __func__); |
| 8454 | |
| 8455 | OSDecrementAtomic(&mbtest_running); |
| 8456 | wakeup_one((caddr_t)&mbtest_running); |
| 8457 | } |
| 8458 | |
| 8459 | static void sysctl_mbtest(void) |
| 8460 | { |
| 8461 | /* We launch three threads - wait for all of them */ |
| 8462 | OSIncrementAtomic(&mbtest_running); |
| 8463 | OSIncrementAtomic(&mbtest_running); |
| 8464 | OSIncrementAtomic(&mbtest_running); |
| 8465 | |
| 8466 | thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10); |
| 8467 | thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10); |
| 8468 | thread_call_func_delayed((thread_call_func_t)mbtest_thread, NULL, 10); |
| 8469 | |
| 8470 | while (mbtest_running) { |
| 8471 | msleep((caddr_t)&mbtest_running, NULL, PUSER, "mbtest_running" , NULL); |
| 8472 | } |
| 8473 | } |
| 8474 | |
| 8475 | static int |
| 8476 | mbtest SYSCTL_HANDLER_ARGS |
| 8477 | { |
| 8478 | #pragma unused(arg1, arg2) |
| 8479 | int error = 0, val, oldval = mbtest_val; |
| 8480 | |
| 8481 | val = oldval; |
| 8482 | error = sysctl_handle_int(oidp, &val, 0, req); |
| 8483 | if (error || !req->newptr) |
| 8484 | return (error); |
| 8485 | |
| 8486 | if (val != oldval) |
| 8487 | sysctl_mbtest(); |
| 8488 | |
| 8489 | mbtest_val = val; |
| 8490 | |
| 8491 | return (error); |
| 8492 | } |
| 8493 | #endif // DEBUG || DEVELOPMENT |
| 8494 | |
| 8495 | static void |
| 8496 | mtracelarge_register(size_t size) |
| 8497 | { |
| 8498 | int i; |
| 8499 | struct mtracelarge *trace; |
| 8500 | uintptr_t bt[MLEAK_STACK_DEPTH]; |
| 8501 | unsigned int depth; |
| 8502 | |
| 8503 | depth = backtrace(bt, MLEAK_STACK_DEPTH); |
| 8504 | /* Check if this entry is already on the list. */ |
| 8505 | for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) { |
| 8506 | trace = &mtracelarge_table[i]; |
| 8507 | if (trace->size == size && trace->depth == depth && |
| 8508 | memcmp(bt, trace->addr, depth * sizeof(uintptr_t)) == 0) { |
| 8509 | return; |
| 8510 | } |
| 8511 | |
| 8512 | } |
| 8513 | for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) { |
| 8514 | trace = &mtracelarge_table[i]; |
| 8515 | if (size > trace->size) { |
| 8516 | trace->depth = depth; |
| 8517 | memcpy(trace->addr, bt, depth * sizeof(uintptr_t)); |
| 8518 | trace->size = size; |
| 8519 | break; |
| 8520 | } |
| 8521 | } |
| 8522 | } |
| 8523 | |
| 8524 | SYSCTL_DECL(_kern_ipc); |
| 8525 | #if DEBUG || DEVELOPMENT |
| 8526 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtest, |
| 8527 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &mbtest_val, 0, &mbtest, "I" , |
| 8528 | "Toggle to test mbufs" ); |
| 8529 | #endif |
| 8530 | SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, |
| 8531 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 8532 | 0, 0, mbstat_sysctl, "S,mbstat" , "" ); |
| 8533 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat, |
| 8534 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 8535 | 0, 0, mb_stat_sysctl, "S,mb_stat" , "" ); |
| 8536 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace, |
| 8537 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 8538 | 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace" , "" ); |
| 8539 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table, |
| 8540 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 8541 | 0, 0, mleak_table_sysctl, "S,mleak_table" , "" ); |
| 8542 | SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor, |
| 8543 | CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, "" ); |
| 8544 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized, |
| 8545 | CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, "" ); |
| 8546 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog, |
| 8547 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, "" ); |
| 8548 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_drain_force, |
| 8549 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0, |
| 8550 | m_drain_force_sysctl, "I" , |
| 8551 | "Forces the mbuf garbage collection to run" ); |
| 8552 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_drain_maxint, |
| 8553 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_drain_maxint, 0, |
| 8554 | "Minimum time interval between garbage collection" ); |
| 8555 | |