| 1 | /* |
| 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Implementation of SVID semaphores |
| 30 | * |
| 31 | * Author: Daniel Boulet |
| 32 | * |
| 33 | * This software is provided ``AS IS'' without any warranties of any kind. |
| 34 | */ |
| 35 | /* |
| 36 | * John Bellardo modified the implementation for Darwin. 12/2000 |
| 37 | */ |
| 38 | /* |
| 39 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
| 40 | * support for mandatory and extensible security protections. This notice |
| 41 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 42 | * Version 2.0. |
| 43 | * Copyright (c) 2005-2006 SPARTA, Inc. |
| 44 | */ |
| 45 | |
| 46 | #include <sys/param.h> |
| 47 | #include <sys/systm.h> |
| 48 | #include <sys/kernel.h> |
| 49 | #include <sys/proc_internal.h> |
| 50 | #include <sys/kauth.h> |
| 51 | #include <sys/sem_internal.h> |
| 52 | #include <sys/malloc.h> |
| 53 | #include <mach/mach_types.h> |
| 54 | |
| 55 | #include <sys/filedesc.h> |
| 56 | #include <sys/file_internal.h> |
| 57 | #include <sys/sysctl.h> |
| 58 | #include <sys/ipcs.h> |
| 59 | #include <sys/sysent.h> |
| 60 | #include <sys/sysproto.h> |
| 61 | #if CONFIG_MACF |
| 62 | #include <security/mac_framework.h> |
| 63 | #endif |
| 64 | |
| 65 | #include <security/audit/audit.h> |
| 66 | |
| 67 | #if SYSV_SEM |
| 68 | |
| 69 | |
| 70 | /* Uncomment this line to see the debugging output */ |
| 71 | /* #define SEM_DEBUG */ |
| 72 | |
| 73 | /* Uncomment this line to see MAC debugging output. */ |
| 74 | /* #define MAC_DEBUG */ |
| 75 | #if CONFIG_MACF_DEBUG |
| 76 | #define MPRINTF(a) printf(a) |
| 77 | #else |
| 78 | #define MPRINTF(a) |
| 79 | #endif |
| 80 | |
| 81 | #define M_SYSVSEM M_TEMP |
| 82 | |
| 83 | |
| 84 | /* Hard system limits to avoid resource starvation / DOS attacks. |
| 85 | * These are not needed if we can make the semaphore pages swappable. |
| 86 | */ |
| 87 | static struct seminfo limitseminfo = { |
| 88 | SEMMAP, /* # of entries in semaphore map */ |
| 89 | SEMMNI, /* # of semaphore identifiers */ |
| 90 | SEMMNS, /* # of semaphores in system */ |
| 91 | SEMMNU, /* # of undo structures in system */ |
| 92 | SEMMSL, /* max # of semaphores per id */ |
| 93 | SEMOPM, /* max # of operations per semop call */ |
| 94 | SEMUME, /* max # of undo entries per process */ |
| 95 | SEMUSZ, /* size in bytes of undo structure */ |
| 96 | SEMVMX, /* semaphore maximum value */ |
| 97 | SEMAEM /* adjust on exit max value */ |
| 98 | }; |
| 99 | |
| 100 | /* Current system allocations. We use this structure to track how many |
| 101 | * resources we have allocated so far. This way we can set large hard limits |
| 102 | * and not allocate the memory for them up front. |
| 103 | */ |
| 104 | struct seminfo seminfo = { |
| 105 | SEMMAP, /* Unused, # of entries in semaphore map */ |
| 106 | 0, /* # of semaphore identifiers */ |
| 107 | 0, /* # of semaphores in system */ |
| 108 | 0, /* # of undo entries in system */ |
| 109 | SEMMSL, /* max # of semaphores per id */ |
| 110 | SEMOPM, /* max # of operations per semop call */ |
| 111 | SEMUME, /* max # of undo entries per process */ |
| 112 | SEMUSZ, /* size in bytes of undo structure */ |
| 113 | SEMVMX, /* semaphore maximum value */ |
| 114 | SEMAEM /* adjust on exit max value */ |
| 115 | }; |
| 116 | |
| 117 | |
| 118 | static int semu_alloc(struct proc *p); |
| 119 | static int semundo_adjust(struct proc *p, int *supidx, |
| 120 | int semid, int semnum, int adjval); |
| 121 | static void semundo_clear(int semid, int semnum); |
| 122 | |
| 123 | /* XXX casting to (sy_call_t *) is bogus, as usual. */ |
| 124 | static sy_call_t *semcalls[] = { |
| 125 | (sy_call_t *)semctl, (sy_call_t *)semget, |
| 126 | (sy_call_t *)semop |
| 127 | }; |
| 128 | |
| 129 | static int semtot = 0; /* # of used semaphores */ |
| 130 | struct semid_kernel *sema = NULL; /* semaphore id pool */ |
| 131 | struct sem *sem_pool = NULL; /* semaphore pool */ |
| 132 | static int semu_list_idx = -1; /* active undo structures */ |
| 133 | struct sem_undo *semu = NULL; /* semaphore undo pool */ |
| 134 | |
| 135 | |
| 136 | void sysv_sem_lock_init(void); |
| 137 | static lck_grp_t *sysv_sem_subsys_lck_grp; |
| 138 | static lck_grp_attr_t *sysv_sem_subsys_lck_grp_attr; |
| 139 | static lck_attr_t *sysv_sem_subsys_lck_attr; |
| 140 | static lck_mtx_t sysv_sem_subsys_mutex; |
| 141 | |
| 142 | #define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex) |
| 143 | #define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex) |
| 144 | |
| 145 | |
| 146 | __private_extern__ void |
| 147 | sysv_sem_lock_init( void ) |
| 148 | { |
| 149 | |
| 150 | sysv_sem_subsys_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 151 | |
| 152 | sysv_sem_subsys_lck_grp = lck_grp_alloc_init("sysv_sem_subsys_lock" , sysv_sem_subsys_lck_grp_attr); |
| 153 | |
| 154 | sysv_sem_subsys_lck_attr = lck_attr_alloc_init(); |
| 155 | lck_mtx_init(&sysv_sem_subsys_mutex, sysv_sem_subsys_lck_grp, sysv_sem_subsys_lck_attr); |
| 156 | } |
| 157 | |
| 158 | static __inline__ user_time_t |
| 159 | sysv_semtime(void) |
| 160 | { |
| 161 | struct timeval tv; |
| 162 | microtime(&tv); |
| 163 | return (tv.tv_sec); |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * XXX conversion of internal user_time_t to external tume_t loses |
| 168 | * XXX precision; not an issue for us now, since we are only ever |
| 169 | * XXX setting 32 bits worth of time into it. |
| 170 | * |
| 171 | * pad field contents are not moved correspondingly; contents will be lost |
| 172 | * |
| 173 | * NOTE: Source and target may *NOT* overlap! (target is smaller) |
| 174 | */ |
| 175 | static void |
| 176 | semid_ds_kernelto32(struct user_semid_ds *in, struct user32_semid_ds *out) |
| 177 | { |
| 178 | out->sem_perm = in->sem_perm; |
| 179 | out->sem_base = CAST_DOWN_EXPLICIT(__int32_t,in->sem_base); |
| 180 | out->sem_nsems = in->sem_nsems; |
| 181 | out->sem_otime = in->sem_otime; /* XXX loses precision */ |
| 182 | out->sem_ctime = in->sem_ctime; /* XXX loses precision */ |
| 183 | } |
| 184 | |
| 185 | static void |
| 186 | semid_ds_kernelto64(struct user_semid_ds *in, struct user64_semid_ds *out) |
| 187 | { |
| 188 | out->sem_perm = in->sem_perm; |
| 189 | out->sem_base = CAST_DOWN_EXPLICIT(__int32_t,in->sem_base); |
| 190 | out->sem_nsems = in->sem_nsems; |
| 191 | out->sem_otime = in->sem_otime; /* XXX loses precision */ |
| 192 | out->sem_ctime = in->sem_ctime; /* XXX loses precision */ |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * pad field contents are not moved correspondingly; contents will be lost |
| 197 | * |
| 198 | * NOTE: Source and target may are permitted to overlap! (source is smaller); |
| 199 | * this works because we copy fields in order from the end of the struct to |
| 200 | * the beginning. |
| 201 | * |
| 202 | * XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect |
| 203 | * XXX is the same. |
| 204 | */ |
| 205 | static void |
| 206 | semid_ds_32tokernel(struct user32_semid_ds *in, struct user_semid_ds *out) |
| 207 | { |
| 208 | out->sem_ctime = in->sem_ctime; |
| 209 | out->sem_otime = in->sem_otime; |
| 210 | out->sem_nsems = in->sem_nsems; |
| 211 | out->sem_base = (void *)(uintptr_t)in->sem_base; |
| 212 | out->sem_perm = in->sem_perm; |
| 213 | } |
| 214 | |
| 215 | static void |
| 216 | semid_ds_64tokernel(struct user64_semid_ds *in, struct user_semid_ds *out) |
| 217 | { |
| 218 | out->sem_ctime = in->sem_ctime; |
| 219 | out->sem_otime = in->sem_otime; |
| 220 | out->sem_nsems = in->sem_nsems; |
| 221 | out->sem_base = (void *)(uintptr_t)in->sem_base; |
| 222 | out->sem_perm = in->sem_perm; |
| 223 | } |
| 224 | |
| 225 | |
| 226 | /* |
| 227 | * semsys |
| 228 | * |
| 229 | * Entry point for all SEM calls: semctl, semget, semop |
| 230 | * |
| 231 | * Parameters: p Process requesting the call |
| 232 | * uap User argument descriptor (see below) |
| 233 | * retval Return value of the selected sem call |
| 234 | * |
| 235 | * Indirect parameters: uap->which sem call to invoke (index in array of sem calls) |
| 236 | * uap->a2 User argument descriptor |
| 237 | * |
| 238 | * Returns: 0 Success |
| 239 | * !0 Not success |
| 240 | * |
| 241 | * Implicit returns: retval Return value of the selected sem call |
| 242 | * |
| 243 | * DEPRECATED: This interface should not be used to call the other SEM |
| 244 | * functions (semctl, semget, semop). The correct usage is |
| 245 | * to call the other SEM functions directly. |
| 246 | * |
| 247 | */ |
| 248 | int |
| 249 | semsys(struct proc *p, struct semsys_args *uap, int32_t *retval) |
| 250 | { |
| 251 | |
| 252 | /* The individual calls handling the locking now */ |
| 253 | |
| 254 | if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0])) |
| 255 | return (EINVAL); |
| 256 | return ((*semcalls[uap->which])(p, &uap->a2, retval)); |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Expand the semu array to the given capacity. If the expansion fails |
| 261 | * return 0, otherwise return 1. |
| 262 | * |
| 263 | * Assumes we already have the subsystem lock. |
| 264 | */ |
| 265 | static int |
| 266 | grow_semu_array(int newSize) |
| 267 | { |
| 268 | int i; |
| 269 | struct sem_undo *newSemu; |
| 270 | |
| 271 | if (newSize <= seminfo.semmnu) |
| 272 | return 1; |
| 273 | if (newSize > limitseminfo.semmnu) /* enforce hard limit */ |
| 274 | { |
| 275 | #ifdef SEM_DEBUG |
| 276 | printf("undo structure hard limit of %d reached, requested %d\n" , |
| 277 | limitseminfo.semmnu, newSize); |
| 278 | #endif |
| 279 | return 0; |
| 280 | } |
| 281 | newSize = (newSize/SEMMNU_INC + 1) * SEMMNU_INC; |
| 282 | newSize = newSize > limitseminfo.semmnu ? limitseminfo.semmnu : newSize; |
| 283 | |
| 284 | #ifdef SEM_DEBUG |
| 285 | printf("growing semu[] from %d to %d\n" , seminfo.semmnu, newSize); |
| 286 | #endif |
| 287 | MALLOC(newSemu, struct sem_undo *, sizeof (struct sem_undo) * newSize, |
| 288 | M_SYSVSEM, M_WAITOK | M_ZERO); |
| 289 | if (NULL == newSemu) |
| 290 | { |
| 291 | #ifdef SEM_DEBUG |
| 292 | printf("allocation failed. no changes made.\n" ); |
| 293 | #endif |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | /* copy the old data to the new array */ |
| 298 | for (i = 0; i < seminfo.semmnu; i++) |
| 299 | { |
| 300 | newSemu[i] = semu[i]; |
| 301 | } |
| 302 | /* |
| 303 | * The new elements (from newSemu[i] to newSemu[newSize-1]) have their |
| 304 | * "un_proc" set to 0 (i.e. NULL) by the M_ZERO flag to MALLOC() above, |
| 305 | * so they're already marked as "not in use". |
| 306 | */ |
| 307 | |
| 308 | /* Clean up the old array */ |
| 309 | if (semu) |
| 310 | FREE(semu, M_SYSVSEM); |
| 311 | |
| 312 | semu = newSemu; |
| 313 | seminfo.semmnu = newSize; |
| 314 | #ifdef SEM_DEBUG |
| 315 | printf("expansion successful\n" ); |
| 316 | #endif |
| 317 | return 1; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Expand the sema array to the given capacity. If the expansion fails |
| 322 | * we return 0, otherwise we return 1. |
| 323 | * |
| 324 | * Assumes we already have the subsystem lock. |
| 325 | */ |
| 326 | static int |
| 327 | grow_sema_array(int newSize) |
| 328 | { |
| 329 | struct semid_kernel *newSema; |
| 330 | int i; |
| 331 | |
| 332 | if (newSize <= seminfo.semmni) |
| 333 | return 0; |
| 334 | if (newSize > limitseminfo.semmni) /* enforce hard limit */ |
| 335 | { |
| 336 | #ifdef SEM_DEBUG |
| 337 | printf("identifier hard limit of %d reached, requested %d\n" , |
| 338 | limitseminfo.semmni, newSize); |
| 339 | #endif |
| 340 | return 0; |
| 341 | } |
| 342 | newSize = (newSize/SEMMNI_INC + 1) * SEMMNI_INC; |
| 343 | newSize = newSize > limitseminfo.semmni ? limitseminfo.semmni : newSize; |
| 344 | |
| 345 | #ifdef SEM_DEBUG |
| 346 | printf("growing sema[] from %d to %d\n" , seminfo.semmni, newSize); |
| 347 | #endif |
| 348 | MALLOC(newSema, struct semid_kernel *, |
| 349 | sizeof (struct semid_kernel) * newSize, |
| 350 | M_SYSVSEM, M_WAITOK | M_ZERO); |
| 351 | if (NULL == newSema) |
| 352 | { |
| 353 | #ifdef SEM_DEBUG |
| 354 | printf("allocation failed. no changes made.\n" ); |
| 355 | #endif |
| 356 | return 0; |
| 357 | } |
| 358 | |
| 359 | /* copy over the old ids */ |
| 360 | for (i = 0; i < seminfo.semmni; i++) |
| 361 | { |
| 362 | newSema[i] = sema[i]; |
| 363 | /* This is a hack. What we really want to be able to |
| 364 | * do is change the value a process is waiting on |
| 365 | * without waking it up, but I don't know how to do |
| 366 | * this with the existing code, so we wake up the |
| 367 | * process and let it do a lot of work to determine the |
| 368 | * semaphore set is really not available yet, and then |
| 369 | * sleep on the correct, reallocated semid_kernel pointer. |
| 370 | */ |
| 371 | if (sema[i].u.sem_perm.mode & SEM_ALLOC) |
| 372 | wakeup((caddr_t)&sema[i]); |
| 373 | } |
| 374 | |
| 375 | #if CONFIG_MACF |
| 376 | for (i = seminfo.semmni; i < newSize; i++) |
| 377 | { |
| 378 | mac_sysvsem_label_init(&newSema[i]); |
| 379 | } |
| 380 | #endif |
| 381 | |
| 382 | /* |
| 383 | * The new elements (from newSema[i] to newSema[newSize-1]) have their |
| 384 | * "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the M_ZERO |
| 385 | * flag to MALLOC() above, so they're already marked as "not in use". |
| 386 | */ |
| 387 | |
| 388 | /* Clean up the old array */ |
| 389 | if (sema) |
| 390 | FREE(sema, M_SYSVSEM); |
| 391 | |
| 392 | sema = newSema; |
| 393 | seminfo.semmni = newSize; |
| 394 | #ifdef SEM_DEBUG |
| 395 | printf("expansion successful\n" ); |
| 396 | #endif |
| 397 | return 1; |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * Expand the sem_pool array to the given capacity. If the expansion fails |
| 402 | * we return 0 (fail), otherwise we return 1 (success). |
| 403 | * |
| 404 | * Assumes we already hold the subsystem lock. |
| 405 | */ |
| 406 | static int |
| 407 | grow_sem_pool(int new_pool_size) |
| 408 | { |
| 409 | struct sem *new_sem_pool = NULL; |
| 410 | struct sem *sem_free; |
| 411 | int i; |
| 412 | |
| 413 | if (new_pool_size < semtot) |
| 414 | return 0; |
| 415 | /* enforce hard limit */ |
| 416 | if (new_pool_size > limitseminfo.semmns) { |
| 417 | #ifdef SEM_DEBUG |
| 418 | printf("semaphore hard limit of %d reached, requested %d\n" , |
| 419 | limitseminfo.semmns, new_pool_size); |
| 420 | #endif |
| 421 | return 0; |
| 422 | } |
| 423 | |
| 424 | new_pool_size = (new_pool_size/SEMMNS_INC + 1) * SEMMNS_INC; |
| 425 | new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size; |
| 426 | |
| 427 | #ifdef SEM_DEBUG |
| 428 | printf("growing sem_pool array from %d to %d\n" , seminfo.semmns, new_pool_size); |
| 429 | #endif |
| 430 | MALLOC(new_sem_pool, struct sem *, sizeof (struct sem) * new_pool_size, |
| 431 | M_SYSVSEM, M_WAITOK | M_ZERO | M_NULL); |
| 432 | if (NULL == new_sem_pool) { |
| 433 | #ifdef SEM_DEBUG |
| 434 | printf("allocation failed. no changes made.\n" ); |
| 435 | #endif |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | /* We have our new memory, now copy the old contents over */ |
| 440 | if (sem_pool) |
| 441 | for(i = 0; i < seminfo.semmns; i++) |
| 442 | new_sem_pool[i] = sem_pool[i]; |
| 443 | |
| 444 | /* Update our id structures to point to the new semaphores */ |
| 445 | for(i = 0; i < seminfo.semmni; i++) { |
| 446 | if (sema[i].u.sem_perm.mode & SEM_ALLOC) /* ID in use */ |
| 447 | sema[i].u.sem_base = new_sem_pool + |
| 448 | (sema[i].u.sem_base - sem_pool); |
| 449 | } |
| 450 | |
| 451 | sem_free = sem_pool; |
| 452 | sem_pool = new_sem_pool; |
| 453 | |
| 454 | /* clean up the old array */ |
| 455 | if (sem_free != NULL) |
| 456 | FREE(sem_free, M_SYSVSEM); |
| 457 | |
| 458 | seminfo.semmns = new_pool_size; |
| 459 | #ifdef SEM_DEBUG |
| 460 | printf("expansion complete\n" ); |
| 461 | #endif |
| 462 | return 1; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * Allocate a new sem_undo structure for a process |
| 467 | * (returns ptr to structure or NULL if no more room) |
| 468 | * |
| 469 | * Assumes we already hold the subsystem lock. |
| 470 | */ |
| 471 | |
| 472 | static int |
| 473 | semu_alloc(struct proc *p) |
| 474 | { |
| 475 | int i; |
| 476 | struct sem_undo *suptr; |
| 477 | int *supidx; |
| 478 | int attempt; |
| 479 | |
| 480 | /* |
| 481 | * Try twice to allocate something. |
| 482 | * (we'll purge any empty structures after the first pass so |
| 483 | * two passes are always enough) |
| 484 | */ |
| 485 | |
| 486 | for (attempt = 0; attempt < 2; attempt++) { |
| 487 | /* |
| 488 | * Look for a free structure. |
| 489 | * Fill it in and return it if we find one. |
| 490 | */ |
| 491 | |
| 492 | for (i = 0; i < seminfo.semmnu; i++) { |
| 493 | suptr = SEMU(i); |
| 494 | if (suptr->un_proc == NULL) { |
| 495 | suptr->un_next_idx = semu_list_idx; |
| 496 | semu_list_idx = i; |
| 497 | suptr->un_cnt = 0; |
| 498 | suptr->un_ent = NULL; |
| 499 | suptr->un_proc = p; |
| 500 | return i; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * We didn't find a free one, if this is the first attempt |
| 506 | * then try to free some structures. |
| 507 | */ |
| 508 | |
| 509 | if (attempt == 0) { |
| 510 | /* All the structures are in use - try to free some */ |
| 511 | int did_something = 0; |
| 512 | |
| 513 | supidx = &semu_list_idx; |
| 514 | while (*supidx != -1) { |
| 515 | suptr = SEMU(*supidx); |
| 516 | if (suptr->un_cnt == 0) { |
| 517 | suptr->un_proc = NULL; |
| 518 | *supidx = suptr->un_next_idx; |
| 519 | did_something = 1; |
| 520 | } else |
| 521 | supidx = &(suptr->un_next_idx); |
| 522 | } |
| 523 | |
| 524 | /* If we didn't free anything. Try expanding |
| 525 | * the semu[] array. If that doesn't work |
| 526 | * then fail. We expand last to get the |
| 527 | * most reuse out of existing resources. |
| 528 | */ |
| 529 | if (!did_something) |
| 530 | if (!grow_semu_array(seminfo.semmnu + 1)) |
| 531 | return -1; |
| 532 | } else { |
| 533 | /* |
| 534 | * The second pass failed even though we freed |
| 535 | * something after the first pass! |
| 536 | * This is IMPOSSIBLE! |
| 537 | */ |
| 538 | panic("semu_alloc - second attempt failed" ); |
| 539 | } |
| 540 | } |
| 541 | return -1; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Adjust a particular entry for a particular proc |
| 546 | * |
| 547 | * Assumes we already hold the subsystem lock. |
| 548 | */ |
| 549 | static int |
| 550 | semundo_adjust(struct proc *p, int *supidx, int semid, |
| 551 | int semnum, int adjval) |
| 552 | { |
| 553 | struct sem_undo *suptr; |
| 554 | int suidx; |
| 555 | struct undo *sueptr, **suepptr, *new_sueptr; |
| 556 | int i; |
| 557 | |
| 558 | /* |
| 559 | * Look for and remember the sem_undo if the caller doesn't provide it |
| 560 | */ |
| 561 | |
| 562 | suidx = *supidx; |
| 563 | if (suidx == -1) { |
| 564 | for (suidx = semu_list_idx; suidx != -1; |
| 565 | suidx = suptr->un_next_idx) { |
| 566 | suptr = SEMU(suidx); |
| 567 | if (suptr->un_proc == p) { |
| 568 | *supidx = suidx; |
| 569 | break; |
| 570 | } |
| 571 | } |
| 572 | if (suidx == -1) { |
| 573 | if (adjval == 0) |
| 574 | return(0); |
| 575 | suidx = semu_alloc(p); |
| 576 | if (suidx == -1) |
| 577 | return(ENOSPC); |
| 578 | *supidx = suidx; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Look for the requested entry and adjust it (delete if adjval becomes |
| 584 | * 0). |
| 585 | */ |
| 586 | suptr = SEMU(suidx); |
| 587 | new_sueptr = NULL; |
| 588 | for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent; |
| 589 | i < suptr->un_cnt; |
| 590 | i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) { |
| 591 | if (sueptr->une_id != semid || sueptr->une_num != semnum) |
| 592 | continue; |
| 593 | if (adjval == 0) |
| 594 | sueptr->une_adjval = 0; |
| 595 | else |
| 596 | sueptr->une_adjval += adjval; |
| 597 | if (sueptr->une_adjval == 0) { |
| 598 | suptr->un_cnt--; |
| 599 | *suepptr = sueptr->une_next; |
| 600 | FREE(sueptr, M_SYSVSEM); |
| 601 | sueptr = NULL; |
| 602 | } |
| 603 | return 0; |
| 604 | } |
| 605 | |
| 606 | /* Didn't find the right entry - create it */ |
| 607 | if (adjval == 0) { |
| 608 | /* no adjustment: no need for a new entry */ |
| 609 | return 0; |
| 610 | } |
| 611 | |
| 612 | if (suptr->un_cnt == limitseminfo.semume) { |
| 613 | /* reached the limit number of semaphore undo entries */ |
| 614 | return EINVAL; |
| 615 | } |
| 616 | |
| 617 | /* allocate a new semaphore undo entry */ |
| 618 | MALLOC(new_sueptr, struct undo *, sizeof (struct undo), |
| 619 | M_SYSVSEM, M_WAITOK); |
| 620 | if (new_sueptr == NULL) { |
| 621 | return ENOMEM; |
| 622 | } |
| 623 | |
| 624 | /* fill in the new semaphore undo entry */ |
| 625 | new_sueptr->une_next = suptr->un_ent; |
| 626 | suptr->un_ent = new_sueptr; |
| 627 | suptr->un_cnt++; |
| 628 | new_sueptr->une_adjval = adjval; |
| 629 | new_sueptr->une_id = semid; |
| 630 | new_sueptr->une_num = semnum; |
| 631 | |
| 632 | return 0; |
| 633 | } |
| 634 | |
| 635 | /* Assumes we already hold the subsystem lock. |
| 636 | */ |
| 637 | static void |
| 638 | semundo_clear(int semid, int semnum) |
| 639 | { |
| 640 | struct sem_undo *suptr; |
| 641 | int suidx; |
| 642 | |
| 643 | for (suidx = semu_list_idx; suidx != -1; suidx = suptr->un_next_idx) { |
| 644 | struct undo *sueptr; |
| 645 | struct undo **suepptr; |
| 646 | int i = 0; |
| 647 | |
| 648 | suptr = SEMU(suidx); |
| 649 | sueptr = suptr->un_ent; |
| 650 | suepptr = &suptr->un_ent; |
| 651 | while (i < suptr->un_cnt) { |
| 652 | if (sueptr->une_id == semid) { |
| 653 | if (semnum == -1 || sueptr->une_num == semnum) { |
| 654 | suptr->un_cnt--; |
| 655 | *suepptr = sueptr->une_next; |
| 656 | FREE(sueptr, M_SYSVSEM); |
| 657 | sueptr = *suepptr; |
| 658 | continue; |
| 659 | } |
| 660 | if (semnum != -1) |
| 661 | break; |
| 662 | } |
| 663 | i++; |
| 664 | suepptr = &sueptr->une_next; |
| 665 | sueptr = sueptr->une_next; |
| 666 | } |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | /* |
| 671 | * Note that the user-mode half of this passes a union coerced to a |
| 672 | * user_addr_t. The union contains either an int or a pointer, and |
| 673 | * so we have to coerce it back, variant on whether the calling |
| 674 | * process is 64 bit or not. The coercion works for the 'val' element |
| 675 | * because the alignment is the same in user and kernel space. |
| 676 | */ |
| 677 | int |
| 678 | semctl(struct proc *p, struct semctl_args *uap, int32_t *retval) |
| 679 | { |
| 680 | int semid = uap->semid; |
| 681 | int semnum = uap->semnum; |
| 682 | int cmd = uap->cmd; |
| 683 | user_semun_t user_arg = (user_semun_t)uap->arg; |
| 684 | kauth_cred_t cred = kauth_cred_get(); |
| 685 | int i, rval, eval; |
| 686 | struct user_semid_ds sbuf; |
| 687 | struct semid_kernel *semakptr; |
| 688 | |
| 689 | |
| 690 | AUDIT_ARG(svipc_cmd, cmd); |
| 691 | AUDIT_ARG(svipc_id, semid); |
| 692 | |
| 693 | SYSV_SEM_SUBSYS_LOCK(); |
| 694 | |
| 695 | #ifdef SEM_DEBUG |
| 696 | printf("call to semctl(%d, %d, %d, 0x%qx)\n" , semid, semnum, cmd, user_arg); |
| 697 | #endif |
| 698 | |
| 699 | semid = IPCID_TO_IX(semid); |
| 700 | |
| 701 | if (semid < 0 || semid >= seminfo.semmni) { |
| 702 | #ifdef SEM_DEBUG |
| 703 | printf("Invalid semid\n" ); |
| 704 | #endif |
| 705 | eval = EINVAL; |
| 706 | goto semctlout; |
| 707 | } |
| 708 | |
| 709 | semakptr = &sema[semid]; |
| 710 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 || |
| 711 | semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) { |
| 712 | eval = EINVAL; |
| 713 | goto semctlout; |
| 714 | } |
| 715 | #if CONFIG_MACF |
| 716 | eval = mac_sysvsem_check_semctl(cred, semakptr, cmd); |
| 717 | if (eval) |
| 718 | goto semctlout; |
| 719 | #endif |
| 720 | |
| 721 | eval = 0; |
| 722 | rval = 0; |
| 723 | |
| 724 | switch (cmd) { |
| 725 | case IPC_RMID: |
| 726 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) |
| 727 | goto semctlout; |
| 728 | |
| 729 | semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred); |
| 730 | semakptr->u.sem_perm.uid = kauth_cred_getuid(cred); |
| 731 | semtot -= semakptr->u.sem_nsems; |
| 732 | for (i = semakptr->u.sem_base - sem_pool; i < semtot; i++) |
| 733 | sem_pool[i] = sem_pool[i + semakptr->u.sem_nsems]; |
| 734 | for (i = 0; i < seminfo.semmni; i++) { |
| 735 | if ((sema[i].u.sem_perm.mode & SEM_ALLOC) && |
| 736 | sema[i].u.sem_base > semakptr->u.sem_base) |
| 737 | sema[i].u.sem_base -= semakptr->u.sem_nsems; |
| 738 | } |
| 739 | semakptr->u.sem_perm.mode = 0; |
| 740 | #if CONFIG_MACF |
| 741 | mac_sysvsem_label_recycle(semakptr); |
| 742 | #endif |
| 743 | semundo_clear(semid, -1); |
| 744 | wakeup((caddr_t)semakptr); |
| 745 | break; |
| 746 | |
| 747 | case IPC_SET: |
| 748 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) |
| 749 | goto semctlout; |
| 750 | |
| 751 | if (IS_64BIT_PROCESS(p)) { |
| 752 | struct user64_semid_ds ds64; |
| 753 | eval = copyin(user_arg.buf, &ds64, sizeof(ds64)); |
| 754 | semid_ds_64tokernel(&ds64, &sbuf); |
| 755 | } else { |
| 756 | struct user32_semid_ds ds32; |
| 757 | eval = copyin(user_arg.buf, &ds32, sizeof(ds32)); |
| 758 | semid_ds_32tokernel(&ds32, &sbuf); |
| 759 | } |
| 760 | |
| 761 | if (eval != 0) { |
| 762 | goto semctlout; |
| 763 | } |
| 764 | |
| 765 | semakptr->u.sem_perm.uid = sbuf.sem_perm.uid; |
| 766 | semakptr->u.sem_perm.gid = sbuf.sem_perm.gid; |
| 767 | semakptr->u.sem_perm.mode = (semakptr->u.sem_perm.mode & |
| 768 | ~0777) | (sbuf.sem_perm.mode & 0777); |
| 769 | semakptr->u.sem_ctime = sysv_semtime(); |
| 770 | break; |
| 771 | |
| 772 | case IPC_STAT: |
| 773 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) |
| 774 | goto semctlout; |
| 775 | |
| 776 | if (IS_64BIT_PROCESS(p)) { |
| 777 | struct user64_semid_ds semid_ds64; |
| 778 | bzero(&semid_ds64, sizeof(semid_ds64)); |
| 779 | semid_ds_kernelto64(&semakptr->u, &semid_ds64); |
| 780 | eval = copyout(&semid_ds64, user_arg.buf, sizeof(semid_ds64)); |
| 781 | } else { |
| 782 | struct user32_semid_ds semid_ds32; |
| 783 | bzero(&semid_ds32, sizeof(semid_ds32)); |
| 784 | semid_ds_kernelto32(&semakptr->u, &semid_ds32); |
| 785 | eval = copyout(&semid_ds32, user_arg.buf, sizeof(semid_ds32)); |
| 786 | } |
| 787 | break; |
| 788 | |
| 789 | case GETNCNT: |
| 790 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) |
| 791 | goto semctlout; |
| 792 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { |
| 793 | eval = EINVAL; |
| 794 | goto semctlout; |
| 795 | } |
| 796 | rval = semakptr->u.sem_base[semnum].semncnt; |
| 797 | break; |
| 798 | |
| 799 | case GETPID: |
| 800 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) |
| 801 | goto semctlout; |
| 802 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { |
| 803 | eval = EINVAL; |
| 804 | goto semctlout; |
| 805 | } |
| 806 | rval = semakptr->u.sem_base[semnum].sempid; |
| 807 | break; |
| 808 | |
| 809 | case GETVAL: |
| 810 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) |
| 811 | goto semctlout; |
| 812 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { |
| 813 | eval = EINVAL; |
| 814 | goto semctlout; |
| 815 | } |
| 816 | rval = semakptr->u.sem_base[semnum].semval; |
| 817 | break; |
| 818 | |
| 819 | case GETALL: |
| 820 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) |
| 821 | goto semctlout; |
| 822 | /* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */ |
| 823 | for (i = 0; i < semakptr->u.sem_nsems; i++) { |
| 824 | /* XXX could be done in one go... */ |
| 825 | eval = copyout((caddr_t)&semakptr->u.sem_base[i].semval, |
| 826 | user_arg.array + (i * sizeof(unsigned short)), |
| 827 | sizeof(unsigned short)); |
| 828 | if (eval != 0) |
| 829 | break; |
| 830 | } |
| 831 | break; |
| 832 | |
| 833 | case GETZCNT: |
| 834 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) |
| 835 | goto semctlout; |
| 836 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) { |
| 837 | eval = EINVAL; |
| 838 | goto semctlout; |
| 839 | } |
| 840 | rval = semakptr->u.sem_base[semnum].semzcnt; |
| 841 | break; |
| 842 | |
| 843 | case SETVAL: |
| 844 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) |
| 845 | { |
| 846 | #ifdef SEM_DEBUG |
| 847 | printf("Invalid credentials for write\n" ); |
| 848 | #endif |
| 849 | goto semctlout; |
| 850 | } |
| 851 | if (semnum < 0 || semnum >= semakptr->u.sem_nsems) |
| 852 | { |
| 853 | #ifdef SEM_DEBUG |
| 854 | printf("Invalid number out of range for set\n" ); |
| 855 | #endif |
| 856 | eval = EINVAL; |
| 857 | goto semctlout; |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * Cast down a pointer instead of using 'val' member directly |
| 862 | * to avoid introducing endieness and a pad field into the |
| 863 | * header file. Ugly, but it works. |
| 864 | */ |
| 865 | u_int newsemval = CAST_DOWN_EXPLICIT(u_int, user_arg.buf); |
| 866 | |
| 867 | /* |
| 868 | * The check is being performed as unsigned values to match |
| 869 | * eventual destination |
| 870 | */ |
| 871 | if (newsemval > (u_int)seminfo.semvmx) |
| 872 | { |
| 873 | #ifdef SEM_DEBUG |
| 874 | printf("Out of range sem value for set\n" ); |
| 875 | #endif |
| 876 | eval = ERANGE; |
| 877 | goto semctlout; |
| 878 | } |
| 879 | semakptr->u.sem_base[semnum].semval = newsemval; |
| 880 | semakptr->u.sem_base[semnum].sempid = p->p_pid; |
| 881 | /* XXX scottl Should there be a MAC call here? */ |
| 882 | semundo_clear(semid, semnum); |
| 883 | wakeup((caddr_t)semakptr); |
| 884 | break; |
| 885 | |
| 886 | case SETALL: |
| 887 | if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) |
| 888 | goto semctlout; |
| 889 | /*** XXXXXXXXXXXX TBD ********/ |
| 890 | for (i = 0; i < semakptr->u.sem_nsems; i++) { |
| 891 | /* XXX could be done in one go... */ |
| 892 | eval = copyin(user_arg.array + (i * sizeof(unsigned short)), |
| 893 | (caddr_t)&semakptr->u.sem_base[i].semval, |
| 894 | sizeof(unsigned short)); |
| 895 | if (eval != 0) |
| 896 | break; |
| 897 | semakptr->u.sem_base[i].sempid = p->p_pid; |
| 898 | } |
| 899 | /* XXX scottl Should there be a MAC call here? */ |
| 900 | semundo_clear(semid, -1); |
| 901 | wakeup((caddr_t)semakptr); |
| 902 | break; |
| 903 | |
| 904 | default: |
| 905 | eval = EINVAL; |
| 906 | goto semctlout; |
| 907 | } |
| 908 | |
| 909 | if (eval == 0) |
| 910 | *retval = rval; |
| 911 | semctlout: |
| 912 | SYSV_SEM_SUBSYS_UNLOCK(); |
| 913 | return(eval); |
| 914 | } |
| 915 | |
| 916 | int |
| 917 | semget(__unused struct proc *p, struct semget_args *uap, int32_t *retval) |
| 918 | { |
| 919 | int semid, eval; |
| 920 | int key = uap->key; |
| 921 | int nsems = uap->nsems; |
| 922 | int semflg = uap->semflg; |
| 923 | kauth_cred_t cred = kauth_cred_get(); |
| 924 | |
| 925 | #ifdef SEM_DEBUG |
| 926 | if (key != IPC_PRIVATE) |
| 927 | printf("semget(0x%x, %d, 0%o)\n" , key, nsems, semflg); |
| 928 | else |
| 929 | printf("semget(IPC_PRIVATE, %d, 0%o)\n" , nsems, semflg); |
| 930 | #endif |
| 931 | |
| 932 | |
| 933 | SYSV_SEM_SUBSYS_LOCK(); |
| 934 | |
| 935 | |
| 936 | if (key != IPC_PRIVATE) { |
| 937 | for (semid = 0; semid < seminfo.semmni; semid++) { |
| 938 | if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) && |
| 939 | sema[semid].u.sem_perm._key == key) |
| 940 | break; |
| 941 | } |
| 942 | if (semid < seminfo.semmni) { |
| 943 | #ifdef SEM_DEBUG |
| 944 | printf("found public key\n" ); |
| 945 | #endif |
| 946 | if ((eval = ipcperm(cred, &sema[semid].u.sem_perm, |
| 947 | semflg & 0700))) |
| 948 | goto semgetout; |
| 949 | if (nsems < 0 || sema[semid].u.sem_nsems < nsems) { |
| 950 | #ifdef SEM_DEBUG |
| 951 | printf("too small\n" ); |
| 952 | #endif |
| 953 | eval = EINVAL; |
| 954 | goto semgetout; |
| 955 | } |
| 956 | if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) { |
| 957 | #ifdef SEM_DEBUG |
| 958 | printf("not exclusive\n" ); |
| 959 | #endif |
| 960 | eval = EEXIST; |
| 961 | goto semgetout; |
| 962 | } |
| 963 | #if CONFIG_MACF |
| 964 | eval = mac_sysvsem_check_semget(cred, &sema[semid]); |
| 965 | if (eval) |
| 966 | goto semgetout; |
| 967 | #endif |
| 968 | goto found; |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | #ifdef SEM_DEBUG |
| 973 | printf("need to allocate an id for the request\n" ); |
| 974 | #endif |
| 975 | if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) { |
| 976 | if (nsems <= 0 || nsems > limitseminfo.semmsl) { |
| 977 | #ifdef SEM_DEBUG |
| 978 | printf("nsems out of range (0<%d<=%d)\n" , nsems, |
| 979 | seminfo.semmsl); |
| 980 | #endif |
| 981 | eval = EINVAL; |
| 982 | goto semgetout; |
| 983 | } |
| 984 | if (nsems > seminfo.semmns - semtot) { |
| 985 | #ifdef SEM_DEBUG |
| 986 | printf("not enough semaphores left (need %d, got %d)\n" , |
| 987 | nsems, seminfo.semmns - semtot); |
| 988 | #endif |
| 989 | if (!grow_sem_pool(semtot + nsems)) { |
| 990 | #ifdef SEM_DEBUG |
| 991 | printf("failed to grow the sem array\n" ); |
| 992 | #endif |
| 993 | eval = ENOSPC; |
| 994 | goto semgetout; |
| 995 | } |
| 996 | } |
| 997 | for (semid = 0; semid < seminfo.semmni; semid++) { |
| 998 | if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) == 0) |
| 999 | break; |
| 1000 | } |
| 1001 | if (semid == seminfo.semmni) { |
| 1002 | #ifdef SEM_DEBUG |
| 1003 | printf("no more id's available\n" ); |
| 1004 | #endif |
| 1005 | if (!grow_sema_array(seminfo.semmni + 1)) |
| 1006 | { |
| 1007 | #ifdef SEM_DEBUG |
| 1008 | printf("failed to grow sema array\n" ); |
| 1009 | #endif |
| 1010 | eval = ENOSPC; |
| 1011 | goto semgetout; |
| 1012 | } |
| 1013 | } |
| 1014 | #ifdef SEM_DEBUG |
| 1015 | printf("semid %d is available\n" , semid); |
| 1016 | #endif |
| 1017 | sema[semid].u.sem_perm._key = key; |
| 1018 | sema[semid].u.sem_perm.cuid = kauth_cred_getuid(cred); |
| 1019 | sema[semid].u.sem_perm.uid = kauth_cred_getuid(cred); |
| 1020 | sema[semid].u.sem_perm.cgid = kauth_cred_getgid(cred); |
| 1021 | sema[semid].u.sem_perm.gid = kauth_cred_getgid(cred); |
| 1022 | sema[semid].u.sem_perm.mode = (semflg & 0777) | SEM_ALLOC; |
| 1023 | sema[semid].u.sem_perm._seq = |
| 1024 | (sema[semid].u.sem_perm._seq + 1) & 0x7fff; |
| 1025 | sema[semid].u.sem_nsems = nsems; |
| 1026 | sema[semid].u.sem_otime = 0; |
| 1027 | sema[semid].u.sem_ctime = sysv_semtime(); |
| 1028 | sema[semid].u.sem_base = &sem_pool[semtot]; |
| 1029 | semtot += nsems; |
| 1030 | bzero(sema[semid].u.sem_base, |
| 1031 | sizeof(sema[semid].u.sem_base[0])*nsems); |
| 1032 | #if CONFIG_MACF |
| 1033 | mac_sysvsem_label_associate(cred, &sema[semid]); |
| 1034 | #endif |
| 1035 | #ifdef SEM_DEBUG |
| 1036 | printf("sembase = 0x%x, next = 0x%x\n" , sema[semid].u.sem_base, |
| 1037 | &sem_pool[semtot]); |
| 1038 | #endif |
| 1039 | } else { |
| 1040 | #ifdef SEM_DEBUG |
| 1041 | printf("didn't find it and wasn't asked to create it\n" ); |
| 1042 | #endif |
| 1043 | eval = ENOENT; |
| 1044 | goto semgetout; |
| 1045 | } |
| 1046 | |
| 1047 | found: |
| 1048 | *retval = IXSEQ_TO_IPCID(semid, sema[semid].u.sem_perm); |
| 1049 | AUDIT_ARG(svipc_id, *retval); |
| 1050 | #ifdef SEM_DEBUG |
| 1051 | printf("semget is done, returning %d\n" , *retval); |
| 1052 | #endif |
| 1053 | eval = 0; |
| 1054 | |
| 1055 | semgetout: |
| 1056 | SYSV_SEM_SUBSYS_UNLOCK(); |
| 1057 | return(eval); |
| 1058 | } |
| 1059 | |
| 1060 | int |
| 1061 | semop(struct proc *p, struct semop_args *uap, int32_t *retval) |
| 1062 | { |
| 1063 | int semid = uap->semid; |
| 1064 | int nsops = uap->nsops; |
| 1065 | struct sembuf sops[seminfo.semopm]; |
| 1066 | struct semid_kernel *semakptr; |
| 1067 | struct sembuf *sopptr = NULL; /* protected by 'semptr' */ |
| 1068 | struct sem *semptr = NULL; /* protected by 'if' */ |
| 1069 | int supidx = -1; |
| 1070 | int i, j, eval; |
| 1071 | int do_wakeup, do_undos; |
| 1072 | |
| 1073 | AUDIT_ARG(svipc_id, uap->semid); |
| 1074 | |
| 1075 | SYSV_SEM_SUBSYS_LOCK(); |
| 1076 | |
| 1077 | #ifdef SEM_DEBUG |
| 1078 | printf("call to semop(%d, 0x%x, %d)\n" , semid, sops, nsops); |
| 1079 | #endif |
| 1080 | |
| 1081 | semid = IPCID_TO_IX(semid); /* Convert back to zero origin */ |
| 1082 | |
| 1083 | if (semid < 0 || semid >= seminfo.semmni) { |
| 1084 | eval = EINVAL; |
| 1085 | goto semopout; |
| 1086 | } |
| 1087 | |
| 1088 | semakptr = &sema[semid]; |
| 1089 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) { |
| 1090 | eval = EINVAL; |
| 1091 | goto semopout; |
| 1092 | } |
| 1093 | if (semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) { |
| 1094 | eval = EINVAL; |
| 1095 | goto semopout; |
| 1096 | } |
| 1097 | |
| 1098 | if ((eval = ipcperm(kauth_cred_get(), &semakptr->u.sem_perm, IPC_W))) { |
| 1099 | #ifdef SEM_DEBUG |
| 1100 | printf("eval = %d from ipaccess\n" , eval); |
| 1101 | #endif |
| 1102 | goto semopout; |
| 1103 | } |
| 1104 | |
| 1105 | if (nsops < 0 || nsops > seminfo.semopm) { |
| 1106 | #ifdef SEM_DEBUG |
| 1107 | printf("too many sops (max=%d, nsops=%d)\n" , |
| 1108 | seminfo.semopm, nsops); |
| 1109 | #endif |
| 1110 | eval = E2BIG; |
| 1111 | goto semopout; |
| 1112 | } |
| 1113 | |
| 1114 | /* OK for LP64, since sizeof(struct sembuf) is currently invariant */ |
| 1115 | if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) { |
| 1116 | #ifdef SEM_DEBUG |
| 1117 | printf("eval = %d from copyin(%08x, %08x, %ld)\n" , eval, |
| 1118 | uap->sops, &sops, nsops * sizeof(struct sembuf)); |
| 1119 | #endif |
| 1120 | goto semopout; |
| 1121 | } |
| 1122 | |
| 1123 | #if CONFIG_MACF |
| 1124 | /* |
| 1125 | * Initial pass thru sops to see what permissions are needed. |
| 1126 | */ |
| 1127 | j = 0; /* permission needed */ |
| 1128 | for (i = 0; i < nsops; i++) |
| 1129 | j |= (sops[i].sem_op == 0) ? SEM_R : SEM_A; |
| 1130 | |
| 1131 | /* |
| 1132 | * The MAC hook checks whether the thread has read (and possibly |
| 1133 | * write) permissions to the semaphore array based on the |
| 1134 | * sopptr->sem_op value. |
| 1135 | */ |
| 1136 | eval = mac_sysvsem_check_semop(kauth_cred_get(), semakptr, j); |
| 1137 | if (eval) |
| 1138 | goto semopout; |
| 1139 | #endif |
| 1140 | |
| 1141 | /* |
| 1142 | * Loop trying to satisfy the vector of requests. |
| 1143 | * If we reach a point where we must wait, any requests already |
| 1144 | * performed are rolled back and we go to sleep until some other |
| 1145 | * process wakes us up. At this point, we start all over again. |
| 1146 | * |
| 1147 | * This ensures that from the perspective of other tasks, a set |
| 1148 | * of requests is atomic (never partially satisfied). |
| 1149 | */ |
| 1150 | do_undos = 0; |
| 1151 | |
| 1152 | for (;;) { |
| 1153 | do_wakeup = 0; |
| 1154 | |
| 1155 | for (i = 0; i < nsops; i++) { |
| 1156 | sopptr = &sops[i]; |
| 1157 | |
| 1158 | if (sopptr->sem_num >= semakptr->u.sem_nsems) { |
| 1159 | eval = EFBIG; |
| 1160 | goto semopout; |
| 1161 | } |
| 1162 | |
| 1163 | semptr = &semakptr->u.sem_base[sopptr->sem_num]; |
| 1164 | |
| 1165 | #ifdef SEM_DEBUG |
| 1166 | printf("semop: semakptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n" , |
| 1167 | semakptr, semakptr->u.sem_base, semptr, |
| 1168 | sopptr->sem_num, semptr->semval, sopptr->sem_op, |
| 1169 | (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait" ); |
| 1170 | #endif |
| 1171 | |
| 1172 | if (sopptr->sem_op < 0) { |
| 1173 | if (semptr->semval + sopptr->sem_op < 0) { |
| 1174 | #ifdef SEM_DEBUG |
| 1175 | printf("semop: can't do it now\n" ); |
| 1176 | #endif |
| 1177 | break; |
| 1178 | } else { |
| 1179 | semptr->semval += sopptr->sem_op; |
| 1180 | if (semptr->semval == 0 && |
| 1181 | semptr->semzcnt > 0) |
| 1182 | do_wakeup = 1; |
| 1183 | } |
| 1184 | if (sopptr->sem_flg & SEM_UNDO) |
| 1185 | do_undos = 1; |
| 1186 | } else if (sopptr->sem_op == 0) { |
| 1187 | if (semptr->semval > 0) { |
| 1188 | #ifdef SEM_DEBUG |
| 1189 | printf("semop: not zero now\n" ); |
| 1190 | #endif |
| 1191 | break; |
| 1192 | } |
| 1193 | } else { |
| 1194 | if (semptr->semncnt > 0) |
| 1195 | do_wakeup = 1; |
| 1196 | semptr->semval += sopptr->sem_op; |
| 1197 | if (sopptr->sem_flg & SEM_UNDO) |
| 1198 | do_undos = 1; |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | /* |
| 1203 | * Did we get through the entire vector? |
| 1204 | */ |
| 1205 | if (i >= nsops) |
| 1206 | goto done; |
| 1207 | |
| 1208 | /* |
| 1209 | * No ... rollback anything that we've already done |
| 1210 | */ |
| 1211 | #ifdef SEM_DEBUG |
| 1212 | printf("semop: rollback 0 through %d\n" , i-1); |
| 1213 | #endif |
| 1214 | for (j = 0; j < i; j++) |
| 1215 | semakptr->u.sem_base[sops[j].sem_num].semval -= |
| 1216 | sops[j].sem_op; |
| 1217 | |
| 1218 | /* |
| 1219 | * If the request that we couldn't satisfy has the |
| 1220 | * NOWAIT flag set then return with EAGAIN. |
| 1221 | */ |
| 1222 | if (sopptr->sem_flg & IPC_NOWAIT) { |
| 1223 | eval = EAGAIN; |
| 1224 | goto semopout; |
| 1225 | } |
| 1226 | |
| 1227 | if (sopptr->sem_op == 0) |
| 1228 | semptr->semzcnt++; |
| 1229 | else |
| 1230 | semptr->semncnt++; |
| 1231 | |
| 1232 | #ifdef SEM_DEBUG |
| 1233 | printf("semop: good night!\n" ); |
| 1234 | #endif |
| 1235 | /* Release our lock on the semaphore subsystem so |
| 1236 | * another thread can get at the semaphore we are |
| 1237 | * waiting for. We will get the lock back after we |
| 1238 | * wake up. |
| 1239 | */ |
| 1240 | eval = msleep((caddr_t)semakptr, &sysv_sem_subsys_mutex , (PZERO - 4) | PCATCH, |
| 1241 | "semwait" , 0); |
| 1242 | |
| 1243 | #ifdef SEM_DEBUG |
| 1244 | printf("semop: good morning (eval=%d)!\n" , eval); |
| 1245 | #endif |
| 1246 | if (eval != 0) { |
| 1247 | eval = EINTR; |
| 1248 | } |
| 1249 | |
| 1250 | /* |
| 1251 | * IMPORTANT: while we were asleep, the semaphore array might |
| 1252 | * have been reallocated somewhere else (see grow_sema_array()). |
| 1253 | * When we wake up, we have to re-lookup the semaphore |
| 1254 | * structures and re-validate them. |
| 1255 | */ |
| 1256 | |
| 1257 | semptr = NULL; |
| 1258 | |
| 1259 | /* |
| 1260 | * Make sure that the semaphore still exists |
| 1261 | * |
| 1262 | * XXX POSIX: Third test this 'if' and 'EINTR' precedence may |
| 1263 | * fail testing; if so, we will need to revert this code. |
| 1264 | */ |
| 1265 | semakptr = &sema[semid]; /* sema may have been reallocated */ |
| 1266 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 || |
| 1267 | semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid) || |
| 1268 | sopptr->sem_num >= semakptr->u.sem_nsems) { |
| 1269 | /* The man page says to return EIDRM. */ |
| 1270 | /* Unfortunately, BSD doesn't define that code! */ |
| 1271 | if (eval == EINTR) { |
| 1272 | /* |
| 1273 | * EINTR takes precedence over the fact that |
| 1274 | * the semaphore disappeared while we were |
| 1275 | * sleeping... |
| 1276 | */ |
| 1277 | } else { |
| 1278 | #ifdef EIDRM |
| 1279 | eval = EIDRM; |
| 1280 | #else |
| 1281 | eval = EINVAL; /* Ancient past */ |
| 1282 | #endif |
| 1283 | } |
| 1284 | goto semopout; |
| 1285 | } |
| 1286 | |
| 1287 | /* |
| 1288 | * The semaphore is still alive. Readjust the count of |
| 1289 | * waiting processes. semptr needs to be recomputed |
| 1290 | * because the sem[] may have been reallocated while |
| 1291 | * we were sleeping, updating our sem_base pointer. |
| 1292 | */ |
| 1293 | semptr = &semakptr->u.sem_base[sopptr->sem_num]; |
| 1294 | if (sopptr->sem_op == 0) |
| 1295 | semptr->semzcnt--; |
| 1296 | else |
| 1297 | semptr->semncnt--; |
| 1298 | |
| 1299 | if (eval != 0) { /* EINTR */ |
| 1300 | goto semopout; |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | done: |
| 1305 | /* |
| 1306 | * Process any SEM_UNDO requests. |
| 1307 | */ |
| 1308 | if (do_undos) { |
| 1309 | for (i = 0; i < nsops; i++) { |
| 1310 | /* |
| 1311 | * We only need to deal with SEM_UNDO's for non-zero |
| 1312 | * op's. |
| 1313 | */ |
| 1314 | int adjval; |
| 1315 | |
| 1316 | if ((sops[i].sem_flg & SEM_UNDO) == 0) |
| 1317 | continue; |
| 1318 | adjval = sops[i].sem_op; |
| 1319 | if (adjval == 0) |
| 1320 | continue; |
| 1321 | eval = semundo_adjust(p, &supidx, semid, |
| 1322 | sops[i].sem_num, -adjval); |
| 1323 | if (eval == 0) |
| 1324 | continue; |
| 1325 | |
| 1326 | /* |
| 1327 | * Oh-Oh! We ran out of either sem_undo's or undo's. |
| 1328 | * Rollback the adjustments to this point and then |
| 1329 | * rollback the semaphore ups and down so we can return |
| 1330 | * with an error with all structures restored. We |
| 1331 | * rollback the undo's in the exact reverse order that |
| 1332 | * we applied them. This guarantees that we won't run |
| 1333 | * out of space as we roll things back out. |
| 1334 | */ |
| 1335 | for (j = i - 1; j >= 0; j--) { |
| 1336 | if ((sops[j].sem_flg & SEM_UNDO) == 0) |
| 1337 | continue; |
| 1338 | adjval = sops[j].sem_op; |
| 1339 | if (adjval == 0) |
| 1340 | continue; |
| 1341 | if (semundo_adjust(p, &supidx, semid, |
| 1342 | sops[j].sem_num, adjval) != 0) |
| 1343 | panic("semop - can't undo undos" ); |
| 1344 | } |
| 1345 | |
| 1346 | for (j = 0; j < nsops; j++) |
| 1347 | semakptr->u.sem_base[sops[j].sem_num].semval -= |
| 1348 | sops[j].sem_op; |
| 1349 | |
| 1350 | #ifdef SEM_DEBUG |
| 1351 | printf("eval = %d from semundo_adjust\n" , eval); |
| 1352 | #endif |
| 1353 | goto semopout; |
| 1354 | } /* loop through the sops */ |
| 1355 | } /* if (do_undos) */ |
| 1356 | |
| 1357 | /* We're definitely done - set the sempid's */ |
| 1358 | for (i = 0; i < nsops; i++) { |
| 1359 | sopptr = &sops[i]; |
| 1360 | semptr = &semakptr->u.sem_base[sopptr->sem_num]; |
| 1361 | semptr->sempid = p->p_pid; |
| 1362 | } |
| 1363 | semakptr->u.sem_otime = sysv_semtime(); |
| 1364 | |
| 1365 | if (do_wakeup) { |
| 1366 | #ifdef SEM_DEBUG |
| 1367 | printf("semop: doing wakeup\n" ); |
| 1368 | #ifdef SEM_WAKEUP |
| 1369 | sem_wakeup((caddr_t)semakptr); |
| 1370 | #else |
| 1371 | wakeup((caddr_t)semakptr); |
| 1372 | #endif |
| 1373 | printf("semop: back from wakeup\n" ); |
| 1374 | #else |
| 1375 | wakeup((caddr_t)semakptr); |
| 1376 | #endif |
| 1377 | } |
| 1378 | #ifdef SEM_DEBUG |
| 1379 | printf("semop: done\n" ); |
| 1380 | #endif |
| 1381 | *retval = 0; |
| 1382 | eval = 0; |
| 1383 | semopout: |
| 1384 | SYSV_SEM_SUBSYS_UNLOCK(); |
| 1385 | return(eval); |
| 1386 | } |
| 1387 | |
| 1388 | /* |
| 1389 | * Go through the undo structures for this process and apply the adjustments to |
| 1390 | * semaphores. |
| 1391 | */ |
| 1392 | void |
| 1393 | semexit(struct proc *p) |
| 1394 | { |
| 1395 | struct sem_undo *suptr = NULL; |
| 1396 | int suidx; |
| 1397 | int *supidx; |
| 1398 | int did_something; |
| 1399 | |
| 1400 | /* If we have not allocated our semaphores yet there can't be |
| 1401 | * anything to undo, but we need the lock to prevent |
| 1402 | * dynamic memory race conditions. |
| 1403 | */ |
| 1404 | SYSV_SEM_SUBSYS_LOCK(); |
| 1405 | |
| 1406 | if (!sem_pool) |
| 1407 | { |
| 1408 | SYSV_SEM_SUBSYS_UNLOCK(); |
| 1409 | return; |
| 1410 | } |
| 1411 | did_something = 0; |
| 1412 | |
| 1413 | /* |
| 1414 | * Go through the chain of undo vectors looking for one |
| 1415 | * associated with this process. |
| 1416 | */ |
| 1417 | |
| 1418 | for (supidx = &semu_list_idx; (suidx = *supidx) != -1; |
| 1419 | supidx = &suptr->un_next_idx) { |
| 1420 | suptr = SEMU(suidx); |
| 1421 | if (suptr->un_proc == p) |
| 1422 | break; |
| 1423 | } |
| 1424 | |
| 1425 | if (suidx == -1) |
| 1426 | goto unlock; |
| 1427 | |
| 1428 | #ifdef SEM_DEBUG |
| 1429 | printf("proc @%08x has undo structure with %d entries\n" , p, |
| 1430 | suptr->un_cnt); |
| 1431 | #endif |
| 1432 | |
| 1433 | /* |
| 1434 | * If there are any active undo elements then process them. |
| 1435 | */ |
| 1436 | if (suptr->un_cnt > 0) { |
| 1437 | while (suptr->un_ent != NULL) { |
| 1438 | struct undo *sueptr; |
| 1439 | int semid; |
| 1440 | int semnum; |
| 1441 | int adjval; |
| 1442 | struct semid_kernel *semakptr; |
| 1443 | |
| 1444 | sueptr = suptr->un_ent; |
| 1445 | semid = sueptr->une_id; |
| 1446 | semnum = sueptr->une_num; |
| 1447 | adjval = sueptr->une_adjval; |
| 1448 | |
| 1449 | semakptr = &sema[semid]; |
| 1450 | if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) |
| 1451 | panic("semexit - semid not allocated" ); |
| 1452 | if (semnum >= semakptr->u.sem_nsems) |
| 1453 | panic("semexit - semnum out of range" ); |
| 1454 | |
| 1455 | #ifdef SEM_DEBUG |
| 1456 | printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n" , |
| 1457 | suptr->un_proc, |
| 1458 | semid, |
| 1459 | semnum, |
| 1460 | adjval, |
| 1461 | semakptr->u.sem_base[semnum].semval); |
| 1462 | #endif |
| 1463 | |
| 1464 | if (adjval < 0) { |
| 1465 | if (semakptr->u.sem_base[semnum].semval < -adjval) |
| 1466 | semakptr->u.sem_base[semnum].semval = 0; |
| 1467 | else |
| 1468 | semakptr->u.sem_base[semnum].semval += |
| 1469 | adjval; |
| 1470 | } else |
| 1471 | semakptr->u.sem_base[semnum].semval += adjval; |
| 1472 | |
| 1473 | /* Maybe we should build a list of semakptr's to wake |
| 1474 | * up, finish all access to data structures, release the |
| 1475 | * subsystem lock, and wake all the processes. Something |
| 1476 | * to think about. |
| 1477 | */ |
| 1478 | #ifdef SEM_WAKEUP |
| 1479 | sem_wakeup((caddr_t)semakptr); |
| 1480 | #else |
| 1481 | wakeup((caddr_t)semakptr); |
| 1482 | #endif |
| 1483 | #ifdef SEM_DEBUG |
| 1484 | printf("semexit: back from wakeup\n" ); |
| 1485 | #endif |
| 1486 | suptr->un_cnt--; |
| 1487 | suptr->un_ent = sueptr->une_next; |
| 1488 | FREE(sueptr, M_SYSVSEM); |
| 1489 | sueptr = NULL; |
| 1490 | } |
| 1491 | } |
| 1492 | |
| 1493 | /* |
| 1494 | * Deallocate the undo vector. |
| 1495 | */ |
| 1496 | #ifdef SEM_DEBUG |
| 1497 | printf("removing vector\n" ); |
| 1498 | #endif |
| 1499 | suptr->un_proc = NULL; |
| 1500 | *supidx = suptr->un_next_idx; |
| 1501 | |
| 1502 | unlock: |
| 1503 | /* |
| 1504 | * There is a semaphore leak (i.e. memory leak) in this code. |
| 1505 | * We should be deleting the IPC_PRIVATE semaphores when they are |
| 1506 | * no longer needed, and we dont. We would have to track which processes |
| 1507 | * know about which IPC_PRIVATE semaphores, updating the list after |
| 1508 | * every fork. We can't just delete them semaphore when the process |
| 1509 | * that created it dies, because that process may well have forked |
| 1510 | * some children. So we need to wait until all of it's children have |
| 1511 | * died, and so on. Maybe we should tag each IPC_PRIVATE sempahore |
| 1512 | * with the creating group ID, count the number of processes left in |
| 1513 | * that group, and delete the semaphore when the group is gone. |
| 1514 | * Until that code gets implemented we will leak IPC_PRIVATE semaphores. |
| 1515 | * There is an upper bound on the size of our semaphore array, so |
| 1516 | * leaking the semaphores should not work as a DOS attack. |
| 1517 | * |
| 1518 | * Please note that the original BSD code this file is based on had the |
| 1519 | * same leaky semaphore problem. |
| 1520 | */ |
| 1521 | |
| 1522 | SYSV_SEM_SUBSYS_UNLOCK(); |
| 1523 | } |
| 1524 | |
| 1525 | |
| 1526 | /* (struct sysctl_oid *oidp, void *arg1, int arg2, \ |
| 1527 | struct sysctl_req *req) */ |
| 1528 | static int |
| 1529 | sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1, |
| 1530 | __unused int arg2, struct sysctl_req *req) |
| 1531 | { |
| 1532 | int error = 0; |
| 1533 | |
| 1534 | error = SYSCTL_OUT(req, arg1, sizeof(int)); |
| 1535 | if (error || req->newptr == USER_ADDR_NULL) |
| 1536 | return(error); |
| 1537 | |
| 1538 | SYSV_SEM_SUBSYS_LOCK(); |
| 1539 | |
| 1540 | /* Set the values only if shared memory is not initialised */ |
| 1541 | if ((sem_pool == NULL) && |
| 1542 | (sema == NULL) && |
| 1543 | (semu == NULL) && |
| 1544 | (semu_list_idx == -1)) { |
| 1545 | if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) { |
| 1546 | goto out; |
| 1547 | } |
| 1548 | } else |
| 1549 | error = EINVAL; |
| 1550 | out: |
| 1551 | SYSV_SEM_SUBSYS_UNLOCK(); |
| 1552 | return(error); |
| 1553 | |
| 1554 | } |
| 1555 | |
| 1556 | /* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */ |
| 1557 | extern struct sysctl_oid_list sysctl__kern_sysv_children; |
| 1558 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmni, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 1559 | &limitseminfo.semmni, 0, &sysctl_seminfo ,"I" ,"semmni" ); |
| 1560 | |
| 1561 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmns, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 1562 | &limitseminfo.semmns, 0, &sysctl_seminfo ,"I" ,"semmns" ); |
| 1563 | |
| 1564 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmnu, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 1565 | &limitseminfo.semmnu, 0, &sysctl_seminfo ,"I" ,"semmnu" ); |
| 1566 | |
| 1567 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semmsl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 1568 | &limitseminfo.semmsl, 0, &sysctl_seminfo ,"I" ,"semmsl" ); |
| 1569 | |
| 1570 | SYSCTL_PROC(_kern_sysv, OID_AUTO, semume, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 1571 | &limitseminfo.semume, 0, &sysctl_seminfo ,"I" ,"semume" ); |
| 1572 | |
| 1573 | |
| 1574 | static int |
| 1575 | IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1, |
| 1576 | __unused int arg2, struct sysctl_req *req) |
| 1577 | { |
| 1578 | int error; |
| 1579 | int cursor; |
| 1580 | union { |
| 1581 | struct user32_IPCS_command u32; |
| 1582 | struct user_IPCS_command u64; |
| 1583 | } ipcs; |
| 1584 | struct user32_semid_ds semid_ds32; /* post conversion, 32 bit version */ |
| 1585 | struct user64_semid_ds semid_ds64; /* post conversion, 64 bit version */ |
| 1586 | void *semid_dsp; |
| 1587 | size_t ipcs_sz; |
| 1588 | size_t semid_ds_sz; |
| 1589 | struct proc *p = current_proc(); |
| 1590 | |
| 1591 | if (IS_64BIT_PROCESS(p)) { |
| 1592 | ipcs_sz = sizeof(struct user_IPCS_command); |
| 1593 | semid_ds_sz = sizeof(struct user64_semid_ds); |
| 1594 | } else { |
| 1595 | ipcs_sz = sizeof(struct user32_IPCS_command); |
| 1596 | semid_ds_sz = sizeof(struct user32_semid_ds); |
| 1597 | } |
| 1598 | |
| 1599 | /* Copy in the command structure */ |
| 1600 | if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) { |
| 1601 | return(error); |
| 1602 | } |
| 1603 | |
| 1604 | if (!IS_64BIT_PROCESS(p)) /* convert in place */ |
| 1605 | ipcs.u64.ipcs_data = CAST_USER_ADDR_T(ipcs.u32.ipcs_data); |
| 1606 | |
| 1607 | /* Let us version this interface... */ |
| 1608 | if (ipcs.u64.ipcs_magic != IPCS_MAGIC) { |
| 1609 | return(EINVAL); |
| 1610 | } |
| 1611 | |
| 1612 | SYSV_SEM_SUBSYS_LOCK(); |
| 1613 | switch(ipcs.u64.ipcs_op) { |
| 1614 | case IPCS_SEM_CONF: /* Obtain global configuration data */ |
| 1615 | if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) { |
| 1616 | error = ERANGE; |
| 1617 | break; |
| 1618 | } |
| 1619 | if (ipcs.u64.ipcs_cursor != 0) { /* fwd. compat. */ |
| 1620 | error = EINVAL; |
| 1621 | break; |
| 1622 | } |
| 1623 | error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen); |
| 1624 | break; |
| 1625 | |
| 1626 | case IPCS_SEM_ITER: /* Iterate over existing segments */ |
| 1627 | cursor = ipcs.u64.ipcs_cursor; |
| 1628 | if (cursor < 0 || cursor >= seminfo.semmni) { |
| 1629 | error = ERANGE; |
| 1630 | break; |
| 1631 | } |
| 1632 | if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz ) { |
| 1633 | error = EINVAL; |
| 1634 | break; |
| 1635 | } |
| 1636 | for( ; cursor < seminfo.semmni; cursor++) { |
| 1637 | if (sema[cursor].u.sem_perm.mode & SEM_ALLOC) |
| 1638 | break; |
| 1639 | continue; |
| 1640 | } |
| 1641 | if (cursor == seminfo.semmni) { |
| 1642 | error = ENOENT; |
| 1643 | break; |
| 1644 | } |
| 1645 | |
| 1646 | semid_dsp = &sema[cursor].u; /* default: 64 bit */ |
| 1647 | |
| 1648 | /* |
| 1649 | * If necessary, convert the 64 bit kernel segment |
| 1650 | * descriptor to a 32 bit user one. |
| 1651 | */ |
| 1652 | if (!IS_64BIT_PROCESS(p)) { |
| 1653 | bzero(&semid_ds32, sizeof(semid_ds32)); |
| 1654 | semid_ds_kernelto32(semid_dsp, &semid_ds32); |
| 1655 | semid_dsp = &semid_ds32; |
| 1656 | } else { |
| 1657 | bzero(&semid_ds64, sizeof(semid_ds64)); |
| 1658 | semid_ds_kernelto64(semid_dsp, &semid_ds64); |
| 1659 | semid_dsp = &semid_ds64; |
| 1660 | } |
| 1661 | |
| 1662 | error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen); |
| 1663 | if (!error) { |
| 1664 | /* update cursor */ |
| 1665 | ipcs.u64.ipcs_cursor = cursor + 1; |
| 1666 | |
| 1667 | if (!IS_64BIT_PROCESS(p)) /* convert in place */ |
| 1668 | ipcs.u32.ipcs_data = CAST_DOWN_EXPLICIT(user32_addr_t,ipcs.u64.ipcs_data); |
| 1669 | |
| 1670 | error = SYSCTL_OUT(req, &ipcs, ipcs_sz); |
| 1671 | } |
| 1672 | break; |
| 1673 | |
| 1674 | default: |
| 1675 | error = EINVAL; |
| 1676 | break; |
| 1677 | } |
| 1678 | SYSV_SEM_SUBSYS_UNLOCK(); |
| 1679 | return(error); |
| 1680 | } |
| 1681 | |
| 1682 | SYSCTL_DECL(_kern_sysv_ipcs); |
| 1683 | SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, |
| 1684 | 0, 0, IPCS_sem_sysctl, |
| 1685 | "S,IPCS_sem_command" , |
| 1686 | "ipcs sem command interface" ); |
| 1687 | |
| 1688 | #endif /* SYSV_SEM */ |
| 1689 | |