| 1 | /* |
| 2 | * Copyright (c) 1996 John S. Dyson |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice immediately at the beginning of the file, without modification, |
| 10 | * this list of conditions, and the following disclaimer. |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in the |
| 13 | * documentation and/or other materials provided with the distribution. |
| 14 | * 3. Absolutely no warranty of function or purpose is made by the author |
| 15 | * John S. Dyson. |
| 16 | * 4. Modifications may be freely made to this file if the above conditions |
| 17 | * are met. |
| 18 | */ |
| 19 | /* |
| 20 | * Copyright (c) 2003-2014 Apple Inc. All rights reserved. |
| 21 | * |
| 22 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 23 | * |
| 24 | * This file contains Original Code and/or Modifications of Original Code |
| 25 | * as defined in and that are subject to the Apple Public Source License |
| 26 | * Version 2.0 (the 'License'). You may not use this file except in |
| 27 | * compliance with the License. The rights granted to you under the License |
| 28 | * may not be used to create, or enable the creation or redistribution of, |
| 29 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 30 | * circumvent, violate, or enable the circumvention or violation of, any |
| 31 | * terms of an Apple operating system software license agreement. |
| 32 | * |
| 33 | * Please obtain a copy of the License at |
| 34 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 35 | * |
| 36 | * The Original Code and all software distributed under the License are |
| 37 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 38 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 39 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 40 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 41 | * Please see the License for the specific language governing rights and |
| 42 | * limitations under the License. |
| 43 | * |
| 44 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 45 | */ |
| 46 | /* |
| 47 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 48 | * support for mandatory and extensible security protections. This notice |
| 49 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 50 | * Version 2.0. |
| 51 | */ |
| 52 | |
| 53 | /* |
| 54 | * This file contains a high-performance replacement for the socket-based |
| 55 | * pipes scheme originally used in FreeBSD/4.4Lite. It does not support |
| 56 | * all features of sockets, but does do everything that pipes normally |
| 57 | * do. |
| 58 | * |
| 59 | * Pipes are implemented as circular buffers. Following are the valid states in pipes operations |
| 60 | * |
| 61 | * _________________________________ |
| 62 | * 1. |_________________________________| r=w, c=0 |
| 63 | * |
| 64 | * _________________________________ |
| 65 | * 2. |__r:::::wc_______________________| r <= w , c > 0 |
| 66 | * |
| 67 | * _________________________________ |
| 68 | * 3. |::::wc_____r:::::::::::::::::::::| r>w , c > 0 |
| 69 | * |
| 70 | * _________________________________ |
| 71 | * 4. |:::::::wrc:::::::::::::::::::::::| w=r, c = Max size |
| 72 | * |
| 73 | * |
| 74 | * Nomenclature:- |
| 75 | * a-z define the steps in a program flow |
| 76 | * 1-4 are the states as defined aboe |
| 77 | * Action: is what file operation is done on the pipe |
| 78 | * |
| 79 | * Current:None Action: initialize with size M=200 |
| 80 | * a. State 1 ( r=0, w=0, c=0) |
| 81 | * |
| 82 | * Current: a Action: write(100) (w < M) |
| 83 | * b. State 2 (r=0, w=100, c=100) |
| 84 | * |
| 85 | * Current: b Action: write(100) (w = M-w) |
| 86 | * c. State 4 (r=0,w=0,c=200) |
| 87 | * |
| 88 | * Current: b Action: read(70) ( r < c ) |
| 89 | * d. State 2(r=70,w=100,c=30) |
| 90 | * |
| 91 | * Current: d Action: write(75) ( w < (m-w)) |
| 92 | * e. State 2 (r=70,w=175,c=105) |
| 93 | * |
| 94 | * Current: d Action: write(110) ( w > (m-w)) |
| 95 | * f. State 3 (r=70,w=10,c=140) |
| 96 | * |
| 97 | * Current: d Action: read(30) (r >= c ) |
| 98 | * g. State 1 (r=100,w=100,c=0) |
| 99 | * |
| 100 | */ |
| 101 | |
| 102 | /* |
| 103 | * This code create half duplex pipe buffers for facilitating file like |
| 104 | * operations on pipes. The initial buffer is very small, but this can |
| 105 | * dynamically change to larger sizes based on usage. The buffer size is never |
| 106 | * reduced. The total amount of kernel memory used is governed by maxpipekva. |
| 107 | * In case of dynamic expansion limit is reached, the output thread is blocked |
| 108 | * until the pipe buffer empties enough to continue. |
| 109 | * |
| 110 | * In order to limit the resource use of pipes, two sysctls exist: |
| 111 | * |
| 112 | * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable |
| 113 | * address space available to us in pipe_map. |
| 114 | * |
| 115 | * Memory usage may be monitored through the sysctls |
| 116 | * kern.ipc.pipes, kern.ipc.pipekva. |
| 117 | * |
| 118 | */ |
| 119 | |
| 120 | #include <sys/param.h> |
| 121 | #include <sys/systm.h> |
| 122 | #include <sys/filedesc.h> |
| 123 | #include <sys/kernel.h> |
| 124 | #include <sys/vnode.h> |
| 125 | #include <sys/proc_internal.h> |
| 126 | #include <sys/kauth.h> |
| 127 | #include <sys/file_internal.h> |
| 128 | #include <sys/stat.h> |
| 129 | #include <sys/ioctl.h> |
| 130 | #include <sys/fcntl.h> |
| 131 | #include <sys/malloc.h> |
| 132 | #include <sys/syslog.h> |
| 133 | #include <sys/unistd.h> |
| 134 | #include <sys/resourcevar.h> |
| 135 | #include <sys/aio_kern.h> |
| 136 | #include <sys/signalvar.h> |
| 137 | #include <sys/pipe.h> |
| 138 | #include <sys/sysproto.h> |
| 139 | #include <sys/proc_info.h> |
| 140 | |
| 141 | #include <security/audit/audit.h> |
| 142 | |
| 143 | #include <sys/kdebug.h> |
| 144 | |
| 145 | #include <kern/zalloc.h> |
| 146 | #include <kern/kalloc.h> |
| 147 | #include <vm/vm_kern.h> |
| 148 | #include <libkern/OSAtomic.h> |
| 149 | #include <libkern/section_keywords.h> |
| 150 | |
| 151 | #if CONFIG_MACF |
| 152 | #include <security/mac_framework.h> |
| 153 | #endif |
| 154 | |
| 155 | #define f_flag f_fglob->fg_flag |
| 156 | #define f_msgcount f_fglob->fg_msgcount |
| 157 | #define f_cred f_fglob->fg_cred |
| 158 | #define f_ops f_fglob->fg_ops |
| 159 | #define f_offset f_fglob->fg_offset |
| 160 | #define f_data f_fglob->fg_data |
| 161 | |
| 162 | /* |
| 163 | * interfaces to the outside world exported through file operations |
| 164 | */ |
| 165 | static int pipe_read(struct fileproc *fp, struct uio *uio, |
| 166 | int flags, vfs_context_t ctx); |
| 167 | static int pipe_write(struct fileproc *fp, struct uio *uio, |
| 168 | int flags, vfs_context_t ctx); |
| 169 | static int pipe_close(struct fileglob *fg, vfs_context_t ctx); |
| 170 | static int pipe_select(struct fileproc *fp, int which, void * wql, |
| 171 | vfs_context_t ctx); |
| 172 | static int pipe_kqfilter(struct fileproc *fp, struct knote *kn, |
| 173 | struct kevent_internal_s *kev, vfs_context_t ctx); |
| 174 | static int pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, |
| 175 | vfs_context_t ctx); |
| 176 | static int pipe_drain(struct fileproc *fp,vfs_context_t ctx); |
| 177 | |
| 178 | static const struct fileops pipeops = { |
| 179 | .fo_type = DTYPE_PIPE, |
| 180 | .fo_read = pipe_read, |
| 181 | .fo_write = pipe_write, |
| 182 | .fo_ioctl = pipe_ioctl, |
| 183 | .fo_select = pipe_select, |
| 184 | .fo_close = pipe_close, |
| 185 | .fo_kqfilter = pipe_kqfilter, |
| 186 | .fo_drain = pipe_drain, |
| 187 | }; |
| 188 | |
| 189 | static void filt_pipedetach(struct knote *kn); |
| 190 | |
| 191 | static int filt_piperead(struct knote *kn, long hint); |
| 192 | static int filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev); |
| 193 | static int filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); |
| 194 | |
| 195 | static int filt_pipewrite(struct knote *kn, long hint); |
| 196 | static int filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev); |
| 197 | static int filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); |
| 198 | |
| 199 | SECURITY_READ_ONLY_EARLY(struct filterops) pipe_rfiltops = { |
| 200 | .f_isfd = 1, |
| 201 | .f_detach = filt_pipedetach, |
| 202 | .f_event = filt_piperead, |
| 203 | .f_touch = filt_pipereadtouch, |
| 204 | .f_process = filt_pipereadprocess, |
| 205 | }; |
| 206 | |
| 207 | SECURITY_READ_ONLY_EARLY(struct filterops) pipe_wfiltops = { |
| 208 | .f_isfd = 1, |
| 209 | .f_detach = filt_pipedetach, |
| 210 | .f_event = filt_pipewrite, |
| 211 | .f_touch = filt_pipewritetouch, |
| 212 | .f_process = filt_pipewriteprocess, |
| 213 | }; |
| 214 | |
| 215 | static int nbigpipe; /* for compatibility sake. no longer used */ |
| 216 | static int amountpipes; /* total number of pipes in system */ |
| 217 | static int amountpipekva; /* total memory used by pipes */ |
| 218 | |
| 219 | int maxpipekva __attribute__((used)) = PIPE_KVAMAX; /* allowing 16MB max. */ |
| 220 | |
| 221 | #if PIPE_SYSCTLS |
| 222 | SYSCTL_DECL(_kern_ipc); |
| 223 | |
| 224 | SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD|CTLFLAG_LOCKED, |
| 225 | &maxpipekva, 0, "Pipe KVA limit" ); |
| 226 | SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW|CTLFLAG_LOCKED, |
| 227 | &maxpipekvawired, 0, "Pipe KVA wired limit" ); |
| 228 | SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD|CTLFLAG_LOCKED, |
| 229 | &amountpipes, 0, "Current # of pipes" ); |
| 230 | SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD|CTLFLAG_LOCKED, |
| 231 | &nbigpipe, 0, "Current # of big pipes" ); |
| 232 | SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD|CTLFLAG_LOCKED, |
| 233 | &amountpipekva, 0, "Pipe KVA usage" ); |
| 234 | SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD|CTLFLAG_LOCKED, |
| 235 | &amountpipekvawired, 0, "Pipe wired KVA usage" ); |
| 236 | #endif |
| 237 | |
| 238 | static void pipeclose(struct pipe *cpipe); |
| 239 | static void pipe_free_kmem(struct pipe *cpipe); |
| 240 | static int pipe_create(struct pipe **cpipep); |
| 241 | static int pipespace(struct pipe *cpipe, int size); |
| 242 | static int choose_pipespace(unsigned long current, unsigned long expected); |
| 243 | static int expand_pipespace(struct pipe *p, int target_size); |
| 244 | static void pipeselwakeup(struct pipe *cpipe, struct pipe *spipe); |
| 245 | static __inline int pipeio_lock(struct pipe *cpipe, int catch); |
| 246 | static __inline void pipeio_unlock(struct pipe *cpipe); |
| 247 | |
| 248 | extern int postpipeevent(struct pipe *, int); |
| 249 | extern void evpipefree(struct pipe *cpipe); |
| 250 | |
| 251 | static lck_grp_t *pipe_mtx_grp; |
| 252 | static lck_attr_t *pipe_mtx_attr; |
| 253 | static lck_grp_attr_t *pipe_mtx_grp_attr; |
| 254 | |
| 255 | static zone_t pipe_zone; |
| 256 | |
| 257 | #define MAX_PIPESIZE(pipe) ( MAX(PIPE_SIZE, (pipe)->pipe_buffer.size) ) |
| 258 | |
| 259 | #define PIPE_GARBAGE_AGE_LIMIT 5000 /* In milliseconds */ |
| 260 | #define PIPE_GARBAGE_QUEUE_LIMIT 32000 |
| 261 | |
| 262 | struct pipe_garbage { |
| 263 | struct pipe *pg_pipe; |
| 264 | struct pipe_garbage *pg_next; |
| 265 | uint64_t pg_timestamp; |
| 266 | }; |
| 267 | |
| 268 | static zone_t pipe_garbage_zone; |
| 269 | static struct pipe_garbage *pipe_garbage_head = NULL; |
| 270 | static struct pipe_garbage *pipe_garbage_tail = NULL; |
| 271 | static uint64_t pipe_garbage_age_limit = PIPE_GARBAGE_AGE_LIMIT; |
| 272 | static int pipe_garbage_count = 0; |
| 273 | static lck_mtx_t *pipe_garbage_lock; |
| 274 | static void pipe_garbage_collect(struct pipe *cpipe); |
| 275 | |
| 276 | SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL); |
| 277 | |
| 278 | /* initial setup done at time of sysinit */ |
| 279 | void |
| 280 | pipeinit(void) |
| 281 | { |
| 282 | nbigpipe=0; |
| 283 | vm_size_t zone_size; |
| 284 | |
| 285 | zone_size = 8192 * sizeof(struct pipe); |
| 286 | pipe_zone = zinit(sizeof(struct pipe), zone_size, 4096, "pipe zone" ); |
| 287 | |
| 288 | |
| 289 | /* allocate lock group attribute and group for pipe mutexes */ |
| 290 | pipe_mtx_grp_attr = lck_grp_attr_alloc_init(); |
| 291 | pipe_mtx_grp = lck_grp_alloc_init("pipe" , pipe_mtx_grp_attr); |
| 292 | |
| 293 | /* allocate the lock attribute for pipe mutexes */ |
| 294 | pipe_mtx_attr = lck_attr_alloc_init(); |
| 295 | |
| 296 | /* |
| 297 | * Set up garbage collection for dead pipes |
| 298 | */ |
| 299 | zone_size = (PIPE_GARBAGE_QUEUE_LIMIT + 20) * |
| 300 | sizeof(struct pipe_garbage); |
| 301 | pipe_garbage_zone = (zone_t)zinit(sizeof(struct pipe_garbage), |
| 302 | zone_size, 4096, "pipe garbage zone" ); |
| 303 | pipe_garbage_lock = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr); |
| 304 | |
| 305 | } |
| 306 | |
| 307 | #ifndef CONFIG_EMBEDDED |
| 308 | /* Bitmap for things to touch in pipe_touch() */ |
| 309 | #define PIPE_ATIME 0x00000001 /* time of last access */ |
| 310 | #define PIPE_MTIME 0x00000002 /* time of last modification */ |
| 311 | #define PIPE_CTIME 0x00000004 /* time of last status change */ |
| 312 | |
| 313 | static void |
| 314 | pipe_touch(struct pipe *tpipe, int touch) |
| 315 | { |
| 316 | struct timespec now; |
| 317 | |
| 318 | nanotime(&now); |
| 319 | |
| 320 | if (touch & PIPE_ATIME) { |
| 321 | tpipe->st_atimespec.tv_sec = now.tv_sec; |
| 322 | tpipe->st_atimespec.tv_nsec = now.tv_nsec; |
| 323 | } |
| 324 | |
| 325 | if (touch & PIPE_MTIME) { |
| 326 | tpipe->st_mtimespec.tv_sec = now.tv_sec; |
| 327 | tpipe->st_mtimespec.tv_nsec = now.tv_nsec; |
| 328 | } |
| 329 | |
| 330 | if (touch & PIPE_CTIME) { |
| 331 | tpipe->st_ctimespec.tv_sec = now.tv_sec; |
| 332 | tpipe->st_ctimespec.tv_nsec = now.tv_nsec; |
| 333 | } |
| 334 | } |
| 335 | #endif |
| 336 | |
| 337 | static const unsigned int pipesize_blocks[] = {512,1024,2048,4096, 4096 * 2, PIPE_SIZE , PIPE_SIZE * 4 }; |
| 338 | |
| 339 | /* |
| 340 | * finds the right size from possible sizes in pipesize_blocks |
| 341 | * returns the size which matches max(current,expected) |
| 342 | */ |
| 343 | static int |
| 344 | choose_pipespace(unsigned long current, unsigned long expected) |
| 345 | { |
| 346 | int i = sizeof(pipesize_blocks)/sizeof(unsigned int) -1; |
| 347 | unsigned long target; |
| 348 | |
| 349 | /* |
| 350 | * assert that we always get an atomic transaction sized pipe buffer, |
| 351 | * even if the system pipe buffer high-water mark has been crossed. |
| 352 | */ |
| 353 | assert(PIPE_BUF == pipesize_blocks[0]); |
| 354 | |
| 355 | if (expected > current) |
| 356 | target = expected; |
| 357 | else |
| 358 | target = current; |
| 359 | |
| 360 | while ( i >0 && pipesize_blocks[i-1] > target) { |
| 361 | i=i-1; |
| 362 | |
| 363 | } |
| 364 | |
| 365 | return pipesize_blocks[i]; |
| 366 | } |
| 367 | |
| 368 | |
| 369 | /* |
| 370 | * expand the size of pipe while there is data to be read, |
| 371 | * and then free the old buffer once the current buffered |
| 372 | * data has been transferred to new storage. |
| 373 | * Required: PIPE_LOCK and io lock to be held by caller. |
| 374 | * returns 0 on success or no expansion possible |
| 375 | */ |
| 376 | static int |
| 377 | expand_pipespace(struct pipe *p, int target_size) |
| 378 | { |
| 379 | struct pipe tmp, oldpipe; |
| 380 | int error; |
| 381 | tmp.pipe_buffer.buffer = 0; |
| 382 | |
| 383 | if (p->pipe_buffer.size >= (unsigned) target_size) { |
| 384 | return 0; /* the existing buffer is max size possible */ |
| 385 | } |
| 386 | |
| 387 | /* create enough space in the target */ |
| 388 | error = pipespace(&tmp, target_size); |
| 389 | if (error != 0) |
| 390 | return (error); |
| 391 | |
| 392 | oldpipe.pipe_buffer.buffer = p->pipe_buffer.buffer; |
| 393 | oldpipe.pipe_buffer.size = p->pipe_buffer.size; |
| 394 | |
| 395 | memcpy(tmp.pipe_buffer.buffer, p->pipe_buffer.buffer, p->pipe_buffer.size); |
| 396 | if (p->pipe_buffer.cnt > 0 && p->pipe_buffer.in <= p->pipe_buffer.out ){ |
| 397 | /* we are in State 3 and need extra copying for read to be consistent */ |
| 398 | memcpy(&tmp.pipe_buffer.buffer[p->pipe_buffer.size], p->pipe_buffer.buffer, p->pipe_buffer.size); |
| 399 | p->pipe_buffer.in += p->pipe_buffer.size; |
| 400 | } |
| 401 | |
| 402 | p->pipe_buffer.buffer = tmp.pipe_buffer.buffer; |
| 403 | p->pipe_buffer.size = tmp.pipe_buffer.size; |
| 404 | |
| 405 | |
| 406 | pipe_free_kmem(&oldpipe); |
| 407 | return 0; |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * The pipe system call for the DTYPE_PIPE type of pipes |
| 412 | * |
| 413 | * returns: |
| 414 | * FREAD | fd0 | -->[struct rpipe] --> |~~buffer~~| \ |
| 415 | * (pipe_mutex) |
| 416 | * FWRITE | fd1 | -->[struct wpipe] --X / |
| 417 | */ |
| 418 | |
| 419 | /* ARGSUSED */ |
| 420 | int |
| 421 | pipe(proc_t p, __unused struct pipe_args *uap, int32_t *retval) |
| 422 | { |
| 423 | struct fileproc *rf, *wf; |
| 424 | struct pipe *rpipe, *wpipe; |
| 425 | lck_mtx_t *pmtx; |
| 426 | int fd, error; |
| 427 | |
| 428 | if ((pmtx = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr)) == NULL) |
| 429 | return (ENOMEM); |
| 430 | |
| 431 | rpipe = wpipe = NULL; |
| 432 | if (pipe_create(&rpipe) || pipe_create(&wpipe)) { |
| 433 | error = ENFILE; |
| 434 | goto freepipes; |
| 435 | } |
| 436 | /* |
| 437 | * allocate the space for the normal I/O direction up |
| 438 | * front... we'll delay the allocation for the other |
| 439 | * direction until a write actually occurs (most likely it won't)... |
| 440 | */ |
| 441 | error = pipespace(rpipe, choose_pipespace(rpipe->pipe_buffer.size, 0)); |
| 442 | if (error) |
| 443 | goto freepipes; |
| 444 | |
| 445 | TAILQ_INIT(&rpipe->pipe_evlist); |
| 446 | TAILQ_INIT(&wpipe->pipe_evlist); |
| 447 | |
| 448 | error = falloc(p, &rf, &fd, vfs_context_current()); |
| 449 | if (error) { |
| 450 | goto freepipes; |
| 451 | } |
| 452 | retval[0] = fd; |
| 453 | |
| 454 | /* |
| 455 | * for now we'll create half-duplex pipes(refer returns section above). |
| 456 | * this is what we've always supported.. |
| 457 | */ |
| 458 | rf->f_flag = FREAD; |
| 459 | rf->f_data = (caddr_t)rpipe; |
| 460 | rf->f_ops = &pipeops; |
| 461 | |
| 462 | error = falloc(p, &wf, &fd, vfs_context_current()); |
| 463 | if (error) { |
| 464 | fp_free(p, retval[0], rf); |
| 465 | goto freepipes; |
| 466 | } |
| 467 | wf->f_flag = FWRITE; |
| 468 | wf->f_data = (caddr_t)wpipe; |
| 469 | wf->f_ops = &pipeops; |
| 470 | |
| 471 | rpipe->pipe_peer = wpipe; |
| 472 | wpipe->pipe_peer = rpipe; |
| 473 | /* both structures share the same mutex */ |
| 474 | rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx; |
| 475 | |
| 476 | retval[1] = fd; |
| 477 | #if CONFIG_MACF |
| 478 | /* |
| 479 | * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX |
| 480 | * |
| 481 | * struct pipe represents a pipe endpoint. The MAC label is shared |
| 482 | * between the connected endpoints. As a result mac_pipe_label_init() and |
| 483 | * mac_pipe_label_associate() should only be called on one of the endpoints |
| 484 | * after they have been connected. |
| 485 | */ |
| 486 | mac_pipe_label_init(rpipe); |
| 487 | mac_pipe_label_associate(kauth_cred_get(), rpipe); |
| 488 | wpipe->pipe_label = rpipe->pipe_label; |
| 489 | #endif |
| 490 | proc_fdlock_spin(p); |
| 491 | procfdtbl_releasefd(p, retval[0], NULL); |
| 492 | procfdtbl_releasefd(p, retval[1], NULL); |
| 493 | fp_drop(p, retval[0], rf, 1); |
| 494 | fp_drop(p, retval[1], wf, 1); |
| 495 | proc_fdunlock(p); |
| 496 | |
| 497 | |
| 498 | return (0); |
| 499 | |
| 500 | freepipes: |
| 501 | pipeclose(rpipe); |
| 502 | pipeclose(wpipe); |
| 503 | lck_mtx_free(pmtx, pipe_mtx_grp); |
| 504 | |
| 505 | return (error); |
| 506 | } |
| 507 | |
| 508 | int |
| 509 | pipe_stat(struct pipe *cpipe, void *ub, int isstat64) |
| 510 | { |
| 511 | #if CONFIG_MACF |
| 512 | int error; |
| 513 | #endif |
| 514 | int pipe_size = 0; |
| 515 | int pipe_count; |
| 516 | struct stat *sb = (struct stat *)0; /* warning avoidance ; protected by isstat64 */ |
| 517 | struct stat64 * sb64 = (struct stat64 *)0; /* warning avoidance ; protected by isstat64 */ |
| 518 | |
| 519 | if (cpipe == NULL) |
| 520 | return (EBADF); |
| 521 | PIPE_LOCK(cpipe); |
| 522 | |
| 523 | #if CONFIG_MACF |
| 524 | error = mac_pipe_check_stat(kauth_cred_get(), cpipe); |
| 525 | if (error) { |
| 526 | PIPE_UNLOCK(cpipe); |
| 527 | return (error); |
| 528 | } |
| 529 | #endif |
| 530 | if (cpipe->pipe_buffer.buffer == 0) { |
| 531 | /* must be stat'ing the write fd */ |
| 532 | if (cpipe->pipe_peer) { |
| 533 | /* the peer still exists, use it's info */ |
| 534 | pipe_size = MAX_PIPESIZE(cpipe->pipe_peer); |
| 535 | pipe_count = cpipe->pipe_peer->pipe_buffer.cnt; |
| 536 | } else { |
| 537 | pipe_count = 0; |
| 538 | } |
| 539 | } else { |
| 540 | pipe_size = MAX_PIPESIZE(cpipe); |
| 541 | pipe_count = cpipe->pipe_buffer.cnt; |
| 542 | } |
| 543 | /* |
| 544 | * since peer's buffer is setup ouside of lock |
| 545 | * we might catch it in transient state |
| 546 | */ |
| 547 | if (pipe_size == 0) |
| 548 | pipe_size = MAX(PIPE_SIZE, pipesize_blocks[0]); |
| 549 | |
| 550 | if (isstat64 != 0) { |
| 551 | sb64 = (struct stat64 *)ub; |
| 552 | |
| 553 | bzero(sb64, sizeof(*sb64)); |
| 554 | sb64->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP; |
| 555 | sb64->st_blksize = pipe_size; |
| 556 | sb64->st_size = pipe_count; |
| 557 | sb64->st_blocks = (sb64->st_size + sb64->st_blksize - 1) / sb64->st_blksize; |
| 558 | |
| 559 | sb64->st_uid = kauth_getuid(); |
| 560 | sb64->st_gid = kauth_getgid(); |
| 561 | |
| 562 | sb64->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec; |
| 563 | sb64->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec; |
| 564 | |
| 565 | sb64->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec; |
| 566 | sb64->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec; |
| 567 | |
| 568 | sb64->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec; |
| 569 | sb64->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec; |
| 570 | |
| 571 | /* |
| 572 | * Return a relatively unique inode number based on the current |
| 573 | * address of this pipe's struct pipe. This number may be recycled |
| 574 | * relatively quickly. |
| 575 | */ |
| 576 | sb64->st_ino = (ino64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe); |
| 577 | } else { |
| 578 | sb = (struct stat *)ub; |
| 579 | |
| 580 | bzero(sb, sizeof(*sb)); |
| 581 | sb->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP; |
| 582 | sb->st_blksize = pipe_size; |
| 583 | sb->st_size = pipe_count; |
| 584 | sb->st_blocks = (sb->st_size + sb->st_blksize - 1) / sb->st_blksize; |
| 585 | |
| 586 | sb->st_uid = kauth_getuid(); |
| 587 | sb->st_gid = kauth_getgid(); |
| 588 | |
| 589 | sb->st_atimespec.tv_sec = cpipe->st_atimespec.tv_sec; |
| 590 | sb->st_atimespec.tv_nsec = cpipe->st_atimespec.tv_nsec; |
| 591 | |
| 592 | sb->st_mtimespec.tv_sec = cpipe->st_mtimespec.tv_sec; |
| 593 | sb->st_mtimespec.tv_nsec = cpipe->st_mtimespec.tv_nsec; |
| 594 | |
| 595 | sb->st_ctimespec.tv_sec = cpipe->st_ctimespec.tv_sec; |
| 596 | sb->st_ctimespec.tv_nsec = cpipe->st_ctimespec.tv_nsec; |
| 597 | |
| 598 | /* |
| 599 | * Return a relatively unique inode number based on the current |
| 600 | * address of this pipe's struct pipe. This number may be recycled |
| 601 | * relatively quickly. |
| 602 | */ |
| 603 | sb->st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe); |
| 604 | } |
| 605 | PIPE_UNLOCK(cpipe); |
| 606 | |
| 607 | /* |
| 608 | * POSIX: Left as 0: st_dev, st_nlink, st_rdev, st_flags, st_gen, |
| 609 | * st_uid, st_gid. |
| 610 | * |
| 611 | * XXX (st_dev) should be unique, but there is no device driver that |
| 612 | * XXX is associated with pipes, since they are implemented via a |
| 613 | * XXX struct fileops indirection rather than as FS objects. |
| 614 | */ |
| 615 | return (0); |
| 616 | } |
| 617 | |
| 618 | |
| 619 | /* |
| 620 | * Allocate kva for pipe circular buffer, the space is pageable |
| 621 | * This routine will 'realloc' the size of a pipe safely, if it fails |
| 622 | * it will retain the old buffer. |
| 623 | * If it fails it will return ENOMEM. |
| 624 | */ |
| 625 | static int |
| 626 | pipespace(struct pipe *cpipe, int size) |
| 627 | { |
| 628 | vm_offset_t buffer; |
| 629 | |
| 630 | if (size <= 0) |
| 631 | return(EINVAL); |
| 632 | |
| 633 | if ((buffer = (vm_offset_t)kalloc(size)) == 0 ) |
| 634 | return(ENOMEM); |
| 635 | |
| 636 | /* free old resources if we're resizing */ |
| 637 | pipe_free_kmem(cpipe); |
| 638 | cpipe->pipe_buffer.buffer = (caddr_t)buffer; |
| 639 | cpipe->pipe_buffer.size = size; |
| 640 | cpipe->pipe_buffer.in = 0; |
| 641 | cpipe->pipe_buffer.out = 0; |
| 642 | cpipe->pipe_buffer.cnt = 0; |
| 643 | |
| 644 | OSAddAtomic(1, &amountpipes); |
| 645 | OSAddAtomic(cpipe->pipe_buffer.size, &amountpipekva); |
| 646 | |
| 647 | return (0); |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * initialize and allocate VM and memory for pipe |
| 652 | */ |
| 653 | static int |
| 654 | pipe_create(struct pipe **cpipep) |
| 655 | { |
| 656 | struct pipe *cpipe; |
| 657 | cpipe = (struct pipe *)zalloc(pipe_zone); |
| 658 | |
| 659 | if ((*cpipep = cpipe) == NULL) |
| 660 | return (ENOMEM); |
| 661 | |
| 662 | /* |
| 663 | * protect so pipespace or pipeclose don't follow a junk pointer |
| 664 | * if pipespace() fails. |
| 665 | */ |
| 666 | bzero(cpipe, sizeof *cpipe); |
| 667 | |
| 668 | #ifndef CONFIG_EMBEDDED |
| 669 | /* Initial times are all the time of creation of the pipe */ |
| 670 | pipe_touch(cpipe, PIPE_ATIME | PIPE_MTIME | PIPE_CTIME); |
| 671 | #endif |
| 672 | return (0); |
| 673 | } |
| 674 | |
| 675 | |
| 676 | /* |
| 677 | * lock a pipe for I/O, blocking other access |
| 678 | */ |
| 679 | static inline int |
| 680 | pipeio_lock(struct pipe *cpipe, int catch) |
| 681 | { |
| 682 | int error; |
| 683 | while (cpipe->pipe_state & PIPE_LOCKFL) { |
| 684 | cpipe->pipe_state |= PIPE_LWANT; |
| 685 | error = msleep(cpipe, PIPE_MTX(cpipe), catch ? (PRIBIO | PCATCH) : PRIBIO, |
| 686 | "pipelk" , 0); |
| 687 | if (error != 0) |
| 688 | return (error); |
| 689 | } |
| 690 | cpipe->pipe_state |= PIPE_LOCKFL; |
| 691 | return (0); |
| 692 | } |
| 693 | |
| 694 | /* |
| 695 | * unlock a pipe I/O lock |
| 696 | */ |
| 697 | static inline void |
| 698 | pipeio_unlock(struct pipe *cpipe) |
| 699 | { |
| 700 | cpipe->pipe_state &= ~PIPE_LOCKFL; |
| 701 | if (cpipe->pipe_state & PIPE_LWANT) { |
| 702 | cpipe->pipe_state &= ~PIPE_LWANT; |
| 703 | wakeup(cpipe); |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | /* |
| 708 | * wakeup anyone whos blocked in select |
| 709 | */ |
| 710 | static void |
| 711 | pipeselwakeup(struct pipe *cpipe, struct pipe *spipe) |
| 712 | { |
| 713 | if (cpipe->pipe_state & PIPE_SEL) { |
| 714 | cpipe->pipe_state &= ~PIPE_SEL; |
| 715 | selwakeup(&cpipe->pipe_sel); |
| 716 | } |
| 717 | if (cpipe->pipe_state & PIPE_KNOTE) |
| 718 | KNOTE(&cpipe->pipe_sel.si_note, 1); |
| 719 | |
| 720 | postpipeevent(cpipe, EV_RWBYTES); |
| 721 | |
| 722 | if (spipe && (spipe->pipe_state & PIPE_ASYNC) && spipe->pipe_pgid) { |
| 723 | if (spipe->pipe_pgid < 0) |
| 724 | gsignal(-spipe->pipe_pgid, SIGIO); |
| 725 | else |
| 726 | proc_signal(spipe->pipe_pgid, SIGIO); |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | /* |
| 731 | * Read n bytes from the buffer. Semantics are similar to file read. |
| 732 | * returns: number of bytes read from the buffer |
| 733 | */ |
| 734 | /* ARGSUSED */ |
| 735 | static int |
| 736 | pipe_read(struct fileproc *fp, struct uio *uio, __unused int flags, |
| 737 | __unused vfs_context_t ctx) |
| 738 | { |
| 739 | struct pipe *rpipe = (struct pipe *)fp->f_data; |
| 740 | int error; |
| 741 | int nread = 0; |
| 742 | u_int size; |
| 743 | |
| 744 | PIPE_LOCK(rpipe); |
| 745 | ++rpipe->pipe_busy; |
| 746 | |
| 747 | error = pipeio_lock(rpipe, 1); |
| 748 | if (error) |
| 749 | goto unlocked_error; |
| 750 | |
| 751 | #if CONFIG_MACF |
| 752 | error = mac_pipe_check_read(kauth_cred_get(), rpipe); |
| 753 | if (error) |
| 754 | goto locked_error; |
| 755 | #endif |
| 756 | |
| 757 | |
| 758 | while (uio_resid(uio)) { |
| 759 | /* |
| 760 | * normal pipe buffer receive |
| 761 | */ |
| 762 | if (rpipe->pipe_buffer.cnt > 0) { |
| 763 | /* |
| 764 | * # bytes to read is min( bytes from read pointer until end of buffer, |
| 765 | * total unread bytes, |
| 766 | * user requested byte count) |
| 767 | */ |
| 768 | size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; |
| 769 | if (size > rpipe->pipe_buffer.cnt) |
| 770 | size = rpipe->pipe_buffer.cnt; |
| 771 | // LP64todo - fix this! |
| 772 | if (size > (u_int) uio_resid(uio)) |
| 773 | size = (u_int) uio_resid(uio); |
| 774 | |
| 775 | PIPE_UNLOCK(rpipe); /* we still hold io lock.*/ |
| 776 | error = uiomove( |
| 777 | &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], |
| 778 | size, uio); |
| 779 | PIPE_LOCK(rpipe); |
| 780 | if (error) |
| 781 | break; |
| 782 | |
| 783 | rpipe->pipe_buffer.out += size; |
| 784 | if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) |
| 785 | rpipe->pipe_buffer.out = 0; |
| 786 | |
| 787 | rpipe->pipe_buffer.cnt -= size; |
| 788 | |
| 789 | /* |
| 790 | * If there is no more to read in the pipe, reset |
| 791 | * its pointers to the beginning. This improves |
| 792 | * cache hit stats. |
| 793 | */ |
| 794 | if (rpipe->pipe_buffer.cnt == 0) { |
| 795 | rpipe->pipe_buffer.in = 0; |
| 796 | rpipe->pipe_buffer.out = 0; |
| 797 | } |
| 798 | nread += size; |
| 799 | } else { |
| 800 | /* |
| 801 | * detect EOF condition |
| 802 | * read returns 0 on EOF, no need to set error |
| 803 | */ |
| 804 | if (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) { |
| 805 | break; |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * If the "write-side" has been blocked, wake it up now. |
| 810 | */ |
| 811 | if (rpipe->pipe_state & PIPE_WANTW) { |
| 812 | rpipe->pipe_state &= ~PIPE_WANTW; |
| 813 | wakeup(rpipe); |
| 814 | } |
| 815 | |
| 816 | /* |
| 817 | * Break if some data was read in previous iteration. |
| 818 | */ |
| 819 | if (nread > 0) |
| 820 | break; |
| 821 | |
| 822 | /* |
| 823 | * Unlock the pipe buffer for our remaining processing. |
| 824 | * We will either break out with an error or we will |
| 825 | * sleep and relock to loop. |
| 826 | */ |
| 827 | pipeio_unlock(rpipe); |
| 828 | |
| 829 | /* |
| 830 | * Handle non-blocking mode operation or |
| 831 | * wait for more data. |
| 832 | */ |
| 833 | if (fp->f_flag & FNONBLOCK) { |
| 834 | error = EAGAIN; |
| 835 | } else { |
| 836 | rpipe->pipe_state |= PIPE_WANTR; |
| 837 | error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "piperd" , 0); |
| 838 | if (error == 0) |
| 839 | error = pipeio_lock(rpipe, 1); |
| 840 | } |
| 841 | if (error) |
| 842 | goto unlocked_error; |
| 843 | } |
| 844 | } |
| 845 | #if CONFIG_MACF |
| 846 | locked_error: |
| 847 | #endif |
| 848 | pipeio_unlock(rpipe); |
| 849 | |
| 850 | unlocked_error: |
| 851 | --rpipe->pipe_busy; |
| 852 | |
| 853 | /* |
| 854 | * PIPE_WANT processing only makes sense if pipe_busy is 0. |
| 855 | */ |
| 856 | if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) { |
| 857 | rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW); |
| 858 | wakeup(rpipe); |
| 859 | } else if (rpipe->pipe_buffer.cnt < rpipe->pipe_buffer.size) { |
| 860 | /* |
| 861 | * Handle write blocking hysteresis. |
| 862 | */ |
| 863 | if (rpipe->pipe_state & PIPE_WANTW) { |
| 864 | rpipe->pipe_state &= ~PIPE_WANTW; |
| 865 | wakeup(rpipe); |
| 866 | } |
| 867 | } |
| 868 | |
| 869 | if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) > 0) |
| 870 | pipeselwakeup(rpipe, rpipe->pipe_peer); |
| 871 | |
| 872 | #ifndef CONFIG_EMBEDDED |
| 873 | /* update last read time */ |
| 874 | pipe_touch(rpipe, PIPE_ATIME); |
| 875 | #endif |
| 876 | |
| 877 | PIPE_UNLOCK(rpipe); |
| 878 | |
| 879 | return (error); |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * perform a write of n bytes into the read side of buffer. Since |
| 884 | * pipes are unidirectional a write is meant to be read by the otherside only. |
| 885 | */ |
| 886 | static int |
| 887 | pipe_write(struct fileproc *fp, struct uio *uio, __unused int flags, |
| 888 | __unused vfs_context_t ctx) |
| 889 | { |
| 890 | int error = 0; |
| 891 | int orig_resid; |
| 892 | int pipe_size; |
| 893 | struct pipe *wpipe, *rpipe; |
| 894 | // LP64todo - fix this! |
| 895 | orig_resid = uio_resid(uio); |
| 896 | int space; |
| 897 | |
| 898 | rpipe = (struct pipe *)fp->f_data; |
| 899 | |
| 900 | PIPE_LOCK(rpipe); |
| 901 | wpipe = rpipe->pipe_peer; |
| 902 | |
| 903 | /* |
| 904 | * detect loss of pipe read side, issue SIGPIPE if lost. |
| 905 | */ |
| 906 | if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) { |
| 907 | PIPE_UNLOCK(rpipe); |
| 908 | return (EPIPE); |
| 909 | } |
| 910 | #if CONFIG_MACF |
| 911 | error = mac_pipe_check_write(kauth_cred_get(), wpipe); |
| 912 | if (error) { |
| 913 | PIPE_UNLOCK(rpipe); |
| 914 | return (error); |
| 915 | } |
| 916 | #endif |
| 917 | ++wpipe->pipe_busy; |
| 918 | |
| 919 | pipe_size = 0; |
| 920 | |
| 921 | /* |
| 922 | * need to allocate some storage... we delay the allocation |
| 923 | * until the first write on fd[0] to avoid allocating storage for both |
| 924 | * 'pipe ends'... most pipes are half-duplex with the writes targeting |
| 925 | * fd[1], so allocating space for both ends is a waste... |
| 926 | */ |
| 927 | |
| 928 | if ( wpipe->pipe_buffer.buffer == 0 || ( |
| 929 | (unsigned)orig_resid > wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt && |
| 930 | amountpipekva < maxpipekva ) ) { |
| 931 | |
| 932 | pipe_size = choose_pipespace(wpipe->pipe_buffer.size, wpipe->pipe_buffer.cnt + orig_resid); |
| 933 | } |
| 934 | if (pipe_size) { |
| 935 | /* |
| 936 | * need to do initial allocation or resizing of pipe |
| 937 | * holding both structure and io locks. |
| 938 | */ |
| 939 | if ((error = pipeio_lock(wpipe, 1)) == 0) { |
| 940 | if (wpipe->pipe_buffer.cnt == 0) |
| 941 | error = pipespace(wpipe, pipe_size); |
| 942 | else |
| 943 | error = expand_pipespace(wpipe, pipe_size); |
| 944 | |
| 945 | pipeio_unlock(wpipe); |
| 946 | |
| 947 | /* allocation failed */ |
| 948 | if (wpipe->pipe_buffer.buffer == 0) |
| 949 | error = ENOMEM; |
| 950 | } |
| 951 | if (error) { |
| 952 | /* |
| 953 | * If an error occurred unbusy and return, waking up any pending |
| 954 | * readers. |
| 955 | */ |
| 956 | --wpipe->pipe_busy; |
| 957 | if ((wpipe->pipe_busy == 0) && |
| 958 | (wpipe->pipe_state & PIPE_WANT)) { |
| 959 | wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); |
| 960 | wakeup(wpipe); |
| 961 | } |
| 962 | PIPE_UNLOCK(rpipe); |
| 963 | return(error); |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | while (uio_resid(uio)) { |
| 968 | |
| 969 | retrywrite: |
| 970 | space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; |
| 971 | |
| 972 | /* Writes of size <= PIPE_BUF must be atomic. */ |
| 973 | if ((space < uio_resid(uio)) && (orig_resid <= PIPE_BUF)) |
| 974 | space = 0; |
| 975 | |
| 976 | if (space > 0) { |
| 977 | |
| 978 | if ((error = pipeio_lock(wpipe,1)) == 0) { |
| 979 | int size; /* Transfer size */ |
| 980 | int segsize; /* first segment to transfer */ |
| 981 | |
| 982 | if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) { |
| 983 | pipeio_unlock(wpipe); |
| 984 | error = EPIPE; |
| 985 | break; |
| 986 | } |
| 987 | /* |
| 988 | * If a process blocked in pipeio_lock, our |
| 989 | * value for space might be bad... the mutex |
| 990 | * is dropped while we're blocked |
| 991 | */ |
| 992 | if (space > (int)(wpipe->pipe_buffer.size - |
| 993 | wpipe->pipe_buffer.cnt)) { |
| 994 | pipeio_unlock(wpipe); |
| 995 | goto retrywrite; |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * Transfer size is minimum of uio transfer |
| 1000 | * and free space in pipe buffer. |
| 1001 | */ |
| 1002 | // LP64todo - fix this! |
| 1003 | if (space > uio_resid(uio)) |
| 1004 | size = uio_resid(uio); |
| 1005 | else |
| 1006 | size = space; |
| 1007 | /* |
| 1008 | * First segment to transfer is minimum of |
| 1009 | * transfer size and contiguous space in |
| 1010 | * pipe buffer. If first segment to transfer |
| 1011 | * is less than the transfer size, we've got |
| 1012 | * a wraparound in the buffer. |
| 1013 | */ |
| 1014 | segsize = wpipe->pipe_buffer.size - |
| 1015 | wpipe->pipe_buffer.in; |
| 1016 | if (segsize > size) |
| 1017 | segsize = size; |
| 1018 | |
| 1019 | /* Transfer first segment */ |
| 1020 | |
| 1021 | PIPE_UNLOCK(rpipe); |
| 1022 | error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], |
| 1023 | segsize, uio); |
| 1024 | PIPE_LOCK(rpipe); |
| 1025 | |
| 1026 | if (error == 0 && segsize < size) { |
| 1027 | /* |
| 1028 | * Transfer remaining part now, to |
| 1029 | * support atomic writes. Wraparound |
| 1030 | * happened. (State 3) |
| 1031 | */ |
| 1032 | if (wpipe->pipe_buffer.in + segsize != |
| 1033 | wpipe->pipe_buffer.size) |
| 1034 | panic("Expected pipe buffer " |
| 1035 | "wraparound disappeared" ); |
| 1036 | |
| 1037 | PIPE_UNLOCK(rpipe); |
| 1038 | error = uiomove( |
| 1039 | &wpipe->pipe_buffer.buffer[0], |
| 1040 | size - segsize, uio); |
| 1041 | PIPE_LOCK(rpipe); |
| 1042 | } |
| 1043 | /* |
| 1044 | * readers never know to read until count is updated. |
| 1045 | */ |
| 1046 | if (error == 0) { |
| 1047 | wpipe->pipe_buffer.in += size; |
| 1048 | if (wpipe->pipe_buffer.in > |
| 1049 | wpipe->pipe_buffer.size) { |
| 1050 | if (wpipe->pipe_buffer.in != |
| 1051 | size - segsize + |
| 1052 | wpipe->pipe_buffer.size) |
| 1053 | panic("Expected " |
| 1054 | "wraparound bad" ); |
| 1055 | wpipe->pipe_buffer.in = size - |
| 1056 | segsize; |
| 1057 | } |
| 1058 | |
| 1059 | wpipe->pipe_buffer.cnt += size; |
| 1060 | if (wpipe->pipe_buffer.cnt > |
| 1061 | wpipe->pipe_buffer.size) |
| 1062 | panic("Pipe buffer overflow" ); |
| 1063 | |
| 1064 | } |
| 1065 | pipeio_unlock(wpipe); |
| 1066 | } |
| 1067 | if (error) |
| 1068 | break; |
| 1069 | |
| 1070 | } else { |
| 1071 | /* |
| 1072 | * If the "read-side" has been blocked, wake it up now. |
| 1073 | */ |
| 1074 | if (wpipe->pipe_state & PIPE_WANTR) { |
| 1075 | wpipe->pipe_state &= ~PIPE_WANTR; |
| 1076 | wakeup(wpipe); |
| 1077 | } |
| 1078 | /* |
| 1079 | * don't block on non-blocking I/O |
| 1080 | * we'll do the pipeselwakeup on the way out |
| 1081 | */ |
| 1082 | if (fp->f_flag & FNONBLOCK) { |
| 1083 | error = EAGAIN; |
| 1084 | break; |
| 1085 | } |
| 1086 | |
| 1087 | /* |
| 1088 | * If read side wants to go away, we just issue a signal |
| 1089 | * to ourselves. |
| 1090 | */ |
| 1091 | if (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) { |
| 1092 | error = EPIPE; |
| 1093 | break; |
| 1094 | } |
| 1095 | |
| 1096 | /* |
| 1097 | * We have no more space and have something to offer, |
| 1098 | * wake up select/poll. |
| 1099 | */ |
| 1100 | pipeselwakeup(wpipe, wpipe); |
| 1101 | |
| 1102 | wpipe->pipe_state |= PIPE_WANTW; |
| 1103 | |
| 1104 | error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipewr" , 0); |
| 1105 | |
| 1106 | if (error != 0) |
| 1107 | break; |
| 1108 | } |
| 1109 | } |
| 1110 | --wpipe->pipe_busy; |
| 1111 | |
| 1112 | if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) { |
| 1113 | wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR); |
| 1114 | wakeup(wpipe); |
| 1115 | } |
| 1116 | if (wpipe->pipe_buffer.cnt > 0) { |
| 1117 | /* |
| 1118 | * If there are any characters in the buffer, we wake up |
| 1119 | * the reader if it was blocked waiting for data. |
| 1120 | */ |
| 1121 | if (wpipe->pipe_state & PIPE_WANTR) { |
| 1122 | wpipe->pipe_state &= ~PIPE_WANTR; |
| 1123 | wakeup(wpipe); |
| 1124 | } |
| 1125 | /* |
| 1126 | * wake up thread blocked in select/poll or post the notification |
| 1127 | */ |
| 1128 | pipeselwakeup(wpipe, wpipe); |
| 1129 | } |
| 1130 | |
| 1131 | #ifndef CONFIG_EMBEDDED |
| 1132 | /* Update modification, status change (# of bytes in pipe) times */ |
| 1133 | pipe_touch(rpipe, PIPE_MTIME | PIPE_CTIME); |
| 1134 | pipe_touch(wpipe, PIPE_MTIME | PIPE_CTIME); |
| 1135 | #endif |
| 1136 | PIPE_UNLOCK(rpipe); |
| 1137 | |
| 1138 | return (error); |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * we implement a very minimal set of ioctls for compatibility with sockets. |
| 1143 | */ |
| 1144 | /* ARGSUSED 3 */ |
| 1145 | static int |
| 1146 | pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, |
| 1147 | __unused vfs_context_t ctx) |
| 1148 | { |
| 1149 | struct pipe *mpipe = (struct pipe *)fp->f_data; |
| 1150 | #if CONFIG_MACF |
| 1151 | int error; |
| 1152 | #endif |
| 1153 | |
| 1154 | PIPE_LOCK(mpipe); |
| 1155 | |
| 1156 | #if CONFIG_MACF |
| 1157 | error = mac_pipe_check_ioctl(kauth_cred_get(), mpipe, cmd); |
| 1158 | if (error) { |
| 1159 | PIPE_UNLOCK(mpipe); |
| 1160 | |
| 1161 | return (error); |
| 1162 | } |
| 1163 | #endif |
| 1164 | |
| 1165 | switch (cmd) { |
| 1166 | |
| 1167 | case FIONBIO: |
| 1168 | PIPE_UNLOCK(mpipe); |
| 1169 | return (0); |
| 1170 | |
| 1171 | case FIOASYNC: |
| 1172 | if (*(int *)data) { |
| 1173 | mpipe->pipe_state |= PIPE_ASYNC; |
| 1174 | } else { |
| 1175 | mpipe->pipe_state &= ~PIPE_ASYNC; |
| 1176 | } |
| 1177 | PIPE_UNLOCK(mpipe); |
| 1178 | return (0); |
| 1179 | |
| 1180 | case FIONREAD: |
| 1181 | *(int *)data = mpipe->pipe_buffer.cnt; |
| 1182 | PIPE_UNLOCK(mpipe); |
| 1183 | return (0); |
| 1184 | |
| 1185 | case TIOCSPGRP: |
| 1186 | mpipe->pipe_pgid = *(int *)data; |
| 1187 | |
| 1188 | PIPE_UNLOCK(mpipe); |
| 1189 | return (0); |
| 1190 | |
| 1191 | case TIOCGPGRP: |
| 1192 | *(int *)data = mpipe->pipe_pgid; |
| 1193 | |
| 1194 | PIPE_UNLOCK(mpipe); |
| 1195 | return (0); |
| 1196 | |
| 1197 | } |
| 1198 | PIPE_UNLOCK(mpipe); |
| 1199 | return (ENOTTY); |
| 1200 | } |
| 1201 | |
| 1202 | |
| 1203 | static int |
| 1204 | pipe_select(struct fileproc *fp, int which, void *wql, vfs_context_t ctx) |
| 1205 | { |
| 1206 | struct pipe *rpipe = (struct pipe *)fp->f_data; |
| 1207 | struct pipe *wpipe; |
| 1208 | int retnum = 0; |
| 1209 | |
| 1210 | if (rpipe == NULL || rpipe == (struct pipe *)-1) |
| 1211 | return (retnum); |
| 1212 | |
| 1213 | PIPE_LOCK(rpipe); |
| 1214 | |
| 1215 | wpipe = rpipe->pipe_peer; |
| 1216 | |
| 1217 | |
| 1218 | #if CONFIG_MACF |
| 1219 | /* |
| 1220 | * XXX We should use a per thread credential here; minimally, the |
| 1221 | * XXX process credential should have a persistent reference on it |
| 1222 | * XXX before being passed in here. |
| 1223 | */ |
| 1224 | if (mac_pipe_check_select(vfs_context_ucred(ctx), rpipe, which)) { |
| 1225 | PIPE_UNLOCK(rpipe); |
| 1226 | return (0); |
| 1227 | } |
| 1228 | #endif |
| 1229 | switch (which) { |
| 1230 | |
| 1231 | case FREAD: |
| 1232 | if ((rpipe->pipe_state & PIPE_DIRECTW) || |
| 1233 | (rpipe->pipe_buffer.cnt > 0) || |
| 1234 | (rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) { |
| 1235 | |
| 1236 | retnum = 1; |
| 1237 | } else { |
| 1238 | rpipe->pipe_state |= PIPE_SEL; |
| 1239 | selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql); |
| 1240 | } |
| 1241 | break; |
| 1242 | |
| 1243 | case FWRITE: |
| 1244 | if (wpipe) |
| 1245 | wpipe->pipe_state |= PIPE_WSELECT; |
| 1246 | if (wpipe == NULL || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) || |
| 1247 | (((wpipe->pipe_state & PIPE_DIRECTW) == 0) && |
| 1248 | (MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) { |
| 1249 | |
| 1250 | retnum = 1; |
| 1251 | } else { |
| 1252 | wpipe->pipe_state |= PIPE_SEL; |
| 1253 | selrecord(vfs_context_proc(ctx), &wpipe->pipe_sel, wql); |
| 1254 | } |
| 1255 | break; |
| 1256 | case 0: |
| 1257 | rpipe->pipe_state |= PIPE_SEL; |
| 1258 | selrecord(vfs_context_proc(ctx), &rpipe->pipe_sel, wql); |
| 1259 | break; |
| 1260 | } |
| 1261 | PIPE_UNLOCK(rpipe); |
| 1262 | |
| 1263 | return (retnum); |
| 1264 | } |
| 1265 | |
| 1266 | |
| 1267 | /* ARGSUSED 1 */ |
| 1268 | static int |
| 1269 | pipe_close(struct fileglob *fg, __unused vfs_context_t ctx) |
| 1270 | { |
| 1271 | struct pipe *cpipe; |
| 1272 | |
| 1273 | proc_fdlock_spin(vfs_context_proc(ctx)); |
| 1274 | cpipe = (struct pipe *)fg->fg_data; |
| 1275 | fg->fg_data = NULL; |
| 1276 | proc_fdunlock(vfs_context_proc(ctx)); |
| 1277 | if (cpipe) |
| 1278 | pipeclose(cpipe); |
| 1279 | |
| 1280 | return (0); |
| 1281 | } |
| 1282 | |
| 1283 | static void |
| 1284 | pipe_free_kmem(struct pipe *cpipe) |
| 1285 | { |
| 1286 | if (cpipe->pipe_buffer.buffer != NULL) { |
| 1287 | OSAddAtomic(-(cpipe->pipe_buffer.size), &amountpipekva); |
| 1288 | OSAddAtomic(-1, &amountpipes); |
| 1289 | kfree((void *)cpipe->pipe_buffer.buffer, |
| 1290 | cpipe->pipe_buffer.size); |
| 1291 | cpipe->pipe_buffer.buffer = NULL; |
| 1292 | cpipe->pipe_buffer.size = 0; |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | /* |
| 1297 | * shutdown the pipe |
| 1298 | */ |
| 1299 | static void |
| 1300 | pipeclose(struct pipe *cpipe) |
| 1301 | { |
| 1302 | struct pipe *ppipe; |
| 1303 | |
| 1304 | if (cpipe == NULL) |
| 1305 | return; |
| 1306 | /* partially created pipes won't have a valid mutex. */ |
| 1307 | if (PIPE_MTX(cpipe) != NULL) |
| 1308 | PIPE_LOCK(cpipe); |
| 1309 | |
| 1310 | |
| 1311 | /* |
| 1312 | * If the other side is blocked, wake it up saying that |
| 1313 | * we want to close it down. |
| 1314 | */ |
| 1315 | cpipe->pipe_state &= ~PIPE_DRAIN; |
| 1316 | cpipe->pipe_state |= PIPE_EOF; |
| 1317 | pipeselwakeup(cpipe, cpipe); |
| 1318 | |
| 1319 | while (cpipe->pipe_busy) { |
| 1320 | cpipe->pipe_state |= PIPE_WANT; |
| 1321 | |
| 1322 | wakeup(cpipe); |
| 1323 | msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl" , 0); |
| 1324 | } |
| 1325 | |
| 1326 | #if CONFIG_MACF |
| 1327 | /* |
| 1328 | * Free the shared pipe label only after the two ends are disconnected. |
| 1329 | */ |
| 1330 | if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL) |
| 1331 | mac_pipe_label_destroy(cpipe); |
| 1332 | #endif |
| 1333 | |
| 1334 | /* |
| 1335 | * Disconnect from peer |
| 1336 | */ |
| 1337 | if ((ppipe = cpipe->pipe_peer) != NULL) { |
| 1338 | |
| 1339 | ppipe->pipe_state &= ~(PIPE_DRAIN); |
| 1340 | ppipe->pipe_state |= PIPE_EOF; |
| 1341 | |
| 1342 | pipeselwakeup(ppipe, ppipe); |
| 1343 | wakeup(ppipe); |
| 1344 | |
| 1345 | if (cpipe->pipe_state & PIPE_KNOTE) |
| 1346 | KNOTE(&ppipe->pipe_sel.si_note, 1); |
| 1347 | |
| 1348 | postpipeevent(ppipe, EV_RCLOSED); |
| 1349 | |
| 1350 | ppipe->pipe_peer = NULL; |
| 1351 | } |
| 1352 | evpipefree(cpipe); |
| 1353 | |
| 1354 | /* |
| 1355 | * free resources |
| 1356 | */ |
| 1357 | if (PIPE_MTX(cpipe) != NULL) { |
| 1358 | if (ppipe != NULL) { |
| 1359 | /* |
| 1360 | * since the mutex is shared and the peer is still |
| 1361 | * alive, we need to release the mutex, not free it |
| 1362 | */ |
| 1363 | PIPE_UNLOCK(cpipe); |
| 1364 | } else { |
| 1365 | /* |
| 1366 | * peer is gone, so we're the sole party left with |
| 1367 | * interest in this mutex... unlock and free it |
| 1368 | */ |
| 1369 | PIPE_UNLOCK(cpipe); |
| 1370 | lck_mtx_free(PIPE_MTX(cpipe), pipe_mtx_grp); |
| 1371 | } |
| 1372 | } |
| 1373 | pipe_free_kmem(cpipe); |
| 1374 | if (cpipe->pipe_state & PIPE_WSELECT) { |
| 1375 | pipe_garbage_collect(cpipe); |
| 1376 | } else { |
| 1377 | zfree(pipe_zone, cpipe); |
| 1378 | pipe_garbage_collect(NULL); |
| 1379 | } |
| 1380 | |
| 1381 | } |
| 1382 | |
| 1383 | /*ARGSUSED*/ |
| 1384 | static int |
| 1385 | filt_piperead_common(struct knote *kn, struct pipe *rpipe) |
| 1386 | { |
| 1387 | struct pipe *wpipe; |
| 1388 | int retval; |
| 1389 | |
| 1390 | /* |
| 1391 | * we're being called back via the KNOTE post |
| 1392 | * we made in pipeselwakeup, and we already hold the mutex... |
| 1393 | */ |
| 1394 | |
| 1395 | wpipe = rpipe->pipe_peer; |
| 1396 | kn->kn_data = rpipe->pipe_buffer.cnt; |
| 1397 | if ((rpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF)) || |
| 1398 | (wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) { |
| 1399 | kn->kn_flags |= EV_EOF; |
| 1400 | retval = 1; |
| 1401 | } else { |
| 1402 | int64_t lowwat = 1; |
| 1403 | if (kn->kn_sfflags & NOTE_LOWAT) { |
| 1404 | if (rpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(rpipe)) |
| 1405 | lowwat = MAX_PIPESIZE(rpipe); |
| 1406 | else if (kn->kn_sdata > lowwat) |
| 1407 | lowwat = kn->kn_sdata; |
| 1408 | } |
| 1409 | retval = kn->kn_data >= lowwat; |
| 1410 | } |
| 1411 | return (retval); |
| 1412 | } |
| 1413 | |
| 1414 | static int |
| 1415 | filt_piperead(struct knote *kn, long hint) |
| 1416 | { |
| 1417 | #pragma unused(hint) |
| 1418 | struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1419 | |
| 1420 | return filt_piperead_common(kn, rpipe); |
| 1421 | } |
| 1422 | |
| 1423 | static int |
| 1424 | filt_pipereadtouch(struct knote *kn, struct kevent_internal_s *kev) |
| 1425 | { |
| 1426 | struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1427 | int retval; |
| 1428 | |
| 1429 | PIPE_LOCK(rpipe); |
| 1430 | |
| 1431 | /* accept new inputs (and save the low water threshold and flag) */ |
| 1432 | kn->kn_sdata = kev->data; |
| 1433 | kn->kn_sfflags = kev->fflags; |
| 1434 | |
| 1435 | /* identify if any events are now fired */ |
| 1436 | retval = filt_piperead_common(kn, rpipe); |
| 1437 | |
| 1438 | PIPE_UNLOCK(rpipe); |
| 1439 | |
| 1440 | return retval; |
| 1441 | } |
| 1442 | |
| 1443 | static int |
| 1444 | filt_pipereadprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
| 1445 | { |
| 1446 | #pragma unused(data) |
| 1447 | struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1448 | int retval; |
| 1449 | |
| 1450 | PIPE_LOCK(rpipe); |
| 1451 | retval = filt_piperead_common(kn, rpipe); |
| 1452 | if (retval) { |
| 1453 | *kev = kn->kn_kevent; |
| 1454 | if (kn->kn_flags & EV_CLEAR) { |
| 1455 | kn->kn_fflags = 0; |
| 1456 | kn->kn_data = 0; |
| 1457 | } |
| 1458 | } |
| 1459 | PIPE_UNLOCK(rpipe); |
| 1460 | |
| 1461 | return (retval); |
| 1462 | } |
| 1463 | |
| 1464 | /*ARGSUSED*/ |
| 1465 | static int |
| 1466 | filt_pipewrite_common(struct knote *kn, struct pipe *rpipe) |
| 1467 | { |
| 1468 | struct pipe *wpipe; |
| 1469 | |
| 1470 | /* |
| 1471 | * we're being called back via the KNOTE post |
| 1472 | * we made in pipeselwakeup, and we already hold the mutex... |
| 1473 | */ |
| 1474 | wpipe = rpipe->pipe_peer; |
| 1475 | |
| 1476 | if ((wpipe == NULL) || (wpipe->pipe_state & (PIPE_DRAIN | PIPE_EOF))) { |
| 1477 | kn->kn_data = 0; |
| 1478 | kn->kn_flags |= EV_EOF; |
| 1479 | return (1); |
| 1480 | } |
| 1481 | kn->kn_data = MAX_PIPESIZE(wpipe) - wpipe->pipe_buffer.cnt; |
| 1482 | |
| 1483 | int64_t lowwat = PIPE_BUF; |
| 1484 | if (kn->kn_sfflags & NOTE_LOWAT) { |
| 1485 | if (wpipe->pipe_buffer.size && kn->kn_sdata > MAX_PIPESIZE(wpipe)) |
| 1486 | lowwat = MAX_PIPESIZE(wpipe); |
| 1487 | else if (kn->kn_sdata > lowwat) |
| 1488 | lowwat = kn->kn_sdata; |
| 1489 | } |
| 1490 | |
| 1491 | return (kn->kn_data >= lowwat); |
| 1492 | } |
| 1493 | |
| 1494 | /*ARGSUSED*/ |
| 1495 | static int |
| 1496 | filt_pipewrite(struct knote *kn, long hint) |
| 1497 | { |
| 1498 | #pragma unused(hint) |
| 1499 | struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1500 | |
| 1501 | return filt_pipewrite_common(kn, rpipe); |
| 1502 | } |
| 1503 | |
| 1504 | |
| 1505 | static int |
| 1506 | filt_pipewritetouch(struct knote *kn, struct kevent_internal_s *kev) |
| 1507 | { |
| 1508 | struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1509 | int res; |
| 1510 | |
| 1511 | PIPE_LOCK(rpipe); |
| 1512 | |
| 1513 | /* accept new kevent data (and save off lowat threshold and flag) */ |
| 1514 | kn->kn_sfflags = kev->fflags; |
| 1515 | kn->kn_sdata = kev->data; |
| 1516 | |
| 1517 | /* determine if any event is now deemed fired */ |
| 1518 | res = filt_pipewrite_common(kn, rpipe); |
| 1519 | |
| 1520 | PIPE_UNLOCK(rpipe); |
| 1521 | |
| 1522 | return res; |
| 1523 | } |
| 1524 | |
| 1525 | static int |
| 1526 | filt_pipewriteprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
| 1527 | { |
| 1528 | #pragma unused(data) |
| 1529 | struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1530 | int res; |
| 1531 | |
| 1532 | PIPE_LOCK(rpipe); |
| 1533 | res = filt_pipewrite_common(kn, rpipe); |
| 1534 | if (res) { |
| 1535 | *kev = kn->kn_kevent; |
| 1536 | if (kn->kn_flags & EV_CLEAR) { |
| 1537 | kn->kn_fflags = 0; |
| 1538 | kn->kn_data = 0; |
| 1539 | } |
| 1540 | } |
| 1541 | PIPE_UNLOCK(rpipe); |
| 1542 | |
| 1543 | return res; |
| 1544 | } |
| 1545 | |
| 1546 | /*ARGSUSED*/ |
| 1547 | static int |
| 1548 | pipe_kqfilter(__unused struct fileproc *fp, struct knote *kn, |
| 1549 | __unused struct kevent_internal_s *kev, __unused vfs_context_t ctx) |
| 1550 | { |
| 1551 | struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1552 | int res; |
| 1553 | |
| 1554 | PIPE_LOCK(cpipe); |
| 1555 | #if CONFIG_MACF |
| 1556 | /* |
| 1557 | * XXX We should use a per thread credential here; minimally, the |
| 1558 | * XXX process credential should have a persistent reference on it |
| 1559 | * XXX before being passed in here. |
| 1560 | */ |
| 1561 | if (mac_pipe_check_kqfilter(vfs_context_ucred(ctx), kn, cpipe) != 0) { |
| 1562 | PIPE_UNLOCK(cpipe); |
| 1563 | kn->kn_flags = EV_ERROR; |
| 1564 | kn->kn_data = EPERM; |
| 1565 | return 0; |
| 1566 | } |
| 1567 | #endif |
| 1568 | |
| 1569 | switch (kn->kn_filter) { |
| 1570 | case EVFILT_READ: |
| 1571 | kn->kn_filtid = EVFILTID_PIPE_R; |
| 1572 | |
| 1573 | /* determine initial state */ |
| 1574 | res = filt_piperead_common(kn, cpipe); |
| 1575 | break; |
| 1576 | |
| 1577 | case EVFILT_WRITE: |
| 1578 | kn->kn_filtid = EVFILTID_PIPE_W; |
| 1579 | |
| 1580 | if (cpipe->pipe_peer == NULL) { |
| 1581 | /* |
| 1582 | * other end of pipe has been closed |
| 1583 | */ |
| 1584 | PIPE_UNLOCK(cpipe); |
| 1585 | kn->kn_flags = EV_ERROR; |
| 1586 | kn->kn_data = EPIPE; |
| 1587 | return 0; |
| 1588 | } |
| 1589 | if (cpipe->pipe_peer) |
| 1590 | cpipe = cpipe->pipe_peer; |
| 1591 | |
| 1592 | /* determine inital state */ |
| 1593 | res = filt_pipewrite_common(kn, cpipe); |
| 1594 | break; |
| 1595 | default: |
| 1596 | PIPE_UNLOCK(cpipe); |
| 1597 | kn->kn_flags = EV_ERROR; |
| 1598 | kn->kn_data = EINVAL; |
| 1599 | return 0; |
| 1600 | } |
| 1601 | |
| 1602 | if (KNOTE_ATTACH(&cpipe->pipe_sel.si_note, kn)) |
| 1603 | cpipe->pipe_state |= PIPE_KNOTE; |
| 1604 | |
| 1605 | PIPE_UNLOCK(cpipe); |
| 1606 | return res; |
| 1607 | } |
| 1608 | |
| 1609 | static void |
| 1610 | filt_pipedetach(struct knote *kn) |
| 1611 | { |
| 1612 | struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data; |
| 1613 | |
| 1614 | PIPE_LOCK(cpipe); |
| 1615 | |
| 1616 | if (kn->kn_filter == EVFILT_WRITE) { |
| 1617 | if (cpipe->pipe_peer == NULL) { |
| 1618 | PIPE_UNLOCK(cpipe); |
| 1619 | return; |
| 1620 | } |
| 1621 | cpipe = cpipe->pipe_peer; |
| 1622 | } |
| 1623 | if (cpipe->pipe_state & PIPE_KNOTE) { |
| 1624 | if (KNOTE_DETACH(&cpipe->pipe_sel.si_note, kn)) |
| 1625 | cpipe->pipe_state &= ~PIPE_KNOTE; |
| 1626 | } |
| 1627 | PIPE_UNLOCK(cpipe); |
| 1628 | } |
| 1629 | |
| 1630 | int |
| 1631 | fill_pipeinfo(struct pipe * cpipe, struct pipe_info * pinfo) |
| 1632 | { |
| 1633 | #if CONFIG_MACF |
| 1634 | int error; |
| 1635 | #endif |
| 1636 | struct timespec now; |
| 1637 | struct vinfo_stat * ub; |
| 1638 | int pipe_size = 0; |
| 1639 | int pipe_count; |
| 1640 | |
| 1641 | if (cpipe == NULL) |
| 1642 | return (EBADF); |
| 1643 | PIPE_LOCK(cpipe); |
| 1644 | |
| 1645 | #if CONFIG_MACF |
| 1646 | error = mac_pipe_check_stat(kauth_cred_get(), cpipe); |
| 1647 | if (error) { |
| 1648 | PIPE_UNLOCK(cpipe); |
| 1649 | return (error); |
| 1650 | } |
| 1651 | #endif |
| 1652 | if (cpipe->pipe_buffer.buffer == 0) { |
| 1653 | /* |
| 1654 | * must be stat'ing the write fd |
| 1655 | */ |
| 1656 | if (cpipe->pipe_peer) { |
| 1657 | /* |
| 1658 | * the peer still exists, use it's info |
| 1659 | */ |
| 1660 | pipe_size = MAX_PIPESIZE(cpipe->pipe_peer); |
| 1661 | pipe_count = cpipe->pipe_peer->pipe_buffer.cnt; |
| 1662 | } else { |
| 1663 | pipe_count = 0; |
| 1664 | } |
| 1665 | } else { |
| 1666 | pipe_size = MAX_PIPESIZE(cpipe); |
| 1667 | pipe_count = cpipe->pipe_buffer.cnt; |
| 1668 | } |
| 1669 | /* |
| 1670 | * since peer's buffer is setup ouside of lock |
| 1671 | * we might catch it in transient state |
| 1672 | */ |
| 1673 | if (pipe_size == 0) |
| 1674 | pipe_size = PIPE_SIZE; |
| 1675 | |
| 1676 | ub = &pinfo->pipe_stat; |
| 1677 | |
| 1678 | bzero(ub, sizeof(*ub)); |
| 1679 | ub->vst_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP; |
| 1680 | ub->vst_blksize = pipe_size; |
| 1681 | ub->vst_size = pipe_count; |
| 1682 | if (ub->vst_blksize != 0) |
| 1683 | ub->vst_blocks = (ub->vst_size + ub->vst_blksize - 1) / ub->vst_blksize; |
| 1684 | ub->vst_nlink = 1; |
| 1685 | |
| 1686 | ub->vst_uid = kauth_getuid(); |
| 1687 | ub->vst_gid = kauth_getgid(); |
| 1688 | |
| 1689 | nanotime(&now); |
| 1690 | ub->vst_atime = now.tv_sec; |
| 1691 | ub->vst_atimensec = now.tv_nsec; |
| 1692 | |
| 1693 | ub->vst_mtime = now.tv_sec; |
| 1694 | ub->vst_mtimensec = now.tv_nsec; |
| 1695 | |
| 1696 | ub->vst_ctime = now.tv_sec; |
| 1697 | ub->vst_ctimensec = now.tv_nsec; |
| 1698 | |
| 1699 | /* |
| 1700 | * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid. |
| 1701 | * XXX (st_dev, st_ino) should be unique. |
| 1702 | */ |
| 1703 | |
| 1704 | pinfo->pipe_handle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe); |
| 1705 | pinfo->pipe_peerhandle = (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(cpipe->pipe_peer)); |
| 1706 | pinfo->pipe_status = cpipe->pipe_state; |
| 1707 | |
| 1708 | PIPE_UNLOCK(cpipe); |
| 1709 | |
| 1710 | return (0); |
| 1711 | } |
| 1712 | |
| 1713 | |
| 1714 | static int |
| 1715 | pipe_drain(struct fileproc *fp, __unused vfs_context_t ctx) |
| 1716 | { |
| 1717 | |
| 1718 | /* Note: fdlock already held */ |
| 1719 | struct pipe *ppipe, *cpipe = (struct pipe *)(fp->f_fglob->fg_data); |
| 1720 | |
| 1721 | if (cpipe) { |
| 1722 | PIPE_LOCK(cpipe); |
| 1723 | cpipe->pipe_state |= PIPE_DRAIN; |
| 1724 | cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW); |
| 1725 | wakeup(cpipe); |
| 1726 | |
| 1727 | /* Must wake up peer: a writer sleeps on the read side */ |
| 1728 | if ((ppipe = cpipe->pipe_peer)) { |
| 1729 | ppipe->pipe_state |= PIPE_DRAIN; |
| 1730 | ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW); |
| 1731 | wakeup(ppipe); |
| 1732 | } |
| 1733 | |
| 1734 | PIPE_UNLOCK(cpipe); |
| 1735 | return 0; |
| 1736 | } |
| 1737 | |
| 1738 | return 1; |
| 1739 | } |
| 1740 | |
| 1741 | |
| 1742 | /* |
| 1743 | * When a thread sets a write-select on a pipe, it creates an implicit, |
| 1744 | * untracked dependency between that thread and the peer of the pipe |
| 1745 | * on which the select is set. If the peer pipe is closed and freed |
| 1746 | * before the select()ing thread wakes up, the system will panic as |
| 1747 | * it attempts to unwind the dangling select(). To avoid that panic, |
| 1748 | * we notice whenever a dangerous select() is set on a pipe, and |
| 1749 | * defer the final deletion of the pipe until that select()s are all |
| 1750 | * resolved. Since we can't currently detect exactly when that |
| 1751 | * resolution happens, we use a simple garbage collection queue to |
| 1752 | * reap the at-risk pipes 'later'. |
| 1753 | */ |
| 1754 | static void |
| 1755 | pipe_garbage_collect(struct pipe *cpipe) |
| 1756 | { |
| 1757 | uint64_t old, now; |
| 1758 | struct pipe_garbage *pgp; |
| 1759 | |
| 1760 | /* Convert msecs to nsecs and then to abstime */ |
| 1761 | old = pipe_garbage_age_limit * 1000000; |
| 1762 | nanoseconds_to_absolutetime(old, &old); |
| 1763 | |
| 1764 | lck_mtx_lock(pipe_garbage_lock); |
| 1765 | |
| 1766 | /* Free anything that's been on the queue for <mumble> seconds */ |
| 1767 | now = mach_absolute_time(); |
| 1768 | old = now - old; |
| 1769 | while ((pgp = pipe_garbage_head) && pgp->pg_timestamp < old) { |
| 1770 | pipe_garbage_head = pgp->pg_next; |
| 1771 | if (pipe_garbage_head == NULL) |
| 1772 | pipe_garbage_tail = NULL; |
| 1773 | pipe_garbage_count--; |
| 1774 | zfree(pipe_zone, pgp->pg_pipe); |
| 1775 | zfree(pipe_garbage_zone, pgp); |
| 1776 | } |
| 1777 | |
| 1778 | /* Add the new pipe (if any) to the tail of the garbage queue */ |
| 1779 | if (cpipe) { |
| 1780 | cpipe->pipe_state = PIPE_DEAD; |
| 1781 | pgp = (struct pipe_garbage *)zalloc(pipe_garbage_zone); |
| 1782 | if (pgp == NULL) { |
| 1783 | /* |
| 1784 | * We're too low on memory to garbage collect the |
| 1785 | * pipe. Freeing it runs the risk of panicing the |
| 1786 | * system. All we can do is leak it and leave |
| 1787 | * a breadcrumb behind. The good news, such as it |
| 1788 | * is, is that this will probably never happen. |
| 1789 | * We will probably hit the panic below first. |
| 1790 | */ |
| 1791 | printf("Leaking pipe %p - no room left in the queue" , |
| 1792 | cpipe); |
| 1793 | lck_mtx_unlock(pipe_garbage_lock); |
| 1794 | return; |
| 1795 | } |
| 1796 | |
| 1797 | pgp->pg_pipe = cpipe; |
| 1798 | pgp->pg_timestamp = now; |
| 1799 | pgp->pg_next = NULL; |
| 1800 | |
| 1801 | if (pipe_garbage_tail) |
| 1802 | pipe_garbage_tail->pg_next = pgp; |
| 1803 | pipe_garbage_tail = pgp; |
| 1804 | if (pipe_garbage_head == NULL) |
| 1805 | pipe_garbage_head = pipe_garbage_tail; |
| 1806 | |
| 1807 | if (pipe_garbage_count++ >= PIPE_GARBAGE_QUEUE_LIMIT) |
| 1808 | panic("Length of pipe garbage queue exceeded %d" , |
| 1809 | PIPE_GARBAGE_QUEUE_LIMIT); |
| 1810 | } |
| 1811 | lck_mtx_unlock(pipe_garbage_lock); |
| 1812 | } |
| 1813 | |
| 1814 | |