| 1 | /* |
| 2 | * Copyright (c) 2006-2014 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Memory allocator with per-CPU caching, derived from the kmem magazine |
| 31 | * concept and implementation as described in the following paper: |
| 32 | * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick.pdf |
| 33 | * That implementation is Copyright 2006 Sun Microsystems, Inc. All rights |
| 34 | * reserved. Use is subject to license terms. |
| 35 | * |
| 36 | * There are several major differences between this and the original kmem |
| 37 | * magazine: this derivative implementation allows for multiple objects to |
| 38 | * be allocated and freed from/to the object cache in one call; in addition, |
| 39 | * it provides for better flexibility where the user is allowed to define |
| 40 | * its own slab allocator (instead of the default zone allocator). Finally, |
| 41 | * no object construction/destruction takes place at the moment, although |
| 42 | * this could be added in future to improve efficiency. |
| 43 | */ |
| 44 | |
| 45 | #include <sys/param.h> |
| 46 | #include <sys/types.h> |
| 47 | #include <sys/malloc.h> |
| 48 | #include <sys/mbuf.h> |
| 49 | #include <sys/queue.h> |
| 50 | #include <sys/kernel.h> |
| 51 | #include <sys/systm.h> |
| 52 | |
| 53 | #include <kern/debug.h> |
| 54 | #include <kern/zalloc.h> |
| 55 | #include <kern/cpu_number.h> |
| 56 | #include <kern/locks.h> |
| 57 | #include <kern/thread_call.h> |
| 58 | |
| 59 | #include <libkern/libkern.h> |
| 60 | #include <libkern/OSAtomic.h> |
| 61 | #include <libkern/OSDebug.h> |
| 62 | |
| 63 | #include <mach/vm_param.h> |
| 64 | #include <machine/limits.h> |
| 65 | #include <machine/machine_routines.h> |
| 66 | |
| 67 | #include <string.h> |
| 68 | |
| 69 | #include <sys/mcache.h> |
| 70 | |
| 71 | #define MCACHE_SIZE(n) \ |
| 72 | __builtin_offsetof(mcache_t, mc_cpu[n]) |
| 73 | |
| 74 | /* Allocate extra in case we need to manually align the pointer */ |
| 75 | #define MCACHE_ALLOC_SIZE \ |
| 76 | (sizeof (void *) + MCACHE_SIZE(ncpu) + CPU_CACHE_LINE_SIZE) |
| 77 | |
| 78 | #define MCACHE_CPU(c) \ |
| 79 | (mcache_cpu_t *)((void *)((char *)(c) + MCACHE_SIZE(cpu_number()))) |
| 80 | |
| 81 | /* |
| 82 | * MCACHE_LIST_LOCK() and MCACHE_LIST_UNLOCK() are macros used |
| 83 | * to serialize accesses to the global list of caches in the system. |
| 84 | * They also record the thread currently running in the critical |
| 85 | * section, so that we can avoid recursive requests to reap the |
| 86 | * caches when memory runs low. |
| 87 | */ |
| 88 | #define MCACHE_LIST_LOCK() { \ |
| 89 | lck_mtx_lock(mcache_llock); \ |
| 90 | mcache_llock_owner = current_thread(); \ |
| 91 | } |
| 92 | |
| 93 | #define MCACHE_LIST_UNLOCK() { \ |
| 94 | mcache_llock_owner = NULL; \ |
| 95 | lck_mtx_unlock(mcache_llock); \ |
| 96 | } |
| 97 | |
| 98 | #define MCACHE_LOCK(l) lck_mtx_lock(l) |
| 99 | #define MCACHE_UNLOCK(l) lck_mtx_unlock(l) |
| 100 | #define MCACHE_LOCK_TRY(l) lck_mtx_try_lock(l) |
| 101 | |
| 102 | static int ncpu; |
| 103 | static unsigned int cache_line_size; |
| 104 | static lck_mtx_t *mcache_llock; |
| 105 | static struct thread *mcache_llock_owner; |
| 106 | static lck_attr_t *mcache_llock_attr; |
| 107 | static lck_grp_t *mcache_llock_grp; |
| 108 | static lck_grp_attr_t *mcache_llock_grp_attr; |
| 109 | static struct zone *mcache_zone; |
| 110 | static const uint32_t mcache_reap_interval = 15; |
| 111 | static const uint32_t mcache_reap_interval_leeway = 2; |
| 112 | static UInt32 mcache_reaping; |
| 113 | static int mcache_ready; |
| 114 | static int mcache_updating; |
| 115 | |
| 116 | static int mcache_bkt_contention = 3; |
| 117 | #if DEBUG |
| 118 | static unsigned int mcache_flags = MCF_DEBUG; |
| 119 | #else |
| 120 | static unsigned int mcache_flags = 0; |
| 121 | #endif |
| 122 | |
| 123 | int mca_trn_max = MCA_TRN_MAX; |
| 124 | |
| 125 | #define DUMP_MCA_BUF_SIZE 512 |
| 126 | static char *mca_dump_buf; |
| 127 | |
| 128 | static mcache_bkttype_t mcache_bkttype[] = { |
| 129 | { 1, 4096, 32768, NULL }, |
| 130 | { 3, 2048, 16384, NULL }, |
| 131 | { 7, 1024, 12288, NULL }, |
| 132 | { 15, 256, 8192, NULL }, |
| 133 | { 31, 64, 4096, NULL }, |
| 134 | { 47, 0, 2048, NULL }, |
| 135 | { 63, 0, 1024, NULL }, |
| 136 | { 95, 0, 512, NULL }, |
| 137 | { 143, 0, 256, NULL }, |
| 138 | { 165, 0, 0, NULL }, |
| 139 | }; |
| 140 | |
| 141 | static mcache_t *mcache_create_common(const char *, size_t, size_t, |
| 142 | mcache_allocfn_t, mcache_freefn_t, mcache_auditfn_t, mcache_logfn_t, |
| 143 | mcache_notifyfn_t, void *, u_int32_t, int, int); |
| 144 | static unsigned int mcache_slab_alloc(void *, mcache_obj_t ***, |
| 145 | unsigned int, int); |
| 146 | static void mcache_slab_free(void *, mcache_obj_t *, boolean_t); |
| 147 | static void mcache_slab_audit(void *, mcache_obj_t *, boolean_t); |
| 148 | static void mcache_cpu_refill(mcache_cpu_t *, mcache_bkt_t *, int); |
| 149 | static mcache_bkt_t *mcache_bkt_alloc(mcache_t *, mcache_bktlist_t *, |
| 150 | mcache_bkttype_t **); |
| 151 | static void mcache_bkt_free(mcache_t *, mcache_bktlist_t *, mcache_bkt_t *); |
| 152 | static void mcache_cache_bkt_enable(mcache_t *); |
| 153 | static void mcache_bkt_purge(mcache_t *); |
| 154 | static void mcache_bkt_destroy(mcache_t *, mcache_bkttype_t *, |
| 155 | mcache_bkt_t *, int); |
| 156 | static void mcache_bkt_ws_update(mcache_t *); |
| 157 | static void mcache_bkt_ws_zero(mcache_t *); |
| 158 | static void mcache_bkt_ws_reap(mcache_t *); |
| 159 | static void mcache_dispatch(void (*)(void *), void *); |
| 160 | static void mcache_cache_reap(mcache_t *); |
| 161 | static void mcache_cache_update(mcache_t *); |
| 162 | static void mcache_cache_bkt_resize(void *); |
| 163 | static void mcache_cache_enable(void *); |
| 164 | static void mcache_update(thread_call_param_t __unused, thread_call_param_t __unused); |
| 165 | static void mcache_update_timeout(void *); |
| 166 | static void mcache_applyall(void (*)(mcache_t *)); |
| 167 | static void mcache_reap_start(void *); |
| 168 | static void mcache_reap_done(void *); |
| 169 | static void mcache_reap_timeout(thread_call_param_t __unused, thread_call_param_t); |
| 170 | static void mcache_notify(mcache_t *, u_int32_t); |
| 171 | static void mcache_purge(void *); |
| 172 | |
| 173 | static LIST_HEAD(, mcache) mcache_head; |
| 174 | mcache_t *mcache_audit_cache; |
| 175 | |
| 176 | static thread_call_t mcache_reap_tcall; |
| 177 | static thread_call_t mcache_update_tcall; |
| 178 | |
| 179 | /* |
| 180 | * Initialize the framework; this is currently called as part of BSD init. |
| 181 | */ |
| 182 | __private_extern__ void |
| 183 | mcache_init(void) |
| 184 | { |
| 185 | mcache_bkttype_t *btp; |
| 186 | unsigned int i; |
| 187 | char name[32]; |
| 188 | |
| 189 | VERIFY(mca_trn_max >= 2); |
| 190 | |
| 191 | ncpu = ml_get_max_cpus(); |
| 192 | (void) mcache_cache_line_size(); /* prime it */ |
| 193 | |
| 194 | mcache_llock_grp_attr = lck_grp_attr_alloc_init(); |
| 195 | mcache_llock_grp = lck_grp_alloc_init("mcache.list" , |
| 196 | mcache_llock_grp_attr); |
| 197 | mcache_llock_attr = lck_attr_alloc_init(); |
| 198 | mcache_llock = lck_mtx_alloc_init(mcache_llock_grp, mcache_llock_attr); |
| 199 | |
| 200 | mcache_reap_tcall = thread_call_allocate(mcache_reap_timeout, NULL); |
| 201 | mcache_update_tcall = thread_call_allocate(mcache_update, NULL); |
| 202 | if (mcache_reap_tcall == NULL || mcache_update_tcall == NULL) |
| 203 | panic("mcache_init: thread_call_allocate failed" ); |
| 204 | |
| 205 | mcache_zone = zinit(MCACHE_ALLOC_SIZE, 256 * MCACHE_ALLOC_SIZE, |
| 206 | PAGE_SIZE, "mcache" ); |
| 207 | if (mcache_zone == NULL) |
| 208 | panic("mcache_init: failed to allocate mcache zone\n" ); |
| 209 | zone_change(mcache_zone, Z_CALLERACCT, FALSE); |
| 210 | |
| 211 | LIST_INIT(&mcache_head); |
| 212 | |
| 213 | for (i = 0; i < sizeof (mcache_bkttype) / sizeof (*btp); i++) { |
| 214 | btp = &mcache_bkttype[i]; |
| 215 | (void) snprintf(name, sizeof (name), "bkt_%d" , |
| 216 | btp->bt_bktsize); |
| 217 | btp->bt_cache = mcache_create(name, |
| 218 | (btp->bt_bktsize + 1) * sizeof (void *), 0, 0, MCR_SLEEP); |
| 219 | } |
| 220 | |
| 221 | PE_parse_boot_argn("mcache_flags" , &mcache_flags, sizeof(mcache_flags)); |
| 222 | mcache_flags &= MCF_FLAGS_MASK; |
| 223 | |
| 224 | mcache_audit_cache = mcache_create("audit" , sizeof (mcache_audit_t), |
| 225 | 0, 0, MCR_SLEEP); |
| 226 | |
| 227 | mcache_applyall(mcache_cache_bkt_enable); |
| 228 | mcache_ready = 1; |
| 229 | |
| 230 | printf("mcache: %d CPU(s), %d bytes CPU cache line size\n" , |
| 231 | ncpu, CPU_CACHE_LINE_SIZE); |
| 232 | } |
| 233 | |
| 234 | /* |
| 235 | * Return the global mcache flags. |
| 236 | */ |
| 237 | __private_extern__ unsigned int |
| 238 | mcache_getflags(void) |
| 239 | { |
| 240 | return (mcache_flags); |
| 241 | } |
| 242 | |
| 243 | /* |
| 244 | * Return the CPU cache line size. |
| 245 | */ |
| 246 | __private_extern__ unsigned int |
| 247 | mcache_cache_line_size(void) |
| 248 | { |
| 249 | if (cache_line_size == 0) { |
| 250 | ml_cpu_info_t cpu_info; |
| 251 | ml_cpu_get_info(&cpu_info); |
| 252 | cache_line_size = cpu_info.cache_line_size; |
| 253 | } |
| 254 | return (cache_line_size); |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Create a cache using the zone allocator as the backend slab allocator. |
| 259 | * The caller may specify any alignment for the object; if it specifies 0 |
| 260 | * the default alignment (MCACHE_ALIGN) will be used. |
| 261 | */ |
| 262 | __private_extern__ mcache_t * |
| 263 | mcache_create(const char *name, size_t bufsize, size_t align, |
| 264 | u_int32_t flags, int wait) |
| 265 | { |
| 266 | return (mcache_create_common(name, bufsize, align, mcache_slab_alloc, |
| 267 | mcache_slab_free, mcache_slab_audit, NULL, NULL, NULL, flags, 1, |
| 268 | wait)); |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Create a cache using a custom backend slab allocator. Since the caller |
| 273 | * is responsible for allocation, no alignment guarantee will be provided |
| 274 | * by this framework. |
| 275 | */ |
| 276 | __private_extern__ mcache_t * |
| 277 | mcache_create_ext(const char *name, size_t bufsize, |
| 278 | mcache_allocfn_t allocfn, mcache_freefn_t freefn, mcache_auditfn_t auditfn, |
| 279 | mcache_logfn_t logfn, mcache_notifyfn_t notifyfn, void *arg, |
| 280 | u_int32_t flags, int wait) |
| 281 | { |
| 282 | return (mcache_create_common(name, bufsize, 0, allocfn, |
| 283 | freefn, auditfn, logfn, notifyfn, arg, flags, 0, wait)); |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * Common cache creation routine. |
| 288 | */ |
| 289 | static mcache_t * |
| 290 | mcache_create_common(const char *name, size_t bufsize, size_t align, |
| 291 | mcache_allocfn_t allocfn, mcache_freefn_t freefn, mcache_auditfn_t auditfn, |
| 292 | mcache_logfn_t logfn, mcache_notifyfn_t notifyfn, void *arg, |
| 293 | u_int32_t flags, int need_zone, int wait) |
| 294 | { |
| 295 | mcache_bkttype_t *btp; |
| 296 | mcache_t *cp = NULL; |
| 297 | size_t chunksize; |
| 298 | void *buf, **pbuf; |
| 299 | int c; |
| 300 | char lck_name[64]; |
| 301 | |
| 302 | /* If auditing is on and print buffer is NULL, allocate it now */ |
| 303 | if ((flags & MCF_DEBUG) && mca_dump_buf == NULL) { |
| 304 | int malloc_wait = (wait & MCR_NOSLEEP) ? M_NOWAIT : M_WAITOK; |
| 305 | MALLOC(mca_dump_buf, char *, DUMP_MCA_BUF_SIZE, M_TEMP, |
| 306 | malloc_wait | M_ZERO); |
| 307 | if (mca_dump_buf == NULL) |
| 308 | return (NULL); |
| 309 | } |
| 310 | |
| 311 | buf = zalloc(mcache_zone); |
| 312 | if (buf == NULL) |
| 313 | goto fail; |
| 314 | |
| 315 | bzero(buf, MCACHE_ALLOC_SIZE); |
| 316 | |
| 317 | /* |
| 318 | * In case we didn't get a cache-aligned memory, round it up |
| 319 | * accordingly. This is needed in order to get the rest of |
| 320 | * structure members aligned properly. It also means that |
| 321 | * the memory span gets shifted due to the round up, but it |
| 322 | * is okay since we've allocated extra space for this. |
| 323 | */ |
| 324 | cp = (mcache_t *) |
| 325 | P2ROUNDUP((intptr_t)buf + sizeof (void *), CPU_CACHE_LINE_SIZE); |
| 326 | pbuf = (void **)((intptr_t)cp - sizeof (void *)); |
| 327 | *pbuf = buf; |
| 328 | |
| 329 | /* |
| 330 | * Guaranteed alignment is valid only when we use the internal |
| 331 | * slab allocator (currently set to use the zone allocator). |
| 332 | */ |
| 333 | if (!need_zone) { |
| 334 | align = 1; |
| 335 | } else { |
| 336 | /* Enforce 64-bit minimum alignment for zone-based buffers */ |
| 337 | if (align == 0) |
| 338 | align = MCACHE_ALIGN; |
| 339 | align = P2ROUNDUP(align, MCACHE_ALIGN); |
| 340 | } |
| 341 | |
| 342 | if ((align & (align - 1)) != 0) |
| 343 | panic("mcache_create: bad alignment %lu" , align); |
| 344 | |
| 345 | cp->mc_align = align; |
| 346 | cp->mc_slab_alloc = allocfn; |
| 347 | cp->mc_slab_free = freefn; |
| 348 | cp->mc_slab_audit = auditfn; |
| 349 | cp->mc_slab_log = logfn; |
| 350 | cp->mc_slab_notify = notifyfn; |
| 351 | cp->mc_private = need_zone ? cp : arg; |
| 352 | cp->mc_bufsize = bufsize; |
| 353 | cp->mc_flags = (flags & MCF_FLAGS_MASK) | mcache_flags; |
| 354 | |
| 355 | (void) snprintf(cp->mc_name, sizeof (cp->mc_name), "mcache.%s" , name); |
| 356 | |
| 357 | (void) snprintf(lck_name, sizeof (lck_name), "%s.cpu" , cp->mc_name); |
| 358 | cp->mc_cpu_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 359 | cp->mc_cpu_lock_grp = lck_grp_alloc_init(lck_name, |
| 360 | cp->mc_cpu_lock_grp_attr); |
| 361 | cp->mc_cpu_lock_attr = lck_attr_alloc_init(); |
| 362 | |
| 363 | /* |
| 364 | * Allocation chunk size is the object's size plus any extra size |
| 365 | * needed to satisfy the object's alignment. It is enforced to be |
| 366 | * at least the size of an LP64 pointer to simplify auditing and to |
| 367 | * handle multiple-element allocation requests, where the elements |
| 368 | * returned are linked together in a list. |
| 369 | */ |
| 370 | chunksize = MAX(bufsize, sizeof (u_int64_t)); |
| 371 | if (need_zone) { |
| 372 | VERIFY(align != 0 && (align % MCACHE_ALIGN) == 0); |
| 373 | chunksize += sizeof (uint64_t) + align; |
| 374 | chunksize = P2ROUNDUP(chunksize, align); |
| 375 | if ((cp->mc_slab_zone = zinit(chunksize, 64 * 1024 * ncpu, |
| 376 | PAGE_SIZE, cp->mc_name)) == NULL) |
| 377 | goto fail; |
| 378 | zone_change(cp->mc_slab_zone, Z_EXPAND, TRUE); |
| 379 | } |
| 380 | cp->mc_chunksize = chunksize; |
| 381 | |
| 382 | /* |
| 383 | * Initialize the bucket layer. |
| 384 | */ |
| 385 | (void) snprintf(lck_name, sizeof (lck_name), "%s.bkt" , cp->mc_name); |
| 386 | cp->mc_bkt_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 387 | cp->mc_bkt_lock_grp = lck_grp_alloc_init(lck_name, |
| 388 | cp->mc_bkt_lock_grp_attr); |
| 389 | cp->mc_bkt_lock_attr = lck_attr_alloc_init(); |
| 390 | lck_mtx_init(&cp->mc_bkt_lock, cp->mc_bkt_lock_grp, |
| 391 | cp->mc_bkt_lock_attr); |
| 392 | |
| 393 | (void) snprintf(lck_name, sizeof (lck_name), "%s.sync" , cp->mc_name); |
| 394 | cp->mc_sync_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 395 | cp->mc_sync_lock_grp = lck_grp_alloc_init(lck_name, |
| 396 | cp->mc_sync_lock_grp_attr); |
| 397 | cp->mc_sync_lock_attr = lck_attr_alloc_init(); |
| 398 | lck_mtx_init(&cp->mc_sync_lock, cp->mc_sync_lock_grp, |
| 399 | cp->mc_sync_lock_attr); |
| 400 | |
| 401 | for (btp = mcache_bkttype; chunksize <= btp->bt_minbuf; btp++) |
| 402 | continue; |
| 403 | |
| 404 | cp->cache_bkttype = btp; |
| 405 | |
| 406 | /* |
| 407 | * Initialize the CPU layer. Each per-CPU structure is aligned |
| 408 | * on the CPU cache line boundary to prevent false sharing. |
| 409 | */ |
| 410 | for (c = 0; c < ncpu; c++) { |
| 411 | mcache_cpu_t *ccp = &cp->mc_cpu[c]; |
| 412 | |
| 413 | VERIFY(IS_P2ALIGNED(ccp, CPU_CACHE_LINE_SIZE)); |
| 414 | lck_mtx_init(&ccp->cc_lock, cp->mc_cpu_lock_grp, |
| 415 | cp->mc_cpu_lock_attr); |
| 416 | ccp->cc_objs = -1; |
| 417 | ccp->cc_pobjs = -1; |
| 418 | } |
| 419 | |
| 420 | if (mcache_ready) |
| 421 | mcache_cache_bkt_enable(cp); |
| 422 | |
| 423 | /* TODO: dynamically create sysctl for stats */ |
| 424 | |
| 425 | MCACHE_LIST_LOCK(); |
| 426 | LIST_INSERT_HEAD(&mcache_head, cp, mc_list); |
| 427 | MCACHE_LIST_UNLOCK(); |
| 428 | |
| 429 | /* |
| 430 | * If cache buckets are enabled and this is the first cache |
| 431 | * created, start the periodic cache update. |
| 432 | */ |
| 433 | if (!(mcache_flags & MCF_NOCPUCACHE) && !mcache_updating) { |
| 434 | mcache_updating = 1; |
| 435 | mcache_update_timeout(NULL); |
| 436 | } |
| 437 | if (cp->mc_flags & MCF_DEBUG) { |
| 438 | printf("mcache_create: %s (%s) arg %p bufsize %lu align %lu " |
| 439 | "chunksize %lu bktsize %d\n" , name, need_zone ? "i" : "e" , |
| 440 | arg, bufsize, cp->mc_align, chunksize, btp->bt_bktsize); |
| 441 | } |
| 442 | return (cp); |
| 443 | |
| 444 | fail: |
| 445 | if (buf != NULL) |
| 446 | zfree(mcache_zone, buf); |
| 447 | return (NULL); |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * Allocate one or more objects from a cache. |
| 452 | */ |
| 453 | __private_extern__ unsigned int |
| 454 | mcache_alloc_ext(mcache_t *cp, mcache_obj_t **list, unsigned int num, int wait) |
| 455 | { |
| 456 | mcache_cpu_t *ccp; |
| 457 | mcache_obj_t **top = &(*list); |
| 458 | mcache_bkt_t *bkt; |
| 459 | unsigned int need = num; |
| 460 | boolean_t nwretry = FALSE; |
| 461 | |
| 462 | /* MCR_NOSLEEP and MCR_FAILOK are mutually exclusive */ |
| 463 | VERIFY((wait & (MCR_NOSLEEP|MCR_FAILOK)) != (MCR_NOSLEEP|MCR_FAILOK)); |
| 464 | |
| 465 | ASSERT(list != NULL); |
| 466 | *list = NULL; |
| 467 | |
| 468 | if (num == 0) |
| 469 | return (0); |
| 470 | |
| 471 | retry_alloc: |
| 472 | /* We may not always be running in the same CPU in case of retries */ |
| 473 | ccp = MCACHE_CPU(cp); |
| 474 | |
| 475 | MCACHE_LOCK(&ccp->cc_lock); |
| 476 | for (;;) { |
| 477 | /* |
| 478 | * If we have an object in the current CPU's filled bucket, |
| 479 | * chain the object to any previous objects and return if |
| 480 | * we've satisfied the number of requested objects. |
| 481 | */ |
| 482 | if (ccp->cc_objs > 0) { |
| 483 | mcache_obj_t *tail; |
| 484 | int objs; |
| 485 | |
| 486 | /* |
| 487 | * Objects in the bucket are already linked together |
| 488 | * with the most recently freed object at the head of |
| 489 | * the list; grab as many objects as we can. |
| 490 | */ |
| 491 | objs = MIN((unsigned int)ccp->cc_objs, need); |
| 492 | *list = ccp->cc_filled->bkt_obj[ccp->cc_objs - 1]; |
| 493 | ccp->cc_objs -= objs; |
| 494 | ccp->cc_alloc += objs; |
| 495 | |
| 496 | tail = ccp->cc_filled->bkt_obj[ccp->cc_objs]; |
| 497 | list = &tail->obj_next; |
| 498 | *list = NULL; |
| 499 | |
| 500 | /* If we got them all, return to caller */ |
| 501 | if ((need -= objs) == 0) { |
| 502 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 503 | |
| 504 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && |
| 505 | cp->mc_slab_log != NULL) |
| 506 | (*cp->mc_slab_log)(num, *top, TRUE); |
| 507 | |
| 508 | if (cp->mc_flags & MCF_DEBUG) |
| 509 | goto debug_alloc; |
| 510 | |
| 511 | return (num); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * The CPU's filled bucket is empty. If the previous filled |
| 517 | * bucket was full, exchange and try again. |
| 518 | */ |
| 519 | if (ccp->cc_pobjs > 0) { |
| 520 | mcache_cpu_refill(ccp, ccp->cc_pfilled, ccp->cc_pobjs); |
| 521 | continue; |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * If the bucket layer is disabled, allocate from slab. This |
| 526 | * can happen either because MCF_NOCPUCACHE is set, or because |
| 527 | * the bucket layer is currently being resized. |
| 528 | */ |
| 529 | if (ccp->cc_bktsize == 0) |
| 530 | break; |
| 531 | |
| 532 | /* |
| 533 | * Both of the CPU's buckets are empty; try to get a full |
| 534 | * bucket from the bucket layer. Upon success, refill this |
| 535 | * CPU and place any empty bucket into the empty list. |
| 536 | */ |
| 537 | bkt = mcache_bkt_alloc(cp, &cp->mc_full, NULL); |
| 538 | if (bkt != NULL) { |
| 539 | if (ccp->cc_pfilled != NULL) |
| 540 | mcache_bkt_free(cp, &cp->mc_empty, |
| 541 | ccp->cc_pfilled); |
| 542 | mcache_cpu_refill(ccp, bkt, ccp->cc_bktsize); |
| 543 | continue; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * The bucket layer has no full buckets; allocate the |
| 548 | * object(s) directly from the slab layer. |
| 549 | */ |
| 550 | break; |
| 551 | } |
| 552 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 553 | |
| 554 | need -= (*cp->mc_slab_alloc)(cp->mc_private, &list, need, wait); |
| 555 | |
| 556 | /* |
| 557 | * If this is a blocking allocation, or if it is non-blocking and |
| 558 | * the cache's full bucket is non-empty, then retry the allocation. |
| 559 | */ |
| 560 | if (need > 0) { |
| 561 | if (!(wait & MCR_NONBLOCKING)) { |
| 562 | atomic_add_32(&cp->mc_wretry_cnt, 1); |
| 563 | goto retry_alloc; |
| 564 | } else if ((wait & (MCR_NOSLEEP | MCR_TRYHARD)) && |
| 565 | !mcache_bkt_isempty(cp)) { |
| 566 | if (!nwretry) |
| 567 | nwretry = TRUE; |
| 568 | atomic_add_32(&cp->mc_nwretry_cnt, 1); |
| 569 | goto retry_alloc; |
| 570 | } else if (nwretry) { |
| 571 | atomic_add_32(&cp->mc_nwfail_cnt, 1); |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && cp->mc_slab_log != NULL) |
| 576 | (*cp->mc_slab_log)((num - need), *top, TRUE); |
| 577 | |
| 578 | if (!(cp->mc_flags & MCF_DEBUG)) |
| 579 | return (num - need); |
| 580 | |
| 581 | debug_alloc: |
| 582 | if (cp->mc_flags & MCF_DEBUG) { |
| 583 | mcache_obj_t **o = top; |
| 584 | unsigned int n; |
| 585 | |
| 586 | n = 0; |
| 587 | /* |
| 588 | * Verify that the chain of objects have the same count as |
| 589 | * what we are about to report to the caller. Any mismatch |
| 590 | * here means that the object list is insanely broken and |
| 591 | * therefore we must panic. |
| 592 | */ |
| 593 | while (*o != NULL) { |
| 594 | o = &(*o)->obj_next; |
| 595 | ++n; |
| 596 | } |
| 597 | if (n != (num - need)) { |
| 598 | panic("mcache_alloc_ext: %s cp %p corrupted list " |
| 599 | "(got %d actual %d)\n" , cp->mc_name, |
| 600 | (void *)cp, num - need, n); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | /* Invoke the slab layer audit callback if auditing is enabled */ |
| 605 | if ((cp->mc_flags & MCF_DEBUG) && cp->mc_slab_audit != NULL) |
| 606 | (*cp->mc_slab_audit)(cp->mc_private, *top, TRUE); |
| 607 | |
| 608 | return (num - need); |
| 609 | } |
| 610 | |
| 611 | /* |
| 612 | * Allocate a single object from a cache. |
| 613 | */ |
| 614 | __private_extern__ void * |
| 615 | mcache_alloc(mcache_t *cp, int wait) |
| 616 | { |
| 617 | mcache_obj_t *buf; |
| 618 | |
| 619 | (void) mcache_alloc_ext(cp, &buf, 1, wait); |
| 620 | return (buf); |
| 621 | } |
| 622 | |
| 623 | __private_extern__ void |
| 624 | mcache_waiter_inc(mcache_t *cp) |
| 625 | { |
| 626 | atomic_add_32(&cp->mc_waiter_cnt, 1); |
| 627 | } |
| 628 | |
| 629 | __private_extern__ void |
| 630 | mcache_waiter_dec(mcache_t *cp) |
| 631 | { |
| 632 | atomic_add_32(&cp->mc_waiter_cnt, -1); |
| 633 | } |
| 634 | |
| 635 | __private_extern__ boolean_t |
| 636 | mcache_bkt_isempty(mcache_t *cp) |
| 637 | { |
| 638 | /* |
| 639 | * This isn't meant to accurately tell whether there are |
| 640 | * any full buckets in the cache; it is simply a way to |
| 641 | * obtain "hints" about the state of the cache. |
| 642 | */ |
| 643 | return (cp->mc_full.bl_total == 0); |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * Notify the slab layer about an event. |
| 648 | */ |
| 649 | static void |
| 650 | mcache_notify(mcache_t *cp, u_int32_t event) |
| 651 | { |
| 652 | if (cp->mc_slab_notify != NULL) |
| 653 | (*cp->mc_slab_notify)(cp->mc_private, event); |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * Purge the cache and disable its buckets. |
| 658 | */ |
| 659 | static void |
| 660 | mcache_purge(void *arg) |
| 661 | { |
| 662 | mcache_t *cp = arg; |
| 663 | |
| 664 | mcache_bkt_purge(cp); |
| 665 | /* |
| 666 | * We cannot simply call mcache_cache_bkt_enable() from here as |
| 667 | * a bucket resize may be in flight and we would cause the CPU |
| 668 | * layers of the cache to point to different sizes. Therefore, |
| 669 | * we simply increment the enable count so that during the next |
| 670 | * periodic cache update the buckets can be reenabled. |
| 671 | */ |
| 672 | lck_mtx_lock_spin(&cp->mc_sync_lock); |
| 673 | cp->mc_enable_cnt++; |
| 674 | lck_mtx_unlock(&cp->mc_sync_lock); |
| 675 | } |
| 676 | |
| 677 | __private_extern__ boolean_t |
| 678 | mcache_purge_cache(mcache_t *cp, boolean_t async) |
| 679 | { |
| 680 | /* |
| 681 | * Purging a cache that has no per-CPU caches or is already |
| 682 | * in the process of being purged is rather pointless. |
| 683 | */ |
| 684 | if (cp->mc_flags & MCF_NOCPUCACHE) |
| 685 | return (FALSE); |
| 686 | |
| 687 | lck_mtx_lock_spin(&cp->mc_sync_lock); |
| 688 | if (cp->mc_purge_cnt > 0) { |
| 689 | lck_mtx_unlock(&cp->mc_sync_lock); |
| 690 | return (FALSE); |
| 691 | } |
| 692 | cp->mc_purge_cnt++; |
| 693 | lck_mtx_unlock(&cp->mc_sync_lock); |
| 694 | |
| 695 | if (async) |
| 696 | mcache_dispatch(mcache_purge, cp); |
| 697 | else |
| 698 | mcache_purge(cp); |
| 699 | |
| 700 | return (TRUE); |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Free a single object to a cache. |
| 705 | */ |
| 706 | __private_extern__ void |
| 707 | mcache_free(mcache_t *cp, void *buf) |
| 708 | { |
| 709 | ((mcache_obj_t *)buf)->obj_next = NULL; |
| 710 | mcache_free_ext(cp, (mcache_obj_t *)buf); |
| 711 | } |
| 712 | |
| 713 | /* |
| 714 | * Free one or more objects to a cache. |
| 715 | */ |
| 716 | __private_extern__ void |
| 717 | mcache_free_ext(mcache_t *cp, mcache_obj_t *list) |
| 718 | { |
| 719 | mcache_cpu_t *ccp = MCACHE_CPU(cp); |
| 720 | mcache_bkttype_t *btp; |
| 721 | mcache_obj_t *nlist; |
| 722 | mcache_bkt_t *bkt; |
| 723 | |
| 724 | if (!(cp->mc_flags & MCF_NOLEAKLOG) && cp->mc_slab_log != NULL) |
| 725 | (*cp->mc_slab_log)(0, list, FALSE); |
| 726 | |
| 727 | /* Invoke the slab layer audit callback if auditing is enabled */ |
| 728 | if ((cp->mc_flags & MCF_DEBUG) && cp->mc_slab_audit != NULL) |
| 729 | (*cp->mc_slab_audit)(cp->mc_private, list, FALSE); |
| 730 | |
| 731 | MCACHE_LOCK(&ccp->cc_lock); |
| 732 | for (;;) { |
| 733 | /* |
| 734 | * If there is space in the current CPU's filled bucket, put |
| 735 | * the object there and return once all objects are freed. |
| 736 | * Note the cast to unsigned integer takes care of the case |
| 737 | * where the bucket layer is disabled (when cc_objs is -1). |
| 738 | */ |
| 739 | if ((unsigned int)ccp->cc_objs < |
| 740 | (unsigned int)ccp->cc_bktsize) { |
| 741 | /* |
| 742 | * Reverse the list while we place the object into the |
| 743 | * bucket; this effectively causes the most recently |
| 744 | * freed object(s) to be reused during allocation. |
| 745 | */ |
| 746 | nlist = list->obj_next; |
| 747 | list->obj_next = (ccp->cc_objs == 0) ? NULL : |
| 748 | ccp->cc_filled->bkt_obj[ccp->cc_objs - 1]; |
| 749 | ccp->cc_filled->bkt_obj[ccp->cc_objs++] = list; |
| 750 | ccp->cc_free++; |
| 751 | |
| 752 | if ((list = nlist) != NULL) |
| 753 | continue; |
| 754 | |
| 755 | /* We are done; return to caller */ |
| 756 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 757 | |
| 758 | /* If there is a waiter below, notify it */ |
| 759 | if (cp->mc_waiter_cnt > 0) |
| 760 | mcache_notify(cp, MCN_RETRYALLOC); |
| 761 | return; |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * The CPU's filled bucket is full. If the previous filled |
| 766 | * bucket was empty, exchange and try again. |
| 767 | */ |
| 768 | if (ccp->cc_pobjs == 0) { |
| 769 | mcache_cpu_refill(ccp, ccp->cc_pfilled, ccp->cc_pobjs); |
| 770 | continue; |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * If the bucket layer is disabled, free to slab. This can |
| 775 | * happen either because MCF_NOCPUCACHE is set, or because |
| 776 | * the bucket layer is currently being resized. |
| 777 | */ |
| 778 | if (ccp->cc_bktsize == 0) |
| 779 | break; |
| 780 | |
| 781 | /* |
| 782 | * Both of the CPU's buckets are full; try to get an empty |
| 783 | * bucket from the bucket layer. Upon success, empty this |
| 784 | * CPU and place any full bucket into the full list. |
| 785 | */ |
| 786 | bkt = mcache_bkt_alloc(cp, &cp->mc_empty, &btp); |
| 787 | if (bkt != NULL) { |
| 788 | if (ccp->cc_pfilled != NULL) |
| 789 | mcache_bkt_free(cp, &cp->mc_full, |
| 790 | ccp->cc_pfilled); |
| 791 | mcache_cpu_refill(ccp, bkt, 0); |
| 792 | continue; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * We need an empty bucket to put our freed objects into |
| 797 | * but couldn't get an empty bucket from the bucket layer; |
| 798 | * attempt to allocate one. We do not want to block for |
| 799 | * allocation here, and if the bucket allocation fails |
| 800 | * we will simply fall through to the slab layer. |
| 801 | */ |
| 802 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 803 | bkt = mcache_alloc(btp->bt_cache, MCR_NOSLEEP); |
| 804 | MCACHE_LOCK(&ccp->cc_lock); |
| 805 | |
| 806 | if (bkt != NULL) { |
| 807 | /* |
| 808 | * We have an empty bucket, but since we drop the |
| 809 | * CPU lock above, the cache's bucket size may have |
| 810 | * changed. If so, free the bucket and try again. |
| 811 | */ |
| 812 | if (ccp->cc_bktsize != btp->bt_bktsize) { |
| 813 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 814 | mcache_free(btp->bt_cache, bkt); |
| 815 | MCACHE_LOCK(&ccp->cc_lock); |
| 816 | continue; |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * We have an empty bucket of the right size; |
| 821 | * add it to the bucket layer and try again. |
| 822 | */ |
| 823 | mcache_bkt_free(cp, &cp->mc_empty, bkt); |
| 824 | continue; |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * The bucket layer has no empty buckets; free the |
| 829 | * object(s) directly to the slab layer. |
| 830 | */ |
| 831 | break; |
| 832 | } |
| 833 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 834 | |
| 835 | /* If there is a waiter below, notify it */ |
| 836 | if (cp->mc_waiter_cnt > 0) |
| 837 | mcache_notify(cp, MCN_RETRYALLOC); |
| 838 | |
| 839 | /* Advise the slab layer to purge the object(s) */ |
| 840 | (*cp->mc_slab_free)(cp->mc_private, list, |
| 841 | (cp->mc_flags & MCF_DEBUG) || cp->mc_purge_cnt); |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Cache destruction routine. |
| 846 | */ |
| 847 | __private_extern__ void |
| 848 | mcache_destroy(mcache_t *cp) |
| 849 | { |
| 850 | void **pbuf; |
| 851 | |
| 852 | MCACHE_LIST_LOCK(); |
| 853 | LIST_REMOVE(cp, mc_list); |
| 854 | MCACHE_LIST_UNLOCK(); |
| 855 | |
| 856 | mcache_bkt_purge(cp); |
| 857 | |
| 858 | /* |
| 859 | * This cache is dead; there should be no further transaction. |
| 860 | * If it's still invoked, make sure that it induces a fault. |
| 861 | */ |
| 862 | cp->mc_slab_alloc = NULL; |
| 863 | cp->mc_slab_free = NULL; |
| 864 | cp->mc_slab_audit = NULL; |
| 865 | |
| 866 | lck_attr_free(cp->mc_bkt_lock_attr); |
| 867 | lck_grp_free(cp->mc_bkt_lock_grp); |
| 868 | lck_grp_attr_free(cp->mc_bkt_lock_grp_attr); |
| 869 | |
| 870 | lck_attr_free(cp->mc_cpu_lock_attr); |
| 871 | lck_grp_free(cp->mc_cpu_lock_grp); |
| 872 | lck_grp_attr_free(cp->mc_cpu_lock_grp_attr); |
| 873 | |
| 874 | lck_attr_free(cp->mc_sync_lock_attr); |
| 875 | lck_grp_free(cp->mc_sync_lock_grp); |
| 876 | lck_grp_attr_free(cp->mc_sync_lock_grp_attr); |
| 877 | |
| 878 | /* |
| 879 | * TODO: We need to destroy the zone here, but cannot do it |
| 880 | * because there is no such way to achieve that. Until then |
| 881 | * the memory allocated for the zone structure is leaked. |
| 882 | * Once it is achievable, uncomment these lines: |
| 883 | * |
| 884 | * if (cp->mc_slab_zone != NULL) { |
| 885 | * zdestroy(cp->mc_slab_zone); |
| 886 | * cp->mc_slab_zone = NULL; |
| 887 | * } |
| 888 | */ |
| 889 | |
| 890 | /* Get the original address since we're about to free it */ |
| 891 | pbuf = (void **)((intptr_t)cp - sizeof (void *)); |
| 892 | |
| 893 | zfree(mcache_zone, *pbuf); |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * Internal slab allocator used as a backend for simple caches. The current |
| 898 | * implementation uses the zone allocator for simplicity reasons. |
| 899 | */ |
| 900 | static unsigned int |
| 901 | mcache_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, |
| 902 | int wait) |
| 903 | { |
| 904 | #pragma unused(wait) |
| 905 | mcache_t *cp = arg; |
| 906 | unsigned int need = num; |
| 907 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); |
| 908 | u_int32_t flags = cp->mc_flags; |
| 909 | void *buf, *base, **pbuf; |
| 910 | mcache_obj_t **list = *plist; |
| 911 | |
| 912 | *list = NULL; |
| 913 | |
| 914 | for (;;) { |
| 915 | buf = zalloc(cp->mc_slab_zone); |
| 916 | if (buf == NULL) |
| 917 | break; |
| 918 | |
| 919 | /* Get the aligned base address for this object */ |
| 920 | base = (void *)P2ROUNDUP((intptr_t)buf + sizeof (u_int64_t), |
| 921 | cp->mc_align); |
| 922 | |
| 923 | /* |
| 924 | * Wind back a pointer size from the aligned base and |
| 925 | * save the original address so we can free it later. |
| 926 | */ |
| 927 | pbuf = (void **)((intptr_t)base - sizeof (void *)); |
| 928 | *pbuf = buf; |
| 929 | |
| 930 | VERIFY (((intptr_t)base + cp->mc_bufsize) <= |
| 931 | ((intptr_t)buf + cp->mc_chunksize)); |
| 932 | |
| 933 | /* |
| 934 | * If auditing is enabled, patternize the contents of |
| 935 | * the buffer starting from the 64-bit aligned base to |
| 936 | * the end of the buffer; the length is rounded up to |
| 937 | * the nearest 64-bit multiply; this is because we use |
| 938 | * 64-bit memory access to set/check the pattern. |
| 939 | */ |
| 940 | if (flags & MCF_DEBUG) { |
| 941 | VERIFY(((intptr_t)base + rsize) <= |
| 942 | ((intptr_t)buf + cp->mc_chunksize)); |
| 943 | mcache_set_pattern(MCACHE_FREE_PATTERN, base, rsize); |
| 944 | } |
| 945 | |
| 946 | VERIFY(IS_P2ALIGNED(base, cp->mc_align)); |
| 947 | *list = (mcache_obj_t *)base; |
| 948 | |
| 949 | (*list)->obj_next = NULL; |
| 950 | list = *plist = &(*list)->obj_next; |
| 951 | |
| 952 | /* If we got them all, return to mcache */ |
| 953 | if (--need == 0) |
| 954 | break; |
| 955 | } |
| 956 | |
| 957 | return (num - need); |
| 958 | } |
| 959 | |
| 960 | /* |
| 961 | * Internal slab deallocator used as a backend for simple caches. |
| 962 | */ |
| 963 | static void |
| 964 | mcache_slab_free(void *arg, mcache_obj_t *list, __unused boolean_t purged) |
| 965 | { |
| 966 | mcache_t *cp = arg; |
| 967 | mcache_obj_t *nlist; |
| 968 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); |
| 969 | u_int32_t flags = cp->mc_flags; |
| 970 | void *base; |
| 971 | void **pbuf; |
| 972 | |
| 973 | for (;;) { |
| 974 | nlist = list->obj_next; |
| 975 | list->obj_next = NULL; |
| 976 | |
| 977 | base = list; |
| 978 | VERIFY(IS_P2ALIGNED(base, cp->mc_align)); |
| 979 | |
| 980 | /* Get the original address since we're about to free it */ |
| 981 | pbuf = (void **)((intptr_t)base - sizeof (void *)); |
| 982 | |
| 983 | VERIFY(((intptr_t)base + cp->mc_bufsize) <= |
| 984 | ((intptr_t)*pbuf + cp->mc_chunksize)); |
| 985 | |
| 986 | if (flags & MCF_DEBUG) { |
| 987 | VERIFY(((intptr_t)base + rsize) <= |
| 988 | ((intptr_t)*pbuf + cp->mc_chunksize)); |
| 989 | mcache_audit_free_verify(NULL, base, 0, rsize); |
| 990 | } |
| 991 | |
| 992 | /* Free it to zone */ |
| 993 | zfree(cp->mc_slab_zone, *pbuf); |
| 994 | |
| 995 | /* No more objects to free; return to mcache */ |
| 996 | if ((list = nlist) == NULL) |
| 997 | break; |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Internal slab auditor for simple caches. |
| 1003 | */ |
| 1004 | static void |
| 1005 | mcache_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) |
| 1006 | { |
| 1007 | mcache_t *cp = arg; |
| 1008 | size_t rsize = P2ROUNDUP(cp->mc_bufsize, sizeof (u_int64_t)); |
| 1009 | void *base, **pbuf; |
| 1010 | |
| 1011 | while (list != NULL) { |
| 1012 | mcache_obj_t *next = list->obj_next; |
| 1013 | |
| 1014 | base = list; |
| 1015 | VERIFY(IS_P2ALIGNED(base, cp->mc_align)); |
| 1016 | |
| 1017 | /* Get the original address */ |
| 1018 | pbuf = (void **)((intptr_t)base - sizeof (void *)); |
| 1019 | |
| 1020 | VERIFY(((intptr_t)base + rsize) <= |
| 1021 | ((intptr_t)*pbuf + cp->mc_chunksize)); |
| 1022 | |
| 1023 | if (!alloc) |
| 1024 | mcache_set_pattern(MCACHE_FREE_PATTERN, base, rsize); |
| 1025 | else |
| 1026 | mcache_audit_free_verify_set(NULL, base, 0, rsize); |
| 1027 | |
| 1028 | list = list->obj_next = next; |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * Refill the CPU's filled bucket with bkt and save the previous one. |
| 1034 | */ |
| 1035 | static void |
| 1036 | mcache_cpu_refill(mcache_cpu_t *ccp, mcache_bkt_t *bkt, int objs) |
| 1037 | { |
| 1038 | ASSERT((ccp->cc_filled == NULL && ccp->cc_objs == -1) || |
| 1039 | (ccp->cc_filled && ccp->cc_objs + objs == ccp->cc_bktsize)); |
| 1040 | ASSERT(ccp->cc_bktsize > 0); |
| 1041 | |
| 1042 | ccp->cc_pfilled = ccp->cc_filled; |
| 1043 | ccp->cc_pobjs = ccp->cc_objs; |
| 1044 | ccp->cc_filled = bkt; |
| 1045 | ccp->cc_objs = objs; |
| 1046 | } |
| 1047 | |
| 1048 | /* |
| 1049 | * Allocate a bucket from the bucket layer. |
| 1050 | */ |
| 1051 | static mcache_bkt_t * |
| 1052 | mcache_bkt_alloc(mcache_t *cp, mcache_bktlist_t *blp, mcache_bkttype_t **btp) |
| 1053 | { |
| 1054 | mcache_bkt_t *bkt; |
| 1055 | |
| 1056 | if (!MCACHE_LOCK_TRY(&cp->mc_bkt_lock)) { |
| 1057 | /* |
| 1058 | * The bucket layer lock is held by another CPU; increase |
| 1059 | * the contention count so that we can later resize the |
| 1060 | * bucket size accordingly. |
| 1061 | */ |
| 1062 | MCACHE_LOCK(&cp->mc_bkt_lock); |
| 1063 | cp->mc_bkt_contention++; |
| 1064 | } |
| 1065 | |
| 1066 | if ((bkt = blp->bl_list) != NULL) { |
| 1067 | blp->bl_list = bkt->bkt_next; |
| 1068 | if (--blp->bl_total < blp->bl_min) |
| 1069 | blp->bl_min = blp->bl_total; |
| 1070 | blp->bl_alloc++; |
| 1071 | } |
| 1072 | |
| 1073 | if (btp != NULL) |
| 1074 | *btp = cp->cache_bkttype; |
| 1075 | |
| 1076 | MCACHE_UNLOCK(&cp->mc_bkt_lock); |
| 1077 | |
| 1078 | return (bkt); |
| 1079 | } |
| 1080 | |
| 1081 | /* |
| 1082 | * Free a bucket to the bucket layer. |
| 1083 | */ |
| 1084 | static void |
| 1085 | mcache_bkt_free(mcache_t *cp, mcache_bktlist_t *blp, mcache_bkt_t *bkt) |
| 1086 | { |
| 1087 | MCACHE_LOCK(&cp->mc_bkt_lock); |
| 1088 | |
| 1089 | bkt->bkt_next = blp->bl_list; |
| 1090 | blp->bl_list = bkt; |
| 1091 | blp->bl_total++; |
| 1092 | |
| 1093 | MCACHE_UNLOCK(&cp->mc_bkt_lock); |
| 1094 | } |
| 1095 | |
| 1096 | /* |
| 1097 | * Enable the bucket layer of a cache. |
| 1098 | */ |
| 1099 | static void |
| 1100 | mcache_cache_bkt_enable(mcache_t *cp) |
| 1101 | { |
| 1102 | mcache_cpu_t *ccp; |
| 1103 | int cpu; |
| 1104 | |
| 1105 | if (cp->mc_flags & MCF_NOCPUCACHE) |
| 1106 | return; |
| 1107 | |
| 1108 | for (cpu = 0; cpu < ncpu; cpu++) { |
| 1109 | ccp = &cp->mc_cpu[cpu]; |
| 1110 | MCACHE_LOCK(&ccp->cc_lock); |
| 1111 | ccp->cc_bktsize = cp->cache_bkttype->bt_bktsize; |
| 1112 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * Purge all buckets from a cache and disable its bucket layer. |
| 1118 | */ |
| 1119 | static void |
| 1120 | mcache_bkt_purge(mcache_t *cp) |
| 1121 | { |
| 1122 | mcache_cpu_t *ccp; |
| 1123 | mcache_bkt_t *bp, *pbp; |
| 1124 | mcache_bkttype_t *btp; |
| 1125 | int cpu, objs, pobjs; |
| 1126 | |
| 1127 | for (cpu = 0; cpu < ncpu; cpu++) { |
| 1128 | ccp = &cp->mc_cpu[cpu]; |
| 1129 | |
| 1130 | MCACHE_LOCK(&ccp->cc_lock); |
| 1131 | |
| 1132 | btp = cp->cache_bkttype; |
| 1133 | bp = ccp->cc_filled; |
| 1134 | pbp = ccp->cc_pfilled; |
| 1135 | objs = ccp->cc_objs; |
| 1136 | pobjs = ccp->cc_pobjs; |
| 1137 | ccp->cc_filled = NULL; |
| 1138 | ccp->cc_pfilled = NULL; |
| 1139 | ccp->cc_objs = -1; |
| 1140 | ccp->cc_pobjs = -1; |
| 1141 | ccp->cc_bktsize = 0; |
| 1142 | |
| 1143 | MCACHE_UNLOCK(&ccp->cc_lock); |
| 1144 | |
| 1145 | if (bp != NULL) |
| 1146 | mcache_bkt_destroy(cp, btp, bp, objs); |
| 1147 | if (pbp != NULL) |
| 1148 | mcache_bkt_destroy(cp, btp, pbp, pobjs); |
| 1149 | } |
| 1150 | |
| 1151 | mcache_bkt_ws_zero(cp); |
| 1152 | mcache_bkt_ws_reap(cp); |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | * Free one or more objects in the bucket to the slab layer, |
| 1157 | * and also free the bucket itself. |
| 1158 | */ |
| 1159 | static void |
| 1160 | mcache_bkt_destroy(mcache_t *cp, mcache_bkttype_t *btp, mcache_bkt_t *bkt, |
| 1161 | int nobjs) |
| 1162 | { |
| 1163 | if (nobjs > 0) { |
| 1164 | mcache_obj_t *top = bkt->bkt_obj[nobjs - 1]; |
| 1165 | |
| 1166 | if (cp->mc_flags & MCF_DEBUG) { |
| 1167 | mcache_obj_t *o = top; |
| 1168 | int cnt = 0; |
| 1169 | |
| 1170 | /* |
| 1171 | * Verify that the chain of objects in the bucket is |
| 1172 | * valid. Any mismatch here means a mistake when the |
| 1173 | * object(s) were freed to the CPU layer, so we panic. |
| 1174 | */ |
| 1175 | while (o != NULL) { |
| 1176 | o = o->obj_next; |
| 1177 | ++cnt; |
| 1178 | } |
| 1179 | if (cnt != nobjs) { |
| 1180 | panic("mcache_bkt_destroy: %s cp %p corrupted " |
| 1181 | "list in bkt %p (nobjs %d actual %d)\n" , |
| 1182 | cp->mc_name, (void *)cp, (void *)bkt, |
| 1183 | nobjs, cnt); |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | /* Advise the slab layer to purge the object(s) */ |
| 1188 | (*cp->mc_slab_free)(cp->mc_private, top, |
| 1189 | (cp->mc_flags & MCF_DEBUG) || cp->mc_purge_cnt); |
| 1190 | } |
| 1191 | mcache_free(btp->bt_cache, bkt); |
| 1192 | } |
| 1193 | |
| 1194 | /* |
| 1195 | * Update the bucket layer working set statistics. |
| 1196 | */ |
| 1197 | static void |
| 1198 | mcache_bkt_ws_update(mcache_t *cp) |
| 1199 | { |
| 1200 | MCACHE_LOCK(&cp->mc_bkt_lock); |
| 1201 | |
| 1202 | cp->mc_full.bl_reaplimit = cp->mc_full.bl_min; |
| 1203 | cp->mc_full.bl_min = cp->mc_full.bl_total; |
| 1204 | cp->mc_empty.bl_reaplimit = cp->mc_empty.bl_min; |
| 1205 | cp->mc_empty.bl_min = cp->mc_empty.bl_total; |
| 1206 | |
| 1207 | MCACHE_UNLOCK(&cp->mc_bkt_lock); |
| 1208 | } |
| 1209 | |
| 1210 | /* |
| 1211 | * Mark everything as eligible for reaping (working set is zero). |
| 1212 | */ |
| 1213 | static void |
| 1214 | mcache_bkt_ws_zero(mcache_t *cp) |
| 1215 | { |
| 1216 | MCACHE_LOCK(&cp->mc_bkt_lock); |
| 1217 | |
| 1218 | cp->mc_full.bl_reaplimit = cp->mc_full.bl_total; |
| 1219 | cp->mc_full.bl_min = cp->mc_full.bl_total; |
| 1220 | cp->mc_empty.bl_reaplimit = cp->mc_empty.bl_total; |
| 1221 | cp->mc_empty.bl_min = cp->mc_empty.bl_total; |
| 1222 | |
| 1223 | MCACHE_UNLOCK(&cp->mc_bkt_lock); |
| 1224 | } |
| 1225 | |
| 1226 | /* |
| 1227 | * Reap all buckets that are beyond the working set. |
| 1228 | */ |
| 1229 | static void |
| 1230 | mcache_bkt_ws_reap(mcache_t *cp) |
| 1231 | { |
| 1232 | long reap; |
| 1233 | mcache_bkt_t *bkt; |
| 1234 | mcache_bkttype_t *btp; |
| 1235 | |
| 1236 | reap = MIN(cp->mc_full.bl_reaplimit, cp->mc_full.bl_min); |
| 1237 | while (reap-- && |
| 1238 | (bkt = mcache_bkt_alloc(cp, &cp->mc_full, &btp)) != NULL) |
| 1239 | mcache_bkt_destroy(cp, btp, bkt, btp->bt_bktsize); |
| 1240 | |
| 1241 | reap = MIN(cp->mc_empty.bl_reaplimit, cp->mc_empty.bl_min); |
| 1242 | while (reap-- && |
| 1243 | (bkt = mcache_bkt_alloc(cp, &cp->mc_empty, &btp)) != NULL) |
| 1244 | mcache_bkt_destroy(cp, btp, bkt, 0); |
| 1245 | } |
| 1246 | |
| 1247 | static void |
| 1248 | mcache_reap_timeout(thread_call_param_t dummy __unused, |
| 1249 | thread_call_param_t arg) |
| 1250 | { |
| 1251 | volatile UInt32 *flag = arg; |
| 1252 | |
| 1253 | ASSERT(flag == &mcache_reaping); |
| 1254 | |
| 1255 | *flag = 0; |
| 1256 | } |
| 1257 | |
| 1258 | static void |
| 1259 | mcache_reap_done(void *flag) |
| 1260 | { |
| 1261 | uint64_t deadline, leeway; |
| 1262 | |
| 1263 | clock_interval_to_deadline(mcache_reap_interval, NSEC_PER_SEC, |
| 1264 | &deadline); |
| 1265 | clock_interval_to_absolutetime_interval(mcache_reap_interval_leeway, |
| 1266 | NSEC_PER_SEC, &leeway); |
| 1267 | thread_call_enter_delayed_with_leeway(mcache_reap_tcall, flag, |
| 1268 | deadline, leeway, THREAD_CALL_DELAY_LEEWAY); |
| 1269 | } |
| 1270 | |
| 1271 | static void |
| 1272 | mcache_reap_start(void *arg) |
| 1273 | { |
| 1274 | UInt32 *flag = arg; |
| 1275 | |
| 1276 | ASSERT(flag == &mcache_reaping); |
| 1277 | |
| 1278 | mcache_applyall(mcache_cache_reap); |
| 1279 | mcache_dispatch(mcache_reap_done, flag); |
| 1280 | } |
| 1281 | |
| 1282 | __private_extern__ void |
| 1283 | mcache_reap(void) |
| 1284 | { |
| 1285 | UInt32 *flag = &mcache_reaping; |
| 1286 | |
| 1287 | if (mcache_llock_owner == current_thread() || |
| 1288 | !OSCompareAndSwap(0, 1, flag)) |
| 1289 | return; |
| 1290 | |
| 1291 | mcache_dispatch(mcache_reap_start, flag); |
| 1292 | } |
| 1293 | |
| 1294 | __private_extern__ void |
| 1295 | mcache_reap_now(mcache_t *cp, boolean_t purge) |
| 1296 | { |
| 1297 | if (purge) { |
| 1298 | mcache_bkt_purge(cp); |
| 1299 | mcache_cache_bkt_enable(cp); |
| 1300 | } else { |
| 1301 | mcache_bkt_ws_zero(cp); |
| 1302 | mcache_bkt_ws_reap(cp); |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | static void |
| 1307 | mcache_cache_reap(mcache_t *cp) |
| 1308 | { |
| 1309 | mcache_bkt_ws_reap(cp); |
| 1310 | } |
| 1311 | |
| 1312 | /* |
| 1313 | * Performs period maintenance on a cache. |
| 1314 | */ |
| 1315 | static void |
| 1316 | mcache_cache_update(mcache_t *cp) |
| 1317 | { |
| 1318 | int need_bkt_resize = 0; |
| 1319 | int need_bkt_reenable = 0; |
| 1320 | |
| 1321 | lck_mtx_assert(mcache_llock, LCK_MTX_ASSERT_OWNED); |
| 1322 | |
| 1323 | mcache_bkt_ws_update(cp); |
| 1324 | |
| 1325 | /* |
| 1326 | * Cache resize and post-purge reenable are mutually exclusive. |
| 1327 | * If the cache was previously purged, there is no point of |
| 1328 | * increasing the bucket size as there was an indication of |
| 1329 | * memory pressure on the system. |
| 1330 | */ |
| 1331 | lck_mtx_lock_spin(&cp->mc_sync_lock); |
| 1332 | if (!(cp->mc_flags & MCF_NOCPUCACHE) && cp->mc_enable_cnt) |
| 1333 | need_bkt_reenable = 1; |
| 1334 | lck_mtx_unlock(&cp->mc_sync_lock); |
| 1335 | |
| 1336 | MCACHE_LOCK(&cp->mc_bkt_lock); |
| 1337 | /* |
| 1338 | * If the contention count is greater than the threshold, and if |
| 1339 | * we are not already at the maximum bucket size, increase it. |
| 1340 | * Otherwise, if this cache was previously purged by the user |
| 1341 | * then we simply reenable it. |
| 1342 | */ |
| 1343 | if ((unsigned int)cp->mc_chunksize < cp->cache_bkttype->bt_maxbuf && |
| 1344 | (int)(cp->mc_bkt_contention - cp->mc_bkt_contention_prev) > |
| 1345 | mcache_bkt_contention && !need_bkt_reenable) |
| 1346 | need_bkt_resize = 1; |
| 1347 | |
| 1348 | cp ->mc_bkt_contention_prev = cp->mc_bkt_contention; |
| 1349 | MCACHE_UNLOCK(&cp->mc_bkt_lock); |
| 1350 | |
| 1351 | if (need_bkt_resize) |
| 1352 | mcache_dispatch(mcache_cache_bkt_resize, cp); |
| 1353 | else if (need_bkt_reenable) |
| 1354 | mcache_dispatch(mcache_cache_enable, cp); |
| 1355 | } |
| 1356 | |
| 1357 | /* |
| 1358 | * Recompute a cache's bucket size. This is an expensive operation |
| 1359 | * and should not be done frequently; larger buckets provide for a |
| 1360 | * higher transfer rate with the bucket while smaller buckets reduce |
| 1361 | * the memory consumption. |
| 1362 | */ |
| 1363 | static void |
| 1364 | mcache_cache_bkt_resize(void *arg) |
| 1365 | { |
| 1366 | mcache_t *cp = arg; |
| 1367 | mcache_bkttype_t *btp = cp->cache_bkttype; |
| 1368 | |
| 1369 | if ((unsigned int)cp->mc_chunksize < btp->bt_maxbuf) { |
| 1370 | mcache_bkt_purge(cp); |
| 1371 | |
| 1372 | /* |
| 1373 | * Upgrade to the next bucket type with larger bucket size; |
| 1374 | * temporarily set the previous contention snapshot to a |
| 1375 | * negative number to prevent unnecessary resize request. |
| 1376 | */ |
| 1377 | MCACHE_LOCK(&cp->mc_bkt_lock); |
| 1378 | cp->cache_bkttype = ++btp; |
| 1379 | cp ->mc_bkt_contention_prev = cp->mc_bkt_contention + INT_MAX; |
| 1380 | MCACHE_UNLOCK(&cp->mc_bkt_lock); |
| 1381 | |
| 1382 | mcache_cache_enable(cp); |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | /* |
| 1387 | * Reenable a previously disabled cache due to purge. |
| 1388 | */ |
| 1389 | static void |
| 1390 | mcache_cache_enable(void *arg) |
| 1391 | { |
| 1392 | mcache_t *cp = arg; |
| 1393 | |
| 1394 | lck_mtx_lock_spin(&cp->mc_sync_lock); |
| 1395 | cp->mc_purge_cnt = 0; |
| 1396 | cp->mc_enable_cnt = 0; |
| 1397 | lck_mtx_unlock(&cp->mc_sync_lock); |
| 1398 | |
| 1399 | mcache_cache_bkt_enable(cp); |
| 1400 | } |
| 1401 | |
| 1402 | static void |
| 1403 | mcache_update_timeout(__unused void *arg) |
| 1404 | { |
| 1405 | uint64_t deadline, leeway; |
| 1406 | |
| 1407 | clock_interval_to_deadline(mcache_reap_interval, NSEC_PER_SEC, |
| 1408 | &deadline); |
| 1409 | clock_interval_to_absolutetime_interval(mcache_reap_interval_leeway, |
| 1410 | NSEC_PER_SEC, &leeway); |
| 1411 | thread_call_enter_delayed_with_leeway(mcache_update_tcall, NULL, |
| 1412 | deadline, leeway, THREAD_CALL_DELAY_LEEWAY); |
| 1413 | } |
| 1414 | |
| 1415 | static void |
| 1416 | mcache_update(thread_call_param_t arg __unused, |
| 1417 | thread_call_param_t dummy __unused) |
| 1418 | { |
| 1419 | mcache_applyall(mcache_cache_update); |
| 1420 | mcache_update_timeout(NULL); |
| 1421 | } |
| 1422 | |
| 1423 | static void |
| 1424 | mcache_applyall(void (*func)(mcache_t *)) |
| 1425 | { |
| 1426 | mcache_t *cp; |
| 1427 | |
| 1428 | MCACHE_LIST_LOCK(); |
| 1429 | LIST_FOREACH(cp, &mcache_head, mc_list) { |
| 1430 | func(cp); |
| 1431 | } |
| 1432 | MCACHE_LIST_UNLOCK(); |
| 1433 | } |
| 1434 | |
| 1435 | static void |
| 1436 | mcache_dispatch(void (*func)(void *), void *arg) |
| 1437 | { |
| 1438 | ASSERT(func != NULL); |
| 1439 | timeout(func, arg, hz/1000); |
| 1440 | } |
| 1441 | |
| 1442 | __private_extern__ void |
| 1443 | mcache_buffer_log(mcache_audit_t *mca, void *addr, mcache_t *cp, |
| 1444 | struct timeval *base_ts) |
| 1445 | { |
| 1446 | struct timeval now, base = { 0, 0 }; |
| 1447 | void *stack[MCACHE_STACK_DEPTH + 1]; |
| 1448 | struct mca_trn *transaction; |
| 1449 | |
| 1450 | transaction = &mca->mca_trns[mca->mca_next_trn]; |
| 1451 | |
| 1452 | mca->mca_addr = addr; |
| 1453 | mca->mca_cache = cp; |
| 1454 | |
| 1455 | transaction->mca_thread = current_thread(); |
| 1456 | |
| 1457 | bzero(stack, sizeof (stack)); |
| 1458 | transaction->mca_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1; |
| 1459 | bcopy(&stack[1], transaction->mca_stack, |
| 1460 | sizeof (transaction->mca_stack)); |
| 1461 | |
| 1462 | microuptime(&now); |
| 1463 | if (base_ts != NULL) |
| 1464 | base = *base_ts; |
| 1465 | /* tstamp is in ms relative to base_ts */ |
| 1466 | transaction->mca_tstamp = ((now.tv_usec - base.tv_usec) / 1000); |
| 1467 | if ((now.tv_sec - base.tv_sec) > 0) |
| 1468 | transaction->mca_tstamp += ((now.tv_sec - base.tv_sec) * 1000); |
| 1469 | |
| 1470 | mca->mca_next_trn = |
| 1471 | (mca->mca_next_trn + 1) % mca_trn_max; |
| 1472 | } |
| 1473 | |
| 1474 | __private_extern__ void |
| 1475 | mcache_set_pattern(u_int64_t pattern, void *buf_arg, size_t size) |
| 1476 | { |
| 1477 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); |
| 1478 | u_int64_t *buf = (u_int64_t *)buf_arg; |
| 1479 | |
| 1480 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); |
| 1481 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); |
| 1482 | |
| 1483 | while (buf < buf_end) |
| 1484 | *buf++ = pattern; |
| 1485 | } |
| 1486 | |
| 1487 | __private_extern__ void * |
| 1488 | mcache_verify_pattern(u_int64_t pattern, void *buf_arg, size_t size) |
| 1489 | { |
| 1490 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); |
| 1491 | u_int64_t *buf; |
| 1492 | |
| 1493 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); |
| 1494 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); |
| 1495 | |
| 1496 | for (buf = buf_arg; buf < buf_end; buf++) { |
| 1497 | if (*buf != pattern) |
| 1498 | return (buf); |
| 1499 | } |
| 1500 | return (NULL); |
| 1501 | } |
| 1502 | |
| 1503 | __private_extern__ void * |
| 1504 | mcache_verify_set_pattern(u_int64_t old, u_int64_t new, void *buf_arg, |
| 1505 | size_t size) |
| 1506 | { |
| 1507 | u_int64_t *buf_end = (u_int64_t *)((void *)((char *)buf_arg + size)); |
| 1508 | u_int64_t *buf; |
| 1509 | |
| 1510 | VERIFY(IS_P2ALIGNED(buf_arg, sizeof (u_int64_t))); |
| 1511 | VERIFY(IS_P2ALIGNED(size, sizeof (u_int64_t))); |
| 1512 | |
| 1513 | for (buf = buf_arg; buf < buf_end; buf++) { |
| 1514 | if (*buf != old) { |
| 1515 | mcache_set_pattern(old, buf_arg, |
| 1516 | (uintptr_t)buf - (uintptr_t)buf_arg); |
| 1517 | return (buf); |
| 1518 | } |
| 1519 | *buf = new; |
| 1520 | } |
| 1521 | return (NULL); |
| 1522 | } |
| 1523 | |
| 1524 | __private_extern__ void |
| 1525 | mcache_audit_free_verify(mcache_audit_t *mca, void *base, size_t offset, |
| 1526 | size_t size) |
| 1527 | { |
| 1528 | void *addr; |
| 1529 | u_int64_t *oaddr64; |
| 1530 | mcache_obj_t *next; |
| 1531 | |
| 1532 | addr = (void *)((uintptr_t)base + offset); |
| 1533 | next = ((mcache_obj_t *)addr)->obj_next; |
| 1534 | |
| 1535 | /* For the "obj_next" pointer in the buffer */ |
| 1536 | oaddr64 = (u_int64_t *)P2ROUNDDOWN(addr, sizeof (u_int64_t)); |
| 1537 | *oaddr64 = MCACHE_FREE_PATTERN; |
| 1538 | |
| 1539 | if ((oaddr64 = mcache_verify_pattern(MCACHE_FREE_PATTERN, |
| 1540 | (caddr_t)base, size)) != NULL) { |
| 1541 | mcache_audit_panic(mca, addr, (caddr_t)oaddr64 - (caddr_t)base, |
| 1542 | (int64_t)MCACHE_FREE_PATTERN, (int64_t)*oaddr64); |
| 1543 | /* NOTREACHED */ |
| 1544 | } |
| 1545 | ((mcache_obj_t *)addr)->obj_next = next; |
| 1546 | } |
| 1547 | |
| 1548 | __private_extern__ void |
| 1549 | mcache_audit_free_verify_set(mcache_audit_t *mca, void *base, size_t offset, |
| 1550 | size_t size) |
| 1551 | { |
| 1552 | void *addr; |
| 1553 | u_int64_t *oaddr64; |
| 1554 | mcache_obj_t *next; |
| 1555 | |
| 1556 | addr = (void *)((uintptr_t)base + offset); |
| 1557 | next = ((mcache_obj_t *)addr)->obj_next; |
| 1558 | |
| 1559 | /* For the "obj_next" pointer in the buffer */ |
| 1560 | oaddr64 = (u_int64_t *)P2ROUNDDOWN(addr, sizeof (u_int64_t)); |
| 1561 | *oaddr64 = MCACHE_FREE_PATTERN; |
| 1562 | |
| 1563 | if ((oaddr64 = mcache_verify_set_pattern(MCACHE_FREE_PATTERN, |
| 1564 | MCACHE_UNINITIALIZED_PATTERN, (caddr_t)base, size)) != NULL) { |
| 1565 | mcache_audit_panic(mca, addr, (caddr_t)oaddr64 - (caddr_t)base, |
| 1566 | (int64_t)MCACHE_FREE_PATTERN, (int64_t)*oaddr64); |
| 1567 | /* NOTREACHED */ |
| 1568 | } |
| 1569 | ((mcache_obj_t *)addr)->obj_next = next; |
| 1570 | } |
| 1571 | |
| 1572 | #undef panic |
| 1573 | |
| 1574 | #define DUMP_TRN_FMT() \ |
| 1575 | "%s transaction thread %p saved PC stack (%d deep):\n" \ |
| 1576 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n" \ |
| 1577 | "\t%p, %p, %p, %p, %p, %p, %p, %p\n" |
| 1578 | |
| 1579 | #define DUMP_TRN_FIELDS(s, x) \ |
| 1580 | s, \ |
| 1581 | mca->mca_trns[x].mca_thread, mca->mca_trns[x].mca_depth, \ |
| 1582 | mca->mca_trns[x].mca_stack[0], mca->mca_trns[x].mca_stack[1], \ |
| 1583 | mca->mca_trns[x].mca_stack[2], mca->mca_trns[x].mca_stack[3], \ |
| 1584 | mca->mca_trns[x].mca_stack[4], mca->mca_trns[x].mca_stack[5], \ |
| 1585 | mca->mca_trns[x].mca_stack[6], mca->mca_trns[x].mca_stack[7], \ |
| 1586 | mca->mca_trns[x].mca_stack[8], mca->mca_trns[x].mca_stack[9], \ |
| 1587 | mca->mca_trns[x].mca_stack[10], mca->mca_trns[x].mca_stack[11], \ |
| 1588 | mca->mca_trns[x].mca_stack[12], mca->mca_trns[x].mca_stack[13], \ |
| 1589 | mca->mca_trns[x].mca_stack[14], mca->mca_trns[x].mca_stack[15] |
| 1590 | |
| 1591 | #define MCA_TRN_LAST ((mca->mca_next_trn + mca_trn_max) % mca_trn_max) |
| 1592 | #define MCA_TRN_PREV ((mca->mca_next_trn + mca_trn_max - 1) % mca_trn_max) |
| 1593 | |
| 1594 | __private_extern__ char * |
| 1595 | mcache_dump_mca(mcache_audit_t *mca) |
| 1596 | { |
| 1597 | if (mca_dump_buf == NULL) |
| 1598 | return (NULL); |
| 1599 | |
| 1600 | snprintf(mca_dump_buf, DUMP_MCA_BUF_SIZE, |
| 1601 | "mca %p: addr %p, cache %p (%s) nxttrn %d\n" |
| 1602 | DUMP_TRN_FMT() |
| 1603 | DUMP_TRN_FMT(), |
| 1604 | |
| 1605 | mca, mca->mca_addr, mca->mca_cache, |
| 1606 | mca->mca_cache ? mca->mca_cache->mc_name : "?" , |
| 1607 | mca->mca_next_trn, |
| 1608 | |
| 1609 | DUMP_TRN_FIELDS("last" , MCA_TRN_LAST), |
| 1610 | DUMP_TRN_FIELDS("previous" , MCA_TRN_PREV)); |
| 1611 | |
| 1612 | return (mca_dump_buf); |
| 1613 | } |
| 1614 | |
| 1615 | __private_extern__ void |
| 1616 | mcache_audit_panic(mcache_audit_t *mca, void *addr, size_t offset, |
| 1617 | int64_t expected, int64_t got) |
| 1618 | { |
| 1619 | if (mca == NULL) { |
| 1620 | panic("mcache_audit: buffer %p modified after free at " |
| 1621 | "offset 0x%lx (0x%llx instead of 0x%llx)\n" , addr, |
| 1622 | offset, got, expected); |
| 1623 | /* NOTREACHED */ |
| 1624 | } |
| 1625 | |
| 1626 | panic("mcache_audit: buffer %p modified after free at offset 0x%lx " |
| 1627 | "(0x%llx instead of 0x%llx)\n%s\n" , |
| 1628 | addr, offset, got, expected, mcache_dump_mca(mca)); |
| 1629 | /* NOTREACHED */ |
| 1630 | } |
| 1631 | |
| 1632 | __private_extern__ int |
| 1633 | assfail(const char *a, const char *f, int l) |
| 1634 | { |
| 1635 | panic("assertion failed: %s, file: %s, line: %d" , a, f, l); |
| 1636 | return (0); |
| 1637 | } |
| 1638 | |