| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ |
| 29 | /*- |
| 30 | * Copyright (c) 1982, 1986, 1991, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * (c) UNIX System Laboratories, Inc. |
| 33 | * All or some portions of this file are derived from material licensed |
| 34 | * to the University of California by American Telephone and Telegraph |
| 35 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with |
| 36 | * the permission of UNIX System Laboratories, Inc. |
| 37 | * |
| 38 | * Redistribution and use in source and binary forms, with or without |
| 39 | * modification, are permitted provided that the following conditions |
| 40 | * are met: |
| 41 | * 1. Redistributions of source code must retain the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer. |
| 43 | * 2. Redistributions in binary form must reproduce the above copyright |
| 44 | * notice, this list of conditions and the following disclaimer in the |
| 45 | * documentation and/or other materials provided with the distribution. |
| 46 | * 3. All advertising materials mentioning features or use of this software |
| 47 | * must display the following acknowledgement: |
| 48 | * This product includes software developed by the University of |
| 49 | * California, Berkeley and its contributors. |
| 50 | * 4. Neither the name of the University nor the names of its contributors |
| 51 | * may be used to endorse or promote products derived from this software |
| 52 | * without specific prior written permission. |
| 53 | * |
| 54 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 55 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 56 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 57 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 58 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 59 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 60 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 61 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 62 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 63 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 64 | * SUCH DAMAGE. |
| 65 | * |
| 66 | * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94 |
| 67 | */ |
| 68 | /* |
| 69 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 70 | * support for mandatory and extensible security protections. This notice |
| 71 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 72 | * Version 2.0. |
| 73 | */ |
| 74 | |
| 75 | #include <sys/param.h> |
| 76 | #include <sys/systm.h> |
| 77 | #include <sys/sysctl.h> |
| 78 | #include <sys/kernel.h> |
| 79 | #include <sys/file_internal.h> |
| 80 | #include <sys/resourcevar.h> |
| 81 | #include <sys/malloc.h> |
| 82 | #include <sys/proc_internal.h> |
| 83 | #include <sys/kauth.h> |
| 84 | #include <sys/mount_internal.h> |
| 85 | #include <sys/sysproto.h> |
| 86 | |
| 87 | #include <security/audit/audit.h> |
| 88 | |
| 89 | #include <machine/vmparam.h> |
| 90 | |
| 91 | #include <mach/mach_types.h> |
| 92 | #include <mach/time_value.h> |
| 93 | #include <mach/task.h> |
| 94 | #include <mach/task_info.h> |
| 95 | #include <mach/vm_map.h> |
| 96 | #include <mach/mach_vm.h> |
| 97 | #include <mach/thread_act.h> /* for thread_policy_set( ) */ |
| 98 | #include <kern/thread.h> |
| 99 | #include <kern/policy_internal.h> |
| 100 | |
| 101 | #include <kern/task.h> |
| 102 | #include <kern/clock.h> /* for absolutetime_to_microtime() */ |
| 103 | #include <netinet/in.h> /* for TRAFFIC_MGT_SO_* */ |
| 104 | #include <sys/socketvar.h> /* for struct socket */ |
| 105 | #if NECP |
| 106 | #include <net/necp.h> |
| 107 | #endif /* NECP */ |
| 108 | |
| 109 | #include <vm/vm_map.h> |
| 110 | |
| 111 | #include <kern/assert.h> |
| 112 | #include <sys/resource.h> |
| 113 | #include <sys/priv.h> |
| 114 | #include <IOKit/IOBSD.h> |
| 115 | |
| 116 | #if CONFIG_MACF |
| 117 | #include <security/mac_framework.h> |
| 118 | #endif |
| 119 | |
| 120 | int donice(struct proc *curp, struct proc *chgp, int n); |
| 121 | int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp); |
| 122 | int uthread_get_background_state(uthread_t); |
| 123 | static void do_background_socket(struct proc *p, thread_t thread); |
| 124 | static int do_background_thread(thread_t thread, int priority); |
| 125 | static int do_background_proc(struct proc *curp, struct proc *targetp, int priority); |
| 126 | static int set_gpudeny_proc(struct proc *curp, struct proc *targetp, int priority); |
| 127 | static int proc_set_darwin_role(proc_t curp, proc_t targetp, int priority); |
| 128 | static int proc_get_darwin_role(proc_t curp, proc_t targetp, int *priority); |
| 129 | static int get_background_proc(struct proc *curp, struct proc *targetp, int *priority); |
| 130 | int proc_pid_rusage(int pid, int flavor, user_addr_t buf, int32_t *retval); |
| 131 | void gather_rusage_info(proc_t p, rusage_info_current *ru, int flavor); |
| 132 | int fill_task_rusage(task_t task, rusage_info_current *ri); |
| 133 | void fill_task_billed_usage(task_t task, rusage_info_current *ri); |
| 134 | int fill_task_io_rusage(task_t task, rusage_info_current *ri); |
| 135 | int fill_task_qos_rusage(task_t task, rusage_info_current *ri); |
| 136 | uint64_t get_task_logical_writes(task_t task); |
| 137 | void fill_task_monotonic_rusage(task_t task, rusage_info_current *ri); |
| 138 | |
| 139 | int proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie); |
| 140 | |
| 141 | rlim_t maxdmap = MAXDSIZ; /* XXX */ |
| 142 | rlim_t maxsmap = MAXSSIZ - PAGE_MAX_SIZE; /* XXX */ |
| 143 | |
| 144 | /* |
| 145 | * Limits on the number of open files per process, and the number |
| 146 | * of child processes per process. |
| 147 | * |
| 148 | * Note: would be in kern/subr_param.c in FreeBSD. |
| 149 | */ |
| 150 | __private_extern__ int maxfilesperproc = OPEN_MAX; /* per-proc open files limit */ |
| 151 | |
| 152 | SYSCTL_INT(_kern, KERN_MAXPROCPERUID, maxprocperuid, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 153 | &maxprocperuid, 0, "Maximum processes allowed per userid" ); |
| 154 | |
| 155 | SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 156 | &maxfilesperproc, 0, "Maximum files allowed open per process" ); |
| 157 | |
| 158 | /* Args and fn for proc_iteration callback used in setpriority */ |
| 159 | struct puser_nice_args { |
| 160 | proc_t curp; |
| 161 | int prio; |
| 162 | id_t who; |
| 163 | int * foundp; |
| 164 | int * errorp; |
| 165 | }; |
| 166 | static int puser_donice_callback(proc_t p, void * arg); |
| 167 | |
| 168 | |
| 169 | /* Args and fn for proc_iteration callback used in setpriority */ |
| 170 | struct ppgrp_nice_args { |
| 171 | proc_t curp; |
| 172 | int prio; |
| 173 | int * foundp; |
| 174 | int * errorp; |
| 175 | }; |
| 176 | static int ppgrp_donice_callback(proc_t p, void * arg); |
| 177 | |
| 178 | /* |
| 179 | * Resource controls and accounting. |
| 180 | */ |
| 181 | int |
| 182 | getpriority(struct proc *curp, struct getpriority_args *uap, int32_t *retval) |
| 183 | { |
| 184 | struct proc *p; |
| 185 | int low = PRIO_MAX + 1; |
| 186 | kauth_cred_t my_cred; |
| 187 | int refheld = 0; |
| 188 | int error = 0; |
| 189 | |
| 190 | /* would also test (uap->who < 0), but id_t is unsigned */ |
| 191 | if (uap->who > 0x7fffffff) |
| 192 | return (EINVAL); |
| 193 | |
| 194 | switch (uap->which) { |
| 195 | |
| 196 | case PRIO_PROCESS: |
| 197 | if (uap->who == 0) { |
| 198 | p = curp; |
| 199 | low = p->p_nice; |
| 200 | } else { |
| 201 | p = proc_find(uap->who); |
| 202 | if (p == 0) |
| 203 | break; |
| 204 | low = p->p_nice; |
| 205 | proc_rele(p); |
| 206 | |
| 207 | } |
| 208 | break; |
| 209 | |
| 210 | case PRIO_PGRP: { |
| 211 | struct pgrp *pg = PGRP_NULL; |
| 212 | |
| 213 | if (uap->who == 0) { |
| 214 | /* returns the pgrp to ref */ |
| 215 | pg = proc_pgrp(curp); |
| 216 | } else if ((pg = pgfind(uap->who)) == PGRP_NULL) { |
| 217 | break; |
| 218 | } |
| 219 | /* No need for iteration as it is a simple scan */ |
| 220 | pgrp_lock(pg); |
| 221 | PGMEMBERS_FOREACH(pg, p) { |
| 222 | if (p->p_nice < low) |
| 223 | low = p->p_nice; |
| 224 | } |
| 225 | pgrp_unlock(pg); |
| 226 | pg_rele(pg); |
| 227 | break; |
| 228 | } |
| 229 | |
| 230 | case PRIO_USER: |
| 231 | if (uap->who == 0) |
| 232 | uap->who = kauth_cred_getuid(kauth_cred_get()); |
| 233 | |
| 234 | proc_list_lock(); |
| 235 | |
| 236 | for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { |
| 237 | my_cred = kauth_cred_proc_ref(p); |
| 238 | if (kauth_cred_getuid(my_cred) == uap->who && |
| 239 | p->p_nice < low) |
| 240 | low = p->p_nice; |
| 241 | kauth_cred_unref(&my_cred); |
| 242 | } |
| 243 | |
| 244 | proc_list_unlock(); |
| 245 | |
| 246 | break; |
| 247 | |
| 248 | case PRIO_DARWIN_THREAD: |
| 249 | /* we currently only support the current thread */ |
| 250 | if (uap->who != 0) |
| 251 | return (EINVAL); |
| 252 | |
| 253 | low = proc_get_thread_policy(current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_DARWIN_BG); |
| 254 | |
| 255 | break; |
| 256 | |
| 257 | case PRIO_DARWIN_PROCESS: |
| 258 | if (uap->who == 0) { |
| 259 | p = curp; |
| 260 | } else { |
| 261 | p = proc_find(uap->who); |
| 262 | if (p == PROC_NULL) |
| 263 | break; |
| 264 | refheld = 1; |
| 265 | } |
| 266 | |
| 267 | error = get_background_proc(curp, p, &low); |
| 268 | |
| 269 | if (refheld) |
| 270 | proc_rele(p); |
| 271 | if (error) |
| 272 | return (error); |
| 273 | break; |
| 274 | |
| 275 | case PRIO_DARWIN_ROLE: |
| 276 | if (uap->who == 0) { |
| 277 | p = curp; |
| 278 | } else { |
| 279 | p = proc_find(uap->who); |
| 280 | if (p == PROC_NULL) |
| 281 | break; |
| 282 | refheld = 1; |
| 283 | } |
| 284 | |
| 285 | error = proc_get_darwin_role(curp, p, &low); |
| 286 | |
| 287 | if (refheld) |
| 288 | proc_rele(p); |
| 289 | if (error) |
| 290 | return (error); |
| 291 | break; |
| 292 | |
| 293 | default: |
| 294 | return (EINVAL); |
| 295 | } |
| 296 | if (low == PRIO_MAX + 1) |
| 297 | return (ESRCH); |
| 298 | *retval = low; |
| 299 | return (0); |
| 300 | } |
| 301 | |
| 302 | /* call back function used for proc iteration in PRIO_USER */ |
| 303 | static int |
| 304 | puser_donice_callback(proc_t p, void * arg) |
| 305 | { |
| 306 | int error, n; |
| 307 | struct puser_nice_args * pun = (struct puser_nice_args *)arg; |
| 308 | kauth_cred_t my_cred; |
| 309 | |
| 310 | my_cred = kauth_cred_proc_ref(p); |
| 311 | if (kauth_cred_getuid(my_cred) == pun->who) { |
| 312 | error = donice(pun->curp, p, pun->prio); |
| 313 | if (pun->errorp != NULL) |
| 314 | *pun->errorp = error; |
| 315 | if (pun->foundp != NULL) { |
| 316 | n = *pun->foundp; |
| 317 | *pun->foundp = n+1; |
| 318 | } |
| 319 | } |
| 320 | kauth_cred_unref(&my_cred); |
| 321 | |
| 322 | return(PROC_RETURNED); |
| 323 | } |
| 324 | |
| 325 | /* call back function used for proc iteration in PRIO_PGRP */ |
| 326 | static int |
| 327 | ppgrp_donice_callback(proc_t p, void * arg) |
| 328 | { |
| 329 | int error; |
| 330 | struct ppgrp_nice_args * pun = (struct ppgrp_nice_args *)arg; |
| 331 | int n; |
| 332 | |
| 333 | error = donice(pun->curp, p, pun->prio); |
| 334 | if (pun->errorp != NULL) |
| 335 | *pun->errorp = error; |
| 336 | if (pun->foundp!= NULL) { |
| 337 | n = *pun->foundp; |
| 338 | *pun->foundp = n+1; |
| 339 | } |
| 340 | |
| 341 | return(PROC_RETURNED); |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * Returns: 0 Success |
| 346 | * EINVAL |
| 347 | * ESRCH |
| 348 | * donice:EPERM |
| 349 | * donice:EACCES |
| 350 | */ |
| 351 | /* ARGSUSED */ |
| 352 | int |
| 353 | setpriority(struct proc *curp, struct setpriority_args *uap, int32_t *retval) |
| 354 | { |
| 355 | struct proc *p; |
| 356 | int found = 0, error = 0; |
| 357 | int refheld = 0; |
| 358 | |
| 359 | AUDIT_ARG(cmd, uap->which); |
| 360 | AUDIT_ARG(owner, uap->who, 0); |
| 361 | AUDIT_ARG(value32, uap->prio); |
| 362 | |
| 363 | /* would also test (uap->who < 0), but id_t is unsigned */ |
| 364 | if (uap->who > 0x7fffffff) |
| 365 | return (EINVAL); |
| 366 | |
| 367 | switch (uap->which) { |
| 368 | |
| 369 | case PRIO_PROCESS: |
| 370 | if (uap->who == 0) |
| 371 | p = curp; |
| 372 | else { |
| 373 | p = proc_find(uap->who); |
| 374 | if (p == 0) |
| 375 | break; |
| 376 | refheld = 1; |
| 377 | } |
| 378 | error = donice(curp, p, uap->prio); |
| 379 | found++; |
| 380 | if (refheld != 0) |
| 381 | proc_rele(p); |
| 382 | break; |
| 383 | |
| 384 | case PRIO_PGRP: { |
| 385 | struct pgrp *pg = PGRP_NULL; |
| 386 | struct ppgrp_nice_args ppgrp; |
| 387 | |
| 388 | if (uap->who == 0) { |
| 389 | pg = proc_pgrp(curp); |
| 390 | } else if ((pg = pgfind(uap->who)) == PGRP_NULL) |
| 391 | break; |
| 392 | |
| 393 | ppgrp.curp = curp; |
| 394 | ppgrp.prio = uap->prio; |
| 395 | ppgrp.foundp = &found; |
| 396 | ppgrp.errorp = &error; |
| 397 | |
| 398 | /* PGRP_DROPREF drops the reference on process group */ |
| 399 | pgrp_iterate(pg, PGRP_DROPREF, ppgrp_donice_callback, (void *)&ppgrp, NULL, NULL); |
| 400 | |
| 401 | break; |
| 402 | } |
| 403 | |
| 404 | case PRIO_USER: { |
| 405 | struct puser_nice_args punice; |
| 406 | |
| 407 | if (uap->who == 0) |
| 408 | uap->who = kauth_cred_getuid(kauth_cred_get()); |
| 409 | |
| 410 | punice.curp = curp; |
| 411 | punice.prio = uap->prio; |
| 412 | punice.who = uap->who; |
| 413 | punice.foundp = &found; |
| 414 | error = 0; |
| 415 | punice.errorp = &error; |
| 416 | proc_iterate(PROC_ALLPROCLIST, puser_donice_callback, (void *)&punice, NULL, NULL); |
| 417 | |
| 418 | break; |
| 419 | } |
| 420 | |
| 421 | case PRIO_DARWIN_THREAD: { |
| 422 | /* we currently only support the current thread */ |
| 423 | if (uap->who != 0) |
| 424 | return (EINVAL); |
| 425 | |
| 426 | error = do_background_thread(current_thread(), uap->prio); |
| 427 | found++; |
| 428 | break; |
| 429 | } |
| 430 | |
| 431 | case PRIO_DARWIN_PROCESS: { |
| 432 | if (uap->who == 0) |
| 433 | p = curp; |
| 434 | else { |
| 435 | p = proc_find(uap->who); |
| 436 | if (p == 0) |
| 437 | break; |
| 438 | refheld = 1; |
| 439 | } |
| 440 | |
| 441 | error = do_background_proc(curp, p, uap->prio); |
| 442 | |
| 443 | found++; |
| 444 | if (refheld != 0) |
| 445 | proc_rele(p); |
| 446 | break; |
| 447 | } |
| 448 | |
| 449 | case PRIO_DARWIN_GPU: { |
| 450 | if (uap->who == 0) |
| 451 | return (EINVAL); |
| 452 | |
| 453 | p = proc_find(uap->who); |
| 454 | if (p == PROC_NULL) |
| 455 | break; |
| 456 | |
| 457 | error = set_gpudeny_proc(curp, p, uap->prio); |
| 458 | |
| 459 | found++; |
| 460 | proc_rele(p); |
| 461 | break; |
| 462 | } |
| 463 | |
| 464 | case PRIO_DARWIN_ROLE: { |
| 465 | if (uap->who == 0) { |
| 466 | p = curp; |
| 467 | } else { |
| 468 | p = proc_find(uap->who); |
| 469 | if (p == PROC_NULL) |
| 470 | break; |
| 471 | refheld = 1; |
| 472 | } |
| 473 | |
| 474 | error = proc_set_darwin_role(curp, p, uap->prio); |
| 475 | |
| 476 | found++; |
| 477 | if (refheld != 0) |
| 478 | proc_rele(p); |
| 479 | break; |
| 480 | } |
| 481 | |
| 482 | default: |
| 483 | return (EINVAL); |
| 484 | } |
| 485 | if (found == 0) |
| 486 | return (ESRCH); |
| 487 | if (error == EIDRM) { |
| 488 | *retval = -2; |
| 489 | error = 0; |
| 490 | } |
| 491 | return (error); |
| 492 | } |
| 493 | |
| 494 | |
| 495 | /* |
| 496 | * Returns: 0 Success |
| 497 | * EPERM |
| 498 | * EACCES |
| 499 | * mac_check_proc_sched:??? |
| 500 | */ |
| 501 | int |
| 502 | donice(struct proc *curp, struct proc *chgp, int n) |
| 503 | { |
| 504 | int error = 0; |
| 505 | kauth_cred_t ucred; |
| 506 | kauth_cred_t my_cred; |
| 507 | |
| 508 | ucred = kauth_cred_proc_ref(curp); |
| 509 | my_cred = kauth_cred_proc_ref(chgp); |
| 510 | |
| 511 | if (suser(ucred, NULL) && kauth_cred_getruid(ucred) && |
| 512 | kauth_cred_getuid(ucred) != kauth_cred_getuid(my_cred) && |
| 513 | kauth_cred_getruid(ucred) != kauth_cred_getuid(my_cred)) { |
| 514 | error = EPERM; |
| 515 | goto out; |
| 516 | } |
| 517 | if (n > PRIO_MAX) |
| 518 | n = PRIO_MAX; |
| 519 | if (n < PRIO_MIN) |
| 520 | n = PRIO_MIN; |
| 521 | if (n < chgp->p_nice && suser(ucred, &curp->p_acflag)) { |
| 522 | error = EACCES; |
| 523 | goto out; |
| 524 | } |
| 525 | #if CONFIG_MACF |
| 526 | error = mac_proc_check_sched(curp, chgp); |
| 527 | if (error) |
| 528 | goto out; |
| 529 | #endif |
| 530 | proc_lock(chgp); |
| 531 | chgp->p_nice = n; |
| 532 | proc_unlock(chgp); |
| 533 | (void)resetpriority(chgp); |
| 534 | out: |
| 535 | kauth_cred_unref(&ucred); |
| 536 | kauth_cred_unref(&my_cred); |
| 537 | return (error); |
| 538 | } |
| 539 | |
| 540 | static int |
| 541 | set_gpudeny_proc(struct proc *curp, struct proc *targetp, int priority) |
| 542 | { |
| 543 | int error = 0; |
| 544 | kauth_cred_t ucred; |
| 545 | kauth_cred_t target_cred; |
| 546 | |
| 547 | ucred = kauth_cred_get(); |
| 548 | target_cred = kauth_cred_proc_ref(targetp); |
| 549 | |
| 550 | /* TODO: Entitlement instead of uid check */ |
| 551 | |
| 552 | if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) && |
| 553 | kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) && |
| 554 | kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) { |
| 555 | error = EPERM; |
| 556 | goto out; |
| 557 | } |
| 558 | |
| 559 | if (curp == targetp) { |
| 560 | error = EPERM; |
| 561 | goto out; |
| 562 | } |
| 563 | |
| 564 | #if CONFIG_MACF |
| 565 | error = mac_proc_check_sched(curp, targetp); |
| 566 | if (error) |
| 567 | goto out; |
| 568 | #endif |
| 569 | |
| 570 | switch (priority) { |
| 571 | case PRIO_DARWIN_GPU_DENY: |
| 572 | task_set_gpu_denied(proc_task(targetp), TRUE); |
| 573 | break; |
| 574 | case PRIO_DARWIN_GPU_ALLOW: |
| 575 | task_set_gpu_denied(proc_task(targetp), FALSE); |
| 576 | break; |
| 577 | default: |
| 578 | error = EINVAL; |
| 579 | goto out; |
| 580 | } |
| 581 | |
| 582 | out: |
| 583 | kauth_cred_unref(&target_cred); |
| 584 | return (error); |
| 585 | |
| 586 | } |
| 587 | |
| 588 | static int |
| 589 | proc_set_darwin_role(proc_t curp, proc_t targetp, int priority) |
| 590 | { |
| 591 | int error = 0; |
| 592 | uint32_t flagsp = 0; |
| 593 | |
| 594 | kauth_cred_t ucred, target_cred; |
| 595 | |
| 596 | ucred = kauth_cred_get(); |
| 597 | target_cred = kauth_cred_proc_ref(targetp); |
| 598 | |
| 599 | if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) && |
| 600 | kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) && |
| 601 | kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) { |
| 602 | if (priv_check_cred(ucred, PRIV_SETPRIORITY_DARWIN_ROLE, 0) != 0) { |
| 603 | error = EPERM; |
| 604 | goto out; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | if (curp != targetp) { |
| 609 | #if CONFIG_MACF |
| 610 | if ((error = mac_proc_check_sched(curp, targetp))) |
| 611 | goto out; |
| 612 | #endif |
| 613 | } |
| 614 | |
| 615 | proc_get_darwinbgstate(proc_task(targetp), &flagsp); |
| 616 | if ((flagsp & PROC_FLAG_APPLICATION) != PROC_FLAG_APPLICATION) { |
| 617 | error = ENOTSUP; |
| 618 | goto out; |
| 619 | } |
| 620 | |
| 621 | integer_t role = 0; |
| 622 | |
| 623 | if ((error = proc_darwin_role_to_task_role(priority, &role))) |
| 624 | goto out; |
| 625 | |
| 626 | proc_set_task_policy(proc_task(targetp), TASK_POLICY_ATTRIBUTE, |
| 627 | TASK_POLICY_ROLE, role); |
| 628 | |
| 629 | out: |
| 630 | kauth_cred_unref(&target_cred); |
| 631 | return (error); |
| 632 | } |
| 633 | |
| 634 | static int |
| 635 | proc_get_darwin_role(proc_t curp, proc_t targetp, int *priority) |
| 636 | { |
| 637 | int error = 0; |
| 638 | int role = 0; |
| 639 | |
| 640 | kauth_cred_t ucred, target_cred; |
| 641 | |
| 642 | ucred = kauth_cred_get(); |
| 643 | target_cred = kauth_cred_proc_ref(targetp); |
| 644 | |
| 645 | if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) && |
| 646 | kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) && |
| 647 | kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) { |
| 648 | error = EPERM; |
| 649 | goto out; |
| 650 | } |
| 651 | |
| 652 | if (curp != targetp) { |
| 653 | #if CONFIG_MACF |
| 654 | if ((error = mac_proc_check_sched(curp, targetp))) |
| 655 | goto out; |
| 656 | #endif |
| 657 | } |
| 658 | |
| 659 | role = proc_get_task_policy(proc_task(targetp), TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE); |
| 660 | |
| 661 | *priority = proc_task_role_to_darwin_role(role); |
| 662 | |
| 663 | out: |
| 664 | kauth_cred_unref(&target_cred); |
| 665 | return (error); |
| 666 | } |
| 667 | |
| 668 | |
| 669 | static int |
| 670 | get_background_proc(struct proc *curp, struct proc *targetp, int *priority) |
| 671 | { |
| 672 | int external = 0; |
| 673 | int error = 0; |
| 674 | kauth_cred_t ucred, target_cred; |
| 675 | |
| 676 | ucred = kauth_cred_get(); |
| 677 | target_cred = kauth_cred_proc_ref(targetp); |
| 678 | |
| 679 | if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) && |
| 680 | kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) && |
| 681 | kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) { |
| 682 | error = EPERM; |
| 683 | goto out; |
| 684 | } |
| 685 | |
| 686 | external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL; |
| 687 | |
| 688 | *priority = proc_get_task_policy(current_task(), external, TASK_POLICY_DARWIN_BG); |
| 689 | |
| 690 | out: |
| 691 | kauth_cred_unref(&target_cred); |
| 692 | return (error); |
| 693 | } |
| 694 | |
| 695 | static int |
| 696 | do_background_proc(struct proc *curp, struct proc *targetp, int priority) |
| 697 | { |
| 698 | #if !CONFIG_MACF |
| 699 | #pragma unused(curp) |
| 700 | #endif |
| 701 | int error = 0; |
| 702 | kauth_cred_t ucred; |
| 703 | kauth_cred_t target_cred; |
| 704 | int external; |
| 705 | int enable; |
| 706 | |
| 707 | ucred = kauth_cred_get(); |
| 708 | target_cred = kauth_cred_proc_ref(targetp); |
| 709 | |
| 710 | if (!kauth_cred_issuser(ucred) && kauth_cred_getruid(ucred) && |
| 711 | kauth_cred_getuid(ucred) != kauth_cred_getuid(target_cred) && |
| 712 | kauth_cred_getruid(ucred) != kauth_cred_getuid(target_cred)) |
| 713 | { |
| 714 | error = EPERM; |
| 715 | goto out; |
| 716 | } |
| 717 | |
| 718 | #if CONFIG_MACF |
| 719 | error = mac_proc_check_sched(curp, targetp); |
| 720 | if (error) |
| 721 | goto out; |
| 722 | #endif |
| 723 | |
| 724 | external = (curp == targetp) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL; |
| 725 | |
| 726 | switch (priority) { |
| 727 | case PRIO_DARWIN_BG: |
| 728 | enable = TASK_POLICY_ENABLE; |
| 729 | break; |
| 730 | case PRIO_DARWIN_NONUI: |
| 731 | /* ignored for compatibility */ |
| 732 | goto out; |
| 733 | default: |
| 734 | /* TODO: EINVAL if priority != 0 */ |
| 735 | enable = TASK_POLICY_DISABLE; |
| 736 | break; |
| 737 | } |
| 738 | |
| 739 | proc_set_task_policy(proc_task(targetp), external, TASK_POLICY_DARWIN_BG, enable); |
| 740 | |
| 741 | out: |
| 742 | kauth_cred_unref(&target_cred); |
| 743 | return (error); |
| 744 | } |
| 745 | |
| 746 | static void |
| 747 | do_background_socket(struct proc *p, thread_t thread) |
| 748 | { |
| 749 | #if SOCKETS |
| 750 | struct filedesc *fdp; |
| 751 | struct fileproc *fp; |
| 752 | int i, background; |
| 753 | |
| 754 | proc_fdlock(p); |
| 755 | |
| 756 | if (thread != THREAD_NULL) |
| 757 | background = proc_get_effective_thread_policy(thread, TASK_POLICY_ALL_SOCKETS_BG); |
| 758 | else |
| 759 | background = proc_get_effective_task_policy(proc_task(p), TASK_POLICY_ALL_SOCKETS_BG); |
| 760 | |
| 761 | if (background) { |
| 762 | /* |
| 763 | * For PRIO_DARWIN_PROCESS (thread is NULL), simply mark |
| 764 | * the sockets with the background flag. There's nothing |
| 765 | * to do here for the PRIO_DARWIN_THREAD case. |
| 766 | */ |
| 767 | if (thread == THREAD_NULL) { |
| 768 | fdp = p->p_fd; |
| 769 | |
| 770 | for (i = 0; i < fdp->fd_nfiles; i++) { |
| 771 | fp = fdp->fd_ofiles[i]; |
| 772 | if (fp == NULL || (fdp->fd_ofileflags[i] & UF_RESERVED) != 0) { |
| 773 | continue; |
| 774 | } |
| 775 | if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_SOCKET) { |
| 776 | struct socket *sockp = (struct socket *)fp->f_fglob->fg_data; |
| 777 | socket_set_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND); |
| 778 | sockp->so_background_thread = NULL; |
| 779 | } |
| 780 | #if NECP |
| 781 | else if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_NETPOLICY) { |
| 782 | necp_set_client_as_background(p, fp, background); |
| 783 | } |
| 784 | #endif /* NECP */ |
| 785 | } |
| 786 | } |
| 787 | } else { |
| 788 | /* disable networking IO throttle. |
| 789 | * NOTE - It is a known limitation of the current design that we |
| 790 | * could potentially clear TRAFFIC_MGT_SO_BACKGROUND bit for |
| 791 | * sockets created by other threads within this process. |
| 792 | */ |
| 793 | fdp = p->p_fd; |
| 794 | for ( i = 0; i < fdp->fd_nfiles; i++ ) { |
| 795 | struct socket *sockp; |
| 796 | |
| 797 | fp = fdp->fd_ofiles[ i ]; |
| 798 | if (fp == NULL || (fdp->fd_ofileflags[ i ] & UF_RESERVED) != 0) { |
| 799 | continue; |
| 800 | } |
| 801 | if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_SOCKET) { |
| 802 | sockp = (struct socket *)fp->f_fglob->fg_data; |
| 803 | /* skip if only clearing this thread's sockets */ |
| 804 | if ((thread) && (sockp->so_background_thread != thread)) { |
| 805 | continue; |
| 806 | } |
| 807 | socket_clear_traffic_mgt_flags(sockp, TRAFFIC_MGT_SO_BACKGROUND); |
| 808 | sockp->so_background_thread = NULL; |
| 809 | } |
| 810 | #if NECP |
| 811 | else if (FILEGLOB_DTYPE(fp->f_fglob) == DTYPE_NETPOLICY) { |
| 812 | necp_set_client_as_background(p, fp, background); |
| 813 | } |
| 814 | #endif /* NECP */ |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | proc_fdunlock(p); |
| 819 | #else |
| 820 | #pragma unused(p, thread) |
| 821 | #endif |
| 822 | } |
| 823 | |
| 824 | |
| 825 | /* |
| 826 | * do_background_thread |
| 827 | * |
| 828 | * Requires: thread reference |
| 829 | * |
| 830 | * Returns: 0 Success |
| 831 | * EPERM Tried to background while in vfork |
| 832 | * XXX - todo - does this need a MACF hook? |
| 833 | */ |
| 834 | static int |
| 835 | do_background_thread(thread_t thread, int priority) |
| 836 | { |
| 837 | struct uthread *ut; |
| 838 | int enable, external; |
| 839 | int rv = 0; |
| 840 | |
| 841 | ut = get_bsdthread_info(thread); |
| 842 | |
| 843 | /* Backgrounding is unsupported for threads in vfork */ |
| 844 | if ((ut->uu_flag & UT_VFORK) != 0) |
| 845 | return(EPERM); |
| 846 | |
| 847 | /* Backgrounding is unsupported for workq threads */ |
| 848 | if (thread_is_static_param(thread)) { |
| 849 | return(EPERM); |
| 850 | } |
| 851 | |
| 852 | /* Not allowed to combine QoS and DARWIN_BG, doing so strips the QoS */ |
| 853 | if (thread_has_qos_policy(thread)) { |
| 854 | thread_remove_qos_policy(thread); |
| 855 | rv = EIDRM; |
| 856 | } |
| 857 | |
| 858 | /* TODO: Fail if someone passes something besides 0 or PRIO_DARWIN_BG */ |
| 859 | enable = (priority == PRIO_DARWIN_BG) ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE; |
| 860 | external = (current_thread() == thread) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL; |
| 861 | |
| 862 | proc_set_thread_policy(thread, external, TASK_POLICY_DARWIN_BG, enable); |
| 863 | |
| 864 | return rv; |
| 865 | } |
| 866 | |
| 867 | |
| 868 | /* |
| 869 | * Returns: 0 Success |
| 870 | * copyin:EFAULT |
| 871 | * dosetrlimit: |
| 872 | */ |
| 873 | /* ARGSUSED */ |
| 874 | int |
| 875 | setrlimit(struct proc *p, struct setrlimit_args *uap, __unused int32_t *retval) |
| 876 | { |
| 877 | struct rlimit alim; |
| 878 | int error; |
| 879 | |
| 880 | if ((error = copyin(uap->rlp, (caddr_t)&alim, |
| 881 | sizeof (struct rlimit)))) |
| 882 | return (error); |
| 883 | |
| 884 | return (dosetrlimit(p, uap->which, &alim)); |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * Returns: 0 Success |
| 889 | * EINVAL |
| 890 | * ENOMEM Cannot copy limit structure |
| 891 | * suser:EPERM |
| 892 | * |
| 893 | * Notes: EINVAL is returned both for invalid arguments, and in the |
| 894 | * case that the current usage (e.g. RLIMIT_STACK) is already |
| 895 | * in excess of the requested limit. |
| 896 | */ |
| 897 | int |
| 898 | dosetrlimit(struct proc *p, u_int which, struct rlimit *limp) |
| 899 | { |
| 900 | struct rlimit *alimp; |
| 901 | int error; |
| 902 | kern_return_t kr; |
| 903 | int posix = (which & _RLIMIT_POSIX_FLAG) ? 1 : 0; |
| 904 | |
| 905 | /* Mask out POSIX flag, saved above */ |
| 906 | which &= ~_RLIMIT_POSIX_FLAG; |
| 907 | |
| 908 | if (which >= RLIM_NLIMITS) |
| 909 | return (EINVAL); |
| 910 | |
| 911 | alimp = &p->p_rlimit[which]; |
| 912 | if (limp->rlim_cur > limp->rlim_max) |
| 913 | return EINVAL; |
| 914 | |
| 915 | if (limp->rlim_cur > alimp->rlim_max || |
| 916 | limp->rlim_max > alimp->rlim_max) |
| 917 | if ((error = suser(kauth_cred_get(), &p->p_acflag))) { |
| 918 | return (error); |
| 919 | } |
| 920 | |
| 921 | proc_limitblock(p); |
| 922 | |
| 923 | if ((error = proc_limitreplace(p)) != 0) { |
| 924 | proc_limitunblock(p); |
| 925 | return(error); |
| 926 | } |
| 927 | |
| 928 | alimp = &p->p_rlimit[which]; |
| 929 | |
| 930 | switch (which) { |
| 931 | |
| 932 | case RLIMIT_CPU: |
| 933 | if (limp->rlim_cur == RLIM_INFINITY) { |
| 934 | task_vtimer_clear(p->task, TASK_VTIMER_RLIM); |
| 935 | timerclear(&p->p_rlim_cpu); |
| 936 | } |
| 937 | else { |
| 938 | task_absolutetime_info_data_t tinfo; |
| 939 | mach_msg_type_number_t count; |
| 940 | struct timeval ttv, tv; |
| 941 | clock_sec_t tv_sec; |
| 942 | clock_usec_t tv_usec; |
| 943 | |
| 944 | count = TASK_ABSOLUTETIME_INFO_COUNT; |
| 945 | task_info(p->task, TASK_ABSOLUTETIME_INFO, |
| 946 | (task_info_t)&tinfo, &count); |
| 947 | absolutetime_to_microtime(tinfo.total_user + tinfo.total_system, |
| 948 | &tv_sec, &tv_usec); |
| 949 | ttv.tv_sec = tv_sec; |
| 950 | ttv.tv_usec = tv_usec; |
| 951 | |
| 952 | tv.tv_sec = (limp->rlim_cur > __INT_MAX__ ? __INT_MAX__ : limp->rlim_cur); |
| 953 | tv.tv_usec = 0; |
| 954 | timersub(&tv, &ttv, &p->p_rlim_cpu); |
| 955 | |
| 956 | timerclear(&tv); |
| 957 | if (timercmp(&p->p_rlim_cpu, &tv, >)) |
| 958 | task_vtimer_set(p->task, TASK_VTIMER_RLIM); |
| 959 | else { |
| 960 | task_vtimer_clear(p->task, TASK_VTIMER_RLIM); |
| 961 | |
| 962 | timerclear(&p->p_rlim_cpu); |
| 963 | |
| 964 | psignal(p, SIGXCPU); |
| 965 | } |
| 966 | } |
| 967 | break; |
| 968 | |
| 969 | case RLIMIT_DATA: |
| 970 | if (limp->rlim_cur > maxdmap) |
| 971 | limp->rlim_cur = maxdmap; |
| 972 | if (limp->rlim_max > maxdmap) |
| 973 | limp->rlim_max = maxdmap; |
| 974 | break; |
| 975 | |
| 976 | case RLIMIT_STACK: |
| 977 | /* Disallow illegal stack size instead of clipping */ |
| 978 | if (limp->rlim_cur > maxsmap || |
| 979 | limp->rlim_max > maxsmap) { |
| 980 | if (posix) { |
| 981 | error = EINVAL; |
| 982 | goto out; |
| 983 | } |
| 984 | else { |
| 985 | /* |
| 986 | * 4797860 - workaround poorly written installers by |
| 987 | * doing previous implementation (< 10.5) when caller |
| 988 | * is non-POSIX conforming. |
| 989 | */ |
| 990 | if (limp->rlim_cur > maxsmap) |
| 991 | limp->rlim_cur = maxsmap; |
| 992 | if (limp->rlim_max > maxsmap) |
| 993 | limp->rlim_max = maxsmap; |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | /* |
| 998 | * Stack is allocated to the max at exec time with only |
| 999 | * "rlim_cur" bytes accessible. If stack limit is going |
| 1000 | * up make more accessible, if going down make inaccessible. |
| 1001 | */ |
| 1002 | if (limp->rlim_cur > alimp->rlim_cur) { |
| 1003 | user_addr_t addr; |
| 1004 | user_size_t size; |
| 1005 | |
| 1006 | /* grow stack */ |
| 1007 | size = round_page_64(limp->rlim_cur); |
| 1008 | size -= round_page_64(alimp->rlim_cur); |
| 1009 | |
| 1010 | addr = p->user_stack - round_page_64(limp->rlim_cur); |
| 1011 | kr = mach_vm_protect(current_map(), |
| 1012 | addr, size, |
| 1013 | FALSE, VM_PROT_DEFAULT); |
| 1014 | if (kr != KERN_SUCCESS) { |
| 1015 | error = EINVAL; |
| 1016 | goto out; |
| 1017 | } |
| 1018 | } else if (limp->rlim_cur < alimp->rlim_cur) { |
| 1019 | user_addr_t addr; |
| 1020 | user_size_t size; |
| 1021 | user_addr_t cur_sp; |
| 1022 | |
| 1023 | /* shrink stack */ |
| 1024 | |
| 1025 | /* |
| 1026 | * First check if new stack limit would agree |
| 1027 | * with current stack usage. |
| 1028 | * Get the current thread's stack pointer... |
| 1029 | */ |
| 1030 | cur_sp = thread_adjuserstack(current_thread(), |
| 1031 | 0); |
| 1032 | if (cur_sp <= p->user_stack && |
| 1033 | cur_sp > (p->user_stack - |
| 1034 | round_page_64(alimp->rlim_cur))) { |
| 1035 | /* stack pointer is in main stack */ |
| 1036 | if (cur_sp <= (p->user_stack - |
| 1037 | round_page_64(limp->rlim_cur))) { |
| 1038 | /* |
| 1039 | * New limit would cause |
| 1040 | * current usage to be invalid: |
| 1041 | * reject new limit. |
| 1042 | */ |
| 1043 | error = EINVAL; |
| 1044 | goto out; |
| 1045 | } |
| 1046 | } else { |
| 1047 | /* not on the main stack: reject */ |
| 1048 | error = EINVAL; |
| 1049 | goto out; |
| 1050 | } |
| 1051 | |
| 1052 | size = round_page_64(alimp->rlim_cur); |
| 1053 | size -= round_page_64(limp->rlim_cur); |
| 1054 | |
| 1055 | addr = p->user_stack - round_page_64(alimp->rlim_cur); |
| 1056 | |
| 1057 | kr = mach_vm_protect(current_map(), |
| 1058 | addr, size, |
| 1059 | FALSE, VM_PROT_NONE); |
| 1060 | if (kr != KERN_SUCCESS) { |
| 1061 | error = EINVAL; |
| 1062 | goto out; |
| 1063 | } |
| 1064 | } else { |
| 1065 | /* no change ... */ |
| 1066 | } |
| 1067 | break; |
| 1068 | |
| 1069 | case RLIMIT_NOFILE: |
| 1070 | /* |
| 1071 | * Only root can set the maxfiles limits, as it is |
| 1072 | * systemwide resource. If we are expecting POSIX behavior, |
| 1073 | * instead of clamping the value, return EINVAL. We do this |
| 1074 | * because historically, people have been able to attempt to |
| 1075 | * set RLIM_INFINITY to get "whatever the maximum is". |
| 1076 | */ |
| 1077 | if ( kauth_cred_issuser(kauth_cred_get()) ) { |
| 1078 | if (limp->rlim_cur != alimp->rlim_cur && |
| 1079 | limp->rlim_cur > (rlim_t)maxfiles) { |
| 1080 | if (posix) { |
| 1081 | error = EINVAL; |
| 1082 | goto out; |
| 1083 | } |
| 1084 | limp->rlim_cur = maxfiles; |
| 1085 | } |
| 1086 | if (limp->rlim_max != alimp->rlim_max && |
| 1087 | limp->rlim_max > (rlim_t)maxfiles) |
| 1088 | limp->rlim_max = maxfiles; |
| 1089 | } |
| 1090 | else { |
| 1091 | if (limp->rlim_cur != alimp->rlim_cur && |
| 1092 | limp->rlim_cur > (rlim_t)maxfilesperproc) { |
| 1093 | if (posix) { |
| 1094 | error = EINVAL; |
| 1095 | goto out; |
| 1096 | } |
| 1097 | limp->rlim_cur = maxfilesperproc; |
| 1098 | } |
| 1099 | if (limp->rlim_max != alimp->rlim_max && |
| 1100 | limp->rlim_max > (rlim_t)maxfilesperproc) |
| 1101 | limp->rlim_max = maxfilesperproc; |
| 1102 | } |
| 1103 | break; |
| 1104 | |
| 1105 | case RLIMIT_NPROC: |
| 1106 | /* |
| 1107 | * Only root can set to the maxproc limits, as it is |
| 1108 | * systemwide resource; all others are limited to |
| 1109 | * maxprocperuid (presumably less than maxproc). |
| 1110 | */ |
| 1111 | if ( kauth_cred_issuser(kauth_cred_get()) ) { |
| 1112 | if (limp->rlim_cur > (rlim_t)maxproc) |
| 1113 | limp->rlim_cur = maxproc; |
| 1114 | if (limp->rlim_max > (rlim_t)maxproc) |
| 1115 | limp->rlim_max = maxproc; |
| 1116 | } |
| 1117 | else { |
| 1118 | if (limp->rlim_cur > (rlim_t)maxprocperuid) |
| 1119 | limp->rlim_cur = maxprocperuid; |
| 1120 | if (limp->rlim_max > (rlim_t)maxprocperuid) |
| 1121 | limp->rlim_max = maxprocperuid; |
| 1122 | } |
| 1123 | break; |
| 1124 | |
| 1125 | case RLIMIT_MEMLOCK: |
| 1126 | /* |
| 1127 | * Tell the Mach VM layer about the new limit value. |
| 1128 | */ |
| 1129 | |
| 1130 | vm_map_set_user_wire_limit(current_map(), limp->rlim_cur); |
| 1131 | break; |
| 1132 | |
| 1133 | } /* switch... */ |
| 1134 | proc_lock(p); |
| 1135 | *alimp = *limp; |
| 1136 | proc_unlock(p); |
| 1137 | error = 0; |
| 1138 | out: |
| 1139 | proc_limitunblock(p); |
| 1140 | return (error); |
| 1141 | } |
| 1142 | |
| 1143 | /* ARGSUSED */ |
| 1144 | int |
| 1145 | getrlimit(struct proc *p, struct getrlimit_args *uap, __unused int32_t *retval) |
| 1146 | { |
| 1147 | struct rlimit lim = {}; |
| 1148 | |
| 1149 | /* |
| 1150 | * Take out flag now in case we need to use it to trigger variant |
| 1151 | * behaviour later. |
| 1152 | */ |
| 1153 | uap->which &= ~_RLIMIT_POSIX_FLAG; |
| 1154 | |
| 1155 | if (uap->which >= RLIM_NLIMITS) |
| 1156 | return (EINVAL); |
| 1157 | proc_limitget(p, uap->which, &lim); |
| 1158 | return (copyout((caddr_t)&lim, |
| 1159 | uap->rlp, sizeof (struct rlimit))); |
| 1160 | } |
| 1161 | |
| 1162 | /* |
| 1163 | * Transform the running time and tick information in proc p into user, |
| 1164 | * system, and interrupt time usage. |
| 1165 | */ |
| 1166 | /* No lock on proc is held for this.. */ |
| 1167 | void |
| 1168 | calcru(struct proc *p, struct timeval *up, struct timeval *sp, struct timeval *ip) |
| 1169 | { |
| 1170 | task_t task; |
| 1171 | |
| 1172 | timerclear(up); |
| 1173 | timerclear(sp); |
| 1174 | if (ip != NULL) |
| 1175 | timerclear(ip); |
| 1176 | |
| 1177 | task = p->task; |
| 1178 | if (task) { |
| 1179 | mach_task_basic_info_data_t tinfo; |
| 1180 | task_thread_times_info_data_t ttimesinfo; |
| 1181 | task_events_info_data_t teventsinfo; |
| 1182 | mach_msg_type_number_t task_info_count, task_ttimes_count; |
| 1183 | mach_msg_type_number_t task_events_count; |
| 1184 | struct timeval ut,st; |
| 1185 | |
| 1186 | task_info_count = MACH_TASK_BASIC_INFO_COUNT; |
| 1187 | task_info(task, MACH_TASK_BASIC_INFO, |
| 1188 | (task_info_t)&tinfo, &task_info_count); |
| 1189 | ut.tv_sec = tinfo.user_time.seconds; |
| 1190 | ut.tv_usec = tinfo.user_time.microseconds; |
| 1191 | st.tv_sec = tinfo.system_time.seconds; |
| 1192 | st.tv_usec = tinfo.system_time.microseconds; |
| 1193 | timeradd(&ut, up, up); |
| 1194 | timeradd(&st, sp, sp); |
| 1195 | |
| 1196 | task_ttimes_count = TASK_THREAD_TIMES_INFO_COUNT; |
| 1197 | task_info(task, TASK_THREAD_TIMES_INFO, |
| 1198 | (task_info_t)&ttimesinfo, &task_ttimes_count); |
| 1199 | |
| 1200 | ut.tv_sec = ttimesinfo.user_time.seconds; |
| 1201 | ut.tv_usec = ttimesinfo.user_time.microseconds; |
| 1202 | st.tv_sec = ttimesinfo.system_time.seconds; |
| 1203 | st.tv_usec = ttimesinfo.system_time.microseconds; |
| 1204 | timeradd(&ut, up, up); |
| 1205 | timeradd(&st, sp, sp); |
| 1206 | |
| 1207 | task_events_count = TASK_EVENTS_INFO_COUNT; |
| 1208 | task_info(task, TASK_EVENTS_INFO, |
| 1209 | (task_info_t)&teventsinfo, &task_events_count); |
| 1210 | |
| 1211 | /* |
| 1212 | * No need to lock "p": this does not need to be |
| 1213 | * completely consistent, right ? |
| 1214 | */ |
| 1215 | p->p_stats->p_ru.ru_minflt = (teventsinfo.faults - |
| 1216 | teventsinfo.pageins); |
| 1217 | p->p_stats->p_ru.ru_majflt = teventsinfo.pageins; |
| 1218 | p->p_stats->p_ru.ru_nivcsw = (teventsinfo.csw - |
| 1219 | p->p_stats->p_ru.ru_nvcsw); |
| 1220 | if (p->p_stats->p_ru.ru_nivcsw < 0) |
| 1221 | p->p_stats->p_ru.ru_nivcsw = 0; |
| 1222 | |
| 1223 | p->p_stats->p_ru.ru_maxrss = tinfo.resident_size_max; |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | __private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p); |
| 1228 | __private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p); |
| 1229 | |
| 1230 | /* ARGSUSED */ |
| 1231 | int |
| 1232 | getrusage(struct proc *p, struct getrusage_args *uap, __unused int32_t *retval) |
| 1233 | { |
| 1234 | struct rusage *rup, rubuf; |
| 1235 | struct user64_rusage rubuf64 = {}; |
| 1236 | struct user32_rusage rubuf32 = {}; |
| 1237 | size_t retsize = sizeof(rubuf); /* default: 32 bits */ |
| 1238 | caddr_t retbuf = (caddr_t)&rubuf; /* default: 32 bits */ |
| 1239 | struct timeval utime; |
| 1240 | struct timeval stime; |
| 1241 | |
| 1242 | |
| 1243 | switch (uap->who) { |
| 1244 | case RUSAGE_SELF: |
| 1245 | calcru(p, &utime, &stime, NULL); |
| 1246 | proc_lock(p); |
| 1247 | rup = &p->p_stats->p_ru; |
| 1248 | rup->ru_utime = utime; |
| 1249 | rup->ru_stime = stime; |
| 1250 | |
| 1251 | rubuf = *rup; |
| 1252 | proc_unlock(p); |
| 1253 | |
| 1254 | break; |
| 1255 | |
| 1256 | case RUSAGE_CHILDREN: |
| 1257 | proc_lock(p); |
| 1258 | rup = &p->p_stats->p_cru; |
| 1259 | rubuf = *rup; |
| 1260 | proc_unlock(p); |
| 1261 | break; |
| 1262 | |
| 1263 | default: |
| 1264 | return (EINVAL); |
| 1265 | } |
| 1266 | if (IS_64BIT_PROCESS(p)) { |
| 1267 | retsize = sizeof(rubuf64); |
| 1268 | retbuf = (caddr_t)&rubuf64; |
| 1269 | munge_user64_rusage(&rubuf, &rubuf64); |
| 1270 | } else { |
| 1271 | retsize = sizeof(rubuf32); |
| 1272 | retbuf = (caddr_t)&rubuf32; |
| 1273 | munge_user32_rusage(&rubuf, &rubuf32); |
| 1274 | } |
| 1275 | |
| 1276 | return (copyout(retbuf, uap->rusage, retsize)); |
| 1277 | } |
| 1278 | |
| 1279 | void |
| 1280 | ruadd(struct rusage *ru, struct rusage *ru2) |
| 1281 | { |
| 1282 | long *ip, *ip2; |
| 1283 | long i; |
| 1284 | |
| 1285 | timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime); |
| 1286 | timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime); |
| 1287 | if (ru->ru_maxrss < ru2->ru_maxrss) |
| 1288 | ru->ru_maxrss = ru2->ru_maxrss; |
| 1289 | ip = &ru->ru_first; ip2 = &ru2->ru_first; |
| 1290 | for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--) |
| 1291 | *ip++ += *ip2++; |
| 1292 | } |
| 1293 | |
| 1294 | /* |
| 1295 | * Add the rusage stats of child in parent. |
| 1296 | * |
| 1297 | * It adds rusage statistics of child process and statistics of all its |
| 1298 | * children to its parent. |
| 1299 | * |
| 1300 | * Note: proc lock of parent should be held while calling this function. |
| 1301 | */ |
| 1302 | void |
| 1303 | update_rusage_info_child(struct rusage_info_child *ri, rusage_info_current *ri_current) |
| 1304 | { |
| 1305 | ri->ri_child_user_time += (ri_current->ri_user_time + |
| 1306 | ri_current->ri_child_user_time); |
| 1307 | ri->ri_child_system_time += (ri_current->ri_system_time + |
| 1308 | ri_current->ri_child_system_time); |
| 1309 | ri->ri_child_pkg_idle_wkups += (ri_current->ri_pkg_idle_wkups + |
| 1310 | ri_current->ri_child_pkg_idle_wkups); |
| 1311 | ri->ri_child_interrupt_wkups += (ri_current->ri_interrupt_wkups + |
| 1312 | ri_current->ri_child_interrupt_wkups); |
| 1313 | ri->ri_child_pageins += (ri_current->ri_pageins + |
| 1314 | ri_current->ri_child_pageins); |
| 1315 | ri->ri_child_elapsed_abstime += ((ri_current->ri_proc_exit_abstime - |
| 1316 | ri_current->ri_proc_start_abstime) + ri_current->ri_child_elapsed_abstime); |
| 1317 | } |
| 1318 | |
| 1319 | void |
| 1320 | proc_limitget(proc_t p, int which, struct rlimit * limp) |
| 1321 | { |
| 1322 | proc_list_lock(); |
| 1323 | limp->rlim_cur = p->p_rlimit[which].rlim_cur; |
| 1324 | limp->rlim_max = p->p_rlimit[which].rlim_max; |
| 1325 | proc_list_unlock(); |
| 1326 | } |
| 1327 | |
| 1328 | |
| 1329 | void |
| 1330 | proc_limitdrop(proc_t p, int exiting) |
| 1331 | { |
| 1332 | struct plimit * freelim = NULL; |
| 1333 | struct plimit * freeoldlim = NULL; |
| 1334 | |
| 1335 | proc_list_lock(); |
| 1336 | |
| 1337 | if (--p->p_limit->pl_refcnt == 0) { |
| 1338 | freelim = p->p_limit; |
| 1339 | p->p_limit = NULL; |
| 1340 | } |
| 1341 | if ((exiting != 0) && (p->p_olimit != NULL) && (--p->p_olimit->pl_refcnt == 0)) { |
| 1342 | freeoldlim = p->p_olimit; |
| 1343 | p->p_olimit = NULL; |
| 1344 | } |
| 1345 | |
| 1346 | proc_list_unlock(); |
| 1347 | if (freelim != NULL) |
| 1348 | FREE_ZONE(freelim, sizeof *p->p_limit, M_PLIMIT); |
| 1349 | if (freeoldlim != NULL) |
| 1350 | FREE_ZONE(freeoldlim, sizeof *p->p_olimit, M_PLIMIT); |
| 1351 | } |
| 1352 | |
| 1353 | |
| 1354 | void |
| 1355 | proc_limitfork(proc_t parent, proc_t child) |
| 1356 | { |
| 1357 | proc_list_lock(); |
| 1358 | child->p_limit = parent->p_limit; |
| 1359 | child->p_limit->pl_refcnt++; |
| 1360 | child->p_olimit = NULL; |
| 1361 | proc_list_unlock(); |
| 1362 | } |
| 1363 | |
| 1364 | void |
| 1365 | proc_limitblock(proc_t p) |
| 1366 | { |
| 1367 | proc_lock(p); |
| 1368 | while (p->p_lflag & P_LLIMCHANGE) { |
| 1369 | p->p_lflag |= P_LLIMWAIT; |
| 1370 | msleep(&p->p_olimit, &p->p_mlock, 0, "proc_limitblock" , NULL); |
| 1371 | } |
| 1372 | p->p_lflag |= P_LLIMCHANGE; |
| 1373 | proc_unlock(p); |
| 1374 | |
| 1375 | } |
| 1376 | |
| 1377 | |
| 1378 | void |
| 1379 | proc_limitunblock(proc_t p) |
| 1380 | { |
| 1381 | proc_lock(p); |
| 1382 | p->p_lflag &= ~P_LLIMCHANGE; |
| 1383 | if (p->p_lflag & P_LLIMWAIT) { |
| 1384 | p->p_lflag &= ~P_LLIMWAIT; |
| 1385 | wakeup(&p->p_olimit); |
| 1386 | } |
| 1387 | proc_unlock(p); |
| 1388 | } |
| 1389 | |
| 1390 | /* This is called behind serialization provided by proc_limitblock/unlbock */ |
| 1391 | int |
| 1392 | proc_limitreplace(proc_t p) |
| 1393 | { |
| 1394 | struct plimit *copy; |
| 1395 | |
| 1396 | |
| 1397 | proc_list_lock(); |
| 1398 | |
| 1399 | if (p->p_limit->pl_refcnt == 1) { |
| 1400 | proc_list_unlock(); |
| 1401 | return(0); |
| 1402 | } |
| 1403 | |
| 1404 | proc_list_unlock(); |
| 1405 | |
| 1406 | MALLOC_ZONE(copy, struct plimit *, |
| 1407 | sizeof(struct plimit), M_PLIMIT, M_WAITOK); |
| 1408 | if (copy == NULL) { |
| 1409 | return(ENOMEM); |
| 1410 | } |
| 1411 | |
| 1412 | proc_list_lock(); |
| 1413 | bcopy(p->p_limit->pl_rlimit, copy->pl_rlimit, |
| 1414 | sizeof(struct rlimit) * RLIM_NLIMITS); |
| 1415 | copy->pl_refcnt = 1; |
| 1416 | /* hang on to reference to old till process exits */ |
| 1417 | p->p_olimit = p->p_limit; |
| 1418 | p->p_limit = copy; |
| 1419 | proc_list_unlock(); |
| 1420 | |
| 1421 | return(0); |
| 1422 | } |
| 1423 | |
| 1424 | static int |
| 1425 | iopolicysys_disk(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param); |
| 1426 | static int |
| 1427 | iopolicysys_vfs_hfs_case_sensitivity(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param); |
| 1428 | static int |
| 1429 | iopolicysys_vfs_atime_updates(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param); |
| 1430 | |
| 1431 | /* |
| 1432 | * iopolicysys |
| 1433 | * |
| 1434 | * Description: System call MUX for use in manipulating I/O policy attributes of the current process or thread |
| 1435 | * |
| 1436 | * Parameters: cmd Policy command |
| 1437 | * arg Pointer to policy arguments |
| 1438 | * |
| 1439 | * Returns: 0 Success |
| 1440 | * EINVAL Invalid command or invalid policy arguments |
| 1441 | * |
| 1442 | */ |
| 1443 | int |
| 1444 | iopolicysys(struct proc *p, struct iopolicysys_args *uap, int32_t *retval) |
| 1445 | { |
| 1446 | int error = 0; |
| 1447 | struct _iopol_param_t iop_param; |
| 1448 | |
| 1449 | if ((error = copyin(uap->arg, &iop_param, sizeof(iop_param))) != 0) |
| 1450 | goto out; |
| 1451 | |
| 1452 | switch (iop_param.iop_iotype) { |
| 1453 | case IOPOL_TYPE_DISK: |
| 1454 | error = iopolicysys_disk(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param); |
| 1455 | if (error == EIDRM) { |
| 1456 | *retval = -2; |
| 1457 | error = 0; |
| 1458 | } |
| 1459 | if (error) |
| 1460 | goto out; |
| 1461 | break; |
| 1462 | case IOPOL_TYPE_VFS_HFS_CASE_SENSITIVITY: |
| 1463 | error = iopolicysys_vfs_hfs_case_sensitivity(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param); |
| 1464 | if (error) |
| 1465 | goto out; |
| 1466 | break; |
| 1467 | case IOPOL_TYPE_VFS_ATIME_UPDATES: |
| 1468 | error = iopolicysys_vfs_atime_updates(p, uap->cmd, iop_param.iop_scope, iop_param.iop_policy, &iop_param); |
| 1469 | if (error) |
| 1470 | goto out; |
| 1471 | break; |
| 1472 | default: |
| 1473 | error = EINVAL; |
| 1474 | goto out; |
| 1475 | } |
| 1476 | |
| 1477 | /* Individual iotype handlers are expected to update iop_param, if requested with a GET command */ |
| 1478 | if (uap->cmd == IOPOL_CMD_GET) { |
| 1479 | error = copyout((caddr_t)&iop_param, uap->arg, sizeof(iop_param)); |
| 1480 | if (error) |
| 1481 | goto out; |
| 1482 | } |
| 1483 | |
| 1484 | out: |
| 1485 | return (error); |
| 1486 | } |
| 1487 | |
| 1488 | static int |
| 1489 | iopolicysys_disk(struct proc *p __unused, int cmd, int scope, int policy, struct _iopol_param_t *iop_param) |
| 1490 | { |
| 1491 | int error = 0; |
| 1492 | thread_t thread; |
| 1493 | int policy_flavor; |
| 1494 | |
| 1495 | /* Validate scope */ |
| 1496 | switch (scope) { |
| 1497 | case IOPOL_SCOPE_PROCESS: |
| 1498 | thread = THREAD_NULL; |
| 1499 | policy_flavor = TASK_POLICY_IOPOL; |
| 1500 | break; |
| 1501 | |
| 1502 | case IOPOL_SCOPE_THREAD: |
| 1503 | thread = current_thread(); |
| 1504 | policy_flavor = TASK_POLICY_IOPOL; |
| 1505 | |
| 1506 | /* Not allowed to combine QoS and (non-PASSIVE) IO policy, doing so strips the QoS */ |
| 1507 | if (cmd == IOPOL_CMD_SET && thread_has_qos_policy(thread)) { |
| 1508 | switch (policy) { |
| 1509 | case IOPOL_DEFAULT: |
| 1510 | case IOPOL_PASSIVE: |
| 1511 | break; |
| 1512 | case IOPOL_UTILITY: |
| 1513 | case IOPOL_THROTTLE: |
| 1514 | case IOPOL_IMPORTANT: |
| 1515 | case IOPOL_STANDARD: |
| 1516 | if (!thread_is_static_param(thread)) { |
| 1517 | thread_remove_qos_policy(thread); |
| 1518 | /* |
| 1519 | * This is not an error case, this is to return a marker to user-space that |
| 1520 | * we stripped the thread of its QoS class. |
| 1521 | */ |
| 1522 | error = EIDRM; |
| 1523 | break; |
| 1524 | } |
| 1525 | /* otherwise, fall through to the error case. */ |
| 1526 | default: |
| 1527 | error = EINVAL; |
| 1528 | goto out; |
| 1529 | } |
| 1530 | } |
| 1531 | break; |
| 1532 | |
| 1533 | case IOPOL_SCOPE_DARWIN_BG: |
| 1534 | #if CONFIG_EMBEDDED |
| 1535 | /* Embedded doesn't want this as BG is always IOPOL_THROTTLE */ |
| 1536 | error = ENOTSUP; |
| 1537 | goto out; |
| 1538 | #else /* CONFIG_EMBEDDED */ |
| 1539 | thread = THREAD_NULL; |
| 1540 | policy_flavor = TASK_POLICY_DARWIN_BG_IOPOL; |
| 1541 | break; |
| 1542 | #endif /* CONFIG_EMBEDDED */ |
| 1543 | |
| 1544 | default: |
| 1545 | error = EINVAL; |
| 1546 | goto out; |
| 1547 | } |
| 1548 | |
| 1549 | /* Validate policy */ |
| 1550 | if (cmd == IOPOL_CMD_SET) { |
| 1551 | switch (policy) { |
| 1552 | case IOPOL_DEFAULT: |
| 1553 | if (scope == IOPOL_SCOPE_DARWIN_BG) { |
| 1554 | /* the current default BG throttle level is UTILITY */ |
| 1555 | policy = IOPOL_UTILITY; |
| 1556 | } else { |
| 1557 | policy = IOPOL_IMPORTANT; |
| 1558 | } |
| 1559 | break; |
| 1560 | case IOPOL_UTILITY: |
| 1561 | /* fall-through */ |
| 1562 | case IOPOL_THROTTLE: |
| 1563 | /* These levels are OK */ |
| 1564 | break; |
| 1565 | case IOPOL_IMPORTANT: |
| 1566 | /* fall-through */ |
| 1567 | case IOPOL_STANDARD: |
| 1568 | /* fall-through */ |
| 1569 | case IOPOL_PASSIVE: |
| 1570 | if (scope == IOPOL_SCOPE_DARWIN_BG) { |
| 1571 | /* These levels are invalid for BG */ |
| 1572 | error = EINVAL; |
| 1573 | goto out; |
| 1574 | } else { |
| 1575 | /* OK for other scopes */ |
| 1576 | } |
| 1577 | break; |
| 1578 | default: |
| 1579 | error = EINVAL; |
| 1580 | goto out; |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | /* Perform command */ |
| 1585 | switch(cmd) { |
| 1586 | case IOPOL_CMD_SET: |
| 1587 | if (thread != THREAD_NULL) |
| 1588 | proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, policy_flavor, policy); |
| 1589 | else |
| 1590 | proc_set_task_policy(current_task(), TASK_POLICY_INTERNAL, policy_flavor, policy); |
| 1591 | break; |
| 1592 | case IOPOL_CMD_GET: |
| 1593 | if (thread != THREAD_NULL) |
| 1594 | policy = proc_get_thread_policy(thread, TASK_POLICY_INTERNAL, policy_flavor); |
| 1595 | else |
| 1596 | policy = proc_get_task_policy(current_task(), TASK_POLICY_INTERNAL, policy_flavor); |
| 1597 | iop_param->iop_policy = policy; |
| 1598 | break; |
| 1599 | default: |
| 1600 | error = EINVAL; /* unknown command */ |
| 1601 | break; |
| 1602 | } |
| 1603 | |
| 1604 | out: |
| 1605 | return (error); |
| 1606 | } |
| 1607 | |
| 1608 | static int |
| 1609 | iopolicysys_vfs_hfs_case_sensitivity(struct proc *p, int cmd, int scope, int policy, struct _iopol_param_t *iop_param) |
| 1610 | { |
| 1611 | int error = 0; |
| 1612 | |
| 1613 | /* Validate scope */ |
| 1614 | switch (scope) { |
| 1615 | case IOPOL_SCOPE_PROCESS: |
| 1616 | /* Only process OK */ |
| 1617 | break; |
| 1618 | default: |
| 1619 | error = EINVAL; |
| 1620 | goto out; |
| 1621 | } |
| 1622 | |
| 1623 | /* Validate policy */ |
| 1624 | if (cmd == IOPOL_CMD_SET) { |
| 1625 | switch (policy) { |
| 1626 | case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT: |
| 1627 | /* fall-through */ |
| 1628 | case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE: |
| 1629 | /* These policies are OK */ |
| 1630 | break; |
| 1631 | default: |
| 1632 | error = EINVAL; |
| 1633 | goto out; |
| 1634 | } |
| 1635 | } |
| 1636 | |
| 1637 | /* Perform command */ |
| 1638 | switch(cmd) { |
| 1639 | case IOPOL_CMD_SET: |
| 1640 | if (0 == kauth_cred_issuser(kauth_cred_get())) { |
| 1641 | /* If it's a non-root process, it needs to have the entitlement to set the policy */ |
| 1642 | boolean_t entitled = FALSE; |
| 1643 | entitled = IOTaskHasEntitlement(current_task(), "com.apple.private.iopol.case_sensitivity" ); |
| 1644 | if (!entitled) { |
| 1645 | error = EPERM; |
| 1646 | goto out; |
| 1647 | } |
| 1648 | } |
| 1649 | |
| 1650 | switch (policy) { |
| 1651 | case IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT: |
| 1652 | OSBitAndAtomic16(~((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY), &p->p_vfs_iopolicy); |
| 1653 | break; |
| 1654 | case IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE: |
| 1655 | OSBitOrAtomic16((uint32_t)P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY, &p->p_vfs_iopolicy); |
| 1656 | break; |
| 1657 | default: |
| 1658 | error = EINVAL; |
| 1659 | goto out; |
| 1660 | } |
| 1661 | |
| 1662 | break; |
| 1663 | case IOPOL_CMD_GET: |
| 1664 | iop_param->iop_policy = (p->p_vfs_iopolicy & P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY) |
| 1665 | ? IOPOL_VFS_HFS_CASE_SENSITIVITY_FORCE_CASE_SENSITIVE |
| 1666 | : IOPOL_VFS_HFS_CASE_SENSITIVITY_DEFAULT; |
| 1667 | break; |
| 1668 | default: |
| 1669 | error = EINVAL; /* unknown command */ |
| 1670 | break; |
| 1671 | } |
| 1672 | |
| 1673 | out: |
| 1674 | return (error); |
| 1675 | } |
| 1676 | |
| 1677 | static inline int |
| 1678 | get_thread_atime_policy(struct uthread *ut) |
| 1679 | { |
| 1680 | return (ut->uu_flag & UT_ATIME_UPDATE)? IOPOL_ATIME_UPDATES_OFF: IOPOL_ATIME_UPDATES_DEFAULT; |
| 1681 | } |
| 1682 | |
| 1683 | static inline void |
| 1684 | set_thread_atime_policy(struct uthread *ut, int policy) |
| 1685 | { |
| 1686 | if (policy == IOPOL_ATIME_UPDATES_OFF) { |
| 1687 | ut->uu_flag |= UT_ATIME_UPDATE; |
| 1688 | } else { |
| 1689 | ut->uu_flag &= ~UT_ATIME_UPDATE; |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | static inline void |
| 1694 | set_task_atime_policy(struct proc *p, int policy) |
| 1695 | { |
| 1696 | if (policy == IOPOL_ATIME_UPDATES_OFF) { |
| 1697 | OSBitOrAtomic16((uint16_t)P_VFS_IOPOLICY_ATIME_UPDATES, &p->p_vfs_iopolicy); |
| 1698 | } else { |
| 1699 | OSBitAndAtomic16(~((uint16_t)P_VFS_IOPOLICY_ATIME_UPDATES), &p->p_vfs_iopolicy); |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | static inline int |
| 1704 | get_task_atime_policy(struct proc *p) |
| 1705 | { |
| 1706 | return (p->p_vfs_iopolicy & P_VFS_IOPOLICY_ATIME_UPDATES)? IOPOL_ATIME_UPDATES_OFF: IOPOL_ATIME_UPDATES_DEFAULT; |
| 1707 | } |
| 1708 | |
| 1709 | static int |
| 1710 | iopolicysys_vfs_atime_updates(struct proc *p __unused, int cmd, int scope, int policy, struct _iopol_param_t *iop_param) |
| 1711 | { |
| 1712 | int error = 0; |
| 1713 | thread_t thread; |
| 1714 | |
| 1715 | /* Validate scope */ |
| 1716 | switch (scope) { |
| 1717 | case IOPOL_SCOPE_THREAD: |
| 1718 | thread = current_thread(); |
| 1719 | break; |
| 1720 | case IOPOL_SCOPE_PROCESS: |
| 1721 | thread = THREAD_NULL; |
| 1722 | break; |
| 1723 | default: |
| 1724 | error = EINVAL; |
| 1725 | goto out; |
| 1726 | } |
| 1727 | |
| 1728 | /* Validate policy */ |
| 1729 | if (cmd == IOPOL_CMD_SET) { |
| 1730 | switch (policy) { |
| 1731 | case IOPOL_ATIME_UPDATES_DEFAULT: |
| 1732 | case IOPOL_ATIME_UPDATES_OFF: |
| 1733 | break; |
| 1734 | default: |
| 1735 | error = EINVAL; |
| 1736 | goto out; |
| 1737 | } |
| 1738 | } |
| 1739 | |
| 1740 | /* Perform command */ |
| 1741 | switch(cmd) { |
| 1742 | case IOPOL_CMD_SET: |
| 1743 | if (thread != THREAD_NULL) |
| 1744 | set_thread_atime_policy(get_bsdthread_info(thread), policy); |
| 1745 | else |
| 1746 | set_task_atime_policy(p, policy); |
| 1747 | break; |
| 1748 | case IOPOL_CMD_GET: |
| 1749 | if (thread != THREAD_NULL) |
| 1750 | policy = get_thread_atime_policy(get_bsdthread_info(thread)); |
| 1751 | else |
| 1752 | policy = get_task_atime_policy(p); |
| 1753 | iop_param->iop_policy = policy; |
| 1754 | break; |
| 1755 | default: |
| 1756 | error = EINVAL; /* unknown command */ |
| 1757 | break; |
| 1758 | } |
| 1759 | |
| 1760 | out: |
| 1761 | return (error); |
| 1762 | } |
| 1763 | |
| 1764 | /* BSD call back function for task_policy networking changes */ |
| 1765 | void |
| 1766 | proc_apply_task_networkbg(void * bsd_info, thread_t thread) |
| 1767 | { |
| 1768 | assert(bsd_info != PROC_NULL); |
| 1769 | |
| 1770 | pid_t pid = proc_pid((proc_t)bsd_info); |
| 1771 | |
| 1772 | proc_t p = proc_find(pid); |
| 1773 | |
| 1774 | if (p != PROC_NULL) { |
| 1775 | assert(p == (proc_t)bsd_info); |
| 1776 | |
| 1777 | do_background_socket(p, thread); |
| 1778 | proc_rele(p); |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | void |
| 1783 | gather_rusage_info(proc_t p, rusage_info_current *ru, int flavor) |
| 1784 | { |
| 1785 | struct rusage_info_child *ri_child; |
| 1786 | |
| 1787 | assert(p->p_stats != NULL); |
| 1788 | memset(ru, 0, sizeof(*ru)); |
| 1789 | switch(flavor) { |
| 1790 | case RUSAGE_INFO_V4: |
| 1791 | ru->ri_logical_writes = get_task_logical_writes(p->task); |
| 1792 | ru->ri_lifetime_max_phys_footprint = get_task_phys_footprint_lifetime_max(p->task); |
| 1793 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 1794 | ru->ri_interval_max_phys_footprint = get_task_phys_footprint_interval_max(p->task, FALSE); |
| 1795 | #endif |
| 1796 | fill_task_monotonic_rusage(p->task, ru); |
| 1797 | /* fall through */ |
| 1798 | |
| 1799 | case RUSAGE_INFO_V3: |
| 1800 | fill_task_qos_rusage(p->task, ru); |
| 1801 | fill_task_billed_usage(p->task, ru); |
| 1802 | /* fall through */ |
| 1803 | |
| 1804 | case RUSAGE_INFO_V2: |
| 1805 | fill_task_io_rusage(p->task, ru); |
| 1806 | /* fall through */ |
| 1807 | |
| 1808 | case RUSAGE_INFO_V1: |
| 1809 | /* |
| 1810 | * p->p_stats->ri_child statistics are protected under proc lock. |
| 1811 | */ |
| 1812 | proc_lock(p); |
| 1813 | |
| 1814 | ri_child = &(p->p_stats->ri_child); |
| 1815 | ru->ri_child_user_time = ri_child->ri_child_user_time; |
| 1816 | ru->ri_child_system_time = ri_child->ri_child_system_time; |
| 1817 | ru->ri_child_pkg_idle_wkups = ri_child->ri_child_pkg_idle_wkups; |
| 1818 | ru->ri_child_interrupt_wkups = ri_child->ri_child_interrupt_wkups; |
| 1819 | ru->ri_child_pageins = ri_child->ri_child_pageins; |
| 1820 | ru->ri_child_elapsed_abstime = ri_child->ri_child_elapsed_abstime; |
| 1821 | |
| 1822 | proc_unlock(p); |
| 1823 | /* fall through */ |
| 1824 | |
| 1825 | case RUSAGE_INFO_V0: |
| 1826 | proc_getexecutableuuid(p, (unsigned char *)&ru->ri_uuid, sizeof (ru->ri_uuid)); |
| 1827 | fill_task_rusage(p->task, ru); |
| 1828 | ru->ri_proc_start_abstime = p->p_stats->ps_start; |
| 1829 | } |
| 1830 | } |
| 1831 | |
| 1832 | int |
| 1833 | proc_get_rusage(proc_t p, int flavor, user_addr_t buffer, __unused int is_zombie) |
| 1834 | { |
| 1835 | rusage_info_current ri_current = {}; |
| 1836 | |
| 1837 | int error = 0; |
| 1838 | size_t size = 0; |
| 1839 | |
| 1840 | switch (flavor) { |
| 1841 | case RUSAGE_INFO_V0: |
| 1842 | size = sizeof(struct rusage_info_v0); |
| 1843 | break; |
| 1844 | |
| 1845 | case RUSAGE_INFO_V1: |
| 1846 | size = sizeof(struct rusage_info_v1); |
| 1847 | break; |
| 1848 | |
| 1849 | case RUSAGE_INFO_V2: |
| 1850 | size = sizeof(struct rusage_info_v2); |
| 1851 | break; |
| 1852 | |
| 1853 | case RUSAGE_INFO_V3: |
| 1854 | size = sizeof(struct rusage_info_v3); |
| 1855 | break; |
| 1856 | |
| 1857 | case RUSAGE_INFO_V4: |
| 1858 | size = sizeof(struct rusage_info_v4); |
| 1859 | break; |
| 1860 | |
| 1861 | default: |
| 1862 | return EINVAL; |
| 1863 | } |
| 1864 | |
| 1865 | if(size == 0) { |
| 1866 | return EINVAL; |
| 1867 | } |
| 1868 | |
| 1869 | /* |
| 1870 | * If task is still alive, collect info from the live task itself. |
| 1871 | * Otherwise, look to the cached info in the zombie proc. |
| 1872 | */ |
| 1873 | if (p->p_ru == NULL) { |
| 1874 | gather_rusage_info(p, &ri_current, flavor); |
| 1875 | ri_current.ri_proc_exit_abstime = 0; |
| 1876 | error = copyout(&ri_current, buffer, size); |
| 1877 | } else { |
| 1878 | ri_current = p->p_ru->ri; |
| 1879 | error = copyout(&p->p_ru->ri, buffer, size); |
| 1880 | } |
| 1881 | |
| 1882 | return (error); |
| 1883 | } |
| 1884 | |
| 1885 | static int |
| 1886 | mach_to_bsd_rv(int mach_rv) |
| 1887 | { |
| 1888 | int bsd_rv = 0; |
| 1889 | |
| 1890 | switch (mach_rv) { |
| 1891 | case KERN_SUCCESS: |
| 1892 | bsd_rv = 0; |
| 1893 | break; |
| 1894 | case KERN_INVALID_ARGUMENT: |
| 1895 | bsd_rv = EINVAL; |
| 1896 | break; |
| 1897 | default: |
| 1898 | panic("unknown error %#x" , mach_rv); |
| 1899 | } |
| 1900 | |
| 1901 | return bsd_rv; |
| 1902 | } |
| 1903 | |
| 1904 | /* |
| 1905 | * Resource limit controls |
| 1906 | * |
| 1907 | * uap->flavor available flavors: |
| 1908 | * |
| 1909 | * RLIMIT_WAKEUPS_MONITOR |
| 1910 | * RLIMIT_CPU_USAGE_MONITOR |
| 1911 | * RLIMIT_THREAD_CPULIMITS |
| 1912 | * RLIMIT_FOOTPRINT_INTERVAL |
| 1913 | */ |
| 1914 | int |
| 1915 | proc_rlimit_control(__unused struct proc *p, struct proc_rlimit_control_args *uap, __unused int32_t *retval) |
| 1916 | { |
| 1917 | proc_t targetp; |
| 1918 | int error = 0; |
| 1919 | struct proc_rlimit_control_wakeupmon wakeupmon_args; |
| 1920 | uint32_t cpumon_flags; |
| 1921 | uint32_t cpulimits_flags; |
| 1922 | kauth_cred_t my_cred, target_cred; |
| 1923 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 1924 | uint32_t footprint_interval_flags; |
| 1925 | uint64_t interval_max_footprint; |
| 1926 | #endif /* CONFIG_LEDGER_INTERVAL_MAX */ |
| 1927 | |
| 1928 | /* -1 implicitly means our own process (perhaps even the current thread for per-thread attributes) */ |
| 1929 | if (uap->pid == -1) { |
| 1930 | targetp = proc_self(); |
| 1931 | } else { |
| 1932 | targetp = proc_find(uap->pid); |
| 1933 | } |
| 1934 | |
| 1935 | /* proc_self() can return NULL for an exiting process */ |
| 1936 | if (targetp == PROC_NULL) { |
| 1937 | return (ESRCH); |
| 1938 | } |
| 1939 | |
| 1940 | my_cred = kauth_cred_get(); |
| 1941 | target_cred = kauth_cred_proc_ref(targetp); |
| 1942 | |
| 1943 | if (!kauth_cred_issuser(my_cred) && kauth_cred_getruid(my_cred) && |
| 1944 | kauth_cred_getuid(my_cred) != kauth_cred_getuid(target_cred) && |
| 1945 | kauth_cred_getruid(my_cred) != kauth_cred_getuid(target_cred)) { |
| 1946 | proc_rele(targetp); |
| 1947 | kauth_cred_unref(&target_cred); |
| 1948 | return (EACCES); |
| 1949 | } |
| 1950 | |
| 1951 | switch (uap->flavor) { |
| 1952 | case RLIMIT_WAKEUPS_MONITOR: |
| 1953 | if ((error = copyin(uap->arg, &wakeupmon_args, sizeof (wakeupmon_args))) != 0) { |
| 1954 | break; |
| 1955 | } |
| 1956 | if ((error = mach_to_bsd_rv(task_wakeups_monitor_ctl(targetp->task, &wakeupmon_args.wm_flags, |
| 1957 | &wakeupmon_args.wm_rate))) != 0) { |
| 1958 | break; |
| 1959 | } |
| 1960 | error = copyout(&wakeupmon_args, uap->arg, sizeof (wakeupmon_args)); |
| 1961 | break; |
| 1962 | case RLIMIT_CPU_USAGE_MONITOR: |
| 1963 | cpumon_flags = uap->arg; // XXX temporarily stashing flags in argp (12592127) |
| 1964 | error = mach_to_bsd_rv(task_cpu_usage_monitor_ctl(targetp->task, &cpumon_flags)); |
| 1965 | break; |
| 1966 | case RLIMIT_THREAD_CPULIMITS: |
| 1967 | cpulimits_flags = (uint32_t)uap->arg; // only need a limited set of bits, pass in void * argument |
| 1968 | |
| 1969 | if (uap->pid != -1) { |
| 1970 | error = EINVAL; |
| 1971 | break; |
| 1972 | } |
| 1973 | |
| 1974 | uint8_t percent = 0; |
| 1975 | uint32_t ms_refill = 0; |
| 1976 | uint64_t ns_refill; |
| 1977 | |
| 1978 | percent = (uint8_t)(cpulimits_flags & 0xffU); /* low 8 bits for percent */ |
| 1979 | ms_refill = (cpulimits_flags >> 8) & 0xffffff; /* next 24 bits represent ms refill value */ |
| 1980 | if (percent >= 100) { |
| 1981 | error = EINVAL; |
| 1982 | break; |
| 1983 | } |
| 1984 | |
| 1985 | ns_refill = ((uint64_t)ms_refill) * NSEC_PER_MSEC; |
| 1986 | |
| 1987 | error = mach_to_bsd_rv(thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, percent, ns_refill)); |
| 1988 | break; |
| 1989 | |
| 1990 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 1991 | case RLIMIT_FOOTPRINT_INTERVAL: |
| 1992 | footprint_interval_flags = uap->arg; // XXX temporarily stashing flags in argp (12592127) |
| 1993 | /* |
| 1994 | * There is currently only one option for this flavor. |
| 1995 | */ |
| 1996 | if ((footprint_interval_flags & FOOTPRINT_INTERVAL_RESET) == 0) { |
| 1997 | error = EINVAL; |
| 1998 | break; |
| 1999 | } |
| 2000 | interval_max_footprint = get_task_phys_footprint_interval_max(targetp->task, TRUE); |
| 2001 | break; |
| 2002 | #endif /* CONFIG_LEDGER_INTERVAL_MAX */ |
| 2003 | default: |
| 2004 | error = EINVAL; |
| 2005 | break; |
| 2006 | } |
| 2007 | |
| 2008 | proc_rele(targetp); |
| 2009 | kauth_cred_unref(&target_cred); |
| 2010 | |
| 2011 | /* |
| 2012 | * Return value from this function becomes errno to userland caller. |
| 2013 | */ |
| 2014 | return (error); |
| 2015 | } |
| 2016 | |
| 2017 | /* |
| 2018 | * Return the current amount of CPU consumed by this thread (in either user or kernel mode) |
| 2019 | */ |
| 2020 | int thread_selfusage(struct proc *p __unused, struct thread_selfusage_args *uap __unused, uint64_t *retval) |
| 2021 | { |
| 2022 | uint64_t runtime; |
| 2023 | |
| 2024 | runtime = thread_get_runtime_self(); |
| 2025 | *retval = runtime; |
| 2026 | |
| 2027 | return (0); |
| 2028 | } |
| 2029 | |
| 2030 | #if !MONOTONIC |
| 2031 | int thread_selfcounts(__unused struct proc *p, __unused struct thread_selfcounts_args *uap, __unused int *ret_out) |
| 2032 | { |
| 2033 | return ENOTSUP; |
| 2034 | } |
| 2035 | #endif /* !MONOTONIC */ |
| 2036 | |