1 | /* |
2 | * Copyright (c) 2006-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | * |
28 | */ |
29 | |
30 | #include <kern/sched_prim.h> |
31 | #include <kern/kalloc.h> |
32 | #include <kern/assert.h> |
33 | #include <kern/debug.h> |
34 | #include <kern/locks.h> |
35 | #include <kern/task.h> |
36 | #include <kern/thread.h> |
37 | #include <kern/host.h> |
38 | #include <kern/policy_internal.h> |
39 | #include <kern/thread_group.h> |
40 | |
41 | #include <IOKit/IOBSD.h> |
42 | |
43 | #include <libkern/libkern.h> |
44 | #include <mach/coalition.h> |
45 | #include <mach/mach_time.h> |
46 | #include <mach/task.h> |
47 | #include <mach/host_priv.h> |
48 | #include <mach/mach_host.h> |
49 | #include <os/log.h> |
50 | #include <pexpert/pexpert.h> |
51 | #include <sys/coalition.h> |
52 | #include <sys/kern_event.h> |
53 | #include <sys/proc.h> |
54 | #include <sys/proc_info.h> |
55 | #include <sys/reason.h> |
56 | #include <sys/signal.h> |
57 | #include <sys/signalvar.h> |
58 | #include <sys/sysctl.h> |
59 | #include <sys/sysproto.h> |
60 | #include <sys/wait.h> |
61 | #include <sys/tree.h> |
62 | #include <sys/priv.h> |
63 | #include <vm/vm_pageout.h> |
64 | #include <vm/vm_protos.h> |
65 | |
66 | #if CONFIG_FREEZE |
67 | #include <vm/vm_map.h> |
68 | #endif /* CONFIG_FREEZE */ |
69 | |
70 | #include <sys/kern_memorystatus.h> |
71 | |
72 | #include <mach/machine/sdt.h> |
73 | #include <libkern/section_keywords.h> |
74 | #include <stdatomic.h> |
75 | |
76 | /* For logging clarity */ |
77 | static const char *memorystatus_kill_cause_name[] = { |
78 | "" , /* kMemorystatusInvalid */ |
79 | "jettisoned" , /* kMemorystatusKilled */ |
80 | "highwater" , /* kMemorystatusKilledHiwat */ |
81 | "vnode-limit" , /* kMemorystatusKilledVnodes */ |
82 | "vm-pageshortage" , /* kMemorystatusKilledVMPageShortage */ |
83 | "proc-thrashing" , /* kMemorystatusKilledProcThrashing */ |
84 | "fc-thrashing" , /* kMemorystatusKilledFCThrashing */ |
85 | "per-process-limit" , /* kMemorystatusKilledPerProcessLimit */ |
86 | "disk-space-shortage" , /* kMemorystatusKilledDiskSpaceShortage */ |
87 | "idle-exit" , /* kMemorystatusKilledIdleExit */ |
88 | "zone-map-exhaustion" , /* kMemorystatusKilledZoneMapExhaustion */ |
89 | "vm-compressor-thrashing" , /* kMemorystatusKilledVMCompressorThrashing */ |
90 | "vm-compressor-space-shortage" , /* kMemorystatusKilledVMCompressorSpaceShortage */ |
91 | }; |
92 | |
93 | static const char * |
94 | memorystatus_priority_band_name(int32_t priority) |
95 | { |
96 | switch (priority) { |
97 | case JETSAM_PRIORITY_FOREGROUND: |
98 | return "FOREGROUND" ; |
99 | case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY: |
100 | return "AUDIO_AND_ACCESSORY" ; |
101 | case JETSAM_PRIORITY_CONDUCTOR: |
102 | return "CONDUCTOR" ; |
103 | case JETSAM_PRIORITY_HOME: |
104 | return "HOME" ; |
105 | case JETSAM_PRIORITY_EXECUTIVE: |
106 | return "EXECUTIVE" ; |
107 | case JETSAM_PRIORITY_IMPORTANT: |
108 | return "IMPORTANT" ; |
109 | case JETSAM_PRIORITY_CRITICAL: |
110 | return "CRITICAL" ; |
111 | } |
112 | |
113 | return ("?" ); |
114 | } |
115 | |
116 | /* Does cause indicate vm or fc thrashing? */ |
117 | static boolean_t |
118 | is_reason_thrashing(unsigned cause) |
119 | { |
120 | switch (cause) { |
121 | case kMemorystatusKilledFCThrashing: |
122 | case kMemorystatusKilledVMCompressorThrashing: |
123 | case kMemorystatusKilledVMCompressorSpaceShortage: |
124 | return TRUE; |
125 | default: |
126 | return FALSE; |
127 | } |
128 | } |
129 | |
130 | /* Is the zone map almost full? */ |
131 | static boolean_t |
132 | is_reason_zone_map_exhaustion(unsigned cause) |
133 | { |
134 | if (cause == kMemorystatusKilledZoneMapExhaustion) |
135 | return TRUE; |
136 | return FALSE; |
137 | } |
138 | |
139 | /* |
140 | * Returns the current zone map size and capacity to include in the jetsam snapshot. |
141 | * Defined in zalloc.c |
142 | */ |
143 | extern void get_zone_map_size(uint64_t *current_size, uint64_t *capacity); |
144 | |
145 | /* |
146 | * Returns the name of the largest zone and its size to include in the jetsam snapshot. |
147 | * Defined in zalloc.c |
148 | */ |
149 | extern void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size); |
150 | |
151 | /* These are very verbose printfs(), enable with |
152 | * MEMORYSTATUS_DEBUG_LOG |
153 | */ |
154 | #if MEMORYSTATUS_DEBUG_LOG |
155 | #define MEMORYSTATUS_DEBUG(cond, format, ...) \ |
156 | do { \ |
157 | if (cond) { printf(format, ##__VA_ARGS__); } \ |
158 | } while(0) |
159 | #else |
160 | #define MEMORYSTATUS_DEBUG(cond, format, ...) |
161 | #endif |
162 | |
163 | /* |
164 | * Active / Inactive limit support |
165 | * proc list must be locked |
166 | * |
167 | * The SET_*** macros are used to initialize a limit |
168 | * for the first time. |
169 | * |
170 | * The CACHE_*** macros are use to cache the limit that will |
171 | * soon be in effect down in the ledgers. |
172 | */ |
173 | |
174 | #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \ |
175 | MACRO_BEGIN \ |
176 | (p)->p_memstat_memlimit_active = (limit); \ |
177 | if (is_fatal) { \ |
178 | (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \ |
179 | } else { \ |
180 | (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \ |
181 | } \ |
182 | MACRO_END |
183 | |
184 | #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \ |
185 | MACRO_BEGIN \ |
186 | (p)->p_memstat_memlimit_inactive = (limit); \ |
187 | if (is_fatal) { \ |
188 | (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \ |
189 | } else { \ |
190 | (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \ |
191 | } \ |
192 | MACRO_END |
193 | |
194 | #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \ |
195 | MACRO_BEGIN \ |
196 | (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \ |
197 | if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \ |
198 | (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \ |
199 | is_fatal = TRUE; \ |
200 | } else { \ |
201 | (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \ |
202 | is_fatal = FALSE; \ |
203 | } \ |
204 | MACRO_END |
205 | |
206 | #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \ |
207 | MACRO_BEGIN \ |
208 | (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \ |
209 | if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \ |
210 | (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \ |
211 | is_fatal = TRUE; \ |
212 | } else { \ |
213 | (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \ |
214 | is_fatal = FALSE; \ |
215 | } \ |
216 | MACRO_END |
217 | |
218 | |
219 | /* General tunables */ |
220 | |
221 | unsigned long delta_percentage = 5; |
222 | unsigned long critical_threshold_percentage = 5; |
223 | unsigned long idle_offset_percentage = 5; |
224 | unsigned long pressure_threshold_percentage = 15; |
225 | unsigned long freeze_threshold_percentage = 50; |
226 | unsigned long policy_more_free_offset_percentage = 5; |
227 | |
228 | /* General memorystatus stuff */ |
229 | |
230 | struct klist memorystatus_klist; |
231 | static lck_mtx_t memorystatus_klist_mutex; |
232 | |
233 | static void memorystatus_klist_lock(void); |
234 | static void memorystatus_klist_unlock(void); |
235 | |
236 | static uint64_t memorystatus_sysprocs_idle_delay_time = 0; |
237 | static uint64_t memorystatus_apps_idle_delay_time = 0; |
238 | |
239 | /* |
240 | * Memorystatus kevents |
241 | */ |
242 | |
243 | static int filt_memorystatusattach(struct knote *kn, struct kevent_internal_s *kev); |
244 | static void filt_memorystatusdetach(struct knote *kn); |
245 | static int filt_memorystatus(struct knote *kn, long hint); |
246 | static int filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev); |
247 | static int filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); |
248 | |
249 | SECURITY_READ_ONLY_EARLY(struct filterops) memorystatus_filtops = { |
250 | .f_attach = filt_memorystatusattach, |
251 | .f_detach = filt_memorystatusdetach, |
252 | .f_event = filt_memorystatus, |
253 | .f_touch = filt_memorystatustouch, |
254 | .f_process = filt_memorystatusprocess, |
255 | }; |
256 | |
257 | enum { |
258 | kMemorystatusNoPressure = 0x1, |
259 | kMemorystatusPressure = 0x2, |
260 | kMemorystatusLowSwap = 0x4, |
261 | kMemorystatusProcLimitWarn = 0x8, |
262 | kMemorystatusProcLimitCritical = 0x10 |
263 | }; |
264 | |
265 | /* Idle guard handling */ |
266 | |
267 | static int32_t memorystatus_scheduled_idle_demotions_sysprocs = 0; |
268 | static int32_t memorystatus_scheduled_idle_demotions_apps = 0; |
269 | |
270 | static thread_call_t memorystatus_idle_demotion_call; |
271 | |
272 | static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2); |
273 | static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state); |
274 | static void memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clean_state); |
275 | static void memorystatus_reschedule_idle_demotion_locked(void); |
276 | |
277 | static void memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check); |
278 | |
279 | int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap); |
280 | |
281 | vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t); |
282 | |
283 | boolean_t is_knote_registered_modify_task_pressure_bits(struct knote*, int, task_t, vm_pressure_level_t, vm_pressure_level_t); |
284 | void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear); |
285 | void memorystatus_send_low_swap_note(void); |
286 | |
287 | unsigned int memorystatus_level = 0; |
288 | |
289 | static int memorystatus_list_count = 0; |
290 | |
291 | |
292 | #define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1) |
293 | |
294 | typedef struct memstat_bucket { |
295 | TAILQ_HEAD(, proc) list; |
296 | int count; |
297 | } memstat_bucket_t; |
298 | |
299 | memstat_bucket_t memstat_bucket[MEMSTAT_BUCKET_COUNT]; |
300 | |
301 | int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index); |
302 | |
303 | uint64_t memstat_idle_demotion_deadline = 0; |
304 | |
305 | int system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
306 | int applications_aging_band = JETSAM_PRIORITY_IDLE; |
307 | |
308 | #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band))) |
309 | |
310 | /* |
311 | * Checking the p_memstat_state almost always requires the proc_list_lock |
312 | * because the jetsam thread could be on the other core changing the state. |
313 | * |
314 | * App -- almost always managed by a system process. Always have dirty tracking OFF. Can include extensions too. |
315 | * System Processes -- not managed by anybody. Always have dirty tracking ON. Can include extensions (here) too. |
316 | */ |
317 | #define isApp(p) ((p->p_memstat_state & P_MEMSTAT_MANAGED) || ! (p->p_memstat_dirty & P_DIRTY_TRACK)) |
318 | #define isSysProc(p) ( ! (p->p_memstat_state & P_MEMSTAT_MANAGED) || (p->p_memstat_dirty & P_DIRTY_TRACK)) |
319 | |
320 | #define kJetsamAgingPolicyNone (0) |
321 | #define kJetsamAgingPolicyLegacy (1) |
322 | #define kJetsamAgingPolicySysProcsReclaimedFirst (2) |
323 | #define kJetsamAgingPolicyAppsReclaimedFirst (3) |
324 | #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst |
325 | |
326 | unsigned int jetsam_aging_policy = kJetsamAgingPolicyLegacy; |
327 | |
328 | extern int corpse_for_fatal_memkill; |
329 | extern unsigned long total_corpses_count(void) __attribute__((pure)); |
330 | extern void task_purge_all_corpses(void); |
331 | extern uint64_t vm_purgeable_purge_task_owned(task_t task); |
332 | boolean_t memorystatus_allowed_vm_map_fork(task_t); |
333 | #if DEVELOPMENT || DEBUG |
334 | void memorystatus_abort_vm_map_fork(task_t); |
335 | #endif |
336 | |
337 | #if 0 |
338 | |
339 | /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */ |
340 | |
341 | static int |
342 | sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS |
343 | { |
344 | #pragma unused(oidp, arg1, arg2) |
345 | |
346 | int error = 0, val = 0; |
347 | memstat_bucket_t *old_bucket = 0; |
348 | int old_system_procs_aging_band = 0, new_system_procs_aging_band = 0; |
349 | int old_applications_aging_band = 0, new_applications_aging_band = 0; |
350 | proc_t p = NULL, next_proc = NULL; |
351 | |
352 | |
353 | error = sysctl_io_number(req, jetsam_aging_policy, sizeof(int), &val, NULL); |
354 | if (error || !req->newptr) { |
355 | return (error); |
356 | } |
357 | |
358 | if ((val < 0) || (val > kJetsamAgingPolicyMax)) { |
359 | printf("jetsam: ordering policy sysctl has invalid value - %d\n" , val); |
360 | return EINVAL; |
361 | } |
362 | |
363 | /* |
364 | * We need to synchronize with any potential adding/removal from aging bands |
365 | * that might be in progress currently. We use the proc_list_lock() just for |
366 | * consistency with all the routines dealing with 'aging' processes. We need |
367 | * a lighterweight lock. |
368 | */ |
369 | proc_list_lock(); |
370 | |
371 | old_system_procs_aging_band = system_procs_aging_band; |
372 | old_applications_aging_band = applications_aging_band; |
373 | |
374 | switch (val) { |
375 | |
376 | case kJetsamAgingPolicyNone: |
377 | new_system_procs_aging_band = JETSAM_PRIORITY_IDLE; |
378 | new_applications_aging_band = JETSAM_PRIORITY_IDLE; |
379 | break; |
380 | |
381 | case kJetsamAgingPolicyLegacy: |
382 | /* |
383 | * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band. |
384 | */ |
385 | new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
386 | new_applications_aging_band = JETSAM_PRIORITY_IDLE; |
387 | break; |
388 | |
389 | case kJetsamAgingPolicySysProcsReclaimedFirst: |
390 | new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
391 | new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
392 | break; |
393 | |
394 | case kJetsamAgingPolicyAppsReclaimedFirst: |
395 | new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
396 | new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
397 | break; |
398 | |
399 | default: |
400 | break; |
401 | } |
402 | |
403 | if (old_system_procs_aging_band && (old_system_procs_aging_band != new_system_procs_aging_band)) { |
404 | |
405 | old_bucket = &memstat_bucket[old_system_procs_aging_band]; |
406 | p = TAILQ_FIRST(&old_bucket->list); |
407 | |
408 | while (p) { |
409 | |
410 | next_proc = TAILQ_NEXT(p, p_memstat_list); |
411 | |
412 | if (isSysProc(p)) { |
413 | if (new_system_procs_aging_band == JETSAM_PRIORITY_IDLE) { |
414 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
415 | } |
416 | |
417 | memorystatus_update_priority_locked(p, new_system_procs_aging_band, false, true); |
418 | } |
419 | |
420 | p = next_proc; |
421 | continue; |
422 | } |
423 | } |
424 | |
425 | if (old_applications_aging_band && (old_applications_aging_band != new_applications_aging_band)) { |
426 | |
427 | old_bucket = &memstat_bucket[old_applications_aging_band]; |
428 | p = TAILQ_FIRST(&old_bucket->list); |
429 | |
430 | while (p) { |
431 | |
432 | next_proc = TAILQ_NEXT(p, p_memstat_list); |
433 | |
434 | if (isApp(p)) { |
435 | if (new_applications_aging_band == JETSAM_PRIORITY_IDLE) { |
436 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
437 | } |
438 | |
439 | memorystatus_update_priority_locked(p, new_applications_aging_band, false, true); |
440 | } |
441 | |
442 | p = next_proc; |
443 | continue; |
444 | } |
445 | } |
446 | |
447 | jetsam_aging_policy = val; |
448 | system_procs_aging_band = new_system_procs_aging_band; |
449 | applications_aging_band = new_applications_aging_band; |
450 | |
451 | proc_list_unlock(); |
452 | |
453 | return (0); |
454 | } |
455 | |
456 | SYSCTL_PROC(_kern, OID_AUTO, set_jetsam_aging_policy, CTLTYPE_INT|CTLFLAG_RW, |
457 | 0, 0, sysctl_set_jetsam_aging_policy, "I" , "Jetsam Aging Policy" ); |
458 | #endif /*0*/ |
459 | |
460 | static int |
461 | sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS |
462 | { |
463 | #pragma unused(oidp, arg1, arg2) |
464 | |
465 | int error = 0, val = 0, old_time_in_secs = 0; |
466 | uint64_t old_time_in_ns = 0; |
467 | |
468 | absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time, &old_time_in_ns); |
469 | old_time_in_secs = old_time_in_ns / NSEC_PER_SEC; |
470 | |
471 | error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL); |
472 | if (error || !req->newptr) { |
473 | return (error); |
474 | } |
475 | |
476 | if ((val < 0) || (val > INT32_MAX)) { |
477 | printf("jetsam: new idle delay interval has invalid value.\n" ); |
478 | return EINVAL; |
479 | } |
480 | |
481 | nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time); |
482 | |
483 | return(0); |
484 | } |
485 | |
486 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_sysprocs_idle_delay_time, CTLTYPE_INT|CTLFLAG_RW, |
487 | 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time, "I" , "Aging window for system processes" ); |
488 | |
489 | |
490 | static int |
491 | sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS |
492 | { |
493 | #pragma unused(oidp, arg1, arg2) |
494 | |
495 | int error = 0, val = 0, old_time_in_secs = 0; |
496 | uint64_t old_time_in_ns = 0; |
497 | |
498 | absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time, &old_time_in_ns); |
499 | old_time_in_secs = old_time_in_ns / NSEC_PER_SEC; |
500 | |
501 | error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL); |
502 | if (error || !req->newptr) { |
503 | return (error); |
504 | } |
505 | |
506 | if ((val < 0) || (val > INT32_MAX)) { |
507 | printf("jetsam: new idle delay interval has invalid value.\n" ); |
508 | return EINVAL; |
509 | } |
510 | |
511 | nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time); |
512 | |
513 | return(0); |
514 | } |
515 | |
516 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_apps_idle_delay_time, CTLTYPE_INT|CTLFLAG_RW, |
517 | 0, 0, sysctl_jetsam_set_apps_idle_delay_time, "I" , "Aging window for applications" ); |
518 | |
519 | SYSCTL_INT(_kern, OID_AUTO, jetsam_aging_policy, CTLTYPE_INT|CTLFLAG_RD, &jetsam_aging_policy, 0, "" ); |
520 | |
521 | static unsigned int memorystatus_dirty_count = 0; |
522 | |
523 | SYSCTL_INT(_kern, OID_AUTO, max_task_pmem, CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED, &max_task_footprint_mb, 0, "" ); |
524 | |
525 | #if CONFIG_EMBEDDED |
526 | |
527 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_level, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_level, 0, "" ); |
528 | |
529 | #endif /* CONFIG_EMBEDDED */ |
530 | |
531 | int |
532 | memorystatus_get_level(__unused struct proc *p, struct memorystatus_get_level_args *args, __unused int *ret) |
533 | { |
534 | user_addr_t level = 0; |
535 | |
536 | level = args->level; |
537 | |
538 | if (copyout(&memorystatus_level, level, sizeof(memorystatus_level)) != 0) { |
539 | return EFAULT; |
540 | } |
541 | |
542 | return 0; |
543 | } |
544 | |
545 | static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search); |
546 | static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search); |
547 | |
548 | static void memorystatus_thread(void *param __unused, wait_result_t wr __unused); |
549 | |
550 | /* Memory Limits */ |
551 | |
552 | static int memorystatus_highwater_enabled = 1; /* Update the cached memlimit data. */ |
553 | |
554 | static boolean_t proc_jetsam_state_is_active_locked(proc_t); |
555 | static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason); |
556 | static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason); |
557 | |
558 | |
559 | static int memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); |
560 | |
561 | static int memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry); |
562 | |
563 | static int memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); |
564 | |
565 | static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); |
566 | |
567 | int proc_get_memstat_priority(proc_t, boolean_t); |
568 | |
569 | static boolean_t memorystatus_idle_snapshot = 0; |
570 | |
571 | unsigned int memorystatus_delta = 0; |
572 | |
573 | /* Jetsam Loop Detection */ |
574 | static boolean_t memorystatus_jld_enabled = FALSE; /* Enable jetsam loop detection */ |
575 | static uint32_t memorystatus_jld_eval_period_msecs = 0; /* Init pass sets this based on device memory size */ |
576 | static int memorystatus_jld_eval_aggressive_count = 3; /* Raise the priority max after 'n' aggressive loops */ |
577 | static int memorystatus_jld_eval_aggressive_priority_band_max = 15; /* Kill aggressively up through this band */ |
578 | |
579 | /* |
580 | * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as: |
581 | * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands. |
582 | * |
583 | * RESTRICTIONS: |
584 | * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was |
585 | * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band. |
586 | * |
587 | * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around. |
588 | * |
589 | * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior. |
590 | */ |
591 | |
592 | #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25 |
593 | boolean_t memorystatus_aggressive_jetsam_lenient_allowed = FALSE; |
594 | boolean_t memorystatus_aggressive_jetsam_lenient = FALSE; |
595 | |
596 | #if DEVELOPMENT || DEBUG |
597 | /* |
598 | * Jetsam Loop Detection tunables. |
599 | */ |
600 | |
601 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_period_msecs, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_period_msecs, 0, "" ); |
602 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_count, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_count, 0, "" ); |
603 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_priority_band_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_priority_band_max, 0, "" ); |
604 | #endif /* DEVELOPMENT || DEBUG */ |
605 | |
606 | static uint32_t kill_under_pressure_cause = 0; |
607 | |
608 | /* |
609 | * default jetsam snapshot support |
610 | */ |
611 | static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot; |
612 | static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot_copy; |
613 | #define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries |
614 | static unsigned int memorystatus_jetsam_snapshot_count = 0; |
615 | static unsigned int memorystatus_jetsam_snapshot_copy_count = 0; |
616 | static unsigned int memorystatus_jetsam_snapshot_max = 0; |
617 | static unsigned int memorystatus_jetsam_snapshot_size = 0; |
618 | static uint64_t memorystatus_jetsam_snapshot_last_timestamp = 0; |
619 | static uint64_t memorystatus_jetsam_snapshot_timeout = 0; |
620 | #define JETSAM_SNAPSHOT_TIMEOUT_SECS 30 |
621 | |
622 | /* |
623 | * snapshot support for memstats collected at boot. |
624 | */ |
625 | static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot; |
626 | |
627 | static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count); |
628 | static boolean_t memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount); |
629 | static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime); |
630 | |
631 | static void memorystatus_clear_errors(void); |
632 | static void memorystatus_get_task_page_counts(task_t task, uint32_t *, uint32_t *, uint32_t *purgeable_pages); |
633 | static void memorystatus_get_task_phys_footprint_page_counts(task_t task, |
634 | uint64_t *internal_pages, uint64_t *internal_compressed_pages, |
635 | uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages, |
636 | uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages, |
637 | uint64_t *iokit_mapped_pages, uint64_t *page_table_pages); |
638 | |
639 | static void memorystatus_get_task_memory_region_count(task_t task, uint64_t *count); |
640 | |
641 | static uint32_t memorystatus_build_state(proc_t p); |
642 | //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured); |
643 | |
644 | static boolean_t memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, int32_t *priority, uint32_t *errors); |
645 | static boolean_t memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count, int32_t priority_max, uint32_t *errors); |
646 | static boolean_t memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors); |
647 | static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged); |
648 | |
649 | static boolean_t memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause); |
650 | |
651 | /* Priority Band Sorting Routines */ |
652 | static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order); |
653 | static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order); |
654 | static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index); |
655 | static int memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz); |
656 | |
657 | /* qsort routines */ |
658 | typedef int (*cmpfunc_t)(const void *a, const void *b); |
659 | extern void qsort(void *a, size_t n, size_t es, cmpfunc_t cmp); |
660 | static int memstat_asc_cmp(const void *a, const void *b); |
661 | |
662 | /* VM pressure */ |
663 | |
664 | extern unsigned int vm_page_free_count; |
665 | extern unsigned int vm_page_active_count; |
666 | extern unsigned int vm_page_inactive_count; |
667 | extern unsigned int vm_page_throttled_count; |
668 | extern unsigned int vm_page_purgeable_count; |
669 | extern unsigned int vm_page_wire_count; |
670 | #if CONFIG_SECLUDED_MEMORY |
671 | extern unsigned int vm_page_secluded_count; |
672 | #endif /* CONFIG_SECLUDED_MEMORY */ |
673 | |
674 | #if CONFIG_JETSAM |
675 | unsigned int memorystatus_available_pages = (unsigned int)-1; |
676 | unsigned int memorystatus_available_pages_pressure = 0; |
677 | unsigned int memorystatus_available_pages_critical = 0; |
678 | static unsigned int memorystatus_available_pages_critical_base = 0; |
679 | static unsigned int memorystatus_available_pages_critical_idle_offset = 0; |
680 | |
681 | #if DEVELOPMENT || DEBUG |
682 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "" ); |
683 | #else |
684 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "" ); |
685 | #endif /* DEVELOPMENT || DEBUG */ |
686 | |
687 | static unsigned int memorystatus_jetsam_policy = kPolicyDefault; |
688 | unsigned int memorystatus_policy_more_free_offset_pages = 0; |
689 | static void memorystatus_update_levels_locked(boolean_t critical_only); |
690 | static unsigned int memorystatus_thread_wasted_wakeup = 0; |
691 | |
692 | /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */ |
693 | extern void vm_thrashing_jetsam_done(void); |
694 | static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit); |
695 | |
696 | int32_t max_kill_priority = JETSAM_PRIORITY_MAX; |
697 | |
698 | #else /* CONFIG_JETSAM */ |
699 | |
700 | uint64_t memorystatus_available_pages = (uint64_t)-1; |
701 | uint64_t memorystatus_available_pages_pressure = (uint64_t)-1; |
702 | uint64_t memorystatus_available_pages_critical = (uint64_t)-1; |
703 | |
704 | int32_t max_kill_priority = JETSAM_PRIORITY_IDLE; |
705 | #endif /* CONFIG_JETSAM */ |
706 | |
707 | unsigned int memorystatus_frozen_count = 0; |
708 | unsigned int memorystatus_frozen_processes_max = 0; |
709 | unsigned int memorystatus_frozen_shared_mb = 0; |
710 | unsigned int memorystatus_frozen_shared_mb_max = 0; |
711 | unsigned int memorystatus_freeze_shared_mb_per_process_max = 0; /* Max. MB allowed per process to be freezer-eligible. */ |
712 | unsigned int memorystatus_freeze_private_shared_pages_ratio = 2; /* Ratio of private:shared pages for a process to be freezer-eligible. */ |
713 | unsigned int memorystatus_suspended_count = 0; |
714 | unsigned int memorystatus_thaw_count = 0; |
715 | unsigned int memorystatus_refreeze_eligible_count = 0; /* # of processes currently thawed i.e. have state on disk & in-memory */ |
716 | |
717 | #if VM_PRESSURE_EVENTS |
718 | |
719 | boolean_t memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t exceeded); |
720 | |
721 | vm_pressure_level_t memorystatus_vm_pressure_level = kVMPressureNormal; |
722 | |
723 | /* |
724 | * We use this flag to signal if we have any HWM offenders |
725 | * on the system. This way we can reduce the number of wakeups |
726 | * of the memorystatus_thread when the system is between the |
727 | * "pressure" and "critical" threshold. |
728 | * |
729 | * The (re-)setting of this variable is done without any locks |
730 | * or synchronization simply because it is not possible (currently) |
731 | * to keep track of HWM offenders that drop down below their memory |
732 | * limit and/or exit. So, we choose to burn a couple of wasted wakeups |
733 | * by allowing the unguarded modification of this variable. |
734 | */ |
735 | boolean_t memorystatus_hwm_candidates = 0; |
736 | |
737 | static int memorystatus_send_note(int event_code, void *data, size_t data_length); |
738 | |
739 | /* |
740 | * This value is the threshold that a process must meet to be considered for scavenging. |
741 | */ |
742 | #if CONFIG_EMBEDDED |
743 | #define VM_PRESSURE_MINIMUM_RSIZE 6 /* MB */ |
744 | #else /* CONFIG_EMBEDDED */ |
745 | #define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */ |
746 | #endif /* CONFIG_EMBEDDED */ |
747 | |
748 | uint32_t = VM_PRESSURE_MINIMUM_RSIZE; |
749 | |
750 | #if DEVELOPMENT || DEBUG |
751 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_vm_pressure_task_footprint_min, CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pressure_task_footprint_min, 0, "" ); |
752 | #endif /* DEVELOPMENT || DEBUG */ |
753 | |
754 | #endif /* VM_PRESSURE_EVENTS */ |
755 | |
756 | |
757 | #if DEVELOPMENT || DEBUG |
758 | |
759 | lck_grp_attr_t *disconnect_page_mappings_lck_grp_attr; |
760 | lck_grp_t *disconnect_page_mappings_lck_grp; |
761 | static lck_mtx_t disconnect_page_mappings_mutex; |
762 | |
763 | extern boolean_t kill_on_no_paging_space; |
764 | #endif /* DEVELOPMENT || DEBUG */ |
765 | |
766 | |
767 | /* |
768 | * Table that expresses the probability of a process |
769 | * being used in the next hour. |
770 | */ |
771 | typedef struct memorystatus_internal_probabilities { |
772 | char proc_name[MAXCOMLEN + 1]; |
773 | int use_probability; |
774 | } memorystatus_internal_probabilities_t; |
775 | |
776 | static memorystatus_internal_probabilities_t *memorystatus_global_probabilities_table = NULL; |
777 | static size_t memorystatus_global_probabilities_size = 0; |
778 | |
779 | /* Freeze */ |
780 | |
781 | #if CONFIG_FREEZE |
782 | boolean_t memorystatus_freeze_enabled = FALSE; |
783 | int memorystatus_freeze_wakeup = 0; |
784 | int memorystatus_freeze_jetsam_band = 0; /* the jetsam band which will contain P_MEMSTAT_FROZEN processes */ |
785 | |
786 | lck_grp_attr_t *freezer_lck_grp_attr; |
787 | lck_grp_t *freezer_lck_grp; |
788 | static lck_mtx_t freezer_mutex; |
789 | |
790 | static inline boolean_t memorystatus_can_freeze_processes(void); |
791 | static boolean_t memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low); |
792 | static boolean_t memorystatus_is_process_eligible_for_freeze(proc_t p); |
793 | static void memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused); |
794 | static boolean_t memorystatus_freeze_thread_should_run(void); |
795 | |
796 | void memorystatus_disable_freeze(void); |
797 | |
798 | /* Thresholds */ |
799 | static unsigned int memorystatus_freeze_threshold = 0; |
800 | |
801 | static unsigned int memorystatus_freeze_pages_min = 0; |
802 | static unsigned int memorystatus_freeze_pages_max = 0; |
803 | |
804 | static unsigned int memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT; |
805 | |
806 | static unsigned int memorystatus_freeze_daily_mb_max = FREEZE_DAILY_MB_MAX_DEFAULT; |
807 | static uint64_t memorystatus_freeze_budget_pages_remaining = 0; //remaining # of pages that can be frozen to disk |
808 | static boolean_t memorystatus_freeze_degradation = FALSE; //protected by the freezer mutex. Signals we are in a degraded freeze mode. |
809 | |
810 | static unsigned int memorystatus_max_frozen_demotions_daily = 0; |
811 | static unsigned int memorystatus_thaw_count_demotion_threshold = 0; |
812 | |
813 | /* Stats */ |
814 | static uint64_t memorystatus_freeze_pageouts = 0; |
815 | |
816 | /* Throttling */ |
817 | #define DEGRADED_WINDOW_MINS (30) |
818 | #define NORMAL_WINDOW_MINS (24 * 60) |
819 | |
820 | static throttle_interval_t throttle_intervals[] = { |
821 | { DEGRADED_WINDOW_MINS, 1, 0, 0, { 0, 0 }}, |
822 | { NORMAL_WINDOW_MINS, 1, 0, 0, { 0, 0 }}, |
823 | }; |
824 | throttle_interval_t *degraded_throttle_window = &throttle_intervals[0]; |
825 | throttle_interval_t *normal_throttle_window = &throttle_intervals[1]; |
826 | |
827 | extern uint64_t vm_swap_get_free_space(void); |
828 | extern boolean_t vm_swap_max_budget(uint64_t *); |
829 | |
830 | static void memorystatus_freeze_update_throttle(uint64_t *budget_pages_allowed); |
831 | |
832 | static uint64_t memorystatus_freezer_thread_next_run_ts = 0; |
833 | |
834 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_frozen_count, 0, "" ); |
835 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_thaw_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_thaw_count, 0, "" ); |
836 | SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_pageouts, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_pageouts, "" ); |
837 | SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_budget_pages_remaining, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_budget_pages_remaining, "" ); |
838 | |
839 | #endif /* CONFIG_FREEZE */ |
840 | |
841 | /* Debug */ |
842 | |
843 | extern struct knote *vm_find_knote_from_pid(pid_t, struct klist *); |
844 | |
845 | #if DEVELOPMENT || DEBUG |
846 | |
847 | static unsigned int memorystatus_debug_dump_this_bucket = 0; |
848 | |
849 | static void |
850 | memorystatus_debug_dump_bucket_locked (unsigned int bucket_index) |
851 | { |
852 | proc_t p = NULL; |
853 | uint64_t bytes = 0; |
854 | int ledger_limit = 0; |
855 | unsigned int b = bucket_index; |
856 | boolean_t traverse_all_buckets = FALSE; |
857 | |
858 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
859 | traverse_all_buckets = TRUE; |
860 | b = 0; |
861 | } else { |
862 | traverse_all_buckets = FALSE; |
863 | b = bucket_index; |
864 | } |
865 | |
866 | /* |
867 | * footprint reported in [pages / MB ] |
868 | * limits reported as: |
869 | * L-limit proc's Ledger limit |
870 | * C-limit proc's Cached limit, should match Ledger |
871 | * A-limit proc's Active limit |
872 | * IA-limit proc's Inactive limit |
873 | * F==Fatal, NF==NonFatal |
874 | */ |
875 | |
876 | printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n" , PAGE_SIZE_64); |
877 | printf("bucket [pid] [pages / MB] [state] [EP / RP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n" ); |
878 | p = memorystatus_get_first_proc_locked(&b, traverse_all_buckets); |
879 | while (p) { |
880 | bytes = get_task_phys_footprint(p->task); |
881 | task_get_phys_footprint_limit(p->task, &ledger_limit); |
882 | printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n" , |
883 | b, p->p_pid, |
884 | (bytes / PAGE_SIZE_64), /* task's footprint converted from bytes to pages */ |
885 | (bytes / (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */ |
886 | p->p_memstat_state, p->p_memstat_effectivepriority, p->p_memstat_requestedpriority, p->p_memstat_dirty, p->p_memstat_idledeadline, |
887 | ledger_limit, |
888 | p->p_memstat_memlimit, |
889 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), |
890 | p->p_memstat_memlimit_active, |
891 | (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL ? "F " : "NF" ), |
892 | p->p_memstat_memlimit_inactive, |
893 | (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL ? "F " : "NF" ), |
894 | (*p->p_name ? p->p_name : "unknown" )); |
895 | p = memorystatus_get_next_proc_locked(&b, p, traverse_all_buckets); |
896 | } |
897 | printf("memorystatus_debug_dump ***END***\n" ); |
898 | } |
899 | |
900 | static int |
901 | sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS |
902 | { |
903 | #pragma unused(oidp, arg2) |
904 | int bucket_index = 0; |
905 | int error; |
906 | error = SYSCTL_OUT(req, arg1, sizeof(int)); |
907 | if (error || !req->newptr) { |
908 | return (error); |
909 | } |
910 | error = SYSCTL_IN(req, &bucket_index, sizeof(int)); |
911 | if (error || !req->newptr) { |
912 | return (error); |
913 | } |
914 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
915 | /* |
916 | * All jetsam buckets will be dumped. |
917 | */ |
918 | } else { |
919 | /* |
920 | * Only a single bucket will be dumped. |
921 | */ |
922 | } |
923 | |
924 | proc_list_lock(); |
925 | memorystatus_debug_dump_bucket_locked(bucket_index); |
926 | proc_list_unlock(); |
927 | memorystatus_debug_dump_this_bucket = bucket_index; |
928 | return (error); |
929 | } |
930 | |
931 | /* |
932 | * Debug aid to look at jetsam buckets and proc jetsam fields. |
933 | * Use this sysctl to act on a particular jetsam bucket. |
934 | * Writing the sysctl triggers the dump. |
935 | * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index> |
936 | */ |
937 | |
938 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_debug_dump_this_bucket, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_debug_dump_this_bucket, 0, sysctl_memorystatus_debug_dump_bucket, "I" , "" ); |
939 | |
940 | |
941 | /* Debug aid to aid determination of limit */ |
942 | |
943 | static int |
944 | sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS |
945 | { |
946 | #pragma unused(oidp, arg2) |
947 | proc_t p; |
948 | unsigned int b = 0; |
949 | int error, enable = 0; |
950 | boolean_t use_active; /* use the active limit and active limit attributes */ |
951 | boolean_t is_fatal; |
952 | |
953 | error = SYSCTL_OUT(req, arg1, sizeof(int)); |
954 | if (error || !req->newptr) { |
955 | return (error); |
956 | } |
957 | |
958 | error = SYSCTL_IN(req, &enable, sizeof(int)); |
959 | if (error || !req->newptr) { |
960 | return (error); |
961 | } |
962 | |
963 | if (!(enable == 0 || enable == 1)) { |
964 | return EINVAL; |
965 | } |
966 | |
967 | proc_list_lock(); |
968 | |
969 | p = memorystatus_get_first_proc_locked(&b, TRUE); |
970 | while (p) { |
971 | use_active = proc_jetsam_state_is_active_locked(p); |
972 | |
973 | if (enable) { |
974 | |
975 | if (use_active == TRUE) { |
976 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
977 | } else { |
978 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
979 | } |
980 | |
981 | } else { |
982 | /* |
983 | * Disabling limits does not touch the stored variants. |
984 | * Set the cached limit fields to system_wide defaults. |
985 | */ |
986 | p->p_memstat_memlimit = -1; |
987 | p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; |
988 | is_fatal = TRUE; |
989 | } |
990 | |
991 | /* |
992 | * Enforce the cached limit by writing to the ledger. |
993 | */ |
994 | task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit: -1, NULL, use_active, is_fatal); |
995 | |
996 | p = memorystatus_get_next_proc_locked(&b, p, TRUE); |
997 | } |
998 | |
999 | memorystatus_highwater_enabled = enable; |
1000 | |
1001 | proc_list_unlock(); |
1002 | |
1003 | return 0; |
1004 | |
1005 | } |
1006 | |
1007 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I" , "" ); |
1008 | |
1009 | #if VM_PRESSURE_EVENTS |
1010 | |
1011 | /* |
1012 | * This routine is used for targeted notifications regardless of system memory pressure |
1013 | * and regardless of whether or not the process has already been notified. |
1014 | * It bypasses and has no effect on the only-one-notification per soft-limit policy. |
1015 | * |
1016 | * "memnote" is the current user. |
1017 | */ |
1018 | |
1019 | static int |
1020 | sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS |
1021 | { |
1022 | #pragma unused(arg1, arg2) |
1023 | |
1024 | int error = 0, pid = 0; |
1025 | struct knote *kn = NULL; |
1026 | boolean_t found_knote = FALSE; |
1027 | int fflags = 0; /* filter flags for EVFILT_MEMORYSTATUS */ |
1028 | uint64_t value = 0; |
1029 | |
1030 | error = sysctl_handle_quad(oidp, &value, 0, req); |
1031 | if (error || !req->newptr) |
1032 | return (error); |
1033 | |
1034 | /* |
1035 | * Find the pid in the low 32 bits of value passed in. |
1036 | */ |
1037 | pid = (int)(value & 0xFFFFFFFF); |
1038 | |
1039 | /* |
1040 | * Find notification in the high 32 bits of the value passed in. |
1041 | */ |
1042 | fflags = (int)((value >> 32) & 0xFFFFFFFF); |
1043 | |
1044 | /* |
1045 | * For backwards compatibility, when no notification is |
1046 | * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN |
1047 | */ |
1048 | if (fflags == 0) { |
1049 | fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
1050 | // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags); |
1051 | } |
1052 | |
1053 | /* |
1054 | * See event.h ... fflags for EVFILT_MEMORYSTATUS |
1055 | */ |
1056 | if (!((fflags == NOTE_MEMORYSTATUS_PRESSURE_NORMAL)|| |
1057 | (fflags == NOTE_MEMORYSTATUS_PRESSURE_WARN) || |
1058 | (fflags == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) || |
1059 | (fflags == NOTE_MEMORYSTATUS_LOW_SWAP) || |
1060 | (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) || |
1061 | (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) || |
1062 | (((fflags & NOTE_MEMORYSTATUS_MSL_STATUS) != 0 && |
1063 | ((fflags & ~NOTE_MEMORYSTATUS_MSL_STATUS) == 0))))) { |
1064 | |
1065 | printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n" , fflags); |
1066 | error = 1; |
1067 | return (error); |
1068 | } |
1069 | |
1070 | /* |
1071 | * Forcibly send pid a memorystatus notification. |
1072 | */ |
1073 | |
1074 | memorystatus_klist_lock(); |
1075 | |
1076 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
1077 | proc_t knote_proc = knote_get_kq(kn)->kq_p; |
1078 | pid_t knote_pid = knote_proc->p_pid; |
1079 | |
1080 | if (knote_pid == pid) { |
1081 | /* |
1082 | * Forcibly send this pid a memorystatus notification. |
1083 | */ |
1084 | kn->kn_fflags = fflags; |
1085 | found_knote = TRUE; |
1086 | } |
1087 | } |
1088 | |
1089 | if (found_knote) { |
1090 | KNOTE(&memorystatus_klist, 0); |
1091 | printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n" , value, fflags, pid); |
1092 | error = 0; |
1093 | } else { |
1094 | printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n" , value, fflags, pid); |
1095 | error = 1; |
1096 | } |
1097 | |
1098 | memorystatus_klist_unlock(); |
1099 | |
1100 | return (error); |
1101 | } |
1102 | |
1103 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_send, CTLTYPE_QUAD|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
1104 | 0, 0, &sysctl_memorystatus_vm_pressure_send, "Q" , "" ); |
1105 | |
1106 | #endif /* VM_PRESSURE_EVENTS */ |
1107 | |
1108 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, "" ); |
1109 | |
1110 | #if CONFIG_JETSAM |
1111 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, "" ); |
1112 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, "" ); |
1113 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle_offset, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle_offset, 0, "" ); |
1114 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_policy_more_free_offset_pages, CTLFLAG_RW, &memorystatus_policy_more_free_offset_pages, 0, "" ); |
1115 | |
1116 | static unsigned int memorystatus_jetsam_panic_debug = 0; |
1117 | static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic = 0; |
1118 | |
1119 | /* Diagnostic code */ |
1120 | |
1121 | enum { |
1122 | kJetsamDiagnosticModeNone = 0, |
1123 | kJetsamDiagnosticModeAll = 1, |
1124 | kJetsamDiagnosticModeStopAtFirstActive = 2, |
1125 | kJetsamDiagnosticModeCount |
1126 | } jetsam_diagnostic_mode = kJetsamDiagnosticModeNone; |
1127 | |
1128 | static int jetsam_diagnostic_suspended_one_active_proc = 0; |
1129 | |
1130 | static int |
1131 | sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS |
1132 | { |
1133 | #pragma unused(arg1, arg2) |
1134 | |
1135 | const char *diagnosticStrings[] = { |
1136 | "jetsam: diagnostic mode: resetting critical level." , |
1137 | "jetsam: diagnostic mode: will examine all processes" , |
1138 | "jetsam: diagnostic mode: will stop at first active process" |
1139 | }; |
1140 | |
1141 | int error, val = jetsam_diagnostic_mode; |
1142 | boolean_t changed = FALSE; |
1143 | |
1144 | error = sysctl_handle_int(oidp, &val, 0, req); |
1145 | if (error || !req->newptr) |
1146 | return (error); |
1147 | if ((val < 0) || (val >= kJetsamDiagnosticModeCount)) { |
1148 | printf("jetsam: diagnostic mode: invalid value - %d\n" , val); |
1149 | return EINVAL; |
1150 | } |
1151 | |
1152 | proc_list_lock(); |
1153 | |
1154 | if ((unsigned int) val != jetsam_diagnostic_mode) { |
1155 | jetsam_diagnostic_mode = val; |
1156 | |
1157 | memorystatus_jetsam_policy &= ~kPolicyDiagnoseActive; |
1158 | |
1159 | switch (jetsam_diagnostic_mode) { |
1160 | case kJetsamDiagnosticModeNone: |
1161 | /* Already cleared */ |
1162 | break; |
1163 | case kJetsamDiagnosticModeAll: |
1164 | memorystatus_jetsam_policy |= kPolicyDiagnoseAll; |
1165 | break; |
1166 | case kJetsamDiagnosticModeStopAtFirstActive: |
1167 | memorystatus_jetsam_policy |= kPolicyDiagnoseFirst; |
1168 | break; |
1169 | default: |
1170 | /* Already validated */ |
1171 | break; |
1172 | } |
1173 | |
1174 | memorystatus_update_levels_locked(FALSE); |
1175 | changed = TRUE; |
1176 | } |
1177 | |
1178 | proc_list_unlock(); |
1179 | |
1180 | if (changed) { |
1181 | printf("%s\n" , diagnosticStrings[val]); |
1182 | } |
1183 | |
1184 | return (0); |
1185 | } |
1186 | |
1187 | SYSCTL_PROC(_debug, OID_AUTO, jetsam_diagnostic_mode, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, |
1188 | &jetsam_diagnostic_mode, 0, sysctl_jetsam_diagnostic_mode, "I" , "Jetsam Diagnostic Mode" ); |
1189 | |
1190 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jetsam_policy_offset_pages_diagnostic, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jetsam_policy_offset_pages_diagnostic, 0, "" ); |
1191 | |
1192 | #if VM_PRESSURE_EVENTS |
1193 | |
1194 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, "" ); |
1195 | |
1196 | #endif /* VM_PRESSURE_EVENTS */ |
1197 | |
1198 | #endif /* CONFIG_JETSAM */ |
1199 | |
1200 | #if CONFIG_FREEZE |
1201 | |
1202 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_jetsam_band, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_jetsam_band, 0, "" ); |
1203 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_daily_mb_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_daily_mb_max, 0, "" ); |
1204 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_degraded_mode, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_degradation, 0, "" ); |
1205 | |
1206 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_threshold, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_threshold, 0, "" ); |
1207 | |
1208 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_min, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_min, 0, "" ); |
1209 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_max, 0, "" ); |
1210 | |
1211 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_refreeze_eligible_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_refreeze_eligible_count, 0, "" ); |
1212 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_processes_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_frozen_processes_max, 0, "" ); |
1213 | |
1214 | /* |
1215 | * Max. shared-anonymous memory in MB that can be held by frozen processes in the high jetsam band. |
1216 | * "0" means no limit. |
1217 | * Default is 10% of system-wide task limit. |
1218 | */ |
1219 | |
1220 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_frozen_shared_mb_max, 0, "" ); |
1221 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_frozen_shared_mb, 0, "" ); |
1222 | |
1223 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb_per_process_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_shared_mb_per_process_max, 0, "" ); |
1224 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_private_shared_pages_ratio, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_private_shared_pages_ratio, 0, "" ); |
1225 | |
1226 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_min_processes, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_suspended_threshold, 0, "" ); |
1227 | |
1228 | /* |
1229 | * max. # of frozen process demotions we will allow in our daily cycle. |
1230 | */ |
1231 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_max_freeze_demotions_daily, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_max_frozen_demotions_daily, 0, "" ); |
1232 | /* |
1233 | * min # of thaws needed by a process to protect it from getting demoted into the IDLE band. |
1234 | */ |
1235 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_thaw_count_demotion_threshold, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_thaw_count_demotion_threshold, 0, "" ); |
1236 | |
1237 | boolean_t memorystatus_freeze_throttle_enabled = TRUE; |
1238 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_throttle_enabled, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_enabled, 0, "" ); |
1239 | |
1240 | #define VM_PAGES_FOR_ALL_PROCS (2) |
1241 | /* |
1242 | * Manual trigger of freeze and thaw for dev / debug kernels only. |
1243 | */ |
1244 | static int |
1245 | sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS |
1246 | { |
1247 | #pragma unused(arg1, arg2) |
1248 | int error, pid = 0; |
1249 | proc_t p; |
1250 | int freezer_error_code = 0; |
1251 | |
1252 | if (memorystatus_freeze_enabled == FALSE) { |
1253 | printf("sysctl_freeze: Freeze is DISABLED\n" ); |
1254 | return ENOTSUP; |
1255 | } |
1256 | |
1257 | error = sysctl_handle_int(oidp, &pid, 0, req); |
1258 | if (error || !req->newptr) |
1259 | return (error); |
1260 | |
1261 | if (pid == VM_PAGES_FOR_ALL_PROCS) { |
1262 | vm_pageout_anonymous_pages(); |
1263 | |
1264 | return 0; |
1265 | } |
1266 | |
1267 | lck_mtx_lock(&freezer_mutex); |
1268 | |
1269 | p = proc_find(pid); |
1270 | if (p != NULL) { |
1271 | uint32_t purgeable, wired, clean, dirty, shared; |
1272 | uint32_t max_pages = 0, state = 0; |
1273 | |
1274 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
1275 | /* |
1276 | * Freezer backed by the compressor and swap file(s) |
1277 | * will hold compressed data. |
1278 | * |
1279 | * We don't care about the global freezer budget or the process's (min/max) budget here. |
1280 | * The freeze sysctl is meant to force-freeze a process. |
1281 | * |
1282 | * We also don't update any global or process stats on this path, so that the jetsam/ freeze |
1283 | * logic remains unaffected. The tasks we're performing here are: freeze the process, set the |
1284 | * P_MEMSTAT_FROZEN bit, and elevate the process to a higher band (if the freezer is active). |
1285 | */ |
1286 | max_pages = memorystatus_freeze_pages_max; |
1287 | |
1288 | } else { |
1289 | /* |
1290 | * We only have the compressor without any swap. |
1291 | */ |
1292 | max_pages = UINT32_MAX - 1; |
1293 | } |
1294 | |
1295 | proc_list_lock(); |
1296 | state = p->p_memstat_state; |
1297 | proc_list_unlock(); |
1298 | |
1299 | /* |
1300 | * The jetsam path also verifies that the process is a suspended App. We don't care about that here. |
1301 | * We simply ensure that jetsam is not already working on the process and that the process has not |
1302 | * explicitly disabled freezing. |
1303 | */ |
1304 | if (state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED)) { |
1305 | printf("sysctl_freeze: p_memstat_state check failed, process is%s%s%s\n" , |
1306 | (state & P_MEMSTAT_TERMINATED) ? " terminated" : "" , |
1307 | (state & P_MEMSTAT_LOCKED) ? " locked" : "" , |
1308 | (state & P_MEMSTAT_FREEZE_DISABLED) ? " unfreezable" : "" ); |
1309 | |
1310 | proc_rele(p); |
1311 | lck_mtx_unlock(&freezer_mutex); |
1312 | return EPERM; |
1313 | } |
1314 | |
1315 | error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); |
1316 | |
1317 | if (error) { |
1318 | char reason[128]; |
1319 | if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { |
1320 | strlcpy(reason, "too much shared memory" , 128); |
1321 | } |
1322 | |
1323 | if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { |
1324 | strlcpy(reason, "low private-shared pages ratio" , 128); |
1325 | } |
1326 | |
1327 | if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { |
1328 | strlcpy(reason, "no compressor space" , 128); |
1329 | } |
1330 | |
1331 | if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { |
1332 | strlcpy(reason, "no swap space" , 128); |
1333 | } |
1334 | |
1335 | printf("sysctl_freeze: task_freeze failed: %s\n" , reason); |
1336 | |
1337 | if (error == KERN_NO_SPACE) { |
1338 | /* Make it easy to distinguish between failures due to low compressor/ swap space and other failures. */ |
1339 | error = ENOSPC; |
1340 | } else { |
1341 | error = EIO; |
1342 | } |
1343 | } else { |
1344 | proc_list_lock(); |
1345 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { |
1346 | p->p_memstat_state |= P_MEMSTAT_FROZEN; |
1347 | memorystatus_frozen_count++; |
1348 | } |
1349 | p->p_memstat_frozen_count++; |
1350 | |
1351 | |
1352 | proc_list_unlock(); |
1353 | |
1354 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
1355 | /* |
1356 | * We elevate only if we are going to swap out the data. |
1357 | */ |
1358 | error = memorystatus_update_inactive_jetsam_priority_band(pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, |
1359 | memorystatus_freeze_jetsam_band, TRUE); |
1360 | |
1361 | if (error) { |
1362 | printf("sysctl_freeze: Elevating frozen process to higher jetsam band failed with %d\n" , error); |
1363 | } |
1364 | } |
1365 | } |
1366 | |
1367 | proc_rele(p); |
1368 | |
1369 | lck_mtx_unlock(&freezer_mutex); |
1370 | return error; |
1371 | } else { |
1372 | printf("sysctl_freeze: Invalid process\n" ); |
1373 | } |
1374 | |
1375 | |
1376 | lck_mtx_unlock(&freezer_mutex); |
1377 | return EINVAL; |
1378 | } |
1379 | |
1380 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_freeze, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
1381 | 0, 0, &sysctl_memorystatus_freeze, "I" , "" ); |
1382 | |
1383 | static int |
1384 | sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS |
1385 | { |
1386 | #pragma unused(arg1, arg2) |
1387 | |
1388 | int error, pid = 0; |
1389 | proc_t p; |
1390 | |
1391 | if (memorystatus_freeze_enabled == FALSE) { |
1392 | return ENOTSUP; |
1393 | } |
1394 | |
1395 | error = sysctl_handle_int(oidp, &pid, 0, req); |
1396 | if (error || !req->newptr) |
1397 | return (error); |
1398 | |
1399 | if (pid == VM_PAGES_FOR_ALL_PROCS) { |
1400 | do_fastwake_warmup_all(); |
1401 | return 0; |
1402 | } else { |
1403 | p = proc_find(pid); |
1404 | if (p != NULL) { |
1405 | error = task_thaw(p->task); |
1406 | |
1407 | if (error) { |
1408 | error = EIO; |
1409 | } else { |
1410 | /* |
1411 | * task_thaw() succeeded. |
1412 | * |
1413 | * We increment memorystatus_frozen_count on the sysctl freeze path. |
1414 | * And so we need the P_MEMSTAT_FROZEN to decrement the frozen count |
1415 | * when this process exits. |
1416 | * |
1417 | * proc_list_lock(); |
1418 | * p->p_memstat_state &= ~P_MEMSTAT_FROZEN; |
1419 | * proc_list_unlock(); |
1420 | */ |
1421 | } |
1422 | proc_rele(p); |
1423 | return error; |
1424 | } |
1425 | } |
1426 | |
1427 | return EINVAL; |
1428 | } |
1429 | |
1430 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_thaw, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
1431 | 0, 0, &sysctl_memorystatus_available_pages_thaw, "I" , "" ); |
1432 | |
1433 | typedef struct _global_freezable_status{ |
1434 | boolean_t freeze_pages_threshold_crossed; |
1435 | boolean_t freeze_eligible_procs_available; |
1436 | boolean_t freeze_scheduled_in_future; |
1437 | }global_freezable_status_t; |
1438 | |
1439 | typedef struct _proc_freezable_status{ |
1440 | boolean_t freeze_has_memstat_state; |
1441 | boolean_t freeze_has_pages_min; |
1442 | int freeze_has_probability; |
1443 | boolean_t freeze_attempted; |
1444 | uint32_t p_memstat_state; |
1445 | uint32_t p_pages; |
1446 | int p_freeze_error_code; |
1447 | int p_pid; |
1448 | char p_name[MAXCOMLEN + 1]; |
1449 | }proc_freezable_status_t; |
1450 | |
1451 | #define MAX_FREEZABLE_PROCESSES 100 |
1452 | |
1453 | static int |
1454 | memorystatus_freezer_get_status(user_addr_t buffer, size_t buffer_size, int32_t *retval) |
1455 | { |
1456 | uint32_t proc_count = 0, i = 0; |
1457 | global_freezable_status_t *list_head; |
1458 | proc_freezable_status_t *list_entry; |
1459 | size_t list_size = 0; |
1460 | proc_t p; |
1461 | memstat_bucket_t *bucket; |
1462 | uint32_t state = 0, pages = 0, entry_count = 0; |
1463 | boolean_t try_freeze = TRUE; |
1464 | int error = 0, probability_of_use = 0; |
1465 | |
1466 | |
1467 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE == FALSE) { |
1468 | return ENOTSUP; |
1469 | } |
1470 | |
1471 | list_size = sizeof(global_freezable_status_t) + (sizeof(proc_freezable_status_t) * MAX_FREEZABLE_PROCESSES); |
1472 | |
1473 | if (buffer_size < list_size) { |
1474 | return EINVAL; |
1475 | } |
1476 | |
1477 | list_head = (global_freezable_status_t*)kalloc(list_size); |
1478 | if (list_head == NULL) { |
1479 | return ENOMEM; |
1480 | } |
1481 | |
1482 | memset(list_head, 0, list_size); |
1483 | |
1484 | list_size = sizeof(global_freezable_status_t); |
1485 | |
1486 | proc_list_lock(); |
1487 | |
1488 | uint64_t curr_time = mach_absolute_time(); |
1489 | |
1490 | list_head->freeze_pages_threshold_crossed = (memorystatus_available_pages < memorystatus_freeze_threshold); |
1491 | list_head->freeze_eligible_procs_available = ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold); |
1492 | list_head->freeze_scheduled_in_future = (curr_time < memorystatus_freezer_thread_next_run_ts); |
1493 | |
1494 | list_entry = (proc_freezable_status_t*) ((uintptr_t)list_head + sizeof(global_freezable_status_t)); |
1495 | |
1496 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
1497 | |
1498 | entry_count = (memorystatus_global_probabilities_size / sizeof(memorystatus_internal_probabilities_t)); |
1499 | |
1500 | p = memorystatus_get_first_proc_locked(&i, FALSE); |
1501 | proc_count++; |
1502 | |
1503 | while ((proc_count <= MAX_FREEZABLE_PROCESSES) && |
1504 | (p) && |
1505 | (list_size < buffer_size)) { |
1506 | |
1507 | if (isApp(p) == FALSE) { |
1508 | p = memorystatus_get_next_proc_locked(&i, p, FALSE); |
1509 | proc_count++; |
1510 | continue; |
1511 | } |
1512 | |
1513 | strlcpy(list_entry->p_name, p->p_name, MAXCOMLEN + 1); |
1514 | |
1515 | list_entry->p_pid = p->p_pid; |
1516 | |
1517 | state = p->p_memstat_state; |
1518 | |
1519 | if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED | P_MEMSTAT_FREEZE_IGNORE)) || |
1520 | !(state & P_MEMSTAT_SUSPENDED)) { |
1521 | |
1522 | try_freeze = list_entry->freeze_has_memstat_state = FALSE; |
1523 | } else { |
1524 | try_freeze = list_entry->freeze_has_memstat_state = TRUE; |
1525 | } |
1526 | |
1527 | list_entry->p_memstat_state = state; |
1528 | |
1529 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
1530 | if (pages < memorystatus_freeze_pages_min) { |
1531 | try_freeze = list_entry->freeze_has_pages_min = FALSE; |
1532 | } else { |
1533 | list_entry->freeze_has_pages_min = TRUE; |
1534 | if (try_freeze != FALSE) { |
1535 | try_freeze = TRUE; |
1536 | } |
1537 | } |
1538 | |
1539 | list_entry->p_pages = pages; |
1540 | |
1541 | if (entry_count) { |
1542 | uint32_t j = 0; |
1543 | for (j = 0; j < entry_count; j++ ) { |
1544 | if (strncmp(memorystatus_global_probabilities_table[j].proc_name, |
1545 | p->p_name, |
1546 | MAXCOMLEN + 1) == 0) { |
1547 | |
1548 | probability_of_use = memorystatus_global_probabilities_table[j].use_probability; |
1549 | break; |
1550 | } |
1551 | } |
1552 | |
1553 | list_entry->freeze_has_probability = probability_of_use; |
1554 | |
1555 | if (probability_of_use && try_freeze != FALSE) { |
1556 | try_freeze = TRUE; |
1557 | } else { |
1558 | try_freeze = FALSE; |
1559 | } |
1560 | } else { |
1561 | if (try_freeze != FALSE) { |
1562 | try_freeze = TRUE; |
1563 | } |
1564 | list_entry->freeze_has_probability = -1; |
1565 | } |
1566 | |
1567 | if (try_freeze) { |
1568 | |
1569 | uint32_t purgeable, wired, clean, dirty, shared; |
1570 | uint32_t max_pages = 0; |
1571 | int freezer_error_code = 0; |
1572 | |
1573 | error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, TRUE /* eval only */); |
1574 | |
1575 | if (error) { |
1576 | list_entry->p_freeze_error_code = freezer_error_code; |
1577 | } |
1578 | |
1579 | list_entry->freeze_attempted = TRUE; |
1580 | } |
1581 | |
1582 | list_entry++; |
1583 | |
1584 | list_size += sizeof(proc_freezable_status_t); |
1585 | |
1586 | p = memorystatus_get_next_proc_locked(&i, p, FALSE); |
1587 | proc_count++; |
1588 | } |
1589 | |
1590 | proc_list_unlock(); |
1591 | |
1592 | buffer_size = list_size; |
1593 | |
1594 | error = copyout(list_head, buffer, buffer_size); |
1595 | if (error == 0) { |
1596 | *retval = buffer_size; |
1597 | } else { |
1598 | *retval = 0; |
1599 | } |
1600 | |
1601 | list_size = sizeof(global_freezable_status_t) + (sizeof(proc_freezable_status_t) * MAX_FREEZABLE_PROCESSES); |
1602 | kfree(list_head, list_size); |
1603 | |
1604 | MEMORYSTATUS_DEBUG(1, "memorystatus_freezer_get_status: returning %d (%lu - size)\n" , error, (unsigned long)*list_size); |
1605 | |
1606 | return error; |
1607 | } |
1608 | |
1609 | static int |
1610 | memorystatus_freezer_control(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) |
1611 | { |
1612 | int err = ENOTSUP; |
1613 | |
1614 | if (flags == FREEZER_CONTROL_GET_STATUS) { |
1615 | err = memorystatus_freezer_get_status(buffer, buffer_size, retval); |
1616 | } |
1617 | |
1618 | return err; |
1619 | } |
1620 | |
1621 | #endif /* CONFIG_FREEZE */ |
1622 | |
1623 | #endif /* DEVELOPMENT || DEBUG */ |
1624 | |
1625 | extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation, |
1626 | void *parameter, |
1627 | integer_t priority, |
1628 | thread_t *new_thread); |
1629 | |
1630 | #if DEVELOPMENT || DEBUG |
1631 | |
1632 | static int |
1633 | sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS |
1634 | { |
1635 | #pragma unused(arg1, arg2) |
1636 | int error = 0, pid = 0; |
1637 | proc_t p; |
1638 | |
1639 | error = sysctl_handle_int(oidp, &pid, 0, req); |
1640 | if (error || !req->newptr) |
1641 | return (error); |
1642 | |
1643 | lck_mtx_lock(&disconnect_page_mappings_mutex); |
1644 | |
1645 | if (pid == -1) { |
1646 | vm_pageout_disconnect_all_pages(); |
1647 | } else { |
1648 | p = proc_find(pid); |
1649 | |
1650 | if (p != NULL) { |
1651 | error = task_disconnect_page_mappings(p->task); |
1652 | |
1653 | proc_rele(p); |
1654 | |
1655 | if (error) |
1656 | error = EIO; |
1657 | } else |
1658 | error = EINVAL; |
1659 | } |
1660 | lck_mtx_unlock(&disconnect_page_mappings_mutex); |
1661 | |
1662 | return error; |
1663 | } |
1664 | |
1665 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_disconnect_page_mappings, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
1666 | 0, 0, &sysctl_memorystatus_disconnect_page_mappings, "I" , "" ); |
1667 | |
1668 | #endif /* DEVELOPMENT || DEBUG */ |
1669 | |
1670 | |
1671 | /* |
1672 | * Picks the sorting routine for a given jetsam priority band. |
1673 | * |
1674 | * Input: |
1675 | * bucket_index - jetsam priority band to be sorted. |
1676 | * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h |
1677 | * Currently sort_order is only meaningful when handling |
1678 | * coalitions. |
1679 | * |
1680 | * Return: |
1681 | * 0 on success |
1682 | * non-0 on failure |
1683 | */ |
1684 | static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order) |
1685 | { |
1686 | int coal_sort_order; |
1687 | |
1688 | /* |
1689 | * Verify the jetsam priority |
1690 | */ |
1691 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
1692 | return(EINVAL); |
1693 | } |
1694 | |
1695 | #if DEVELOPMENT || DEBUG |
1696 | if (sort_order == JETSAM_SORT_DEFAULT) { |
1697 | coal_sort_order = COALITION_SORT_DEFAULT; |
1698 | } else { |
1699 | coal_sort_order = sort_order; /* only used for testing scenarios */ |
1700 | } |
1701 | #else |
1702 | /* Verify default */ |
1703 | if (sort_order == JETSAM_SORT_DEFAULT) { |
1704 | coal_sort_order = COALITION_SORT_DEFAULT; |
1705 | } else { |
1706 | return(EINVAL); |
1707 | } |
1708 | #endif |
1709 | |
1710 | proc_list_lock(); |
1711 | |
1712 | if (memstat_bucket[bucket_index].count == 0) { |
1713 | proc_list_unlock(); |
1714 | return (0); |
1715 | } |
1716 | |
1717 | switch (bucket_index) { |
1718 | case JETSAM_PRIORITY_FOREGROUND: |
1719 | if (memorystatus_sort_by_largest_coalition_locked(bucket_index, coal_sort_order) == 0) { |
1720 | /* |
1721 | * Fall back to per process sorting when zero coalitions are found. |
1722 | */ |
1723 | memorystatus_sort_by_largest_process_locked(bucket_index); |
1724 | } |
1725 | break; |
1726 | default: |
1727 | memorystatus_sort_by_largest_process_locked(bucket_index); |
1728 | break; |
1729 | } |
1730 | proc_list_unlock(); |
1731 | |
1732 | return(0); |
1733 | } |
1734 | |
1735 | /* |
1736 | * Sort processes by size for a single jetsam bucket. |
1737 | */ |
1738 | |
1739 | static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index) |
1740 | { |
1741 | proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL; |
1742 | proc_t next_p = NULL, prev_max_proc = NULL; |
1743 | uint32_t pages = 0, max_pages = 0; |
1744 | memstat_bucket_t *current_bucket; |
1745 | |
1746 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
1747 | return; |
1748 | } |
1749 | |
1750 | current_bucket = &memstat_bucket[bucket_index]; |
1751 | |
1752 | p = TAILQ_FIRST(¤t_bucket->list); |
1753 | |
1754 | while (p) { |
1755 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
1756 | max_pages = pages; |
1757 | max_proc = p; |
1758 | prev_max_proc = p; |
1759 | |
1760 | while ((next_p = TAILQ_NEXT(p, p_memstat_list)) != NULL) { |
1761 | /* traversing list until we find next largest process */ |
1762 | p=next_p; |
1763 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
1764 | if (pages > max_pages) { |
1765 | max_pages = pages; |
1766 | max_proc = p; |
1767 | } |
1768 | } |
1769 | |
1770 | if (prev_max_proc != max_proc) { |
1771 | /* found a larger process, place it in the list */ |
1772 | TAILQ_REMOVE(¤t_bucket->list, max_proc, p_memstat_list); |
1773 | if (insert_after_proc == NULL) { |
1774 | TAILQ_INSERT_HEAD(¤t_bucket->list, max_proc, p_memstat_list); |
1775 | } else { |
1776 | TAILQ_INSERT_AFTER(¤t_bucket->list, insert_after_proc, max_proc, p_memstat_list); |
1777 | } |
1778 | prev_max_proc = max_proc; |
1779 | } |
1780 | |
1781 | insert_after_proc = max_proc; |
1782 | |
1783 | p = TAILQ_NEXT(max_proc, p_memstat_list); |
1784 | } |
1785 | } |
1786 | |
1787 | static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search) { |
1788 | memstat_bucket_t *current_bucket; |
1789 | proc_t next_p; |
1790 | |
1791 | if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) { |
1792 | return NULL; |
1793 | } |
1794 | |
1795 | current_bucket = &memstat_bucket[*bucket_index]; |
1796 | next_p = TAILQ_FIRST(¤t_bucket->list); |
1797 | if (!next_p && search) { |
1798 | while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { |
1799 | current_bucket = &memstat_bucket[*bucket_index]; |
1800 | next_p = TAILQ_FIRST(¤t_bucket->list); |
1801 | } |
1802 | } |
1803 | |
1804 | return next_p; |
1805 | } |
1806 | |
1807 | static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search) { |
1808 | memstat_bucket_t *current_bucket; |
1809 | proc_t next_p; |
1810 | |
1811 | if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) { |
1812 | return NULL; |
1813 | } |
1814 | |
1815 | next_p = TAILQ_NEXT(p, p_memstat_list); |
1816 | while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { |
1817 | current_bucket = &memstat_bucket[*bucket_index]; |
1818 | next_p = TAILQ_FIRST(¤t_bucket->list); |
1819 | } |
1820 | |
1821 | return next_p; |
1822 | } |
1823 | |
1824 | /* |
1825 | * Structure to hold state for a jetsam thread. |
1826 | * Typically there should be a single jetsam thread |
1827 | * unless parallel jetsam is enabled. |
1828 | */ |
1829 | struct jetsam_thread_state { |
1830 | boolean_t inited; /* if the thread is initialized */ |
1831 | int memorystatus_wakeup; /* wake channel */ |
1832 | int index; /* jetsam thread index */ |
1833 | thread_t thread; /* jetsam thread pointer */ |
1834 | } *jetsam_threads; |
1835 | |
1836 | /* Maximum number of jetsam threads allowed */ |
1837 | #define JETSAM_THREADS_LIMIT 3 |
1838 | |
1839 | /* Number of active jetsam threads */ |
1840 | _Atomic int active_jetsam_threads = 1; |
1841 | |
1842 | /* Number of maximum jetsam threads configured */ |
1843 | int max_jetsam_threads = JETSAM_THREADS_LIMIT; |
1844 | |
1845 | /* |
1846 | * Global switch for enabling fast jetsam. Fast jetsam is |
1847 | * hooked up via the system_override() system call. It has the |
1848 | * following effects: |
1849 | * - Raise the jetsam threshold ("clear-the-deck") |
1850 | * - Enabled parallel jetsam on eligible devices |
1851 | */ |
1852 | int fast_jetsam_enabled = 0; |
1853 | |
1854 | /* Routine to find the jetsam state structure for the current jetsam thread */ |
1855 | static inline struct jetsam_thread_state * |
1856 | jetsam_current_thread(void) |
1857 | { |
1858 | for (int thr_id = 0; thr_id < max_jetsam_threads; thr_id++) { |
1859 | if (jetsam_threads[thr_id].thread == current_thread()) |
1860 | return &(jetsam_threads[thr_id]); |
1861 | } |
1862 | panic("jetsam_current_thread() is being called from a non-jetsam thread\n" ); |
1863 | /* Contol should not reach here */ |
1864 | return NULL; |
1865 | } |
1866 | |
1867 | |
1868 | __private_extern__ void |
1869 | memorystatus_init(void) |
1870 | { |
1871 | kern_return_t result; |
1872 | int i; |
1873 | |
1874 | #if CONFIG_FREEZE |
1875 | memorystatus_freeze_jetsam_band = JETSAM_PRIORITY_UI_SUPPORT; |
1876 | memorystatus_frozen_processes_max = FREEZE_PROCESSES_MAX; |
1877 | memorystatus_frozen_shared_mb_max = ((MAX_FROZEN_SHARED_MB_PERCENT * max_task_footprint_mb) / 100); /* 10% of the system wide task limit */ |
1878 | memorystatus_freeze_shared_mb_per_process_max = (memorystatus_frozen_shared_mb_max / 4); |
1879 | memorystatus_freeze_pages_min = FREEZE_PAGES_MIN; |
1880 | memorystatus_freeze_pages_max = FREEZE_PAGES_MAX; |
1881 | memorystatus_max_frozen_demotions_daily = MAX_FROZEN_PROCESS_DEMOTIONS; |
1882 | memorystatus_thaw_count_demotion_threshold = MIN_THAW_DEMOTION_THRESHOLD; |
1883 | #endif |
1884 | |
1885 | #if DEVELOPMENT || DEBUG |
1886 | disconnect_page_mappings_lck_grp_attr = lck_grp_attr_alloc_init(); |
1887 | disconnect_page_mappings_lck_grp = lck_grp_alloc_init("disconnect_page_mappings" , disconnect_page_mappings_lck_grp_attr); |
1888 | |
1889 | lck_mtx_init(&disconnect_page_mappings_mutex, disconnect_page_mappings_lck_grp, NULL); |
1890 | |
1891 | if (kill_on_no_paging_space == TRUE) { |
1892 | max_kill_priority = JETSAM_PRIORITY_MAX; |
1893 | } |
1894 | #endif |
1895 | |
1896 | |
1897 | /* Init buckets */ |
1898 | for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) { |
1899 | TAILQ_INIT(&memstat_bucket[i].list); |
1900 | memstat_bucket[i].count = 0; |
1901 | } |
1902 | memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL); |
1903 | |
1904 | #if CONFIG_JETSAM |
1905 | nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time); |
1906 | nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time); |
1907 | |
1908 | /* Apply overrides */ |
1909 | PE_get_default("kern.jetsam_delta" , &delta_percentage, sizeof(delta_percentage)); |
1910 | if (delta_percentage == 0) { |
1911 | delta_percentage = 5; |
1912 | } |
1913 | assert(delta_percentage < 100); |
1914 | PE_get_default("kern.jetsam_critical_threshold" , &critical_threshold_percentage, sizeof(critical_threshold_percentage)); |
1915 | assert(critical_threshold_percentage < 100); |
1916 | PE_get_default("kern.jetsam_idle_offset" , &idle_offset_percentage, sizeof(idle_offset_percentage)); |
1917 | assert(idle_offset_percentage < 100); |
1918 | PE_get_default("kern.jetsam_pressure_threshold" , &pressure_threshold_percentage, sizeof(pressure_threshold_percentage)); |
1919 | assert(pressure_threshold_percentage < 100); |
1920 | PE_get_default("kern.jetsam_freeze_threshold" , &freeze_threshold_percentage, sizeof(freeze_threshold_percentage)); |
1921 | assert(freeze_threshold_percentage < 100); |
1922 | |
1923 | if (!PE_parse_boot_argn("jetsam_aging_policy" , &jetsam_aging_policy, |
1924 | sizeof (jetsam_aging_policy))) { |
1925 | |
1926 | if (!PE_get_default("kern.jetsam_aging_policy" , &jetsam_aging_policy, |
1927 | sizeof(jetsam_aging_policy))) { |
1928 | |
1929 | jetsam_aging_policy = kJetsamAgingPolicyLegacy; |
1930 | } |
1931 | } |
1932 | |
1933 | if (jetsam_aging_policy > kJetsamAgingPolicyMax) { |
1934 | jetsam_aging_policy = kJetsamAgingPolicyLegacy; |
1935 | } |
1936 | |
1937 | switch (jetsam_aging_policy) { |
1938 | |
1939 | case kJetsamAgingPolicyNone: |
1940 | system_procs_aging_band = JETSAM_PRIORITY_IDLE; |
1941 | applications_aging_band = JETSAM_PRIORITY_IDLE; |
1942 | break; |
1943 | |
1944 | case kJetsamAgingPolicyLegacy: |
1945 | /* |
1946 | * Legacy behavior where some daemons get a 10s protection once |
1947 | * AND only before the first clean->dirty->clean transition before |
1948 | * going into IDLE band. |
1949 | */ |
1950 | system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
1951 | applications_aging_band = JETSAM_PRIORITY_IDLE; |
1952 | break; |
1953 | |
1954 | case kJetsamAgingPolicySysProcsReclaimedFirst: |
1955 | system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
1956 | applications_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
1957 | break; |
1958 | |
1959 | case kJetsamAgingPolicyAppsReclaimedFirst: |
1960 | system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
1961 | applications_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
1962 | break; |
1963 | |
1964 | default: |
1965 | break; |
1966 | } |
1967 | |
1968 | /* |
1969 | * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE |
1970 | * band and must be below it in priority. This is so that we don't have to make |
1971 | * our 'aging' code worry about a mix of processes, some of which need to age |
1972 | * and some others that need to stay elevated in the jetsam bands. |
1973 | */ |
1974 | assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > system_procs_aging_band); |
1975 | assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > applications_aging_band); |
1976 | |
1977 | /* Take snapshots for idle-exit kills by default? First check the boot-arg... */ |
1978 | if (!PE_parse_boot_argn("jetsam_idle_snapshot" , &memorystatus_idle_snapshot, sizeof (memorystatus_idle_snapshot))) { |
1979 | /* ...no boot-arg, so check the device tree */ |
1980 | PE_get_default("kern.jetsam_idle_snapshot" , &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot)); |
1981 | } |
1982 | |
1983 | memorystatus_delta = delta_percentage * atop_64(max_mem) / 100; |
1984 | memorystatus_available_pages_critical_idle_offset = idle_offset_percentage * atop_64(max_mem) / 100; |
1985 | memorystatus_available_pages_critical_base = (critical_threshold_percentage / delta_percentage) * memorystatus_delta; |
1986 | memorystatus_policy_more_free_offset_pages = (policy_more_free_offset_percentage / delta_percentage) * memorystatus_delta; |
1987 | |
1988 | /* Jetsam Loop Detection */ |
1989 | if (max_mem <= (512 * 1024 * 1024)) { |
1990 | /* 512 MB devices */ |
1991 | memorystatus_jld_eval_period_msecs = 8000; /* 8000 msecs == 8 second window */ |
1992 | } else { |
1993 | /* 1GB and larger devices */ |
1994 | memorystatus_jld_eval_period_msecs = 6000; /* 6000 msecs == 6 second window */ |
1995 | } |
1996 | |
1997 | memorystatus_jld_enabled = TRUE; |
1998 | |
1999 | /* No contention at this point */ |
2000 | memorystatus_update_levels_locked(FALSE); |
2001 | |
2002 | #endif /* CONFIG_JETSAM */ |
2003 | |
2004 | memorystatus_jetsam_snapshot_max = maxproc; |
2005 | |
2006 | memorystatus_jetsam_snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
2007 | (sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max); |
2008 | |
2009 | memorystatus_jetsam_snapshot = |
2010 | (memorystatus_jetsam_snapshot_t*)kalloc(memorystatus_jetsam_snapshot_size); |
2011 | if (!memorystatus_jetsam_snapshot) { |
2012 | panic("Could not allocate memorystatus_jetsam_snapshot" ); |
2013 | } |
2014 | |
2015 | memorystatus_jetsam_snapshot_copy = |
2016 | (memorystatus_jetsam_snapshot_t*)kalloc(memorystatus_jetsam_snapshot_size); |
2017 | if (!memorystatus_jetsam_snapshot_copy) { |
2018 | panic("Could not allocate memorystatus_jetsam_snapshot_copy" ); |
2019 | } |
2020 | |
2021 | nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS * NSEC_PER_SEC, &memorystatus_jetsam_snapshot_timeout); |
2022 | |
2023 | memset(&memorystatus_at_boot_snapshot, 0, sizeof(memorystatus_jetsam_snapshot_t)); |
2024 | |
2025 | #if CONFIG_FREEZE |
2026 | memorystatus_freeze_threshold = (freeze_threshold_percentage / delta_percentage) * memorystatus_delta; |
2027 | #endif |
2028 | |
2029 | /* Check the boot-arg to see if fast jetsam is allowed */ |
2030 | if (!PE_parse_boot_argn("fast_jetsam_enabled" , &fast_jetsam_enabled, sizeof (fast_jetsam_enabled))) { |
2031 | fast_jetsam_enabled = 0; |
2032 | } |
2033 | |
2034 | /* Check the boot-arg to configure the maximum number of jetsam threads */ |
2035 | if (!PE_parse_boot_argn("max_jetsam_threads" , &max_jetsam_threads, sizeof (max_jetsam_threads))) { |
2036 | max_jetsam_threads = JETSAM_THREADS_LIMIT; |
2037 | } |
2038 | |
2039 | /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */ |
2040 | if (max_jetsam_threads > JETSAM_THREADS_LIMIT) { |
2041 | max_jetsam_threads = JETSAM_THREADS_LIMIT; |
2042 | } |
2043 | |
2044 | /* For low CPU systems disable fast jetsam mechanism */ |
2045 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { |
2046 | max_jetsam_threads = 1; |
2047 | fast_jetsam_enabled = 0; |
2048 | } |
2049 | |
2050 | /* Initialize the jetsam_threads state array */ |
2051 | jetsam_threads = kalloc(sizeof(struct jetsam_thread_state) * max_jetsam_threads); |
2052 | |
2053 | /* Initialize all the jetsam threads */ |
2054 | for (i = 0; i < max_jetsam_threads; i++) { |
2055 | |
2056 | result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &jetsam_threads[i].thread); |
2057 | if (result == KERN_SUCCESS) { |
2058 | jetsam_threads[i].inited = FALSE; |
2059 | jetsam_threads[i].index = i; |
2060 | thread_deallocate(jetsam_threads[i].thread); |
2061 | } else { |
2062 | panic("Could not create memorystatus_thread %d" , i); |
2063 | } |
2064 | } |
2065 | } |
2066 | |
2067 | /* Centralised for the purposes of allowing panic-on-jetsam */ |
2068 | extern void |
2069 | vm_run_compactor(void); |
2070 | |
2071 | /* |
2072 | * The jetsam no frills kill call |
2073 | * Return: 0 on success |
2074 | * error code on failure (EINVAL...) |
2075 | */ |
2076 | static int |
2077 | jetsam_do_kill(proc_t p, int jetsam_flags, os_reason_t jetsam_reason) { |
2078 | int error = 0; |
2079 | error = exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags, jetsam_reason); |
2080 | return(error); |
2081 | } |
2082 | |
2083 | /* |
2084 | * Wrapper for processes exiting with memorystatus details |
2085 | */ |
2086 | static boolean_t |
2087 | memorystatus_do_kill(proc_t p, uint32_t cause, os_reason_t jetsam_reason) { |
2088 | |
2089 | int error = 0; |
2090 | __unused pid_t victim_pid = p->p_pid; |
2091 | |
2092 | KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_START, |
2093 | victim_pid, cause, vm_page_free_count, 0, 0); |
2094 | |
2095 | DTRACE_MEMORYSTATUS3(memorystatus_do_kill, proc_t, p, os_reason_t, jetsam_reason, uint32_t, cause); |
2096 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
2097 | if (memorystatus_jetsam_panic_debug & (1 << cause)) { |
2098 | panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)" , cause); |
2099 | } |
2100 | #else |
2101 | #pragma unused(cause) |
2102 | #endif |
2103 | |
2104 | if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) { |
2105 | printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n" , p->p_pid, |
2106 | (*p->p_name ? p->p_name : "unknown" ), |
2107 | memorystatus_priority_band_name(p->p_memstat_effectivepriority), p->p_memstat_effectivepriority, |
2108 | (uint64_t)memorystatus_available_pages); |
2109 | } |
2110 | |
2111 | /* |
2112 | * The jetsam_reason (os_reason_t) has enough information about the kill cause. |
2113 | * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped. |
2114 | */ |
2115 | int jetsam_flags = P_LTERM_JETSAM; |
2116 | switch (cause) { |
2117 | case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break; |
2118 | case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break; |
2119 | case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break; |
2120 | case kMemorystatusKilledVMCompressorThrashing: |
2121 | case kMemorystatusKilledVMCompressorSpaceShortage: jetsam_flags |= P_JETSAM_VMTHRASHING; break; |
2122 | case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break; |
2123 | case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break; |
2124 | case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break; |
2125 | } |
2126 | error = jetsam_do_kill(p, jetsam_flags, jetsam_reason); |
2127 | |
2128 | KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_END, |
2129 | victim_pid, cause, vm_page_free_count, error, 0); |
2130 | |
2131 | vm_run_compactor(); |
2132 | |
2133 | return (error == 0); |
2134 | } |
2135 | |
2136 | /* |
2137 | * Node manipulation |
2138 | */ |
2139 | |
2140 | static void |
2141 | memorystatus_check_levels_locked(void) { |
2142 | #if CONFIG_JETSAM |
2143 | /* Update levels */ |
2144 | memorystatus_update_levels_locked(TRUE); |
2145 | #else /* CONFIG_JETSAM */ |
2146 | /* |
2147 | * Nothing to do here currently since we update |
2148 | * memorystatus_available_pages in vm_pressure_response. |
2149 | */ |
2150 | #endif /* CONFIG_JETSAM */ |
2151 | } |
2152 | |
2153 | /* |
2154 | * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work. |
2155 | * For an application: that means no longer in the FG band |
2156 | * For a daemon: that means no longer in its 'requested' jetsam priority band |
2157 | */ |
2158 | |
2159 | int |
2160 | memorystatus_update_inactive_jetsam_priority_band(pid_t pid, uint32_t op_flags, int jetsam_prio, boolean_t effective_now) |
2161 | { |
2162 | int error = 0; |
2163 | boolean_t enable = FALSE; |
2164 | proc_t p = NULL; |
2165 | |
2166 | if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE) { |
2167 | enable = TRUE; |
2168 | } else if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE) { |
2169 | enable = FALSE; |
2170 | } else { |
2171 | return EINVAL; |
2172 | } |
2173 | |
2174 | p = proc_find(pid); |
2175 | if (p != NULL) { |
2176 | |
2177 | if ((enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) || |
2178 | (!enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == 0))) { |
2179 | /* |
2180 | * No change in state. |
2181 | */ |
2182 | |
2183 | } else { |
2184 | |
2185 | proc_list_lock(); |
2186 | |
2187 | if (enable) { |
2188 | p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
2189 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
2190 | |
2191 | if (effective_now) { |
2192 | if (p->p_memstat_effectivepriority < jetsam_prio) { |
2193 | if(memorystatus_highwater_enabled) { |
2194 | /* |
2195 | * Process is about to transition from |
2196 | * inactive --> active |
2197 | * assign active state |
2198 | */ |
2199 | boolean_t is_fatal; |
2200 | boolean_t use_active = TRUE; |
2201 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
2202 | task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal); |
2203 | } |
2204 | memorystatus_update_priority_locked(p, jetsam_prio, FALSE, FALSE); |
2205 | } |
2206 | } else { |
2207 | if (isProcessInAgingBands(p)) { |
2208 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
2209 | } |
2210 | } |
2211 | } else { |
2212 | |
2213 | p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
2214 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
2215 | |
2216 | if (effective_now) { |
2217 | if (p->p_memstat_effectivepriority == jetsam_prio) { |
2218 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
2219 | } |
2220 | } else { |
2221 | if (isProcessInAgingBands(p)) { |
2222 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
2223 | } |
2224 | } |
2225 | } |
2226 | |
2227 | proc_list_unlock(); |
2228 | } |
2229 | proc_rele(p); |
2230 | error = 0; |
2231 | |
2232 | } else { |
2233 | error = ESRCH; |
2234 | } |
2235 | |
2236 | return error; |
2237 | } |
2238 | |
2239 | static void |
2240 | memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2) |
2241 | { |
2242 | proc_t p; |
2243 | uint64_t current_time = 0, idle_delay_time = 0; |
2244 | int demote_prio_band = 0; |
2245 | memstat_bucket_t *demotion_bucket; |
2246 | |
2247 | MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n" ); |
2248 | |
2249 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START, 0, 0, 0, 0, 0); |
2250 | |
2251 | current_time = mach_absolute_time(); |
2252 | |
2253 | proc_list_lock(); |
2254 | |
2255 | demote_prio_band = JETSAM_PRIORITY_IDLE + 1; |
2256 | |
2257 | for (; demote_prio_band < JETSAM_PRIORITY_MAX; demote_prio_band++) { |
2258 | |
2259 | if (demote_prio_band != system_procs_aging_band && demote_prio_band != applications_aging_band) |
2260 | continue; |
2261 | |
2262 | demotion_bucket = &memstat_bucket[demote_prio_band]; |
2263 | p = TAILQ_FIRST(&demotion_bucket->list); |
2264 | |
2265 | while (p) { |
2266 | MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n" , p->p_pid); |
2267 | |
2268 | assert(p->p_memstat_idledeadline); |
2269 | |
2270 | assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS); |
2271 | |
2272 | if (current_time >= p->p_memstat_idledeadline) { |
2273 | |
2274 | if ((isSysProc(p) && |
2275 | ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) != P_DIRTY_IDLE_EXIT_ENABLED)) || /* system proc marked dirty*/ |
2276 | task_has_assertions((struct task *)(p->task))) { /* has outstanding assertions which might indicate outstanding work too */ |
2277 | idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time; |
2278 | |
2279 | p->p_memstat_idledeadline += idle_delay_time; |
2280 | p = TAILQ_NEXT(p, p_memstat_list); |
2281 | |
2282 | } else { |
2283 | |
2284 | proc_t next_proc = NULL; |
2285 | |
2286 | next_proc = TAILQ_NEXT(p, p_memstat_list); |
2287 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
2288 | |
2289 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false, true); |
2290 | |
2291 | p = next_proc; |
2292 | continue; |
2293 | |
2294 | } |
2295 | } else { |
2296 | // No further candidates |
2297 | break; |
2298 | } |
2299 | } |
2300 | |
2301 | } |
2302 | |
2303 | memorystatus_reschedule_idle_demotion_locked(); |
2304 | |
2305 | proc_list_unlock(); |
2306 | |
2307 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
2308 | } |
2309 | |
2310 | static void |
2311 | memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state) |
2312 | { |
2313 | boolean_t present_in_sysprocs_aging_bucket = FALSE; |
2314 | boolean_t present_in_apps_aging_bucket = FALSE; |
2315 | uint64_t idle_delay_time = 0; |
2316 | |
2317 | if (jetsam_aging_policy == kJetsamAgingPolicyNone) { |
2318 | return; |
2319 | } |
2320 | |
2321 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
2322 | /* |
2323 | * This process isn't going to be making the trip to the lower bands. |
2324 | */ |
2325 | return; |
2326 | } |
2327 | |
2328 | if (isProcessInAgingBands(p)){ |
2329 | |
2330 | if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) { |
2331 | assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) != P_DIRTY_AGING_IN_PROGRESS); |
2332 | } |
2333 | |
2334 | if (isSysProc(p) && system_procs_aging_band) { |
2335 | present_in_sysprocs_aging_bucket = TRUE; |
2336 | |
2337 | } else if (isApp(p) && applications_aging_band) { |
2338 | present_in_apps_aging_bucket = TRUE; |
2339 | } |
2340 | } |
2341 | |
2342 | assert(!present_in_sysprocs_aging_bucket); |
2343 | assert(!present_in_apps_aging_bucket); |
2344 | |
2345 | MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n" , |
2346 | p->p_pid, p->p_memstat_dirty, set_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)); |
2347 | |
2348 | if(isSysProc(p)) { |
2349 | assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED); |
2350 | } |
2351 | |
2352 | idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time; |
2353 | |
2354 | if (set_state) { |
2355 | p->p_memstat_dirty |= P_DIRTY_AGING_IN_PROGRESS; |
2356 | p->p_memstat_idledeadline = mach_absolute_time() + idle_delay_time; |
2357 | } |
2358 | |
2359 | assert(p->p_memstat_idledeadline); |
2360 | |
2361 | if (isSysProc(p) && present_in_sysprocs_aging_bucket == FALSE) { |
2362 | memorystatus_scheduled_idle_demotions_sysprocs++; |
2363 | |
2364 | } else if (isApp(p) && present_in_apps_aging_bucket == FALSE) { |
2365 | memorystatus_scheduled_idle_demotions_apps++; |
2366 | } |
2367 | } |
2368 | |
2369 | static void |
2370 | memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state) |
2371 | { |
2372 | boolean_t present_in_sysprocs_aging_bucket = FALSE; |
2373 | boolean_t present_in_apps_aging_bucket = FALSE; |
2374 | |
2375 | if (!system_procs_aging_band && !applications_aging_band) { |
2376 | return; |
2377 | } |
2378 | |
2379 | if ((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == 0) { |
2380 | return; |
2381 | } |
2382 | |
2383 | if (isProcessInAgingBands(p)) { |
2384 | |
2385 | if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) { |
2386 | assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == P_DIRTY_AGING_IN_PROGRESS); |
2387 | } |
2388 | |
2389 | if (isSysProc(p) && system_procs_aging_band) { |
2390 | assert(p->p_memstat_effectivepriority == system_procs_aging_band); |
2391 | assert(p->p_memstat_idledeadline); |
2392 | present_in_sysprocs_aging_bucket = TRUE; |
2393 | |
2394 | } else if (isApp(p) && applications_aging_band) { |
2395 | assert(p->p_memstat_effectivepriority == applications_aging_band); |
2396 | assert(p->p_memstat_idledeadline); |
2397 | present_in_apps_aging_bucket = TRUE; |
2398 | } |
2399 | } |
2400 | |
2401 | MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n" , |
2402 | p->p_pid, clear_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)); |
2403 | |
2404 | |
2405 | if (clear_state) { |
2406 | p->p_memstat_idledeadline = 0; |
2407 | p->p_memstat_dirty &= ~P_DIRTY_AGING_IN_PROGRESS; |
2408 | } |
2409 | |
2410 | if (isSysProc(p) &&present_in_sysprocs_aging_bucket == TRUE) { |
2411 | memorystatus_scheduled_idle_demotions_sysprocs--; |
2412 | assert(memorystatus_scheduled_idle_demotions_sysprocs >= 0); |
2413 | |
2414 | } else if (isApp(p) && present_in_apps_aging_bucket == TRUE) { |
2415 | memorystatus_scheduled_idle_demotions_apps--; |
2416 | assert(memorystatus_scheduled_idle_demotions_apps >= 0); |
2417 | } |
2418 | |
2419 | assert((memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps) >= 0); |
2420 | } |
2421 | |
2422 | static void |
2423 | memorystatus_reschedule_idle_demotion_locked(void) { |
2424 | if (0 == (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)) { |
2425 | if (memstat_idle_demotion_deadline) { |
2426 | /* Transitioned 1->0, so cancel next call */ |
2427 | thread_call_cancel(memorystatus_idle_demotion_call); |
2428 | memstat_idle_demotion_deadline = 0; |
2429 | } |
2430 | } else { |
2431 | memstat_bucket_t *demotion_bucket; |
2432 | proc_t p = NULL, p1 = NULL, p2 = NULL; |
2433 | |
2434 | if (system_procs_aging_band) { |
2435 | |
2436 | demotion_bucket = &memstat_bucket[system_procs_aging_band]; |
2437 | p1 = TAILQ_FIRST(&demotion_bucket->list); |
2438 | |
2439 | p = p1; |
2440 | } |
2441 | |
2442 | if (applications_aging_band) { |
2443 | |
2444 | demotion_bucket = &memstat_bucket[applications_aging_band]; |
2445 | p2 = TAILQ_FIRST(&demotion_bucket->list); |
2446 | |
2447 | if (p1 && p2) { |
2448 | p = (p1->p_memstat_idledeadline > p2->p_memstat_idledeadline) ? p2 : p1; |
2449 | } else { |
2450 | p = (p1 == NULL) ? p2 : p1; |
2451 | } |
2452 | |
2453 | } |
2454 | |
2455 | assert(p); |
2456 | |
2457 | if (p != NULL) { |
2458 | assert(p && p->p_memstat_idledeadline); |
2459 | if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline){ |
2460 | thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline); |
2461 | memstat_idle_demotion_deadline = p->p_memstat_idledeadline; |
2462 | } |
2463 | } |
2464 | } |
2465 | } |
2466 | |
2467 | /* |
2468 | * List manipulation |
2469 | */ |
2470 | |
2471 | int |
2472 | memorystatus_add(proc_t p, boolean_t locked) |
2473 | { |
2474 | memstat_bucket_t *bucket; |
2475 | |
2476 | MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n" , p->p_pid, p->p_memstat_effectivepriority); |
2477 | |
2478 | if (!locked) { |
2479 | proc_list_lock(); |
2480 | } |
2481 | |
2482 | DTRACE_MEMORYSTATUS2(memorystatus_add, proc_t, p, int32_t, p->p_memstat_effectivepriority); |
2483 | |
2484 | /* Processes marked internal do not have priority tracked */ |
2485 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
2486 | goto exit; |
2487 | } |
2488 | |
2489 | bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
2490 | |
2491 | if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) { |
2492 | assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs - 1); |
2493 | |
2494 | } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) { |
2495 | assert(bucket->count == memorystatus_scheduled_idle_demotions_apps - 1); |
2496 | |
2497 | } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
2498 | /* |
2499 | * Entering the idle band. |
2500 | * Record idle start time. |
2501 | */ |
2502 | p->p_memstat_idle_start = mach_absolute_time(); |
2503 | } |
2504 | |
2505 | TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list); |
2506 | bucket->count++; |
2507 | |
2508 | memorystatus_list_count++; |
2509 | |
2510 | memorystatus_check_levels_locked(); |
2511 | |
2512 | exit: |
2513 | if (!locked) { |
2514 | proc_list_unlock(); |
2515 | } |
2516 | |
2517 | return 0; |
2518 | } |
2519 | |
2520 | /* |
2521 | * Description: |
2522 | * Moves a process from one jetsam bucket to another. |
2523 | * which changes the LRU position of the process. |
2524 | * |
2525 | * Monitors transition between buckets and if necessary |
2526 | * will update cached memory limits accordingly. |
2527 | * |
2528 | * skip_demotion_check: |
2529 | * - if the 'jetsam aging policy' is NOT 'legacy': |
2530 | * When this flag is TRUE, it means we are going |
2531 | * to age the ripe processes out of the aging bands and into the |
2532 | * IDLE band and apply their inactive memory limits. |
2533 | * |
2534 | * - if the 'jetsam aging policy' is 'legacy': |
2535 | * When this flag is TRUE, it might mean the above aging mechanism |
2536 | * OR |
2537 | * It might be that we have a process that has used up its 'idle deferral' |
2538 | * stay that is given to it once per lifetime. And in this case, the process |
2539 | * won't be going through any aging codepaths. But we still need to apply |
2540 | * the right inactive limits and so we explicitly set this to TRUE if the |
2541 | * new priority for the process is the IDLE band. |
2542 | */ |
2543 | void |
2544 | memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check) |
2545 | { |
2546 | memstat_bucket_t *old_bucket, *new_bucket; |
2547 | |
2548 | assert(priority < MEMSTAT_BUCKET_COUNT); |
2549 | |
2550 | /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */ |
2551 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
2552 | return; |
2553 | } |
2554 | |
2555 | MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n" , |
2556 | (*p->p_name ? p->p_name : "unknown" ), p->p_pid, priority, head_insert ? "head" : "tail" ); |
2557 | |
2558 | DTRACE_MEMORYSTATUS3(memorystatus_update_priority, proc_t, p, int32_t, p->p_memstat_effectivepriority, int, priority); |
2559 | |
2560 | #if DEVELOPMENT || DEBUG |
2561 | if (priority == JETSAM_PRIORITY_IDLE && /* if the process is on its way into the IDLE band */ |
2562 | skip_demotion_check == FALSE && /* and it isn't via the path that will set the INACTIVE memlimits */ |
2563 | (p->p_memstat_dirty & P_DIRTY_TRACK) && /* and it has 'DIRTY' tracking enabled */ |
2564 | ((p->p_memstat_memlimit != p->p_memstat_memlimit_inactive) || /* and we notice that the current limit isn't the right value (inactive) */ |
2565 | ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) ? ( ! (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) : (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)))) /* OR type (fatal vs non-fatal) */ |
2566 | panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n" , p->p_name, p->p_memstat_state, priority, p->p_memstat_memlimit); /* then we must catch this */ |
2567 | #endif /* DEVELOPMENT || DEBUG */ |
2568 | |
2569 | old_bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
2570 | |
2571 | if (skip_demotion_check == FALSE) { |
2572 | |
2573 | if (isSysProc(p)) { |
2574 | /* |
2575 | * For system processes, the memorystatus_dirty_* routines take care of adding/removing |
2576 | * the processes from the aging bands and balancing the demotion counts. |
2577 | * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute. |
2578 | */ |
2579 | |
2580 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
2581 | /* |
2582 | * 2 types of processes can use the non-standard elevated inactive band: |
2583 | * - Frozen processes that always land in memorystatus_freeze_jetsam_band |
2584 | * OR |
2585 | * - processes that specifically opt-in to the elevated inactive support e.g. docked processes. |
2586 | */ |
2587 | #if CONFIG_FREEZE |
2588 | if (p->p_memstat_state & P_MEMSTAT_FROZEN) { |
2589 | if (priority <= memorystatus_freeze_jetsam_band) { |
2590 | priority = memorystatus_freeze_jetsam_band; |
2591 | } |
2592 | } else |
2593 | #endif /* CONFIG_FREEZE */ |
2594 | { |
2595 | if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) { |
2596 | priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; |
2597 | } |
2598 | } |
2599 | assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS)); |
2600 | } |
2601 | } else if (isApp(p)) { |
2602 | |
2603 | /* |
2604 | * Check to see if the application is being lowered in jetsam priority. If so, and: |
2605 | * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band. |
2606 | * - it is a normal application, then let it age in the aging band if that policy is in effect. |
2607 | */ |
2608 | |
2609 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
2610 | #if CONFIG_FREEZE |
2611 | if (p->p_memstat_state & P_MEMSTAT_FROZEN) { |
2612 | if (priority <= memorystatus_freeze_jetsam_band) { |
2613 | priority = memorystatus_freeze_jetsam_band; |
2614 | } |
2615 | } else |
2616 | #endif /* CONFIG_FREEZE */ |
2617 | { |
2618 | if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) { |
2619 | priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; |
2620 | } |
2621 | } |
2622 | } else { |
2623 | |
2624 | if (applications_aging_band) { |
2625 | if (p->p_memstat_effectivepriority == applications_aging_band) { |
2626 | assert(old_bucket->count == (memorystatus_scheduled_idle_demotions_apps + 1)); |
2627 | } |
2628 | |
2629 | if ((jetsam_aging_policy != kJetsamAgingPolicyLegacy) && (priority <= applications_aging_band)) { |
2630 | assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS)); |
2631 | priority = applications_aging_band; |
2632 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
2633 | } |
2634 | } |
2635 | } |
2636 | } |
2637 | } |
2638 | |
2639 | if ((system_procs_aging_band && (priority == system_procs_aging_band)) || (applications_aging_band && (priority == applications_aging_band))) { |
2640 | assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS); |
2641 | } |
2642 | |
2643 | TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list); |
2644 | old_bucket->count--; |
2645 | |
2646 | new_bucket = &memstat_bucket[priority]; |
2647 | if (head_insert) |
2648 | TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list); |
2649 | else |
2650 | TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list); |
2651 | new_bucket->count++; |
2652 | |
2653 | if (memorystatus_highwater_enabled) { |
2654 | boolean_t is_fatal; |
2655 | boolean_t use_active; |
2656 | |
2657 | /* |
2658 | * If cached limit data is updated, then the limits |
2659 | * will be enforced by writing to the ledgers. |
2660 | */ |
2661 | boolean_t ledger_update_needed = TRUE; |
2662 | |
2663 | /* |
2664 | * Here, we must update the cached memory limit if the task |
2665 | * is transitioning between: |
2666 | * active <--> inactive |
2667 | * FG <--> BG |
2668 | * but: |
2669 | * dirty <--> clean is ignored |
2670 | * |
2671 | * We bypass non-idle processes that have opted into dirty tracking because |
2672 | * a move between buckets does not imply a transition between the |
2673 | * dirty <--> clean state. |
2674 | */ |
2675 | |
2676 | if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
2677 | |
2678 | if (skip_demotion_check == TRUE && priority == JETSAM_PRIORITY_IDLE) { |
2679 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
2680 | use_active = FALSE; |
2681 | } else { |
2682 | ledger_update_needed = FALSE; |
2683 | } |
2684 | |
2685 | } else if ((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) { |
2686 | /* |
2687 | * inactive --> active |
2688 | * BG --> FG |
2689 | * assign active state |
2690 | */ |
2691 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
2692 | use_active = TRUE; |
2693 | |
2694 | } else if ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) { |
2695 | /* |
2696 | * active --> inactive |
2697 | * FG --> BG |
2698 | * assign inactive state |
2699 | */ |
2700 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
2701 | use_active = FALSE; |
2702 | } else { |
2703 | /* |
2704 | * The transition between jetsam priority buckets apparently did |
2705 | * not affect active/inactive state. |
2706 | * This is not unusual... especially during startup when |
2707 | * processes are getting established in their respective bands. |
2708 | */ |
2709 | ledger_update_needed = FALSE; |
2710 | } |
2711 | |
2712 | /* |
2713 | * Enforce the new limits by writing to the ledger |
2714 | */ |
2715 | if (ledger_update_needed) { |
2716 | task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal); |
2717 | |
2718 | MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n" , |
2719 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
2720 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), p->p_memstat_effectivepriority, priority, p->p_memstat_dirty, |
2721 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
2722 | } |
2723 | } |
2724 | |
2725 | /* |
2726 | * Record idle start or idle delta. |
2727 | */ |
2728 | if (p->p_memstat_effectivepriority == priority) { |
2729 | /* |
2730 | * This process is not transitioning between |
2731 | * jetsam priority buckets. Do nothing. |
2732 | */ |
2733 | } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
2734 | uint64_t now; |
2735 | /* |
2736 | * Transitioning out of the idle priority bucket. |
2737 | * Record idle delta. |
2738 | */ |
2739 | assert(p->p_memstat_idle_start != 0); |
2740 | now = mach_absolute_time(); |
2741 | if (now > p->p_memstat_idle_start) { |
2742 | p->p_memstat_idle_delta = now - p->p_memstat_idle_start; |
2743 | } |
2744 | |
2745 | /* |
2746 | * About to become active and so memory footprint could change. |
2747 | * So mark it eligible for freeze-considerations next time around. |
2748 | */ |
2749 | if (p->p_memstat_state & P_MEMSTAT_FREEZE_IGNORE) { |
2750 | p->p_memstat_state &= ~P_MEMSTAT_FREEZE_IGNORE; |
2751 | } |
2752 | |
2753 | } else if (priority == JETSAM_PRIORITY_IDLE) { |
2754 | /* |
2755 | * Transitioning into the idle priority bucket. |
2756 | * Record idle start. |
2757 | */ |
2758 | p->p_memstat_idle_start = mach_absolute_time(); |
2759 | } |
2760 | |
2761 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0); |
2762 | |
2763 | p->p_memstat_effectivepriority = priority; |
2764 | |
2765 | #if CONFIG_SECLUDED_MEMORY |
2766 | if (secluded_for_apps && |
2767 | task_could_use_secluded_mem(p->task)) { |
2768 | task_set_can_use_secluded_mem( |
2769 | p->task, |
2770 | (priority >= JETSAM_PRIORITY_FOREGROUND)); |
2771 | } |
2772 | #endif /* CONFIG_SECLUDED_MEMORY */ |
2773 | |
2774 | memorystatus_check_levels_locked(); |
2775 | } |
2776 | |
2777 | /* |
2778 | * |
2779 | * Description: Update the jetsam priority and memory limit attributes for a given process. |
2780 | * |
2781 | * Parameters: |
2782 | * p init this process's jetsam information. |
2783 | * priority The jetsam priority band |
2784 | * user_data user specific data, unused by the kernel |
2785 | * effective guards against race if process's update already occurred |
2786 | * update_memlimit When true we know this is the init step via the posix_spawn path. |
2787 | * |
2788 | * memlimit_active Value in megabytes; The monitored footprint level while the |
2789 | * process is active. Exceeding it may result in termination |
2790 | * based on it's associated fatal flag. |
2791 | * |
2792 | * memlimit_active_is_fatal When a process is active and exceeds its memory footprint, |
2793 | * this describes whether or not it should be immediately fatal. |
2794 | * |
2795 | * memlimit_inactive Value in megabytes; The monitored footprint level while the |
2796 | * process is inactive. Exceeding it may result in termination |
2797 | * based on it's associated fatal flag. |
2798 | * |
2799 | * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint, |
2800 | * this describes whether or not it should be immediatly fatal. |
2801 | * |
2802 | * Returns: 0 Success |
2803 | * non-0 Failure |
2804 | */ |
2805 | |
2806 | int |
2807 | memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t effective, boolean_t update_memlimit, |
2808 | int32_t memlimit_active, boolean_t memlimit_active_is_fatal, |
2809 | int32_t memlimit_inactive, boolean_t memlimit_inactive_is_fatal) |
2810 | { |
2811 | int ret; |
2812 | boolean_t head_insert = false; |
2813 | |
2814 | MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n" , (*p->p_name ? p->p_name : "unknown" ), p->p_pid, priority, user_data); |
2815 | |
2816 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, p->p_pid, priority, user_data, effective, 0); |
2817 | |
2818 | if (priority == -1) { |
2819 | /* Use as shorthand for default priority */ |
2820 | priority = JETSAM_PRIORITY_DEFAULT; |
2821 | } else if ((priority == system_procs_aging_band) || (priority == applications_aging_band)) { |
2822 | /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */ |
2823 | priority = JETSAM_PRIORITY_IDLE; |
2824 | } else if (priority == JETSAM_PRIORITY_IDLE_HEAD) { |
2825 | /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */ |
2826 | priority = JETSAM_PRIORITY_IDLE; |
2827 | head_insert = TRUE; |
2828 | } else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) { |
2829 | /* Sanity check */ |
2830 | ret = EINVAL; |
2831 | goto out; |
2832 | } |
2833 | |
2834 | proc_list_lock(); |
2835 | |
2836 | assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); |
2837 | |
2838 | if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) { |
2839 | ret = EALREADY; |
2840 | proc_list_unlock(); |
2841 | MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n" , p->p_pid); |
2842 | goto out; |
2843 | } |
2844 | |
2845 | if ((p->p_memstat_state & P_MEMSTAT_TERMINATED) || ((p->p_listflag & P_LIST_EXITED) != 0)) { |
2846 | /* |
2847 | * This could happen when a process calling posix_spawn() is exiting on the jetsam thread. |
2848 | */ |
2849 | ret = EBUSY; |
2850 | proc_list_unlock(); |
2851 | goto out; |
2852 | } |
2853 | |
2854 | p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED; |
2855 | p->p_memstat_userdata = user_data; |
2856 | p->p_memstat_requestedpriority = priority; |
2857 | |
2858 | if (update_memlimit) { |
2859 | boolean_t is_fatal; |
2860 | boolean_t use_active; |
2861 | |
2862 | /* |
2863 | * Posix_spawn'd processes come through this path to instantiate ledger limits. |
2864 | * Forked processes do not come through this path, so no ledger limits exist. |
2865 | * (That's why forked processes can consume unlimited memory.) |
2866 | */ |
2867 | |
2868 | MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n" , |
2869 | p->p_pid, priority, p->p_memstat_dirty, |
2870 | memlimit_active, (memlimit_active_is_fatal ? "F " : "NF" ), |
2871 | memlimit_inactive, (memlimit_inactive_is_fatal ? "F " : "NF" )); |
2872 | |
2873 | if (memlimit_active <= 0) { |
2874 | /* |
2875 | * This process will have a system_wide task limit when active. |
2876 | * System_wide task limit is always fatal. |
2877 | * It's quite common to see non-fatal flag passed in here. |
2878 | * It's not an error, we just ignore it. |
2879 | */ |
2880 | |
2881 | /* |
2882 | * For backward compatibility with some unexplained launchd behavior, |
2883 | * we allow a zero sized limit. But we still enforce system_wide limit |
2884 | * when written to the ledgers. |
2885 | */ |
2886 | |
2887 | if (memlimit_active < 0) { |
2888 | memlimit_active = -1; /* enforces system_wide task limit */ |
2889 | } |
2890 | memlimit_active_is_fatal = TRUE; |
2891 | } |
2892 | |
2893 | if (memlimit_inactive <= 0) { |
2894 | /* |
2895 | * This process will have a system_wide task limit when inactive. |
2896 | * System_wide task limit is always fatal. |
2897 | */ |
2898 | |
2899 | memlimit_inactive = -1; |
2900 | memlimit_inactive_is_fatal = TRUE; |
2901 | } |
2902 | |
2903 | /* |
2904 | * Initialize the active limit variants for this process. |
2905 | */ |
2906 | SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal); |
2907 | |
2908 | /* |
2909 | * Initialize the inactive limit variants for this process. |
2910 | */ |
2911 | SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal); |
2912 | |
2913 | /* |
2914 | * Initialize the cached limits for target process. |
2915 | * When the target process is dirty tracked, it's typically |
2916 | * in a clean state. Non dirty tracked processes are |
2917 | * typically active (Foreground or above). |
2918 | * But just in case, we don't make assumptions... |
2919 | */ |
2920 | |
2921 | if (proc_jetsam_state_is_active_locked(p) == TRUE) { |
2922 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
2923 | use_active = TRUE; |
2924 | } else { |
2925 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
2926 | use_active = FALSE; |
2927 | } |
2928 | |
2929 | /* |
2930 | * Enforce the cached limit by writing to the ledger. |
2931 | */ |
2932 | if (memorystatus_highwater_enabled) { |
2933 | /* apply now */ |
2934 | task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal); |
2935 | |
2936 | MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n" , |
2937 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
2938 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), priority, p->p_memstat_dirty, |
2939 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
2940 | } |
2941 | } |
2942 | |
2943 | /* |
2944 | * We can't add to the aging bands buckets here. |
2945 | * But, we could be removing it from those buckets. |
2946 | * Check and take appropriate steps if so. |
2947 | */ |
2948 | |
2949 | if (isProcessInAgingBands(p)) { |
2950 | |
2951 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
2952 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
2953 | } else { |
2954 | if (jetsam_aging_policy == kJetsamAgingPolicyLegacy && priority == JETSAM_PRIORITY_IDLE) { |
2955 | /* |
2956 | * Daemons with 'inactive' limits will go through the dirty tracking codepath. |
2957 | * This path deals with apps that may have 'inactive' limits e.g. WebContent processes. |
2958 | * If this is the legacy aging policy we explicitly need to apply those limits. If it |
2959 | * is any other aging policy, then we don't need to worry because all processes |
2960 | * will go through the aging bands and then the demotion thread will take care to |
2961 | * move them into the IDLE band and apply the required limits. |
2962 | */ |
2963 | memorystatus_update_priority_locked(p, priority, head_insert, TRUE); |
2964 | } |
2965 | } |
2966 | |
2967 | memorystatus_update_priority_locked(p, priority, head_insert, FALSE); |
2968 | |
2969 | proc_list_unlock(); |
2970 | ret = 0; |
2971 | |
2972 | out: |
2973 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret, 0, 0, 0, 0); |
2974 | |
2975 | return ret; |
2976 | } |
2977 | |
2978 | int |
2979 | memorystatus_remove(proc_t p, boolean_t locked) |
2980 | { |
2981 | int ret; |
2982 | memstat_bucket_t *bucket; |
2983 | boolean_t reschedule = FALSE; |
2984 | |
2985 | MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n" , p->p_pid); |
2986 | |
2987 | if (!locked) { |
2988 | proc_list_lock(); |
2989 | } |
2990 | |
2991 | assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); |
2992 | |
2993 | bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
2994 | |
2995 | if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) { |
2996 | |
2997 | assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs); |
2998 | reschedule = TRUE; |
2999 | |
3000 | } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) { |
3001 | |
3002 | assert(bucket->count == memorystatus_scheduled_idle_demotions_apps); |
3003 | reschedule = TRUE; |
3004 | } |
3005 | |
3006 | /* |
3007 | * Record idle delta |
3008 | */ |
3009 | |
3010 | if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
3011 | uint64_t now = mach_absolute_time(); |
3012 | if (now > p->p_memstat_idle_start) { |
3013 | p->p_memstat_idle_delta = now - p->p_memstat_idle_start; |
3014 | } |
3015 | } |
3016 | |
3017 | TAILQ_REMOVE(&bucket->list, p, p_memstat_list); |
3018 | bucket->count--; |
3019 | |
3020 | memorystatus_list_count--; |
3021 | |
3022 | /* If awaiting demotion to the idle band, clean up */ |
3023 | if (reschedule) { |
3024 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
3025 | memorystatus_reschedule_idle_demotion_locked(); |
3026 | } |
3027 | |
3028 | memorystatus_check_levels_locked(); |
3029 | |
3030 | #if CONFIG_FREEZE |
3031 | if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) { |
3032 | |
3033 | if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { |
3034 | p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; |
3035 | memorystatus_refreeze_eligible_count--; |
3036 | } |
3037 | |
3038 | memorystatus_frozen_count--; |
3039 | memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages; |
3040 | p->p_memstat_freeze_sharedanon_pages = 0; |
3041 | } |
3042 | |
3043 | if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { |
3044 | memorystatus_suspended_count--; |
3045 | } |
3046 | #endif |
3047 | |
3048 | if (!locked) { |
3049 | proc_list_unlock(); |
3050 | } |
3051 | |
3052 | if (p) { |
3053 | ret = 0; |
3054 | } else { |
3055 | ret = ESRCH; |
3056 | } |
3057 | |
3058 | return ret; |
3059 | } |
3060 | |
3061 | /* |
3062 | * Validate dirty tracking flags with process state. |
3063 | * |
3064 | * Return: |
3065 | * 0 on success |
3066 | * non-0 on failure |
3067 | * |
3068 | * The proc_list_lock is held by the caller. |
3069 | */ |
3070 | |
3071 | static int |
3072 | memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol) { |
3073 | /* See that the process isn't marked for termination */ |
3074 | if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) { |
3075 | return EBUSY; |
3076 | } |
3077 | |
3078 | /* Idle exit requires that process be tracked */ |
3079 | if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) && |
3080 | !(pcontrol & PROC_DIRTY_TRACK)) { |
3081 | return EINVAL; |
3082 | } |
3083 | |
3084 | /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */ |
3085 | if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) && |
3086 | !(pcontrol & PROC_DIRTY_TRACK)) { |
3087 | return EINVAL; |
3088 | } |
3089 | |
3090 | /* Only one type of DEFER behavior is allowed.*/ |
3091 | if ((pcontrol & PROC_DIRTY_DEFER) && |
3092 | (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) { |
3093 | return EINVAL; |
3094 | } |
3095 | |
3096 | /* Deferral is only relevant if idle exit is specified */ |
3097 | if (((pcontrol & PROC_DIRTY_DEFER) || |
3098 | (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) && |
3099 | !(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) { |
3100 | return EINVAL; |
3101 | } |
3102 | |
3103 | return(0); |
3104 | } |
3105 | |
3106 | static void |
3107 | memorystatus_update_idle_priority_locked(proc_t p) { |
3108 | int32_t priority; |
3109 | |
3110 | MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n" , p->p_pid, p->p_memstat_dirty); |
3111 | |
3112 | assert(isSysProc(p)); |
3113 | |
3114 | if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) { |
3115 | |
3116 | priority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE; |
3117 | } else { |
3118 | priority = p->p_memstat_requestedpriority; |
3119 | } |
3120 | |
3121 | if (priority != p->p_memstat_effectivepriority) { |
3122 | |
3123 | if ((jetsam_aging_policy == kJetsamAgingPolicyLegacy) && |
3124 | (priority == JETSAM_PRIORITY_IDLE)) { |
3125 | |
3126 | /* |
3127 | * This process is on its way into the IDLE band. The system is |
3128 | * using 'legacy' jetsam aging policy. That means, this process |
3129 | * has already used up its idle-deferral aging time that is given |
3130 | * once per its lifetime. So we need to set the INACTIVE limits |
3131 | * explicitly because it won't be going through the demotion paths |
3132 | * that take care to apply the limits appropriately. |
3133 | */ |
3134 | |
3135 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
3136 | |
3137 | /* |
3138 | * This process has the 'elevated inactive jetsam band' attribute. |
3139 | * So, there will be no trip to IDLE after all. |
3140 | * Instead, we pin the process in the elevated band, |
3141 | * where its ACTIVE limits will apply. |
3142 | */ |
3143 | |
3144 | priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; |
3145 | } |
3146 | |
3147 | memorystatus_update_priority_locked(p, priority, false, true); |
3148 | |
3149 | } else { |
3150 | memorystatus_update_priority_locked(p, priority, false, false); |
3151 | } |
3152 | } |
3153 | } |
3154 | |
3155 | /* |
3156 | * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle |
3157 | * (clean). They may also indicate that they support termination when idle, with the result that they are promoted |
3158 | * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low |
3159 | * priority idle band when clean (and killed earlier, protecting higher priority procesess). |
3160 | * |
3161 | * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by |
3162 | * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band |
3163 | * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to |
3164 | * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle |
3165 | * band. The deferral can be cleared early by clearing the appropriate flag. |
3166 | * |
3167 | * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process |
3168 | * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be |
3169 | * re-enabled or the guard state cleared, depending on whether the guard deadline has passed. |
3170 | */ |
3171 | |
3172 | int |
3173 | memorystatus_dirty_track(proc_t p, uint32_t pcontrol) { |
3174 | unsigned int old_dirty; |
3175 | boolean_t reschedule = FALSE; |
3176 | boolean_t already_deferred = FALSE; |
3177 | boolean_t defer_now = FALSE; |
3178 | int ret = 0; |
3179 | |
3180 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_TRACK), |
3181 | p->p_pid, p->p_memstat_dirty, pcontrol, 0, 0); |
3182 | |
3183 | proc_list_lock(); |
3184 | |
3185 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
3186 | /* |
3187 | * Process is on its way out. |
3188 | */ |
3189 | ret = EBUSY; |
3190 | goto exit; |
3191 | } |
3192 | |
3193 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
3194 | ret = EPERM; |
3195 | goto exit; |
3196 | } |
3197 | |
3198 | if ((ret = memorystatus_validate_track_flags(p, pcontrol)) != 0) { |
3199 | /* error */ |
3200 | goto exit; |
3201 | } |
3202 | |
3203 | old_dirty = p->p_memstat_dirty; |
3204 | |
3205 | /* These bits are cumulative, as per <rdar://problem/11159924> */ |
3206 | if (pcontrol & PROC_DIRTY_TRACK) { |
3207 | p->p_memstat_dirty |= P_DIRTY_TRACK; |
3208 | } |
3209 | |
3210 | if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) { |
3211 | p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT; |
3212 | } |
3213 | |
3214 | if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { |
3215 | p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS; |
3216 | } |
3217 | |
3218 | if (old_dirty & P_DIRTY_AGING_IN_PROGRESS) { |
3219 | already_deferred = TRUE; |
3220 | } |
3221 | |
3222 | |
3223 | /* This can be set and cleared exactly once. */ |
3224 | if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) { |
3225 | |
3226 | if ((pcontrol & (PROC_DIRTY_DEFER)) && |
3227 | !(old_dirty & P_DIRTY_DEFER)) { |
3228 | p->p_memstat_dirty |= P_DIRTY_DEFER; |
3229 | } |
3230 | |
3231 | if ((pcontrol & (PROC_DIRTY_DEFER_ALWAYS)) && |
3232 | !(old_dirty & P_DIRTY_DEFER_ALWAYS)) { |
3233 | p->p_memstat_dirty |= P_DIRTY_DEFER_ALWAYS; |
3234 | } |
3235 | |
3236 | defer_now = TRUE; |
3237 | } |
3238 | |
3239 | MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n" , |
3240 | ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N" , |
3241 | defer_now ? "Y" : "N" , |
3242 | p->p_memstat_dirty & P_DIRTY ? "Y" : "N" , |
3243 | p->p_pid); |
3244 | |
3245 | /* Kick off or invalidate the idle exit deferment if there's a state transition. */ |
3246 | if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) { |
3247 | if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { |
3248 | |
3249 | if (defer_now && !already_deferred) { |
3250 | |
3251 | /* |
3252 | * Request to defer a clean process that's idle-exit enabled |
3253 | * and not already in the jetsam deferred band. Most likely a |
3254 | * new launch. |
3255 | */ |
3256 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
3257 | reschedule = TRUE; |
3258 | |
3259 | } else if (!defer_now) { |
3260 | |
3261 | /* |
3262 | * The process isn't asking for the 'aging' facility. |
3263 | * Could be that it is: |
3264 | */ |
3265 | |
3266 | if (already_deferred) { |
3267 | /* |
3268 | * already in the aging bands. Traditionally, |
3269 | * some processes have tried to use this to |
3270 | * opt out of the 'aging' facility. |
3271 | */ |
3272 | |
3273 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
3274 | } else { |
3275 | /* |
3276 | * agnostic to the 'aging' facility. In that case, |
3277 | * we'll go ahead and opt it in because this is likely |
3278 | * a new launch (clean process, dirty tracking enabled) |
3279 | */ |
3280 | |
3281 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
3282 | } |
3283 | |
3284 | reschedule = TRUE; |
3285 | } |
3286 | } |
3287 | } else { |
3288 | |
3289 | /* |
3290 | * We are trying to operate on a dirty process. Dirty processes have to |
3291 | * be removed from the deferred band. The question is do we reset the |
3292 | * deferred state or not? |
3293 | * |
3294 | * This could be a legal request like: |
3295 | * - this process had opted into the 'aging' band |
3296 | * - but it's now dirty and requests to opt out. |
3297 | * In this case, we remove the process from the band and reset its |
3298 | * state too. It'll opt back in properly when needed. |
3299 | * |
3300 | * OR, this request could be a user-space bug. E.g.: |
3301 | * - this process had opted into the 'aging' band when clean |
3302 | * - and, then issues another request to again put it into the band except |
3303 | * this time the process is dirty. |
3304 | * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of |
3305 | * the deferred band with its state intact. So our request below is no-op. |
3306 | * But we do it here anyways for coverage. |
3307 | * |
3308 | * memorystatus_update_idle_priority_locked() |
3309 | * single-mindedly treats a dirty process as "cannot be in the aging band". |
3310 | */ |
3311 | |
3312 | if (!defer_now && already_deferred) { |
3313 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
3314 | reschedule = TRUE; |
3315 | } else { |
3316 | |
3317 | boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE; |
3318 | |
3319 | memorystatus_invalidate_idle_demotion_locked(p, reset_state); |
3320 | reschedule = TRUE; |
3321 | } |
3322 | } |
3323 | |
3324 | memorystatus_update_idle_priority_locked(p); |
3325 | |
3326 | if (reschedule) { |
3327 | memorystatus_reschedule_idle_demotion_locked(); |
3328 | } |
3329 | |
3330 | ret = 0; |
3331 | |
3332 | exit: |
3333 | proc_list_unlock(); |
3334 | |
3335 | return ret; |
3336 | } |
3337 | |
3338 | int |
3339 | memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol) { |
3340 | int ret; |
3341 | boolean_t kill = false; |
3342 | boolean_t reschedule = FALSE; |
3343 | boolean_t was_dirty = FALSE; |
3344 | boolean_t now_dirty = FALSE; |
3345 | |
3346 | MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n" , self, p->p_pid, pcontrol, p->p_memstat_dirty); |
3347 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_SET), p->p_pid, self, pcontrol, 0, 0); |
3348 | |
3349 | proc_list_lock(); |
3350 | |
3351 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
3352 | /* |
3353 | * Process is on its way out. |
3354 | */ |
3355 | ret = EBUSY; |
3356 | goto exit; |
3357 | } |
3358 | |
3359 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
3360 | ret = EPERM; |
3361 | goto exit; |
3362 | } |
3363 | |
3364 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) |
3365 | was_dirty = TRUE; |
3366 | |
3367 | if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { |
3368 | /* Dirty tracking not enabled */ |
3369 | ret = EINVAL; |
3370 | } else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { |
3371 | /* |
3372 | * Process is set to be terminated and we're attempting to mark it dirty. |
3373 | * Set for termination and marking as clean is OK - see <rdar://problem/10594349>. |
3374 | */ |
3375 | ret = EBUSY; |
3376 | } else { |
3377 | int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN; |
3378 | if (pcontrol && !(p->p_memstat_dirty & flag)) { |
3379 | /* Mark the process as having been dirtied at some point */ |
3380 | p->p_memstat_dirty |= (flag | P_DIRTY_MARKED); |
3381 | memorystatus_dirty_count++; |
3382 | ret = 0; |
3383 | } else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) { |
3384 | if ((flag == P_DIRTY_SHUTDOWN) && (!(p->p_memstat_dirty & P_DIRTY))) { |
3385 | /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */ |
3386 | p->p_memstat_dirty |= P_DIRTY_TERMINATED; |
3387 | kill = true; |
3388 | } else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { |
3389 | /* Kill previously terminated processes if set clean */ |
3390 | kill = true; |
3391 | } |
3392 | p->p_memstat_dirty &= ~flag; |
3393 | memorystatus_dirty_count--; |
3394 | ret = 0; |
3395 | } else { |
3396 | /* Already set */ |
3397 | ret = EALREADY; |
3398 | } |
3399 | } |
3400 | |
3401 | if (ret != 0) { |
3402 | goto exit; |
3403 | } |
3404 | |
3405 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) |
3406 | now_dirty = TRUE; |
3407 | |
3408 | if ((was_dirty == TRUE && now_dirty == FALSE) || |
3409 | (was_dirty == FALSE && now_dirty == TRUE)) { |
3410 | |
3411 | /* Manage idle exit deferral, if applied */ |
3412 | if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { |
3413 | |
3414 | /* |
3415 | * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back |
3416 | * there once it's clean again. For the legacy case, this only applies if it has some protection window left. |
3417 | * P_DIRTY_DEFER: one-time protection window given at launch |
3418 | * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode. |
3419 | * |
3420 | * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over |
3421 | * in that band on it's way to IDLE. |
3422 | */ |
3423 | |
3424 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { |
3425 | /* |
3426 | * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE" |
3427 | * |
3428 | * The process will move from its aging band to its higher requested |
3429 | * jetsam band. |
3430 | */ |
3431 | boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE; |
3432 | |
3433 | memorystatus_invalidate_idle_demotion_locked(p, reset_state); |
3434 | reschedule = TRUE; |
3435 | } else { |
3436 | |
3437 | /* |
3438 | * Process is back from "dirty" to "clean". |
3439 | */ |
3440 | |
3441 | if (jetsam_aging_policy == kJetsamAgingPolicyLegacy) { |
3442 | if (((p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) == FALSE) && |
3443 | (mach_absolute_time() >= p->p_memstat_idledeadline)) { |
3444 | /* |
3445 | * The process' hasn't enrolled in the "always defer after dirty" |
3446 | * mode and its deadline has expired. It currently |
3447 | * does not reside in any of the aging buckets. |
3448 | * |
3449 | * It's on its way to the JETSAM_PRIORITY_IDLE |
3450 | * bucket via memorystatus_update_idle_priority_locked() |
3451 | * below. |
3452 | |
3453 | * So all we need to do is reset all the state on the |
3454 | * process that's related to the aging bucket i.e. |
3455 | * the AGING_IN_PROGRESS flag and the timer deadline. |
3456 | */ |
3457 | |
3458 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
3459 | reschedule = TRUE; |
3460 | } else { |
3461 | /* |
3462 | * Process enrolled in "always stop in deferral band after dirty" OR |
3463 | * it still has some protection window left and so |
3464 | * we just re-arm the timer without modifying any |
3465 | * state on the process iff it still wants into that band. |
3466 | */ |
3467 | |
3468 | if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) { |
3469 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
3470 | reschedule = TRUE; |
3471 | } else if (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) { |
3472 | memorystatus_schedule_idle_demotion_locked(p, FALSE); |
3473 | reschedule = TRUE; |
3474 | } |
3475 | } |
3476 | } else { |
3477 | |
3478 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
3479 | reschedule = TRUE; |
3480 | } |
3481 | } |
3482 | } |
3483 | |
3484 | memorystatus_update_idle_priority_locked(p); |
3485 | |
3486 | if (memorystatus_highwater_enabled) { |
3487 | boolean_t ledger_update_needed = TRUE; |
3488 | boolean_t use_active; |
3489 | boolean_t is_fatal; |
3490 | /* |
3491 | * We are in this path because this process transitioned between |
3492 | * dirty <--> clean state. Update the cached memory limits. |
3493 | */ |
3494 | |
3495 | if (proc_jetsam_state_is_active_locked(p) == TRUE) { |
3496 | /* |
3497 | * process is pinned in elevated band |
3498 | * or |
3499 | * process is dirty |
3500 | */ |
3501 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
3502 | use_active = TRUE; |
3503 | ledger_update_needed = TRUE; |
3504 | } else { |
3505 | /* |
3506 | * process is clean...but if it has opted into pressured-exit |
3507 | * we don't apply the INACTIVE limit till the process has aged |
3508 | * out and is entering the IDLE band. |
3509 | * See memorystatus_update_priority_locked() for that. |
3510 | */ |
3511 | |
3512 | if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) { |
3513 | ledger_update_needed = FALSE; |
3514 | } else { |
3515 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
3516 | use_active = FALSE; |
3517 | ledger_update_needed = TRUE; |
3518 | } |
3519 | } |
3520 | |
3521 | /* |
3522 | * Enforce the new limits by writing to the ledger. |
3523 | * |
3524 | * This is a hot path and holding the proc_list_lock while writing to the ledgers, |
3525 | * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock. |
3526 | * We aren't traversing the jetsam bucket list here, so we should be safe. |
3527 | * See rdar://21394491. |
3528 | */ |
3529 | |
3530 | if (ledger_update_needed && proc_ref_locked(p) == p) { |
3531 | int ledger_limit; |
3532 | if (p->p_memstat_memlimit > 0) { |
3533 | ledger_limit = p->p_memstat_memlimit; |
3534 | } else { |
3535 | ledger_limit = -1; |
3536 | } |
3537 | proc_list_unlock(); |
3538 | task_set_phys_footprint_limit_internal(p->task, ledger_limit, NULL, use_active, is_fatal); |
3539 | proc_list_lock(); |
3540 | proc_rele_locked(p); |
3541 | |
3542 | MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n" , |
3543 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
3544 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), p->p_memstat_effectivepriority, p->p_memstat_dirty, |
3545 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
3546 | } |
3547 | |
3548 | } |
3549 | |
3550 | /* If the deferral state changed, reschedule the demotion timer */ |
3551 | if (reschedule) { |
3552 | memorystatus_reschedule_idle_demotion_locked(); |
3553 | } |
3554 | } |
3555 | |
3556 | if (kill) { |
3557 | if (proc_ref_locked(p) == p) { |
3558 | proc_list_unlock(); |
3559 | psignal(p, SIGKILL); |
3560 | proc_list_lock(); |
3561 | proc_rele_locked(p); |
3562 | } |
3563 | } |
3564 | |
3565 | exit: |
3566 | proc_list_unlock(); |
3567 | |
3568 | return ret; |
3569 | } |
3570 | |
3571 | int |
3572 | memorystatus_dirty_clear(proc_t p, uint32_t pcontrol) { |
3573 | |
3574 | int ret = 0; |
3575 | |
3576 | MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n" , p->p_pid, pcontrol, p->p_memstat_dirty); |
3577 | |
3578 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_CLEAR), p->p_pid, pcontrol, 0, 0, 0); |
3579 | |
3580 | proc_list_lock(); |
3581 | |
3582 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
3583 | /* |
3584 | * Process is on its way out. |
3585 | */ |
3586 | ret = EBUSY; |
3587 | goto exit; |
3588 | } |
3589 | |
3590 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
3591 | ret = EPERM; |
3592 | goto exit; |
3593 | } |
3594 | |
3595 | if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { |
3596 | /* Dirty tracking not enabled */ |
3597 | ret = EINVAL; |
3598 | goto exit; |
3599 | } |
3600 | |
3601 | if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) == 0) { |
3602 | ret = EINVAL; |
3603 | goto exit; |
3604 | } |
3605 | |
3606 | if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { |
3607 | p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS; |
3608 | } |
3609 | |
3610 | /* This can be set and cleared exactly once. */ |
3611 | if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) { |
3612 | |
3613 | if (p->p_memstat_dirty & P_DIRTY_DEFER) { |
3614 | p->p_memstat_dirty &= ~(P_DIRTY_DEFER); |
3615 | } |
3616 | |
3617 | if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) { |
3618 | p->p_memstat_dirty &= ~(P_DIRTY_DEFER_ALWAYS); |
3619 | } |
3620 | |
3621 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
3622 | memorystatus_update_idle_priority_locked(p); |
3623 | memorystatus_reschedule_idle_demotion_locked(); |
3624 | } |
3625 | |
3626 | ret = 0; |
3627 | exit: |
3628 | proc_list_unlock(); |
3629 | |
3630 | return ret; |
3631 | } |
3632 | |
3633 | int |
3634 | memorystatus_dirty_get(proc_t p) { |
3635 | int ret = 0; |
3636 | |
3637 | proc_list_lock(); |
3638 | |
3639 | if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
3640 | ret |= PROC_DIRTY_TRACKED; |
3641 | if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) { |
3642 | ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT; |
3643 | } |
3644 | if (p->p_memstat_dirty & P_DIRTY) { |
3645 | ret |= PROC_DIRTY_IS_DIRTY; |
3646 | } |
3647 | if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) { |
3648 | ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS; |
3649 | } |
3650 | } |
3651 | |
3652 | proc_list_unlock(); |
3653 | |
3654 | return ret; |
3655 | } |
3656 | |
3657 | int |
3658 | memorystatus_on_terminate(proc_t p) { |
3659 | int sig; |
3660 | |
3661 | proc_list_lock(); |
3662 | |
3663 | p->p_memstat_dirty |= P_DIRTY_TERMINATED; |
3664 | |
3665 | if ((p->p_memstat_dirty & (P_DIRTY_TRACK|P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) { |
3666 | /* Clean; mark as terminated and issue SIGKILL */ |
3667 | sig = SIGKILL; |
3668 | } else { |
3669 | /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */ |
3670 | sig = SIGTERM; |
3671 | } |
3672 | |
3673 | proc_list_unlock(); |
3674 | |
3675 | return sig; |
3676 | } |
3677 | |
3678 | void |
3679 | memorystatus_on_suspend(proc_t p) |
3680 | { |
3681 | #if CONFIG_FREEZE |
3682 | uint32_t pages; |
3683 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
3684 | #endif |
3685 | proc_list_lock(); |
3686 | #if CONFIG_FREEZE |
3687 | memorystatus_suspended_count++; |
3688 | #endif |
3689 | p->p_memstat_state |= P_MEMSTAT_SUSPENDED; |
3690 | proc_list_unlock(); |
3691 | } |
3692 | |
3693 | void |
3694 | memorystatus_on_resume(proc_t p) |
3695 | { |
3696 | #if CONFIG_FREEZE |
3697 | boolean_t frozen; |
3698 | pid_t pid; |
3699 | #endif |
3700 | |
3701 | proc_list_lock(); |
3702 | |
3703 | #if CONFIG_FREEZE |
3704 | frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN); |
3705 | if (frozen) { |
3706 | /* |
3707 | * Now that we don't _thaw_ a process completely, |
3708 | * resuming it (and having some on-demand swapins) |
3709 | * shouldn't preclude it from being counted as frozen. |
3710 | * |
3711 | * memorystatus_frozen_count--; |
3712 | * |
3713 | * We preserve the P_MEMSTAT_FROZEN state since the process |
3714 | * could have state on disk AND so will deserve some protection |
3715 | * in the jetsam bands. |
3716 | */ |
3717 | if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == 0) { |
3718 | p->p_memstat_state |= P_MEMSTAT_REFREEZE_ELIGIBLE; |
3719 | memorystatus_refreeze_eligible_count++; |
3720 | } |
3721 | p->p_memstat_thaw_count++; |
3722 | |
3723 | memorystatus_thaw_count++; |
3724 | } |
3725 | |
3726 | memorystatus_suspended_count--; |
3727 | |
3728 | pid = p->p_pid; |
3729 | #endif |
3730 | |
3731 | /* |
3732 | * P_MEMSTAT_FROZEN will remain unchanged. This used to be: |
3733 | * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN); |
3734 | */ |
3735 | p->p_memstat_state &= ~P_MEMSTAT_SUSPENDED; |
3736 | |
3737 | proc_list_unlock(); |
3738 | |
3739 | #if CONFIG_FREEZE |
3740 | if (frozen) { |
3741 | memorystatus_freeze_entry_t data = { pid, FALSE, 0 }; |
3742 | memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); |
3743 | } |
3744 | #endif |
3745 | } |
3746 | |
3747 | void |
3748 | memorystatus_on_inactivity(proc_t p) |
3749 | { |
3750 | #pragma unused(p) |
3751 | #if CONFIG_FREEZE |
3752 | /* Wake the freeze thread */ |
3753 | thread_wakeup((event_t)&memorystatus_freeze_wakeup); |
3754 | #endif |
3755 | } |
3756 | |
3757 | /* |
3758 | * The proc_list_lock is held by the caller. |
3759 | */ |
3760 | static uint32_t |
3761 | memorystatus_build_state(proc_t p) { |
3762 | uint32_t snapshot_state = 0; |
3763 | |
3764 | /* General */ |
3765 | if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { |
3766 | snapshot_state |= kMemorystatusSuspended; |
3767 | } |
3768 | if (p->p_memstat_state & P_MEMSTAT_FROZEN) { |
3769 | snapshot_state |= kMemorystatusFrozen; |
3770 | } |
3771 | if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { |
3772 | snapshot_state |= kMemorystatusWasThawed; |
3773 | } |
3774 | |
3775 | /* Tracking */ |
3776 | if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
3777 | snapshot_state |= kMemorystatusTracked; |
3778 | } |
3779 | if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { |
3780 | snapshot_state |= kMemorystatusSupportsIdleExit; |
3781 | } |
3782 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { |
3783 | snapshot_state |= kMemorystatusDirty; |
3784 | } |
3785 | |
3786 | return snapshot_state; |
3787 | } |
3788 | |
3789 | static boolean_t |
3790 | kill_idle_exit_proc(void) |
3791 | { |
3792 | proc_t p, victim_p = PROC_NULL; |
3793 | uint64_t current_time; |
3794 | boolean_t killed = FALSE; |
3795 | unsigned int i = 0; |
3796 | os_reason_t jetsam_reason = OS_REASON_NULL; |
3797 | |
3798 | /* Pick next idle exit victim. */ |
3799 | current_time = mach_absolute_time(); |
3800 | |
3801 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_IDLE_EXIT); |
3802 | if (jetsam_reason == OS_REASON_NULL) { |
3803 | printf("kill_idle_exit_proc: failed to allocate jetsam reason\n" ); |
3804 | } |
3805 | |
3806 | proc_list_lock(); |
3807 | |
3808 | p = memorystatus_get_first_proc_locked(&i, FALSE); |
3809 | while (p) { |
3810 | /* No need to look beyond the idle band */ |
3811 | if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) { |
3812 | break; |
3813 | } |
3814 | |
3815 | if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT|P_DIRTY_IS_DIRTY|P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) { |
3816 | if (current_time >= p->p_memstat_idledeadline) { |
3817 | p->p_memstat_dirty |= P_DIRTY_TERMINATED; |
3818 | victim_p = proc_ref_locked(p); |
3819 | break; |
3820 | } |
3821 | } |
3822 | |
3823 | p = memorystatus_get_next_proc_locked(&i, p, FALSE); |
3824 | } |
3825 | |
3826 | proc_list_unlock(); |
3827 | |
3828 | if (victim_p) { |
3829 | printf("memorystatus: killing_idle_process pid %d [%s]\n" , victim_p->p_pid, (*victim_p->p_name ? victim_p->p_name : "unknown" )); |
3830 | killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit, jetsam_reason); |
3831 | proc_rele(victim_p); |
3832 | } else { |
3833 | os_reason_free(jetsam_reason); |
3834 | } |
3835 | |
3836 | return killed; |
3837 | } |
3838 | |
3839 | static void |
3840 | memorystatus_thread_wake(void) |
3841 | { |
3842 | int thr_id = 0; |
3843 | int active_thr = atomic_load(&active_jetsam_threads); |
3844 | |
3845 | /* Wakeup all the jetsam threads */ |
3846 | for (thr_id = 0; thr_id < active_thr; thr_id++) { |
3847 | thread_wakeup((event_t)&jetsam_threads[thr_id].memorystatus_wakeup); |
3848 | } |
3849 | } |
3850 | |
3851 | #if CONFIG_JETSAM |
3852 | |
3853 | static void |
3854 | memorystatus_thread_pool_max() |
3855 | { |
3856 | /* Increase the jetsam thread pool to max_jetsam_threads */ |
3857 | int max_threads = max_jetsam_threads; |
3858 | printf("Expanding memorystatus pool to %d!\n" , max_threads); |
3859 | atomic_store(&active_jetsam_threads, max_threads); |
3860 | } |
3861 | |
3862 | static void |
3863 | memorystatus_thread_pool_default() |
3864 | { |
3865 | /* Restore the jetsam thread pool to a single thread */ |
3866 | printf("Reverting memorystatus pool back to 1\n" ); |
3867 | atomic_store(&active_jetsam_threads, 1); |
3868 | } |
3869 | |
3870 | #endif /* CONFIG_JETSAM */ |
3871 | |
3872 | extern void vm_pressure_response(void); |
3873 | |
3874 | static int |
3875 | memorystatus_thread_block(uint32_t interval_ms, thread_continue_t continuation) |
3876 | { |
3877 | struct jetsam_thread_state *jetsam_thread = jetsam_current_thread(); |
3878 | |
3879 | if (interval_ms) { |
3880 | assert_wait_timeout(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT, interval_ms, NSEC_PER_MSEC); |
3881 | } else { |
3882 | assert_wait(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT); |
3883 | } |
3884 | |
3885 | return thread_block(continuation); |
3886 | } |
3887 | |
3888 | static boolean_t |
3889 | memorystatus_avail_pages_below_pressure(void) |
3890 | { |
3891 | #if CONFIG_EMBEDDED |
3892 | /* |
3893 | * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should |
3894 | * key off of the system having dynamic swap support. With full swap support, |
3895 | * the system shouldn't really need to worry about various page thresholds. |
3896 | */ |
3897 | return (memorystatus_available_pages <= memorystatus_available_pages_pressure); |
3898 | #else /* CONFIG_EMBEDDED */ |
3899 | return FALSE; |
3900 | #endif /* CONFIG_EMBEDDED */ |
3901 | } |
3902 | |
3903 | static boolean_t |
3904 | memorystatus_avail_pages_below_critical(void) |
3905 | { |
3906 | #if CONFIG_EMBEDDED |
3907 | return (memorystatus_available_pages <= memorystatus_available_pages_critical); |
3908 | #else /* CONFIG_EMBEDDED */ |
3909 | return FALSE; |
3910 | #endif /* CONFIG_EMBEDDED */ |
3911 | } |
3912 | |
3913 | static boolean_t |
3914 | memorystatus_post_snapshot(int32_t priority, uint32_t cause) |
3915 | { |
3916 | #if CONFIG_EMBEDDED |
3917 | #pragma unused(cause) |
3918 | /* |
3919 | * Don't generate logs for steady-state idle-exit kills, |
3920 | * unless it is overridden for debug or by the device |
3921 | * tree. |
3922 | */ |
3923 | |
3924 | return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot); |
3925 | |
3926 | #else /* CONFIG_EMBEDDED */ |
3927 | /* |
3928 | * Don't generate logs for steady-state idle-exit kills, |
3929 | * unless |
3930 | * - it is overridden for debug or by the device |
3931 | * tree. |
3932 | * OR |
3933 | * - the kill causes are important i.e. not kMemorystatusKilledIdleExit |
3934 | */ |
3935 | |
3936 | boolean_t snapshot_eligible_kill_cause = (is_reason_thrashing(cause) || is_reason_zone_map_exhaustion(cause)); |
3937 | return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot || snapshot_eligible_kill_cause); |
3938 | #endif /* CONFIG_EMBEDDED */ |
3939 | } |
3940 | |
3941 | static boolean_t |
3942 | memorystatus_action_needed(void) |
3943 | { |
3944 | #if CONFIG_EMBEDDED |
3945 | return (is_reason_thrashing(kill_under_pressure_cause) || |
3946 | is_reason_zone_map_exhaustion(kill_under_pressure_cause) || |
3947 | memorystatus_available_pages <= memorystatus_available_pages_pressure); |
3948 | #else /* CONFIG_EMBEDDED */ |
3949 | return (is_reason_thrashing(kill_under_pressure_cause) || |
3950 | is_reason_zone_map_exhaustion(kill_under_pressure_cause)); |
3951 | #endif /* CONFIG_EMBEDDED */ |
3952 | } |
3953 | |
3954 | #if CONFIG_FREEZE |
3955 | extern void vm_swap_consider_defragmenting(int); |
3956 | |
3957 | /* |
3958 | * This routine will _jetsam_ all frozen processes |
3959 | * and reclaim the swap space immediately. |
3960 | * |
3961 | * So freeze has to be DISABLED when we call this routine. |
3962 | */ |
3963 | |
3964 | void |
3965 | memorystatus_disable_freeze(void) |
3966 | { |
3967 | memstat_bucket_t *bucket; |
3968 | int bucket_count = 0, retries = 0; |
3969 | boolean_t retval = FALSE, killed = FALSE; |
3970 | uint32_t errors = 0, errors_over_prev_iteration = 0; |
3971 | os_reason_t jetsam_reason = 0; |
3972 | unsigned int band = 0; |
3973 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
3974 | |
3975 | assert(memorystatus_freeze_enabled == FALSE); |
3976 | |
3977 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_DISK_SPACE_SHORTAGE); |
3978 | if (jetsam_reason == OS_REASON_NULL) { |
3979 | printf("memorystatus_disable_freeze: failed to allocate jetsam reason\n" ); |
3980 | } |
3981 | |
3982 | /* |
3983 | * Let's relocate all frozen processes into band 8. Demoted frozen processes |
3984 | * are sitting in band 0 currently and it's possible to have a frozen process |
3985 | * in the FG band being actively used. We don't reset its frozen state when |
3986 | * it is resumed because it has state on disk. |
3987 | * |
3988 | * We choose to do this relocation rather than implement a new 'kill frozen' |
3989 | * process function for these reasons: |
3990 | * - duplication of code: too many kill functions exist and we need to rework them better. |
3991 | * - disk-space-shortage kills are rare |
3992 | * - not having the 'real' jetsam band at time of the this frozen kill won't preclude us |
3993 | * from answering any imp. questions re. jetsam policy/effectiveness. |
3994 | * |
3995 | * This is essentially what memorystatus_update_inactive_jetsam_priority_band() does while |
3996 | * avoiding the application of memory limits. |
3997 | */ |
3998 | |
3999 | again: |
4000 | proc_list_lock(); |
4001 | |
4002 | band = JETSAM_PRIORITY_IDLE; |
4003 | p = PROC_NULL; |
4004 | next_p = PROC_NULL; |
4005 | |
4006 | next_p = memorystatus_get_first_proc_locked(&band, TRUE); |
4007 | while (next_p) { |
4008 | |
4009 | p = next_p; |
4010 | next_p = memorystatus_get_next_proc_locked(&band, p, TRUE); |
4011 | |
4012 | if (p->p_memstat_effectivepriority > JETSAM_PRIORITY_FOREGROUND) { |
4013 | break; |
4014 | } |
4015 | |
4016 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { |
4017 | continue; |
4018 | } |
4019 | |
4020 | if (p->p_memstat_state & P_MEMSTAT_ERROR) { |
4021 | p->p_memstat_state &= ~P_MEMSTAT_ERROR; |
4022 | } |
4023 | |
4024 | if (p->p_memstat_effectivepriority == memorystatus_freeze_jetsam_band) { |
4025 | continue; |
4026 | } |
4027 | |
4028 | /* |
4029 | * We explicitly add this flag here so the process looks like a normal |
4030 | * frozen process i.e. P_MEMSTAT_FROZEN and P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND. |
4031 | * We don't bother with assigning the 'active' memory |
4032 | * limits at this point because we are going to be killing it soon below. |
4033 | */ |
4034 | p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
4035 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
4036 | |
4037 | memorystatus_update_priority_locked(p, memorystatus_freeze_jetsam_band, FALSE, TRUE); |
4038 | } |
4039 | |
4040 | bucket = &memstat_bucket[memorystatus_freeze_jetsam_band]; |
4041 | bucket_count = bucket->count; |
4042 | proc_list_unlock(); |
4043 | |
4044 | /* |
4045 | * Bucket count is already stale at this point. But, we don't expect |
4046 | * freezing to continue since we have already disabled the freeze functionality. |
4047 | * However, an existing freeze might be in progress. So we might miss that process |
4048 | * in the first go-around. We hope to catch it in the next. |
4049 | */ |
4050 | |
4051 | errors_over_prev_iteration = 0; |
4052 | while (bucket_count) { |
4053 | |
4054 | bucket_count--; |
4055 | |
4056 | /* |
4057 | * memorystatus_kill_elevated_process() drops a reference, |
4058 | * so take another one so we can continue to use this exit reason |
4059 | * even after it returns. |
4060 | */ |
4061 | |
4062 | os_reason_ref(jetsam_reason); |
4063 | retval = memorystatus_kill_elevated_process( |
4064 | kMemorystatusKilledDiskSpaceShortage, |
4065 | jetsam_reason, |
4066 | memorystatus_freeze_jetsam_band, |
4067 | 0, /* the iteration of aggressive jetsam..ignored here */ |
4068 | &errors); |
4069 | |
4070 | if (errors > 0) { |
4071 | printf("memorystatus_disable_freeze: memorystatus_kill_elevated_process returned %d error(s)\n" , errors); |
4072 | errors_over_prev_iteration += errors; |
4073 | errors = 0; |
4074 | } |
4075 | |
4076 | if (retval == 0) { |
4077 | /* |
4078 | * No frozen processes left to kill. |
4079 | */ |
4080 | break; |
4081 | } |
4082 | |
4083 | killed = TRUE; |
4084 | } |
4085 | |
4086 | proc_list_lock(); |
4087 | |
4088 | if (memorystatus_frozen_count) { |
4089 | /* |
4090 | * A frozen process snuck in and so |
4091 | * go back around to kill it. That |
4092 | * process may have been resumed and |
4093 | * put into the FG band too. So we |
4094 | * have to do the relocation again. |
4095 | */ |
4096 | assert(memorystatus_freeze_enabled == FALSE); |
4097 | |
4098 | retries++; |
4099 | if (retries < 3) { |
4100 | proc_list_unlock(); |
4101 | goto again; |
4102 | } |
4103 | #if DEVELOPMENT || DEBUG |
4104 | panic("memorystatus_disable_freeze: Failed to kill all frozen processes, memorystatus_frozen_count = %d, errors = %d" , |
4105 | memorystatus_frozen_count, errors_over_prev_iteration); |
4106 | #endif /* DEVELOPMENT || DEBUG */ |
4107 | } |
4108 | proc_list_unlock(); |
4109 | |
4110 | os_reason_free(jetsam_reason); |
4111 | |
4112 | if (killed) { |
4113 | |
4114 | vm_swap_consider_defragmenting(VM_SWAP_FLAGS_FORCE_DEFRAG | VM_SWAP_FLAGS_FORCE_RECLAIM); |
4115 | |
4116 | proc_list_lock(); |
4117 | size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
4118 | sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count); |
4119 | uint64_t timestamp_now = mach_absolute_time(); |
4120 | memorystatus_jetsam_snapshot->notification_time = timestamp_now; |
4121 | memorystatus_jetsam_snapshot->js_gencount++; |
4122 | if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || |
4123 | timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { |
4124 | proc_list_unlock(); |
4125 | int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); |
4126 | if (!ret) { |
4127 | proc_list_lock(); |
4128 | memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; |
4129 | proc_list_unlock(); |
4130 | } |
4131 | } else { |
4132 | proc_list_unlock(); |
4133 | } |
4134 | } |
4135 | |
4136 | return; |
4137 | } |
4138 | #endif /* CONFIG_FREEZE */ |
4139 | |
4140 | static boolean_t |
4141 | memorystatus_act_on_hiwat_processes(uint32_t *errors, uint32_t *hwm_kill, boolean_t *post_snapshot, __unused boolean_t *is_critical) |
4142 | { |
4143 | boolean_t purged = FALSE; |
4144 | boolean_t killed = memorystatus_kill_hiwat_proc(errors, &purged); |
4145 | |
4146 | if (killed) { |
4147 | *hwm_kill = *hwm_kill + 1; |
4148 | *post_snapshot = TRUE; |
4149 | return TRUE; |
4150 | } else { |
4151 | if (purged == FALSE) { |
4152 | /* couldn't purge and couldn't kill */ |
4153 | memorystatus_hwm_candidates = FALSE; |
4154 | } |
4155 | } |
4156 | |
4157 | #if CONFIG_JETSAM |
4158 | /* No highwater processes to kill. Continue or stop for now? */ |
4159 | if (!is_reason_thrashing(kill_under_pressure_cause) && |
4160 | !is_reason_zone_map_exhaustion(kill_under_pressure_cause) && |
4161 | (memorystatus_available_pages > memorystatus_available_pages_critical)) { |
4162 | /* |
4163 | * We are _not_ out of pressure but we are above the critical threshold and there's: |
4164 | * - no compressor thrashing |
4165 | * - enough zone memory |
4166 | * - no more HWM processes left. |
4167 | * For now, don't kill any other processes. |
4168 | */ |
4169 | |
4170 | if (*hwm_kill == 0) { |
4171 | memorystatus_thread_wasted_wakeup++; |
4172 | } |
4173 | |
4174 | *is_critical = FALSE; |
4175 | |
4176 | return TRUE; |
4177 | } |
4178 | #endif /* CONFIG_JETSAM */ |
4179 | |
4180 | return FALSE; |
4181 | } |
4182 | |
4183 | static boolean_t |
4184 | memorystatus_act_aggressive(uint32_t cause, os_reason_t jetsam_reason, int *jld_idle_kills, boolean_t *corpse_list_purged, boolean_t *post_snapshot) |
4185 | { |
4186 | if (memorystatus_jld_enabled == TRUE) { |
4187 | |
4188 | boolean_t killed; |
4189 | uint32_t errors = 0; |
4190 | |
4191 | /* Jetsam Loop Detection - locals */ |
4192 | memstat_bucket_t *bucket; |
4193 | int jld_bucket_count = 0; |
4194 | struct timeval jld_now_tstamp = {0,0}; |
4195 | uint64_t jld_now_msecs = 0; |
4196 | int elevated_bucket_count = 0; |
4197 | |
4198 | /* Jetsam Loop Detection - statics */ |
4199 | static uint64_t jld_timestamp_msecs = 0; |
4200 | static int jld_idle_kill_candidates = 0; /* Number of available processes in band 0,1 at start */ |
4201 | static int jld_eval_aggressive_count = 0; /* Bumps the max priority in aggressive loop */ |
4202 | static int32_t jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT; |
4203 | /* |
4204 | * Jetsam Loop Detection: attempt to detect |
4205 | * rapid daemon relaunches in the lower bands. |
4206 | */ |
4207 | |
4208 | microuptime(&jld_now_tstamp); |
4209 | |
4210 | /* |
4211 | * Ignore usecs in this calculation. |
4212 | * msecs granularity is close enough. |
4213 | */ |
4214 | jld_now_msecs = (jld_now_tstamp.tv_sec * 1000); |
4215 | |
4216 | proc_list_lock(); |
4217 | switch (jetsam_aging_policy) { |
4218 | case kJetsamAgingPolicyLegacy: |
4219 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
4220 | jld_bucket_count = bucket->count; |
4221 | bucket = &memstat_bucket[JETSAM_PRIORITY_AGING_BAND1]; |
4222 | jld_bucket_count += bucket->count; |
4223 | break; |
4224 | case kJetsamAgingPolicySysProcsReclaimedFirst: |
4225 | case kJetsamAgingPolicyAppsReclaimedFirst: |
4226 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
4227 | jld_bucket_count = bucket->count; |
4228 | bucket = &memstat_bucket[system_procs_aging_band]; |
4229 | jld_bucket_count += bucket->count; |
4230 | bucket = &memstat_bucket[applications_aging_band]; |
4231 | jld_bucket_count += bucket->count; |
4232 | break; |
4233 | case kJetsamAgingPolicyNone: |
4234 | default: |
4235 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
4236 | jld_bucket_count = bucket->count; |
4237 | break; |
4238 | } |
4239 | |
4240 | bucket = &memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE]; |
4241 | elevated_bucket_count = bucket->count; |
4242 | |
4243 | proc_list_unlock(); |
4244 | |
4245 | /* |
4246 | * memorystatus_jld_eval_period_msecs is a tunable |
4247 | * memorystatus_jld_eval_aggressive_count is a tunable |
4248 | * memorystatus_jld_eval_aggressive_priority_band_max is a tunable |
4249 | */ |
4250 | if ( (jld_bucket_count == 0) || |
4251 | (jld_now_msecs > (jld_timestamp_msecs + memorystatus_jld_eval_period_msecs))) { |
4252 | |
4253 | /* |
4254 | * Refresh evaluation parameters |
4255 | */ |
4256 | jld_timestamp_msecs = jld_now_msecs; |
4257 | jld_idle_kill_candidates = jld_bucket_count; |
4258 | *jld_idle_kills = 0; |
4259 | jld_eval_aggressive_count = 0; |
4260 | jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT; |
4261 | } |
4262 | |
4263 | if (*jld_idle_kills > jld_idle_kill_candidates) { |
4264 | jld_eval_aggressive_count++; |
4265 | |
4266 | #if DEVELOPMENT || DEBUG |
4267 | printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n" , |
4268 | jld_eval_aggressive_count, |
4269 | jld_timestamp_msecs, |
4270 | jld_now_msecs); |
4271 | printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n" , |
4272 | jld_eval_aggressive_count, |
4273 | jld_idle_kill_candidates, |
4274 | *jld_idle_kills); |
4275 | #endif /* DEVELOPMENT || DEBUG */ |
4276 | |
4277 | if ((jld_eval_aggressive_count == memorystatus_jld_eval_aggressive_count) && |
4278 | (total_corpses_count() > 0) && (*corpse_list_purged == FALSE)) { |
4279 | /* |
4280 | * If we reach this aggressive cycle, corpses might be causing memory pressure. |
4281 | * So, in an effort to avoid jetsams in the FG band, we will attempt to purge |
4282 | * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT. |
4283 | */ |
4284 | task_purge_all_corpses(); |
4285 | *corpse_list_purged = TRUE; |
4286 | } |
4287 | else if (jld_eval_aggressive_count > memorystatus_jld_eval_aggressive_count) { |
4288 | /* |
4289 | * Bump up the jetsam priority limit (eg: the bucket index) |
4290 | * Enforce bucket index sanity. |
4291 | */ |
4292 | if ((memorystatus_jld_eval_aggressive_priority_band_max < 0) || |
4293 | (memorystatus_jld_eval_aggressive_priority_band_max >= MEMSTAT_BUCKET_COUNT)) { |
4294 | /* |
4295 | * Do nothing. Stick with the default level. |
4296 | */ |
4297 | } else { |
4298 | jld_priority_band_max = memorystatus_jld_eval_aggressive_priority_band_max; |
4299 | } |
4300 | } |
4301 | |
4302 | /* Visit elevated processes first */ |
4303 | while (elevated_bucket_count) { |
4304 | |
4305 | elevated_bucket_count--; |
4306 | |
4307 | /* |
4308 | * memorystatus_kill_elevated_process() drops a reference, |
4309 | * so take another one so we can continue to use this exit reason |
4310 | * even after it returns. |
4311 | */ |
4312 | |
4313 | os_reason_ref(jetsam_reason); |
4314 | killed = memorystatus_kill_elevated_process( |
4315 | cause, |
4316 | jetsam_reason, |
4317 | JETSAM_PRIORITY_ELEVATED_INACTIVE, |
4318 | jld_eval_aggressive_count, |
4319 | &errors); |
4320 | |
4321 | if (killed) { |
4322 | *post_snapshot = TRUE; |
4323 | if (memorystatus_avail_pages_below_pressure()) { |
4324 | /* |
4325 | * Still under pressure. |
4326 | * Find another pinned processes. |
4327 | */ |
4328 | continue; |
4329 | } else { |
4330 | return TRUE; |
4331 | } |
4332 | } else { |
4333 | /* |
4334 | * No pinned processes left to kill. |
4335 | * Abandon elevated band. |
4336 | */ |
4337 | break; |
4338 | } |
4339 | } |
4340 | |
4341 | /* |
4342 | * memorystatus_kill_top_process_aggressive() allocates its own |
4343 | * jetsam_reason so the kMemorystatusKilledProcThrashing cause |
4344 | * is consistent throughout the aggressive march. |
4345 | */ |
4346 | killed = memorystatus_kill_top_process_aggressive( |
4347 | kMemorystatusKilledProcThrashing, |
4348 | jld_eval_aggressive_count, |
4349 | jld_priority_band_max, |
4350 | &errors); |
4351 | |
4352 | if (killed) { |
4353 | /* Always generate logs after aggressive kill */ |
4354 | *post_snapshot = TRUE; |
4355 | *jld_idle_kills = 0; |
4356 | return TRUE; |
4357 | } |
4358 | } |
4359 | |
4360 | return FALSE; |
4361 | } |
4362 | |
4363 | return FALSE; |
4364 | } |
4365 | |
4366 | |
4367 | static void |
4368 | memorystatus_thread(void *param __unused, wait_result_t wr __unused) |
4369 | { |
4370 | boolean_t post_snapshot = FALSE; |
4371 | uint32_t errors = 0; |
4372 | uint32_t hwm_kill = 0; |
4373 | boolean_t sort_flag = TRUE; |
4374 | boolean_t corpse_list_purged = FALSE; |
4375 | int jld_idle_kills = 0; |
4376 | struct jetsam_thread_state *jetsam_thread = jetsam_current_thread(); |
4377 | |
4378 | if (jetsam_thread->inited == FALSE) { |
4379 | /* |
4380 | * It's the first time the thread has run, so just mark the thread as privileged and block. |
4381 | * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>. |
4382 | */ |
4383 | |
4384 | char name[32]; |
4385 | thread_wire(host_priv_self(), current_thread(), TRUE); |
4386 | snprintf(name, 32, "VM_memorystatus_%d" , jetsam_thread->index + 1); |
4387 | |
4388 | if (jetsam_thread->index == 0) { |
4389 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { |
4390 | thread_vm_bind_group_add(); |
4391 | } |
4392 | } |
4393 | thread_set_thread_name(current_thread(), name); |
4394 | jetsam_thread->inited = TRUE; |
4395 | memorystatus_thread_block(0, memorystatus_thread); |
4396 | } |
4397 | |
4398 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_START, |
4399 | memorystatus_available_pages, memorystatus_jld_enabled, memorystatus_jld_eval_period_msecs, memorystatus_jld_eval_aggressive_count,0); |
4400 | |
4401 | /* |
4402 | * Jetsam aware version. |
4403 | * |
4404 | * The VM pressure notification thread is working it's way through clients in parallel. |
4405 | * |
4406 | * So, while the pressure notification thread is targeting processes in order of |
4407 | * increasing jetsam priority, we can hopefully reduce / stop it's work by killing |
4408 | * any processes that have exceeded their highwater mark. |
4409 | * |
4410 | * If we run out of HWM processes and our available pages drops below the critical threshold, then, |
4411 | * we target the least recently used process in order of increasing jetsam priority (exception: the FG band). |
4412 | */ |
4413 | while (memorystatus_action_needed()) { |
4414 | boolean_t killed; |
4415 | int32_t priority; |
4416 | uint32_t cause; |
4417 | uint64_t jetsam_reason_code = JETSAM_REASON_INVALID; |
4418 | os_reason_t jetsam_reason = OS_REASON_NULL; |
4419 | |
4420 | cause = kill_under_pressure_cause; |
4421 | switch (cause) { |
4422 | case kMemorystatusKilledFCThrashing: |
4423 | jetsam_reason_code = JETSAM_REASON_MEMORY_FCTHRASHING; |
4424 | break; |
4425 | case kMemorystatusKilledVMCompressorThrashing: |
4426 | jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING; |
4427 | break; |
4428 | case kMemorystatusKilledVMCompressorSpaceShortage: |
4429 | jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE; |
4430 | break; |
4431 | case kMemorystatusKilledZoneMapExhaustion: |
4432 | jetsam_reason_code = JETSAM_REASON_ZONE_MAP_EXHAUSTION; |
4433 | break; |
4434 | case kMemorystatusKilledVMPageShortage: |
4435 | /* falls through */ |
4436 | default: |
4437 | jetsam_reason_code = JETSAM_REASON_MEMORY_VMPAGESHORTAGE; |
4438 | cause = kMemorystatusKilledVMPageShortage; |
4439 | break; |
4440 | } |
4441 | |
4442 | /* Highwater */ |
4443 | boolean_t is_critical = TRUE; |
4444 | if (memorystatus_act_on_hiwat_processes(&errors, &hwm_kill, &post_snapshot, &is_critical)) { |
4445 | if (is_critical == FALSE) { |
4446 | /* |
4447 | * For now, don't kill any other processes. |
4448 | */ |
4449 | break; |
4450 | } else { |
4451 | goto done; |
4452 | } |
4453 | } |
4454 | |
4455 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, jetsam_reason_code); |
4456 | if (jetsam_reason == OS_REASON_NULL) { |
4457 | printf("memorystatus_thread: failed to allocate jetsam reason\n" ); |
4458 | } |
4459 | |
4460 | if (memorystatus_act_aggressive(cause, jetsam_reason, &jld_idle_kills, &corpse_list_purged, &post_snapshot)) { |
4461 | goto done; |
4462 | } |
4463 | |
4464 | /* |
4465 | * memorystatus_kill_top_process() drops a reference, |
4466 | * so take another one so we can continue to use this exit reason |
4467 | * even after it returns |
4468 | */ |
4469 | os_reason_ref(jetsam_reason); |
4470 | |
4471 | /* LRU */ |
4472 | killed = memorystatus_kill_top_process(TRUE, sort_flag, cause, jetsam_reason, &priority, &errors); |
4473 | sort_flag = FALSE; |
4474 | |
4475 | if (killed) { |
4476 | if (memorystatus_post_snapshot(priority, cause) == TRUE) { |
4477 | |
4478 | post_snapshot = TRUE; |
4479 | } |
4480 | |
4481 | /* Jetsam Loop Detection */ |
4482 | if (memorystatus_jld_enabled == TRUE) { |
4483 | if ((priority == JETSAM_PRIORITY_IDLE) || (priority == system_procs_aging_band) || (priority == applications_aging_band)) { |
4484 | jld_idle_kills++; |
4485 | } else { |
4486 | /* |
4487 | * We've reached into bands beyond idle deferred. |
4488 | * We make no attempt to monitor them |
4489 | */ |
4490 | } |
4491 | } |
4492 | |
4493 | if ((priority >= JETSAM_PRIORITY_UI_SUPPORT) && (total_corpses_count() > 0) && (corpse_list_purged == FALSE)) { |
4494 | /* |
4495 | * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT |
4496 | * then we attempt to relieve pressure by purging corpse memory. |
4497 | */ |
4498 | task_purge_all_corpses(); |
4499 | corpse_list_purged = TRUE; |
4500 | } |
4501 | goto done; |
4502 | } |
4503 | |
4504 | if (memorystatus_avail_pages_below_critical()) { |
4505 | /* |
4506 | * Still under pressure and unable to kill a process - purge corpse memory |
4507 | */ |
4508 | if (total_corpses_count() > 0) { |
4509 | task_purge_all_corpses(); |
4510 | corpse_list_purged = TRUE; |
4511 | } |
4512 | |
4513 | if (memorystatus_avail_pages_below_critical()) { |
4514 | /* |
4515 | * Still under pressure and unable to kill a process - panic |
4516 | */ |
4517 | panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n" , (uint64_t)memorystatus_available_pages); |
4518 | } |
4519 | } |
4520 | |
4521 | done: |
4522 | |
4523 | /* |
4524 | * We do not want to over-kill when thrashing has been detected. |
4525 | * To avoid that, we reset the flag here and notify the |
4526 | * compressor. |
4527 | */ |
4528 | if (is_reason_thrashing(kill_under_pressure_cause)) { |
4529 | kill_under_pressure_cause = 0; |
4530 | #if CONFIG_JETSAM |
4531 | vm_thrashing_jetsam_done(); |
4532 | #endif /* CONFIG_JETSAM */ |
4533 | } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause)) { |
4534 | kill_under_pressure_cause = 0; |
4535 | } |
4536 | |
4537 | os_reason_free(jetsam_reason); |
4538 | } |
4539 | |
4540 | kill_under_pressure_cause = 0; |
4541 | |
4542 | if (errors) { |
4543 | memorystatus_clear_errors(); |
4544 | } |
4545 | |
4546 | if (post_snapshot) { |
4547 | proc_list_lock(); |
4548 | size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
4549 | sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count); |
4550 | uint64_t timestamp_now = mach_absolute_time(); |
4551 | memorystatus_jetsam_snapshot->notification_time = timestamp_now; |
4552 | memorystatus_jetsam_snapshot->js_gencount++; |
4553 | if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || |
4554 | timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { |
4555 | proc_list_unlock(); |
4556 | int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); |
4557 | if (!ret) { |
4558 | proc_list_lock(); |
4559 | memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; |
4560 | proc_list_unlock(); |
4561 | } |
4562 | } else { |
4563 | proc_list_unlock(); |
4564 | } |
4565 | } |
4566 | |
4567 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_END, |
4568 | memorystatus_available_pages, 0, 0, 0, 0); |
4569 | |
4570 | memorystatus_thread_block(0, memorystatus_thread); |
4571 | } |
4572 | |
4573 | /* |
4574 | * Returns TRUE: |
4575 | * when an idle-exitable proc was killed |
4576 | * Returns FALSE: |
4577 | * when there are no more idle-exitable procs found |
4578 | * when the attempt to kill an idle-exitable proc failed |
4579 | */ |
4580 | boolean_t memorystatus_idle_exit_from_VM(void) { |
4581 | |
4582 | /* |
4583 | * This routine should no longer be needed since we are |
4584 | * now using jetsam bands on all platforms and so will deal |
4585 | * with IDLE processes within the memorystatus thread itself. |
4586 | * |
4587 | * But we still use it because we observed that macos systems |
4588 | * started heavy compression/swapping with a bunch of |
4589 | * idle-exitable processes alive and doing nothing. We decided |
4590 | * to rather kill those processes than start swapping earlier. |
4591 | */ |
4592 | |
4593 | return(kill_idle_exit_proc()); |
4594 | } |
4595 | |
4596 | /* |
4597 | * Callback invoked when allowable physical memory footprint exceeded |
4598 | * (dirty pages + IOKit mappings) |
4599 | * |
4600 | * This is invoked for both advisory, non-fatal per-task high watermarks, |
4601 | * as well as the fatal task memory limits. |
4602 | */ |
4603 | void |
4604 | (boolean_t warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal) |
4605 | { |
4606 | os_reason_t jetsam_reason = OS_REASON_NULL; |
4607 | |
4608 | proc_t p = current_proc(); |
4609 | |
4610 | #if VM_PRESSURE_EVENTS |
4611 | if (warning == TRUE) { |
4612 | /* |
4613 | * This is a warning path which implies that the current process is close, but has |
4614 | * not yet exceeded its per-process memory limit. |
4615 | */ |
4616 | if (memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, FALSE /* not exceeded */) != TRUE) { |
4617 | /* Print warning, since it's possible that task has not registered for pressure notifications */ |
4618 | os_log(OS_LOG_DEFAULT, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n" , p->p_pid); |
4619 | } |
4620 | return; |
4621 | } |
4622 | #endif /* VM_PRESSURE_EVENTS */ |
4623 | |
4624 | if (memlimit_is_fatal) { |
4625 | /* |
4626 | * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task |
4627 | * has violated either the system-wide per-task memory limit OR its own task limit. |
4628 | */ |
4629 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_PERPROCESSLIMIT); |
4630 | if (jetsam_reason == NULL) { |
4631 | printf("task_exceeded footprint: failed to allocate jetsam reason\n" ); |
4632 | } else if (corpse_for_fatal_memkill != 0 && proc_send_synchronous_EXC_RESOURCE(p) == FALSE) { |
4633 | /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */ |
4634 | jetsam_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; |
4635 | } |
4636 | |
4637 | if (memorystatus_kill_process_sync(p->p_pid, kMemorystatusKilledPerProcessLimit, jetsam_reason) != TRUE) { |
4638 | printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n" ); |
4639 | } |
4640 | } else { |
4641 | /* |
4642 | * HWM offender exists. Done without locks or synchronization. |
4643 | * See comment near its declaration for more details. |
4644 | */ |
4645 | memorystatus_hwm_candidates = TRUE; |
4646 | |
4647 | #if VM_PRESSURE_EVENTS |
4648 | /* |
4649 | * The current process is not in the warning path. |
4650 | * This path implies the current process has exceeded a non-fatal (soft) memory limit. |
4651 | * Failure to send note is ignored here. |
4652 | */ |
4653 | (void)memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, TRUE /* exceeded */); |
4654 | |
4655 | #endif /* VM_PRESSURE_EVENTS */ |
4656 | } |
4657 | } |
4658 | |
4659 | void |
4660 | memorystatus_log_exception(const int , boolean_t memlimit_is_active, boolean_t memlimit_is_fatal) |
4661 | { |
4662 | proc_t p = current_proc(); |
4663 | |
4664 | /* |
4665 | * The limit violation is logged here, but only once per process per limit. |
4666 | * Soft memory limit is a non-fatal high-water-mark |
4667 | * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit. |
4668 | */ |
4669 | |
4670 | os_log_with_startup_serial(OS_LOG_DEFAULT, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n" , |
4671 | (*p->p_name ? p->p_name : "unknown" ), p->p_pid, (memlimit_is_active ? "Active" : "Inactive" ), |
4672 | (memlimit_is_fatal ? "Hard" : "Soft" ), max_footprint_mb, |
4673 | (memlimit_is_fatal ? "fatal" : "non-fatal" )); |
4674 | |
4675 | return; |
4676 | } |
4677 | |
4678 | |
4679 | /* |
4680 | * Description: |
4681 | * Evaluates process state to determine which limit |
4682 | * should be applied (active vs. inactive limit). |
4683 | * |
4684 | * Processes that have the 'elevated inactive jetsam band' attribute |
4685 | * are first evaluated based on their current priority band. |
4686 | * presently elevated ==> active |
4687 | * |
4688 | * Processes that opt into dirty tracking are evaluated |
4689 | * based on clean vs dirty state. |
4690 | * dirty ==> active |
4691 | * clean ==> inactive |
4692 | * |
4693 | * Process that do not opt into dirty tracking are |
4694 | * evalulated based on priority level. |
4695 | * Foreground or above ==> active |
4696 | * Below Foreground ==> inactive |
4697 | * |
4698 | * Return: TRUE if active |
4699 | * False if inactive |
4700 | */ |
4701 | |
4702 | static boolean_t |
4703 | proc_jetsam_state_is_active_locked(proc_t p) { |
4704 | |
4705 | if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) && |
4706 | (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE)) { |
4707 | /* |
4708 | * process has the 'elevated inactive jetsam band' attribute |
4709 | * and process is present in the elevated band |
4710 | * implies active state |
4711 | */ |
4712 | return TRUE; |
4713 | } else if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
4714 | /* |
4715 | * process has opted into dirty tracking |
4716 | * active state is based on dirty vs. clean |
4717 | */ |
4718 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { |
4719 | /* |
4720 | * process is dirty |
4721 | * implies active state |
4722 | */ |
4723 | return TRUE; |
4724 | } else { |
4725 | /* |
4726 | * process is clean |
4727 | * implies inactive state |
4728 | */ |
4729 | return FALSE; |
4730 | } |
4731 | } else if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) { |
4732 | /* |
4733 | * process is Foreground or higher |
4734 | * implies active state |
4735 | */ |
4736 | return TRUE; |
4737 | } else { |
4738 | /* |
4739 | * process found below Foreground |
4740 | * implies inactive state |
4741 | */ |
4742 | return FALSE; |
4743 | } |
4744 | } |
4745 | |
4746 | static boolean_t |
4747 | memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) { |
4748 | boolean_t res; |
4749 | |
4750 | uint32_t errors = 0; |
4751 | |
4752 | if (victim_pid == -1) { |
4753 | /* No pid, so kill first process */ |
4754 | res = memorystatus_kill_top_process(TRUE, TRUE, cause, jetsam_reason, NULL, &errors); |
4755 | } else { |
4756 | res = memorystatus_kill_specific_process(victim_pid, cause, jetsam_reason); |
4757 | } |
4758 | |
4759 | if (errors) { |
4760 | memorystatus_clear_errors(); |
4761 | } |
4762 | |
4763 | if (res == TRUE) { |
4764 | /* Fire off snapshot notification */ |
4765 | proc_list_lock(); |
4766 | size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
4767 | sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count; |
4768 | uint64_t timestamp_now = mach_absolute_time(); |
4769 | memorystatus_jetsam_snapshot->notification_time = timestamp_now; |
4770 | if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || |
4771 | timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { |
4772 | proc_list_unlock(); |
4773 | int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); |
4774 | if (!ret) { |
4775 | proc_list_lock(); |
4776 | memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; |
4777 | proc_list_unlock(); |
4778 | } |
4779 | } else { |
4780 | proc_list_unlock(); |
4781 | } |
4782 | } |
4783 | |
4784 | return res; |
4785 | } |
4786 | |
4787 | /* |
4788 | * Jetsam a specific process. |
4789 | */ |
4790 | static boolean_t |
4791 | memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) { |
4792 | boolean_t killed; |
4793 | proc_t p; |
4794 | uint64_t killtime = 0; |
4795 | clock_sec_t tv_sec; |
4796 | clock_usec_t tv_usec; |
4797 | uint32_t tv_msec; |
4798 | |
4799 | /* TODO - add a victim queue and push this into the main jetsam thread */ |
4800 | |
4801 | p = proc_find(victim_pid); |
4802 | if (!p) { |
4803 | os_reason_free(jetsam_reason); |
4804 | return FALSE; |
4805 | } |
4806 | |
4807 | proc_list_lock(); |
4808 | |
4809 | if (memorystatus_jetsam_snapshot_count == 0) { |
4810 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
4811 | } |
4812 | |
4813 | killtime = mach_absolute_time(); |
4814 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
4815 | tv_msec = tv_usec / 1000; |
4816 | |
4817 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
4818 | |
4819 | proc_list_unlock(); |
4820 | |
4821 | os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
4822 | (unsigned long)tv_sec, tv_msec, victim_pid, (*p->p_name ? p->p_name : "unknown" ), |
4823 | memorystatus_kill_cause_name[cause], p->p_memstat_effectivepriority, (uint64_t)memorystatus_available_pages); |
4824 | |
4825 | killed = memorystatus_do_kill(p, cause, jetsam_reason); |
4826 | proc_rele(p); |
4827 | |
4828 | return killed; |
4829 | } |
4830 | |
4831 | |
4832 | /* |
4833 | * Toggle the P_MEMSTAT_TERMINATED state. |
4834 | * Takes the proc_list_lock. |
4835 | */ |
4836 | void |
4837 | proc_memstat_terminated(proc_t p, boolean_t set) |
4838 | { |
4839 | #if DEVELOPMENT || DEBUG |
4840 | if (p) { |
4841 | proc_list_lock(); |
4842 | if (set == TRUE) { |
4843 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
4844 | } else { |
4845 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
4846 | } |
4847 | proc_list_unlock(); |
4848 | } |
4849 | #else |
4850 | #pragma unused(p, set) |
4851 | /* |
4852 | * do nothing |
4853 | */ |
4854 | #endif /* DEVELOPMENT || DEBUG */ |
4855 | return; |
4856 | } |
4857 | |
4858 | |
4859 | #if CONFIG_JETSAM |
4860 | /* |
4861 | * This is invoked when cpulimits have been exceeded while in fatal mode. |
4862 | * The jetsam_flags do not apply as those are for memory related kills. |
4863 | * We call this routine so that the offending process is killed with |
4864 | * a non-zero exit status. |
4865 | */ |
4866 | void |
4867 | jetsam_on_ledger_cpulimit_exceeded(void) |
4868 | { |
4869 | int retval = 0; |
4870 | int jetsam_flags = 0; /* make it obvious */ |
4871 | proc_t p = current_proc(); |
4872 | os_reason_t jetsam_reason = OS_REASON_NULL; |
4873 | |
4874 | printf("task_exceeded_cpulimit: killing pid %d [%s]\n" , |
4875 | p->p_pid, (*p->p_name ? p->p_name : "(unknown)" )); |
4876 | |
4877 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_CPULIMIT); |
4878 | if (jetsam_reason == OS_REASON_NULL) { |
4879 | printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n" ); |
4880 | } |
4881 | |
4882 | retval = jetsam_do_kill(p, jetsam_flags, jetsam_reason); |
4883 | |
4884 | if (retval) { |
4885 | printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n" ); |
4886 | } |
4887 | } |
4888 | |
4889 | #endif /* CONFIG_JETSAM */ |
4890 | |
4891 | static void |
4892 | memorystatus_get_task_memory_region_count(task_t task, uint64_t *count) |
4893 | { |
4894 | assert(task); |
4895 | assert(count); |
4896 | |
4897 | *count = get_task_memory_region_count(task); |
4898 | } |
4899 | |
4900 | |
4901 | #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000 |
4902 | #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000 |
4903 | |
4904 | #if DEVELOPMENT || DEBUG |
4905 | |
4906 | /* |
4907 | * Sysctl only used to test memorystatus_allowed_vm_map_fork() path. |
4908 | * set a new pidwatch value |
4909 | * or |
4910 | * get the current pidwatch value |
4911 | * |
4912 | * The pidwatch_val starts out with a PID to watch for in the map_fork path. |
4913 | * Its value is: |
4914 | * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork. |
4915 | * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork. |
4916 | * - set to -1ull if the map_fork() is aborted for other reasons. |
4917 | */ |
4918 | |
4919 | uint64_t memorystatus_vm_map_fork_pidwatch_val = 0; |
4920 | |
4921 | static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS { |
4922 | #pragma unused(oidp, arg1, arg2) |
4923 | |
4924 | uint64_t new_value = 0; |
4925 | uint64_t old_value = 0; |
4926 | int error = 0; |
4927 | |
4928 | /* |
4929 | * The pid is held in the low 32 bits. |
4930 | * The 'allowed' flags are in the upper 32 bits. |
4931 | */ |
4932 | old_value = memorystatus_vm_map_fork_pidwatch_val; |
4933 | |
4934 | error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL); |
4935 | |
4936 | if (error || !req->newptr) { |
4937 | /* |
4938 | * No new value passed in. |
4939 | */ |
4940 | return(error); |
4941 | } |
4942 | |
4943 | /* |
4944 | * A new pid was passed in via req->newptr. |
4945 | * Ignore any attempt to set the higher order bits. |
4946 | */ |
4947 | memorystatus_vm_map_fork_pidwatch_val = new_value & 0xFFFFFFFF; |
4948 | printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n" , old_value, new_value); |
4949 | |
4950 | return(error); |
4951 | } |
4952 | |
4953 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_map_fork_pidwatch, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED| CTLFLAG_MASKED, |
4954 | 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch, "Q" , "get/set pid watched for in vm_map_fork" ); |
4955 | |
4956 | |
4957 | /* |
4958 | * Record if a watched process fails to qualify for a vm_map_fork(). |
4959 | */ |
4960 | void |
4961 | memorystatus_abort_vm_map_fork(task_t task) |
4962 | { |
4963 | if (memorystatus_vm_map_fork_pidwatch_val != 0) { |
4964 | proc_t p = get_bsdtask_info(task); |
4965 | if (p != NULL && memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid) { |
4966 | memorystatus_vm_map_fork_pidwatch_val = -1ull; |
4967 | } |
4968 | } |
4969 | } |
4970 | |
4971 | static void |
4972 | set_vm_map_fork_pidwatch(task_t task, uint64_t x) |
4973 | { |
4974 | if (memorystatus_vm_map_fork_pidwatch_val != 0) { |
4975 | proc_t p = get_bsdtask_info(task); |
4976 | if (p && (memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid)) { |
4977 | memorystatus_vm_map_fork_pidwatch_val |= x; |
4978 | } |
4979 | } |
4980 | } |
4981 | |
4982 | #else /* DEVELOPMENT || DEBUG */ |
4983 | |
4984 | |
4985 | static void |
4986 | set_vm_map_fork_pidwatch(task_t task, uint64_t x) |
4987 | { |
4988 | #pragma unused(task) |
4989 | #pragma unused(x) |
4990 | } |
4991 | |
4992 | #endif /* DEVELOPMENT || DEBUG */ |
4993 | |
4994 | /* |
4995 | * Called during EXC_RESOURCE handling when a process exceeds a soft |
4996 | * memory limit. This is the corpse fork path and here we decide if |
4997 | * vm_map_fork will be allowed when creating the corpse. |
4998 | * The task being considered is suspended. |
4999 | * |
5000 | * By default, a vm_map_fork is allowed to proceed. |
5001 | * |
5002 | * A few simple policy assumptions: |
5003 | * Desktop platform is not considered in this path. |
5004 | * The vm_map_fork is always allowed. |
5005 | * |
5006 | * If the device has a zero system-wide task limit, |
5007 | * then the vm_map_fork is allowed. |
5008 | * |
5009 | * And if a process's memory footprint calculates less |
5010 | * than or equal to half of the system-wide task limit, |
5011 | * then the vm_map_fork is allowed. This calculation |
5012 | * is based on the assumption that a process can |
5013 | * munch memory up to the system-wide task limit. |
5014 | */ |
5015 | boolean_t |
5016 | memorystatus_allowed_vm_map_fork(task_t task) |
5017 | { |
5018 | boolean_t is_allowed = TRUE; /* default */ |
5019 | |
5020 | #if CONFIG_EMBEDDED |
5021 | |
5022 | uint64_t footprint_in_bytes; |
5023 | uint64_t max_allowed_bytes; |
5024 | |
5025 | if (max_task_footprint_mb == 0) { |
5026 | set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED); |
5027 | return (is_allowed); |
5028 | } |
5029 | |
5030 | footprint_in_bytes = get_task_phys_footprint(task); |
5031 | |
5032 | /* |
5033 | * Maximum is 1/4 of the system-wide task limit. |
5034 | */ |
5035 | max_allowed_bytes = ((uint64_t)max_task_footprint_mb * 1024 * 1024) >> 2; |
5036 | |
5037 | if (footprint_in_bytes > max_allowed_bytes) { |
5038 | printf("memorystatus disallowed vm_map_fork %lld %lld\n" , footprint_in_bytes, max_allowed_bytes); |
5039 | set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED); |
5040 | return (!is_allowed); |
5041 | } |
5042 | #endif /* CONFIG_EMBEDDED */ |
5043 | |
5044 | set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED); |
5045 | return (is_allowed); |
5046 | |
5047 | } |
5048 | |
5049 | static void |
5050 | memorystatus_get_task_page_counts(task_t task, uint32_t *, uint32_t *, uint32_t *purgeable_pages) |
5051 | { |
5052 | assert(task); |
5053 | assert(footprint); |
5054 | |
5055 | uint64_t pages; |
5056 | |
5057 | pages = (get_task_phys_footprint(task) / PAGE_SIZE_64); |
5058 | assert(((uint32_t)pages) == pages); |
5059 | *footprint = (uint32_t)pages; |
5060 | |
5061 | if (max_footprint_lifetime) { |
5062 | pages = (get_task_resident_max(task) / PAGE_SIZE_64); |
5063 | assert(((uint32_t)pages) == pages); |
5064 | *max_footprint_lifetime = (uint32_t)pages; |
5065 | } |
5066 | if (purgeable_pages) { |
5067 | pages = (get_task_purgeable_size(task) / PAGE_SIZE_64); |
5068 | assert(((uint32_t)pages) == pages); |
5069 | *purgeable_pages = (uint32_t)pages; |
5070 | } |
5071 | } |
5072 | |
5073 | static void |
5074 | (task_t task, |
5075 | uint64_t *internal_pages, uint64_t *internal_compressed_pages, |
5076 | uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages, |
5077 | uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages, |
5078 | uint64_t *iokit_mapped_pages, uint64_t *page_table_pages) |
5079 | { |
5080 | assert(task); |
5081 | |
5082 | if (internal_pages) { |
5083 | *internal_pages = (get_task_internal(task) / PAGE_SIZE_64); |
5084 | } |
5085 | |
5086 | if (internal_compressed_pages) { |
5087 | *internal_compressed_pages = (get_task_internal_compressed(task) / PAGE_SIZE_64); |
5088 | } |
5089 | |
5090 | if (purgeable_nonvolatile_pages) { |
5091 | *purgeable_nonvolatile_pages = (get_task_purgeable_nonvolatile(task) / PAGE_SIZE_64); |
5092 | } |
5093 | |
5094 | if (purgeable_nonvolatile_compressed_pages) { |
5095 | *purgeable_nonvolatile_compressed_pages = (get_task_purgeable_nonvolatile_compressed(task) / PAGE_SIZE_64); |
5096 | } |
5097 | |
5098 | if (alternate_accounting_pages) { |
5099 | *alternate_accounting_pages = (get_task_alternate_accounting(task) / PAGE_SIZE_64); |
5100 | } |
5101 | |
5102 | if (alternate_accounting_compressed_pages) { |
5103 | *alternate_accounting_compressed_pages = (get_task_alternate_accounting_compressed(task) / PAGE_SIZE_64); |
5104 | } |
5105 | |
5106 | if (iokit_mapped_pages) { |
5107 | *iokit_mapped_pages = (get_task_iokit_mapped(task) / PAGE_SIZE_64); |
5108 | } |
5109 | |
5110 | if (page_table_pages) { |
5111 | *page_table_pages = (get_task_page_table(task) / PAGE_SIZE_64); |
5112 | } |
5113 | } |
5114 | |
5115 | /* |
5116 | * This routine only acts on the global jetsam event snapshot. |
5117 | * Updating the process's entry can race when the memorystatus_thread |
5118 | * has chosen to kill a process that is racing to exit on another core. |
5119 | */ |
5120 | static void |
5121 | memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime) |
5122 | { |
5123 | memorystatus_jetsam_snapshot_entry_t *entry = NULL; |
5124 | memorystatus_jetsam_snapshot_t *snapshot = NULL; |
5125 | memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL; |
5126 | |
5127 | unsigned int i; |
5128 | |
5129 | LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
5130 | |
5131 | if (memorystatus_jetsam_snapshot_count == 0) { |
5132 | /* |
5133 | * No active snapshot. |
5134 | * Nothing to do. |
5135 | */ |
5136 | return; |
5137 | } |
5138 | |
5139 | /* |
5140 | * Sanity check as this routine should only be called |
5141 | * from a jetsam kill path. |
5142 | */ |
5143 | assert(kill_cause != 0 && killtime != 0); |
5144 | |
5145 | snapshot = memorystatus_jetsam_snapshot; |
5146 | snapshot_list = memorystatus_jetsam_snapshot->entries; |
5147 | |
5148 | for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) { |
5149 | if (snapshot_list[i].pid == p->p_pid) { |
5150 | |
5151 | entry = &snapshot_list[i]; |
5152 | |
5153 | if (entry->killed || entry->jse_killtime) { |
5154 | /* |
5155 | * We apparently raced on the exit path |
5156 | * for this process, as it's snapshot entry |
5157 | * has already recorded a kill. |
5158 | */ |
5159 | assert(entry->killed && entry->jse_killtime); |
5160 | break; |
5161 | } |
5162 | |
5163 | /* |
5164 | * Update the entry we just found in the snapshot. |
5165 | */ |
5166 | |
5167 | entry->killed = kill_cause; |
5168 | entry->jse_killtime = killtime; |
5169 | entry->jse_gencount = snapshot->js_gencount; |
5170 | entry->jse_idle_delta = p->p_memstat_idle_delta; |
5171 | #if CONFIG_FREEZE |
5172 | entry->jse_thaw_count = p->p_memstat_thaw_count; |
5173 | #else /* CONFIG_FREEZE */ |
5174 | entry->jse_thaw_count = 0; |
5175 | #endif /* CONFIG_FREEZE */ |
5176 | |
5177 | /* |
5178 | * If a process has moved between bands since snapshot was |
5179 | * initialized, then likely these fields changed too. |
5180 | */ |
5181 | if (entry->priority != p->p_memstat_effectivepriority) { |
5182 | |
5183 | strlcpy(entry->name, p->p_name, sizeof(entry->name)); |
5184 | entry->priority = p->p_memstat_effectivepriority; |
5185 | entry->state = memorystatus_build_state(p); |
5186 | entry->user_data = p->p_memstat_userdata; |
5187 | entry->fds = p->p_fd->fd_nfiles; |
5188 | } |
5189 | |
5190 | /* |
5191 | * Always update the page counts on a kill. |
5192 | */ |
5193 | |
5194 | uint32_t pages = 0; |
5195 | uint32_t max_pages_lifetime = 0; |
5196 | uint32_t purgeable_pages = 0; |
5197 | |
5198 | memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages); |
5199 | entry->pages = (uint64_t)pages; |
5200 | entry->max_pages_lifetime = (uint64_t)max_pages_lifetime; |
5201 | entry->purgeable_pages = (uint64_t)purgeable_pages; |
5202 | |
5203 | uint64_t internal_pages = 0; |
5204 | uint64_t internal_compressed_pages = 0; |
5205 | uint64_t purgeable_nonvolatile_pages = 0; |
5206 | uint64_t purgeable_nonvolatile_compressed_pages = 0; |
5207 | uint64_t alternate_accounting_pages = 0; |
5208 | uint64_t alternate_accounting_compressed_pages = 0; |
5209 | uint64_t iokit_mapped_pages = 0; |
5210 | uint64_t page_table_pages = 0; |
5211 | |
5212 | memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages, |
5213 | &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages, |
5214 | &alternate_accounting_pages, &alternate_accounting_compressed_pages, |
5215 | &iokit_mapped_pages, &page_table_pages); |
5216 | |
5217 | entry->jse_internal_pages = internal_pages; |
5218 | entry->jse_internal_compressed_pages = internal_compressed_pages; |
5219 | entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages; |
5220 | entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages; |
5221 | entry->jse_alternate_accounting_pages = alternate_accounting_pages; |
5222 | entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages; |
5223 | entry->jse_iokit_mapped_pages = iokit_mapped_pages; |
5224 | entry->jse_page_table_pages = page_table_pages; |
5225 | |
5226 | uint64_t region_count = 0; |
5227 | memorystatus_get_task_memory_region_count(p->task, ®ion_count); |
5228 | entry->jse_memory_region_count = region_count; |
5229 | |
5230 | goto exit; |
5231 | } |
5232 | } |
5233 | |
5234 | if (entry == NULL) { |
5235 | /* |
5236 | * The entry was not found in the snapshot, so the process must have |
5237 | * launched after the snapshot was initialized. |
5238 | * Let's try to append the new entry. |
5239 | */ |
5240 | if (memorystatus_jetsam_snapshot_count < memorystatus_jetsam_snapshot_max) { |
5241 | /* |
5242 | * A populated snapshot buffer exists |
5243 | * and there is room to init a new entry. |
5244 | */ |
5245 | assert(memorystatus_jetsam_snapshot_count == snapshot->entry_count); |
5246 | |
5247 | unsigned int next = memorystatus_jetsam_snapshot_count; |
5248 | |
5249 | if(memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[next], (snapshot->js_gencount)) == TRUE) { |
5250 | |
5251 | entry = &snapshot_list[next]; |
5252 | entry->killed = kill_cause; |
5253 | entry->jse_killtime = killtime; |
5254 | |
5255 | snapshot->entry_count = ++next; |
5256 | memorystatus_jetsam_snapshot_count = next; |
5257 | |
5258 | if (memorystatus_jetsam_snapshot_count >= memorystatus_jetsam_snapshot_max) { |
5259 | /* |
5260 | * We just used the last slot in the snapshot buffer. |
5261 | * We only want to log it once... so we do it here |
5262 | * when we notice we've hit the max. |
5263 | */ |
5264 | printf("memorystatus: WARNING snapshot buffer is full, count %d\n" , |
5265 | memorystatus_jetsam_snapshot_count); |
5266 | } |
5267 | } |
5268 | } |
5269 | } |
5270 | |
5271 | exit: |
5272 | if (entry == NULL) { |
5273 | /* |
5274 | * If we reach here, the snapshot buffer could not be updated. |
5275 | * Most likely, the buffer is full, in which case we would have |
5276 | * logged a warning in the previous call. |
5277 | * |
5278 | * For now, we will stop appending snapshot entries. |
5279 | * When the buffer is consumed, the snapshot state will reset. |
5280 | */ |
5281 | |
5282 | MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n" , |
5283 | p->p_pid, p->p_memstat_effectivepriority, memorystatus_jetsam_snapshot_count); |
5284 | } |
5285 | |
5286 | return; |
5287 | } |
5288 | |
5289 | #if CONFIG_JETSAM |
5290 | void memorystatus_pages_update(unsigned int pages_avail) |
5291 | { |
5292 | memorystatus_available_pages = pages_avail; |
5293 | |
5294 | #if VM_PRESSURE_EVENTS |
5295 | /* |
5296 | * Since memorystatus_available_pages changes, we should |
5297 | * re-evaluate the pressure levels on the system and |
5298 | * check if we need to wake the pressure thread. |
5299 | * We also update memorystatus_level in that routine. |
5300 | */ |
5301 | vm_pressure_response(); |
5302 | |
5303 | if (memorystatus_available_pages <= memorystatus_available_pages_pressure) { |
5304 | |
5305 | if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) { |
5306 | memorystatus_thread_wake(); |
5307 | } |
5308 | } |
5309 | #if CONFIG_FREEZE |
5310 | /* |
5311 | * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect |
5312 | * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this |
5313 | * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here |
5314 | * will result in the "mutex with preemption disabled" panic. |
5315 | */ |
5316 | |
5317 | if (memorystatus_freeze_thread_should_run() == TRUE) { |
5318 | /* |
5319 | * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process). |
5320 | * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here. |
5321 | */ |
5322 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
5323 | thread_wakeup((event_t)&memorystatus_freeze_wakeup); |
5324 | } |
5325 | } |
5326 | #endif /* CONFIG_FREEZE */ |
5327 | |
5328 | #else /* VM_PRESSURE_EVENTS */ |
5329 | |
5330 | boolean_t critical, delta; |
5331 | |
5332 | if (!memorystatus_delta) { |
5333 | return; |
5334 | } |
5335 | |
5336 | critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE; |
5337 | delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta)) |
5338 | || (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE; |
5339 | |
5340 | if (critical || delta) { |
5341 | unsigned int total_pages; |
5342 | |
5343 | total_pages = (unsigned int) atop_64(max_mem); |
5344 | #if CONFIG_SECLUDED_MEMORY |
5345 | total_pages -= vm_page_secluded_count; |
5346 | #endif /* CONFIG_SECLUDED_MEMORY */ |
5347 | memorystatus_level = memorystatus_available_pages * 100 / total_pages; |
5348 | memorystatus_thread_wake(); |
5349 | } |
5350 | #endif /* VM_PRESSURE_EVENTS */ |
5351 | } |
5352 | #endif /* CONFIG_JETSAM */ |
5353 | |
5354 | static boolean_t |
5355 | memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount) |
5356 | { |
5357 | clock_sec_t tv_sec; |
5358 | clock_usec_t tv_usec; |
5359 | uint32_t pages = 0; |
5360 | uint32_t max_pages_lifetime = 0; |
5361 | uint32_t purgeable_pages = 0; |
5362 | uint64_t internal_pages = 0; |
5363 | uint64_t internal_compressed_pages = 0; |
5364 | uint64_t purgeable_nonvolatile_pages = 0; |
5365 | uint64_t purgeable_nonvolatile_compressed_pages = 0; |
5366 | uint64_t alternate_accounting_pages = 0; |
5367 | uint64_t alternate_accounting_compressed_pages = 0; |
5368 | uint64_t iokit_mapped_pages = 0; |
5369 | uint64_t page_table_pages =0; |
5370 | uint64_t region_count = 0; |
5371 | uint64_t cids[COALITION_NUM_TYPES]; |
5372 | |
5373 | memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t)); |
5374 | |
5375 | entry->pid = p->p_pid; |
5376 | strlcpy(&entry->name[0], p->p_name, sizeof(entry->name)); |
5377 | entry->priority = p->p_memstat_effectivepriority; |
5378 | |
5379 | memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages); |
5380 | entry->pages = (uint64_t)pages; |
5381 | entry->max_pages_lifetime = (uint64_t)max_pages_lifetime; |
5382 | entry->purgeable_pages = (uint64_t)purgeable_pages; |
5383 | |
5384 | memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages, |
5385 | &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages, |
5386 | &alternate_accounting_pages, &alternate_accounting_compressed_pages, |
5387 | &iokit_mapped_pages, &page_table_pages); |
5388 | |
5389 | entry->jse_internal_pages = internal_pages; |
5390 | entry->jse_internal_compressed_pages = internal_compressed_pages; |
5391 | entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages; |
5392 | entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages; |
5393 | entry->jse_alternate_accounting_pages = alternate_accounting_pages; |
5394 | entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages; |
5395 | entry->jse_iokit_mapped_pages = iokit_mapped_pages; |
5396 | entry->jse_page_table_pages = page_table_pages; |
5397 | |
5398 | memorystatus_get_task_memory_region_count(p->task, ®ion_count); |
5399 | entry->jse_memory_region_count = region_count; |
5400 | |
5401 | entry->state = memorystatus_build_state(p); |
5402 | entry->user_data = p->p_memstat_userdata; |
5403 | memcpy(&entry->uuid[0], &p->p_uuid[0], sizeof(p->p_uuid)); |
5404 | entry->fds = p->p_fd->fd_nfiles; |
5405 | |
5406 | absolutetime_to_microtime(get_task_cpu_time(p->task), &tv_sec, &tv_usec); |
5407 | entry->cpu_time.tv_sec = (int64_t)tv_sec; |
5408 | entry->cpu_time.tv_usec = (int64_t)tv_usec; |
5409 | |
5410 | assert(p->p_stats != NULL); |
5411 | entry->jse_starttime = p->p_stats->ps_start; /* abstime process started */ |
5412 | entry->jse_killtime = 0; /* abstime jetsam chose to kill process */ |
5413 | entry->killed = 0; /* the jetsam kill cause */ |
5414 | entry->jse_gencount = gencount; /* indicates a pass through jetsam thread, when process was targeted to be killed */ |
5415 | |
5416 | entry->jse_idle_delta = p->p_memstat_idle_delta; /* Most recent timespan spent in idle-band */ |
5417 | |
5418 | #if CONFIG_FREEZE |
5419 | entry->jse_thaw_count = p->p_memstat_thaw_count; |
5420 | #else /* CONFIG_FREEZE */ |
5421 | entry->jse_thaw_count = 0; |
5422 | #endif /* CONFIG_FREEZE */ |
5423 | |
5424 | proc_coalitionids(p, cids); |
5425 | entry->jse_coalition_jetsam_id = cids[COALITION_TYPE_JETSAM]; |
5426 | |
5427 | return TRUE; |
5428 | } |
5429 | |
5430 | static void |
5431 | memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t *snapshot) |
5432 | { |
5433 | kern_return_t kr = KERN_SUCCESS; |
5434 | mach_msg_type_number_t count = HOST_VM_INFO64_COUNT; |
5435 | vm_statistics64_data_t vm_stat; |
5436 | |
5437 | if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count)) != KERN_SUCCESS) { |
5438 | printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n" , kr); |
5439 | memset(&snapshot->stats, 0, sizeof(snapshot->stats)); |
5440 | } else { |
5441 | snapshot->stats.free_pages = vm_stat.free_count; |
5442 | snapshot->stats.active_pages = vm_stat.active_count; |
5443 | snapshot->stats.inactive_pages = vm_stat.inactive_count; |
5444 | snapshot->stats.throttled_pages = vm_stat.throttled_count; |
5445 | snapshot->stats.purgeable_pages = vm_stat.purgeable_count; |
5446 | snapshot->stats.wired_pages = vm_stat.wire_count; |
5447 | |
5448 | snapshot->stats.speculative_pages = vm_stat.speculative_count; |
5449 | snapshot->stats.filebacked_pages = vm_stat.external_page_count; |
5450 | snapshot->stats.anonymous_pages = vm_stat.internal_page_count; |
5451 | snapshot->stats.compressions = vm_stat.compressions; |
5452 | snapshot->stats.decompressions = vm_stat.decompressions; |
5453 | snapshot->stats.compressor_pages = vm_stat.compressor_page_count; |
5454 | snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor; |
5455 | } |
5456 | |
5457 | get_zone_map_size(&snapshot->stats.zone_map_size, &snapshot->stats.zone_map_capacity); |
5458 | get_largest_zone_info(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name), |
5459 | &snapshot->stats.largest_zone_size); |
5460 | } |
5461 | |
5462 | /* |
5463 | * Collect vm statistics at boot. |
5464 | * Called only once (see kern_exec.c) |
5465 | * Data can be consumed at any time. |
5466 | */ |
5467 | void |
5468 | memorystatus_init_at_boot_snapshot() { |
5469 | memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot); |
5470 | memorystatus_at_boot_snapshot.entry_count = 0; |
5471 | memorystatus_at_boot_snapshot.notification_time = 0; /* updated when consumed */ |
5472 | memorystatus_at_boot_snapshot.snapshot_time = mach_absolute_time(); |
5473 | } |
5474 | |
5475 | static void |
5476 | memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count ) |
5477 | { |
5478 | proc_t p, next_p; |
5479 | unsigned int b = 0, i = 0; |
5480 | |
5481 | memorystatus_jetsam_snapshot_t *snapshot = NULL; |
5482 | memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL; |
5483 | unsigned int snapshot_max = 0; |
5484 | |
5485 | LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
5486 | |
5487 | if (od_snapshot) { |
5488 | /* |
5489 | * This is an on_demand snapshot |
5490 | */ |
5491 | snapshot = od_snapshot; |
5492 | snapshot_list = od_snapshot->entries; |
5493 | snapshot_max = ods_list_count; |
5494 | } else { |
5495 | /* |
5496 | * This is a jetsam event snapshot |
5497 | */ |
5498 | snapshot = memorystatus_jetsam_snapshot; |
5499 | snapshot_list = memorystatus_jetsam_snapshot->entries; |
5500 | snapshot_max = memorystatus_jetsam_snapshot_max; |
5501 | } |
5502 | |
5503 | /* |
5504 | * Init the snapshot header information |
5505 | */ |
5506 | memorystatus_init_snapshot_vmstats(snapshot); |
5507 | snapshot->snapshot_time = mach_absolute_time(); |
5508 | snapshot->notification_time = 0; |
5509 | snapshot->js_gencount = 0; |
5510 | |
5511 | next_p = memorystatus_get_first_proc_locked(&b, TRUE); |
5512 | while (next_p) { |
5513 | p = next_p; |
5514 | next_p = memorystatus_get_next_proc_locked(&b, p, TRUE); |
5515 | |
5516 | if (FALSE == memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], snapshot->js_gencount)) { |
5517 | continue; |
5518 | } |
5519 | |
5520 | MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n" , |
5521 | p->p_pid, |
5522 | p->p_uuid[0], p->p_uuid[1], p->p_uuid[2], p->p_uuid[3], p->p_uuid[4], p->p_uuid[5], p->p_uuid[6], p->p_uuid[7], |
5523 | p->p_uuid[8], p->p_uuid[9], p->p_uuid[10], p->p_uuid[11], p->p_uuid[12], p->p_uuid[13], p->p_uuid[14], p->p_uuid[15]); |
5524 | |
5525 | if (++i == snapshot_max) { |
5526 | break; |
5527 | } |
5528 | } |
5529 | |
5530 | snapshot->entry_count = i; |
5531 | |
5532 | if (!od_snapshot) { |
5533 | /* update the system buffer count */ |
5534 | memorystatus_jetsam_snapshot_count = i; |
5535 | } |
5536 | } |
5537 | |
5538 | #if DEVELOPMENT || DEBUG |
5539 | |
5540 | #if CONFIG_JETSAM |
5541 | static int |
5542 | memorystatus_cmd_set_panic_bits(user_addr_t buffer, uint32_t buffer_size) { |
5543 | int ret; |
5544 | memorystatus_jetsam_panic_options_t debug; |
5545 | |
5546 | if (buffer_size != sizeof(memorystatus_jetsam_panic_options_t)) { |
5547 | return EINVAL; |
5548 | } |
5549 | |
5550 | ret = copyin(buffer, &debug, buffer_size); |
5551 | if (ret) { |
5552 | return ret; |
5553 | } |
5554 | |
5555 | /* Panic bits match kMemorystatusKilled* enum */ |
5556 | memorystatus_jetsam_panic_debug = (memorystatus_jetsam_panic_debug & ~debug.mask) | (debug.data & debug.mask); |
5557 | |
5558 | /* Copyout new value */ |
5559 | debug.data = memorystatus_jetsam_panic_debug; |
5560 | ret = copyout(&debug, buffer, sizeof(memorystatus_jetsam_panic_options_t)); |
5561 | |
5562 | return ret; |
5563 | } |
5564 | #endif /* CONFIG_JETSAM */ |
5565 | |
5566 | /* |
5567 | * Triggers a sort_order on a specified jetsam priority band. |
5568 | * This is for testing only, used to force a path through the sort |
5569 | * function. |
5570 | */ |
5571 | static int |
5572 | memorystatus_cmd_test_jetsam_sort(int priority, int sort_order) { |
5573 | |
5574 | int error = 0; |
5575 | |
5576 | unsigned int bucket_index = 0; |
5577 | |
5578 | if (priority == -1) { |
5579 | /* Use as shorthand for default priority */ |
5580 | bucket_index = JETSAM_PRIORITY_DEFAULT; |
5581 | } else { |
5582 | bucket_index = (unsigned int)priority; |
5583 | } |
5584 | |
5585 | error = memorystatus_sort_bucket(bucket_index, sort_order); |
5586 | |
5587 | return (error); |
5588 | } |
5589 | |
5590 | #endif /* DEVELOPMENT || DEBUG */ |
5591 | |
5592 | /* |
5593 | * Prepare the process to be killed (set state, update snapshot) and kill it. |
5594 | */ |
5595 | static uint64_t memorystatus_purge_before_jetsam_success = 0; |
5596 | |
5597 | static boolean_t |
5598 | memorystatus_kill_proc(proc_t p, uint32_t cause, os_reason_t jetsam_reason, boolean_t *killed) |
5599 | { |
5600 | pid_t aPid = 0; |
5601 | uint32_t aPid_ep = 0; |
5602 | |
5603 | uint64_t killtime = 0; |
5604 | clock_sec_t tv_sec; |
5605 | clock_usec_t tv_usec; |
5606 | uint32_t tv_msec; |
5607 | boolean_t retval = FALSE; |
5608 | uint64_t num_pages_purged = 0; |
5609 | |
5610 | aPid = p->p_pid; |
5611 | aPid_ep = p->p_memstat_effectivepriority; |
5612 | |
5613 | if (cause != kMemorystatusKilledVnodes && cause != kMemorystatusKilledZoneMapExhaustion) { |
5614 | /* |
5615 | * Genuine memory pressure and not other (vnode/zone) resource exhaustion. |
5616 | */ |
5617 | boolean_t success = FALSE; |
5618 | |
5619 | networking_memstatus_callout(p, cause); |
5620 | num_pages_purged = vm_purgeable_purge_task_owned(p->task); |
5621 | |
5622 | if (num_pages_purged) { |
5623 | /* |
5624 | * We actually purged something and so let's |
5625 | * check if we need to continue with the kill. |
5626 | */ |
5627 | if (cause == kMemorystatusKilledHiwat) { |
5628 | uint64_t = get_task_phys_footprint(p->task); |
5629 | uint64_t memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */ |
5630 | success = (footprint_in_bytes <= memlimit_in_bytes); |
5631 | } else { |
5632 | success = (memorystatus_avail_pages_below_pressure() == FALSE); |
5633 | } |
5634 | |
5635 | if (success) { |
5636 | |
5637 | memorystatus_purge_before_jetsam_success++; |
5638 | |
5639 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: purged %llu pages from pid %d [%s] and avoided %s\n" , |
5640 | num_pages_purged, aPid, (*p->p_name ? p->p_name : "unknown" ), memorystatus_kill_cause_name[cause]); |
5641 | |
5642 | *killed = FALSE; |
5643 | |
5644 | return TRUE; |
5645 | } |
5646 | } |
5647 | } |
5648 | |
5649 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
5650 | MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n" , |
5651 | (memorystatus_jetsam_policy & kPolicyDiagnoseActive) ? "suspending" : "killing" , |
5652 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
5653 | (footprint_in_bytes / (1024ULL * 1024ULL)), /* converted bytes to MB */ |
5654 | p->p_memstat_memlimit); |
5655 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
5656 | |
5657 | killtime = mach_absolute_time(); |
5658 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
5659 | tv_msec = tv_usec / 1000; |
5660 | |
5661 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
5662 | if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { |
5663 | if (cause == kMemorystatusKilledHiwat) { |
5664 | MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] for diagnosis - memorystatus_available_pages: %d\n" , |
5665 | aPid, (*p->p_name ? p->p_name: "(unknown)" ), memorystatus_available_pages); |
5666 | } else { |
5667 | int activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND; |
5668 | if (activeProcess) { |
5669 | MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memorystatus_available_pages: %d\n" , |
5670 | aPid, (*p->p_name ? p->p_name: "(unknown)" ), memorystatus_available_pages); |
5671 | |
5672 | if (memorystatus_jetsam_policy & kPolicyDiagnoseFirst) { |
5673 | jetsam_diagnostic_suspended_one_active_proc = 1; |
5674 | printf("jetsam: returning after suspending first active proc - %d\n" , aPid); |
5675 | } |
5676 | } |
5677 | } |
5678 | |
5679 | proc_list_lock(); |
5680 | /* This diagnostic code is going away soon. Ignore the kMemorystatusInvalid cause here. */ |
5681 | memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusInvalid, killtime); |
5682 | proc_list_unlock(); |
5683 | |
5684 | p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED; |
5685 | |
5686 | if (p) { |
5687 | task_suspend(p->task); |
5688 | *killed = TRUE; |
5689 | } |
5690 | } else |
5691 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
5692 | { |
5693 | proc_list_lock(); |
5694 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
5695 | proc_list_unlock(); |
5696 | |
5697 | char kill_reason_string[128]; |
5698 | |
5699 | if (cause == kMemorystatusKilledHiwat) { |
5700 | strlcpy(kill_reason_string, "killing_highwater_process" , 128); |
5701 | } else { |
5702 | if (aPid_ep == JETSAM_PRIORITY_IDLE) { |
5703 | strlcpy(kill_reason_string, "killing_idle_process" , 128); |
5704 | } else { |
5705 | strlcpy(kill_reason_string, "killing_top_process" , 128); |
5706 | } |
5707 | } |
5708 | |
5709 | os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
5710 | (unsigned long)tv_sec, tv_msec, kill_reason_string, |
5711 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
5712 | memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); |
5713 | |
5714 | /* |
5715 | * memorystatus_do_kill drops a reference, so take another one so we can |
5716 | * continue to use this exit reason even after memorystatus_do_kill() |
5717 | * returns |
5718 | */ |
5719 | os_reason_ref(jetsam_reason); |
5720 | |
5721 | retval = memorystatus_do_kill(p, cause, jetsam_reason); |
5722 | |
5723 | *killed = retval; |
5724 | } |
5725 | |
5726 | return retval; |
5727 | } |
5728 | |
5729 | /* |
5730 | * Jetsam the first process in the queue. |
5731 | */ |
5732 | static boolean_t |
5733 | memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, |
5734 | int32_t *priority, uint32_t *errors) |
5735 | { |
5736 | pid_t aPid; |
5737 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
5738 | boolean_t new_snapshot = FALSE, force_new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE; |
5739 | unsigned int i = 0; |
5740 | uint32_t aPid_ep; |
5741 | int32_t local_max_kill_prio = JETSAM_PRIORITY_IDLE; |
5742 | |
5743 | #ifndef CONFIG_FREEZE |
5744 | #pragma unused(any) |
5745 | #endif |
5746 | |
5747 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, |
5748 | memorystatus_available_pages, 0, 0, 0, 0); |
5749 | |
5750 | |
5751 | #if CONFIG_JETSAM |
5752 | if (sort_flag == TRUE) { |
5753 | (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT); |
5754 | } |
5755 | |
5756 | local_max_kill_prio = max_kill_priority; |
5757 | |
5758 | force_new_snapshot = FALSE; |
5759 | |
5760 | #else /* CONFIG_JETSAM */ |
5761 | |
5762 | if (sort_flag == TRUE) { |
5763 | (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE, JETSAM_SORT_DEFAULT); |
5764 | } |
5765 | |
5766 | /* |
5767 | * On macos, we currently only have 2 reasons to be here: |
5768 | * |
5769 | * kMemorystatusKilledZoneMapExhaustion |
5770 | * AND |
5771 | * kMemorystatusKilledVMCompressorSpaceShortage |
5772 | * |
5773 | * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider |
5774 | * any and all processes as eligible kill candidates since we need to avoid a panic. |
5775 | * |
5776 | * Since this function can be called async. it is harder to toggle the max_kill_priority |
5777 | * value before and after a call. And so we use this local variable to set the upper band |
5778 | * on the eligible kill bands. |
5779 | */ |
5780 | if (cause == kMemorystatusKilledZoneMapExhaustion) { |
5781 | local_max_kill_prio = JETSAM_PRIORITY_MAX; |
5782 | } else { |
5783 | local_max_kill_prio = max_kill_priority; |
5784 | } |
5785 | |
5786 | /* |
5787 | * And, because we are here under extreme circumstances, we force a snapshot even for |
5788 | * IDLE kills. |
5789 | */ |
5790 | force_new_snapshot = TRUE; |
5791 | |
5792 | #endif /* CONFIG_JETSAM */ |
5793 | |
5794 | proc_list_lock(); |
5795 | |
5796 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
5797 | while (next_p && (next_p->p_memstat_effectivepriority <= local_max_kill_prio)) { |
5798 | #if DEVELOPMENT || DEBUG |
5799 | int procSuspendedForDiagnosis; |
5800 | #endif /* DEVELOPMENT || DEBUG */ |
5801 | |
5802 | p = next_p; |
5803 | next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
5804 | |
5805 | #if DEVELOPMENT || DEBUG |
5806 | procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED; |
5807 | #endif /* DEVELOPMENT || DEBUG */ |
5808 | |
5809 | aPid = p->p_pid; |
5810 | aPid_ep = p->p_memstat_effectivepriority; |
5811 | |
5812 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
5813 | continue; /* with lock held */ |
5814 | } |
5815 | |
5816 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
5817 | if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) { |
5818 | printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n" , aPid); |
5819 | continue; |
5820 | } |
5821 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
5822 | |
5823 | if (cause == kMemorystatusKilledVnodes) |
5824 | { |
5825 | /* |
5826 | * If the system runs out of vnodes, we systematically jetsam |
5827 | * processes in hopes of stumbling onto a vnode gain that helps |
5828 | * the system recover. The process that happens to trigger |
5829 | * this path has no known relationship to the vnode shortage. |
5830 | * Deadlock avoidance: attempt to safeguard the caller. |
5831 | */ |
5832 | |
5833 | if (p == current_proc()) { |
5834 | /* do not jetsam the current process */ |
5835 | continue; |
5836 | } |
5837 | } |
5838 | |
5839 | #if CONFIG_FREEZE |
5840 | boolean_t skip; |
5841 | boolean_t reclaim_proc = !(p->p_memstat_state & P_MEMSTAT_LOCKED); |
5842 | if (any || reclaim_proc) { |
5843 | skip = FALSE; |
5844 | } else { |
5845 | skip = TRUE; |
5846 | } |
5847 | |
5848 | if (skip) { |
5849 | continue; |
5850 | } else |
5851 | #endif |
5852 | { |
5853 | if (proc_ref_locked(p) == p) { |
5854 | /* |
5855 | * Mark as terminated so that if exit1() indicates success, but the process (for example) |
5856 | * is blocked in task_exception_notify(), it'll be skipped if encountered again - see |
5857 | * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the |
5858 | * acquisition of the proc lock. |
5859 | */ |
5860 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
5861 | |
5862 | } else { |
5863 | /* |
5864 | * We need to restart the search again because |
5865 | * proc_ref_locked _can_ drop the proc_list lock |
5866 | * and we could have lost our stored next_p via |
5867 | * an exit() on another core. |
5868 | */ |
5869 | i = 0; |
5870 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
5871 | continue; |
5872 | } |
5873 | |
5874 | /* |
5875 | * Capture a snapshot if none exists and: |
5876 | * - we are forcing a new snapshot creation, either because: |
5877 | * - on a particular platform we need these snapshots every time, OR |
5878 | * - a boot-arg/embedded device tree property has been set. |
5879 | * - priority was not requested (this is something other than an ambient kill) |
5880 | * - the priority was requested *and* the targeted process is not at idle priority |
5881 | */ |
5882 | if ((memorystatus_jetsam_snapshot_count == 0) && |
5883 | (force_new_snapshot || memorystatus_idle_snapshot || ((!priority) || (priority && (aPid_ep != JETSAM_PRIORITY_IDLE))))) { |
5884 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
5885 | new_snapshot = TRUE; |
5886 | } |
5887 | |
5888 | proc_list_unlock(); |
5889 | |
5890 | freed_mem = memorystatus_kill_proc(p, cause, jetsam_reason, &killed); /* purged and/or killed 'p' */ |
5891 | /* Success? */ |
5892 | if (freed_mem) { |
5893 | if (killed) { |
5894 | if (priority) { |
5895 | *priority = aPid_ep; |
5896 | } |
5897 | } else { |
5898 | /* purged */ |
5899 | proc_list_lock(); |
5900 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
5901 | proc_list_unlock(); |
5902 | } |
5903 | proc_rele(p); |
5904 | goto exit; |
5905 | } |
5906 | |
5907 | /* |
5908 | * Failure - first unwind the state, |
5909 | * then fall through to restart the search. |
5910 | */ |
5911 | proc_list_lock(); |
5912 | proc_rele_locked(p); |
5913 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
5914 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
5915 | *errors += 1; |
5916 | |
5917 | i = 0; |
5918 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
5919 | } |
5920 | } |
5921 | |
5922 | proc_list_unlock(); |
5923 | |
5924 | exit: |
5925 | os_reason_free(jetsam_reason); |
5926 | |
5927 | /* Clear snapshot if freshly captured and no target was found */ |
5928 | if (new_snapshot && !killed) { |
5929 | proc_list_lock(); |
5930 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
5931 | proc_list_unlock(); |
5932 | } |
5933 | |
5934 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, |
5935 | memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); |
5936 | |
5937 | return killed; |
5938 | } |
5939 | |
5940 | /* |
5941 | * Jetsam aggressively |
5942 | */ |
5943 | static boolean_t |
5944 | memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count, |
5945 | int32_t priority_max, uint32_t *errors) |
5946 | { |
5947 | pid_t aPid; |
5948 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
5949 | boolean_t new_snapshot = FALSE, killed = FALSE; |
5950 | int kill_count = 0; |
5951 | unsigned int i = 0; |
5952 | int32_t aPid_ep = 0; |
5953 | unsigned int memorystatus_level_snapshot = 0; |
5954 | uint64_t killtime = 0; |
5955 | clock_sec_t tv_sec; |
5956 | clock_usec_t tv_usec; |
5957 | uint32_t tv_msec; |
5958 | os_reason_t jetsam_reason = OS_REASON_NULL; |
5959 | |
5960 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, |
5961 | memorystatus_available_pages, priority_max, 0, 0, 0); |
5962 | |
5963 | memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT); |
5964 | |
5965 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, cause); |
5966 | if (jetsam_reason == OS_REASON_NULL) { |
5967 | printf("memorystatus_kill_top_process_aggressive: failed to allocate exit reason\n" ); |
5968 | } |
5969 | |
5970 | proc_list_lock(); |
5971 | |
5972 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
5973 | while (next_p) { |
5974 | #if DEVELOPMENT || DEBUG |
5975 | int activeProcess; |
5976 | int procSuspendedForDiagnosis; |
5977 | #endif /* DEVELOPMENT || DEBUG */ |
5978 | |
5979 | if (((next_p->p_listflag & P_LIST_EXITED) != 0) || |
5980 | ((unsigned int)(next_p->p_memstat_effectivepriority) != i)) { |
5981 | |
5982 | /* |
5983 | * We have raced with next_p running on another core. |
5984 | * It may be exiting or it may have moved to a different |
5985 | * jetsam priority band. This means we have lost our |
5986 | * place in line while traversing the jetsam list. We |
5987 | * attempt to recover by rewinding to the beginning of the band |
5988 | * we were already traversing. By doing this, we do not guarantee |
5989 | * that no process escapes this aggressive march, but we can make |
5990 | * skipping an entire range of processes less likely. (PR-21069019) |
5991 | */ |
5992 | |
5993 | MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n" , |
5994 | aggr_count, i, (*next_p->p_name ? next_p->p_name : "unknown" ), next_p->p_pid); |
5995 | |
5996 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
5997 | continue; |
5998 | } |
5999 | |
6000 | p = next_p; |
6001 | next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
6002 | |
6003 | if (p->p_memstat_effectivepriority > priority_max) { |
6004 | /* |
6005 | * Bail out of this killing spree if we have |
6006 | * reached beyond the priority_max jetsam band. |
6007 | * That is, we kill up to and through the |
6008 | * priority_max jetsam band. |
6009 | */ |
6010 | proc_list_unlock(); |
6011 | goto exit; |
6012 | } |
6013 | |
6014 | #if DEVELOPMENT || DEBUG |
6015 | activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND; |
6016 | procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED; |
6017 | #endif /* DEVELOPMENT || DEBUG */ |
6018 | |
6019 | aPid = p->p_pid; |
6020 | aPid_ep = p->p_memstat_effectivepriority; |
6021 | |
6022 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
6023 | continue; |
6024 | } |
6025 | |
6026 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
6027 | if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) { |
6028 | printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n" , aPid); |
6029 | continue; |
6030 | } |
6031 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
6032 | |
6033 | /* |
6034 | * Capture a snapshot if none exists. |
6035 | */ |
6036 | if (memorystatus_jetsam_snapshot_count == 0) { |
6037 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
6038 | new_snapshot = TRUE; |
6039 | } |
6040 | |
6041 | /* |
6042 | * Mark as terminated so that if exit1() indicates success, but the process (for example) |
6043 | * is blocked in task_exception_notify(), it'll be skipped if encountered again - see |
6044 | * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the |
6045 | * acquisition of the proc lock. |
6046 | */ |
6047 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
6048 | |
6049 | killtime = mach_absolute_time(); |
6050 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
6051 | tv_msec = tv_usec / 1000; |
6052 | |
6053 | /* Shift queue, update stats */ |
6054 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
6055 | |
6056 | /* |
6057 | * In order to kill the target process, we will drop the proc_list_lock. |
6058 | * To guaranteee that p and next_p don't disappear out from under the lock, |
6059 | * we must take a ref on both. |
6060 | * If we cannot get a reference, then it's likely we've raced with |
6061 | * that process exiting on another core. |
6062 | */ |
6063 | if (proc_ref_locked(p) == p) { |
6064 | if (next_p) { |
6065 | while (next_p && (proc_ref_locked(next_p) != next_p)) { |
6066 | proc_t temp_p; |
6067 | |
6068 | /* |
6069 | * We must have raced with next_p exiting on another core. |
6070 | * Recover by getting the next eligible process in the band. |
6071 | */ |
6072 | |
6073 | MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n" , |
6074 | aggr_count, next_p->p_pid, (*next_p->p_name ? next_p->p_name : "(unknown)" )); |
6075 | |
6076 | temp_p = next_p; |
6077 | next_p = memorystatus_get_next_proc_locked(&i, temp_p, TRUE); |
6078 | } |
6079 | } |
6080 | proc_list_unlock(); |
6081 | |
6082 | printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
6083 | (unsigned long)tv_sec, tv_msec, |
6084 | ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive" ), |
6085 | aggr_count, aPid, (*p->p_name ? p->p_name : "unknown" ), |
6086 | memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); |
6087 | |
6088 | memorystatus_level_snapshot = memorystatus_level; |
6089 | |
6090 | /* |
6091 | * memorystatus_do_kill() drops a reference, so take another one so we can |
6092 | * continue to use this exit reason even after memorystatus_do_kill() |
6093 | * returns. |
6094 | */ |
6095 | os_reason_ref(jetsam_reason); |
6096 | killed = memorystatus_do_kill(p, cause, jetsam_reason); |
6097 | |
6098 | /* Success? */ |
6099 | if (killed) { |
6100 | proc_rele(p); |
6101 | kill_count++; |
6102 | p = NULL; |
6103 | killed = FALSE; |
6104 | |
6105 | /* |
6106 | * Continue the killing spree. |
6107 | */ |
6108 | proc_list_lock(); |
6109 | if (next_p) { |
6110 | proc_rele_locked(next_p); |
6111 | } |
6112 | |
6113 | if (aPid_ep == JETSAM_PRIORITY_FOREGROUND && memorystatus_aggressive_jetsam_lenient == TRUE) { |
6114 | if (memorystatus_level > memorystatus_level_snapshot && ((memorystatus_level - memorystatus_level_snapshot) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD)) { |
6115 | #if DEVELOPMENT || DEBUG |
6116 | printf("Disabling Lenient mode after one-time deployment.\n" ); |
6117 | #endif /* DEVELOPMENT || DEBUG */ |
6118 | memorystatus_aggressive_jetsam_lenient = FALSE; |
6119 | break; |
6120 | } |
6121 | } |
6122 | |
6123 | continue; |
6124 | } |
6125 | |
6126 | /* |
6127 | * Failure - first unwind the state, |
6128 | * then fall through to restart the search. |
6129 | */ |
6130 | proc_list_lock(); |
6131 | proc_rele_locked(p); |
6132 | if (next_p) { |
6133 | proc_rele_locked(next_p); |
6134 | } |
6135 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
6136 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
6137 | *errors += 1; |
6138 | p = NULL; |
6139 | } |
6140 | |
6141 | /* |
6142 | * Failure - restart the search at the beginning of |
6143 | * the band we were already traversing. |
6144 | * |
6145 | * We might have raced with "p" exiting on another core, resulting in no |
6146 | * ref on "p". Or, we may have failed to kill "p". |
6147 | * |
6148 | * Either way, we fall thru to here, leaving the proc in the |
6149 | * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state. |
6150 | * |
6151 | * And, we hold the the proc_list_lock at this point. |
6152 | */ |
6153 | |
6154 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
6155 | } |
6156 | |
6157 | proc_list_unlock(); |
6158 | |
6159 | exit: |
6160 | os_reason_free(jetsam_reason); |
6161 | |
6162 | /* Clear snapshot if freshly captured and no target was found */ |
6163 | if (new_snapshot && (kill_count == 0)) { |
6164 | proc_list_lock(); |
6165 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
6166 | proc_list_unlock(); |
6167 | } |
6168 | |
6169 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, |
6170 | memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0); |
6171 | |
6172 | if (kill_count > 0) { |
6173 | return(TRUE); |
6174 | } |
6175 | else { |
6176 | return(FALSE); |
6177 | } |
6178 | } |
6179 | |
6180 | static boolean_t |
6181 | memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged) |
6182 | { |
6183 | pid_t aPid = 0; |
6184 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
6185 | boolean_t new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE; |
6186 | unsigned int i = 0; |
6187 | uint32_t aPid_ep; |
6188 | os_reason_t jetsam_reason = OS_REASON_NULL; |
6189 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START, |
6190 | memorystatus_available_pages, 0, 0, 0, 0); |
6191 | |
6192 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_HIGHWATER); |
6193 | if (jetsam_reason == OS_REASON_NULL) { |
6194 | printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n" ); |
6195 | } |
6196 | |
6197 | proc_list_lock(); |
6198 | |
6199 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
6200 | while (next_p) { |
6201 | uint64_t = 0; |
6202 | uint64_t memlimit_in_bytes = 0; |
6203 | boolean_t skip = 0; |
6204 | |
6205 | p = next_p; |
6206 | next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
6207 | |
6208 | aPid = p->p_pid; |
6209 | aPid_ep = p->p_memstat_effectivepriority; |
6210 | |
6211 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
6212 | continue; |
6213 | } |
6214 | |
6215 | /* skip if no limit set */ |
6216 | if (p->p_memstat_memlimit <= 0) { |
6217 | continue; |
6218 | } |
6219 | |
6220 | footprint_in_bytes = get_task_phys_footprint(p->task); |
6221 | memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */ |
6222 | skip = (footprint_in_bytes <= memlimit_in_bytes); |
6223 | |
6224 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
6225 | if (!skip && (memorystatus_jetsam_policy & kPolicyDiagnoseActive)) { |
6226 | if (p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED) { |
6227 | continue; |
6228 | } |
6229 | } |
6230 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
6231 | |
6232 | #if CONFIG_FREEZE |
6233 | if (!skip) { |
6234 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
6235 | skip = TRUE; |
6236 | } else { |
6237 | skip = FALSE; |
6238 | } |
6239 | } |
6240 | #endif |
6241 | |
6242 | if (skip) { |
6243 | continue; |
6244 | } else { |
6245 | |
6246 | if (memorystatus_jetsam_snapshot_count == 0) { |
6247 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
6248 | new_snapshot = TRUE; |
6249 | } |
6250 | |
6251 | if (proc_ref_locked(p) == p) { |
6252 | /* |
6253 | * Mark as terminated so that if exit1() indicates success, but the process (for example) |
6254 | * is blocked in task_exception_notify(), it'll be skipped if encountered again - see |
6255 | * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the |
6256 | * acquisition of the proc lock. |
6257 | */ |
6258 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
6259 | |
6260 | proc_list_unlock(); |
6261 | } else { |
6262 | /* |
6263 | * We need to restart the search again because |
6264 | * proc_ref_locked _can_ drop the proc_list lock |
6265 | * and we could have lost our stored next_p via |
6266 | * an exit() on another core. |
6267 | */ |
6268 | i = 0; |
6269 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
6270 | continue; |
6271 | } |
6272 | |
6273 | freed_mem = memorystatus_kill_proc(p, kMemorystatusKilledHiwat, jetsam_reason, &killed); /* purged and/or killed 'p' */ |
6274 | |
6275 | /* Success? */ |
6276 | if (freed_mem) { |
6277 | if (killed == FALSE) { |
6278 | /* purged 'p'..don't reset HWM candidate count */ |
6279 | *purged = TRUE; |
6280 | |
6281 | proc_list_lock(); |
6282 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
6283 | proc_list_unlock(); |
6284 | } |
6285 | proc_rele(p); |
6286 | goto exit; |
6287 | } |
6288 | /* |
6289 | * Failure - first unwind the state, |
6290 | * then fall through to restart the search. |
6291 | */ |
6292 | proc_list_lock(); |
6293 | proc_rele_locked(p); |
6294 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
6295 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
6296 | *errors += 1; |
6297 | |
6298 | i = 0; |
6299 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
6300 | } |
6301 | } |
6302 | |
6303 | proc_list_unlock(); |
6304 | |
6305 | exit: |
6306 | os_reason_free(jetsam_reason); |
6307 | |
6308 | /* Clear snapshot if freshly captured and no target was found */ |
6309 | if (new_snapshot && !killed) { |
6310 | proc_list_lock(); |
6311 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
6312 | proc_list_unlock(); |
6313 | } |
6314 | |
6315 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END, |
6316 | memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); |
6317 | |
6318 | return killed; |
6319 | } |
6320 | |
6321 | /* |
6322 | * Jetsam a process pinned in the elevated band. |
6323 | * |
6324 | * Return: true -- at least one pinned process was jetsammed |
6325 | * false -- no pinned process was jetsammed |
6326 | */ |
6327 | static boolean_t |
6328 | memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors) |
6329 | { |
6330 | pid_t aPid = 0; |
6331 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
6332 | boolean_t new_snapshot = FALSE, killed = FALSE; |
6333 | int kill_count = 0; |
6334 | uint32_t aPid_ep; |
6335 | uint64_t killtime = 0; |
6336 | clock_sec_t tv_sec; |
6337 | clock_usec_t tv_usec; |
6338 | uint32_t tv_msec; |
6339 | |
6340 | |
6341 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, |
6342 | memorystatus_available_pages, 0, 0, 0, 0); |
6343 | |
6344 | #if CONFIG_FREEZE |
6345 | boolean_t consider_frozen_only = FALSE; |
6346 | |
6347 | if (band == (unsigned int) memorystatus_freeze_jetsam_band) { |
6348 | consider_frozen_only = TRUE; |
6349 | } |
6350 | #endif /* CONFIG_FREEZE */ |
6351 | |
6352 | proc_list_lock(); |
6353 | |
6354 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
6355 | while (next_p) { |
6356 | |
6357 | p = next_p; |
6358 | next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); |
6359 | |
6360 | aPid = p->p_pid; |
6361 | aPid_ep = p->p_memstat_effectivepriority; |
6362 | |
6363 | /* |
6364 | * Only pick a process pinned in this elevated band |
6365 | */ |
6366 | if (!(p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) { |
6367 | continue; |
6368 | } |
6369 | |
6370 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
6371 | continue; |
6372 | } |
6373 | |
6374 | #if CONFIG_FREEZE |
6375 | if (consider_frozen_only && ! (p->p_memstat_state & P_MEMSTAT_FROZEN)) { |
6376 | continue; |
6377 | } |
6378 | |
6379 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
6380 | continue; |
6381 | } |
6382 | #endif /* CONFIG_FREEZE */ |
6383 | |
6384 | #if DEVELOPMENT || DEBUG |
6385 | MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n" , |
6386 | aggr_count, |
6387 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
6388 | memorystatus_available_pages); |
6389 | #endif /* DEVELOPMENT || DEBUG */ |
6390 | |
6391 | if (memorystatus_jetsam_snapshot_count == 0) { |
6392 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
6393 | new_snapshot = TRUE; |
6394 | } |
6395 | |
6396 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
6397 | |
6398 | killtime = mach_absolute_time(); |
6399 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
6400 | tv_msec = tv_usec / 1000; |
6401 | |
6402 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
6403 | |
6404 | if (proc_ref_locked(p) == p) { |
6405 | |
6406 | proc_list_unlock(); |
6407 | |
6408 | os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
6409 | (unsigned long)tv_sec, tv_msec, |
6410 | aggr_count, |
6411 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
6412 | memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); |
6413 | |
6414 | /* |
6415 | * memorystatus_do_kill drops a reference, so take another one so we can |
6416 | * continue to use this exit reason even after memorystatus_do_kill() |
6417 | * returns |
6418 | */ |
6419 | os_reason_ref(jetsam_reason); |
6420 | killed = memorystatus_do_kill(p, cause, jetsam_reason); |
6421 | |
6422 | /* Success? */ |
6423 | if (killed) { |
6424 | proc_rele(p); |
6425 | kill_count++; |
6426 | goto exit; |
6427 | } |
6428 | |
6429 | /* |
6430 | * Failure - first unwind the state, |
6431 | * then fall through to restart the search. |
6432 | */ |
6433 | proc_list_lock(); |
6434 | proc_rele_locked(p); |
6435 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
6436 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
6437 | *errors += 1; |
6438 | } |
6439 | |
6440 | /* |
6441 | * Failure - restart the search. |
6442 | * |
6443 | * We might have raced with "p" exiting on another core, resulting in no |
6444 | * ref on "p". Or, we may have failed to kill "p". |
6445 | * |
6446 | * Either way, we fall thru to here, leaving the proc in the |
6447 | * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state. |
6448 | * |
6449 | * And, we hold the the proc_list_lock at this point. |
6450 | */ |
6451 | |
6452 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
6453 | } |
6454 | |
6455 | proc_list_unlock(); |
6456 | |
6457 | exit: |
6458 | os_reason_free(jetsam_reason); |
6459 | |
6460 | /* Clear snapshot if freshly captured and no target was found */ |
6461 | if (new_snapshot && (kill_count == 0)) { |
6462 | proc_list_lock(); |
6463 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
6464 | proc_list_unlock(); |
6465 | } |
6466 | |
6467 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, |
6468 | memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0); |
6469 | |
6470 | return (killed); |
6471 | } |
6472 | |
6473 | static boolean_t |
6474 | memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause) { |
6475 | /* |
6476 | * TODO: allow a general async path |
6477 | * |
6478 | * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to |
6479 | * add the appropriate exit reason code mapping. |
6480 | */ |
6481 | if ((victim_pid != -1) || |
6482 | (cause != kMemorystatusKilledVMPageShortage && |
6483 | cause != kMemorystatusKilledVMCompressorThrashing && |
6484 | cause != kMemorystatusKilledVMCompressorSpaceShortage && |
6485 | cause != kMemorystatusKilledFCThrashing && |
6486 | cause != kMemorystatusKilledZoneMapExhaustion)) { |
6487 | return FALSE; |
6488 | } |
6489 | |
6490 | kill_under_pressure_cause = cause; |
6491 | memorystatus_thread_wake(); |
6492 | return TRUE; |
6493 | } |
6494 | |
6495 | boolean_t |
6496 | memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async) { |
6497 | if (async) { |
6498 | return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage); |
6499 | } else { |
6500 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE); |
6501 | if (jetsam_reason == OS_REASON_NULL) { |
6502 | printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n" ); |
6503 | } |
6504 | |
6505 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage, jetsam_reason); |
6506 | } |
6507 | } |
6508 | |
6509 | #if CONFIG_JETSAM |
6510 | boolean_t |
6511 | memorystatus_kill_on_VM_compressor_thrashing(boolean_t async) { |
6512 | if (async) { |
6513 | return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing); |
6514 | } else { |
6515 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING); |
6516 | if (jetsam_reason == OS_REASON_NULL) { |
6517 | printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n" ); |
6518 | } |
6519 | |
6520 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing, jetsam_reason); |
6521 | } |
6522 | } |
6523 | |
6524 | boolean_t |
6525 | memorystatus_kill_on_VM_page_shortage(boolean_t async) { |
6526 | if (async) { |
6527 | return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage); |
6528 | } else { |
6529 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMPAGESHORTAGE); |
6530 | if (jetsam_reason == OS_REASON_NULL) { |
6531 | printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n" ); |
6532 | } |
6533 | |
6534 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage, jetsam_reason); |
6535 | } |
6536 | } |
6537 | |
6538 | boolean_t |
6539 | memorystatus_kill_on_FC_thrashing(boolean_t async) { |
6540 | |
6541 | |
6542 | if (async) { |
6543 | return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing); |
6544 | } else { |
6545 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_FCTHRASHING); |
6546 | if (jetsam_reason == OS_REASON_NULL) { |
6547 | printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n" ); |
6548 | } |
6549 | |
6550 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing, jetsam_reason); |
6551 | } |
6552 | } |
6553 | |
6554 | boolean_t |
6555 | memorystatus_kill_on_vnode_limit(void) { |
6556 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_VNODE); |
6557 | if (jetsam_reason == OS_REASON_NULL) { |
6558 | printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n" ); |
6559 | } |
6560 | |
6561 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes, jetsam_reason); |
6562 | } |
6563 | |
6564 | #endif /* CONFIG_JETSAM */ |
6565 | |
6566 | boolean_t |
6567 | memorystatus_kill_on_zone_map_exhaustion(pid_t pid) { |
6568 | boolean_t res = FALSE; |
6569 | if (pid == -1) { |
6570 | res = memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion); |
6571 | } else { |
6572 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_ZONE_MAP_EXHAUSTION); |
6573 | if (jetsam_reason == OS_REASON_NULL) { |
6574 | printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n" ); |
6575 | } |
6576 | |
6577 | res = memorystatus_kill_process_sync(pid, kMemorystatusKilledZoneMapExhaustion, jetsam_reason); |
6578 | } |
6579 | return res; |
6580 | } |
6581 | |
6582 | #if CONFIG_FREEZE |
6583 | |
6584 | __private_extern__ void |
6585 | memorystatus_freeze_init(void) |
6586 | { |
6587 | kern_return_t result; |
6588 | thread_t thread; |
6589 | |
6590 | freezer_lck_grp_attr = lck_grp_attr_alloc_init(); |
6591 | freezer_lck_grp = lck_grp_alloc_init("freezer" , freezer_lck_grp_attr); |
6592 | |
6593 | lck_mtx_init(&freezer_mutex, freezer_lck_grp, NULL); |
6594 | |
6595 | /* |
6596 | * This is just the default value if the underlying |
6597 | * storage device doesn't have any specific budget. |
6598 | * We check with the storage layer in memorystatus_freeze_update_throttle() |
6599 | * before we start our freezing the first time. |
6600 | */ |
6601 | memorystatus_freeze_budget_pages_remaining = (memorystatus_freeze_daily_mb_max * 1024 * 1024) / PAGE_SIZE; |
6602 | |
6603 | result = kernel_thread_start(memorystatus_freeze_thread, NULL, &thread); |
6604 | if (result == KERN_SUCCESS) { |
6605 | |
6606 | proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2); |
6607 | proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
6608 | thread_set_thread_name(thread, "VM_freezer" ); |
6609 | |
6610 | thread_deallocate(thread); |
6611 | } else { |
6612 | panic("Could not create memorystatus_freeze_thread" ); |
6613 | } |
6614 | } |
6615 | |
6616 | static boolean_t |
6617 | memorystatus_is_process_eligible_for_freeze(proc_t p) |
6618 | { |
6619 | /* |
6620 | * Called with proc_list_lock held. |
6621 | */ |
6622 | |
6623 | LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
6624 | |
6625 | boolean_t should_freeze = FALSE; |
6626 | uint32_t state = 0, entry_count = 0, pages = 0, i = 0; |
6627 | int probability_of_use = 0; |
6628 | |
6629 | if (isApp(p) == FALSE) { |
6630 | goto out; |
6631 | } |
6632 | |
6633 | state = p->p_memstat_state; |
6634 | |
6635 | if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED | P_MEMSTAT_FREEZE_IGNORE)) || |
6636 | !(state & P_MEMSTAT_SUSPENDED)) { |
6637 | goto out; |
6638 | } |
6639 | |
6640 | /* Only freeze processes meeting our minimum resident page criteria */ |
6641 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
6642 | if (pages < memorystatus_freeze_pages_min) { |
6643 | goto out; |
6644 | } |
6645 | |
6646 | entry_count = (memorystatus_global_probabilities_size / sizeof(memorystatus_internal_probabilities_t)); |
6647 | |
6648 | if (entry_count) { |
6649 | |
6650 | for (i=0; i < entry_count; i++ ) { |
6651 | if (strncmp(memorystatus_global_probabilities_table[i].proc_name, |
6652 | p->p_name, |
6653 | MAXCOMLEN + 1) == 0) { |
6654 | |
6655 | probability_of_use = memorystatus_global_probabilities_table[i].use_probability; |
6656 | break; |
6657 | } |
6658 | } |
6659 | |
6660 | if (probability_of_use == 0) { |
6661 | goto out; |
6662 | } |
6663 | } |
6664 | |
6665 | should_freeze = TRUE; |
6666 | out: |
6667 | return should_freeze; |
6668 | } |
6669 | |
6670 | /* |
6671 | * Synchronously freeze the passed proc. Called with a reference to the proc held. |
6672 | * |
6673 | * Doesn't deal with re-freezing because this is called on a specific process and |
6674 | * not by the freezer thread. If that changes, we'll have to teach it about |
6675 | * refreezing a frozen process. |
6676 | * |
6677 | * Returns EINVAL or the value returned by task_freeze(). |
6678 | */ |
6679 | int |
6680 | memorystatus_freeze_process_sync(proc_t p) |
6681 | { |
6682 | int ret = EINVAL; |
6683 | pid_t aPid = 0; |
6684 | boolean_t memorystatus_freeze_swap_low = FALSE; |
6685 | int freezer_error_code = 0; |
6686 | |
6687 | lck_mtx_lock(&freezer_mutex); |
6688 | |
6689 | if (p == NULL) { |
6690 | printf("memorystatus_freeze_process_sync: Invalid process\n" ); |
6691 | goto exit; |
6692 | } |
6693 | |
6694 | if (memorystatus_freeze_enabled == FALSE) { |
6695 | printf("memorystatus_freeze_process_sync: Freezing is DISABLED\n" ); |
6696 | goto exit; |
6697 | } |
6698 | |
6699 | if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low)) { |
6700 | printf("memorystatus_freeze_process_sync: Low compressor and/or low swap space...skipping freeze\n" ); |
6701 | goto exit; |
6702 | } |
6703 | |
6704 | memorystatus_freeze_update_throttle(&memorystatus_freeze_budget_pages_remaining); |
6705 | if (!memorystatus_freeze_budget_pages_remaining) { |
6706 | printf("memorystatus_freeze_process_sync: exit with NO available budget\n" ); |
6707 | goto exit; |
6708 | } |
6709 | |
6710 | proc_list_lock(); |
6711 | |
6712 | if (p != NULL) { |
6713 | uint32_t purgeable, wired, clean, dirty, shared; |
6714 | uint32_t max_pages, i; |
6715 | |
6716 | aPid = p->p_pid; |
6717 | |
6718 | /* Ensure the process is eligible for freezing */ |
6719 | if (memorystatus_is_process_eligible_for_freeze(p) == FALSE) { |
6720 | proc_list_unlock(); |
6721 | goto exit; |
6722 | } |
6723 | |
6724 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
6725 | |
6726 | max_pages = MIN(memorystatus_freeze_pages_max, memorystatus_freeze_budget_pages_remaining); |
6727 | |
6728 | } else { |
6729 | /* |
6730 | * We only have the compressor without any swap. |
6731 | */ |
6732 | max_pages = UINT32_MAX - 1; |
6733 | } |
6734 | |
6735 | /* Mark as locked temporarily to avoid kill */ |
6736 | p->p_memstat_state |= P_MEMSTAT_LOCKED; |
6737 | proc_list_unlock(); |
6738 | |
6739 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START, |
6740 | memorystatus_available_pages, 0, 0, 0, 0); |
6741 | |
6742 | ret = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); |
6743 | |
6744 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END, |
6745 | memorystatus_available_pages, aPid, 0, 0, 0); |
6746 | |
6747 | DTRACE_MEMORYSTATUS6(memorystatus_freeze, proc_t, p, unsigned int, memorystatus_available_pages, boolean_t, purgeable, unsigned int, wired, uint32_t, clean, uint32_t, dirty); |
6748 | |
6749 | MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - " |
6750 | "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n" , |
6751 | (ret == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED" , aPid, (*p->p_name ? p->p_name : "(unknown)" ), |
6752 | memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared); |
6753 | |
6754 | proc_list_lock(); |
6755 | |
6756 | if (ret == KERN_SUCCESS) { |
6757 | |
6758 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (specific) pid %d [%s]...done" , |
6759 | aPid, (*p->p_name ? p->p_name : "unknown" )); |
6760 | |
6761 | memorystatus_freeze_entry_t data = { aPid, TRUE, dirty }; |
6762 | |
6763 | p->p_memstat_freeze_sharedanon_pages += shared; |
6764 | |
6765 | memorystatus_frozen_shared_mb += shared; |
6766 | |
6767 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { |
6768 | p->p_memstat_state |= P_MEMSTAT_FROZEN; |
6769 | memorystatus_frozen_count++; |
6770 | } |
6771 | |
6772 | p->p_memstat_frozen_count++; |
6773 | |
6774 | /* |
6775 | * Still keeping the P_MEMSTAT_LOCKED bit till we are actually done elevating this frozen process |
6776 | * to its higher jetsam band. |
6777 | */ |
6778 | proc_list_unlock(); |
6779 | |
6780 | memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); |
6781 | |
6782 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
6783 | |
6784 | ret = memorystatus_update_inactive_jetsam_priority_band(p->p_pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, |
6785 | memorystatus_freeze_jetsam_band, TRUE); |
6786 | |
6787 | if (ret) { |
6788 | printf("Elevating the frozen process failed with %d\n" , ret); |
6789 | /* not fatal */ |
6790 | ret = 0; |
6791 | } |
6792 | |
6793 | proc_list_lock(); |
6794 | |
6795 | /* Update stats */ |
6796 | for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { |
6797 | throttle_intervals[i].pageouts += dirty; |
6798 | } |
6799 | } else { |
6800 | proc_list_lock(); |
6801 | } |
6802 | |
6803 | memorystatus_freeze_pageouts += dirty; |
6804 | |
6805 | if (memorystatus_frozen_count == (memorystatus_frozen_processes_max - 1)) { |
6806 | /* |
6807 | * Add some eviction logic here? At some point should we |
6808 | * jetsam a process to get back its swap space so that we |
6809 | * can freeze a more eligible process at this moment in time? |
6810 | */ |
6811 | } |
6812 | } else { |
6813 | char reason[128]; |
6814 | if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { |
6815 | strlcpy(reason, "too much shared memory" , 128); |
6816 | } |
6817 | |
6818 | if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { |
6819 | strlcpy(reason, "low private-shared pages ratio" , 128); |
6820 | } |
6821 | |
6822 | if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { |
6823 | strlcpy(reason, "no compressor space" , 128); |
6824 | } |
6825 | |
6826 | if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { |
6827 | strlcpy(reason, "no swap space" , 128); |
6828 | } |
6829 | |
6830 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (specific) pid %d [%s]...skipped (%s)" , |
6831 | aPid, (*p->p_name ? p->p_name : "unknown" ), reason); |
6832 | p->p_memstat_state |= P_MEMSTAT_FREEZE_IGNORE; |
6833 | } |
6834 | |
6835 | p->p_memstat_state &= ~P_MEMSTAT_LOCKED; |
6836 | proc_list_unlock(); |
6837 | } |
6838 | |
6839 | exit: |
6840 | lck_mtx_unlock(&freezer_mutex); |
6841 | |
6842 | return ret; |
6843 | } |
6844 | |
6845 | static int |
6846 | memorystatus_freeze_top_process(void) |
6847 | { |
6848 | pid_t aPid = 0; |
6849 | int ret = -1; |
6850 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
6851 | unsigned int i = 0; |
6852 | unsigned int band = JETSAM_PRIORITY_IDLE; |
6853 | boolean_t refreeze_processes = FALSE; |
6854 | |
6855 | proc_list_lock(); |
6856 | |
6857 | if (memorystatus_frozen_count >= memorystatus_frozen_processes_max) { |
6858 | /* |
6859 | * Freezer is already full but we are here and so let's |
6860 | * try to refreeze any processes we might have thawed |
6861 | * in the past and push out their compressed state out. |
6862 | */ |
6863 | refreeze_processes = TRUE; |
6864 | band = (unsigned int) memorystatus_freeze_jetsam_band; |
6865 | } |
6866 | |
6867 | freeze_process: |
6868 | |
6869 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
6870 | while (next_p) { |
6871 | kern_return_t kr; |
6872 | uint32_t purgeable, wired, clean, dirty, shared; |
6873 | uint32_t max_pages = 0; |
6874 | int freezer_error_code = 0; |
6875 | |
6876 | p = next_p; |
6877 | next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); |
6878 | |
6879 | aPid = p->p_pid; |
6880 | |
6881 | if (p->p_memstat_effectivepriority != (int32_t) band) { |
6882 | /* |
6883 | * We shouldn't be freezing processes outside the |
6884 | * prescribed band. |
6885 | */ |
6886 | break; |
6887 | } |
6888 | |
6889 | /* Ensure the process is eligible for (re-)freezing */ |
6890 | if (refreeze_processes) { |
6891 | /* |
6892 | * Has to have been frozen once before. |
6893 | */ |
6894 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { |
6895 | continue; |
6896 | } |
6897 | |
6898 | /* |
6899 | * Has to have been resumed once before. |
6900 | */ |
6901 | if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == FALSE) { |
6902 | continue; |
6903 | } |
6904 | |
6905 | /* |
6906 | * Not currently being looked at for something. |
6907 | */ |
6908 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
6909 | continue; |
6910 | } |
6911 | |
6912 | /* |
6913 | * We are going to try and refreeze and so re-evaluate |
6914 | * the process. We don't want to double count the shared |
6915 | * memory. So deduct the old snapshot here. |
6916 | */ |
6917 | memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages; |
6918 | p->p_memstat_freeze_sharedanon_pages = 0; |
6919 | |
6920 | p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; |
6921 | memorystatus_refreeze_eligible_count--; |
6922 | |
6923 | } else { |
6924 | if (memorystatus_is_process_eligible_for_freeze(p) == FALSE) { |
6925 | continue; // with lock held |
6926 | } |
6927 | } |
6928 | |
6929 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
6930 | /* |
6931 | * Freezer backed by the compressor and swap file(s) |
6932 | * will hold compressed data. |
6933 | */ |
6934 | |
6935 | max_pages = MIN(memorystatus_freeze_pages_max, memorystatus_freeze_budget_pages_remaining); |
6936 | |
6937 | } else { |
6938 | /* |
6939 | * We only have the compressor pool. |
6940 | */ |
6941 | max_pages = UINT32_MAX - 1; |
6942 | } |
6943 | |
6944 | /* Mark as locked temporarily to avoid kill */ |
6945 | p->p_memstat_state |= P_MEMSTAT_LOCKED; |
6946 | |
6947 | p = proc_ref_locked(p); |
6948 | if (!p) { |
6949 | break; |
6950 | } |
6951 | |
6952 | proc_list_unlock(); |
6953 | |
6954 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START, |
6955 | memorystatus_available_pages, 0, 0, 0, 0); |
6956 | |
6957 | kr = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); |
6958 | |
6959 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END, |
6960 | memorystatus_available_pages, aPid, 0, 0, 0); |
6961 | |
6962 | MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - " |
6963 | "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n" , |
6964 | (kr == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED" , aPid, (*p->p_name ? p->p_name : "(unknown)" ), |
6965 | memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared); |
6966 | |
6967 | proc_list_lock(); |
6968 | |
6969 | /* Success? */ |
6970 | if (KERN_SUCCESS == kr) { |
6971 | |
6972 | if (refreeze_processes) { |
6973 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: Refreezing (general) pid %d [%s]...done" , |
6974 | aPid, (*p->p_name ? p->p_name : "unknown" )); |
6975 | } else { |
6976 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (general) pid %d [%s]...done" , |
6977 | aPid, (*p->p_name ? p->p_name : "unknown" )); |
6978 | } |
6979 | |
6980 | memorystatus_freeze_entry_t data = { aPid, TRUE, dirty }; |
6981 | |
6982 | p->p_memstat_freeze_sharedanon_pages += shared; |
6983 | |
6984 | memorystatus_frozen_shared_mb += shared; |
6985 | |
6986 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { |
6987 | p->p_memstat_state |= P_MEMSTAT_FROZEN; |
6988 | memorystatus_frozen_count++; |
6989 | } |
6990 | |
6991 | p->p_memstat_frozen_count++; |
6992 | |
6993 | /* |
6994 | * Still keeping the P_MEMSTAT_LOCKED bit till we are actually done elevating this frozen process |
6995 | * to its higher jetsam band. |
6996 | */ |
6997 | proc_list_unlock(); |
6998 | |
6999 | memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); |
7000 | |
7001 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
7002 | |
7003 | ret = memorystatus_update_inactive_jetsam_priority_band(p->p_pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, memorystatus_freeze_jetsam_band, TRUE); |
7004 | |
7005 | if (ret) { |
7006 | printf("Elevating the frozen process failed with %d\n" , ret); |
7007 | /* not fatal */ |
7008 | ret = 0; |
7009 | } |
7010 | |
7011 | proc_list_lock(); |
7012 | |
7013 | /* Update stats */ |
7014 | for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { |
7015 | throttle_intervals[i].pageouts += dirty; |
7016 | } |
7017 | } else { |
7018 | proc_list_lock(); |
7019 | } |
7020 | |
7021 | memorystatus_freeze_pageouts += dirty; |
7022 | |
7023 | if (memorystatus_frozen_count == (memorystatus_frozen_processes_max - 1)) { |
7024 | /* |
7025 | * Add some eviction logic here? At some point should we |
7026 | * jetsam a process to get back its swap space so that we |
7027 | * can freeze a more eligible process at this moment in time? |
7028 | */ |
7029 | } |
7030 | |
7031 | /* Return KERN_SUCCESS */ |
7032 | ret = kr; |
7033 | |
7034 | p->p_memstat_state &= ~P_MEMSTAT_LOCKED; |
7035 | proc_rele_locked(p); |
7036 | |
7037 | /* |
7038 | * We froze a process successfully. We can stop now |
7039 | * and see if that helped. |
7040 | */ |
7041 | |
7042 | break; |
7043 | } else { |
7044 | |
7045 | p->p_memstat_state &= ~P_MEMSTAT_LOCKED; |
7046 | |
7047 | if (refreeze_processes == TRUE) { |
7048 | if ((freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) || |
7049 | (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO)) { |
7050 | /* |
7051 | * Keeping this prior-frozen process in this high band when |
7052 | * we failed to re-freeze it due to bad shared memory usage |
7053 | * could cause excessive pressure on the lower bands. |
7054 | * We need to demote it for now. It'll get re-evaluated next |
7055 | * time because we don't set the P_MEMSTAT_FREEZE_IGNORE |
7056 | * bit. |
7057 | */ |
7058 | |
7059 | p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
7060 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
7061 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, TRUE, TRUE); |
7062 | } |
7063 | } else { |
7064 | p->p_memstat_state |= P_MEMSTAT_FREEZE_IGNORE; |
7065 | } |
7066 | |
7067 | proc_rele_locked(p); |
7068 | |
7069 | char reason[128]; |
7070 | if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { |
7071 | strlcpy(reason, "too much shared memory" , 128); |
7072 | } |
7073 | |
7074 | if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { |
7075 | strlcpy(reason, "low private-shared pages ratio" , 128); |
7076 | } |
7077 | |
7078 | if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { |
7079 | strlcpy(reason, "no compressor space" , 128); |
7080 | } |
7081 | |
7082 | if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { |
7083 | strlcpy(reason, "no swap space" , 128); |
7084 | } |
7085 | |
7086 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (general) pid %d [%s]...skipped (%s)" , |
7087 | aPid, (*p->p_name ? p->p_name : "unknown" ), reason); |
7088 | |
7089 | if (vm_compressor_low_on_space() || vm_swap_low_on_space()) { |
7090 | break; |
7091 | } |
7092 | } |
7093 | } |
7094 | |
7095 | if ((ret == -1) && |
7096 | (memorystatus_refreeze_eligible_count >= MIN_THAW_REFREEZE_THRESHOLD) && |
7097 | (refreeze_processes == FALSE)) { |
7098 | /* |
7099 | * We failed to freeze a process from the IDLE |
7100 | * band AND we have some thawed processes |
7101 | * AND haven't tried refreezing as yet. |
7102 | * Let's try and re-freeze processes in the |
7103 | * frozen band that have been resumed in the past |
7104 | * and so have brought in state from disk. |
7105 | */ |
7106 | |
7107 | band = (unsigned int) memorystatus_freeze_jetsam_band; |
7108 | |
7109 | refreeze_processes = TRUE; |
7110 | |
7111 | goto freeze_process; |
7112 | } |
7113 | |
7114 | proc_list_unlock(); |
7115 | |
7116 | return ret; |
7117 | } |
7118 | |
7119 | static inline boolean_t |
7120 | memorystatus_can_freeze_processes(void) |
7121 | { |
7122 | boolean_t ret; |
7123 | |
7124 | proc_list_lock(); |
7125 | |
7126 | if (memorystatus_suspended_count) { |
7127 | |
7128 | memorystatus_freeze_suspended_threshold = MIN(memorystatus_freeze_suspended_threshold, FREEZE_SUSPENDED_THRESHOLD_DEFAULT); |
7129 | |
7130 | if ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold) { |
7131 | ret = TRUE; |
7132 | } else { |
7133 | ret = FALSE; |
7134 | } |
7135 | } else { |
7136 | ret = FALSE; |
7137 | } |
7138 | |
7139 | proc_list_unlock(); |
7140 | |
7141 | return ret; |
7142 | } |
7143 | |
7144 | static boolean_t |
7145 | memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low) |
7146 | { |
7147 | boolean_t can_freeze = TRUE; |
7148 | |
7149 | /* Only freeze if we're sufficiently low on memory; this holds off freeze right |
7150 | after boot, and is generally is a no-op once we've reached steady state. */ |
7151 | if (memorystatus_available_pages > memorystatus_freeze_threshold) { |
7152 | return FALSE; |
7153 | } |
7154 | |
7155 | /* Check minimum suspended process threshold. */ |
7156 | if (!memorystatus_can_freeze_processes()) { |
7157 | return FALSE; |
7158 | } |
7159 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
7160 | |
7161 | if ( !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
7162 | /* |
7163 | * In-core compressor used for freezing WITHOUT on-disk swap support. |
7164 | */ |
7165 | if (vm_compressor_low_on_space()) { |
7166 | if (*memorystatus_freeze_swap_low) { |
7167 | *memorystatus_freeze_swap_low = TRUE; |
7168 | } |
7169 | |
7170 | can_freeze = FALSE; |
7171 | |
7172 | } else { |
7173 | if (*memorystatus_freeze_swap_low) { |
7174 | *memorystatus_freeze_swap_low = FALSE; |
7175 | } |
7176 | |
7177 | can_freeze = TRUE; |
7178 | } |
7179 | } else { |
7180 | /* |
7181 | * Freezing WITH on-disk swap support. |
7182 | * |
7183 | * In-core compressor fronts the swap. |
7184 | */ |
7185 | if (vm_swap_low_on_space()) { |
7186 | if (*memorystatus_freeze_swap_low) { |
7187 | *memorystatus_freeze_swap_low = TRUE; |
7188 | } |
7189 | |
7190 | can_freeze = FALSE; |
7191 | } |
7192 | |
7193 | } |
7194 | |
7195 | return can_freeze; |
7196 | } |
7197 | |
7198 | /* |
7199 | * This function evaluates if the currently frozen processes deserve |
7200 | * to stay in the higher jetsam band. If the # of thaws of a process |
7201 | * is below our threshold, then we will demote that process into the IDLE |
7202 | * band and put it at the head. We don't immediately kill the process here |
7203 | * because it already has state on disk and so it might be worth giving |
7204 | * it another shot at getting thawed/resumed and used. |
7205 | */ |
7206 | static void |
7207 | memorystatus_demote_frozen_processes(void) |
7208 | { |
7209 | unsigned int band = (unsigned int) memorystatus_freeze_jetsam_band; |
7210 | unsigned int demoted_proc_count = 0; |
7211 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
7212 | |
7213 | proc_list_lock(); |
7214 | |
7215 | if (memorystatus_freeze_enabled == FALSE) { |
7216 | /* |
7217 | * Freeze has been disabled likely to |
7218 | * reclaim swap space. So don't change |
7219 | * any state on the frozen processes. |
7220 | */ |
7221 | proc_list_unlock(); |
7222 | return; |
7223 | } |
7224 | |
7225 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
7226 | while (next_p) { |
7227 | |
7228 | p = next_p; |
7229 | next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); |
7230 | |
7231 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { |
7232 | continue; |
7233 | } |
7234 | |
7235 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
7236 | continue; |
7237 | } |
7238 | |
7239 | if (p->p_memstat_thaw_count < memorystatus_thaw_count_demotion_threshold) { |
7240 | p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
7241 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
7242 | |
7243 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, TRUE, TRUE); |
7244 | #if DEVELOPMENT || DEBUG |
7245 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus_demote_frozen_process pid %d [%s]" , |
7246 | p->p_pid, (*p->p_name ? p->p_name : "unknown" )); |
7247 | #endif /* DEVELOPMENT || DEBUG */ |
7248 | |
7249 | /* |
7250 | * The freezer thread will consider this a normal app to be frozen |
7251 | * because it is in the IDLE band. So we don't need the |
7252 | * P_MEMSTAT_REFREEZE_ELIGIBLE state here. Also, if it gets resumed |
7253 | * we'll correctly count it as eligible for re-freeze again. |
7254 | * |
7255 | * We don't drop the frozen count because this process still has |
7256 | * state on disk. So there's a chance it gets resumed and then it |
7257 | * should land in the higher jetsam band. For that it needs to |
7258 | * remain marked frozen. |
7259 | */ |
7260 | if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { |
7261 | p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; |
7262 | memorystatus_refreeze_eligible_count--; |
7263 | } |
7264 | |
7265 | demoted_proc_count++; |
7266 | } |
7267 | |
7268 | if (demoted_proc_count == memorystatus_max_frozen_demotions_daily) { |
7269 | break; |
7270 | } |
7271 | } |
7272 | |
7273 | memorystatus_thaw_count = 0; |
7274 | proc_list_unlock(); |
7275 | } |
7276 | |
7277 | |
7278 | /* |
7279 | * This function will do 4 things: |
7280 | * |
7281 | * 1) check to see if we are currently in a degraded freezer mode, and if so: |
7282 | * - check to see if our window has expired and we should exit this mode, OR, |
7283 | * - return a budget based on the degraded throttle window's max. pageouts vs current pageouts. |
7284 | * |
7285 | * 2) check to see if we are in a NEW normal window and update the normal throttle window's params. |
7286 | * |
7287 | * 3) check what the current normal window allows for a budget. |
7288 | * |
7289 | * 4) calculate the current rate of pageouts for DEGRADED_WINDOW_MINS duration. If that rate is below |
7290 | * what we would normally expect, then we are running low on our daily budget and need to enter |
7291 | * degraded perf. mode. |
7292 | */ |
7293 | |
7294 | static void |
7295 | memorystatus_freeze_update_throttle(uint64_t *budget_pages_allowed) |
7296 | { |
7297 | clock_sec_t sec; |
7298 | clock_nsec_t nsec; |
7299 | mach_timespec_t ts; |
7300 | |
7301 | unsigned int freeze_daily_pageouts_max = 0; |
7302 | |
7303 | #if DEVELOPMENT || DEBUG |
7304 | if (!memorystatus_freeze_throttle_enabled) { |
7305 | /* |
7306 | * No throttling...we can use the full budget everytime. |
7307 | */ |
7308 | *budget_pages_allowed = UINT64_MAX; |
7309 | return; |
7310 | } |
7311 | #endif |
7312 | |
7313 | clock_get_system_nanotime(&sec, &nsec); |
7314 | ts.tv_sec = sec; |
7315 | ts.tv_nsec = nsec; |
7316 | |
7317 | struct throttle_interval_t *interval = NULL; |
7318 | |
7319 | if (memorystatus_freeze_degradation == TRUE) { |
7320 | |
7321 | interval = degraded_throttle_window; |
7322 | |
7323 | if (CMP_MACH_TIMESPEC(&ts, &interval->ts) >= 0) { |
7324 | memorystatus_freeze_degradation = FALSE; |
7325 | interval->pageouts = 0; |
7326 | interval->max_pageouts = 0; |
7327 | |
7328 | } else { |
7329 | *budget_pages_allowed = interval->max_pageouts - interval->pageouts; |
7330 | } |
7331 | } |
7332 | |
7333 | interval = normal_throttle_window; |
7334 | |
7335 | if (CMP_MACH_TIMESPEC(&ts, &interval->ts) >= 0) { |
7336 | /* |
7337 | * New throttle window. |
7338 | * Rollover any unused budget. |
7339 | * Also ask the storage layer what the new budget needs to be. |
7340 | */ |
7341 | uint64_t freeze_daily_budget = 0; |
7342 | unsigned int daily_budget_pageouts = 0; |
7343 | |
7344 | if (vm_swap_max_budget(&freeze_daily_budget)) { |
7345 | memorystatus_freeze_daily_mb_max = (freeze_daily_budget / (1024 * 1024)); |
7346 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: memorystatus_freeze_daily_mb_max set to %dMB\n" , memorystatus_freeze_daily_mb_max); |
7347 | } |
7348 | |
7349 | freeze_daily_pageouts_max = memorystatus_freeze_daily_mb_max * (1024 * 1024 / PAGE_SIZE); |
7350 | |
7351 | daily_budget_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / NORMAL_WINDOW_MINS)); |
7352 | interval->max_pageouts = (interval->max_pageouts - interval->pageouts) + daily_budget_pageouts; |
7353 | |
7354 | interval->ts.tv_sec = interval->mins * 60; |
7355 | interval->ts.tv_nsec = 0; |
7356 | ADD_MACH_TIMESPEC(&interval->ts, &ts); |
7357 | /* Since we update the throttle stats pre-freeze, adjust for overshoot here */ |
7358 | if (interval->pageouts > interval->max_pageouts) { |
7359 | interval->pageouts -= interval->max_pageouts; |
7360 | } else { |
7361 | interval->pageouts = 0; |
7362 | } |
7363 | *budget_pages_allowed = interval->max_pageouts; |
7364 | |
7365 | memorystatus_demote_frozen_processes(); |
7366 | |
7367 | } else { |
7368 | /* |
7369 | * Current throttle window. |
7370 | * Deny freezing if we have no budget left. |
7371 | * Try graceful degradation if we are within 25% of: |
7372 | * - the daily budget, and |
7373 | * - the current budget left is below our normal budget expectations. |
7374 | */ |
7375 | |
7376 | #if DEVELOPMENT || DEBUG |
7377 | /* |
7378 | * This can only happen in the INTERNAL configs because we allow modifying the daily budget for testing. |
7379 | */ |
7380 | |
7381 | if (freeze_daily_pageouts_max > interval->max_pageouts) { |
7382 | /* |
7383 | * We just bumped the daily budget. Re-evaluate our normal window params. |
7384 | */ |
7385 | interval->max_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / NORMAL_WINDOW_MINS)); |
7386 | memorystatus_freeze_degradation = FALSE; //we'll re-evaluate this below... |
7387 | } |
7388 | #endif /* DEVELOPMENT || DEBUG */ |
7389 | |
7390 | if (memorystatus_freeze_degradation == FALSE) { |
7391 | |
7392 | if (interval->pageouts >= interval->max_pageouts) { |
7393 | |
7394 | *budget_pages_allowed = 0; |
7395 | |
7396 | } else { |
7397 | |
7398 | int budget_left = interval->max_pageouts - interval->pageouts; |
7399 | int budget_threshold = (freeze_daily_pageouts_max * FREEZE_DEGRADATION_BUDGET_THRESHOLD) / 100; |
7400 | |
7401 | mach_timespec_t time_left = {0,0}; |
7402 | |
7403 | time_left.tv_sec = interval->ts.tv_sec; |
7404 | time_left.tv_nsec = 0; |
7405 | |
7406 | SUB_MACH_TIMESPEC(&time_left, &ts); |
7407 | |
7408 | if (budget_left <= budget_threshold) { |
7409 | |
7410 | /* |
7411 | * For the current normal window, calculate how much we would pageout in a DEGRADED_WINDOW_MINS duration. |
7412 | * And also calculate what we would pageout for the same DEGRADED_WINDOW_MINS duration if we had the full |
7413 | * daily pageout budget. |
7414 | */ |
7415 | |
7416 | unsigned int current_budget_rate_allowed = ((budget_left / time_left.tv_sec) / 60) * DEGRADED_WINDOW_MINS; |
7417 | unsigned int normal_budget_rate_allowed = (freeze_daily_pageouts_max / NORMAL_WINDOW_MINS) * DEGRADED_WINDOW_MINS; |
7418 | |
7419 | /* |
7420 | * The current rate of pageouts is below what we would expect for |
7421 | * the normal rate i.e. we have below normal budget left and so... |
7422 | */ |
7423 | |
7424 | if (current_budget_rate_allowed < normal_budget_rate_allowed) { |
7425 | |
7426 | memorystatus_freeze_degradation = TRUE; |
7427 | degraded_throttle_window->max_pageouts = current_budget_rate_allowed; |
7428 | degraded_throttle_window->pageouts = 0; |
7429 | |
7430 | /* |
7431 | * Switch over to the degraded throttle window so the budget |
7432 | * doled out is based on that window. |
7433 | */ |
7434 | interval = degraded_throttle_window; |
7435 | } |
7436 | } |
7437 | |
7438 | *budget_pages_allowed = interval->max_pageouts - interval->pageouts; |
7439 | } |
7440 | } |
7441 | } |
7442 | |
7443 | MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n" , |
7444 | interval->pageouts, interval->max_pageouts, interval->mins, (interval->ts.tv_sec - ts->tv_sec) / 60, |
7445 | interval->throttle ? "on" : "off" ); |
7446 | } |
7447 | |
7448 | static void |
7449 | memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused) |
7450 | { |
7451 | static boolean_t memorystatus_freeze_swap_low = FALSE; |
7452 | |
7453 | lck_mtx_lock(&freezer_mutex); |
7454 | |
7455 | if (memorystatus_freeze_enabled) { |
7456 | |
7457 | if ((memorystatus_frozen_count < memorystatus_frozen_processes_max) || |
7458 | (memorystatus_refreeze_eligible_count >= MIN_THAW_REFREEZE_THRESHOLD)) { |
7459 | |
7460 | if (memorystatus_can_freeze(&memorystatus_freeze_swap_low)) { |
7461 | |
7462 | /* Only freeze if we've not exceeded our pageout budgets.*/ |
7463 | memorystatus_freeze_update_throttle(&memorystatus_freeze_budget_pages_remaining); |
7464 | |
7465 | if (memorystatus_freeze_budget_pages_remaining) { |
7466 | memorystatus_freeze_top_process(); |
7467 | } |
7468 | } |
7469 | } |
7470 | } |
7471 | |
7472 | /* |
7473 | * We use memorystatus_apps_idle_delay_time because if/when we adopt aging for applications, |
7474 | * it'll tie neatly into running the freezer once we age an application. |
7475 | * |
7476 | * Till then, it serves as a good interval that can be tuned via a sysctl too. |
7477 | */ |
7478 | memorystatus_freezer_thread_next_run_ts = mach_absolute_time() + memorystatus_apps_idle_delay_time; |
7479 | |
7480 | assert_wait((event_t) &memorystatus_freeze_wakeup, THREAD_UNINT); |
7481 | lck_mtx_unlock(&freezer_mutex); |
7482 | |
7483 | thread_block((thread_continue_t) memorystatus_freeze_thread); |
7484 | } |
7485 | |
7486 | static boolean_t |
7487 | memorystatus_freeze_thread_should_run(void) |
7488 | { |
7489 | /* |
7490 | * No freezer_mutex held here...see why near call-site |
7491 | * within memorystatus_pages_update(). |
7492 | */ |
7493 | |
7494 | boolean_t should_run = FALSE; |
7495 | |
7496 | if (memorystatus_freeze_enabled == FALSE) { |
7497 | goto out; |
7498 | } |
7499 | |
7500 | if (memorystatus_available_pages > memorystatus_freeze_threshold) { |
7501 | goto out; |
7502 | } |
7503 | |
7504 | if ((memorystatus_frozen_count >= memorystatus_frozen_processes_max) && |
7505 | (memorystatus_refreeze_eligible_count < MIN_THAW_REFREEZE_THRESHOLD)) { |
7506 | goto out; |
7507 | } |
7508 | |
7509 | if (memorystatus_frozen_shared_mb_max && (memorystatus_frozen_shared_mb >= memorystatus_frozen_shared_mb_max)) { |
7510 | goto out; |
7511 | } |
7512 | |
7513 | uint64_t curr_time = mach_absolute_time(); |
7514 | |
7515 | if (curr_time < memorystatus_freezer_thread_next_run_ts) { |
7516 | goto out; |
7517 | } |
7518 | |
7519 | should_run = TRUE; |
7520 | |
7521 | out: |
7522 | return should_run; |
7523 | } |
7524 | |
7525 | static int |
7526 | sysctl_memorystatus_do_fastwake_warmup_all SYSCTL_HANDLER_ARGS |
7527 | { |
7528 | #pragma unused(oidp, req, arg1, arg2) |
7529 | |
7530 | /* Need to be root or have entitlement */ |
7531 | if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT)) { |
7532 | return EPERM; |
7533 | } |
7534 | |
7535 | if (memorystatus_freeze_enabled == FALSE) { |
7536 | return ENOTSUP; |
7537 | } |
7538 | |
7539 | do_fastwake_warmup_all(); |
7540 | |
7541 | return 0; |
7542 | } |
7543 | |
7544 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_do_fastwake_warmup_all, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
7545 | 0, 0, &sysctl_memorystatus_do_fastwake_warmup_all, "I" , "" ); |
7546 | |
7547 | #endif /* CONFIG_FREEZE */ |
7548 | |
7549 | #if VM_PRESSURE_EVENTS |
7550 | |
7551 | #if CONFIG_MEMORYSTATUS |
7552 | |
7553 | static int |
7554 | memorystatus_send_note(int event_code, void *data, size_t data_length) { |
7555 | int ret; |
7556 | struct kev_msg ev_msg; |
7557 | |
7558 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
7559 | ev_msg.kev_class = KEV_SYSTEM_CLASS; |
7560 | ev_msg.kev_subclass = KEV_MEMORYSTATUS_SUBCLASS; |
7561 | |
7562 | ev_msg.event_code = event_code; |
7563 | |
7564 | ev_msg.dv[0].data_length = data_length; |
7565 | ev_msg.dv[0].data_ptr = data; |
7566 | ev_msg.dv[1].data_length = 0; |
7567 | |
7568 | ret = kev_post_msg(&ev_msg); |
7569 | if (ret) { |
7570 | printf("%s: kev_post_msg() failed, err %d\n" , __func__, ret); |
7571 | } |
7572 | |
7573 | return ret; |
7574 | } |
7575 | |
7576 | boolean_t |
7577 | memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t limit_exceeded) { |
7578 | |
7579 | boolean_t ret = FALSE; |
7580 | boolean_t found_knote = FALSE; |
7581 | struct knote *kn = NULL; |
7582 | int send_knote_count = 0; |
7583 | |
7584 | /* |
7585 | * See comment in sysctl_memorystatus_vm_pressure_send. |
7586 | */ |
7587 | |
7588 | memorystatus_klist_lock(); |
7589 | |
7590 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
7591 | proc_t knote_proc = knote_get_kq(kn)->kq_p; |
7592 | pid_t knote_pid = knote_proc->p_pid; |
7593 | |
7594 | if (knote_pid == pid) { |
7595 | /* |
7596 | * By setting the "fflags" here, we are forcing |
7597 | * a process to deal with the case where it's |
7598 | * bumping up into its memory limits. If we don't |
7599 | * do this here, we will end up depending on the |
7600 | * system pressure snapshot evaluation in |
7601 | * filt_memorystatus(). |
7602 | */ |
7603 | |
7604 | #if CONFIG_EMBEDDED |
7605 | if (!limit_exceeded) { |
7606 | /* |
7607 | * Intentionally set either the unambiguous limit warning, |
7608 | * the system-wide critical or the system-wide warning |
7609 | * notification bit. |
7610 | */ |
7611 | |
7612 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
7613 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
7614 | found_knote = TRUE; |
7615 | send_knote_count++; |
7616 | } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { |
7617 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; |
7618 | found_knote = TRUE; |
7619 | send_knote_count++; |
7620 | } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) { |
7621 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
7622 | found_knote = TRUE; |
7623 | send_knote_count++; |
7624 | } |
7625 | } else { |
7626 | /* |
7627 | * Send this notification when a process has exceeded a soft limit. |
7628 | */ |
7629 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
7630 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
7631 | found_knote = TRUE; |
7632 | send_knote_count++; |
7633 | } |
7634 | } |
7635 | #else /* CONFIG_EMBEDDED */ |
7636 | if (!limit_exceeded) { |
7637 | |
7638 | /* |
7639 | * Processes on desktop are not expecting to handle a system-wide |
7640 | * critical or system-wide warning notification from this path. |
7641 | * Intentionally set only the unambiguous limit warning here. |
7642 | * |
7643 | * If the limit is soft, however, limit this to one notification per |
7644 | * active/inactive limit (per each registered listener). |
7645 | */ |
7646 | |
7647 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
7648 | found_knote=TRUE; |
7649 | if (!is_fatal) { |
7650 | /* |
7651 | * Restrict proc_limit_warn notifications when |
7652 | * non-fatal (soft) limit is at play. |
7653 | */ |
7654 | if (is_active) { |
7655 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) { |
7656 | /* |
7657 | * Mark this knote for delivery. |
7658 | */ |
7659 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
7660 | /* |
7661 | * And suppress it from future notifications. |
7662 | */ |
7663 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
7664 | send_knote_count++; |
7665 | } |
7666 | } else { |
7667 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) { |
7668 | /* |
7669 | * Mark this knote for delivery. |
7670 | */ |
7671 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
7672 | /* |
7673 | * And suppress it from future notifications. |
7674 | */ |
7675 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
7676 | send_knote_count++; |
7677 | } |
7678 | } |
7679 | } else { |
7680 | /* |
7681 | * No restriction on proc_limit_warn notifications when |
7682 | * fatal (hard) limit is at play. |
7683 | */ |
7684 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
7685 | send_knote_count++; |
7686 | } |
7687 | } |
7688 | } else { |
7689 | /* |
7690 | * Send this notification when a process has exceeded a soft limit, |
7691 | */ |
7692 | |
7693 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
7694 | found_knote = TRUE; |
7695 | if (!is_fatal) { |
7696 | /* |
7697 | * Restrict critical notifications for soft limits. |
7698 | */ |
7699 | |
7700 | if (is_active) { |
7701 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) { |
7702 | /* |
7703 | * Suppress future proc_limit_critical notifications |
7704 | * for the active soft limit. |
7705 | */ |
7706 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
7707 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
7708 | send_knote_count++; |
7709 | |
7710 | } |
7711 | } else { |
7712 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) { |
7713 | /* |
7714 | * Suppress future proc_limit_critical_notifications |
7715 | * for the inactive soft limit. |
7716 | */ |
7717 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
7718 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
7719 | send_knote_count++; |
7720 | } |
7721 | } |
7722 | } else { |
7723 | /* |
7724 | * We should never be trying to send a critical notification for |
7725 | * a hard limit... the process would be killed before it could be |
7726 | * received. |
7727 | */ |
7728 | panic("Caught sending pid %d a critical warning for a fatal limit.\n" , pid); |
7729 | } |
7730 | } |
7731 | } |
7732 | #endif /* CONFIG_EMBEDDED */ |
7733 | } |
7734 | } |
7735 | |
7736 | if (found_knote) { |
7737 | if (send_knote_count > 0) { |
7738 | KNOTE(&memorystatus_klist, 0); |
7739 | } |
7740 | ret = TRUE; |
7741 | } |
7742 | |
7743 | memorystatus_klist_unlock(); |
7744 | |
7745 | return ret; |
7746 | } |
7747 | |
7748 | /* |
7749 | * Can only be set by the current task on itself. |
7750 | */ |
7751 | int |
7752 | memorystatus_low_mem_privileged_listener(uint32_t op_flags) |
7753 | { |
7754 | boolean_t set_privilege = FALSE; |
7755 | /* |
7756 | * Need an entitlement check here? |
7757 | */ |
7758 | if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE) { |
7759 | set_privilege = TRUE; |
7760 | } else if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE) { |
7761 | set_privilege = FALSE; |
7762 | } else { |
7763 | return EINVAL; |
7764 | } |
7765 | |
7766 | return (task_low_mem_privileged_listener(current_task(), set_privilege, NULL)); |
7767 | } |
7768 | |
7769 | int |
7770 | memorystatus_send_pressure_note(pid_t pid) { |
7771 | MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n" , pid); |
7772 | return memorystatus_send_note(kMemorystatusPressureNote, &pid, sizeof(pid)); |
7773 | } |
7774 | |
7775 | void |
7776 | memorystatus_send_low_swap_note(void) { |
7777 | |
7778 | struct knote *kn = NULL; |
7779 | |
7780 | memorystatus_klist_lock(); |
7781 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
7782 | /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the |
7783 | * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist |
7784 | * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with |
7785 | * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */ |
7786 | if (is_knote_registered_modify_task_pressure_bits(kn, NOTE_MEMORYSTATUS_LOW_SWAP, NULL, 0, 0) == TRUE) { |
7787 | KNOTE(&memorystatus_klist, kMemorystatusLowSwap); |
7788 | break; |
7789 | } |
7790 | } |
7791 | |
7792 | memorystatus_klist_unlock(); |
7793 | } |
7794 | |
7795 | boolean_t |
7796 | memorystatus_bg_pressure_eligible(proc_t p) { |
7797 | boolean_t eligible = FALSE; |
7798 | |
7799 | proc_list_lock(); |
7800 | |
7801 | MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n" , p->p_pid, p->p_memstat_state); |
7802 | |
7803 | /* Foreground processes have already been dealt with at this point, so just test for eligibility */ |
7804 | if (!(p->p_memstat_state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN))) { |
7805 | eligible = TRUE; |
7806 | } |
7807 | |
7808 | if (p->p_memstat_effectivepriority < JETSAM_PRIORITY_BACKGROUND_OPPORTUNISTIC) { |
7809 | /* |
7810 | * IDLE and IDLE_DEFERRED bands contain processes |
7811 | * that have dropped memory to be under their inactive |
7812 | * memory limits. And so they can't really give back |
7813 | * anything. |
7814 | */ |
7815 | eligible = FALSE; |
7816 | } |
7817 | |
7818 | proc_list_unlock(); |
7819 | |
7820 | return eligible; |
7821 | } |
7822 | |
7823 | boolean_t |
7824 | memorystatus_is_foreground_locked(proc_t p) { |
7825 | return ((p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND) || |
7826 | (p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND_SUPPORT)); |
7827 | } |
7828 | |
7829 | /* |
7830 | * This is meant for stackshot and kperf -- it does not take the proc_list_lock |
7831 | * to access the p_memstat_dirty field. |
7832 | */ |
7833 | void memorystatus_proc_flags_unsafe(void * v, boolean_t *is_dirty, boolean_t *is_dirty_tracked, boolean_t *allow_idle_exit) |
7834 | { |
7835 | if (!v) { |
7836 | *is_dirty = FALSE; |
7837 | *is_dirty_tracked = FALSE; |
7838 | *allow_idle_exit = FALSE; |
7839 | } else { |
7840 | proc_t p = (proc_t)v; |
7841 | *is_dirty = (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) != 0; |
7842 | *is_dirty_tracked = (p->p_memstat_dirty & P_DIRTY_TRACK) != 0; |
7843 | *allow_idle_exit = (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) != 0; |
7844 | } |
7845 | } |
7846 | |
7847 | #endif /* CONFIG_MEMORYSTATUS */ |
7848 | |
7849 | /* |
7850 | * Trigger levels to test the mechanism. |
7851 | * Can be used via a sysctl. |
7852 | */ |
7853 | #define TEST_LOW_MEMORY_TRIGGER_ONE 1 |
7854 | #define TEST_LOW_MEMORY_TRIGGER_ALL 2 |
7855 | #define TEST_PURGEABLE_TRIGGER_ONE 3 |
7856 | #define TEST_PURGEABLE_TRIGGER_ALL 4 |
7857 | #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5 |
7858 | #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6 |
7859 | |
7860 | boolean_t memorystatus_manual_testing_on = FALSE; |
7861 | vm_pressure_level_t memorystatus_manual_testing_level = kVMPressureNormal; |
7862 | |
7863 | extern struct knote * |
7864 | vm_pressure_select_optimal_candidate_to_notify(struct klist *, int, boolean_t); |
7865 | |
7866 | |
7867 | #define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */ |
7868 | |
7869 | #if DEBUG |
7870 | #define VM_PRESSURE_DEBUG(cond, format, ...) \ |
7871 | do { \ |
7872 | if (cond) { printf(format, ##__VA_ARGS__); } \ |
7873 | } while(0) |
7874 | #else |
7875 | #define VM_PRESSURE_DEBUG(cond, format, ...) |
7876 | #endif |
7877 | |
7878 | #define INTER_NOTIFICATION_DELAY (250000) /* .25 second */ |
7879 | |
7880 | void memorystatus_on_pageout_scan_end(void) { |
7881 | /* No-op */ |
7882 | } |
7883 | |
7884 | /* |
7885 | * kn_max - knote |
7886 | * |
7887 | * knote_pressure_level - to check if the knote is registered for this notification level. |
7888 | * |
7889 | * task - task whose bits we'll be modifying |
7890 | * |
7891 | * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again. |
7892 | * |
7893 | * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately. |
7894 | * |
7895 | */ |
7896 | |
7897 | boolean_t |
7898 | is_knote_registered_modify_task_pressure_bits(struct knote *kn_max, int knote_pressure_level, task_t task, vm_pressure_level_t pressure_level_to_clear, vm_pressure_level_t pressure_level_to_set) |
7899 | { |
7900 | if (kn_max->kn_sfflags & knote_pressure_level) { |
7901 | |
7902 | if (pressure_level_to_clear && task_has_been_notified(task, pressure_level_to_clear) == TRUE) { |
7903 | |
7904 | task_clear_has_been_notified(task, pressure_level_to_clear); |
7905 | } |
7906 | |
7907 | task_mark_has_been_notified(task, pressure_level_to_set); |
7908 | return TRUE; |
7909 | } |
7910 | |
7911 | return FALSE; |
7912 | } |
7913 | |
7914 | void |
7915 | memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear) |
7916 | { |
7917 | struct knote *kn = NULL; |
7918 | |
7919 | memorystatus_klist_lock(); |
7920 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
7921 | |
7922 | proc_t p = PROC_NULL; |
7923 | struct task* t = TASK_NULL; |
7924 | |
7925 | p = knote_get_kq(kn)->kq_p; |
7926 | proc_list_lock(); |
7927 | if (p != proc_ref_locked(p)) { |
7928 | p = PROC_NULL; |
7929 | proc_list_unlock(); |
7930 | continue; |
7931 | } |
7932 | proc_list_unlock(); |
7933 | |
7934 | t = (struct task *)(p->task); |
7935 | |
7936 | task_clear_has_been_notified(t, pressure_level_to_clear); |
7937 | |
7938 | proc_rele(p); |
7939 | } |
7940 | |
7941 | memorystatus_klist_unlock(); |
7942 | } |
7943 | |
7944 | extern kern_return_t vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process); |
7945 | |
7946 | struct knote * |
7947 | vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process); |
7948 | |
7949 | /* |
7950 | * Used by the vm_pressure_thread which is |
7951 | * signalled from within vm_pageout_scan(). |
7952 | */ |
7953 | static void vm_dispatch_memory_pressure(void); |
7954 | void consider_vm_pressure_events(void); |
7955 | |
7956 | void consider_vm_pressure_events(void) |
7957 | { |
7958 | vm_dispatch_memory_pressure(); |
7959 | } |
7960 | static void vm_dispatch_memory_pressure(void) |
7961 | { |
7962 | memorystatus_update_vm_pressure(FALSE); |
7963 | } |
7964 | |
7965 | extern vm_pressure_level_t |
7966 | convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t); |
7967 | |
7968 | struct knote * |
7969 | vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process) |
7970 | { |
7971 | struct knote *kn = NULL, *kn_max = NULL; |
7972 | uint64_t resident_max = 0; /* MB */ |
7973 | struct timeval curr_tstamp = {0, 0}; |
7974 | int elapsed_msecs = 0; |
7975 | int selected_task_importance = 0; |
7976 | static int pressure_snapshot = -1; |
7977 | boolean_t pressure_increase = FALSE; |
7978 | |
7979 | if (pressure_snapshot == -1) { |
7980 | /* |
7981 | * Initial snapshot. |
7982 | */ |
7983 | pressure_snapshot = level; |
7984 | pressure_increase = TRUE; |
7985 | } else { |
7986 | |
7987 | if (level && (level >= pressure_snapshot)) { |
7988 | pressure_increase = TRUE; |
7989 | } else { |
7990 | pressure_increase = FALSE; |
7991 | } |
7992 | |
7993 | pressure_snapshot = level; |
7994 | } |
7995 | |
7996 | if (pressure_increase == TRUE) { |
7997 | /* |
7998 | * We'll start by considering the largest |
7999 | * unimportant task in our list. |
8000 | */ |
8001 | selected_task_importance = INT_MAX; |
8002 | } else { |
8003 | /* |
8004 | * We'll start by considering the largest |
8005 | * important task in our list. |
8006 | */ |
8007 | selected_task_importance = 0; |
8008 | } |
8009 | |
8010 | microuptime(&curr_tstamp); |
8011 | |
8012 | SLIST_FOREACH(kn, candidate_list, kn_selnext) { |
8013 | |
8014 | uint64_t resident_size = 0; /* MB */ |
8015 | proc_t p = PROC_NULL; |
8016 | struct task* t = TASK_NULL; |
8017 | int curr_task_importance = 0; |
8018 | boolean_t consider_knote = FALSE; |
8019 | boolean_t privileged_listener = FALSE; |
8020 | |
8021 | p = knote_get_kq(kn)->kq_p; |
8022 | proc_list_lock(); |
8023 | if (p != proc_ref_locked(p)) { |
8024 | p = PROC_NULL; |
8025 | proc_list_unlock(); |
8026 | continue; |
8027 | } |
8028 | proc_list_unlock(); |
8029 | |
8030 | #if CONFIG_MEMORYSTATUS |
8031 | if (target_foreground_process == TRUE && !memorystatus_is_foreground_locked(p)) { |
8032 | /* |
8033 | * Skip process not marked foreground. |
8034 | */ |
8035 | proc_rele(p); |
8036 | continue; |
8037 | } |
8038 | #endif /* CONFIG_MEMORYSTATUS */ |
8039 | |
8040 | t = (struct task *)(p->task); |
8041 | |
8042 | timevalsub(&curr_tstamp, &p->vm_pressure_last_notify_tstamp); |
8043 | elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000; |
8044 | |
8045 | vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(level); |
8046 | |
8047 | if ((kn->kn_sfflags & dispatch_level) == 0) { |
8048 | proc_rele(p); |
8049 | continue; |
8050 | } |
8051 | |
8052 | #if CONFIG_MEMORYSTATUS |
8053 | if (target_foreground_process == FALSE && !memorystatus_bg_pressure_eligible(p)) { |
8054 | VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n" , p->p_pid); |
8055 | proc_rele(p); |
8056 | continue; |
8057 | } |
8058 | #endif /* CONFIG_MEMORYSTATUS */ |
8059 | |
8060 | #if CONFIG_EMBEDDED |
8061 | curr_task_importance = p->p_memstat_effectivepriority; |
8062 | #else /* CONFIG_EMBEDDED */ |
8063 | curr_task_importance = task_importance_estimate(t); |
8064 | #endif /* CONFIG_EMBEDDED */ |
8065 | |
8066 | /* |
8067 | * Privileged listeners are only considered in the multi-level pressure scheme |
8068 | * AND only if the pressure is increasing. |
8069 | */ |
8070 | if (level > 0) { |
8071 | |
8072 | if (task_has_been_notified(t, level) == FALSE) { |
8073 | |
8074 | /* |
8075 | * Is this a privileged listener? |
8076 | */ |
8077 | if (task_low_mem_privileged_listener(t, FALSE, &privileged_listener) == 0) { |
8078 | |
8079 | if (privileged_listener) { |
8080 | kn_max = kn; |
8081 | proc_rele(p); |
8082 | goto done_scanning; |
8083 | } |
8084 | } |
8085 | } else { |
8086 | proc_rele(p); |
8087 | continue; |
8088 | } |
8089 | } else if (level == 0) { |
8090 | |
8091 | /* |
8092 | * Task wasn't notified when the pressure was increasing and so |
8093 | * no need to notify it that the pressure is decreasing. |
8094 | */ |
8095 | if ((task_has_been_notified(t, kVMPressureWarning) == FALSE) && (task_has_been_notified(t, kVMPressureCritical) == FALSE)) { |
8096 | proc_rele(p); |
8097 | continue; |
8098 | } |
8099 | } |
8100 | |
8101 | /* |
8102 | * We don't want a small process to block large processes from |
8103 | * being notified again. <rdar://problem/7955532> |
8104 | */ |
8105 | resident_size = (get_task_phys_footprint(t))/(1024*1024ULL); /* MB */ |
8106 | |
8107 | if (resident_size >= vm_pressure_task_footprint_min) { |
8108 | |
8109 | if (level > 0) { |
8110 | /* |
8111 | * Warning or Critical Pressure. |
8112 | */ |
8113 | if (pressure_increase) { |
8114 | if ((curr_task_importance < selected_task_importance) || |
8115 | ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { |
8116 | |
8117 | /* |
8118 | * We have found a candidate process which is: |
8119 | * a) at a lower importance than the current selected process |
8120 | * OR |
8121 | * b) has importance equal to that of the current selected process but is larger |
8122 | */ |
8123 | |
8124 | consider_knote = TRUE; |
8125 | } |
8126 | } else { |
8127 | if ((curr_task_importance > selected_task_importance) || |
8128 | ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { |
8129 | |
8130 | /* |
8131 | * We have found a candidate process which is: |
8132 | * a) at a higher importance than the current selected process |
8133 | * OR |
8134 | * b) has importance equal to that of the current selected process but is larger |
8135 | */ |
8136 | |
8137 | consider_knote = TRUE; |
8138 | } |
8139 | } |
8140 | } else if (level == 0) { |
8141 | /* |
8142 | * Pressure back to normal. |
8143 | */ |
8144 | if ((curr_task_importance > selected_task_importance) || |
8145 | ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { |
8146 | |
8147 | consider_knote = TRUE; |
8148 | } |
8149 | } |
8150 | |
8151 | if (consider_knote) { |
8152 | resident_max = resident_size; |
8153 | kn_max = kn; |
8154 | selected_task_importance = curr_task_importance; |
8155 | consider_knote = FALSE; /* reset for the next candidate */ |
8156 | } |
8157 | } else { |
8158 | /* There was no candidate with enough resident memory to scavenge */ |
8159 | VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n" , p->p_pid, resident_size); |
8160 | } |
8161 | proc_rele(p); |
8162 | } |
8163 | |
8164 | done_scanning: |
8165 | if (kn_max) { |
8166 | VM_DEBUG_CONSTANT_EVENT(vm_pressure_event, VM_PRESSURE_EVENT, DBG_FUNC_NONE, knote_get_kq(kn_max)->kq_p->p_pid, resident_max, 0, 0); |
8167 | VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n" , knote_get_kq(kn_max)->kq_p->p_pid, resident_max); |
8168 | } |
8169 | |
8170 | return kn_max; |
8171 | } |
8172 | |
8173 | #define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */ |
8174 | #define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */ |
8175 | #define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */ |
8176 | |
8177 | uint64_t next_warning_notification_sent_at_ts = 0; |
8178 | uint64_t next_critical_notification_sent_at_ts = 0; |
8179 | |
8180 | kern_return_t |
8181 | memorystatus_update_vm_pressure(boolean_t target_foreground_process) |
8182 | { |
8183 | struct knote *kn_max = NULL; |
8184 | struct knote *kn_cur = NULL, *kn_temp = NULL; /* for safe list traversal */ |
8185 | pid_t target_pid = -1; |
8186 | struct klist dispatch_klist = { NULL }; |
8187 | proc_t target_proc = PROC_NULL; |
8188 | struct task *task = NULL; |
8189 | boolean_t found_candidate = FALSE; |
8190 | |
8191 | static vm_pressure_level_t level_snapshot = kVMPressureNormal; |
8192 | static vm_pressure_level_t prev_level_snapshot = kVMPressureNormal; |
8193 | boolean_t smoothing_window_started = FALSE; |
8194 | struct timeval smoothing_window_start_tstamp = {0, 0}; |
8195 | struct timeval curr_tstamp = {0, 0}; |
8196 | int elapsed_msecs = 0; |
8197 | uint64_t curr_ts = mach_absolute_time(); |
8198 | |
8199 | #if !CONFIG_JETSAM |
8200 | #define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */ |
8201 | |
8202 | int idle_kill_counter = 0; |
8203 | |
8204 | /* |
8205 | * On desktop we take this opportunity to free up memory pressure |
8206 | * by immediately killing idle exitable processes. We use a delay |
8207 | * to avoid overkill. And we impose a max counter as a fail safe |
8208 | * in case daemons re-launch too fast. |
8209 | */ |
8210 | while ((memorystatus_vm_pressure_level != kVMPressureNormal) && (idle_kill_counter < MAX_IDLE_KILLS)) { |
8211 | if (memorystatus_idle_exit_from_VM() == FALSE) { |
8212 | /* No idle exitable processes left to kill */ |
8213 | break; |
8214 | } |
8215 | idle_kill_counter++; |
8216 | |
8217 | if (memorystatus_manual_testing_on == TRUE) { |
8218 | /* |
8219 | * Skip the delay when testing |
8220 | * the pressure notification scheme. |
8221 | */ |
8222 | } else { |
8223 | delay(1000000); /* 1 second */ |
8224 | } |
8225 | } |
8226 | #endif /* !CONFIG_JETSAM */ |
8227 | |
8228 | if (level_snapshot != kVMPressureNormal) { |
8229 | |
8230 | /* |
8231 | * Check to see if we are still in the 'resting' period |
8232 | * after having notified all clients interested in |
8233 | * a particular pressure level. |
8234 | */ |
8235 | |
8236 | level_snapshot = memorystatus_vm_pressure_level; |
8237 | |
8238 | if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { |
8239 | |
8240 | if (next_warning_notification_sent_at_ts) { |
8241 | if (curr_ts < next_warning_notification_sent_at_ts) { |
8242 | delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */); |
8243 | return KERN_SUCCESS; |
8244 | } |
8245 | |
8246 | next_warning_notification_sent_at_ts = 0; |
8247 | memorystatus_klist_reset_all_for_level(kVMPressureWarning); |
8248 | } |
8249 | } else if (level_snapshot == kVMPressureCritical) { |
8250 | |
8251 | if (next_critical_notification_sent_at_ts) { |
8252 | if (curr_ts < next_critical_notification_sent_at_ts) { |
8253 | delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */); |
8254 | return KERN_SUCCESS; |
8255 | } |
8256 | next_critical_notification_sent_at_ts = 0; |
8257 | memorystatus_klist_reset_all_for_level(kVMPressureCritical); |
8258 | } |
8259 | } |
8260 | } |
8261 | |
8262 | while (1) { |
8263 | |
8264 | /* |
8265 | * There is a race window here. But it's not clear |
8266 | * how much we benefit from having extra synchronization. |
8267 | */ |
8268 | level_snapshot = memorystatus_vm_pressure_level; |
8269 | |
8270 | if (prev_level_snapshot > level_snapshot) { |
8271 | /* |
8272 | * Pressure decreased? Let's take a little breather |
8273 | * and see if this condition stays. |
8274 | */ |
8275 | if (smoothing_window_started == FALSE) { |
8276 | |
8277 | smoothing_window_started = TRUE; |
8278 | microuptime(&smoothing_window_start_tstamp); |
8279 | } |
8280 | |
8281 | microuptime(&curr_tstamp); |
8282 | timevalsub(&curr_tstamp, &smoothing_window_start_tstamp); |
8283 | elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000; |
8284 | |
8285 | if (elapsed_msecs < VM_PRESSURE_DECREASED_SMOOTHING_PERIOD) { |
8286 | |
8287 | delay(INTER_NOTIFICATION_DELAY); |
8288 | continue; |
8289 | } |
8290 | } |
8291 | |
8292 | prev_level_snapshot = level_snapshot; |
8293 | smoothing_window_started = FALSE; |
8294 | |
8295 | memorystatus_klist_lock(); |
8296 | kn_max = vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist, level_snapshot, target_foreground_process); |
8297 | |
8298 | if (kn_max == NULL) { |
8299 | memorystatus_klist_unlock(); |
8300 | |
8301 | /* |
8302 | * No more level-based clients to notify. |
8303 | * |
8304 | * Start the 'resting' window within which clients will not be re-notified. |
8305 | */ |
8306 | |
8307 | if (level_snapshot != kVMPressureNormal) { |
8308 | if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { |
8309 | nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts); |
8310 | |
8311 | /* Next warning notification (if nothing changes) won't be sent before...*/ |
8312 | next_warning_notification_sent_at_ts = mach_absolute_time() + curr_ts; |
8313 | } |
8314 | |
8315 | if (level_snapshot == kVMPressureCritical) { |
8316 | nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts); |
8317 | |
8318 | /* Next critical notification (if nothing changes) won't be sent before...*/ |
8319 | next_critical_notification_sent_at_ts = mach_absolute_time() + curr_ts; |
8320 | } |
8321 | } |
8322 | return KERN_FAILURE; |
8323 | } |
8324 | |
8325 | target_proc = knote_get_kq(kn_max)->kq_p; |
8326 | |
8327 | proc_list_lock(); |
8328 | if (target_proc != proc_ref_locked(target_proc)) { |
8329 | target_proc = PROC_NULL; |
8330 | proc_list_unlock(); |
8331 | memorystatus_klist_unlock(); |
8332 | continue; |
8333 | } |
8334 | proc_list_unlock(); |
8335 | |
8336 | target_pid = target_proc->p_pid; |
8337 | |
8338 | task = (struct task *)(target_proc->task); |
8339 | |
8340 | if (level_snapshot != kVMPressureNormal) { |
8341 | |
8342 | if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { |
8343 | |
8344 | if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_WARN, task, 0, kVMPressureWarning) == TRUE) { |
8345 | found_candidate = TRUE; |
8346 | } |
8347 | } else { |
8348 | if (level_snapshot == kVMPressureCritical) { |
8349 | |
8350 | if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL, task, 0, kVMPressureCritical) == TRUE) { |
8351 | found_candidate = TRUE; |
8352 | } |
8353 | } |
8354 | } |
8355 | } else { |
8356 | if (kn_max->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
8357 | |
8358 | task_clear_has_been_notified(task, kVMPressureWarning); |
8359 | task_clear_has_been_notified(task, kVMPressureCritical); |
8360 | |
8361 | found_candidate = TRUE; |
8362 | } |
8363 | } |
8364 | |
8365 | if (found_candidate == FALSE) { |
8366 | proc_rele(target_proc); |
8367 | memorystatus_klist_unlock(); |
8368 | continue; |
8369 | } |
8370 | |
8371 | SLIST_FOREACH_SAFE(kn_cur, &memorystatus_klist, kn_selnext, kn_temp) { |
8372 | |
8373 | int knote_pressure_level = convert_internal_pressure_level_to_dispatch_level(level_snapshot); |
8374 | |
8375 | if (is_knote_registered_modify_task_pressure_bits(kn_cur, knote_pressure_level, task, 0, level_snapshot) == TRUE) { |
8376 | proc_t knote_proc = knote_get_kq(kn_cur)->kq_p; |
8377 | pid_t knote_pid = knote_proc->p_pid; |
8378 | if (knote_pid == target_pid) { |
8379 | KNOTE_DETACH(&memorystatus_klist, kn_cur); |
8380 | KNOTE_ATTACH(&dispatch_klist, kn_cur); |
8381 | } |
8382 | } |
8383 | } |
8384 | |
8385 | KNOTE(&dispatch_klist, (level_snapshot != kVMPressureNormal) ? kMemorystatusPressure : kMemorystatusNoPressure); |
8386 | |
8387 | SLIST_FOREACH_SAFE(kn_cur, &dispatch_klist, kn_selnext, kn_temp) { |
8388 | KNOTE_DETACH(&dispatch_klist, kn_cur); |
8389 | KNOTE_ATTACH(&memorystatus_klist, kn_cur); |
8390 | } |
8391 | |
8392 | memorystatus_klist_unlock(); |
8393 | |
8394 | microuptime(&target_proc->vm_pressure_last_notify_tstamp); |
8395 | proc_rele(target_proc); |
8396 | |
8397 | if (memorystatus_manual_testing_on == TRUE && target_foreground_process == TRUE) { |
8398 | break; |
8399 | } |
8400 | |
8401 | if (memorystatus_manual_testing_on == TRUE) { |
8402 | /* |
8403 | * Testing out the pressure notification scheme. |
8404 | * No need for delays etc. |
8405 | */ |
8406 | } else { |
8407 | |
8408 | uint32_t sleep_interval = INTER_NOTIFICATION_DELAY; |
8409 | #if CONFIG_JETSAM |
8410 | unsigned int page_delta = 0; |
8411 | unsigned int skip_delay_page_threshold = 0; |
8412 | |
8413 | assert(memorystatus_available_pages_pressure >= memorystatus_available_pages_critical_base); |
8414 | |
8415 | page_delta = (memorystatus_available_pages_pressure - memorystatus_available_pages_critical_base) / 2; |
8416 | skip_delay_page_threshold = memorystatus_available_pages_pressure - page_delta; |
8417 | |
8418 | if (memorystatus_available_pages <= skip_delay_page_threshold) { |
8419 | /* |
8420 | * We are nearing the critcal mark fast and can't afford to wait between |
8421 | * notifications. |
8422 | */ |
8423 | sleep_interval = 0; |
8424 | } |
8425 | #endif /* CONFIG_JETSAM */ |
8426 | |
8427 | if (sleep_interval) { |
8428 | delay(sleep_interval); |
8429 | } |
8430 | } |
8431 | } |
8432 | |
8433 | return KERN_SUCCESS; |
8434 | } |
8435 | |
8436 | vm_pressure_level_t |
8437 | convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level) |
8438 | { |
8439 | vm_pressure_level_t dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; |
8440 | |
8441 | switch (internal_pressure_level) { |
8442 | |
8443 | case kVMPressureNormal: |
8444 | { |
8445 | dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; |
8446 | break; |
8447 | } |
8448 | |
8449 | case kVMPressureWarning: |
8450 | case kVMPressureUrgent: |
8451 | { |
8452 | dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
8453 | break; |
8454 | } |
8455 | |
8456 | case kVMPressureCritical: |
8457 | { |
8458 | dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; |
8459 | break; |
8460 | } |
8461 | |
8462 | default: |
8463 | break; |
8464 | } |
8465 | |
8466 | return dispatch_level; |
8467 | } |
8468 | |
8469 | static int |
8470 | sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS |
8471 | { |
8472 | #pragma unused(arg1, arg2, oidp) |
8473 | #if CONFIG_EMBEDDED |
8474 | int error = 0; |
8475 | |
8476 | error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0); |
8477 | if (error) |
8478 | return (error); |
8479 | |
8480 | #endif /* CONFIG_EMBEDDED */ |
8481 | vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level); |
8482 | |
8483 | return SYSCTL_OUT(req, &dispatch_level, sizeof(dispatch_level)); |
8484 | } |
8485 | |
8486 | #if DEBUG || DEVELOPMENT |
8487 | |
8488 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED, |
8489 | 0, 0, &sysctl_memorystatus_vm_pressure_level, "I" , "" ); |
8490 | |
8491 | #else /* DEBUG || DEVELOPMENT */ |
8492 | |
8493 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
8494 | 0, 0, &sysctl_memorystatus_vm_pressure_level, "I" , "" ); |
8495 | |
8496 | #endif /* DEBUG || DEVELOPMENT */ |
8497 | |
8498 | |
8499 | static int |
8500 | sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS |
8501 | { |
8502 | #pragma unused(arg1, arg2) |
8503 | |
8504 | int level = 0; |
8505 | int error = 0; |
8506 | int pressure_level = 0; |
8507 | int trigger_request = 0; |
8508 | int force_purge; |
8509 | |
8510 | error = sysctl_handle_int(oidp, &level, 0, req); |
8511 | if (error || !req->newptr) { |
8512 | return (error); |
8513 | } |
8514 | |
8515 | memorystatus_manual_testing_on = TRUE; |
8516 | |
8517 | trigger_request = (level >> 16) & 0xFFFF; |
8518 | pressure_level = (level & 0xFFFF); |
8519 | |
8520 | if (trigger_request < TEST_LOW_MEMORY_TRIGGER_ONE || |
8521 | trigger_request > TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL) { |
8522 | return EINVAL; |
8523 | } |
8524 | switch (pressure_level) { |
8525 | case NOTE_MEMORYSTATUS_PRESSURE_NORMAL: |
8526 | case NOTE_MEMORYSTATUS_PRESSURE_WARN: |
8527 | case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL: |
8528 | break; |
8529 | default: |
8530 | return EINVAL; |
8531 | } |
8532 | |
8533 | /* |
8534 | * The pressure level is being set from user-space. |
8535 | * And user-space uses the constants in sys/event.h |
8536 | * So we translate those events to our internal levels here. |
8537 | */ |
8538 | if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
8539 | |
8540 | memorystatus_manual_testing_level = kVMPressureNormal; |
8541 | force_purge = 0; |
8542 | |
8543 | } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_WARN) { |
8544 | |
8545 | memorystatus_manual_testing_level = kVMPressureWarning; |
8546 | force_purge = vm_pageout_state.memorystatus_purge_on_warning; |
8547 | |
8548 | } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { |
8549 | |
8550 | memorystatus_manual_testing_level = kVMPressureCritical; |
8551 | force_purge = vm_pageout_state.memorystatus_purge_on_critical; |
8552 | } |
8553 | |
8554 | memorystatus_vm_pressure_level = memorystatus_manual_testing_level; |
8555 | |
8556 | /* purge according to the new pressure level */ |
8557 | switch (trigger_request) { |
8558 | case TEST_PURGEABLE_TRIGGER_ONE: |
8559 | case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE: |
8560 | if (force_purge == 0) { |
8561 | /* no purging requested */ |
8562 | break; |
8563 | } |
8564 | vm_purgeable_object_purge_one_unlocked(force_purge); |
8565 | break; |
8566 | case TEST_PURGEABLE_TRIGGER_ALL: |
8567 | case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL: |
8568 | if (force_purge == 0) { |
8569 | /* no purging requested */ |
8570 | break; |
8571 | } |
8572 | while (vm_purgeable_object_purge_one_unlocked(force_purge)); |
8573 | break; |
8574 | } |
8575 | |
8576 | if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ONE) || |
8577 | (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE)) { |
8578 | |
8579 | memorystatus_update_vm_pressure(TRUE); |
8580 | } |
8581 | |
8582 | if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ALL) || |
8583 | (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL)) { |
8584 | |
8585 | while (memorystatus_update_vm_pressure(FALSE) == KERN_SUCCESS) { |
8586 | continue; |
8587 | } |
8588 | } |
8589 | |
8590 | if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
8591 | memorystatus_manual_testing_on = FALSE; |
8592 | } |
8593 | |
8594 | return 0; |
8595 | } |
8596 | |
8597 | SYSCTL_PROC(_kern, OID_AUTO, memorypressure_manual_trigger, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
8598 | 0, 0, &sysctl_memorypressure_manual_trigger, "I" , "" ); |
8599 | |
8600 | |
8601 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_warning, CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_warning, 0, "" ); |
8602 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_urgent, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_urgent, 0, "" ); |
8603 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_critical, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_critical, 0, "" ); |
8604 | |
8605 | #if DEBUG || DEVELOPMENT |
8606 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_vm_pressure_events_enabled, CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pressure_events_enabled, 0, "" ); |
8607 | #endif |
8608 | |
8609 | #endif /* VM_PRESSURE_EVENTS */ |
8610 | |
8611 | /* Return both allocated and actual size, since there's a race between allocation and list compilation */ |
8612 | static int |
8613 | memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only) |
8614 | { |
8615 | uint32_t list_count, i = 0; |
8616 | memorystatus_priority_entry_t *list_entry; |
8617 | proc_t p; |
8618 | |
8619 | list_count = memorystatus_list_count; |
8620 | *list_size = sizeof(memorystatus_priority_entry_t) * list_count; |
8621 | |
8622 | /* Just a size check? */ |
8623 | if (size_only) { |
8624 | return 0; |
8625 | } |
8626 | |
8627 | /* Otherwise, validate the size of the buffer */ |
8628 | if (*buffer_size < *list_size) { |
8629 | return EINVAL; |
8630 | } |
8631 | |
8632 | *list_ptr = (memorystatus_priority_entry_t*)kalloc(*list_size); |
8633 | if (!*list_ptr) { |
8634 | return ENOMEM; |
8635 | } |
8636 | |
8637 | memset(*list_ptr, 0, *list_size); |
8638 | |
8639 | *buffer_size = *list_size; |
8640 | *list_size = 0; |
8641 | |
8642 | list_entry = *list_ptr; |
8643 | |
8644 | proc_list_lock(); |
8645 | |
8646 | p = memorystatus_get_first_proc_locked(&i, TRUE); |
8647 | while (p && (*list_size < *buffer_size)) { |
8648 | list_entry->pid = p->p_pid; |
8649 | list_entry->priority = p->p_memstat_effectivepriority; |
8650 | list_entry->user_data = p->p_memstat_userdata; |
8651 | |
8652 | if (p->p_memstat_memlimit <= 0) { |
8653 | task_get_phys_footprint_limit(p->task, &list_entry->limit); |
8654 | } else { |
8655 | list_entry->limit = p->p_memstat_memlimit; |
8656 | } |
8657 | |
8658 | list_entry->state = memorystatus_build_state(p); |
8659 | list_entry++; |
8660 | |
8661 | *list_size += sizeof(memorystatus_priority_entry_t); |
8662 | |
8663 | p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
8664 | } |
8665 | |
8666 | proc_list_unlock(); |
8667 | |
8668 | MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n" , (unsigned long)*list_size); |
8669 | |
8670 | return 0; |
8671 | } |
8672 | |
8673 | static int |
8674 | memorystatus_get_priority_pid(pid_t pid, user_addr_t buffer, size_t buffer_size) { |
8675 | int error = 0; |
8676 | memorystatus_priority_entry_t mp_entry; |
8677 | |
8678 | /* Validate inputs */ |
8679 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_entry_t))) { |
8680 | return EINVAL; |
8681 | } |
8682 | |
8683 | proc_t p = proc_find(pid); |
8684 | if (!p) { |
8685 | return ESRCH; |
8686 | } |
8687 | |
8688 | memset (&mp_entry, 0, sizeof(memorystatus_priority_entry_t)); |
8689 | |
8690 | mp_entry.pid = p->p_pid; |
8691 | mp_entry.priority = p->p_memstat_effectivepriority; |
8692 | mp_entry.user_data = p->p_memstat_userdata; |
8693 | if (p->p_memstat_memlimit <= 0) { |
8694 | task_get_phys_footprint_limit(p->task, &mp_entry.limit); |
8695 | } else { |
8696 | mp_entry.limit = p->p_memstat_memlimit; |
8697 | } |
8698 | mp_entry.state = memorystatus_build_state(p); |
8699 | |
8700 | proc_rele(p); |
8701 | |
8702 | error = copyout(&mp_entry, buffer, buffer_size); |
8703 | |
8704 | return (error); |
8705 | } |
8706 | |
8707 | static int |
8708 | memorystatus_cmd_get_priority_list(pid_t pid, user_addr_t buffer, size_t buffer_size, int32_t *retval) { |
8709 | int error = 0; |
8710 | boolean_t size_only; |
8711 | size_t list_size; |
8712 | |
8713 | /* |
8714 | * When a non-zero pid is provided, the 'list' has only one entry. |
8715 | */ |
8716 | |
8717 | size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE); |
8718 | |
8719 | if (pid != 0) { |
8720 | list_size = sizeof(memorystatus_priority_entry_t) * 1; |
8721 | if (!size_only) { |
8722 | error = memorystatus_get_priority_pid(pid, buffer, buffer_size); |
8723 | } |
8724 | } else { |
8725 | memorystatus_priority_entry_t *list = NULL; |
8726 | error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only); |
8727 | |
8728 | if (error == 0) { |
8729 | if (!size_only) { |
8730 | error = copyout(list, buffer, list_size); |
8731 | } |
8732 | } |
8733 | |
8734 | if (list) { |
8735 | kfree(list, buffer_size); |
8736 | } |
8737 | } |
8738 | |
8739 | if (error == 0) { |
8740 | *retval = list_size; |
8741 | } |
8742 | |
8743 | return (error); |
8744 | } |
8745 | |
8746 | static void |
8747 | memorystatus_clear_errors(void) |
8748 | { |
8749 | proc_t p; |
8750 | unsigned int i = 0; |
8751 | |
8752 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START, 0, 0, 0, 0, 0); |
8753 | |
8754 | proc_list_lock(); |
8755 | |
8756 | p = memorystatus_get_first_proc_locked(&i, TRUE); |
8757 | while (p) { |
8758 | if (p->p_memstat_state & P_MEMSTAT_ERROR) { |
8759 | p->p_memstat_state &= ~P_MEMSTAT_ERROR; |
8760 | } |
8761 | p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
8762 | } |
8763 | |
8764 | proc_list_unlock(); |
8765 | |
8766 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
8767 | } |
8768 | |
8769 | #if CONFIG_JETSAM |
8770 | static void |
8771 | memorystatus_update_levels_locked(boolean_t critical_only) { |
8772 | |
8773 | memorystatus_available_pages_critical = memorystatus_available_pages_critical_base; |
8774 | |
8775 | /* |
8776 | * If there's an entry in the first bucket, we have idle processes. |
8777 | */ |
8778 | |
8779 | memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
8780 | if (first_bucket->count) { |
8781 | memorystatus_available_pages_critical += memorystatus_available_pages_critical_idle_offset; |
8782 | |
8783 | if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) { |
8784 | /* |
8785 | * The critical threshold must never exceed the pressure threshold |
8786 | */ |
8787 | memorystatus_available_pages_critical = memorystatus_available_pages_pressure; |
8788 | } |
8789 | } |
8790 | |
8791 | #if DEBUG || DEVELOPMENT |
8792 | if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { |
8793 | memorystatus_available_pages_critical += memorystatus_jetsam_policy_offset_pages_diagnostic; |
8794 | |
8795 | if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) { |
8796 | /* |
8797 | * The critical threshold must never exceed the pressure threshold |
8798 | */ |
8799 | memorystatus_available_pages_critical = memorystatus_available_pages_pressure; |
8800 | } |
8801 | } |
8802 | #endif /* DEBUG || DEVELOPMENT */ |
8803 | |
8804 | if (memorystatus_jetsam_policy & kPolicyMoreFree) { |
8805 | memorystatus_available_pages_critical += memorystatus_policy_more_free_offset_pages; |
8806 | } |
8807 | |
8808 | if (critical_only) { |
8809 | return; |
8810 | } |
8811 | |
8812 | #if VM_PRESSURE_EVENTS |
8813 | memorystatus_available_pages_pressure = (pressure_threshold_percentage / delta_percentage) * memorystatus_delta; |
8814 | #if DEBUG || DEVELOPMENT |
8815 | if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { |
8816 | memorystatus_available_pages_pressure += memorystatus_jetsam_policy_offset_pages_diagnostic; |
8817 | } |
8818 | #endif |
8819 | #endif |
8820 | } |
8821 | |
8822 | void |
8823 | memorystatus_fast_jetsam_override(boolean_t enable_override) |
8824 | { |
8825 | /* If fast jetsam is not enabled, simply return */ |
8826 | if (!fast_jetsam_enabled) |
8827 | return; |
8828 | |
8829 | if (enable_override) { |
8830 | if ((memorystatus_jetsam_policy & kPolicyMoreFree) == kPolicyMoreFree) |
8831 | return; |
8832 | proc_list_lock(); |
8833 | memorystatus_jetsam_policy |= kPolicyMoreFree; |
8834 | memorystatus_thread_pool_max(); |
8835 | memorystatus_update_levels_locked(TRUE); |
8836 | proc_list_unlock(); |
8837 | } else { |
8838 | if ((memorystatus_jetsam_policy & kPolicyMoreFree) == 0) |
8839 | return; |
8840 | proc_list_lock(); |
8841 | memorystatus_jetsam_policy &= ~kPolicyMoreFree; |
8842 | memorystatus_thread_pool_default(); |
8843 | memorystatus_update_levels_locked(TRUE); |
8844 | proc_list_unlock(); |
8845 | } |
8846 | } |
8847 | |
8848 | |
8849 | static int |
8850 | sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS |
8851 | { |
8852 | #pragma unused(arg1, arg2, oidp) |
8853 | int error = 0, more_free = 0; |
8854 | |
8855 | /* |
8856 | * TODO: Enable this privilege check? |
8857 | * |
8858 | * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0); |
8859 | * if (error) |
8860 | * return (error); |
8861 | */ |
8862 | |
8863 | error = sysctl_handle_int(oidp, &more_free, 0, req); |
8864 | if (error || !req->newptr) |
8865 | return (error); |
8866 | |
8867 | if (more_free) { |
8868 | memorystatus_fast_jetsam_override(true); |
8869 | } else { |
8870 | memorystatus_fast_jetsam_override(false); |
8871 | } |
8872 | |
8873 | return 0; |
8874 | } |
8875 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_policy_more_free, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
8876 | 0, 0, &sysctl_kern_memorystatus_policy_more_free, "I" , "" ); |
8877 | |
8878 | #endif /* CONFIG_JETSAM */ |
8879 | |
8880 | /* |
8881 | * Get the at_boot snapshot |
8882 | */ |
8883 | static int |
8884 | memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
8885 | size_t input_size = *snapshot_size; |
8886 | |
8887 | /* |
8888 | * The at_boot snapshot has no entry list. |
8889 | */ |
8890 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t); |
8891 | |
8892 | if (size_only) { |
8893 | return 0; |
8894 | } |
8895 | |
8896 | /* |
8897 | * Validate the size of the snapshot buffer |
8898 | */ |
8899 | if (input_size < *snapshot_size) { |
8900 | return EINVAL; |
8901 | } |
8902 | |
8903 | /* |
8904 | * Update the notification_time only |
8905 | */ |
8906 | memorystatus_at_boot_snapshot.notification_time = mach_absolute_time(); |
8907 | *snapshot = &memorystatus_at_boot_snapshot; |
8908 | |
8909 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n" , |
8910 | (long)input_size, (long)*snapshot_size, 0); |
8911 | return 0; |
8912 | } |
8913 | |
8914 | /* |
8915 | * Get the previous fully populated snapshot |
8916 | */ |
8917 | static int |
8918 | memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
8919 | size_t input_size = *snapshot_size; |
8920 | |
8921 | if (memorystatus_jetsam_snapshot_copy_count > 0) { |
8922 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_copy_count)); |
8923 | } else { |
8924 | *snapshot_size = 0; |
8925 | } |
8926 | |
8927 | if (size_only) { |
8928 | return 0; |
8929 | } |
8930 | |
8931 | if (input_size < *snapshot_size) { |
8932 | return EINVAL; |
8933 | } |
8934 | |
8935 | *snapshot = memorystatus_jetsam_snapshot_copy; |
8936 | |
8937 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n" , |
8938 | (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_copy_count); |
8939 | |
8940 | return 0; |
8941 | } |
8942 | |
8943 | static int |
8944 | memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
8945 | size_t input_size = *snapshot_size; |
8946 | uint32_t ods_list_count = memorystatus_list_count; |
8947 | memorystatus_jetsam_snapshot_t *ods = NULL; /* The on_demand snapshot buffer */ |
8948 | |
8949 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (ods_list_count)); |
8950 | |
8951 | if (size_only) { |
8952 | return 0; |
8953 | } |
8954 | |
8955 | /* |
8956 | * Validate the size of the snapshot buffer. |
8957 | * This is inherently racey. May want to revisit |
8958 | * this error condition and trim the output when |
8959 | * it doesn't fit. |
8960 | */ |
8961 | if (input_size < *snapshot_size) { |
8962 | return EINVAL; |
8963 | } |
8964 | |
8965 | /* |
8966 | * Allocate and initialize a snapshot buffer. |
8967 | */ |
8968 | ods = (memorystatus_jetsam_snapshot_t *)kalloc(*snapshot_size); |
8969 | if (!ods) { |
8970 | return (ENOMEM); |
8971 | } |
8972 | |
8973 | memset(ods, 0, *snapshot_size); |
8974 | |
8975 | proc_list_lock(); |
8976 | memorystatus_init_jetsam_snapshot_locked(ods, ods_list_count); |
8977 | proc_list_unlock(); |
8978 | |
8979 | /* |
8980 | * Return the kernel allocated, on_demand buffer. |
8981 | * The caller of this routine will copy the data out |
8982 | * to user space and then free the kernel allocated |
8983 | * buffer. |
8984 | */ |
8985 | *snapshot = ods; |
8986 | |
8987 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n" , |
8988 | (long)input_size, (long)*snapshot_size, (long)ods_list_count); |
8989 | |
8990 | return 0; |
8991 | } |
8992 | |
8993 | static int |
8994 | memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
8995 | size_t input_size = *snapshot_size; |
8996 | |
8997 | if (memorystatus_jetsam_snapshot_count > 0) { |
8998 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count)); |
8999 | } else { |
9000 | *snapshot_size = 0; |
9001 | } |
9002 | |
9003 | if (size_only) { |
9004 | return 0; |
9005 | } |
9006 | |
9007 | if (input_size < *snapshot_size) { |
9008 | return EINVAL; |
9009 | } |
9010 | |
9011 | *snapshot = memorystatus_jetsam_snapshot; |
9012 | |
9013 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n" , |
9014 | (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_count); |
9015 | |
9016 | return 0; |
9017 | } |
9018 | |
9019 | |
9020 | static int |
9021 | memorystatus_cmd_get_jetsam_snapshot(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) { |
9022 | int error = EINVAL; |
9023 | boolean_t size_only; |
9024 | boolean_t is_default_snapshot = FALSE; |
9025 | boolean_t is_on_demand_snapshot = FALSE; |
9026 | boolean_t is_at_boot_snapshot = FALSE; |
9027 | memorystatus_jetsam_snapshot_t *snapshot; |
9028 | |
9029 | size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE); |
9030 | |
9031 | if (flags == 0) { |
9032 | /* Default */ |
9033 | is_default_snapshot = TRUE; |
9034 | error = memorystatus_get_jetsam_snapshot(&snapshot, &buffer_size, size_only); |
9035 | } else { |
9036 | if (flags & ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT | MEMORYSTATUS_SNAPSHOT_COPY)) { |
9037 | /* |
9038 | * Unsupported bit set in flag. |
9039 | */ |
9040 | return EINVAL; |
9041 | } |
9042 | |
9043 | if (flags & (flags - 0x1)) { |
9044 | /* |
9045 | * Can't have multiple flags set at the same time. |
9046 | */ |
9047 | return EINVAL; |
9048 | } |
9049 | |
9050 | if (flags & MEMORYSTATUS_SNAPSHOT_ON_DEMAND) { |
9051 | is_on_demand_snapshot = TRUE; |
9052 | /* |
9053 | * When not requesting the size only, the following call will allocate |
9054 | * an on_demand snapshot buffer, which is freed below. |
9055 | */ |
9056 | error = memorystatus_get_on_demand_snapshot(&snapshot, &buffer_size, size_only); |
9057 | |
9058 | } else if (flags & MEMORYSTATUS_SNAPSHOT_AT_BOOT) { |
9059 | is_at_boot_snapshot = TRUE; |
9060 | error = memorystatus_get_at_boot_snapshot(&snapshot, &buffer_size, size_only); |
9061 | } else if (flags & MEMORYSTATUS_SNAPSHOT_COPY) { |
9062 | error = memorystatus_get_jetsam_snapshot_copy(&snapshot, &buffer_size, size_only); |
9063 | } else { |
9064 | /* |
9065 | * Invalid flag setting. |
9066 | */ |
9067 | return EINVAL; |
9068 | } |
9069 | } |
9070 | |
9071 | if (error) { |
9072 | goto out; |
9073 | } |
9074 | |
9075 | /* |
9076 | * Copy the data out to user space and clear the snapshot buffer. |
9077 | * If working with the jetsam snapshot, |
9078 | * clearing the buffer means, reset the count. |
9079 | * If working with an on_demand snapshot |
9080 | * clearing the buffer means, free it. |
9081 | * If working with the at_boot snapshot |
9082 | * there is nothing to clear or update. |
9083 | * If working with a copy of the snapshot |
9084 | * there is nothing to clear or update. |
9085 | */ |
9086 | if (!size_only) { |
9087 | if ((error = copyout(snapshot, buffer, buffer_size)) == 0) { |
9088 | if (is_default_snapshot) { |
9089 | /* |
9090 | * The jetsam snapshot is never freed, its count is simply reset. |
9091 | * However, we make a copy for any parties that might be interested |
9092 | * in the previous fully populated snapshot. |
9093 | */ |
9094 | proc_list_lock(); |
9095 | memcpy(memorystatus_jetsam_snapshot_copy, memorystatus_jetsam_snapshot, memorystatus_jetsam_snapshot_size); |
9096 | memorystatus_jetsam_snapshot_copy_count = memorystatus_jetsam_snapshot_count; |
9097 | snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
9098 | memorystatus_jetsam_snapshot_last_timestamp = 0; |
9099 | proc_list_unlock(); |
9100 | } |
9101 | } |
9102 | |
9103 | if (is_on_demand_snapshot) { |
9104 | /* |
9105 | * The on_demand snapshot is always freed, |
9106 | * even if the copyout failed. |
9107 | */ |
9108 | if(snapshot) { |
9109 | kfree(snapshot, buffer_size); |
9110 | } |
9111 | } |
9112 | } |
9113 | |
9114 | if (error == 0) { |
9115 | *retval = buffer_size; |
9116 | } |
9117 | out: |
9118 | return error; |
9119 | } |
9120 | |
9121 | /* |
9122 | * Routine: memorystatus_cmd_grp_set_priorities |
9123 | * Purpose: Update priorities for a group of processes. |
9124 | * |
9125 | * [priority] |
9126 | * Move each process out of its effective priority |
9127 | * band and into a new priority band. |
9128 | * Maintains relative order from lowest to highest priority. |
9129 | * In single band, maintains relative order from head to tail. |
9130 | * |
9131 | * eg: before [effectivepriority | pid] |
9132 | * [18 | p101 ] |
9133 | * [17 | p55, p67, p19 ] |
9134 | * [12 | p103 p10 ] |
9135 | * [ 7 | p25 ] |
9136 | * [ 0 | p71, p82, ] |
9137 | * |
9138 | * after [ new band | pid] |
9139 | * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101] |
9140 | * |
9141 | * Returns: 0 on success, else non-zero. |
9142 | * |
9143 | * Caveat: We know there is a race window regarding recycled pids. |
9144 | * A process could be killed before the kernel can act on it here. |
9145 | * If a pid cannot be found in any of the jetsam priority bands, |
9146 | * then we simply ignore it. No harm. |
9147 | * But, if the pid has been recycled then it could be an issue. |
9148 | * In that scenario, we might move an unsuspecting process to the new |
9149 | * priority band. It's not clear how the kernel can safeguard |
9150 | * against this, but it would be an extremely rare case anyway. |
9151 | * The caller of this api might avoid such race conditions by |
9152 | * ensuring that the processes passed in the pid list are suspended. |
9153 | */ |
9154 | |
9155 | |
9156 | static int |
9157 | memorystatus_cmd_grp_set_priorities(user_addr_t buffer, size_t buffer_size) |
9158 | { |
9159 | |
9160 | /* |
9161 | * We only handle setting priority |
9162 | * per process |
9163 | */ |
9164 | |
9165 | int error = 0; |
9166 | memorystatus_properties_entry_v1_t *entries = NULL; |
9167 | uint32_t entry_count = 0; |
9168 | |
9169 | /* This will be the ordered proc list */ |
9170 | typedef struct memorystatus_internal_properties { |
9171 | proc_t proc; |
9172 | int32_t priority; |
9173 | } memorystatus_internal_properties_t; |
9174 | |
9175 | memorystatus_internal_properties_t *table = NULL; |
9176 | size_t table_size = 0; |
9177 | uint32_t table_count = 0; |
9178 | |
9179 | uint32_t i = 0; |
9180 | uint32_t bucket_index = 0; |
9181 | boolean_t head_insert; |
9182 | int32_t new_priority; |
9183 | |
9184 | proc_t p; |
9185 | |
9186 | /* Verify inputs */ |
9187 | if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) { |
9188 | error = EINVAL; |
9189 | goto out; |
9190 | } |
9191 | |
9192 | entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t)); |
9193 | if ((entries = (memorystatus_properties_entry_v1_t *)kalloc(buffer_size)) == NULL) { |
9194 | error = ENOMEM; |
9195 | goto out; |
9196 | } |
9197 | |
9198 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, 0, 0, 0); |
9199 | |
9200 | if ((error = copyin(buffer, entries, buffer_size)) != 0) { |
9201 | goto out; |
9202 | } |
9203 | |
9204 | /* Verify sanity of input priorities */ |
9205 | if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) { |
9206 | if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) { |
9207 | error = EINVAL; |
9208 | goto out; |
9209 | } |
9210 | } else { |
9211 | error = EINVAL; |
9212 | goto out; |
9213 | } |
9214 | |
9215 | for (i=0; i < entry_count; i++) { |
9216 | if (entries[i].priority == -1) { |
9217 | /* Use as shorthand for default priority */ |
9218 | entries[i].priority = JETSAM_PRIORITY_DEFAULT; |
9219 | } else if ((entries[i].priority == system_procs_aging_band) || (entries[i].priority == applications_aging_band)) { |
9220 | /* Both the aging bands are reserved for internal use; |
9221 | * if requested, adjust to JETSAM_PRIORITY_IDLE. */ |
9222 | entries[i].priority = JETSAM_PRIORITY_IDLE; |
9223 | } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { |
9224 | /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle |
9225 | * queue */ |
9226 | /* Deal with this later */ |
9227 | } else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) { |
9228 | /* Sanity check */ |
9229 | error = EINVAL; |
9230 | goto out; |
9231 | } |
9232 | } |
9233 | |
9234 | table_size = sizeof(memorystatus_internal_properties_t) * entry_count; |
9235 | if ( (table = (memorystatus_internal_properties_t *)kalloc(table_size)) == NULL) { |
9236 | error = ENOMEM; |
9237 | goto out; |
9238 | } |
9239 | memset(table, 0, table_size); |
9240 | |
9241 | |
9242 | /* |
9243 | * For each jetsam bucket entry, spin through the input property list. |
9244 | * When a matching pid is found, populate an adjacent table with the |
9245 | * appropriate proc pointer and new property values. |
9246 | * This traversal automatically preserves order from lowest |
9247 | * to highest priority. |
9248 | */ |
9249 | |
9250 | bucket_index=0; |
9251 | |
9252 | proc_list_lock(); |
9253 | |
9254 | /* Create the ordered table */ |
9255 | p = memorystatus_get_first_proc_locked(&bucket_index, TRUE); |
9256 | while (p && (table_count < entry_count)) { |
9257 | for (i=0; i < entry_count; i++ ) { |
9258 | if (p->p_pid == entries[i].pid) { |
9259 | /* Build the table data */ |
9260 | table[table_count].proc = p; |
9261 | table[table_count].priority = entries[i].priority; |
9262 | table_count++; |
9263 | break; |
9264 | } |
9265 | } |
9266 | p = memorystatus_get_next_proc_locked(&bucket_index, p, TRUE); |
9267 | } |
9268 | |
9269 | /* We now have ordered list of procs ready to move */ |
9270 | for (i=0; i < table_count; i++) { |
9271 | p = table[i].proc; |
9272 | assert(p != NULL); |
9273 | |
9274 | /* Allow head inserts -- but relative order is now */ |
9275 | if (table[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { |
9276 | new_priority = JETSAM_PRIORITY_IDLE; |
9277 | head_insert = true; |
9278 | } else { |
9279 | new_priority = table[i].priority; |
9280 | head_insert = false; |
9281 | } |
9282 | |
9283 | /* Not allowed */ |
9284 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
9285 | continue; |
9286 | } |
9287 | |
9288 | /* |
9289 | * Take appropriate steps if moving proc out of |
9290 | * either of the aging bands. |
9291 | */ |
9292 | if ((p->p_memstat_effectivepriority == system_procs_aging_band) || (p->p_memstat_effectivepriority == applications_aging_band)) { |
9293 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
9294 | } |
9295 | |
9296 | memorystatus_update_priority_locked(p, new_priority, head_insert, false); |
9297 | } |
9298 | |
9299 | proc_list_unlock(); |
9300 | |
9301 | /* |
9302 | * if (table_count != entry_count) |
9303 | * then some pids were not found in a jetsam band. |
9304 | * harmless but interesting... |
9305 | */ |
9306 | out: |
9307 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, table_count, 0, 0); |
9308 | |
9309 | if (entries) |
9310 | kfree(entries, buffer_size); |
9311 | if (table) |
9312 | kfree(table, table_size); |
9313 | |
9314 | return (error); |
9315 | } |
9316 | |
9317 | static int |
9318 | memorystatus_cmd_grp_set_probabilities(user_addr_t buffer, size_t buffer_size) |
9319 | { |
9320 | int error = 0; |
9321 | memorystatus_properties_entry_v1_t *entries = NULL; |
9322 | uint32_t entry_count = 0, i = 0; |
9323 | memorystatus_internal_probabilities_t *tmp_table_new = NULL, *tmp_table_old = NULL; |
9324 | size_t tmp_table_new_size = 0, tmp_table_old_size = 0; |
9325 | |
9326 | /* Verify inputs */ |
9327 | if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) { |
9328 | error = EINVAL; |
9329 | goto out; |
9330 | } |
9331 | |
9332 | entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t)); |
9333 | |
9334 | if ((entries = (memorystatus_properties_entry_v1_t *) kalloc(buffer_size)) == NULL) { |
9335 | error = ENOMEM; |
9336 | goto out; |
9337 | } |
9338 | |
9339 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, 0, 0, 0); |
9340 | |
9341 | if ((error = copyin(buffer, entries, buffer_size)) != 0) { |
9342 | goto out; |
9343 | } |
9344 | |
9345 | if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) { |
9346 | if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) { |
9347 | error = EINVAL; |
9348 | goto out; |
9349 | } |
9350 | } else { |
9351 | error = EINVAL; |
9352 | goto out; |
9353 | } |
9354 | |
9355 | /* Verify sanity of input priorities */ |
9356 | for (i=0; i < entry_count; i++) { |
9357 | /* |
9358 | * 0 - low probability of use. |
9359 | * 1 - high probability of use. |
9360 | * |
9361 | * Keeping this field an int (& not a bool) to allow |
9362 | * us to experiment with different values/approaches |
9363 | * later on. |
9364 | */ |
9365 | if (entries[i].use_probability > 1) { |
9366 | error = EINVAL; |
9367 | goto out; |
9368 | } |
9369 | } |
9370 | |
9371 | tmp_table_new_size = sizeof(memorystatus_internal_probabilities_t) * entry_count; |
9372 | |
9373 | if ( (tmp_table_new = (memorystatus_internal_probabilities_t *) kalloc(tmp_table_new_size)) == NULL) { |
9374 | error = ENOMEM; |
9375 | goto out; |
9376 | } |
9377 | memset(tmp_table_new, 0, tmp_table_new_size); |
9378 | |
9379 | proc_list_lock(); |
9380 | |
9381 | if (memorystatus_global_probabilities_table) { |
9382 | tmp_table_old = memorystatus_global_probabilities_table; |
9383 | tmp_table_old_size = memorystatus_global_probabilities_size; |
9384 | } |
9385 | |
9386 | memorystatus_global_probabilities_table = tmp_table_new; |
9387 | memorystatus_global_probabilities_size = tmp_table_new_size; |
9388 | tmp_table_new = NULL; |
9389 | |
9390 | for (i=0; i < entry_count; i++ ) { |
9391 | /* Build the table data */ |
9392 | strlcpy(memorystatus_global_probabilities_table[i].proc_name, entries[i].proc_name, MAXCOMLEN + 1); |
9393 | memorystatus_global_probabilities_table[i].use_probability = entries[i].use_probability; |
9394 | } |
9395 | |
9396 | proc_list_unlock(); |
9397 | |
9398 | out: |
9399 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, tmp_table_new_size, 0, 0); |
9400 | |
9401 | if (entries) { |
9402 | kfree(entries, buffer_size); |
9403 | entries = NULL; |
9404 | } |
9405 | |
9406 | if (tmp_table_old) { |
9407 | kfree(tmp_table_old, tmp_table_old_size); |
9408 | tmp_table_old = NULL; |
9409 | } |
9410 | |
9411 | return (error); |
9412 | |
9413 | } |
9414 | |
9415 | static int |
9416 | memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) |
9417 | { |
9418 | int error = 0; |
9419 | |
9420 | if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) { |
9421 | |
9422 | error = memorystatus_cmd_grp_set_priorities(buffer, buffer_size); |
9423 | |
9424 | } else if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) { |
9425 | |
9426 | error = memorystatus_cmd_grp_set_probabilities(buffer, buffer_size); |
9427 | |
9428 | } else { |
9429 | error = EINVAL; |
9430 | } |
9431 | |
9432 | return error; |
9433 | } |
9434 | |
9435 | /* |
9436 | * This routine is used to update a process's jetsam priority position and stored user_data. |
9437 | * It is not used for the setting of memory limits, which is why the last 6 args to the |
9438 | * memorystatus_update() call are 0 or FALSE. |
9439 | */ |
9440 | |
9441 | static int |
9442 | memorystatus_cmd_set_priority_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
9443 | int error = 0; |
9444 | memorystatus_priority_properties_t mpp_entry; |
9445 | |
9446 | /* Validate inputs */ |
9447 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_properties_t))) { |
9448 | return EINVAL; |
9449 | } |
9450 | |
9451 | error = copyin(buffer, &mpp_entry, buffer_size); |
9452 | |
9453 | if (error == 0) { |
9454 | proc_t p; |
9455 | |
9456 | p = proc_find(pid); |
9457 | if (!p) { |
9458 | return ESRCH; |
9459 | } |
9460 | |
9461 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
9462 | proc_rele(p); |
9463 | return EPERM; |
9464 | } |
9465 | |
9466 | error = memorystatus_update(p, mpp_entry.priority, mpp_entry.user_data, FALSE, FALSE, 0, 0, FALSE, FALSE); |
9467 | proc_rele(p); |
9468 | } |
9469 | |
9470 | return(error); |
9471 | } |
9472 | |
9473 | static int |
9474 | memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
9475 | int error = 0; |
9476 | memorystatus_memlimit_properties_t mmp_entry; |
9477 | |
9478 | /* Validate inputs */ |
9479 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) { |
9480 | return EINVAL; |
9481 | } |
9482 | |
9483 | error = copyin(buffer, &mmp_entry, buffer_size); |
9484 | |
9485 | if (error == 0) { |
9486 | error = memorystatus_set_memlimit_properties(pid, &mmp_entry); |
9487 | } |
9488 | |
9489 | return(error); |
9490 | } |
9491 | |
9492 | /* |
9493 | * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit(). |
9494 | * That gets the proc's cached memlimit and there is no guarantee that the active/inactive |
9495 | * limits will be the same in the no-limit case. Instead we convert limits <= 0 using |
9496 | * task_convert_phys_footprint_limit(). It computes the same limit value that would be written |
9497 | * to the task's ledgers via task_set_phys_footprint_limit(). |
9498 | */ |
9499 | static int |
9500 | memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
9501 | int error = 0; |
9502 | memorystatus_memlimit_properties_t mmp_entry; |
9503 | |
9504 | /* Validate inputs */ |
9505 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) { |
9506 | return EINVAL; |
9507 | } |
9508 | |
9509 | memset (&mmp_entry, 0, sizeof(memorystatus_memlimit_properties_t)); |
9510 | |
9511 | proc_t p = proc_find(pid); |
9512 | if (!p) { |
9513 | return ESRCH; |
9514 | } |
9515 | |
9516 | /* |
9517 | * Get the active limit and attributes. |
9518 | * No locks taken since we hold a reference to the proc. |
9519 | */ |
9520 | |
9521 | if (p->p_memstat_memlimit_active > 0 ) { |
9522 | mmp_entry.memlimit_active = p->p_memstat_memlimit_active; |
9523 | } else { |
9524 | task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_active); |
9525 | } |
9526 | |
9527 | if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { |
9528 | mmp_entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
9529 | } |
9530 | |
9531 | /* |
9532 | * Get the inactive limit and attributes |
9533 | */ |
9534 | if (p->p_memstat_memlimit_inactive <= 0) { |
9535 | task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_inactive); |
9536 | } else { |
9537 | mmp_entry.memlimit_inactive = p->p_memstat_memlimit_inactive; |
9538 | } |
9539 | if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { |
9540 | mmp_entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
9541 | } |
9542 | proc_rele(p); |
9543 | |
9544 | error = copyout(&mmp_entry, buffer, buffer_size); |
9545 | |
9546 | return(error); |
9547 | } |
9548 | |
9549 | |
9550 | /* |
9551 | * SPI for kbd - pr24956468 |
9552 | * This is a very simple snapshot that calculates how much a |
9553 | * process's phys_footprint exceeds a specific memory limit. |
9554 | * Only the inactive memory limit is supported for now. |
9555 | * The delta is returned as bytes in excess or zero. |
9556 | */ |
9557 | static int |
9558 | memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
9559 | int error = 0; |
9560 | uint64_t = 0; |
9561 | uint64_t delta_in_bytes = 0; |
9562 | int32_t memlimit_mb = 0; |
9563 | uint64_t memlimit_bytes = 0; |
9564 | |
9565 | /* Validate inputs */ |
9566 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(uint64_t)) || (flags != 0)) { |
9567 | return EINVAL; |
9568 | } |
9569 | |
9570 | proc_t p = proc_find(pid); |
9571 | if (!p) { |
9572 | return ESRCH; |
9573 | } |
9574 | |
9575 | /* |
9576 | * Get the inactive limit. |
9577 | * No locks taken since we hold a reference to the proc. |
9578 | */ |
9579 | |
9580 | if (p->p_memstat_memlimit_inactive <= 0) { |
9581 | task_convert_phys_footprint_limit(-1, &memlimit_mb); |
9582 | } else { |
9583 | memlimit_mb = p->p_memstat_memlimit_inactive; |
9584 | } |
9585 | |
9586 | footprint_in_bytes = get_task_phys_footprint(p->task); |
9587 | |
9588 | proc_rele(p); |
9589 | |
9590 | memlimit_bytes = memlimit_mb * 1024 * 1024; /* MB to bytes */ |
9591 | |
9592 | /* |
9593 | * Computed delta always returns >= 0 bytes |
9594 | */ |
9595 | if (footprint_in_bytes > memlimit_bytes) { |
9596 | delta_in_bytes = footprint_in_bytes - memlimit_bytes; |
9597 | } |
9598 | |
9599 | error = copyout(&delta_in_bytes, buffer, sizeof(delta_in_bytes)); |
9600 | |
9601 | return(error); |
9602 | } |
9603 | |
9604 | |
9605 | static int |
9606 | memorystatus_cmd_get_pressure_status(int32_t *retval) { |
9607 | int error; |
9608 | |
9609 | /* Need privilege for check */ |
9610 | error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0); |
9611 | if (error) { |
9612 | return (error); |
9613 | } |
9614 | |
9615 | /* Inherently racy, so it's not worth taking a lock here */ |
9616 | *retval = (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0; |
9617 | |
9618 | return error; |
9619 | } |
9620 | |
9621 | int |
9622 | memorystatus_get_pressure_status_kdp() { |
9623 | return (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0; |
9624 | } |
9625 | |
9626 | /* |
9627 | * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM. |
9628 | * |
9629 | * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal |
9630 | * So, with 2-level HWM preserving previous behavior will map as follows. |
9631 | * - treat the limit passed in as both an active and inactive limit. |
9632 | * - treat the is_fatal_limit flag as though it applies to both active and inactive limits. |
9633 | * |
9634 | * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK |
9635 | * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft |
9636 | * - so mapping is (active/non-fatal, inactive/non-fatal) |
9637 | * |
9638 | * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT |
9639 | * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard |
9640 | * - so mapping is (active/fatal, inactive/fatal) |
9641 | */ |
9642 | |
9643 | #if CONFIG_JETSAM |
9644 | static int |
9645 | memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit) { |
9646 | int error = 0; |
9647 | memorystatus_memlimit_properties_t entry; |
9648 | |
9649 | entry.memlimit_active = high_water_mark; |
9650 | entry.memlimit_active_attr = 0; |
9651 | entry.memlimit_inactive = high_water_mark; |
9652 | entry.memlimit_inactive_attr = 0; |
9653 | |
9654 | if (is_fatal_limit == TRUE) { |
9655 | entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
9656 | entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
9657 | } |
9658 | |
9659 | error = memorystatus_set_memlimit_properties(pid, &entry); |
9660 | return (error); |
9661 | } |
9662 | #endif /* CONFIG_JETSAM */ |
9663 | |
9664 | static int |
9665 | memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry) { |
9666 | |
9667 | int32_t memlimit_active; |
9668 | boolean_t memlimit_active_is_fatal; |
9669 | int32_t memlimit_inactive; |
9670 | boolean_t memlimit_inactive_is_fatal; |
9671 | uint32_t valid_attrs = 0; |
9672 | int error = 0; |
9673 | |
9674 | proc_t p = proc_find(pid); |
9675 | if (!p) { |
9676 | return ESRCH; |
9677 | } |
9678 | |
9679 | /* |
9680 | * Check for valid attribute flags. |
9681 | */ |
9682 | valid_attrs |= (MEMORYSTATUS_MEMLIMIT_ATTR_FATAL); |
9683 | if ((entry->memlimit_active_attr & (~valid_attrs)) != 0) { |
9684 | proc_rele(p); |
9685 | return EINVAL; |
9686 | } |
9687 | if ((entry->memlimit_inactive_attr & (~valid_attrs)) != 0) { |
9688 | proc_rele(p); |
9689 | return EINVAL; |
9690 | } |
9691 | |
9692 | /* |
9693 | * Setup the active memlimit properties |
9694 | */ |
9695 | memlimit_active = entry->memlimit_active; |
9696 | if (entry->memlimit_active_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) { |
9697 | memlimit_active_is_fatal = TRUE; |
9698 | } else { |
9699 | memlimit_active_is_fatal = FALSE; |
9700 | } |
9701 | |
9702 | /* |
9703 | * Setup the inactive memlimit properties |
9704 | */ |
9705 | memlimit_inactive = entry->memlimit_inactive; |
9706 | if (entry->memlimit_inactive_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) { |
9707 | memlimit_inactive_is_fatal = TRUE; |
9708 | } else { |
9709 | memlimit_inactive_is_fatal = FALSE; |
9710 | } |
9711 | |
9712 | /* |
9713 | * Setting a limit of <= 0 implies that the process has no |
9714 | * high-water-mark and has no per-task-limit. That means |
9715 | * the system_wide task limit is in place, which by the way, |
9716 | * is always fatal. |
9717 | */ |
9718 | |
9719 | if (memlimit_active <= 0) { |
9720 | /* |
9721 | * Enforce the fatal system_wide task limit while process is active. |
9722 | */ |
9723 | memlimit_active = -1; |
9724 | memlimit_active_is_fatal = TRUE; |
9725 | } |
9726 | |
9727 | if (memlimit_inactive <= 0) { |
9728 | /* |
9729 | * Enforce the fatal system_wide task limit while process is inactive. |
9730 | */ |
9731 | memlimit_inactive = -1; |
9732 | memlimit_inactive_is_fatal = TRUE; |
9733 | } |
9734 | |
9735 | proc_list_lock(); |
9736 | |
9737 | /* |
9738 | * Store the active limit variants in the proc. |
9739 | */ |
9740 | SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal); |
9741 | |
9742 | /* |
9743 | * Store the inactive limit variants in the proc. |
9744 | */ |
9745 | SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal); |
9746 | |
9747 | /* |
9748 | * Enforce appropriate limit variant by updating the cached values |
9749 | * and writing the ledger. |
9750 | * Limit choice is based on process active/inactive state. |
9751 | */ |
9752 | |
9753 | if (memorystatus_highwater_enabled) { |
9754 | boolean_t is_fatal; |
9755 | boolean_t use_active; |
9756 | |
9757 | if (proc_jetsam_state_is_active_locked(p) == TRUE) { |
9758 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
9759 | use_active = TRUE; |
9760 | } else { |
9761 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
9762 | use_active = FALSE; |
9763 | } |
9764 | |
9765 | /* Enforce the limit by writing to the ledgers */ |
9766 | error = (task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal) == 0) ? 0 : EINVAL; |
9767 | |
9768 | MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n" , |
9769 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
9770 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), p->p_memstat_effectivepriority, p->p_memstat_dirty, |
9771 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
9772 | DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1)); |
9773 | } |
9774 | |
9775 | proc_list_unlock(); |
9776 | proc_rele(p); |
9777 | |
9778 | return error; |
9779 | } |
9780 | |
9781 | /* |
9782 | * Returns the jetsam priority (effective or requested) of the process |
9783 | * associated with this task. |
9784 | */ |
9785 | int |
9786 | proc_get_memstat_priority(proc_t p, boolean_t effective_priority) |
9787 | { |
9788 | if (p) { |
9789 | if (effective_priority) { |
9790 | return p->p_memstat_effectivepriority; |
9791 | } else { |
9792 | return p->p_memstat_requestedpriority; |
9793 | } |
9794 | } |
9795 | return 0; |
9796 | } |
9797 | |
9798 | static int |
9799 | memorystatus_get_process_is_managed(pid_t pid, int *is_managed) |
9800 | { |
9801 | proc_t p = NULL; |
9802 | |
9803 | /* Validate inputs */ |
9804 | if (pid == 0) { |
9805 | return EINVAL; |
9806 | } |
9807 | |
9808 | p = proc_find(pid); |
9809 | if (!p) { |
9810 | return ESRCH; |
9811 | } |
9812 | |
9813 | proc_list_lock(); |
9814 | *is_managed = ((p->p_memstat_state & P_MEMSTAT_MANAGED) ? 1 : 0); |
9815 | proc_rele_locked(p); |
9816 | proc_list_unlock(); |
9817 | |
9818 | return 0; |
9819 | } |
9820 | |
9821 | static int |
9822 | memorystatus_set_process_is_managed(pid_t pid, boolean_t set_managed) |
9823 | { |
9824 | proc_t p = NULL; |
9825 | |
9826 | /* Validate inputs */ |
9827 | if (pid == 0) { |
9828 | return EINVAL; |
9829 | } |
9830 | |
9831 | p = proc_find(pid); |
9832 | if (!p) { |
9833 | return ESRCH; |
9834 | } |
9835 | |
9836 | proc_list_lock(); |
9837 | if (set_managed == TRUE) { |
9838 | p->p_memstat_state |= P_MEMSTAT_MANAGED; |
9839 | } else { |
9840 | p->p_memstat_state &= ~P_MEMSTAT_MANAGED; |
9841 | } |
9842 | proc_rele_locked(p); |
9843 | proc_list_unlock(); |
9844 | |
9845 | return 0; |
9846 | } |
9847 | |
9848 | static int |
9849 | memorystatus_get_process_is_freezable(pid_t pid, int *is_freezable) |
9850 | { |
9851 | proc_t p = PROC_NULL; |
9852 | |
9853 | if (pid == 0) { |
9854 | return EINVAL; |
9855 | } |
9856 | |
9857 | p = proc_find(pid); |
9858 | if (!p) { |
9859 | return ESRCH; |
9860 | } |
9861 | |
9862 | /* |
9863 | * Only allow this on the current proc for now. |
9864 | * We can check for privileges and allow targeting another process in the future. |
9865 | */ |
9866 | if (p != current_proc()) { |
9867 | proc_rele(p); |
9868 | return EPERM; |
9869 | } |
9870 | |
9871 | proc_list_lock(); |
9872 | *is_freezable = ((p->p_memstat_state & P_MEMSTAT_FREEZE_DISABLED) ? 0 : 1); |
9873 | proc_rele_locked(p); |
9874 | proc_list_unlock(); |
9875 | |
9876 | return 0; |
9877 | } |
9878 | |
9879 | static int |
9880 | memorystatus_set_process_is_freezable(pid_t pid, boolean_t is_freezable) |
9881 | { |
9882 | proc_t p = PROC_NULL; |
9883 | |
9884 | if (pid == 0) { |
9885 | return EINVAL; |
9886 | } |
9887 | |
9888 | p = proc_find(pid); |
9889 | if (!p) { |
9890 | return ESRCH; |
9891 | } |
9892 | |
9893 | /* |
9894 | * Only allow this on the current proc for now. |
9895 | * We can check for privileges and allow targeting another process in the future. |
9896 | */ |
9897 | if (p != current_proc()) { |
9898 | proc_rele(p); |
9899 | return EPERM; |
9900 | } |
9901 | |
9902 | proc_list_lock(); |
9903 | if (is_freezable == FALSE) { |
9904 | /* Freeze preference set to FALSE. Set the P_MEMSTAT_FREEZE_DISABLED bit. */ |
9905 | p->p_memstat_state |= P_MEMSTAT_FREEZE_DISABLED; |
9906 | printf("memorystatus_set_process_is_freezable: disabling freeze for pid %d [%s]\n" , |
9907 | p->p_pid, (*p->p_name ? p->p_name : "unknown" )); |
9908 | } else { |
9909 | p->p_memstat_state &= ~P_MEMSTAT_FREEZE_DISABLED; |
9910 | printf("memorystatus_set_process_is_freezable: enabling freeze for pid %d [%s]\n" , |
9911 | p->p_pid, (*p->p_name ? p->p_name : "unknown" )); |
9912 | } |
9913 | proc_rele_locked(p); |
9914 | proc_list_unlock(); |
9915 | |
9916 | return 0; |
9917 | } |
9918 | |
9919 | int |
9920 | memorystatus_control(struct proc *p __unused, struct memorystatus_control_args *args, int *ret) { |
9921 | int error = EINVAL; |
9922 | boolean_t skip_auth_check = FALSE; |
9923 | os_reason_t jetsam_reason = OS_REASON_NULL; |
9924 | |
9925 | #if !CONFIG_JETSAM |
9926 | #pragma unused(ret) |
9927 | #pragma unused(jetsam_reason) |
9928 | #endif |
9929 | |
9930 | /* We don't need entitlements if we're setting/ querying the freeze preference for a process. Skip the check below. */ |
9931 | if (args->command == MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE || args->command == MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE) { |
9932 | skip_auth_check = TRUE; |
9933 | } |
9934 | |
9935 | /* Need to be root or have entitlement. */ |
9936 | if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT) && !skip_auth_check) { |
9937 | error = EPERM; |
9938 | goto out; |
9939 | } |
9940 | |
9941 | /* |
9942 | * Sanity check. |
9943 | * Do not enforce it for snapshots. |
9944 | */ |
9945 | if (args->command != MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT) { |
9946 | if (args->buffersize > MEMORYSTATUS_BUFFERSIZE_MAX) { |
9947 | error = EINVAL; |
9948 | goto out; |
9949 | } |
9950 | } |
9951 | |
9952 | switch (args->command) { |
9953 | case MEMORYSTATUS_CMD_GET_PRIORITY_LIST: |
9954 | error = memorystatus_cmd_get_priority_list(args->pid, args->buffer, args->buffersize, ret); |
9955 | break; |
9956 | case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES: |
9957 | error = memorystatus_cmd_set_priority_properties(args->pid, args->buffer, args->buffersize, ret); |
9958 | break; |
9959 | case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES: |
9960 | error = memorystatus_cmd_set_memlimit_properties(args->pid, args->buffer, args->buffersize, ret); |
9961 | break; |
9962 | case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES: |
9963 | error = memorystatus_cmd_get_memlimit_properties(args->pid, args->buffer, args->buffersize, ret); |
9964 | break; |
9965 | case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS: |
9966 | error = memorystatus_cmd_get_memlimit_excess_np(args->pid, args->flags, args->buffer, args->buffersize, ret); |
9967 | break; |
9968 | case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES: |
9969 | error = memorystatus_cmd_grp_set_properties((int32_t)args->flags, args->buffer, args->buffersize, ret); |
9970 | break; |
9971 | case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT: |
9972 | error = memorystatus_cmd_get_jetsam_snapshot((int32_t)args->flags, args->buffer, args->buffersize, ret); |
9973 | break; |
9974 | case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS: |
9975 | error = memorystatus_cmd_get_pressure_status(ret); |
9976 | break; |
9977 | #if CONFIG_JETSAM |
9978 | case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK: |
9979 | /* |
9980 | * This call does not distinguish between active and inactive limits. |
9981 | * Default behavior in 2-level HWM world is to set both. |
9982 | * Non-fatal limit is also assumed for both. |
9983 | */ |
9984 | error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, FALSE); |
9985 | break; |
9986 | case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT: |
9987 | /* |
9988 | * This call does not distinguish between active and inactive limits. |
9989 | * Default behavior in 2-level HWM world is to set both. |
9990 | * Fatal limit is also assumed for both. |
9991 | */ |
9992 | error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, TRUE); |
9993 | break; |
9994 | #endif /* CONFIG_JETSAM */ |
9995 | /* Test commands */ |
9996 | #if DEVELOPMENT || DEBUG |
9997 | case MEMORYSTATUS_CMD_TEST_JETSAM: |
9998 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_GENERIC); |
9999 | if (jetsam_reason == OS_REASON_NULL) { |
10000 | printf("memorystatus_control: failed to allocate jetsam reason\n" ); |
10001 | } |
10002 | |
10003 | error = memorystatus_kill_process_sync(args->pid, kMemorystatusKilled, jetsam_reason) ? 0 : EINVAL; |
10004 | break; |
10005 | case MEMORYSTATUS_CMD_TEST_JETSAM_SORT: |
10006 | error = memorystatus_cmd_test_jetsam_sort(args->pid, (int32_t)args->flags); |
10007 | break; |
10008 | #if CONFIG_JETSAM |
10009 | case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS: |
10010 | error = memorystatus_cmd_set_panic_bits(args->buffer, args->buffersize); |
10011 | break; |
10012 | #endif /* CONFIG_JETSAM */ |
10013 | #else /* DEVELOPMENT || DEBUG */ |
10014 | #pragma unused(jetsam_reason) |
10015 | #endif /* DEVELOPMENT || DEBUG */ |
10016 | case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE: |
10017 | if (memorystatus_aggressive_jetsam_lenient_allowed == FALSE) { |
10018 | #if DEVELOPMENT || DEBUG |
10019 | printf("Enabling Lenient Mode\n" ); |
10020 | #endif /* DEVELOPMENT || DEBUG */ |
10021 | |
10022 | memorystatus_aggressive_jetsam_lenient_allowed = TRUE; |
10023 | memorystatus_aggressive_jetsam_lenient = TRUE; |
10024 | error = 0; |
10025 | } |
10026 | break; |
10027 | case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE: |
10028 | #if DEVELOPMENT || DEBUG |
10029 | printf("Disabling Lenient mode\n" ); |
10030 | #endif /* DEVELOPMENT || DEBUG */ |
10031 | memorystatus_aggressive_jetsam_lenient_allowed = FALSE; |
10032 | memorystatus_aggressive_jetsam_lenient = FALSE; |
10033 | error = 0; |
10034 | break; |
10035 | case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE: |
10036 | case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE: |
10037 | error = memorystatus_low_mem_privileged_listener(args->command); |
10038 | break; |
10039 | |
10040 | case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE: |
10041 | case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE: |
10042 | error = memorystatus_update_inactive_jetsam_priority_band(args->pid, args->command, JETSAM_PRIORITY_ELEVATED_INACTIVE, args->flags ? TRUE : FALSE); |
10043 | break; |
10044 | case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED: |
10045 | error = memorystatus_set_process_is_managed(args->pid, args->flags); |
10046 | break; |
10047 | |
10048 | case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED: |
10049 | error = memorystatus_get_process_is_managed(args->pid, ret); |
10050 | break; |
10051 | |
10052 | case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE: |
10053 | error = memorystatus_set_process_is_freezable(args->pid, args->flags ? TRUE : FALSE); |
10054 | break; |
10055 | |
10056 | case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE: |
10057 | error = memorystatus_get_process_is_freezable(args->pid, ret); |
10058 | break; |
10059 | |
10060 | #if CONFIG_FREEZE |
10061 | #if DEVELOPMENT || DEBUG |
10062 | case MEMORYSTATUS_CMD_FREEZER_CONTROL: |
10063 | error = memorystatus_freezer_control(args->flags, args->buffer, args->buffersize, ret); |
10064 | break; |
10065 | #endif /* DEVELOPMENT || DEBUG */ |
10066 | #endif /* CONFIG_FREEZE */ |
10067 | |
10068 | default: |
10069 | break; |
10070 | } |
10071 | |
10072 | out: |
10073 | return error; |
10074 | } |
10075 | |
10076 | |
10077 | static int |
10078 | filt_memorystatusattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
10079 | { |
10080 | int error; |
10081 | |
10082 | kn->kn_flags |= EV_CLEAR; |
10083 | error = memorystatus_knote_register(kn); |
10084 | if (error) { |
10085 | kn->kn_flags = EV_ERROR; |
10086 | kn->kn_data = error; |
10087 | } |
10088 | return 0; |
10089 | } |
10090 | |
10091 | static void |
10092 | filt_memorystatusdetach(struct knote *kn) |
10093 | { |
10094 | memorystatus_knote_unregister(kn); |
10095 | } |
10096 | |
10097 | static int |
10098 | filt_memorystatus(struct knote *kn __unused, long hint) |
10099 | { |
10100 | if (hint) { |
10101 | switch (hint) { |
10102 | case kMemorystatusNoPressure: |
10103 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
10104 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; |
10105 | } |
10106 | break; |
10107 | case kMemorystatusPressure: |
10108 | if (memorystatus_vm_pressure_level == kVMPressureWarning || memorystatus_vm_pressure_level == kVMPressureUrgent) { |
10109 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) { |
10110 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
10111 | } |
10112 | } else if (memorystatus_vm_pressure_level == kVMPressureCritical) { |
10113 | |
10114 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { |
10115 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; |
10116 | } |
10117 | } |
10118 | break; |
10119 | case kMemorystatusLowSwap: |
10120 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_LOW_SWAP) { |
10121 | kn->kn_fflags = NOTE_MEMORYSTATUS_LOW_SWAP; |
10122 | } |
10123 | break; |
10124 | |
10125 | case kMemorystatusProcLimitWarn: |
10126 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
10127 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
10128 | } |
10129 | break; |
10130 | |
10131 | case kMemorystatusProcLimitCritical: |
10132 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
10133 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
10134 | } |
10135 | break; |
10136 | |
10137 | default: |
10138 | break; |
10139 | } |
10140 | } |
10141 | |
10142 | #if 0 |
10143 | if (kn->kn_fflags != 0) { |
10144 | proc_t knote_proc = knote_get_kq(kn)->kq_p; |
10145 | pid_t knote_pid = knote_proc->p_pid; |
10146 | |
10147 | printf("filt_memorystatus: sending kn 0x%lx (event 0x%x) for pid (%d)\n" , |
10148 | (unsigned long)kn, kn->kn_fflags, knote_pid); |
10149 | } |
10150 | #endif |
10151 | |
10152 | return (kn->kn_fflags != 0); |
10153 | } |
10154 | |
10155 | static int |
10156 | filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev) |
10157 | { |
10158 | int res; |
10159 | int prev_kn_sfflags = 0; |
10160 | |
10161 | memorystatus_klist_lock(); |
10162 | |
10163 | /* |
10164 | * copy in new kevent settings |
10165 | * (saving the "desired" data and fflags). |
10166 | */ |
10167 | |
10168 | prev_kn_sfflags = kn->kn_sfflags; |
10169 | kn->kn_sfflags = (kev->fflags & EVFILT_MEMORYSTATUS_ALL_MASK); |
10170 | |
10171 | #if !CONFIG_EMBEDDED |
10172 | /* |
10173 | * Only on desktop do we restrict notifications to |
10174 | * one per active/inactive state (soft limits only). |
10175 | */ |
10176 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
10177 | /* |
10178 | * Is there previous state to preserve? |
10179 | */ |
10180 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
10181 | /* |
10182 | * This knote was previously interested in proc_limit_warn, |
10183 | * so yes, preserve previous state. |
10184 | */ |
10185 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) { |
10186 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
10187 | } |
10188 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) { |
10189 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
10190 | } |
10191 | } else { |
10192 | /* |
10193 | * This knote was not previously interested in proc_limit_warn, |
10194 | * but it is now. Set both states. |
10195 | */ |
10196 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
10197 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
10198 | } |
10199 | } |
10200 | |
10201 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
10202 | /* |
10203 | * Is there previous state to preserve? |
10204 | */ |
10205 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
10206 | /* |
10207 | * This knote was previously interested in proc_limit_critical, |
10208 | * so yes, preserve previous state. |
10209 | */ |
10210 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) { |
10211 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
10212 | } |
10213 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) { |
10214 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
10215 | } |
10216 | } else { |
10217 | /* |
10218 | * This knote was not previously interested in proc_limit_critical, |
10219 | * but it is now. Set both states. |
10220 | */ |
10221 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
10222 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
10223 | } |
10224 | } |
10225 | #endif /* !CONFIG_EMBEDDED */ |
10226 | |
10227 | /* |
10228 | * reset the output flags based on a |
10229 | * combination of the old events and |
10230 | * the new desired event list. |
10231 | */ |
10232 | //kn->kn_fflags &= kn->kn_sfflags; |
10233 | |
10234 | res = (kn->kn_fflags != 0); |
10235 | |
10236 | memorystatus_klist_unlock(); |
10237 | |
10238 | return res; |
10239 | } |
10240 | |
10241 | static int |
10242 | filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
10243 | { |
10244 | #pragma unused(data) |
10245 | int res; |
10246 | |
10247 | memorystatus_klist_lock(); |
10248 | res = (kn->kn_fflags != 0); |
10249 | if (res) { |
10250 | *kev = kn->kn_kevent; |
10251 | kn->kn_flags |= EV_CLEAR; /* automatic */ |
10252 | kn->kn_fflags = 0; |
10253 | kn->kn_data = 0; |
10254 | } |
10255 | memorystatus_klist_unlock(); |
10256 | |
10257 | return res; |
10258 | } |
10259 | |
10260 | static void |
10261 | memorystatus_klist_lock(void) { |
10262 | lck_mtx_lock(&memorystatus_klist_mutex); |
10263 | } |
10264 | |
10265 | static void |
10266 | memorystatus_klist_unlock(void) { |
10267 | lck_mtx_unlock(&memorystatus_klist_mutex); |
10268 | } |
10269 | |
10270 | void |
10271 | memorystatus_kevent_init(lck_grp_t *grp, lck_attr_t *attr) { |
10272 | lck_mtx_init(&memorystatus_klist_mutex, grp, attr); |
10273 | klist_init(&memorystatus_klist); |
10274 | } |
10275 | |
10276 | int |
10277 | memorystatus_knote_register(struct knote *kn) { |
10278 | int error = 0; |
10279 | |
10280 | memorystatus_klist_lock(); |
10281 | |
10282 | /* |
10283 | * Support only userspace visible flags. |
10284 | */ |
10285 | if ((kn->kn_sfflags & EVFILT_MEMORYSTATUS_ALL_MASK) == (unsigned int) kn->kn_sfflags) { |
10286 | |
10287 | #if !CONFIG_EMBEDDED |
10288 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
10289 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
10290 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
10291 | } |
10292 | |
10293 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
10294 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
10295 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
10296 | } |
10297 | #endif /* !CONFIG_EMBEDDED */ |
10298 | |
10299 | KNOTE_ATTACH(&memorystatus_klist, kn); |
10300 | |
10301 | } else { |
10302 | error = ENOTSUP; |
10303 | } |
10304 | |
10305 | memorystatus_klist_unlock(); |
10306 | |
10307 | return error; |
10308 | } |
10309 | |
10310 | void |
10311 | memorystatus_knote_unregister(struct knote *kn __unused) { |
10312 | memorystatus_klist_lock(); |
10313 | KNOTE_DETACH(&memorystatus_klist, kn); |
10314 | memorystatus_klist_unlock(); |
10315 | } |
10316 | |
10317 | |
10318 | #if 0 |
10319 | #if CONFIG_JETSAM && VM_PRESSURE_EVENTS |
10320 | static boolean_t |
10321 | memorystatus_issue_pressure_kevent(boolean_t pressured) { |
10322 | memorystatus_klist_lock(); |
10323 | KNOTE(&memorystatus_klist, pressured ? kMemorystatusPressure : kMemorystatusNoPressure); |
10324 | memorystatus_klist_unlock(); |
10325 | return TRUE; |
10326 | } |
10327 | #endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */ |
10328 | #endif /* 0 */ |
10329 | |
10330 | /* Coalition support */ |
10331 | |
10332 | /* sorting info for a particular priority bucket */ |
10333 | typedef struct memstat_sort_info { |
10334 | coalition_t msi_coal; |
10335 | uint64_t msi_page_count; |
10336 | pid_t msi_pid; |
10337 | int msi_ntasks; |
10338 | } memstat_sort_info_t; |
10339 | |
10340 | /* |
10341 | * qsort from smallest page count to largest page count |
10342 | * |
10343 | * return < 0 for a < b |
10344 | * 0 for a == b |
10345 | * > 0 for a > b |
10346 | */ |
10347 | static int memstat_asc_cmp(const void *a, const void *b) |
10348 | { |
10349 | const memstat_sort_info_t *msA = (const memstat_sort_info_t *)a; |
10350 | const memstat_sort_info_t *msB = (const memstat_sort_info_t *)b; |
10351 | |
10352 | return (int)((uint64_t)msA->msi_page_count - (uint64_t)msB->msi_page_count); |
10353 | } |
10354 | |
10355 | /* |
10356 | * Return the number of pids rearranged during this sort. |
10357 | */ |
10358 | static int |
10359 | memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order) |
10360 | { |
10361 | #define MAX_SORT_PIDS 80 |
10362 | #define MAX_COAL_LEADERS 10 |
10363 | |
10364 | unsigned int b = bucket_index; |
10365 | int nleaders = 0; |
10366 | int ntasks = 0; |
10367 | proc_t p = NULL; |
10368 | coalition_t coal = COALITION_NULL; |
10369 | int pids_moved = 0; |
10370 | int total_pids_moved = 0; |
10371 | int i; |
10372 | |
10373 | /* |
10374 | * The system is typically under memory pressure when in this |
10375 | * path, hence, we want to avoid dynamic memory allocation. |
10376 | */ |
10377 | memstat_sort_info_t leaders[MAX_COAL_LEADERS]; |
10378 | pid_t pid_list[MAX_SORT_PIDS]; |
10379 | |
10380 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
10381 | return(0); |
10382 | } |
10383 | |
10384 | /* |
10385 | * Clear the array that holds coalition leader information |
10386 | */ |
10387 | for (i=0; i < MAX_COAL_LEADERS; i++) { |
10388 | leaders[i].msi_coal = COALITION_NULL; |
10389 | leaders[i].msi_page_count = 0; /* will hold total coalition page count */ |
10390 | leaders[i].msi_pid = 0; /* will hold coalition leader pid */ |
10391 | leaders[i].msi_ntasks = 0; /* will hold the number of tasks in a coalition */ |
10392 | } |
10393 | |
10394 | p = memorystatus_get_first_proc_locked(&b, FALSE); |
10395 | while (p) { |
10396 | if (coalition_is_leader(p->task, COALITION_TYPE_JETSAM, &coal)) { |
10397 | if (nleaders < MAX_COAL_LEADERS) { |
10398 | int coal_ntasks = 0; |
10399 | uint64_t coal_page_count = coalition_get_page_count(coal, &coal_ntasks); |
10400 | leaders[nleaders].msi_coal = coal; |
10401 | leaders[nleaders].msi_page_count = coal_page_count; |
10402 | leaders[nleaders].msi_pid = p->p_pid; /* the coalition leader */ |
10403 | leaders[nleaders].msi_ntasks = coal_ntasks; |
10404 | nleaders++; |
10405 | } else { |
10406 | /* |
10407 | * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions. |
10408 | * Abandoned coalitions will linger at the tail of the priority band |
10409 | * when this sort session ends. |
10410 | * TODO: should this be an assert? |
10411 | */ |
10412 | printf("%s: WARNING: more than %d leaders in priority band [%d]\n" , |
10413 | __FUNCTION__, MAX_COAL_LEADERS, bucket_index); |
10414 | break; |
10415 | } |
10416 | } |
10417 | p=memorystatus_get_next_proc_locked(&b, p, FALSE); |
10418 | } |
10419 | |
10420 | if (nleaders == 0) { |
10421 | /* Nothing to sort */ |
10422 | return(0); |
10423 | } |
10424 | |
10425 | /* |
10426 | * Sort the coalition leader array, from smallest coalition page count |
10427 | * to largest coalition page count. When inserted in the priority bucket, |
10428 | * smallest coalition is handled first, resulting in the last to be jetsammed. |
10429 | */ |
10430 | if (nleaders > 1) { |
10431 | qsort(leaders, nleaders, sizeof(memstat_sort_info_t), memstat_asc_cmp); |
10432 | } |
10433 | |
10434 | #if 0 |
10435 | for (i = 0; i < nleaders; i++) { |
10436 | printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n" , |
10437 | __FUNCTION__, i, nleaders, leaders[i].msi_pid, leaders[i].msi_page_count, |
10438 | leaders[i].msi_ntasks); |
10439 | } |
10440 | #endif |
10441 | |
10442 | /* |
10443 | * During coalition sorting, processes in a priority band are rearranged |
10444 | * by being re-inserted at the head of the queue. So, when handling a |
10445 | * list, the first process that gets moved to the head of the queue, |
10446 | * ultimately gets pushed toward the queue tail, and hence, jetsams last. |
10447 | * |
10448 | * So, for example, the coalition leader is expected to jetsam last, |
10449 | * after its coalition members. Therefore, the coalition leader is |
10450 | * inserted at the head of the queue first. |
10451 | * |
10452 | * After processing a coalition, the jetsam order is as follows: |
10453 | * undefs(jetsam first), extensions, xpc services, leader(jetsam last) |
10454 | */ |
10455 | |
10456 | /* |
10457 | * Coalition members are rearranged in the priority bucket here, |
10458 | * based on their coalition role. |
10459 | */ |
10460 | total_pids_moved = 0; |
10461 | for (i=0; i < nleaders; i++) { |
10462 | |
10463 | /* a bit of bookkeeping */ |
10464 | pids_moved = 0; |
10465 | |
10466 | /* Coalition leaders are jetsammed last, so move into place first */ |
10467 | pid_list[0] = leaders[i].msi_pid; |
10468 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, 1); |
10469 | |
10470 | /* xpc services should jetsam after extensions */ |
10471 | ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_XPC, |
10472 | coal_sort_order, pid_list, MAX_SORT_PIDS); |
10473 | |
10474 | if (ntasks > 0) { |
10475 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, |
10476 | (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); |
10477 | } |
10478 | |
10479 | /* extensions should jetsam after unmarked processes */ |
10480 | ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_EXT, |
10481 | coal_sort_order, pid_list, MAX_SORT_PIDS); |
10482 | |
10483 | if (ntasks > 0) { |
10484 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, |
10485 | (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); |
10486 | } |
10487 | |
10488 | /* undefined coalition members should be the first to jetsam */ |
10489 | ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_UNDEF, |
10490 | coal_sort_order, pid_list, MAX_SORT_PIDS); |
10491 | |
10492 | if (ntasks > 0) { |
10493 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, |
10494 | (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); |
10495 | } |
10496 | |
10497 | #if 0 |
10498 | if (pids_moved == leaders[i].msi_ntasks) { |
10499 | /* |
10500 | * All the pids in the coalition were found in this band. |
10501 | */ |
10502 | printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n" , __FUNCTION__, |
10503 | pids_moved, leaders[i].msi_ntasks); |
10504 | } else if (pids_moved > leaders[i].msi_ntasks) { |
10505 | /* |
10506 | * Apparently new coalition members showed up during the sort? |
10507 | */ |
10508 | printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n" , __FUNCTION__, |
10509 | pids_moved, leaders[i].msi_ntasks); |
10510 | } else { |
10511 | /* |
10512 | * Apparently not all the pids in the coalition were found in this band? |
10513 | */ |
10514 | printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n" , __FUNCTION__, |
10515 | pids_moved, leaders[i].msi_ntasks); |
10516 | } |
10517 | #endif |
10518 | |
10519 | total_pids_moved += pids_moved; |
10520 | |
10521 | } /* end for */ |
10522 | |
10523 | return(total_pids_moved); |
10524 | } |
10525 | |
10526 | |
10527 | /* |
10528 | * Traverse a list of pids, searching for each within the priority band provided. |
10529 | * If pid is found, move it to the front of the priority band. |
10530 | * Never searches outside the priority band provided. |
10531 | * |
10532 | * Input: |
10533 | * bucket_index - jetsam priority band. |
10534 | * pid_list - pointer to a list of pids. |
10535 | * list_sz - number of pids in the list. |
10536 | * |
10537 | * Pid list ordering is important in that, |
10538 | * pid_list[n] is expected to jetsam ahead of pid_list[n+1]. |
10539 | * The sort_order is set by the coalition default. |
10540 | * |
10541 | * Return: |
10542 | * the number of pids found and hence moved within the priority band. |
10543 | */ |
10544 | static int |
10545 | memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz) |
10546 | { |
10547 | memstat_bucket_t *current_bucket; |
10548 | int i; |
10549 | int found_pids = 0; |
10550 | |
10551 | if ((pid_list == NULL) || (list_sz <= 0)) { |
10552 | return(0); |
10553 | } |
10554 | |
10555 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
10556 | return(0); |
10557 | } |
10558 | |
10559 | current_bucket = &memstat_bucket[bucket_index]; |
10560 | for (i=0; i < list_sz; i++) { |
10561 | unsigned int b = bucket_index; |
10562 | proc_t p = NULL; |
10563 | proc_t aProc = NULL; |
10564 | pid_t aPid; |
10565 | int list_index; |
10566 | |
10567 | list_index = ((list_sz - 1) - i); |
10568 | aPid = pid_list[list_index]; |
10569 | |
10570 | /* never search beyond bucket_index provided */ |
10571 | p = memorystatus_get_first_proc_locked(&b, FALSE); |
10572 | while (p) { |
10573 | if (p->p_pid == aPid) { |
10574 | aProc = p; |
10575 | break; |
10576 | } |
10577 | p = memorystatus_get_next_proc_locked(&b, p, FALSE); |
10578 | } |
10579 | |
10580 | if (aProc == NULL) { |
10581 | /* pid not found in this band, just skip it */ |
10582 | continue; |
10583 | } else { |
10584 | TAILQ_REMOVE(¤t_bucket->list, aProc, p_memstat_list); |
10585 | TAILQ_INSERT_HEAD(¤t_bucket->list, aProc, p_memstat_list); |
10586 | found_pids++; |
10587 | } |
10588 | } |
10589 | return(found_pids); |
10590 | } |
10591 | |
10592 | int |
10593 | memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index) |
10594 | { |
10595 | int32_t i = JETSAM_PRIORITY_IDLE; |
10596 | int count = 0; |
10597 | |
10598 | if (max_bucket_index >= MEMSTAT_BUCKET_COUNT) { |
10599 | return(-1); |
10600 | } |
10601 | |
10602 | while(i <= max_bucket_index) { |
10603 | count += memstat_bucket[i++].count; |
10604 | } |
10605 | |
10606 | return count; |
10607 | } |
10608 | |
10609 | int |
10610 | memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap) |
10611 | { |
10612 | #if !CONFIG_JETSAM |
10613 | if (!p || (!isApp(p)) || (p->p_memstat_state & (P_MEMSTAT_INTERNAL | P_MEMSTAT_MANAGED))) { |
10614 | /* |
10615 | * Ineligible processes OR system processes e.g. launchd. |
10616 | * |
10617 | * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e. |
10618 | * they're managed by assertiond. These are iOS apps that have been ported |
10619 | * to macOS. assertiond might be in the process of modifying the app's |
10620 | * priority / memory limit - so it might have the proc_list lock, and then try |
10621 | * to take the task lock. Meanwhile we've entered this function with the task lock |
10622 | * held, and we need the proc_list lock below. So we'll deadlock with assertiond. |
10623 | * |
10624 | * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list |
10625 | * lock here, since assertiond only sets this bit on process launch. |
10626 | */ |
10627 | return -1; |
10628 | } |
10629 | |
10630 | /* |
10631 | * For macOS only: |
10632 | * We would like to use memorystatus_update() here to move the processes |
10633 | * within the bands. Unfortunately memorystatus_update() calls |
10634 | * memorystatus_update_priority_locked() which uses any band transitions |
10635 | * as an indication to modify ledgers. For that it needs the task lock |
10636 | * and since we came into this function with the task lock held, we'll deadlock. |
10637 | * |
10638 | * Unfortunately we can't completely disable ledger updates because we still |
10639 | * need the ledger updates for a subset of processes i.e. daemons. |
10640 | * When all processes on all platforms support memory limits, we can simply call |
10641 | * memorystatus_update(). |
10642 | |
10643 | * It also has some logic to deal with 'aging' which, currently, is only applicable |
10644 | * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need |
10645 | * to do this explicit band transition. |
10646 | */ |
10647 | |
10648 | memstat_bucket_t *current_bucket, *new_bucket; |
10649 | int32_t priority = 0; |
10650 | |
10651 | proc_list_lock(); |
10652 | |
10653 | if (((p->p_listflag & P_LIST_EXITED) != 0) || |
10654 | (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED))) { |
10655 | /* |
10656 | * If the process is on its way out OR |
10657 | * jetsam has alread tried and failed to kill this process, |
10658 | * let's skip the whole jetsam band transition. |
10659 | */ |
10660 | proc_list_unlock(); |
10661 | return(0); |
10662 | } |
10663 | |
10664 | if (is_appnap) { |
10665 | current_bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
10666 | new_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
10667 | priority = JETSAM_PRIORITY_IDLE; |
10668 | } else { |
10669 | if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) { |
10670 | /* |
10671 | * It is possible that someone pulled this process |
10672 | * out of the IDLE band without updating its app-nap |
10673 | * parameters. |
10674 | */ |
10675 | proc_list_unlock(); |
10676 | return (0); |
10677 | } |
10678 | |
10679 | current_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
10680 | new_bucket = &memstat_bucket[p->p_memstat_requestedpriority]; |
10681 | priority = p->p_memstat_requestedpriority; |
10682 | } |
10683 | |
10684 | TAILQ_REMOVE(¤t_bucket->list, p, p_memstat_list); |
10685 | current_bucket->count--; |
10686 | |
10687 | TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list); |
10688 | new_bucket->count++; |
10689 | |
10690 | /* |
10691 | * Record idle start or idle delta. |
10692 | */ |
10693 | if (p->p_memstat_effectivepriority == priority) { |
10694 | /* |
10695 | * This process is not transitioning between |
10696 | * jetsam priority buckets. Do nothing. |
10697 | */ |
10698 | } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
10699 | uint64_t now; |
10700 | /* |
10701 | * Transitioning out of the idle priority bucket. |
10702 | * Record idle delta. |
10703 | */ |
10704 | assert(p->p_memstat_idle_start != 0); |
10705 | now = mach_absolute_time(); |
10706 | if (now > p->p_memstat_idle_start) { |
10707 | p->p_memstat_idle_delta = now - p->p_memstat_idle_start; |
10708 | } |
10709 | } else if (priority == JETSAM_PRIORITY_IDLE) { |
10710 | /* |
10711 | * Transitioning into the idle priority bucket. |
10712 | * Record idle start. |
10713 | */ |
10714 | p->p_memstat_idle_start = mach_absolute_time(); |
10715 | } |
10716 | |
10717 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0); |
10718 | |
10719 | p->p_memstat_effectivepriority = priority; |
10720 | |
10721 | proc_list_unlock(); |
10722 | |
10723 | return (0); |
10724 | |
10725 | #else /* !CONFIG_JETSAM */ |
10726 | #pragma unused(p) |
10727 | #pragma unused(is_appnap) |
10728 | return -1; |
10729 | #endif /* !CONFIG_JETSAM */ |
10730 | } |
10731 | |