| 1 | /* |
| 2 | * Copyright (c) 2006-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | * |
| 28 | */ |
| 29 | |
| 30 | #include <kern/sched_prim.h> |
| 31 | #include <kern/kalloc.h> |
| 32 | #include <kern/assert.h> |
| 33 | #include <kern/debug.h> |
| 34 | #include <kern/locks.h> |
| 35 | #include <kern/task.h> |
| 36 | #include <kern/thread.h> |
| 37 | #include <kern/host.h> |
| 38 | #include <kern/policy_internal.h> |
| 39 | #include <kern/thread_group.h> |
| 40 | |
| 41 | #include <IOKit/IOBSD.h> |
| 42 | |
| 43 | #include <libkern/libkern.h> |
| 44 | #include <mach/coalition.h> |
| 45 | #include <mach/mach_time.h> |
| 46 | #include <mach/task.h> |
| 47 | #include <mach/host_priv.h> |
| 48 | #include <mach/mach_host.h> |
| 49 | #include <os/log.h> |
| 50 | #include <pexpert/pexpert.h> |
| 51 | #include <sys/coalition.h> |
| 52 | #include <sys/kern_event.h> |
| 53 | #include <sys/proc.h> |
| 54 | #include <sys/proc_info.h> |
| 55 | #include <sys/reason.h> |
| 56 | #include <sys/signal.h> |
| 57 | #include <sys/signalvar.h> |
| 58 | #include <sys/sysctl.h> |
| 59 | #include <sys/sysproto.h> |
| 60 | #include <sys/wait.h> |
| 61 | #include <sys/tree.h> |
| 62 | #include <sys/priv.h> |
| 63 | #include <vm/vm_pageout.h> |
| 64 | #include <vm/vm_protos.h> |
| 65 | |
| 66 | #if CONFIG_FREEZE |
| 67 | #include <vm/vm_map.h> |
| 68 | #endif /* CONFIG_FREEZE */ |
| 69 | |
| 70 | #include <sys/kern_memorystatus.h> |
| 71 | |
| 72 | #include <mach/machine/sdt.h> |
| 73 | #include <libkern/section_keywords.h> |
| 74 | #include <stdatomic.h> |
| 75 | |
| 76 | /* For logging clarity */ |
| 77 | static const char *memorystatus_kill_cause_name[] = { |
| 78 | "" , /* kMemorystatusInvalid */ |
| 79 | "jettisoned" , /* kMemorystatusKilled */ |
| 80 | "highwater" , /* kMemorystatusKilledHiwat */ |
| 81 | "vnode-limit" , /* kMemorystatusKilledVnodes */ |
| 82 | "vm-pageshortage" , /* kMemorystatusKilledVMPageShortage */ |
| 83 | "proc-thrashing" , /* kMemorystatusKilledProcThrashing */ |
| 84 | "fc-thrashing" , /* kMemorystatusKilledFCThrashing */ |
| 85 | "per-process-limit" , /* kMemorystatusKilledPerProcessLimit */ |
| 86 | "disk-space-shortage" , /* kMemorystatusKilledDiskSpaceShortage */ |
| 87 | "idle-exit" , /* kMemorystatusKilledIdleExit */ |
| 88 | "zone-map-exhaustion" , /* kMemorystatusKilledZoneMapExhaustion */ |
| 89 | "vm-compressor-thrashing" , /* kMemorystatusKilledVMCompressorThrashing */ |
| 90 | "vm-compressor-space-shortage" , /* kMemorystatusKilledVMCompressorSpaceShortage */ |
| 91 | }; |
| 92 | |
| 93 | static const char * |
| 94 | memorystatus_priority_band_name(int32_t priority) |
| 95 | { |
| 96 | switch (priority) { |
| 97 | case JETSAM_PRIORITY_FOREGROUND: |
| 98 | return "FOREGROUND" ; |
| 99 | case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY: |
| 100 | return "AUDIO_AND_ACCESSORY" ; |
| 101 | case JETSAM_PRIORITY_CONDUCTOR: |
| 102 | return "CONDUCTOR" ; |
| 103 | case JETSAM_PRIORITY_HOME: |
| 104 | return "HOME" ; |
| 105 | case JETSAM_PRIORITY_EXECUTIVE: |
| 106 | return "EXECUTIVE" ; |
| 107 | case JETSAM_PRIORITY_IMPORTANT: |
| 108 | return "IMPORTANT" ; |
| 109 | case JETSAM_PRIORITY_CRITICAL: |
| 110 | return "CRITICAL" ; |
| 111 | } |
| 112 | |
| 113 | return ("?" ); |
| 114 | } |
| 115 | |
| 116 | /* Does cause indicate vm or fc thrashing? */ |
| 117 | static boolean_t |
| 118 | is_reason_thrashing(unsigned cause) |
| 119 | { |
| 120 | switch (cause) { |
| 121 | case kMemorystatusKilledFCThrashing: |
| 122 | case kMemorystatusKilledVMCompressorThrashing: |
| 123 | case kMemorystatusKilledVMCompressorSpaceShortage: |
| 124 | return TRUE; |
| 125 | default: |
| 126 | return FALSE; |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | /* Is the zone map almost full? */ |
| 131 | static boolean_t |
| 132 | is_reason_zone_map_exhaustion(unsigned cause) |
| 133 | { |
| 134 | if (cause == kMemorystatusKilledZoneMapExhaustion) |
| 135 | return TRUE; |
| 136 | return FALSE; |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * Returns the current zone map size and capacity to include in the jetsam snapshot. |
| 141 | * Defined in zalloc.c |
| 142 | */ |
| 143 | extern void get_zone_map_size(uint64_t *current_size, uint64_t *capacity); |
| 144 | |
| 145 | /* |
| 146 | * Returns the name of the largest zone and its size to include in the jetsam snapshot. |
| 147 | * Defined in zalloc.c |
| 148 | */ |
| 149 | extern void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size); |
| 150 | |
| 151 | /* These are very verbose printfs(), enable with |
| 152 | * MEMORYSTATUS_DEBUG_LOG |
| 153 | */ |
| 154 | #if MEMORYSTATUS_DEBUG_LOG |
| 155 | #define MEMORYSTATUS_DEBUG(cond, format, ...) \ |
| 156 | do { \ |
| 157 | if (cond) { printf(format, ##__VA_ARGS__); } \ |
| 158 | } while(0) |
| 159 | #else |
| 160 | #define MEMORYSTATUS_DEBUG(cond, format, ...) |
| 161 | #endif |
| 162 | |
| 163 | /* |
| 164 | * Active / Inactive limit support |
| 165 | * proc list must be locked |
| 166 | * |
| 167 | * The SET_*** macros are used to initialize a limit |
| 168 | * for the first time. |
| 169 | * |
| 170 | * The CACHE_*** macros are use to cache the limit that will |
| 171 | * soon be in effect down in the ledgers. |
| 172 | */ |
| 173 | |
| 174 | #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \ |
| 175 | MACRO_BEGIN \ |
| 176 | (p)->p_memstat_memlimit_active = (limit); \ |
| 177 | if (is_fatal) { \ |
| 178 | (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \ |
| 179 | } else { \ |
| 180 | (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \ |
| 181 | } \ |
| 182 | MACRO_END |
| 183 | |
| 184 | #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \ |
| 185 | MACRO_BEGIN \ |
| 186 | (p)->p_memstat_memlimit_inactive = (limit); \ |
| 187 | if (is_fatal) { \ |
| 188 | (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \ |
| 189 | } else { \ |
| 190 | (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \ |
| 191 | } \ |
| 192 | MACRO_END |
| 193 | |
| 194 | #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \ |
| 195 | MACRO_BEGIN \ |
| 196 | (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \ |
| 197 | if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \ |
| 198 | (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \ |
| 199 | is_fatal = TRUE; \ |
| 200 | } else { \ |
| 201 | (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \ |
| 202 | is_fatal = FALSE; \ |
| 203 | } \ |
| 204 | MACRO_END |
| 205 | |
| 206 | #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \ |
| 207 | MACRO_BEGIN \ |
| 208 | (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \ |
| 209 | if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \ |
| 210 | (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \ |
| 211 | is_fatal = TRUE; \ |
| 212 | } else { \ |
| 213 | (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \ |
| 214 | is_fatal = FALSE; \ |
| 215 | } \ |
| 216 | MACRO_END |
| 217 | |
| 218 | |
| 219 | /* General tunables */ |
| 220 | |
| 221 | unsigned long delta_percentage = 5; |
| 222 | unsigned long critical_threshold_percentage = 5; |
| 223 | unsigned long idle_offset_percentage = 5; |
| 224 | unsigned long pressure_threshold_percentage = 15; |
| 225 | unsigned long freeze_threshold_percentage = 50; |
| 226 | unsigned long policy_more_free_offset_percentage = 5; |
| 227 | |
| 228 | /* General memorystatus stuff */ |
| 229 | |
| 230 | struct klist memorystatus_klist; |
| 231 | static lck_mtx_t memorystatus_klist_mutex; |
| 232 | |
| 233 | static void memorystatus_klist_lock(void); |
| 234 | static void memorystatus_klist_unlock(void); |
| 235 | |
| 236 | static uint64_t memorystatus_sysprocs_idle_delay_time = 0; |
| 237 | static uint64_t memorystatus_apps_idle_delay_time = 0; |
| 238 | |
| 239 | /* |
| 240 | * Memorystatus kevents |
| 241 | */ |
| 242 | |
| 243 | static int filt_memorystatusattach(struct knote *kn, struct kevent_internal_s *kev); |
| 244 | static void filt_memorystatusdetach(struct knote *kn); |
| 245 | static int filt_memorystatus(struct knote *kn, long hint); |
| 246 | static int filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev); |
| 247 | static int filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); |
| 248 | |
| 249 | SECURITY_READ_ONLY_EARLY(struct filterops) memorystatus_filtops = { |
| 250 | .f_attach = filt_memorystatusattach, |
| 251 | .f_detach = filt_memorystatusdetach, |
| 252 | .f_event = filt_memorystatus, |
| 253 | .f_touch = filt_memorystatustouch, |
| 254 | .f_process = filt_memorystatusprocess, |
| 255 | }; |
| 256 | |
| 257 | enum { |
| 258 | kMemorystatusNoPressure = 0x1, |
| 259 | kMemorystatusPressure = 0x2, |
| 260 | kMemorystatusLowSwap = 0x4, |
| 261 | kMemorystatusProcLimitWarn = 0x8, |
| 262 | kMemorystatusProcLimitCritical = 0x10 |
| 263 | }; |
| 264 | |
| 265 | /* Idle guard handling */ |
| 266 | |
| 267 | static int32_t memorystatus_scheduled_idle_demotions_sysprocs = 0; |
| 268 | static int32_t memorystatus_scheduled_idle_demotions_apps = 0; |
| 269 | |
| 270 | static thread_call_t memorystatus_idle_demotion_call; |
| 271 | |
| 272 | static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2); |
| 273 | static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state); |
| 274 | static void memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clean_state); |
| 275 | static void memorystatus_reschedule_idle_demotion_locked(void); |
| 276 | |
| 277 | static void memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check); |
| 278 | |
| 279 | int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap); |
| 280 | |
| 281 | vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t); |
| 282 | |
| 283 | boolean_t is_knote_registered_modify_task_pressure_bits(struct knote*, int, task_t, vm_pressure_level_t, vm_pressure_level_t); |
| 284 | void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear); |
| 285 | void memorystatus_send_low_swap_note(void); |
| 286 | |
| 287 | unsigned int memorystatus_level = 0; |
| 288 | |
| 289 | static int memorystatus_list_count = 0; |
| 290 | |
| 291 | |
| 292 | #define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1) |
| 293 | |
| 294 | typedef struct memstat_bucket { |
| 295 | TAILQ_HEAD(, proc) list; |
| 296 | int count; |
| 297 | } memstat_bucket_t; |
| 298 | |
| 299 | memstat_bucket_t memstat_bucket[MEMSTAT_BUCKET_COUNT]; |
| 300 | |
| 301 | int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index); |
| 302 | |
| 303 | uint64_t memstat_idle_demotion_deadline = 0; |
| 304 | |
| 305 | int system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
| 306 | int applications_aging_band = JETSAM_PRIORITY_IDLE; |
| 307 | |
| 308 | #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band))) |
| 309 | |
| 310 | /* |
| 311 | * Checking the p_memstat_state almost always requires the proc_list_lock |
| 312 | * because the jetsam thread could be on the other core changing the state. |
| 313 | * |
| 314 | * App -- almost always managed by a system process. Always have dirty tracking OFF. Can include extensions too. |
| 315 | * System Processes -- not managed by anybody. Always have dirty tracking ON. Can include extensions (here) too. |
| 316 | */ |
| 317 | #define isApp(p) ((p->p_memstat_state & P_MEMSTAT_MANAGED) || ! (p->p_memstat_dirty & P_DIRTY_TRACK)) |
| 318 | #define isSysProc(p) ( ! (p->p_memstat_state & P_MEMSTAT_MANAGED) || (p->p_memstat_dirty & P_DIRTY_TRACK)) |
| 319 | |
| 320 | #define kJetsamAgingPolicyNone (0) |
| 321 | #define kJetsamAgingPolicyLegacy (1) |
| 322 | #define kJetsamAgingPolicySysProcsReclaimedFirst (2) |
| 323 | #define kJetsamAgingPolicyAppsReclaimedFirst (3) |
| 324 | #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst |
| 325 | |
| 326 | unsigned int jetsam_aging_policy = kJetsamAgingPolicyLegacy; |
| 327 | |
| 328 | extern int corpse_for_fatal_memkill; |
| 329 | extern unsigned long total_corpses_count(void) __attribute__((pure)); |
| 330 | extern void task_purge_all_corpses(void); |
| 331 | extern uint64_t vm_purgeable_purge_task_owned(task_t task); |
| 332 | boolean_t memorystatus_allowed_vm_map_fork(task_t); |
| 333 | #if DEVELOPMENT || DEBUG |
| 334 | void memorystatus_abort_vm_map_fork(task_t); |
| 335 | #endif |
| 336 | |
| 337 | #if 0 |
| 338 | |
| 339 | /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */ |
| 340 | |
| 341 | static int |
| 342 | sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS |
| 343 | { |
| 344 | #pragma unused(oidp, arg1, arg2) |
| 345 | |
| 346 | int error = 0, val = 0; |
| 347 | memstat_bucket_t *old_bucket = 0; |
| 348 | int old_system_procs_aging_band = 0, new_system_procs_aging_band = 0; |
| 349 | int old_applications_aging_band = 0, new_applications_aging_band = 0; |
| 350 | proc_t p = NULL, next_proc = NULL; |
| 351 | |
| 352 | |
| 353 | error = sysctl_io_number(req, jetsam_aging_policy, sizeof(int), &val, NULL); |
| 354 | if (error || !req->newptr) { |
| 355 | return (error); |
| 356 | } |
| 357 | |
| 358 | if ((val < 0) || (val > kJetsamAgingPolicyMax)) { |
| 359 | printf("jetsam: ordering policy sysctl has invalid value - %d\n" , val); |
| 360 | return EINVAL; |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * We need to synchronize with any potential adding/removal from aging bands |
| 365 | * that might be in progress currently. We use the proc_list_lock() just for |
| 366 | * consistency with all the routines dealing with 'aging' processes. We need |
| 367 | * a lighterweight lock. |
| 368 | */ |
| 369 | proc_list_lock(); |
| 370 | |
| 371 | old_system_procs_aging_band = system_procs_aging_band; |
| 372 | old_applications_aging_band = applications_aging_band; |
| 373 | |
| 374 | switch (val) { |
| 375 | |
| 376 | case kJetsamAgingPolicyNone: |
| 377 | new_system_procs_aging_band = JETSAM_PRIORITY_IDLE; |
| 378 | new_applications_aging_band = JETSAM_PRIORITY_IDLE; |
| 379 | break; |
| 380 | |
| 381 | case kJetsamAgingPolicyLegacy: |
| 382 | /* |
| 383 | * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band. |
| 384 | */ |
| 385 | new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
| 386 | new_applications_aging_band = JETSAM_PRIORITY_IDLE; |
| 387 | break; |
| 388 | |
| 389 | case kJetsamAgingPolicySysProcsReclaimedFirst: |
| 390 | new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
| 391 | new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
| 392 | break; |
| 393 | |
| 394 | case kJetsamAgingPolicyAppsReclaimedFirst: |
| 395 | new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
| 396 | new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
| 397 | break; |
| 398 | |
| 399 | default: |
| 400 | break; |
| 401 | } |
| 402 | |
| 403 | if (old_system_procs_aging_band && (old_system_procs_aging_band != new_system_procs_aging_band)) { |
| 404 | |
| 405 | old_bucket = &memstat_bucket[old_system_procs_aging_band]; |
| 406 | p = TAILQ_FIRST(&old_bucket->list); |
| 407 | |
| 408 | while (p) { |
| 409 | |
| 410 | next_proc = TAILQ_NEXT(p, p_memstat_list); |
| 411 | |
| 412 | if (isSysProc(p)) { |
| 413 | if (new_system_procs_aging_band == JETSAM_PRIORITY_IDLE) { |
| 414 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 415 | } |
| 416 | |
| 417 | memorystatus_update_priority_locked(p, new_system_procs_aging_band, false, true); |
| 418 | } |
| 419 | |
| 420 | p = next_proc; |
| 421 | continue; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | if (old_applications_aging_band && (old_applications_aging_band != new_applications_aging_band)) { |
| 426 | |
| 427 | old_bucket = &memstat_bucket[old_applications_aging_band]; |
| 428 | p = TAILQ_FIRST(&old_bucket->list); |
| 429 | |
| 430 | while (p) { |
| 431 | |
| 432 | next_proc = TAILQ_NEXT(p, p_memstat_list); |
| 433 | |
| 434 | if (isApp(p)) { |
| 435 | if (new_applications_aging_band == JETSAM_PRIORITY_IDLE) { |
| 436 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 437 | } |
| 438 | |
| 439 | memorystatus_update_priority_locked(p, new_applications_aging_band, false, true); |
| 440 | } |
| 441 | |
| 442 | p = next_proc; |
| 443 | continue; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | jetsam_aging_policy = val; |
| 448 | system_procs_aging_band = new_system_procs_aging_band; |
| 449 | applications_aging_band = new_applications_aging_band; |
| 450 | |
| 451 | proc_list_unlock(); |
| 452 | |
| 453 | return (0); |
| 454 | } |
| 455 | |
| 456 | SYSCTL_PROC(_kern, OID_AUTO, set_jetsam_aging_policy, CTLTYPE_INT|CTLFLAG_RW, |
| 457 | 0, 0, sysctl_set_jetsam_aging_policy, "I" , "Jetsam Aging Policy" ); |
| 458 | #endif /*0*/ |
| 459 | |
| 460 | static int |
| 461 | sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS |
| 462 | { |
| 463 | #pragma unused(oidp, arg1, arg2) |
| 464 | |
| 465 | int error = 0, val = 0, old_time_in_secs = 0; |
| 466 | uint64_t old_time_in_ns = 0; |
| 467 | |
| 468 | absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time, &old_time_in_ns); |
| 469 | old_time_in_secs = old_time_in_ns / NSEC_PER_SEC; |
| 470 | |
| 471 | error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL); |
| 472 | if (error || !req->newptr) { |
| 473 | return (error); |
| 474 | } |
| 475 | |
| 476 | if ((val < 0) || (val > INT32_MAX)) { |
| 477 | printf("jetsam: new idle delay interval has invalid value.\n" ); |
| 478 | return EINVAL; |
| 479 | } |
| 480 | |
| 481 | nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time); |
| 482 | |
| 483 | return(0); |
| 484 | } |
| 485 | |
| 486 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_sysprocs_idle_delay_time, CTLTYPE_INT|CTLFLAG_RW, |
| 487 | 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time, "I" , "Aging window for system processes" ); |
| 488 | |
| 489 | |
| 490 | static int |
| 491 | sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS |
| 492 | { |
| 493 | #pragma unused(oidp, arg1, arg2) |
| 494 | |
| 495 | int error = 0, val = 0, old_time_in_secs = 0; |
| 496 | uint64_t old_time_in_ns = 0; |
| 497 | |
| 498 | absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time, &old_time_in_ns); |
| 499 | old_time_in_secs = old_time_in_ns / NSEC_PER_SEC; |
| 500 | |
| 501 | error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL); |
| 502 | if (error || !req->newptr) { |
| 503 | return (error); |
| 504 | } |
| 505 | |
| 506 | if ((val < 0) || (val > INT32_MAX)) { |
| 507 | printf("jetsam: new idle delay interval has invalid value.\n" ); |
| 508 | return EINVAL; |
| 509 | } |
| 510 | |
| 511 | nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time); |
| 512 | |
| 513 | return(0); |
| 514 | } |
| 515 | |
| 516 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_apps_idle_delay_time, CTLTYPE_INT|CTLFLAG_RW, |
| 517 | 0, 0, sysctl_jetsam_set_apps_idle_delay_time, "I" , "Aging window for applications" ); |
| 518 | |
| 519 | SYSCTL_INT(_kern, OID_AUTO, jetsam_aging_policy, CTLTYPE_INT|CTLFLAG_RD, &jetsam_aging_policy, 0, "" ); |
| 520 | |
| 521 | static unsigned int memorystatus_dirty_count = 0; |
| 522 | |
| 523 | SYSCTL_INT(_kern, OID_AUTO, max_task_pmem, CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED, &max_task_footprint_mb, 0, "" ); |
| 524 | |
| 525 | #if CONFIG_EMBEDDED |
| 526 | |
| 527 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_level, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_level, 0, "" ); |
| 528 | |
| 529 | #endif /* CONFIG_EMBEDDED */ |
| 530 | |
| 531 | int |
| 532 | memorystatus_get_level(__unused struct proc *p, struct memorystatus_get_level_args *args, __unused int *ret) |
| 533 | { |
| 534 | user_addr_t level = 0; |
| 535 | |
| 536 | level = args->level; |
| 537 | |
| 538 | if (copyout(&memorystatus_level, level, sizeof(memorystatus_level)) != 0) { |
| 539 | return EFAULT; |
| 540 | } |
| 541 | |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search); |
| 546 | static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search); |
| 547 | |
| 548 | static void memorystatus_thread(void *param __unused, wait_result_t wr __unused); |
| 549 | |
| 550 | /* Memory Limits */ |
| 551 | |
| 552 | static int memorystatus_highwater_enabled = 1; /* Update the cached memlimit data. */ |
| 553 | |
| 554 | static boolean_t proc_jetsam_state_is_active_locked(proc_t); |
| 555 | static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason); |
| 556 | static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason); |
| 557 | |
| 558 | |
| 559 | static int memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); |
| 560 | |
| 561 | static int memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry); |
| 562 | |
| 563 | static int memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); |
| 564 | |
| 565 | static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval); |
| 566 | |
| 567 | int proc_get_memstat_priority(proc_t, boolean_t); |
| 568 | |
| 569 | static boolean_t memorystatus_idle_snapshot = 0; |
| 570 | |
| 571 | unsigned int memorystatus_delta = 0; |
| 572 | |
| 573 | /* Jetsam Loop Detection */ |
| 574 | static boolean_t memorystatus_jld_enabled = FALSE; /* Enable jetsam loop detection */ |
| 575 | static uint32_t memorystatus_jld_eval_period_msecs = 0; /* Init pass sets this based on device memory size */ |
| 576 | static int memorystatus_jld_eval_aggressive_count = 3; /* Raise the priority max after 'n' aggressive loops */ |
| 577 | static int memorystatus_jld_eval_aggressive_priority_band_max = 15; /* Kill aggressively up through this band */ |
| 578 | |
| 579 | /* |
| 580 | * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as: |
| 581 | * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands. |
| 582 | * |
| 583 | * RESTRICTIONS: |
| 584 | * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was |
| 585 | * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band. |
| 586 | * |
| 587 | * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around. |
| 588 | * |
| 589 | * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior. |
| 590 | */ |
| 591 | |
| 592 | #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25 |
| 593 | boolean_t memorystatus_aggressive_jetsam_lenient_allowed = FALSE; |
| 594 | boolean_t memorystatus_aggressive_jetsam_lenient = FALSE; |
| 595 | |
| 596 | #if DEVELOPMENT || DEBUG |
| 597 | /* |
| 598 | * Jetsam Loop Detection tunables. |
| 599 | */ |
| 600 | |
| 601 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_period_msecs, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_period_msecs, 0, "" ); |
| 602 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_count, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_count, 0, "" ); |
| 603 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_priority_band_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_priority_band_max, 0, "" ); |
| 604 | #endif /* DEVELOPMENT || DEBUG */ |
| 605 | |
| 606 | static uint32_t kill_under_pressure_cause = 0; |
| 607 | |
| 608 | /* |
| 609 | * default jetsam snapshot support |
| 610 | */ |
| 611 | static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot; |
| 612 | static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot_copy; |
| 613 | #define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries |
| 614 | static unsigned int memorystatus_jetsam_snapshot_count = 0; |
| 615 | static unsigned int memorystatus_jetsam_snapshot_copy_count = 0; |
| 616 | static unsigned int memorystatus_jetsam_snapshot_max = 0; |
| 617 | static unsigned int memorystatus_jetsam_snapshot_size = 0; |
| 618 | static uint64_t memorystatus_jetsam_snapshot_last_timestamp = 0; |
| 619 | static uint64_t memorystatus_jetsam_snapshot_timeout = 0; |
| 620 | #define JETSAM_SNAPSHOT_TIMEOUT_SECS 30 |
| 621 | |
| 622 | /* |
| 623 | * snapshot support for memstats collected at boot. |
| 624 | */ |
| 625 | static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot; |
| 626 | |
| 627 | static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count); |
| 628 | static boolean_t memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount); |
| 629 | static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime); |
| 630 | |
| 631 | static void memorystatus_clear_errors(void); |
| 632 | static void memorystatus_get_task_page_counts(task_t task, uint32_t *, uint32_t *, uint32_t *purgeable_pages); |
| 633 | static void memorystatus_get_task_phys_footprint_page_counts(task_t task, |
| 634 | uint64_t *internal_pages, uint64_t *internal_compressed_pages, |
| 635 | uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages, |
| 636 | uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages, |
| 637 | uint64_t *iokit_mapped_pages, uint64_t *page_table_pages); |
| 638 | |
| 639 | static void memorystatus_get_task_memory_region_count(task_t task, uint64_t *count); |
| 640 | |
| 641 | static uint32_t memorystatus_build_state(proc_t p); |
| 642 | //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured); |
| 643 | |
| 644 | static boolean_t memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, int32_t *priority, uint32_t *errors); |
| 645 | static boolean_t memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count, int32_t priority_max, uint32_t *errors); |
| 646 | static boolean_t memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors); |
| 647 | static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged); |
| 648 | |
| 649 | static boolean_t memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause); |
| 650 | |
| 651 | /* Priority Band Sorting Routines */ |
| 652 | static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order); |
| 653 | static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order); |
| 654 | static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index); |
| 655 | static int memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz); |
| 656 | |
| 657 | /* qsort routines */ |
| 658 | typedef int (*cmpfunc_t)(const void *a, const void *b); |
| 659 | extern void qsort(void *a, size_t n, size_t es, cmpfunc_t cmp); |
| 660 | static int memstat_asc_cmp(const void *a, const void *b); |
| 661 | |
| 662 | /* VM pressure */ |
| 663 | |
| 664 | extern unsigned int vm_page_free_count; |
| 665 | extern unsigned int vm_page_active_count; |
| 666 | extern unsigned int vm_page_inactive_count; |
| 667 | extern unsigned int vm_page_throttled_count; |
| 668 | extern unsigned int vm_page_purgeable_count; |
| 669 | extern unsigned int vm_page_wire_count; |
| 670 | #if CONFIG_SECLUDED_MEMORY |
| 671 | extern unsigned int vm_page_secluded_count; |
| 672 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 673 | |
| 674 | #if CONFIG_JETSAM |
| 675 | unsigned int memorystatus_available_pages = (unsigned int)-1; |
| 676 | unsigned int memorystatus_available_pages_pressure = 0; |
| 677 | unsigned int memorystatus_available_pages_critical = 0; |
| 678 | static unsigned int memorystatus_available_pages_critical_base = 0; |
| 679 | static unsigned int memorystatus_available_pages_critical_idle_offset = 0; |
| 680 | |
| 681 | #if DEVELOPMENT || DEBUG |
| 682 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "" ); |
| 683 | #else |
| 684 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "" ); |
| 685 | #endif /* DEVELOPMENT || DEBUG */ |
| 686 | |
| 687 | static unsigned int memorystatus_jetsam_policy = kPolicyDefault; |
| 688 | unsigned int memorystatus_policy_more_free_offset_pages = 0; |
| 689 | static void memorystatus_update_levels_locked(boolean_t critical_only); |
| 690 | static unsigned int memorystatus_thread_wasted_wakeup = 0; |
| 691 | |
| 692 | /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */ |
| 693 | extern void vm_thrashing_jetsam_done(void); |
| 694 | static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit); |
| 695 | |
| 696 | int32_t max_kill_priority = JETSAM_PRIORITY_MAX; |
| 697 | |
| 698 | #else /* CONFIG_JETSAM */ |
| 699 | |
| 700 | uint64_t memorystatus_available_pages = (uint64_t)-1; |
| 701 | uint64_t memorystatus_available_pages_pressure = (uint64_t)-1; |
| 702 | uint64_t memorystatus_available_pages_critical = (uint64_t)-1; |
| 703 | |
| 704 | int32_t max_kill_priority = JETSAM_PRIORITY_IDLE; |
| 705 | #endif /* CONFIG_JETSAM */ |
| 706 | |
| 707 | unsigned int memorystatus_frozen_count = 0; |
| 708 | unsigned int memorystatus_frozen_processes_max = 0; |
| 709 | unsigned int memorystatus_frozen_shared_mb = 0; |
| 710 | unsigned int memorystatus_frozen_shared_mb_max = 0; |
| 711 | unsigned int memorystatus_freeze_shared_mb_per_process_max = 0; /* Max. MB allowed per process to be freezer-eligible. */ |
| 712 | unsigned int memorystatus_freeze_private_shared_pages_ratio = 2; /* Ratio of private:shared pages for a process to be freezer-eligible. */ |
| 713 | unsigned int memorystatus_suspended_count = 0; |
| 714 | unsigned int memorystatus_thaw_count = 0; |
| 715 | unsigned int memorystatus_refreeze_eligible_count = 0; /* # of processes currently thawed i.e. have state on disk & in-memory */ |
| 716 | |
| 717 | #if VM_PRESSURE_EVENTS |
| 718 | |
| 719 | boolean_t memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t exceeded); |
| 720 | |
| 721 | vm_pressure_level_t memorystatus_vm_pressure_level = kVMPressureNormal; |
| 722 | |
| 723 | /* |
| 724 | * We use this flag to signal if we have any HWM offenders |
| 725 | * on the system. This way we can reduce the number of wakeups |
| 726 | * of the memorystatus_thread when the system is between the |
| 727 | * "pressure" and "critical" threshold. |
| 728 | * |
| 729 | * The (re-)setting of this variable is done without any locks |
| 730 | * or synchronization simply because it is not possible (currently) |
| 731 | * to keep track of HWM offenders that drop down below their memory |
| 732 | * limit and/or exit. So, we choose to burn a couple of wasted wakeups |
| 733 | * by allowing the unguarded modification of this variable. |
| 734 | */ |
| 735 | boolean_t memorystatus_hwm_candidates = 0; |
| 736 | |
| 737 | static int memorystatus_send_note(int event_code, void *data, size_t data_length); |
| 738 | |
| 739 | /* |
| 740 | * This value is the threshold that a process must meet to be considered for scavenging. |
| 741 | */ |
| 742 | #if CONFIG_EMBEDDED |
| 743 | #define VM_PRESSURE_MINIMUM_RSIZE 6 /* MB */ |
| 744 | #else /* CONFIG_EMBEDDED */ |
| 745 | #define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */ |
| 746 | #endif /* CONFIG_EMBEDDED */ |
| 747 | |
| 748 | uint32_t = VM_PRESSURE_MINIMUM_RSIZE; |
| 749 | |
| 750 | #if DEVELOPMENT || DEBUG |
| 751 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_vm_pressure_task_footprint_min, CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pressure_task_footprint_min, 0, "" ); |
| 752 | #endif /* DEVELOPMENT || DEBUG */ |
| 753 | |
| 754 | #endif /* VM_PRESSURE_EVENTS */ |
| 755 | |
| 756 | |
| 757 | #if DEVELOPMENT || DEBUG |
| 758 | |
| 759 | lck_grp_attr_t *disconnect_page_mappings_lck_grp_attr; |
| 760 | lck_grp_t *disconnect_page_mappings_lck_grp; |
| 761 | static lck_mtx_t disconnect_page_mappings_mutex; |
| 762 | |
| 763 | extern boolean_t kill_on_no_paging_space; |
| 764 | #endif /* DEVELOPMENT || DEBUG */ |
| 765 | |
| 766 | |
| 767 | /* |
| 768 | * Table that expresses the probability of a process |
| 769 | * being used in the next hour. |
| 770 | */ |
| 771 | typedef struct memorystatus_internal_probabilities { |
| 772 | char proc_name[MAXCOMLEN + 1]; |
| 773 | int use_probability; |
| 774 | } memorystatus_internal_probabilities_t; |
| 775 | |
| 776 | static memorystatus_internal_probabilities_t *memorystatus_global_probabilities_table = NULL; |
| 777 | static size_t memorystatus_global_probabilities_size = 0; |
| 778 | |
| 779 | /* Freeze */ |
| 780 | |
| 781 | #if CONFIG_FREEZE |
| 782 | boolean_t memorystatus_freeze_enabled = FALSE; |
| 783 | int memorystatus_freeze_wakeup = 0; |
| 784 | int memorystatus_freeze_jetsam_band = 0; /* the jetsam band which will contain P_MEMSTAT_FROZEN processes */ |
| 785 | |
| 786 | lck_grp_attr_t *freezer_lck_grp_attr; |
| 787 | lck_grp_t *freezer_lck_grp; |
| 788 | static lck_mtx_t freezer_mutex; |
| 789 | |
| 790 | static inline boolean_t memorystatus_can_freeze_processes(void); |
| 791 | static boolean_t memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low); |
| 792 | static boolean_t memorystatus_is_process_eligible_for_freeze(proc_t p); |
| 793 | static void memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused); |
| 794 | static boolean_t memorystatus_freeze_thread_should_run(void); |
| 795 | |
| 796 | void memorystatus_disable_freeze(void); |
| 797 | |
| 798 | /* Thresholds */ |
| 799 | static unsigned int memorystatus_freeze_threshold = 0; |
| 800 | |
| 801 | static unsigned int memorystatus_freeze_pages_min = 0; |
| 802 | static unsigned int memorystatus_freeze_pages_max = 0; |
| 803 | |
| 804 | static unsigned int memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT; |
| 805 | |
| 806 | static unsigned int memorystatus_freeze_daily_mb_max = FREEZE_DAILY_MB_MAX_DEFAULT; |
| 807 | static uint64_t memorystatus_freeze_budget_pages_remaining = 0; //remaining # of pages that can be frozen to disk |
| 808 | static boolean_t memorystatus_freeze_degradation = FALSE; //protected by the freezer mutex. Signals we are in a degraded freeze mode. |
| 809 | |
| 810 | static unsigned int memorystatus_max_frozen_demotions_daily = 0; |
| 811 | static unsigned int memorystatus_thaw_count_demotion_threshold = 0; |
| 812 | |
| 813 | /* Stats */ |
| 814 | static uint64_t memorystatus_freeze_pageouts = 0; |
| 815 | |
| 816 | /* Throttling */ |
| 817 | #define DEGRADED_WINDOW_MINS (30) |
| 818 | #define NORMAL_WINDOW_MINS (24 * 60) |
| 819 | |
| 820 | static throttle_interval_t throttle_intervals[] = { |
| 821 | { DEGRADED_WINDOW_MINS, 1, 0, 0, { 0, 0 }}, |
| 822 | { NORMAL_WINDOW_MINS, 1, 0, 0, { 0, 0 }}, |
| 823 | }; |
| 824 | throttle_interval_t *degraded_throttle_window = &throttle_intervals[0]; |
| 825 | throttle_interval_t *normal_throttle_window = &throttle_intervals[1]; |
| 826 | |
| 827 | extern uint64_t vm_swap_get_free_space(void); |
| 828 | extern boolean_t vm_swap_max_budget(uint64_t *); |
| 829 | |
| 830 | static void memorystatus_freeze_update_throttle(uint64_t *budget_pages_allowed); |
| 831 | |
| 832 | static uint64_t memorystatus_freezer_thread_next_run_ts = 0; |
| 833 | |
| 834 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_frozen_count, 0, "" ); |
| 835 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_thaw_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_thaw_count, 0, "" ); |
| 836 | SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_pageouts, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_pageouts, "" ); |
| 837 | SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_budget_pages_remaining, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_budget_pages_remaining, "" ); |
| 838 | |
| 839 | #endif /* CONFIG_FREEZE */ |
| 840 | |
| 841 | /* Debug */ |
| 842 | |
| 843 | extern struct knote *vm_find_knote_from_pid(pid_t, struct klist *); |
| 844 | |
| 845 | #if DEVELOPMENT || DEBUG |
| 846 | |
| 847 | static unsigned int memorystatus_debug_dump_this_bucket = 0; |
| 848 | |
| 849 | static void |
| 850 | memorystatus_debug_dump_bucket_locked (unsigned int bucket_index) |
| 851 | { |
| 852 | proc_t p = NULL; |
| 853 | uint64_t bytes = 0; |
| 854 | int ledger_limit = 0; |
| 855 | unsigned int b = bucket_index; |
| 856 | boolean_t traverse_all_buckets = FALSE; |
| 857 | |
| 858 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
| 859 | traverse_all_buckets = TRUE; |
| 860 | b = 0; |
| 861 | } else { |
| 862 | traverse_all_buckets = FALSE; |
| 863 | b = bucket_index; |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * footprint reported in [pages / MB ] |
| 868 | * limits reported as: |
| 869 | * L-limit proc's Ledger limit |
| 870 | * C-limit proc's Cached limit, should match Ledger |
| 871 | * A-limit proc's Active limit |
| 872 | * IA-limit proc's Inactive limit |
| 873 | * F==Fatal, NF==NonFatal |
| 874 | */ |
| 875 | |
| 876 | printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n" , PAGE_SIZE_64); |
| 877 | printf("bucket [pid] [pages / MB] [state] [EP / RP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n" ); |
| 878 | p = memorystatus_get_first_proc_locked(&b, traverse_all_buckets); |
| 879 | while (p) { |
| 880 | bytes = get_task_phys_footprint(p->task); |
| 881 | task_get_phys_footprint_limit(p->task, &ledger_limit); |
| 882 | printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n" , |
| 883 | b, p->p_pid, |
| 884 | (bytes / PAGE_SIZE_64), /* task's footprint converted from bytes to pages */ |
| 885 | (bytes / (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */ |
| 886 | p->p_memstat_state, p->p_memstat_effectivepriority, p->p_memstat_requestedpriority, p->p_memstat_dirty, p->p_memstat_idledeadline, |
| 887 | ledger_limit, |
| 888 | p->p_memstat_memlimit, |
| 889 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), |
| 890 | p->p_memstat_memlimit_active, |
| 891 | (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL ? "F " : "NF" ), |
| 892 | p->p_memstat_memlimit_inactive, |
| 893 | (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL ? "F " : "NF" ), |
| 894 | (*p->p_name ? p->p_name : "unknown" )); |
| 895 | p = memorystatus_get_next_proc_locked(&b, p, traverse_all_buckets); |
| 896 | } |
| 897 | printf("memorystatus_debug_dump ***END***\n" ); |
| 898 | } |
| 899 | |
| 900 | static int |
| 901 | sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS |
| 902 | { |
| 903 | #pragma unused(oidp, arg2) |
| 904 | int bucket_index = 0; |
| 905 | int error; |
| 906 | error = SYSCTL_OUT(req, arg1, sizeof(int)); |
| 907 | if (error || !req->newptr) { |
| 908 | return (error); |
| 909 | } |
| 910 | error = SYSCTL_IN(req, &bucket_index, sizeof(int)); |
| 911 | if (error || !req->newptr) { |
| 912 | return (error); |
| 913 | } |
| 914 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
| 915 | /* |
| 916 | * All jetsam buckets will be dumped. |
| 917 | */ |
| 918 | } else { |
| 919 | /* |
| 920 | * Only a single bucket will be dumped. |
| 921 | */ |
| 922 | } |
| 923 | |
| 924 | proc_list_lock(); |
| 925 | memorystatus_debug_dump_bucket_locked(bucket_index); |
| 926 | proc_list_unlock(); |
| 927 | memorystatus_debug_dump_this_bucket = bucket_index; |
| 928 | return (error); |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * Debug aid to look at jetsam buckets and proc jetsam fields. |
| 933 | * Use this sysctl to act on a particular jetsam bucket. |
| 934 | * Writing the sysctl triggers the dump. |
| 935 | * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index> |
| 936 | */ |
| 937 | |
| 938 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_debug_dump_this_bucket, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_debug_dump_this_bucket, 0, sysctl_memorystatus_debug_dump_bucket, "I" , "" ); |
| 939 | |
| 940 | |
| 941 | /* Debug aid to aid determination of limit */ |
| 942 | |
| 943 | static int |
| 944 | sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS |
| 945 | { |
| 946 | #pragma unused(oidp, arg2) |
| 947 | proc_t p; |
| 948 | unsigned int b = 0; |
| 949 | int error, enable = 0; |
| 950 | boolean_t use_active; /* use the active limit and active limit attributes */ |
| 951 | boolean_t is_fatal; |
| 952 | |
| 953 | error = SYSCTL_OUT(req, arg1, sizeof(int)); |
| 954 | if (error || !req->newptr) { |
| 955 | return (error); |
| 956 | } |
| 957 | |
| 958 | error = SYSCTL_IN(req, &enable, sizeof(int)); |
| 959 | if (error || !req->newptr) { |
| 960 | return (error); |
| 961 | } |
| 962 | |
| 963 | if (!(enable == 0 || enable == 1)) { |
| 964 | return EINVAL; |
| 965 | } |
| 966 | |
| 967 | proc_list_lock(); |
| 968 | |
| 969 | p = memorystatus_get_first_proc_locked(&b, TRUE); |
| 970 | while (p) { |
| 971 | use_active = proc_jetsam_state_is_active_locked(p); |
| 972 | |
| 973 | if (enable) { |
| 974 | |
| 975 | if (use_active == TRUE) { |
| 976 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 977 | } else { |
| 978 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 979 | } |
| 980 | |
| 981 | } else { |
| 982 | /* |
| 983 | * Disabling limits does not touch the stored variants. |
| 984 | * Set the cached limit fields to system_wide defaults. |
| 985 | */ |
| 986 | p->p_memstat_memlimit = -1; |
| 987 | p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; |
| 988 | is_fatal = TRUE; |
| 989 | } |
| 990 | |
| 991 | /* |
| 992 | * Enforce the cached limit by writing to the ledger. |
| 993 | */ |
| 994 | task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit: -1, NULL, use_active, is_fatal); |
| 995 | |
| 996 | p = memorystatus_get_next_proc_locked(&b, p, TRUE); |
| 997 | } |
| 998 | |
| 999 | memorystatus_highwater_enabled = enable; |
| 1000 | |
| 1001 | proc_list_unlock(); |
| 1002 | |
| 1003 | return 0; |
| 1004 | |
| 1005 | } |
| 1006 | |
| 1007 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I" , "" ); |
| 1008 | |
| 1009 | #if VM_PRESSURE_EVENTS |
| 1010 | |
| 1011 | /* |
| 1012 | * This routine is used for targeted notifications regardless of system memory pressure |
| 1013 | * and regardless of whether or not the process has already been notified. |
| 1014 | * It bypasses and has no effect on the only-one-notification per soft-limit policy. |
| 1015 | * |
| 1016 | * "memnote" is the current user. |
| 1017 | */ |
| 1018 | |
| 1019 | static int |
| 1020 | sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS |
| 1021 | { |
| 1022 | #pragma unused(arg1, arg2) |
| 1023 | |
| 1024 | int error = 0, pid = 0; |
| 1025 | struct knote *kn = NULL; |
| 1026 | boolean_t found_knote = FALSE; |
| 1027 | int fflags = 0; /* filter flags for EVFILT_MEMORYSTATUS */ |
| 1028 | uint64_t value = 0; |
| 1029 | |
| 1030 | error = sysctl_handle_quad(oidp, &value, 0, req); |
| 1031 | if (error || !req->newptr) |
| 1032 | return (error); |
| 1033 | |
| 1034 | /* |
| 1035 | * Find the pid in the low 32 bits of value passed in. |
| 1036 | */ |
| 1037 | pid = (int)(value & 0xFFFFFFFF); |
| 1038 | |
| 1039 | /* |
| 1040 | * Find notification in the high 32 bits of the value passed in. |
| 1041 | */ |
| 1042 | fflags = (int)((value >> 32) & 0xFFFFFFFF); |
| 1043 | |
| 1044 | /* |
| 1045 | * For backwards compatibility, when no notification is |
| 1046 | * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN |
| 1047 | */ |
| 1048 | if (fflags == 0) { |
| 1049 | fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
| 1050 | // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags); |
| 1051 | } |
| 1052 | |
| 1053 | /* |
| 1054 | * See event.h ... fflags for EVFILT_MEMORYSTATUS |
| 1055 | */ |
| 1056 | if (!((fflags == NOTE_MEMORYSTATUS_PRESSURE_NORMAL)|| |
| 1057 | (fflags == NOTE_MEMORYSTATUS_PRESSURE_WARN) || |
| 1058 | (fflags == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) || |
| 1059 | (fflags == NOTE_MEMORYSTATUS_LOW_SWAP) || |
| 1060 | (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) || |
| 1061 | (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) || |
| 1062 | (((fflags & NOTE_MEMORYSTATUS_MSL_STATUS) != 0 && |
| 1063 | ((fflags & ~NOTE_MEMORYSTATUS_MSL_STATUS) == 0))))) { |
| 1064 | |
| 1065 | printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n" , fflags); |
| 1066 | error = 1; |
| 1067 | return (error); |
| 1068 | } |
| 1069 | |
| 1070 | /* |
| 1071 | * Forcibly send pid a memorystatus notification. |
| 1072 | */ |
| 1073 | |
| 1074 | memorystatus_klist_lock(); |
| 1075 | |
| 1076 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
| 1077 | proc_t knote_proc = knote_get_kq(kn)->kq_p; |
| 1078 | pid_t knote_pid = knote_proc->p_pid; |
| 1079 | |
| 1080 | if (knote_pid == pid) { |
| 1081 | /* |
| 1082 | * Forcibly send this pid a memorystatus notification. |
| 1083 | */ |
| 1084 | kn->kn_fflags = fflags; |
| 1085 | found_knote = TRUE; |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | if (found_knote) { |
| 1090 | KNOTE(&memorystatus_klist, 0); |
| 1091 | printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n" , value, fflags, pid); |
| 1092 | error = 0; |
| 1093 | } else { |
| 1094 | printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n" , value, fflags, pid); |
| 1095 | error = 1; |
| 1096 | } |
| 1097 | |
| 1098 | memorystatus_klist_unlock(); |
| 1099 | |
| 1100 | return (error); |
| 1101 | } |
| 1102 | |
| 1103 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_send, CTLTYPE_QUAD|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 1104 | 0, 0, &sysctl_memorystatus_vm_pressure_send, "Q" , "" ); |
| 1105 | |
| 1106 | #endif /* VM_PRESSURE_EVENTS */ |
| 1107 | |
| 1108 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, "" ); |
| 1109 | |
| 1110 | #if CONFIG_JETSAM |
| 1111 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, "" ); |
| 1112 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, "" ); |
| 1113 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle_offset, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle_offset, 0, "" ); |
| 1114 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_policy_more_free_offset_pages, CTLFLAG_RW, &memorystatus_policy_more_free_offset_pages, 0, "" ); |
| 1115 | |
| 1116 | static unsigned int memorystatus_jetsam_panic_debug = 0; |
| 1117 | static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic = 0; |
| 1118 | |
| 1119 | /* Diagnostic code */ |
| 1120 | |
| 1121 | enum { |
| 1122 | kJetsamDiagnosticModeNone = 0, |
| 1123 | kJetsamDiagnosticModeAll = 1, |
| 1124 | kJetsamDiagnosticModeStopAtFirstActive = 2, |
| 1125 | kJetsamDiagnosticModeCount |
| 1126 | } jetsam_diagnostic_mode = kJetsamDiagnosticModeNone; |
| 1127 | |
| 1128 | static int jetsam_diagnostic_suspended_one_active_proc = 0; |
| 1129 | |
| 1130 | static int |
| 1131 | sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS |
| 1132 | { |
| 1133 | #pragma unused(arg1, arg2) |
| 1134 | |
| 1135 | const char *diagnosticStrings[] = { |
| 1136 | "jetsam: diagnostic mode: resetting critical level." , |
| 1137 | "jetsam: diagnostic mode: will examine all processes" , |
| 1138 | "jetsam: diagnostic mode: will stop at first active process" |
| 1139 | }; |
| 1140 | |
| 1141 | int error, val = jetsam_diagnostic_mode; |
| 1142 | boolean_t changed = FALSE; |
| 1143 | |
| 1144 | error = sysctl_handle_int(oidp, &val, 0, req); |
| 1145 | if (error || !req->newptr) |
| 1146 | return (error); |
| 1147 | if ((val < 0) || (val >= kJetsamDiagnosticModeCount)) { |
| 1148 | printf("jetsam: diagnostic mode: invalid value - %d\n" , val); |
| 1149 | return EINVAL; |
| 1150 | } |
| 1151 | |
| 1152 | proc_list_lock(); |
| 1153 | |
| 1154 | if ((unsigned int) val != jetsam_diagnostic_mode) { |
| 1155 | jetsam_diagnostic_mode = val; |
| 1156 | |
| 1157 | memorystatus_jetsam_policy &= ~kPolicyDiagnoseActive; |
| 1158 | |
| 1159 | switch (jetsam_diagnostic_mode) { |
| 1160 | case kJetsamDiagnosticModeNone: |
| 1161 | /* Already cleared */ |
| 1162 | break; |
| 1163 | case kJetsamDiagnosticModeAll: |
| 1164 | memorystatus_jetsam_policy |= kPolicyDiagnoseAll; |
| 1165 | break; |
| 1166 | case kJetsamDiagnosticModeStopAtFirstActive: |
| 1167 | memorystatus_jetsam_policy |= kPolicyDiagnoseFirst; |
| 1168 | break; |
| 1169 | default: |
| 1170 | /* Already validated */ |
| 1171 | break; |
| 1172 | } |
| 1173 | |
| 1174 | memorystatus_update_levels_locked(FALSE); |
| 1175 | changed = TRUE; |
| 1176 | } |
| 1177 | |
| 1178 | proc_list_unlock(); |
| 1179 | |
| 1180 | if (changed) { |
| 1181 | printf("%s\n" , diagnosticStrings[val]); |
| 1182 | } |
| 1183 | |
| 1184 | return (0); |
| 1185 | } |
| 1186 | |
| 1187 | SYSCTL_PROC(_debug, OID_AUTO, jetsam_diagnostic_mode, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, |
| 1188 | &jetsam_diagnostic_mode, 0, sysctl_jetsam_diagnostic_mode, "I" , "Jetsam Diagnostic Mode" ); |
| 1189 | |
| 1190 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jetsam_policy_offset_pages_diagnostic, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jetsam_policy_offset_pages_diagnostic, 0, "" ); |
| 1191 | |
| 1192 | #if VM_PRESSURE_EVENTS |
| 1193 | |
| 1194 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, "" ); |
| 1195 | |
| 1196 | #endif /* VM_PRESSURE_EVENTS */ |
| 1197 | |
| 1198 | #endif /* CONFIG_JETSAM */ |
| 1199 | |
| 1200 | #if CONFIG_FREEZE |
| 1201 | |
| 1202 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_jetsam_band, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_jetsam_band, 0, "" ); |
| 1203 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_daily_mb_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_daily_mb_max, 0, "" ); |
| 1204 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_degraded_mode, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_degradation, 0, "" ); |
| 1205 | |
| 1206 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_threshold, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_threshold, 0, "" ); |
| 1207 | |
| 1208 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_min, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_min, 0, "" ); |
| 1209 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_max, 0, "" ); |
| 1210 | |
| 1211 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_refreeze_eligible_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_refreeze_eligible_count, 0, "" ); |
| 1212 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_processes_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_frozen_processes_max, 0, "" ); |
| 1213 | |
| 1214 | /* |
| 1215 | * Max. shared-anonymous memory in MB that can be held by frozen processes in the high jetsam band. |
| 1216 | * "0" means no limit. |
| 1217 | * Default is 10% of system-wide task limit. |
| 1218 | */ |
| 1219 | |
| 1220 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_frozen_shared_mb_max, 0, "" ); |
| 1221 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_frozen_shared_mb, 0, "" ); |
| 1222 | |
| 1223 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_shared_mb_per_process_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_shared_mb_per_process_max, 0, "" ); |
| 1224 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_private_shared_pages_ratio, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_private_shared_pages_ratio, 0, "" ); |
| 1225 | |
| 1226 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_min_processes, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_suspended_threshold, 0, "" ); |
| 1227 | |
| 1228 | /* |
| 1229 | * max. # of frozen process demotions we will allow in our daily cycle. |
| 1230 | */ |
| 1231 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_max_freeze_demotions_daily, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_max_frozen_demotions_daily, 0, "" ); |
| 1232 | /* |
| 1233 | * min # of thaws needed by a process to protect it from getting demoted into the IDLE band. |
| 1234 | */ |
| 1235 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_thaw_count_demotion_threshold, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_thaw_count_demotion_threshold, 0, "" ); |
| 1236 | |
| 1237 | boolean_t memorystatus_freeze_throttle_enabled = TRUE; |
| 1238 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_throttle_enabled, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_enabled, 0, "" ); |
| 1239 | |
| 1240 | #define VM_PAGES_FOR_ALL_PROCS (2) |
| 1241 | /* |
| 1242 | * Manual trigger of freeze and thaw for dev / debug kernels only. |
| 1243 | */ |
| 1244 | static int |
| 1245 | sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS |
| 1246 | { |
| 1247 | #pragma unused(arg1, arg2) |
| 1248 | int error, pid = 0; |
| 1249 | proc_t p; |
| 1250 | int freezer_error_code = 0; |
| 1251 | |
| 1252 | if (memorystatus_freeze_enabled == FALSE) { |
| 1253 | printf("sysctl_freeze: Freeze is DISABLED\n" ); |
| 1254 | return ENOTSUP; |
| 1255 | } |
| 1256 | |
| 1257 | error = sysctl_handle_int(oidp, &pid, 0, req); |
| 1258 | if (error || !req->newptr) |
| 1259 | return (error); |
| 1260 | |
| 1261 | if (pid == VM_PAGES_FOR_ALL_PROCS) { |
| 1262 | vm_pageout_anonymous_pages(); |
| 1263 | |
| 1264 | return 0; |
| 1265 | } |
| 1266 | |
| 1267 | lck_mtx_lock(&freezer_mutex); |
| 1268 | |
| 1269 | p = proc_find(pid); |
| 1270 | if (p != NULL) { |
| 1271 | uint32_t purgeable, wired, clean, dirty, shared; |
| 1272 | uint32_t max_pages = 0, state = 0; |
| 1273 | |
| 1274 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 1275 | /* |
| 1276 | * Freezer backed by the compressor and swap file(s) |
| 1277 | * will hold compressed data. |
| 1278 | * |
| 1279 | * We don't care about the global freezer budget or the process's (min/max) budget here. |
| 1280 | * The freeze sysctl is meant to force-freeze a process. |
| 1281 | * |
| 1282 | * We also don't update any global or process stats on this path, so that the jetsam/ freeze |
| 1283 | * logic remains unaffected. The tasks we're performing here are: freeze the process, set the |
| 1284 | * P_MEMSTAT_FROZEN bit, and elevate the process to a higher band (if the freezer is active). |
| 1285 | */ |
| 1286 | max_pages = memorystatus_freeze_pages_max; |
| 1287 | |
| 1288 | } else { |
| 1289 | /* |
| 1290 | * We only have the compressor without any swap. |
| 1291 | */ |
| 1292 | max_pages = UINT32_MAX - 1; |
| 1293 | } |
| 1294 | |
| 1295 | proc_list_lock(); |
| 1296 | state = p->p_memstat_state; |
| 1297 | proc_list_unlock(); |
| 1298 | |
| 1299 | /* |
| 1300 | * The jetsam path also verifies that the process is a suspended App. We don't care about that here. |
| 1301 | * We simply ensure that jetsam is not already working on the process and that the process has not |
| 1302 | * explicitly disabled freezing. |
| 1303 | */ |
| 1304 | if (state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED)) { |
| 1305 | printf("sysctl_freeze: p_memstat_state check failed, process is%s%s%s\n" , |
| 1306 | (state & P_MEMSTAT_TERMINATED) ? " terminated" : "" , |
| 1307 | (state & P_MEMSTAT_LOCKED) ? " locked" : "" , |
| 1308 | (state & P_MEMSTAT_FREEZE_DISABLED) ? " unfreezable" : "" ); |
| 1309 | |
| 1310 | proc_rele(p); |
| 1311 | lck_mtx_unlock(&freezer_mutex); |
| 1312 | return EPERM; |
| 1313 | } |
| 1314 | |
| 1315 | error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); |
| 1316 | |
| 1317 | if (error) { |
| 1318 | char reason[128]; |
| 1319 | if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { |
| 1320 | strlcpy(reason, "too much shared memory" , 128); |
| 1321 | } |
| 1322 | |
| 1323 | if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { |
| 1324 | strlcpy(reason, "low private-shared pages ratio" , 128); |
| 1325 | } |
| 1326 | |
| 1327 | if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { |
| 1328 | strlcpy(reason, "no compressor space" , 128); |
| 1329 | } |
| 1330 | |
| 1331 | if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { |
| 1332 | strlcpy(reason, "no swap space" , 128); |
| 1333 | } |
| 1334 | |
| 1335 | printf("sysctl_freeze: task_freeze failed: %s\n" , reason); |
| 1336 | |
| 1337 | if (error == KERN_NO_SPACE) { |
| 1338 | /* Make it easy to distinguish between failures due to low compressor/ swap space and other failures. */ |
| 1339 | error = ENOSPC; |
| 1340 | } else { |
| 1341 | error = EIO; |
| 1342 | } |
| 1343 | } else { |
| 1344 | proc_list_lock(); |
| 1345 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { |
| 1346 | p->p_memstat_state |= P_MEMSTAT_FROZEN; |
| 1347 | memorystatus_frozen_count++; |
| 1348 | } |
| 1349 | p->p_memstat_frozen_count++; |
| 1350 | |
| 1351 | |
| 1352 | proc_list_unlock(); |
| 1353 | |
| 1354 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 1355 | /* |
| 1356 | * We elevate only if we are going to swap out the data. |
| 1357 | */ |
| 1358 | error = memorystatus_update_inactive_jetsam_priority_band(pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, |
| 1359 | memorystatus_freeze_jetsam_band, TRUE); |
| 1360 | |
| 1361 | if (error) { |
| 1362 | printf("sysctl_freeze: Elevating frozen process to higher jetsam band failed with %d\n" , error); |
| 1363 | } |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | proc_rele(p); |
| 1368 | |
| 1369 | lck_mtx_unlock(&freezer_mutex); |
| 1370 | return error; |
| 1371 | } else { |
| 1372 | printf("sysctl_freeze: Invalid process\n" ); |
| 1373 | } |
| 1374 | |
| 1375 | |
| 1376 | lck_mtx_unlock(&freezer_mutex); |
| 1377 | return EINVAL; |
| 1378 | } |
| 1379 | |
| 1380 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_freeze, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 1381 | 0, 0, &sysctl_memorystatus_freeze, "I" , "" ); |
| 1382 | |
| 1383 | static int |
| 1384 | sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS |
| 1385 | { |
| 1386 | #pragma unused(arg1, arg2) |
| 1387 | |
| 1388 | int error, pid = 0; |
| 1389 | proc_t p; |
| 1390 | |
| 1391 | if (memorystatus_freeze_enabled == FALSE) { |
| 1392 | return ENOTSUP; |
| 1393 | } |
| 1394 | |
| 1395 | error = sysctl_handle_int(oidp, &pid, 0, req); |
| 1396 | if (error || !req->newptr) |
| 1397 | return (error); |
| 1398 | |
| 1399 | if (pid == VM_PAGES_FOR_ALL_PROCS) { |
| 1400 | do_fastwake_warmup_all(); |
| 1401 | return 0; |
| 1402 | } else { |
| 1403 | p = proc_find(pid); |
| 1404 | if (p != NULL) { |
| 1405 | error = task_thaw(p->task); |
| 1406 | |
| 1407 | if (error) { |
| 1408 | error = EIO; |
| 1409 | } else { |
| 1410 | /* |
| 1411 | * task_thaw() succeeded. |
| 1412 | * |
| 1413 | * We increment memorystatus_frozen_count on the sysctl freeze path. |
| 1414 | * And so we need the P_MEMSTAT_FROZEN to decrement the frozen count |
| 1415 | * when this process exits. |
| 1416 | * |
| 1417 | * proc_list_lock(); |
| 1418 | * p->p_memstat_state &= ~P_MEMSTAT_FROZEN; |
| 1419 | * proc_list_unlock(); |
| 1420 | */ |
| 1421 | } |
| 1422 | proc_rele(p); |
| 1423 | return error; |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | return EINVAL; |
| 1428 | } |
| 1429 | |
| 1430 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_thaw, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 1431 | 0, 0, &sysctl_memorystatus_available_pages_thaw, "I" , "" ); |
| 1432 | |
| 1433 | typedef struct _global_freezable_status{ |
| 1434 | boolean_t freeze_pages_threshold_crossed; |
| 1435 | boolean_t freeze_eligible_procs_available; |
| 1436 | boolean_t freeze_scheduled_in_future; |
| 1437 | }global_freezable_status_t; |
| 1438 | |
| 1439 | typedef struct _proc_freezable_status{ |
| 1440 | boolean_t freeze_has_memstat_state; |
| 1441 | boolean_t freeze_has_pages_min; |
| 1442 | int freeze_has_probability; |
| 1443 | boolean_t freeze_attempted; |
| 1444 | uint32_t p_memstat_state; |
| 1445 | uint32_t p_pages; |
| 1446 | int p_freeze_error_code; |
| 1447 | int p_pid; |
| 1448 | char p_name[MAXCOMLEN + 1]; |
| 1449 | }proc_freezable_status_t; |
| 1450 | |
| 1451 | #define MAX_FREEZABLE_PROCESSES 100 |
| 1452 | |
| 1453 | static int |
| 1454 | memorystatus_freezer_get_status(user_addr_t buffer, size_t buffer_size, int32_t *retval) |
| 1455 | { |
| 1456 | uint32_t proc_count = 0, i = 0; |
| 1457 | global_freezable_status_t *list_head; |
| 1458 | proc_freezable_status_t *list_entry; |
| 1459 | size_t list_size = 0; |
| 1460 | proc_t p; |
| 1461 | memstat_bucket_t *bucket; |
| 1462 | uint32_t state = 0, pages = 0, entry_count = 0; |
| 1463 | boolean_t try_freeze = TRUE; |
| 1464 | int error = 0, probability_of_use = 0; |
| 1465 | |
| 1466 | |
| 1467 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE == FALSE) { |
| 1468 | return ENOTSUP; |
| 1469 | } |
| 1470 | |
| 1471 | list_size = sizeof(global_freezable_status_t) + (sizeof(proc_freezable_status_t) * MAX_FREEZABLE_PROCESSES); |
| 1472 | |
| 1473 | if (buffer_size < list_size) { |
| 1474 | return EINVAL; |
| 1475 | } |
| 1476 | |
| 1477 | list_head = (global_freezable_status_t*)kalloc(list_size); |
| 1478 | if (list_head == NULL) { |
| 1479 | return ENOMEM; |
| 1480 | } |
| 1481 | |
| 1482 | memset(list_head, 0, list_size); |
| 1483 | |
| 1484 | list_size = sizeof(global_freezable_status_t); |
| 1485 | |
| 1486 | proc_list_lock(); |
| 1487 | |
| 1488 | uint64_t curr_time = mach_absolute_time(); |
| 1489 | |
| 1490 | list_head->freeze_pages_threshold_crossed = (memorystatus_available_pages < memorystatus_freeze_threshold); |
| 1491 | list_head->freeze_eligible_procs_available = ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold); |
| 1492 | list_head->freeze_scheduled_in_future = (curr_time < memorystatus_freezer_thread_next_run_ts); |
| 1493 | |
| 1494 | list_entry = (proc_freezable_status_t*) ((uintptr_t)list_head + sizeof(global_freezable_status_t)); |
| 1495 | |
| 1496 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
| 1497 | |
| 1498 | entry_count = (memorystatus_global_probabilities_size / sizeof(memorystatus_internal_probabilities_t)); |
| 1499 | |
| 1500 | p = memorystatus_get_first_proc_locked(&i, FALSE); |
| 1501 | proc_count++; |
| 1502 | |
| 1503 | while ((proc_count <= MAX_FREEZABLE_PROCESSES) && |
| 1504 | (p) && |
| 1505 | (list_size < buffer_size)) { |
| 1506 | |
| 1507 | if (isApp(p) == FALSE) { |
| 1508 | p = memorystatus_get_next_proc_locked(&i, p, FALSE); |
| 1509 | proc_count++; |
| 1510 | continue; |
| 1511 | } |
| 1512 | |
| 1513 | strlcpy(list_entry->p_name, p->p_name, MAXCOMLEN + 1); |
| 1514 | |
| 1515 | list_entry->p_pid = p->p_pid; |
| 1516 | |
| 1517 | state = p->p_memstat_state; |
| 1518 | |
| 1519 | if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED | P_MEMSTAT_FREEZE_IGNORE)) || |
| 1520 | !(state & P_MEMSTAT_SUSPENDED)) { |
| 1521 | |
| 1522 | try_freeze = list_entry->freeze_has_memstat_state = FALSE; |
| 1523 | } else { |
| 1524 | try_freeze = list_entry->freeze_has_memstat_state = TRUE; |
| 1525 | } |
| 1526 | |
| 1527 | list_entry->p_memstat_state = state; |
| 1528 | |
| 1529 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
| 1530 | if (pages < memorystatus_freeze_pages_min) { |
| 1531 | try_freeze = list_entry->freeze_has_pages_min = FALSE; |
| 1532 | } else { |
| 1533 | list_entry->freeze_has_pages_min = TRUE; |
| 1534 | if (try_freeze != FALSE) { |
| 1535 | try_freeze = TRUE; |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | list_entry->p_pages = pages; |
| 1540 | |
| 1541 | if (entry_count) { |
| 1542 | uint32_t j = 0; |
| 1543 | for (j = 0; j < entry_count; j++ ) { |
| 1544 | if (strncmp(memorystatus_global_probabilities_table[j].proc_name, |
| 1545 | p->p_name, |
| 1546 | MAXCOMLEN + 1) == 0) { |
| 1547 | |
| 1548 | probability_of_use = memorystatus_global_probabilities_table[j].use_probability; |
| 1549 | break; |
| 1550 | } |
| 1551 | } |
| 1552 | |
| 1553 | list_entry->freeze_has_probability = probability_of_use; |
| 1554 | |
| 1555 | if (probability_of_use && try_freeze != FALSE) { |
| 1556 | try_freeze = TRUE; |
| 1557 | } else { |
| 1558 | try_freeze = FALSE; |
| 1559 | } |
| 1560 | } else { |
| 1561 | if (try_freeze != FALSE) { |
| 1562 | try_freeze = TRUE; |
| 1563 | } |
| 1564 | list_entry->freeze_has_probability = -1; |
| 1565 | } |
| 1566 | |
| 1567 | if (try_freeze) { |
| 1568 | |
| 1569 | uint32_t purgeable, wired, clean, dirty, shared; |
| 1570 | uint32_t max_pages = 0; |
| 1571 | int freezer_error_code = 0; |
| 1572 | |
| 1573 | error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, TRUE /* eval only */); |
| 1574 | |
| 1575 | if (error) { |
| 1576 | list_entry->p_freeze_error_code = freezer_error_code; |
| 1577 | } |
| 1578 | |
| 1579 | list_entry->freeze_attempted = TRUE; |
| 1580 | } |
| 1581 | |
| 1582 | list_entry++; |
| 1583 | |
| 1584 | list_size += sizeof(proc_freezable_status_t); |
| 1585 | |
| 1586 | p = memorystatus_get_next_proc_locked(&i, p, FALSE); |
| 1587 | proc_count++; |
| 1588 | } |
| 1589 | |
| 1590 | proc_list_unlock(); |
| 1591 | |
| 1592 | buffer_size = list_size; |
| 1593 | |
| 1594 | error = copyout(list_head, buffer, buffer_size); |
| 1595 | if (error == 0) { |
| 1596 | *retval = buffer_size; |
| 1597 | } else { |
| 1598 | *retval = 0; |
| 1599 | } |
| 1600 | |
| 1601 | list_size = sizeof(global_freezable_status_t) + (sizeof(proc_freezable_status_t) * MAX_FREEZABLE_PROCESSES); |
| 1602 | kfree(list_head, list_size); |
| 1603 | |
| 1604 | MEMORYSTATUS_DEBUG(1, "memorystatus_freezer_get_status: returning %d (%lu - size)\n" , error, (unsigned long)*list_size); |
| 1605 | |
| 1606 | return error; |
| 1607 | } |
| 1608 | |
| 1609 | static int |
| 1610 | memorystatus_freezer_control(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) |
| 1611 | { |
| 1612 | int err = ENOTSUP; |
| 1613 | |
| 1614 | if (flags == FREEZER_CONTROL_GET_STATUS) { |
| 1615 | err = memorystatus_freezer_get_status(buffer, buffer_size, retval); |
| 1616 | } |
| 1617 | |
| 1618 | return err; |
| 1619 | } |
| 1620 | |
| 1621 | #endif /* CONFIG_FREEZE */ |
| 1622 | |
| 1623 | #endif /* DEVELOPMENT || DEBUG */ |
| 1624 | |
| 1625 | extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation, |
| 1626 | void *parameter, |
| 1627 | integer_t priority, |
| 1628 | thread_t *new_thread); |
| 1629 | |
| 1630 | #if DEVELOPMENT || DEBUG |
| 1631 | |
| 1632 | static int |
| 1633 | sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS |
| 1634 | { |
| 1635 | #pragma unused(arg1, arg2) |
| 1636 | int error = 0, pid = 0; |
| 1637 | proc_t p; |
| 1638 | |
| 1639 | error = sysctl_handle_int(oidp, &pid, 0, req); |
| 1640 | if (error || !req->newptr) |
| 1641 | return (error); |
| 1642 | |
| 1643 | lck_mtx_lock(&disconnect_page_mappings_mutex); |
| 1644 | |
| 1645 | if (pid == -1) { |
| 1646 | vm_pageout_disconnect_all_pages(); |
| 1647 | } else { |
| 1648 | p = proc_find(pid); |
| 1649 | |
| 1650 | if (p != NULL) { |
| 1651 | error = task_disconnect_page_mappings(p->task); |
| 1652 | |
| 1653 | proc_rele(p); |
| 1654 | |
| 1655 | if (error) |
| 1656 | error = EIO; |
| 1657 | } else |
| 1658 | error = EINVAL; |
| 1659 | } |
| 1660 | lck_mtx_unlock(&disconnect_page_mappings_mutex); |
| 1661 | |
| 1662 | return error; |
| 1663 | } |
| 1664 | |
| 1665 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_disconnect_page_mappings, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 1666 | 0, 0, &sysctl_memorystatus_disconnect_page_mappings, "I" , "" ); |
| 1667 | |
| 1668 | #endif /* DEVELOPMENT || DEBUG */ |
| 1669 | |
| 1670 | |
| 1671 | /* |
| 1672 | * Picks the sorting routine for a given jetsam priority band. |
| 1673 | * |
| 1674 | * Input: |
| 1675 | * bucket_index - jetsam priority band to be sorted. |
| 1676 | * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h |
| 1677 | * Currently sort_order is only meaningful when handling |
| 1678 | * coalitions. |
| 1679 | * |
| 1680 | * Return: |
| 1681 | * 0 on success |
| 1682 | * non-0 on failure |
| 1683 | */ |
| 1684 | static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order) |
| 1685 | { |
| 1686 | int coal_sort_order; |
| 1687 | |
| 1688 | /* |
| 1689 | * Verify the jetsam priority |
| 1690 | */ |
| 1691 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
| 1692 | return(EINVAL); |
| 1693 | } |
| 1694 | |
| 1695 | #if DEVELOPMENT || DEBUG |
| 1696 | if (sort_order == JETSAM_SORT_DEFAULT) { |
| 1697 | coal_sort_order = COALITION_SORT_DEFAULT; |
| 1698 | } else { |
| 1699 | coal_sort_order = sort_order; /* only used for testing scenarios */ |
| 1700 | } |
| 1701 | #else |
| 1702 | /* Verify default */ |
| 1703 | if (sort_order == JETSAM_SORT_DEFAULT) { |
| 1704 | coal_sort_order = COALITION_SORT_DEFAULT; |
| 1705 | } else { |
| 1706 | return(EINVAL); |
| 1707 | } |
| 1708 | #endif |
| 1709 | |
| 1710 | proc_list_lock(); |
| 1711 | |
| 1712 | if (memstat_bucket[bucket_index].count == 0) { |
| 1713 | proc_list_unlock(); |
| 1714 | return (0); |
| 1715 | } |
| 1716 | |
| 1717 | switch (bucket_index) { |
| 1718 | case JETSAM_PRIORITY_FOREGROUND: |
| 1719 | if (memorystatus_sort_by_largest_coalition_locked(bucket_index, coal_sort_order) == 0) { |
| 1720 | /* |
| 1721 | * Fall back to per process sorting when zero coalitions are found. |
| 1722 | */ |
| 1723 | memorystatus_sort_by_largest_process_locked(bucket_index); |
| 1724 | } |
| 1725 | break; |
| 1726 | default: |
| 1727 | memorystatus_sort_by_largest_process_locked(bucket_index); |
| 1728 | break; |
| 1729 | } |
| 1730 | proc_list_unlock(); |
| 1731 | |
| 1732 | return(0); |
| 1733 | } |
| 1734 | |
| 1735 | /* |
| 1736 | * Sort processes by size for a single jetsam bucket. |
| 1737 | */ |
| 1738 | |
| 1739 | static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index) |
| 1740 | { |
| 1741 | proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL; |
| 1742 | proc_t next_p = NULL, prev_max_proc = NULL; |
| 1743 | uint32_t pages = 0, max_pages = 0; |
| 1744 | memstat_bucket_t *current_bucket; |
| 1745 | |
| 1746 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
| 1747 | return; |
| 1748 | } |
| 1749 | |
| 1750 | current_bucket = &memstat_bucket[bucket_index]; |
| 1751 | |
| 1752 | p = TAILQ_FIRST(¤t_bucket->list); |
| 1753 | |
| 1754 | while (p) { |
| 1755 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
| 1756 | max_pages = pages; |
| 1757 | max_proc = p; |
| 1758 | prev_max_proc = p; |
| 1759 | |
| 1760 | while ((next_p = TAILQ_NEXT(p, p_memstat_list)) != NULL) { |
| 1761 | /* traversing list until we find next largest process */ |
| 1762 | p=next_p; |
| 1763 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
| 1764 | if (pages > max_pages) { |
| 1765 | max_pages = pages; |
| 1766 | max_proc = p; |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | if (prev_max_proc != max_proc) { |
| 1771 | /* found a larger process, place it in the list */ |
| 1772 | TAILQ_REMOVE(¤t_bucket->list, max_proc, p_memstat_list); |
| 1773 | if (insert_after_proc == NULL) { |
| 1774 | TAILQ_INSERT_HEAD(¤t_bucket->list, max_proc, p_memstat_list); |
| 1775 | } else { |
| 1776 | TAILQ_INSERT_AFTER(¤t_bucket->list, insert_after_proc, max_proc, p_memstat_list); |
| 1777 | } |
| 1778 | prev_max_proc = max_proc; |
| 1779 | } |
| 1780 | |
| 1781 | insert_after_proc = max_proc; |
| 1782 | |
| 1783 | p = TAILQ_NEXT(max_proc, p_memstat_list); |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search) { |
| 1788 | memstat_bucket_t *current_bucket; |
| 1789 | proc_t next_p; |
| 1790 | |
| 1791 | if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) { |
| 1792 | return NULL; |
| 1793 | } |
| 1794 | |
| 1795 | current_bucket = &memstat_bucket[*bucket_index]; |
| 1796 | next_p = TAILQ_FIRST(¤t_bucket->list); |
| 1797 | if (!next_p && search) { |
| 1798 | while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { |
| 1799 | current_bucket = &memstat_bucket[*bucket_index]; |
| 1800 | next_p = TAILQ_FIRST(¤t_bucket->list); |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | return next_p; |
| 1805 | } |
| 1806 | |
| 1807 | static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search) { |
| 1808 | memstat_bucket_t *current_bucket; |
| 1809 | proc_t next_p; |
| 1810 | |
| 1811 | if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) { |
| 1812 | return NULL; |
| 1813 | } |
| 1814 | |
| 1815 | next_p = TAILQ_NEXT(p, p_memstat_list); |
| 1816 | while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) { |
| 1817 | current_bucket = &memstat_bucket[*bucket_index]; |
| 1818 | next_p = TAILQ_FIRST(¤t_bucket->list); |
| 1819 | } |
| 1820 | |
| 1821 | return next_p; |
| 1822 | } |
| 1823 | |
| 1824 | /* |
| 1825 | * Structure to hold state for a jetsam thread. |
| 1826 | * Typically there should be a single jetsam thread |
| 1827 | * unless parallel jetsam is enabled. |
| 1828 | */ |
| 1829 | struct jetsam_thread_state { |
| 1830 | boolean_t inited; /* if the thread is initialized */ |
| 1831 | int memorystatus_wakeup; /* wake channel */ |
| 1832 | int index; /* jetsam thread index */ |
| 1833 | thread_t thread; /* jetsam thread pointer */ |
| 1834 | } *jetsam_threads; |
| 1835 | |
| 1836 | /* Maximum number of jetsam threads allowed */ |
| 1837 | #define JETSAM_THREADS_LIMIT 3 |
| 1838 | |
| 1839 | /* Number of active jetsam threads */ |
| 1840 | _Atomic int active_jetsam_threads = 1; |
| 1841 | |
| 1842 | /* Number of maximum jetsam threads configured */ |
| 1843 | int max_jetsam_threads = JETSAM_THREADS_LIMIT; |
| 1844 | |
| 1845 | /* |
| 1846 | * Global switch for enabling fast jetsam. Fast jetsam is |
| 1847 | * hooked up via the system_override() system call. It has the |
| 1848 | * following effects: |
| 1849 | * - Raise the jetsam threshold ("clear-the-deck") |
| 1850 | * - Enabled parallel jetsam on eligible devices |
| 1851 | */ |
| 1852 | int fast_jetsam_enabled = 0; |
| 1853 | |
| 1854 | /* Routine to find the jetsam state structure for the current jetsam thread */ |
| 1855 | static inline struct jetsam_thread_state * |
| 1856 | jetsam_current_thread(void) |
| 1857 | { |
| 1858 | for (int thr_id = 0; thr_id < max_jetsam_threads; thr_id++) { |
| 1859 | if (jetsam_threads[thr_id].thread == current_thread()) |
| 1860 | return &(jetsam_threads[thr_id]); |
| 1861 | } |
| 1862 | panic("jetsam_current_thread() is being called from a non-jetsam thread\n" ); |
| 1863 | /* Contol should not reach here */ |
| 1864 | return NULL; |
| 1865 | } |
| 1866 | |
| 1867 | |
| 1868 | __private_extern__ void |
| 1869 | memorystatus_init(void) |
| 1870 | { |
| 1871 | kern_return_t result; |
| 1872 | int i; |
| 1873 | |
| 1874 | #if CONFIG_FREEZE |
| 1875 | memorystatus_freeze_jetsam_band = JETSAM_PRIORITY_UI_SUPPORT; |
| 1876 | memorystatus_frozen_processes_max = FREEZE_PROCESSES_MAX; |
| 1877 | memorystatus_frozen_shared_mb_max = ((MAX_FROZEN_SHARED_MB_PERCENT * max_task_footprint_mb) / 100); /* 10% of the system wide task limit */ |
| 1878 | memorystatus_freeze_shared_mb_per_process_max = (memorystatus_frozen_shared_mb_max / 4); |
| 1879 | memorystatus_freeze_pages_min = FREEZE_PAGES_MIN; |
| 1880 | memorystatus_freeze_pages_max = FREEZE_PAGES_MAX; |
| 1881 | memorystatus_max_frozen_demotions_daily = MAX_FROZEN_PROCESS_DEMOTIONS; |
| 1882 | memorystatus_thaw_count_demotion_threshold = MIN_THAW_DEMOTION_THRESHOLD; |
| 1883 | #endif |
| 1884 | |
| 1885 | #if DEVELOPMENT || DEBUG |
| 1886 | disconnect_page_mappings_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 1887 | disconnect_page_mappings_lck_grp = lck_grp_alloc_init("disconnect_page_mappings" , disconnect_page_mappings_lck_grp_attr); |
| 1888 | |
| 1889 | lck_mtx_init(&disconnect_page_mappings_mutex, disconnect_page_mappings_lck_grp, NULL); |
| 1890 | |
| 1891 | if (kill_on_no_paging_space == TRUE) { |
| 1892 | max_kill_priority = JETSAM_PRIORITY_MAX; |
| 1893 | } |
| 1894 | #endif |
| 1895 | |
| 1896 | |
| 1897 | /* Init buckets */ |
| 1898 | for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) { |
| 1899 | TAILQ_INIT(&memstat_bucket[i].list); |
| 1900 | memstat_bucket[i].count = 0; |
| 1901 | } |
| 1902 | memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL); |
| 1903 | |
| 1904 | #if CONFIG_JETSAM |
| 1905 | nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time); |
| 1906 | nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time); |
| 1907 | |
| 1908 | /* Apply overrides */ |
| 1909 | PE_get_default("kern.jetsam_delta" , &delta_percentage, sizeof(delta_percentage)); |
| 1910 | if (delta_percentage == 0) { |
| 1911 | delta_percentage = 5; |
| 1912 | } |
| 1913 | assert(delta_percentage < 100); |
| 1914 | PE_get_default("kern.jetsam_critical_threshold" , &critical_threshold_percentage, sizeof(critical_threshold_percentage)); |
| 1915 | assert(critical_threshold_percentage < 100); |
| 1916 | PE_get_default("kern.jetsam_idle_offset" , &idle_offset_percentage, sizeof(idle_offset_percentage)); |
| 1917 | assert(idle_offset_percentage < 100); |
| 1918 | PE_get_default("kern.jetsam_pressure_threshold" , &pressure_threshold_percentage, sizeof(pressure_threshold_percentage)); |
| 1919 | assert(pressure_threshold_percentage < 100); |
| 1920 | PE_get_default("kern.jetsam_freeze_threshold" , &freeze_threshold_percentage, sizeof(freeze_threshold_percentage)); |
| 1921 | assert(freeze_threshold_percentage < 100); |
| 1922 | |
| 1923 | if (!PE_parse_boot_argn("jetsam_aging_policy" , &jetsam_aging_policy, |
| 1924 | sizeof (jetsam_aging_policy))) { |
| 1925 | |
| 1926 | if (!PE_get_default("kern.jetsam_aging_policy" , &jetsam_aging_policy, |
| 1927 | sizeof(jetsam_aging_policy))) { |
| 1928 | |
| 1929 | jetsam_aging_policy = kJetsamAgingPolicyLegacy; |
| 1930 | } |
| 1931 | } |
| 1932 | |
| 1933 | if (jetsam_aging_policy > kJetsamAgingPolicyMax) { |
| 1934 | jetsam_aging_policy = kJetsamAgingPolicyLegacy; |
| 1935 | } |
| 1936 | |
| 1937 | switch (jetsam_aging_policy) { |
| 1938 | |
| 1939 | case kJetsamAgingPolicyNone: |
| 1940 | system_procs_aging_band = JETSAM_PRIORITY_IDLE; |
| 1941 | applications_aging_band = JETSAM_PRIORITY_IDLE; |
| 1942 | break; |
| 1943 | |
| 1944 | case kJetsamAgingPolicyLegacy: |
| 1945 | /* |
| 1946 | * Legacy behavior where some daemons get a 10s protection once |
| 1947 | * AND only before the first clean->dirty->clean transition before |
| 1948 | * going into IDLE band. |
| 1949 | */ |
| 1950 | system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
| 1951 | applications_aging_band = JETSAM_PRIORITY_IDLE; |
| 1952 | break; |
| 1953 | |
| 1954 | case kJetsamAgingPolicySysProcsReclaimedFirst: |
| 1955 | system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
| 1956 | applications_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
| 1957 | break; |
| 1958 | |
| 1959 | case kJetsamAgingPolicyAppsReclaimedFirst: |
| 1960 | system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2; |
| 1961 | applications_aging_band = JETSAM_PRIORITY_AGING_BAND1; |
| 1962 | break; |
| 1963 | |
| 1964 | default: |
| 1965 | break; |
| 1966 | } |
| 1967 | |
| 1968 | /* |
| 1969 | * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE |
| 1970 | * band and must be below it in priority. This is so that we don't have to make |
| 1971 | * our 'aging' code worry about a mix of processes, some of which need to age |
| 1972 | * and some others that need to stay elevated in the jetsam bands. |
| 1973 | */ |
| 1974 | assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > system_procs_aging_band); |
| 1975 | assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > applications_aging_band); |
| 1976 | |
| 1977 | /* Take snapshots for idle-exit kills by default? First check the boot-arg... */ |
| 1978 | if (!PE_parse_boot_argn("jetsam_idle_snapshot" , &memorystatus_idle_snapshot, sizeof (memorystatus_idle_snapshot))) { |
| 1979 | /* ...no boot-arg, so check the device tree */ |
| 1980 | PE_get_default("kern.jetsam_idle_snapshot" , &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot)); |
| 1981 | } |
| 1982 | |
| 1983 | memorystatus_delta = delta_percentage * atop_64(max_mem) / 100; |
| 1984 | memorystatus_available_pages_critical_idle_offset = idle_offset_percentage * atop_64(max_mem) / 100; |
| 1985 | memorystatus_available_pages_critical_base = (critical_threshold_percentage / delta_percentage) * memorystatus_delta; |
| 1986 | memorystatus_policy_more_free_offset_pages = (policy_more_free_offset_percentage / delta_percentage) * memorystatus_delta; |
| 1987 | |
| 1988 | /* Jetsam Loop Detection */ |
| 1989 | if (max_mem <= (512 * 1024 * 1024)) { |
| 1990 | /* 512 MB devices */ |
| 1991 | memorystatus_jld_eval_period_msecs = 8000; /* 8000 msecs == 8 second window */ |
| 1992 | } else { |
| 1993 | /* 1GB and larger devices */ |
| 1994 | memorystatus_jld_eval_period_msecs = 6000; /* 6000 msecs == 6 second window */ |
| 1995 | } |
| 1996 | |
| 1997 | memorystatus_jld_enabled = TRUE; |
| 1998 | |
| 1999 | /* No contention at this point */ |
| 2000 | memorystatus_update_levels_locked(FALSE); |
| 2001 | |
| 2002 | #endif /* CONFIG_JETSAM */ |
| 2003 | |
| 2004 | memorystatus_jetsam_snapshot_max = maxproc; |
| 2005 | |
| 2006 | memorystatus_jetsam_snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
| 2007 | (sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max); |
| 2008 | |
| 2009 | memorystatus_jetsam_snapshot = |
| 2010 | (memorystatus_jetsam_snapshot_t*)kalloc(memorystatus_jetsam_snapshot_size); |
| 2011 | if (!memorystatus_jetsam_snapshot) { |
| 2012 | panic("Could not allocate memorystatus_jetsam_snapshot" ); |
| 2013 | } |
| 2014 | |
| 2015 | memorystatus_jetsam_snapshot_copy = |
| 2016 | (memorystatus_jetsam_snapshot_t*)kalloc(memorystatus_jetsam_snapshot_size); |
| 2017 | if (!memorystatus_jetsam_snapshot_copy) { |
| 2018 | panic("Could not allocate memorystatus_jetsam_snapshot_copy" ); |
| 2019 | } |
| 2020 | |
| 2021 | nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS * NSEC_PER_SEC, &memorystatus_jetsam_snapshot_timeout); |
| 2022 | |
| 2023 | memset(&memorystatus_at_boot_snapshot, 0, sizeof(memorystatus_jetsam_snapshot_t)); |
| 2024 | |
| 2025 | #if CONFIG_FREEZE |
| 2026 | memorystatus_freeze_threshold = (freeze_threshold_percentage / delta_percentage) * memorystatus_delta; |
| 2027 | #endif |
| 2028 | |
| 2029 | /* Check the boot-arg to see if fast jetsam is allowed */ |
| 2030 | if (!PE_parse_boot_argn("fast_jetsam_enabled" , &fast_jetsam_enabled, sizeof (fast_jetsam_enabled))) { |
| 2031 | fast_jetsam_enabled = 0; |
| 2032 | } |
| 2033 | |
| 2034 | /* Check the boot-arg to configure the maximum number of jetsam threads */ |
| 2035 | if (!PE_parse_boot_argn("max_jetsam_threads" , &max_jetsam_threads, sizeof (max_jetsam_threads))) { |
| 2036 | max_jetsam_threads = JETSAM_THREADS_LIMIT; |
| 2037 | } |
| 2038 | |
| 2039 | /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */ |
| 2040 | if (max_jetsam_threads > JETSAM_THREADS_LIMIT) { |
| 2041 | max_jetsam_threads = JETSAM_THREADS_LIMIT; |
| 2042 | } |
| 2043 | |
| 2044 | /* For low CPU systems disable fast jetsam mechanism */ |
| 2045 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { |
| 2046 | max_jetsam_threads = 1; |
| 2047 | fast_jetsam_enabled = 0; |
| 2048 | } |
| 2049 | |
| 2050 | /* Initialize the jetsam_threads state array */ |
| 2051 | jetsam_threads = kalloc(sizeof(struct jetsam_thread_state) * max_jetsam_threads); |
| 2052 | |
| 2053 | /* Initialize all the jetsam threads */ |
| 2054 | for (i = 0; i < max_jetsam_threads; i++) { |
| 2055 | |
| 2056 | result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &jetsam_threads[i].thread); |
| 2057 | if (result == KERN_SUCCESS) { |
| 2058 | jetsam_threads[i].inited = FALSE; |
| 2059 | jetsam_threads[i].index = i; |
| 2060 | thread_deallocate(jetsam_threads[i].thread); |
| 2061 | } else { |
| 2062 | panic("Could not create memorystatus_thread %d" , i); |
| 2063 | } |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | /* Centralised for the purposes of allowing panic-on-jetsam */ |
| 2068 | extern void |
| 2069 | vm_run_compactor(void); |
| 2070 | |
| 2071 | /* |
| 2072 | * The jetsam no frills kill call |
| 2073 | * Return: 0 on success |
| 2074 | * error code on failure (EINVAL...) |
| 2075 | */ |
| 2076 | static int |
| 2077 | jetsam_do_kill(proc_t p, int jetsam_flags, os_reason_t jetsam_reason) { |
| 2078 | int error = 0; |
| 2079 | error = exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags, jetsam_reason); |
| 2080 | return(error); |
| 2081 | } |
| 2082 | |
| 2083 | /* |
| 2084 | * Wrapper for processes exiting with memorystatus details |
| 2085 | */ |
| 2086 | static boolean_t |
| 2087 | memorystatus_do_kill(proc_t p, uint32_t cause, os_reason_t jetsam_reason) { |
| 2088 | |
| 2089 | int error = 0; |
| 2090 | __unused pid_t victim_pid = p->p_pid; |
| 2091 | |
| 2092 | KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_START, |
| 2093 | victim_pid, cause, vm_page_free_count, 0, 0); |
| 2094 | |
| 2095 | DTRACE_MEMORYSTATUS3(memorystatus_do_kill, proc_t, p, os_reason_t, jetsam_reason, uint32_t, cause); |
| 2096 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
| 2097 | if (memorystatus_jetsam_panic_debug & (1 << cause)) { |
| 2098 | panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)" , cause); |
| 2099 | } |
| 2100 | #else |
| 2101 | #pragma unused(cause) |
| 2102 | #endif |
| 2103 | |
| 2104 | if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) { |
| 2105 | printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n" , p->p_pid, |
| 2106 | (*p->p_name ? p->p_name : "unknown" ), |
| 2107 | memorystatus_priority_band_name(p->p_memstat_effectivepriority), p->p_memstat_effectivepriority, |
| 2108 | (uint64_t)memorystatus_available_pages); |
| 2109 | } |
| 2110 | |
| 2111 | /* |
| 2112 | * The jetsam_reason (os_reason_t) has enough information about the kill cause. |
| 2113 | * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped. |
| 2114 | */ |
| 2115 | int jetsam_flags = P_LTERM_JETSAM; |
| 2116 | switch (cause) { |
| 2117 | case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break; |
| 2118 | case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break; |
| 2119 | case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break; |
| 2120 | case kMemorystatusKilledVMCompressorThrashing: |
| 2121 | case kMemorystatusKilledVMCompressorSpaceShortage: jetsam_flags |= P_JETSAM_VMTHRASHING; break; |
| 2122 | case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break; |
| 2123 | case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break; |
| 2124 | case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break; |
| 2125 | } |
| 2126 | error = jetsam_do_kill(p, jetsam_flags, jetsam_reason); |
| 2127 | |
| 2128 | KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_END, |
| 2129 | victim_pid, cause, vm_page_free_count, error, 0); |
| 2130 | |
| 2131 | vm_run_compactor(); |
| 2132 | |
| 2133 | return (error == 0); |
| 2134 | } |
| 2135 | |
| 2136 | /* |
| 2137 | * Node manipulation |
| 2138 | */ |
| 2139 | |
| 2140 | static void |
| 2141 | memorystatus_check_levels_locked(void) { |
| 2142 | #if CONFIG_JETSAM |
| 2143 | /* Update levels */ |
| 2144 | memorystatus_update_levels_locked(TRUE); |
| 2145 | #else /* CONFIG_JETSAM */ |
| 2146 | /* |
| 2147 | * Nothing to do here currently since we update |
| 2148 | * memorystatus_available_pages in vm_pressure_response. |
| 2149 | */ |
| 2150 | #endif /* CONFIG_JETSAM */ |
| 2151 | } |
| 2152 | |
| 2153 | /* |
| 2154 | * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work. |
| 2155 | * For an application: that means no longer in the FG band |
| 2156 | * For a daemon: that means no longer in its 'requested' jetsam priority band |
| 2157 | */ |
| 2158 | |
| 2159 | int |
| 2160 | memorystatus_update_inactive_jetsam_priority_band(pid_t pid, uint32_t op_flags, int jetsam_prio, boolean_t effective_now) |
| 2161 | { |
| 2162 | int error = 0; |
| 2163 | boolean_t enable = FALSE; |
| 2164 | proc_t p = NULL; |
| 2165 | |
| 2166 | if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE) { |
| 2167 | enable = TRUE; |
| 2168 | } else if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE) { |
| 2169 | enable = FALSE; |
| 2170 | } else { |
| 2171 | return EINVAL; |
| 2172 | } |
| 2173 | |
| 2174 | p = proc_find(pid); |
| 2175 | if (p != NULL) { |
| 2176 | |
| 2177 | if ((enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) || |
| 2178 | (!enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == 0))) { |
| 2179 | /* |
| 2180 | * No change in state. |
| 2181 | */ |
| 2182 | |
| 2183 | } else { |
| 2184 | |
| 2185 | proc_list_lock(); |
| 2186 | |
| 2187 | if (enable) { |
| 2188 | p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
| 2189 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 2190 | |
| 2191 | if (effective_now) { |
| 2192 | if (p->p_memstat_effectivepriority < jetsam_prio) { |
| 2193 | if(memorystatus_highwater_enabled) { |
| 2194 | /* |
| 2195 | * Process is about to transition from |
| 2196 | * inactive --> active |
| 2197 | * assign active state |
| 2198 | */ |
| 2199 | boolean_t is_fatal; |
| 2200 | boolean_t use_active = TRUE; |
| 2201 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 2202 | task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal); |
| 2203 | } |
| 2204 | memorystatus_update_priority_locked(p, jetsam_prio, FALSE, FALSE); |
| 2205 | } |
| 2206 | } else { |
| 2207 | if (isProcessInAgingBands(p)) { |
| 2208 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
| 2209 | } |
| 2210 | } |
| 2211 | } else { |
| 2212 | |
| 2213 | p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
| 2214 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 2215 | |
| 2216 | if (effective_now) { |
| 2217 | if (p->p_memstat_effectivepriority == jetsam_prio) { |
| 2218 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
| 2219 | } |
| 2220 | } else { |
| 2221 | if (isProcessInAgingBands(p)) { |
| 2222 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
| 2223 | } |
| 2224 | } |
| 2225 | } |
| 2226 | |
| 2227 | proc_list_unlock(); |
| 2228 | } |
| 2229 | proc_rele(p); |
| 2230 | error = 0; |
| 2231 | |
| 2232 | } else { |
| 2233 | error = ESRCH; |
| 2234 | } |
| 2235 | |
| 2236 | return error; |
| 2237 | } |
| 2238 | |
| 2239 | static void |
| 2240 | memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2) |
| 2241 | { |
| 2242 | proc_t p; |
| 2243 | uint64_t current_time = 0, idle_delay_time = 0; |
| 2244 | int demote_prio_band = 0; |
| 2245 | memstat_bucket_t *demotion_bucket; |
| 2246 | |
| 2247 | MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n" ); |
| 2248 | |
| 2249 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 2250 | |
| 2251 | current_time = mach_absolute_time(); |
| 2252 | |
| 2253 | proc_list_lock(); |
| 2254 | |
| 2255 | demote_prio_band = JETSAM_PRIORITY_IDLE + 1; |
| 2256 | |
| 2257 | for (; demote_prio_band < JETSAM_PRIORITY_MAX; demote_prio_band++) { |
| 2258 | |
| 2259 | if (demote_prio_band != system_procs_aging_band && demote_prio_band != applications_aging_band) |
| 2260 | continue; |
| 2261 | |
| 2262 | demotion_bucket = &memstat_bucket[demote_prio_band]; |
| 2263 | p = TAILQ_FIRST(&demotion_bucket->list); |
| 2264 | |
| 2265 | while (p) { |
| 2266 | MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n" , p->p_pid); |
| 2267 | |
| 2268 | assert(p->p_memstat_idledeadline); |
| 2269 | |
| 2270 | assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS); |
| 2271 | |
| 2272 | if (current_time >= p->p_memstat_idledeadline) { |
| 2273 | |
| 2274 | if ((isSysProc(p) && |
| 2275 | ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) != P_DIRTY_IDLE_EXIT_ENABLED)) || /* system proc marked dirty*/ |
| 2276 | task_has_assertions((struct task *)(p->task))) { /* has outstanding assertions which might indicate outstanding work too */ |
| 2277 | idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time; |
| 2278 | |
| 2279 | p->p_memstat_idledeadline += idle_delay_time; |
| 2280 | p = TAILQ_NEXT(p, p_memstat_list); |
| 2281 | |
| 2282 | } else { |
| 2283 | |
| 2284 | proc_t next_proc = NULL; |
| 2285 | |
| 2286 | next_proc = TAILQ_NEXT(p, p_memstat_list); |
| 2287 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 2288 | |
| 2289 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false, true); |
| 2290 | |
| 2291 | p = next_proc; |
| 2292 | continue; |
| 2293 | |
| 2294 | } |
| 2295 | } else { |
| 2296 | // No further candidates |
| 2297 | break; |
| 2298 | } |
| 2299 | } |
| 2300 | |
| 2301 | } |
| 2302 | |
| 2303 | memorystatus_reschedule_idle_demotion_locked(); |
| 2304 | |
| 2305 | proc_list_unlock(); |
| 2306 | |
| 2307 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 2308 | } |
| 2309 | |
| 2310 | static void |
| 2311 | memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state) |
| 2312 | { |
| 2313 | boolean_t present_in_sysprocs_aging_bucket = FALSE; |
| 2314 | boolean_t present_in_apps_aging_bucket = FALSE; |
| 2315 | uint64_t idle_delay_time = 0; |
| 2316 | |
| 2317 | if (jetsam_aging_policy == kJetsamAgingPolicyNone) { |
| 2318 | return; |
| 2319 | } |
| 2320 | |
| 2321 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
| 2322 | /* |
| 2323 | * This process isn't going to be making the trip to the lower bands. |
| 2324 | */ |
| 2325 | return; |
| 2326 | } |
| 2327 | |
| 2328 | if (isProcessInAgingBands(p)){ |
| 2329 | |
| 2330 | if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) { |
| 2331 | assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) != P_DIRTY_AGING_IN_PROGRESS); |
| 2332 | } |
| 2333 | |
| 2334 | if (isSysProc(p) && system_procs_aging_band) { |
| 2335 | present_in_sysprocs_aging_bucket = TRUE; |
| 2336 | |
| 2337 | } else if (isApp(p) && applications_aging_band) { |
| 2338 | present_in_apps_aging_bucket = TRUE; |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | assert(!present_in_sysprocs_aging_bucket); |
| 2343 | assert(!present_in_apps_aging_bucket); |
| 2344 | |
| 2345 | MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n" , |
| 2346 | p->p_pid, p->p_memstat_dirty, set_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)); |
| 2347 | |
| 2348 | if(isSysProc(p)) { |
| 2349 | assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED); |
| 2350 | } |
| 2351 | |
| 2352 | idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time; |
| 2353 | |
| 2354 | if (set_state) { |
| 2355 | p->p_memstat_dirty |= P_DIRTY_AGING_IN_PROGRESS; |
| 2356 | p->p_memstat_idledeadline = mach_absolute_time() + idle_delay_time; |
| 2357 | } |
| 2358 | |
| 2359 | assert(p->p_memstat_idledeadline); |
| 2360 | |
| 2361 | if (isSysProc(p) && present_in_sysprocs_aging_bucket == FALSE) { |
| 2362 | memorystatus_scheduled_idle_demotions_sysprocs++; |
| 2363 | |
| 2364 | } else if (isApp(p) && present_in_apps_aging_bucket == FALSE) { |
| 2365 | memorystatus_scheduled_idle_demotions_apps++; |
| 2366 | } |
| 2367 | } |
| 2368 | |
| 2369 | static void |
| 2370 | memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state) |
| 2371 | { |
| 2372 | boolean_t present_in_sysprocs_aging_bucket = FALSE; |
| 2373 | boolean_t present_in_apps_aging_bucket = FALSE; |
| 2374 | |
| 2375 | if (!system_procs_aging_band && !applications_aging_band) { |
| 2376 | return; |
| 2377 | } |
| 2378 | |
| 2379 | if ((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == 0) { |
| 2380 | return; |
| 2381 | } |
| 2382 | |
| 2383 | if (isProcessInAgingBands(p)) { |
| 2384 | |
| 2385 | if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) { |
| 2386 | assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == P_DIRTY_AGING_IN_PROGRESS); |
| 2387 | } |
| 2388 | |
| 2389 | if (isSysProc(p) && system_procs_aging_band) { |
| 2390 | assert(p->p_memstat_effectivepriority == system_procs_aging_band); |
| 2391 | assert(p->p_memstat_idledeadline); |
| 2392 | present_in_sysprocs_aging_bucket = TRUE; |
| 2393 | |
| 2394 | } else if (isApp(p) && applications_aging_band) { |
| 2395 | assert(p->p_memstat_effectivepriority == applications_aging_band); |
| 2396 | assert(p->p_memstat_idledeadline); |
| 2397 | present_in_apps_aging_bucket = TRUE; |
| 2398 | } |
| 2399 | } |
| 2400 | |
| 2401 | MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n" , |
| 2402 | p->p_pid, clear_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)); |
| 2403 | |
| 2404 | |
| 2405 | if (clear_state) { |
| 2406 | p->p_memstat_idledeadline = 0; |
| 2407 | p->p_memstat_dirty &= ~P_DIRTY_AGING_IN_PROGRESS; |
| 2408 | } |
| 2409 | |
| 2410 | if (isSysProc(p) &&present_in_sysprocs_aging_bucket == TRUE) { |
| 2411 | memorystatus_scheduled_idle_demotions_sysprocs--; |
| 2412 | assert(memorystatus_scheduled_idle_demotions_sysprocs >= 0); |
| 2413 | |
| 2414 | } else if (isApp(p) && present_in_apps_aging_bucket == TRUE) { |
| 2415 | memorystatus_scheduled_idle_demotions_apps--; |
| 2416 | assert(memorystatus_scheduled_idle_demotions_apps >= 0); |
| 2417 | } |
| 2418 | |
| 2419 | assert((memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps) >= 0); |
| 2420 | } |
| 2421 | |
| 2422 | static void |
| 2423 | memorystatus_reschedule_idle_demotion_locked(void) { |
| 2424 | if (0 == (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)) { |
| 2425 | if (memstat_idle_demotion_deadline) { |
| 2426 | /* Transitioned 1->0, so cancel next call */ |
| 2427 | thread_call_cancel(memorystatus_idle_demotion_call); |
| 2428 | memstat_idle_demotion_deadline = 0; |
| 2429 | } |
| 2430 | } else { |
| 2431 | memstat_bucket_t *demotion_bucket; |
| 2432 | proc_t p = NULL, p1 = NULL, p2 = NULL; |
| 2433 | |
| 2434 | if (system_procs_aging_band) { |
| 2435 | |
| 2436 | demotion_bucket = &memstat_bucket[system_procs_aging_band]; |
| 2437 | p1 = TAILQ_FIRST(&demotion_bucket->list); |
| 2438 | |
| 2439 | p = p1; |
| 2440 | } |
| 2441 | |
| 2442 | if (applications_aging_band) { |
| 2443 | |
| 2444 | demotion_bucket = &memstat_bucket[applications_aging_band]; |
| 2445 | p2 = TAILQ_FIRST(&demotion_bucket->list); |
| 2446 | |
| 2447 | if (p1 && p2) { |
| 2448 | p = (p1->p_memstat_idledeadline > p2->p_memstat_idledeadline) ? p2 : p1; |
| 2449 | } else { |
| 2450 | p = (p1 == NULL) ? p2 : p1; |
| 2451 | } |
| 2452 | |
| 2453 | } |
| 2454 | |
| 2455 | assert(p); |
| 2456 | |
| 2457 | if (p != NULL) { |
| 2458 | assert(p && p->p_memstat_idledeadline); |
| 2459 | if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline){ |
| 2460 | thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline); |
| 2461 | memstat_idle_demotion_deadline = p->p_memstat_idledeadline; |
| 2462 | } |
| 2463 | } |
| 2464 | } |
| 2465 | } |
| 2466 | |
| 2467 | /* |
| 2468 | * List manipulation |
| 2469 | */ |
| 2470 | |
| 2471 | int |
| 2472 | memorystatus_add(proc_t p, boolean_t locked) |
| 2473 | { |
| 2474 | memstat_bucket_t *bucket; |
| 2475 | |
| 2476 | MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n" , p->p_pid, p->p_memstat_effectivepriority); |
| 2477 | |
| 2478 | if (!locked) { |
| 2479 | proc_list_lock(); |
| 2480 | } |
| 2481 | |
| 2482 | DTRACE_MEMORYSTATUS2(memorystatus_add, proc_t, p, int32_t, p->p_memstat_effectivepriority); |
| 2483 | |
| 2484 | /* Processes marked internal do not have priority tracked */ |
| 2485 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
| 2486 | goto exit; |
| 2487 | } |
| 2488 | |
| 2489 | bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
| 2490 | |
| 2491 | if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) { |
| 2492 | assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs - 1); |
| 2493 | |
| 2494 | } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) { |
| 2495 | assert(bucket->count == memorystatus_scheduled_idle_demotions_apps - 1); |
| 2496 | |
| 2497 | } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
| 2498 | /* |
| 2499 | * Entering the idle band. |
| 2500 | * Record idle start time. |
| 2501 | */ |
| 2502 | p->p_memstat_idle_start = mach_absolute_time(); |
| 2503 | } |
| 2504 | |
| 2505 | TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list); |
| 2506 | bucket->count++; |
| 2507 | |
| 2508 | memorystatus_list_count++; |
| 2509 | |
| 2510 | memorystatus_check_levels_locked(); |
| 2511 | |
| 2512 | exit: |
| 2513 | if (!locked) { |
| 2514 | proc_list_unlock(); |
| 2515 | } |
| 2516 | |
| 2517 | return 0; |
| 2518 | } |
| 2519 | |
| 2520 | /* |
| 2521 | * Description: |
| 2522 | * Moves a process from one jetsam bucket to another. |
| 2523 | * which changes the LRU position of the process. |
| 2524 | * |
| 2525 | * Monitors transition between buckets and if necessary |
| 2526 | * will update cached memory limits accordingly. |
| 2527 | * |
| 2528 | * skip_demotion_check: |
| 2529 | * - if the 'jetsam aging policy' is NOT 'legacy': |
| 2530 | * When this flag is TRUE, it means we are going |
| 2531 | * to age the ripe processes out of the aging bands and into the |
| 2532 | * IDLE band and apply their inactive memory limits. |
| 2533 | * |
| 2534 | * - if the 'jetsam aging policy' is 'legacy': |
| 2535 | * When this flag is TRUE, it might mean the above aging mechanism |
| 2536 | * OR |
| 2537 | * It might be that we have a process that has used up its 'idle deferral' |
| 2538 | * stay that is given to it once per lifetime. And in this case, the process |
| 2539 | * won't be going through any aging codepaths. But we still need to apply |
| 2540 | * the right inactive limits and so we explicitly set this to TRUE if the |
| 2541 | * new priority for the process is the IDLE band. |
| 2542 | */ |
| 2543 | void |
| 2544 | memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check) |
| 2545 | { |
| 2546 | memstat_bucket_t *old_bucket, *new_bucket; |
| 2547 | |
| 2548 | assert(priority < MEMSTAT_BUCKET_COUNT); |
| 2549 | |
| 2550 | /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */ |
| 2551 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
| 2552 | return; |
| 2553 | } |
| 2554 | |
| 2555 | MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n" , |
| 2556 | (*p->p_name ? p->p_name : "unknown" ), p->p_pid, priority, head_insert ? "head" : "tail" ); |
| 2557 | |
| 2558 | DTRACE_MEMORYSTATUS3(memorystatus_update_priority, proc_t, p, int32_t, p->p_memstat_effectivepriority, int, priority); |
| 2559 | |
| 2560 | #if DEVELOPMENT || DEBUG |
| 2561 | if (priority == JETSAM_PRIORITY_IDLE && /* if the process is on its way into the IDLE band */ |
| 2562 | skip_demotion_check == FALSE && /* and it isn't via the path that will set the INACTIVE memlimits */ |
| 2563 | (p->p_memstat_dirty & P_DIRTY_TRACK) && /* and it has 'DIRTY' tracking enabled */ |
| 2564 | ((p->p_memstat_memlimit != p->p_memstat_memlimit_inactive) || /* and we notice that the current limit isn't the right value (inactive) */ |
| 2565 | ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) ? ( ! (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) : (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)))) /* OR type (fatal vs non-fatal) */ |
| 2566 | panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n" , p->p_name, p->p_memstat_state, priority, p->p_memstat_memlimit); /* then we must catch this */ |
| 2567 | #endif /* DEVELOPMENT || DEBUG */ |
| 2568 | |
| 2569 | old_bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
| 2570 | |
| 2571 | if (skip_demotion_check == FALSE) { |
| 2572 | |
| 2573 | if (isSysProc(p)) { |
| 2574 | /* |
| 2575 | * For system processes, the memorystatus_dirty_* routines take care of adding/removing |
| 2576 | * the processes from the aging bands and balancing the demotion counts. |
| 2577 | * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute. |
| 2578 | */ |
| 2579 | |
| 2580 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
| 2581 | /* |
| 2582 | * 2 types of processes can use the non-standard elevated inactive band: |
| 2583 | * - Frozen processes that always land in memorystatus_freeze_jetsam_band |
| 2584 | * OR |
| 2585 | * - processes that specifically opt-in to the elevated inactive support e.g. docked processes. |
| 2586 | */ |
| 2587 | #if CONFIG_FREEZE |
| 2588 | if (p->p_memstat_state & P_MEMSTAT_FROZEN) { |
| 2589 | if (priority <= memorystatus_freeze_jetsam_band) { |
| 2590 | priority = memorystatus_freeze_jetsam_band; |
| 2591 | } |
| 2592 | } else |
| 2593 | #endif /* CONFIG_FREEZE */ |
| 2594 | { |
| 2595 | if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) { |
| 2596 | priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; |
| 2597 | } |
| 2598 | } |
| 2599 | assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS)); |
| 2600 | } |
| 2601 | } else if (isApp(p)) { |
| 2602 | |
| 2603 | /* |
| 2604 | * Check to see if the application is being lowered in jetsam priority. If so, and: |
| 2605 | * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band. |
| 2606 | * - it is a normal application, then let it age in the aging band if that policy is in effect. |
| 2607 | */ |
| 2608 | |
| 2609 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
| 2610 | #if CONFIG_FREEZE |
| 2611 | if (p->p_memstat_state & P_MEMSTAT_FROZEN) { |
| 2612 | if (priority <= memorystatus_freeze_jetsam_band) { |
| 2613 | priority = memorystatus_freeze_jetsam_band; |
| 2614 | } |
| 2615 | } else |
| 2616 | #endif /* CONFIG_FREEZE */ |
| 2617 | { |
| 2618 | if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) { |
| 2619 | priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; |
| 2620 | } |
| 2621 | } |
| 2622 | } else { |
| 2623 | |
| 2624 | if (applications_aging_band) { |
| 2625 | if (p->p_memstat_effectivepriority == applications_aging_band) { |
| 2626 | assert(old_bucket->count == (memorystatus_scheduled_idle_demotions_apps + 1)); |
| 2627 | } |
| 2628 | |
| 2629 | if ((jetsam_aging_policy != kJetsamAgingPolicyLegacy) && (priority <= applications_aging_band)) { |
| 2630 | assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS)); |
| 2631 | priority = applications_aging_band; |
| 2632 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
| 2633 | } |
| 2634 | } |
| 2635 | } |
| 2636 | } |
| 2637 | } |
| 2638 | |
| 2639 | if ((system_procs_aging_band && (priority == system_procs_aging_band)) || (applications_aging_band && (priority == applications_aging_band))) { |
| 2640 | assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS); |
| 2641 | } |
| 2642 | |
| 2643 | TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list); |
| 2644 | old_bucket->count--; |
| 2645 | |
| 2646 | new_bucket = &memstat_bucket[priority]; |
| 2647 | if (head_insert) |
| 2648 | TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list); |
| 2649 | else |
| 2650 | TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list); |
| 2651 | new_bucket->count++; |
| 2652 | |
| 2653 | if (memorystatus_highwater_enabled) { |
| 2654 | boolean_t is_fatal; |
| 2655 | boolean_t use_active; |
| 2656 | |
| 2657 | /* |
| 2658 | * If cached limit data is updated, then the limits |
| 2659 | * will be enforced by writing to the ledgers. |
| 2660 | */ |
| 2661 | boolean_t ledger_update_needed = TRUE; |
| 2662 | |
| 2663 | /* |
| 2664 | * Here, we must update the cached memory limit if the task |
| 2665 | * is transitioning between: |
| 2666 | * active <--> inactive |
| 2667 | * FG <--> BG |
| 2668 | * but: |
| 2669 | * dirty <--> clean is ignored |
| 2670 | * |
| 2671 | * We bypass non-idle processes that have opted into dirty tracking because |
| 2672 | * a move between buckets does not imply a transition between the |
| 2673 | * dirty <--> clean state. |
| 2674 | */ |
| 2675 | |
| 2676 | if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
| 2677 | |
| 2678 | if (skip_demotion_check == TRUE && priority == JETSAM_PRIORITY_IDLE) { |
| 2679 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 2680 | use_active = FALSE; |
| 2681 | } else { |
| 2682 | ledger_update_needed = FALSE; |
| 2683 | } |
| 2684 | |
| 2685 | } else if ((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) { |
| 2686 | /* |
| 2687 | * inactive --> active |
| 2688 | * BG --> FG |
| 2689 | * assign active state |
| 2690 | */ |
| 2691 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 2692 | use_active = TRUE; |
| 2693 | |
| 2694 | } else if ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) { |
| 2695 | /* |
| 2696 | * active --> inactive |
| 2697 | * FG --> BG |
| 2698 | * assign inactive state |
| 2699 | */ |
| 2700 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 2701 | use_active = FALSE; |
| 2702 | } else { |
| 2703 | /* |
| 2704 | * The transition between jetsam priority buckets apparently did |
| 2705 | * not affect active/inactive state. |
| 2706 | * This is not unusual... especially during startup when |
| 2707 | * processes are getting established in their respective bands. |
| 2708 | */ |
| 2709 | ledger_update_needed = FALSE; |
| 2710 | } |
| 2711 | |
| 2712 | /* |
| 2713 | * Enforce the new limits by writing to the ledger |
| 2714 | */ |
| 2715 | if (ledger_update_needed) { |
| 2716 | task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal); |
| 2717 | |
| 2718 | MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n" , |
| 2719 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
| 2720 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), p->p_memstat_effectivepriority, priority, p->p_memstat_dirty, |
| 2721 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
| 2722 | } |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | * Record idle start or idle delta. |
| 2727 | */ |
| 2728 | if (p->p_memstat_effectivepriority == priority) { |
| 2729 | /* |
| 2730 | * This process is not transitioning between |
| 2731 | * jetsam priority buckets. Do nothing. |
| 2732 | */ |
| 2733 | } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
| 2734 | uint64_t now; |
| 2735 | /* |
| 2736 | * Transitioning out of the idle priority bucket. |
| 2737 | * Record idle delta. |
| 2738 | */ |
| 2739 | assert(p->p_memstat_idle_start != 0); |
| 2740 | now = mach_absolute_time(); |
| 2741 | if (now > p->p_memstat_idle_start) { |
| 2742 | p->p_memstat_idle_delta = now - p->p_memstat_idle_start; |
| 2743 | } |
| 2744 | |
| 2745 | /* |
| 2746 | * About to become active and so memory footprint could change. |
| 2747 | * So mark it eligible for freeze-considerations next time around. |
| 2748 | */ |
| 2749 | if (p->p_memstat_state & P_MEMSTAT_FREEZE_IGNORE) { |
| 2750 | p->p_memstat_state &= ~P_MEMSTAT_FREEZE_IGNORE; |
| 2751 | } |
| 2752 | |
| 2753 | } else if (priority == JETSAM_PRIORITY_IDLE) { |
| 2754 | /* |
| 2755 | * Transitioning into the idle priority bucket. |
| 2756 | * Record idle start. |
| 2757 | */ |
| 2758 | p->p_memstat_idle_start = mach_absolute_time(); |
| 2759 | } |
| 2760 | |
| 2761 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0); |
| 2762 | |
| 2763 | p->p_memstat_effectivepriority = priority; |
| 2764 | |
| 2765 | #if CONFIG_SECLUDED_MEMORY |
| 2766 | if (secluded_for_apps && |
| 2767 | task_could_use_secluded_mem(p->task)) { |
| 2768 | task_set_can_use_secluded_mem( |
| 2769 | p->task, |
| 2770 | (priority >= JETSAM_PRIORITY_FOREGROUND)); |
| 2771 | } |
| 2772 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 2773 | |
| 2774 | memorystatus_check_levels_locked(); |
| 2775 | } |
| 2776 | |
| 2777 | /* |
| 2778 | * |
| 2779 | * Description: Update the jetsam priority and memory limit attributes for a given process. |
| 2780 | * |
| 2781 | * Parameters: |
| 2782 | * p init this process's jetsam information. |
| 2783 | * priority The jetsam priority band |
| 2784 | * user_data user specific data, unused by the kernel |
| 2785 | * effective guards against race if process's update already occurred |
| 2786 | * update_memlimit When true we know this is the init step via the posix_spawn path. |
| 2787 | * |
| 2788 | * memlimit_active Value in megabytes; The monitored footprint level while the |
| 2789 | * process is active. Exceeding it may result in termination |
| 2790 | * based on it's associated fatal flag. |
| 2791 | * |
| 2792 | * memlimit_active_is_fatal When a process is active and exceeds its memory footprint, |
| 2793 | * this describes whether or not it should be immediately fatal. |
| 2794 | * |
| 2795 | * memlimit_inactive Value in megabytes; The monitored footprint level while the |
| 2796 | * process is inactive. Exceeding it may result in termination |
| 2797 | * based on it's associated fatal flag. |
| 2798 | * |
| 2799 | * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint, |
| 2800 | * this describes whether or not it should be immediatly fatal. |
| 2801 | * |
| 2802 | * Returns: 0 Success |
| 2803 | * non-0 Failure |
| 2804 | */ |
| 2805 | |
| 2806 | int |
| 2807 | memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t effective, boolean_t update_memlimit, |
| 2808 | int32_t memlimit_active, boolean_t memlimit_active_is_fatal, |
| 2809 | int32_t memlimit_inactive, boolean_t memlimit_inactive_is_fatal) |
| 2810 | { |
| 2811 | int ret; |
| 2812 | boolean_t head_insert = false; |
| 2813 | |
| 2814 | MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n" , (*p->p_name ? p->p_name : "unknown" ), p->p_pid, priority, user_data); |
| 2815 | |
| 2816 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, p->p_pid, priority, user_data, effective, 0); |
| 2817 | |
| 2818 | if (priority == -1) { |
| 2819 | /* Use as shorthand for default priority */ |
| 2820 | priority = JETSAM_PRIORITY_DEFAULT; |
| 2821 | } else if ((priority == system_procs_aging_band) || (priority == applications_aging_band)) { |
| 2822 | /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */ |
| 2823 | priority = JETSAM_PRIORITY_IDLE; |
| 2824 | } else if (priority == JETSAM_PRIORITY_IDLE_HEAD) { |
| 2825 | /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */ |
| 2826 | priority = JETSAM_PRIORITY_IDLE; |
| 2827 | head_insert = TRUE; |
| 2828 | } else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) { |
| 2829 | /* Sanity check */ |
| 2830 | ret = EINVAL; |
| 2831 | goto out; |
| 2832 | } |
| 2833 | |
| 2834 | proc_list_lock(); |
| 2835 | |
| 2836 | assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); |
| 2837 | |
| 2838 | if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) { |
| 2839 | ret = EALREADY; |
| 2840 | proc_list_unlock(); |
| 2841 | MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n" , p->p_pid); |
| 2842 | goto out; |
| 2843 | } |
| 2844 | |
| 2845 | if ((p->p_memstat_state & P_MEMSTAT_TERMINATED) || ((p->p_listflag & P_LIST_EXITED) != 0)) { |
| 2846 | /* |
| 2847 | * This could happen when a process calling posix_spawn() is exiting on the jetsam thread. |
| 2848 | */ |
| 2849 | ret = EBUSY; |
| 2850 | proc_list_unlock(); |
| 2851 | goto out; |
| 2852 | } |
| 2853 | |
| 2854 | p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED; |
| 2855 | p->p_memstat_userdata = user_data; |
| 2856 | p->p_memstat_requestedpriority = priority; |
| 2857 | |
| 2858 | if (update_memlimit) { |
| 2859 | boolean_t is_fatal; |
| 2860 | boolean_t use_active; |
| 2861 | |
| 2862 | /* |
| 2863 | * Posix_spawn'd processes come through this path to instantiate ledger limits. |
| 2864 | * Forked processes do not come through this path, so no ledger limits exist. |
| 2865 | * (That's why forked processes can consume unlimited memory.) |
| 2866 | */ |
| 2867 | |
| 2868 | MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n" , |
| 2869 | p->p_pid, priority, p->p_memstat_dirty, |
| 2870 | memlimit_active, (memlimit_active_is_fatal ? "F " : "NF" ), |
| 2871 | memlimit_inactive, (memlimit_inactive_is_fatal ? "F " : "NF" )); |
| 2872 | |
| 2873 | if (memlimit_active <= 0) { |
| 2874 | /* |
| 2875 | * This process will have a system_wide task limit when active. |
| 2876 | * System_wide task limit is always fatal. |
| 2877 | * It's quite common to see non-fatal flag passed in here. |
| 2878 | * It's not an error, we just ignore it. |
| 2879 | */ |
| 2880 | |
| 2881 | /* |
| 2882 | * For backward compatibility with some unexplained launchd behavior, |
| 2883 | * we allow a zero sized limit. But we still enforce system_wide limit |
| 2884 | * when written to the ledgers. |
| 2885 | */ |
| 2886 | |
| 2887 | if (memlimit_active < 0) { |
| 2888 | memlimit_active = -1; /* enforces system_wide task limit */ |
| 2889 | } |
| 2890 | memlimit_active_is_fatal = TRUE; |
| 2891 | } |
| 2892 | |
| 2893 | if (memlimit_inactive <= 0) { |
| 2894 | /* |
| 2895 | * This process will have a system_wide task limit when inactive. |
| 2896 | * System_wide task limit is always fatal. |
| 2897 | */ |
| 2898 | |
| 2899 | memlimit_inactive = -1; |
| 2900 | memlimit_inactive_is_fatal = TRUE; |
| 2901 | } |
| 2902 | |
| 2903 | /* |
| 2904 | * Initialize the active limit variants for this process. |
| 2905 | */ |
| 2906 | SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal); |
| 2907 | |
| 2908 | /* |
| 2909 | * Initialize the inactive limit variants for this process. |
| 2910 | */ |
| 2911 | SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal); |
| 2912 | |
| 2913 | /* |
| 2914 | * Initialize the cached limits for target process. |
| 2915 | * When the target process is dirty tracked, it's typically |
| 2916 | * in a clean state. Non dirty tracked processes are |
| 2917 | * typically active (Foreground or above). |
| 2918 | * But just in case, we don't make assumptions... |
| 2919 | */ |
| 2920 | |
| 2921 | if (proc_jetsam_state_is_active_locked(p) == TRUE) { |
| 2922 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 2923 | use_active = TRUE; |
| 2924 | } else { |
| 2925 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 2926 | use_active = FALSE; |
| 2927 | } |
| 2928 | |
| 2929 | /* |
| 2930 | * Enforce the cached limit by writing to the ledger. |
| 2931 | */ |
| 2932 | if (memorystatus_highwater_enabled) { |
| 2933 | /* apply now */ |
| 2934 | task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal); |
| 2935 | |
| 2936 | MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n" , |
| 2937 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
| 2938 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), priority, p->p_memstat_dirty, |
| 2939 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
| 2940 | } |
| 2941 | } |
| 2942 | |
| 2943 | /* |
| 2944 | * We can't add to the aging bands buckets here. |
| 2945 | * But, we could be removing it from those buckets. |
| 2946 | * Check and take appropriate steps if so. |
| 2947 | */ |
| 2948 | |
| 2949 | if (isProcessInAgingBands(p)) { |
| 2950 | |
| 2951 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 2952 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE); |
| 2953 | } else { |
| 2954 | if (jetsam_aging_policy == kJetsamAgingPolicyLegacy && priority == JETSAM_PRIORITY_IDLE) { |
| 2955 | /* |
| 2956 | * Daemons with 'inactive' limits will go through the dirty tracking codepath. |
| 2957 | * This path deals with apps that may have 'inactive' limits e.g. WebContent processes. |
| 2958 | * If this is the legacy aging policy we explicitly need to apply those limits. If it |
| 2959 | * is any other aging policy, then we don't need to worry because all processes |
| 2960 | * will go through the aging bands and then the demotion thread will take care to |
| 2961 | * move them into the IDLE band and apply the required limits. |
| 2962 | */ |
| 2963 | memorystatus_update_priority_locked(p, priority, head_insert, TRUE); |
| 2964 | } |
| 2965 | } |
| 2966 | |
| 2967 | memorystatus_update_priority_locked(p, priority, head_insert, FALSE); |
| 2968 | |
| 2969 | proc_list_unlock(); |
| 2970 | ret = 0; |
| 2971 | |
| 2972 | out: |
| 2973 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret, 0, 0, 0, 0); |
| 2974 | |
| 2975 | return ret; |
| 2976 | } |
| 2977 | |
| 2978 | int |
| 2979 | memorystatus_remove(proc_t p, boolean_t locked) |
| 2980 | { |
| 2981 | int ret; |
| 2982 | memstat_bucket_t *bucket; |
| 2983 | boolean_t reschedule = FALSE; |
| 2984 | |
| 2985 | MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n" , p->p_pid); |
| 2986 | |
| 2987 | if (!locked) { |
| 2988 | proc_list_lock(); |
| 2989 | } |
| 2990 | |
| 2991 | assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL)); |
| 2992 | |
| 2993 | bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
| 2994 | |
| 2995 | if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) { |
| 2996 | |
| 2997 | assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs); |
| 2998 | reschedule = TRUE; |
| 2999 | |
| 3000 | } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) { |
| 3001 | |
| 3002 | assert(bucket->count == memorystatus_scheduled_idle_demotions_apps); |
| 3003 | reschedule = TRUE; |
| 3004 | } |
| 3005 | |
| 3006 | /* |
| 3007 | * Record idle delta |
| 3008 | */ |
| 3009 | |
| 3010 | if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
| 3011 | uint64_t now = mach_absolute_time(); |
| 3012 | if (now > p->p_memstat_idle_start) { |
| 3013 | p->p_memstat_idle_delta = now - p->p_memstat_idle_start; |
| 3014 | } |
| 3015 | } |
| 3016 | |
| 3017 | TAILQ_REMOVE(&bucket->list, p, p_memstat_list); |
| 3018 | bucket->count--; |
| 3019 | |
| 3020 | memorystatus_list_count--; |
| 3021 | |
| 3022 | /* If awaiting demotion to the idle band, clean up */ |
| 3023 | if (reschedule) { |
| 3024 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 3025 | memorystatus_reschedule_idle_demotion_locked(); |
| 3026 | } |
| 3027 | |
| 3028 | memorystatus_check_levels_locked(); |
| 3029 | |
| 3030 | #if CONFIG_FREEZE |
| 3031 | if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) { |
| 3032 | |
| 3033 | if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { |
| 3034 | p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; |
| 3035 | memorystatus_refreeze_eligible_count--; |
| 3036 | } |
| 3037 | |
| 3038 | memorystatus_frozen_count--; |
| 3039 | memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages; |
| 3040 | p->p_memstat_freeze_sharedanon_pages = 0; |
| 3041 | } |
| 3042 | |
| 3043 | if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { |
| 3044 | memorystatus_suspended_count--; |
| 3045 | } |
| 3046 | #endif |
| 3047 | |
| 3048 | if (!locked) { |
| 3049 | proc_list_unlock(); |
| 3050 | } |
| 3051 | |
| 3052 | if (p) { |
| 3053 | ret = 0; |
| 3054 | } else { |
| 3055 | ret = ESRCH; |
| 3056 | } |
| 3057 | |
| 3058 | return ret; |
| 3059 | } |
| 3060 | |
| 3061 | /* |
| 3062 | * Validate dirty tracking flags with process state. |
| 3063 | * |
| 3064 | * Return: |
| 3065 | * 0 on success |
| 3066 | * non-0 on failure |
| 3067 | * |
| 3068 | * The proc_list_lock is held by the caller. |
| 3069 | */ |
| 3070 | |
| 3071 | static int |
| 3072 | memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol) { |
| 3073 | /* See that the process isn't marked for termination */ |
| 3074 | if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) { |
| 3075 | return EBUSY; |
| 3076 | } |
| 3077 | |
| 3078 | /* Idle exit requires that process be tracked */ |
| 3079 | if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) && |
| 3080 | !(pcontrol & PROC_DIRTY_TRACK)) { |
| 3081 | return EINVAL; |
| 3082 | } |
| 3083 | |
| 3084 | /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */ |
| 3085 | if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) && |
| 3086 | !(pcontrol & PROC_DIRTY_TRACK)) { |
| 3087 | return EINVAL; |
| 3088 | } |
| 3089 | |
| 3090 | /* Only one type of DEFER behavior is allowed.*/ |
| 3091 | if ((pcontrol & PROC_DIRTY_DEFER) && |
| 3092 | (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) { |
| 3093 | return EINVAL; |
| 3094 | } |
| 3095 | |
| 3096 | /* Deferral is only relevant if idle exit is specified */ |
| 3097 | if (((pcontrol & PROC_DIRTY_DEFER) || |
| 3098 | (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) && |
| 3099 | !(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) { |
| 3100 | return EINVAL; |
| 3101 | } |
| 3102 | |
| 3103 | return(0); |
| 3104 | } |
| 3105 | |
| 3106 | static void |
| 3107 | memorystatus_update_idle_priority_locked(proc_t p) { |
| 3108 | int32_t priority; |
| 3109 | |
| 3110 | MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n" , p->p_pid, p->p_memstat_dirty); |
| 3111 | |
| 3112 | assert(isSysProc(p)); |
| 3113 | |
| 3114 | if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) { |
| 3115 | |
| 3116 | priority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE; |
| 3117 | } else { |
| 3118 | priority = p->p_memstat_requestedpriority; |
| 3119 | } |
| 3120 | |
| 3121 | if (priority != p->p_memstat_effectivepriority) { |
| 3122 | |
| 3123 | if ((jetsam_aging_policy == kJetsamAgingPolicyLegacy) && |
| 3124 | (priority == JETSAM_PRIORITY_IDLE)) { |
| 3125 | |
| 3126 | /* |
| 3127 | * This process is on its way into the IDLE band. The system is |
| 3128 | * using 'legacy' jetsam aging policy. That means, this process |
| 3129 | * has already used up its idle-deferral aging time that is given |
| 3130 | * once per its lifetime. So we need to set the INACTIVE limits |
| 3131 | * explicitly because it won't be going through the demotion paths |
| 3132 | * that take care to apply the limits appropriately. |
| 3133 | */ |
| 3134 | |
| 3135 | if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) { |
| 3136 | |
| 3137 | /* |
| 3138 | * This process has the 'elevated inactive jetsam band' attribute. |
| 3139 | * So, there will be no trip to IDLE after all. |
| 3140 | * Instead, we pin the process in the elevated band, |
| 3141 | * where its ACTIVE limits will apply. |
| 3142 | */ |
| 3143 | |
| 3144 | priority = JETSAM_PRIORITY_ELEVATED_INACTIVE; |
| 3145 | } |
| 3146 | |
| 3147 | memorystatus_update_priority_locked(p, priority, false, true); |
| 3148 | |
| 3149 | } else { |
| 3150 | memorystatus_update_priority_locked(p, priority, false, false); |
| 3151 | } |
| 3152 | } |
| 3153 | } |
| 3154 | |
| 3155 | /* |
| 3156 | * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle |
| 3157 | * (clean). They may also indicate that they support termination when idle, with the result that they are promoted |
| 3158 | * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low |
| 3159 | * priority idle band when clean (and killed earlier, protecting higher priority procesess). |
| 3160 | * |
| 3161 | * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by |
| 3162 | * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band |
| 3163 | * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to |
| 3164 | * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle |
| 3165 | * band. The deferral can be cleared early by clearing the appropriate flag. |
| 3166 | * |
| 3167 | * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process |
| 3168 | * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be |
| 3169 | * re-enabled or the guard state cleared, depending on whether the guard deadline has passed. |
| 3170 | */ |
| 3171 | |
| 3172 | int |
| 3173 | memorystatus_dirty_track(proc_t p, uint32_t pcontrol) { |
| 3174 | unsigned int old_dirty; |
| 3175 | boolean_t reschedule = FALSE; |
| 3176 | boolean_t already_deferred = FALSE; |
| 3177 | boolean_t defer_now = FALSE; |
| 3178 | int ret = 0; |
| 3179 | |
| 3180 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_TRACK), |
| 3181 | p->p_pid, p->p_memstat_dirty, pcontrol, 0, 0); |
| 3182 | |
| 3183 | proc_list_lock(); |
| 3184 | |
| 3185 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
| 3186 | /* |
| 3187 | * Process is on its way out. |
| 3188 | */ |
| 3189 | ret = EBUSY; |
| 3190 | goto exit; |
| 3191 | } |
| 3192 | |
| 3193 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
| 3194 | ret = EPERM; |
| 3195 | goto exit; |
| 3196 | } |
| 3197 | |
| 3198 | if ((ret = memorystatus_validate_track_flags(p, pcontrol)) != 0) { |
| 3199 | /* error */ |
| 3200 | goto exit; |
| 3201 | } |
| 3202 | |
| 3203 | old_dirty = p->p_memstat_dirty; |
| 3204 | |
| 3205 | /* These bits are cumulative, as per <rdar://problem/11159924> */ |
| 3206 | if (pcontrol & PROC_DIRTY_TRACK) { |
| 3207 | p->p_memstat_dirty |= P_DIRTY_TRACK; |
| 3208 | } |
| 3209 | |
| 3210 | if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) { |
| 3211 | p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT; |
| 3212 | } |
| 3213 | |
| 3214 | if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { |
| 3215 | p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS; |
| 3216 | } |
| 3217 | |
| 3218 | if (old_dirty & P_DIRTY_AGING_IN_PROGRESS) { |
| 3219 | already_deferred = TRUE; |
| 3220 | } |
| 3221 | |
| 3222 | |
| 3223 | /* This can be set and cleared exactly once. */ |
| 3224 | if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) { |
| 3225 | |
| 3226 | if ((pcontrol & (PROC_DIRTY_DEFER)) && |
| 3227 | !(old_dirty & P_DIRTY_DEFER)) { |
| 3228 | p->p_memstat_dirty |= P_DIRTY_DEFER; |
| 3229 | } |
| 3230 | |
| 3231 | if ((pcontrol & (PROC_DIRTY_DEFER_ALWAYS)) && |
| 3232 | !(old_dirty & P_DIRTY_DEFER_ALWAYS)) { |
| 3233 | p->p_memstat_dirty |= P_DIRTY_DEFER_ALWAYS; |
| 3234 | } |
| 3235 | |
| 3236 | defer_now = TRUE; |
| 3237 | } |
| 3238 | |
| 3239 | MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n" , |
| 3240 | ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N" , |
| 3241 | defer_now ? "Y" : "N" , |
| 3242 | p->p_memstat_dirty & P_DIRTY ? "Y" : "N" , |
| 3243 | p->p_pid); |
| 3244 | |
| 3245 | /* Kick off or invalidate the idle exit deferment if there's a state transition. */ |
| 3246 | if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) { |
| 3247 | if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { |
| 3248 | |
| 3249 | if (defer_now && !already_deferred) { |
| 3250 | |
| 3251 | /* |
| 3252 | * Request to defer a clean process that's idle-exit enabled |
| 3253 | * and not already in the jetsam deferred band. Most likely a |
| 3254 | * new launch. |
| 3255 | */ |
| 3256 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
| 3257 | reschedule = TRUE; |
| 3258 | |
| 3259 | } else if (!defer_now) { |
| 3260 | |
| 3261 | /* |
| 3262 | * The process isn't asking for the 'aging' facility. |
| 3263 | * Could be that it is: |
| 3264 | */ |
| 3265 | |
| 3266 | if (already_deferred) { |
| 3267 | /* |
| 3268 | * already in the aging bands. Traditionally, |
| 3269 | * some processes have tried to use this to |
| 3270 | * opt out of the 'aging' facility. |
| 3271 | */ |
| 3272 | |
| 3273 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 3274 | } else { |
| 3275 | /* |
| 3276 | * agnostic to the 'aging' facility. In that case, |
| 3277 | * we'll go ahead and opt it in because this is likely |
| 3278 | * a new launch (clean process, dirty tracking enabled) |
| 3279 | */ |
| 3280 | |
| 3281 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
| 3282 | } |
| 3283 | |
| 3284 | reschedule = TRUE; |
| 3285 | } |
| 3286 | } |
| 3287 | } else { |
| 3288 | |
| 3289 | /* |
| 3290 | * We are trying to operate on a dirty process. Dirty processes have to |
| 3291 | * be removed from the deferred band. The question is do we reset the |
| 3292 | * deferred state or not? |
| 3293 | * |
| 3294 | * This could be a legal request like: |
| 3295 | * - this process had opted into the 'aging' band |
| 3296 | * - but it's now dirty and requests to opt out. |
| 3297 | * In this case, we remove the process from the band and reset its |
| 3298 | * state too. It'll opt back in properly when needed. |
| 3299 | * |
| 3300 | * OR, this request could be a user-space bug. E.g.: |
| 3301 | * - this process had opted into the 'aging' band when clean |
| 3302 | * - and, then issues another request to again put it into the band except |
| 3303 | * this time the process is dirty. |
| 3304 | * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of |
| 3305 | * the deferred band with its state intact. So our request below is no-op. |
| 3306 | * But we do it here anyways for coverage. |
| 3307 | * |
| 3308 | * memorystatus_update_idle_priority_locked() |
| 3309 | * single-mindedly treats a dirty process as "cannot be in the aging band". |
| 3310 | */ |
| 3311 | |
| 3312 | if (!defer_now && already_deferred) { |
| 3313 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 3314 | reschedule = TRUE; |
| 3315 | } else { |
| 3316 | |
| 3317 | boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE; |
| 3318 | |
| 3319 | memorystatus_invalidate_idle_demotion_locked(p, reset_state); |
| 3320 | reschedule = TRUE; |
| 3321 | } |
| 3322 | } |
| 3323 | |
| 3324 | memorystatus_update_idle_priority_locked(p); |
| 3325 | |
| 3326 | if (reschedule) { |
| 3327 | memorystatus_reschedule_idle_demotion_locked(); |
| 3328 | } |
| 3329 | |
| 3330 | ret = 0; |
| 3331 | |
| 3332 | exit: |
| 3333 | proc_list_unlock(); |
| 3334 | |
| 3335 | return ret; |
| 3336 | } |
| 3337 | |
| 3338 | int |
| 3339 | memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol) { |
| 3340 | int ret; |
| 3341 | boolean_t kill = false; |
| 3342 | boolean_t reschedule = FALSE; |
| 3343 | boolean_t was_dirty = FALSE; |
| 3344 | boolean_t now_dirty = FALSE; |
| 3345 | |
| 3346 | MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n" , self, p->p_pid, pcontrol, p->p_memstat_dirty); |
| 3347 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_SET), p->p_pid, self, pcontrol, 0, 0); |
| 3348 | |
| 3349 | proc_list_lock(); |
| 3350 | |
| 3351 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
| 3352 | /* |
| 3353 | * Process is on its way out. |
| 3354 | */ |
| 3355 | ret = EBUSY; |
| 3356 | goto exit; |
| 3357 | } |
| 3358 | |
| 3359 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
| 3360 | ret = EPERM; |
| 3361 | goto exit; |
| 3362 | } |
| 3363 | |
| 3364 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) |
| 3365 | was_dirty = TRUE; |
| 3366 | |
| 3367 | if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { |
| 3368 | /* Dirty tracking not enabled */ |
| 3369 | ret = EINVAL; |
| 3370 | } else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { |
| 3371 | /* |
| 3372 | * Process is set to be terminated and we're attempting to mark it dirty. |
| 3373 | * Set for termination and marking as clean is OK - see <rdar://problem/10594349>. |
| 3374 | */ |
| 3375 | ret = EBUSY; |
| 3376 | } else { |
| 3377 | int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN; |
| 3378 | if (pcontrol && !(p->p_memstat_dirty & flag)) { |
| 3379 | /* Mark the process as having been dirtied at some point */ |
| 3380 | p->p_memstat_dirty |= (flag | P_DIRTY_MARKED); |
| 3381 | memorystatus_dirty_count++; |
| 3382 | ret = 0; |
| 3383 | } else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) { |
| 3384 | if ((flag == P_DIRTY_SHUTDOWN) && (!(p->p_memstat_dirty & P_DIRTY))) { |
| 3385 | /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */ |
| 3386 | p->p_memstat_dirty |= P_DIRTY_TERMINATED; |
| 3387 | kill = true; |
| 3388 | } else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) { |
| 3389 | /* Kill previously terminated processes if set clean */ |
| 3390 | kill = true; |
| 3391 | } |
| 3392 | p->p_memstat_dirty &= ~flag; |
| 3393 | memorystatus_dirty_count--; |
| 3394 | ret = 0; |
| 3395 | } else { |
| 3396 | /* Already set */ |
| 3397 | ret = EALREADY; |
| 3398 | } |
| 3399 | } |
| 3400 | |
| 3401 | if (ret != 0) { |
| 3402 | goto exit; |
| 3403 | } |
| 3404 | |
| 3405 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) |
| 3406 | now_dirty = TRUE; |
| 3407 | |
| 3408 | if ((was_dirty == TRUE && now_dirty == FALSE) || |
| 3409 | (was_dirty == FALSE && now_dirty == TRUE)) { |
| 3410 | |
| 3411 | /* Manage idle exit deferral, if applied */ |
| 3412 | if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { |
| 3413 | |
| 3414 | /* |
| 3415 | * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back |
| 3416 | * there once it's clean again. For the legacy case, this only applies if it has some protection window left. |
| 3417 | * P_DIRTY_DEFER: one-time protection window given at launch |
| 3418 | * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode. |
| 3419 | * |
| 3420 | * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over |
| 3421 | * in that band on it's way to IDLE. |
| 3422 | */ |
| 3423 | |
| 3424 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { |
| 3425 | /* |
| 3426 | * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE" |
| 3427 | * |
| 3428 | * The process will move from its aging band to its higher requested |
| 3429 | * jetsam band. |
| 3430 | */ |
| 3431 | boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE; |
| 3432 | |
| 3433 | memorystatus_invalidate_idle_demotion_locked(p, reset_state); |
| 3434 | reschedule = TRUE; |
| 3435 | } else { |
| 3436 | |
| 3437 | /* |
| 3438 | * Process is back from "dirty" to "clean". |
| 3439 | */ |
| 3440 | |
| 3441 | if (jetsam_aging_policy == kJetsamAgingPolicyLegacy) { |
| 3442 | if (((p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) == FALSE) && |
| 3443 | (mach_absolute_time() >= p->p_memstat_idledeadline)) { |
| 3444 | /* |
| 3445 | * The process' hasn't enrolled in the "always defer after dirty" |
| 3446 | * mode and its deadline has expired. It currently |
| 3447 | * does not reside in any of the aging buckets. |
| 3448 | * |
| 3449 | * It's on its way to the JETSAM_PRIORITY_IDLE |
| 3450 | * bucket via memorystatus_update_idle_priority_locked() |
| 3451 | * below. |
| 3452 | |
| 3453 | * So all we need to do is reset all the state on the |
| 3454 | * process that's related to the aging bucket i.e. |
| 3455 | * the AGING_IN_PROGRESS flag and the timer deadline. |
| 3456 | */ |
| 3457 | |
| 3458 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 3459 | reschedule = TRUE; |
| 3460 | } else { |
| 3461 | /* |
| 3462 | * Process enrolled in "always stop in deferral band after dirty" OR |
| 3463 | * it still has some protection window left and so |
| 3464 | * we just re-arm the timer without modifying any |
| 3465 | * state on the process iff it still wants into that band. |
| 3466 | */ |
| 3467 | |
| 3468 | if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) { |
| 3469 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
| 3470 | reschedule = TRUE; |
| 3471 | } else if (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) { |
| 3472 | memorystatus_schedule_idle_demotion_locked(p, FALSE); |
| 3473 | reschedule = TRUE; |
| 3474 | } |
| 3475 | } |
| 3476 | } else { |
| 3477 | |
| 3478 | memorystatus_schedule_idle_demotion_locked(p, TRUE); |
| 3479 | reschedule = TRUE; |
| 3480 | } |
| 3481 | } |
| 3482 | } |
| 3483 | |
| 3484 | memorystatus_update_idle_priority_locked(p); |
| 3485 | |
| 3486 | if (memorystatus_highwater_enabled) { |
| 3487 | boolean_t ledger_update_needed = TRUE; |
| 3488 | boolean_t use_active; |
| 3489 | boolean_t is_fatal; |
| 3490 | /* |
| 3491 | * We are in this path because this process transitioned between |
| 3492 | * dirty <--> clean state. Update the cached memory limits. |
| 3493 | */ |
| 3494 | |
| 3495 | if (proc_jetsam_state_is_active_locked(p) == TRUE) { |
| 3496 | /* |
| 3497 | * process is pinned in elevated band |
| 3498 | * or |
| 3499 | * process is dirty |
| 3500 | */ |
| 3501 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 3502 | use_active = TRUE; |
| 3503 | ledger_update_needed = TRUE; |
| 3504 | } else { |
| 3505 | /* |
| 3506 | * process is clean...but if it has opted into pressured-exit |
| 3507 | * we don't apply the INACTIVE limit till the process has aged |
| 3508 | * out and is entering the IDLE band. |
| 3509 | * See memorystatus_update_priority_locked() for that. |
| 3510 | */ |
| 3511 | |
| 3512 | if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) { |
| 3513 | ledger_update_needed = FALSE; |
| 3514 | } else { |
| 3515 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 3516 | use_active = FALSE; |
| 3517 | ledger_update_needed = TRUE; |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | /* |
| 3522 | * Enforce the new limits by writing to the ledger. |
| 3523 | * |
| 3524 | * This is a hot path and holding the proc_list_lock while writing to the ledgers, |
| 3525 | * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock. |
| 3526 | * We aren't traversing the jetsam bucket list here, so we should be safe. |
| 3527 | * See rdar://21394491. |
| 3528 | */ |
| 3529 | |
| 3530 | if (ledger_update_needed && proc_ref_locked(p) == p) { |
| 3531 | int ledger_limit; |
| 3532 | if (p->p_memstat_memlimit > 0) { |
| 3533 | ledger_limit = p->p_memstat_memlimit; |
| 3534 | } else { |
| 3535 | ledger_limit = -1; |
| 3536 | } |
| 3537 | proc_list_unlock(); |
| 3538 | task_set_phys_footprint_limit_internal(p->task, ledger_limit, NULL, use_active, is_fatal); |
| 3539 | proc_list_lock(); |
| 3540 | proc_rele_locked(p); |
| 3541 | |
| 3542 | MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n" , |
| 3543 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
| 3544 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), p->p_memstat_effectivepriority, p->p_memstat_dirty, |
| 3545 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
| 3546 | } |
| 3547 | |
| 3548 | } |
| 3549 | |
| 3550 | /* If the deferral state changed, reschedule the demotion timer */ |
| 3551 | if (reschedule) { |
| 3552 | memorystatus_reschedule_idle_demotion_locked(); |
| 3553 | } |
| 3554 | } |
| 3555 | |
| 3556 | if (kill) { |
| 3557 | if (proc_ref_locked(p) == p) { |
| 3558 | proc_list_unlock(); |
| 3559 | psignal(p, SIGKILL); |
| 3560 | proc_list_lock(); |
| 3561 | proc_rele_locked(p); |
| 3562 | } |
| 3563 | } |
| 3564 | |
| 3565 | exit: |
| 3566 | proc_list_unlock(); |
| 3567 | |
| 3568 | return ret; |
| 3569 | } |
| 3570 | |
| 3571 | int |
| 3572 | memorystatus_dirty_clear(proc_t p, uint32_t pcontrol) { |
| 3573 | |
| 3574 | int ret = 0; |
| 3575 | |
| 3576 | MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n" , p->p_pid, pcontrol, p->p_memstat_dirty); |
| 3577 | |
| 3578 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_CLEAR), p->p_pid, pcontrol, 0, 0, 0); |
| 3579 | |
| 3580 | proc_list_lock(); |
| 3581 | |
| 3582 | if ((p->p_listflag & P_LIST_EXITED) != 0) { |
| 3583 | /* |
| 3584 | * Process is on its way out. |
| 3585 | */ |
| 3586 | ret = EBUSY; |
| 3587 | goto exit; |
| 3588 | } |
| 3589 | |
| 3590 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
| 3591 | ret = EPERM; |
| 3592 | goto exit; |
| 3593 | } |
| 3594 | |
| 3595 | if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) { |
| 3596 | /* Dirty tracking not enabled */ |
| 3597 | ret = EINVAL; |
| 3598 | goto exit; |
| 3599 | } |
| 3600 | |
| 3601 | if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) == 0) { |
| 3602 | ret = EINVAL; |
| 3603 | goto exit; |
| 3604 | } |
| 3605 | |
| 3606 | if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) { |
| 3607 | p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS; |
| 3608 | } |
| 3609 | |
| 3610 | /* This can be set and cleared exactly once. */ |
| 3611 | if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) { |
| 3612 | |
| 3613 | if (p->p_memstat_dirty & P_DIRTY_DEFER) { |
| 3614 | p->p_memstat_dirty &= ~(P_DIRTY_DEFER); |
| 3615 | } |
| 3616 | |
| 3617 | if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) { |
| 3618 | p->p_memstat_dirty &= ~(P_DIRTY_DEFER_ALWAYS); |
| 3619 | } |
| 3620 | |
| 3621 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 3622 | memorystatus_update_idle_priority_locked(p); |
| 3623 | memorystatus_reschedule_idle_demotion_locked(); |
| 3624 | } |
| 3625 | |
| 3626 | ret = 0; |
| 3627 | exit: |
| 3628 | proc_list_unlock(); |
| 3629 | |
| 3630 | return ret; |
| 3631 | } |
| 3632 | |
| 3633 | int |
| 3634 | memorystatus_dirty_get(proc_t p) { |
| 3635 | int ret = 0; |
| 3636 | |
| 3637 | proc_list_lock(); |
| 3638 | |
| 3639 | if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
| 3640 | ret |= PROC_DIRTY_TRACKED; |
| 3641 | if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) { |
| 3642 | ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT; |
| 3643 | } |
| 3644 | if (p->p_memstat_dirty & P_DIRTY) { |
| 3645 | ret |= PROC_DIRTY_IS_DIRTY; |
| 3646 | } |
| 3647 | if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) { |
| 3648 | ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS; |
| 3649 | } |
| 3650 | } |
| 3651 | |
| 3652 | proc_list_unlock(); |
| 3653 | |
| 3654 | return ret; |
| 3655 | } |
| 3656 | |
| 3657 | int |
| 3658 | memorystatus_on_terminate(proc_t p) { |
| 3659 | int sig; |
| 3660 | |
| 3661 | proc_list_lock(); |
| 3662 | |
| 3663 | p->p_memstat_dirty |= P_DIRTY_TERMINATED; |
| 3664 | |
| 3665 | if ((p->p_memstat_dirty & (P_DIRTY_TRACK|P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) { |
| 3666 | /* Clean; mark as terminated and issue SIGKILL */ |
| 3667 | sig = SIGKILL; |
| 3668 | } else { |
| 3669 | /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */ |
| 3670 | sig = SIGTERM; |
| 3671 | } |
| 3672 | |
| 3673 | proc_list_unlock(); |
| 3674 | |
| 3675 | return sig; |
| 3676 | } |
| 3677 | |
| 3678 | void |
| 3679 | memorystatus_on_suspend(proc_t p) |
| 3680 | { |
| 3681 | #if CONFIG_FREEZE |
| 3682 | uint32_t pages; |
| 3683 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
| 3684 | #endif |
| 3685 | proc_list_lock(); |
| 3686 | #if CONFIG_FREEZE |
| 3687 | memorystatus_suspended_count++; |
| 3688 | #endif |
| 3689 | p->p_memstat_state |= P_MEMSTAT_SUSPENDED; |
| 3690 | proc_list_unlock(); |
| 3691 | } |
| 3692 | |
| 3693 | void |
| 3694 | memorystatus_on_resume(proc_t p) |
| 3695 | { |
| 3696 | #if CONFIG_FREEZE |
| 3697 | boolean_t frozen; |
| 3698 | pid_t pid; |
| 3699 | #endif |
| 3700 | |
| 3701 | proc_list_lock(); |
| 3702 | |
| 3703 | #if CONFIG_FREEZE |
| 3704 | frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN); |
| 3705 | if (frozen) { |
| 3706 | /* |
| 3707 | * Now that we don't _thaw_ a process completely, |
| 3708 | * resuming it (and having some on-demand swapins) |
| 3709 | * shouldn't preclude it from being counted as frozen. |
| 3710 | * |
| 3711 | * memorystatus_frozen_count--; |
| 3712 | * |
| 3713 | * We preserve the P_MEMSTAT_FROZEN state since the process |
| 3714 | * could have state on disk AND so will deserve some protection |
| 3715 | * in the jetsam bands. |
| 3716 | */ |
| 3717 | if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == 0) { |
| 3718 | p->p_memstat_state |= P_MEMSTAT_REFREEZE_ELIGIBLE; |
| 3719 | memorystatus_refreeze_eligible_count++; |
| 3720 | } |
| 3721 | p->p_memstat_thaw_count++; |
| 3722 | |
| 3723 | memorystatus_thaw_count++; |
| 3724 | } |
| 3725 | |
| 3726 | memorystatus_suspended_count--; |
| 3727 | |
| 3728 | pid = p->p_pid; |
| 3729 | #endif |
| 3730 | |
| 3731 | /* |
| 3732 | * P_MEMSTAT_FROZEN will remain unchanged. This used to be: |
| 3733 | * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN); |
| 3734 | */ |
| 3735 | p->p_memstat_state &= ~P_MEMSTAT_SUSPENDED; |
| 3736 | |
| 3737 | proc_list_unlock(); |
| 3738 | |
| 3739 | #if CONFIG_FREEZE |
| 3740 | if (frozen) { |
| 3741 | memorystatus_freeze_entry_t data = { pid, FALSE, 0 }; |
| 3742 | memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); |
| 3743 | } |
| 3744 | #endif |
| 3745 | } |
| 3746 | |
| 3747 | void |
| 3748 | memorystatus_on_inactivity(proc_t p) |
| 3749 | { |
| 3750 | #pragma unused(p) |
| 3751 | #if CONFIG_FREEZE |
| 3752 | /* Wake the freeze thread */ |
| 3753 | thread_wakeup((event_t)&memorystatus_freeze_wakeup); |
| 3754 | #endif |
| 3755 | } |
| 3756 | |
| 3757 | /* |
| 3758 | * The proc_list_lock is held by the caller. |
| 3759 | */ |
| 3760 | static uint32_t |
| 3761 | memorystatus_build_state(proc_t p) { |
| 3762 | uint32_t snapshot_state = 0; |
| 3763 | |
| 3764 | /* General */ |
| 3765 | if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) { |
| 3766 | snapshot_state |= kMemorystatusSuspended; |
| 3767 | } |
| 3768 | if (p->p_memstat_state & P_MEMSTAT_FROZEN) { |
| 3769 | snapshot_state |= kMemorystatusFrozen; |
| 3770 | } |
| 3771 | if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { |
| 3772 | snapshot_state |= kMemorystatusWasThawed; |
| 3773 | } |
| 3774 | |
| 3775 | /* Tracking */ |
| 3776 | if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
| 3777 | snapshot_state |= kMemorystatusTracked; |
| 3778 | } |
| 3779 | if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) { |
| 3780 | snapshot_state |= kMemorystatusSupportsIdleExit; |
| 3781 | } |
| 3782 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { |
| 3783 | snapshot_state |= kMemorystatusDirty; |
| 3784 | } |
| 3785 | |
| 3786 | return snapshot_state; |
| 3787 | } |
| 3788 | |
| 3789 | static boolean_t |
| 3790 | kill_idle_exit_proc(void) |
| 3791 | { |
| 3792 | proc_t p, victim_p = PROC_NULL; |
| 3793 | uint64_t current_time; |
| 3794 | boolean_t killed = FALSE; |
| 3795 | unsigned int i = 0; |
| 3796 | os_reason_t jetsam_reason = OS_REASON_NULL; |
| 3797 | |
| 3798 | /* Pick next idle exit victim. */ |
| 3799 | current_time = mach_absolute_time(); |
| 3800 | |
| 3801 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_IDLE_EXIT); |
| 3802 | if (jetsam_reason == OS_REASON_NULL) { |
| 3803 | printf("kill_idle_exit_proc: failed to allocate jetsam reason\n" ); |
| 3804 | } |
| 3805 | |
| 3806 | proc_list_lock(); |
| 3807 | |
| 3808 | p = memorystatus_get_first_proc_locked(&i, FALSE); |
| 3809 | while (p) { |
| 3810 | /* No need to look beyond the idle band */ |
| 3811 | if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) { |
| 3812 | break; |
| 3813 | } |
| 3814 | |
| 3815 | if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT|P_DIRTY_IS_DIRTY|P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) { |
| 3816 | if (current_time >= p->p_memstat_idledeadline) { |
| 3817 | p->p_memstat_dirty |= P_DIRTY_TERMINATED; |
| 3818 | victim_p = proc_ref_locked(p); |
| 3819 | break; |
| 3820 | } |
| 3821 | } |
| 3822 | |
| 3823 | p = memorystatus_get_next_proc_locked(&i, p, FALSE); |
| 3824 | } |
| 3825 | |
| 3826 | proc_list_unlock(); |
| 3827 | |
| 3828 | if (victim_p) { |
| 3829 | printf("memorystatus: killing_idle_process pid %d [%s]\n" , victim_p->p_pid, (*victim_p->p_name ? victim_p->p_name : "unknown" )); |
| 3830 | killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit, jetsam_reason); |
| 3831 | proc_rele(victim_p); |
| 3832 | } else { |
| 3833 | os_reason_free(jetsam_reason); |
| 3834 | } |
| 3835 | |
| 3836 | return killed; |
| 3837 | } |
| 3838 | |
| 3839 | static void |
| 3840 | memorystatus_thread_wake(void) |
| 3841 | { |
| 3842 | int thr_id = 0; |
| 3843 | int active_thr = atomic_load(&active_jetsam_threads); |
| 3844 | |
| 3845 | /* Wakeup all the jetsam threads */ |
| 3846 | for (thr_id = 0; thr_id < active_thr; thr_id++) { |
| 3847 | thread_wakeup((event_t)&jetsam_threads[thr_id].memorystatus_wakeup); |
| 3848 | } |
| 3849 | } |
| 3850 | |
| 3851 | #if CONFIG_JETSAM |
| 3852 | |
| 3853 | static void |
| 3854 | memorystatus_thread_pool_max() |
| 3855 | { |
| 3856 | /* Increase the jetsam thread pool to max_jetsam_threads */ |
| 3857 | int max_threads = max_jetsam_threads; |
| 3858 | printf("Expanding memorystatus pool to %d!\n" , max_threads); |
| 3859 | atomic_store(&active_jetsam_threads, max_threads); |
| 3860 | } |
| 3861 | |
| 3862 | static void |
| 3863 | memorystatus_thread_pool_default() |
| 3864 | { |
| 3865 | /* Restore the jetsam thread pool to a single thread */ |
| 3866 | printf("Reverting memorystatus pool back to 1\n" ); |
| 3867 | atomic_store(&active_jetsam_threads, 1); |
| 3868 | } |
| 3869 | |
| 3870 | #endif /* CONFIG_JETSAM */ |
| 3871 | |
| 3872 | extern void vm_pressure_response(void); |
| 3873 | |
| 3874 | static int |
| 3875 | memorystatus_thread_block(uint32_t interval_ms, thread_continue_t continuation) |
| 3876 | { |
| 3877 | struct jetsam_thread_state *jetsam_thread = jetsam_current_thread(); |
| 3878 | |
| 3879 | if (interval_ms) { |
| 3880 | assert_wait_timeout(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT, interval_ms, NSEC_PER_MSEC); |
| 3881 | } else { |
| 3882 | assert_wait(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT); |
| 3883 | } |
| 3884 | |
| 3885 | return thread_block(continuation); |
| 3886 | } |
| 3887 | |
| 3888 | static boolean_t |
| 3889 | memorystatus_avail_pages_below_pressure(void) |
| 3890 | { |
| 3891 | #if CONFIG_EMBEDDED |
| 3892 | /* |
| 3893 | * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should |
| 3894 | * key off of the system having dynamic swap support. With full swap support, |
| 3895 | * the system shouldn't really need to worry about various page thresholds. |
| 3896 | */ |
| 3897 | return (memorystatus_available_pages <= memorystatus_available_pages_pressure); |
| 3898 | #else /* CONFIG_EMBEDDED */ |
| 3899 | return FALSE; |
| 3900 | #endif /* CONFIG_EMBEDDED */ |
| 3901 | } |
| 3902 | |
| 3903 | static boolean_t |
| 3904 | memorystatus_avail_pages_below_critical(void) |
| 3905 | { |
| 3906 | #if CONFIG_EMBEDDED |
| 3907 | return (memorystatus_available_pages <= memorystatus_available_pages_critical); |
| 3908 | #else /* CONFIG_EMBEDDED */ |
| 3909 | return FALSE; |
| 3910 | #endif /* CONFIG_EMBEDDED */ |
| 3911 | } |
| 3912 | |
| 3913 | static boolean_t |
| 3914 | memorystatus_post_snapshot(int32_t priority, uint32_t cause) |
| 3915 | { |
| 3916 | #if CONFIG_EMBEDDED |
| 3917 | #pragma unused(cause) |
| 3918 | /* |
| 3919 | * Don't generate logs for steady-state idle-exit kills, |
| 3920 | * unless it is overridden for debug or by the device |
| 3921 | * tree. |
| 3922 | */ |
| 3923 | |
| 3924 | return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot); |
| 3925 | |
| 3926 | #else /* CONFIG_EMBEDDED */ |
| 3927 | /* |
| 3928 | * Don't generate logs for steady-state idle-exit kills, |
| 3929 | * unless |
| 3930 | * - it is overridden for debug or by the device |
| 3931 | * tree. |
| 3932 | * OR |
| 3933 | * - the kill causes are important i.e. not kMemorystatusKilledIdleExit |
| 3934 | */ |
| 3935 | |
| 3936 | boolean_t snapshot_eligible_kill_cause = (is_reason_thrashing(cause) || is_reason_zone_map_exhaustion(cause)); |
| 3937 | return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot || snapshot_eligible_kill_cause); |
| 3938 | #endif /* CONFIG_EMBEDDED */ |
| 3939 | } |
| 3940 | |
| 3941 | static boolean_t |
| 3942 | memorystatus_action_needed(void) |
| 3943 | { |
| 3944 | #if CONFIG_EMBEDDED |
| 3945 | return (is_reason_thrashing(kill_under_pressure_cause) || |
| 3946 | is_reason_zone_map_exhaustion(kill_under_pressure_cause) || |
| 3947 | memorystatus_available_pages <= memorystatus_available_pages_pressure); |
| 3948 | #else /* CONFIG_EMBEDDED */ |
| 3949 | return (is_reason_thrashing(kill_under_pressure_cause) || |
| 3950 | is_reason_zone_map_exhaustion(kill_under_pressure_cause)); |
| 3951 | #endif /* CONFIG_EMBEDDED */ |
| 3952 | } |
| 3953 | |
| 3954 | #if CONFIG_FREEZE |
| 3955 | extern void vm_swap_consider_defragmenting(int); |
| 3956 | |
| 3957 | /* |
| 3958 | * This routine will _jetsam_ all frozen processes |
| 3959 | * and reclaim the swap space immediately. |
| 3960 | * |
| 3961 | * So freeze has to be DISABLED when we call this routine. |
| 3962 | */ |
| 3963 | |
| 3964 | void |
| 3965 | memorystatus_disable_freeze(void) |
| 3966 | { |
| 3967 | memstat_bucket_t *bucket; |
| 3968 | int bucket_count = 0, retries = 0; |
| 3969 | boolean_t retval = FALSE, killed = FALSE; |
| 3970 | uint32_t errors = 0, errors_over_prev_iteration = 0; |
| 3971 | os_reason_t jetsam_reason = 0; |
| 3972 | unsigned int band = 0; |
| 3973 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
| 3974 | |
| 3975 | assert(memorystatus_freeze_enabled == FALSE); |
| 3976 | |
| 3977 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_DISK_SPACE_SHORTAGE); |
| 3978 | if (jetsam_reason == OS_REASON_NULL) { |
| 3979 | printf("memorystatus_disable_freeze: failed to allocate jetsam reason\n" ); |
| 3980 | } |
| 3981 | |
| 3982 | /* |
| 3983 | * Let's relocate all frozen processes into band 8. Demoted frozen processes |
| 3984 | * are sitting in band 0 currently and it's possible to have a frozen process |
| 3985 | * in the FG band being actively used. We don't reset its frozen state when |
| 3986 | * it is resumed because it has state on disk. |
| 3987 | * |
| 3988 | * We choose to do this relocation rather than implement a new 'kill frozen' |
| 3989 | * process function for these reasons: |
| 3990 | * - duplication of code: too many kill functions exist and we need to rework them better. |
| 3991 | * - disk-space-shortage kills are rare |
| 3992 | * - not having the 'real' jetsam band at time of the this frozen kill won't preclude us |
| 3993 | * from answering any imp. questions re. jetsam policy/effectiveness. |
| 3994 | * |
| 3995 | * This is essentially what memorystatus_update_inactive_jetsam_priority_band() does while |
| 3996 | * avoiding the application of memory limits. |
| 3997 | */ |
| 3998 | |
| 3999 | again: |
| 4000 | proc_list_lock(); |
| 4001 | |
| 4002 | band = JETSAM_PRIORITY_IDLE; |
| 4003 | p = PROC_NULL; |
| 4004 | next_p = PROC_NULL; |
| 4005 | |
| 4006 | next_p = memorystatus_get_first_proc_locked(&band, TRUE); |
| 4007 | while (next_p) { |
| 4008 | |
| 4009 | p = next_p; |
| 4010 | next_p = memorystatus_get_next_proc_locked(&band, p, TRUE); |
| 4011 | |
| 4012 | if (p->p_memstat_effectivepriority > JETSAM_PRIORITY_FOREGROUND) { |
| 4013 | break; |
| 4014 | } |
| 4015 | |
| 4016 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { |
| 4017 | continue; |
| 4018 | } |
| 4019 | |
| 4020 | if (p->p_memstat_state & P_MEMSTAT_ERROR) { |
| 4021 | p->p_memstat_state &= ~P_MEMSTAT_ERROR; |
| 4022 | } |
| 4023 | |
| 4024 | if (p->p_memstat_effectivepriority == memorystatus_freeze_jetsam_band) { |
| 4025 | continue; |
| 4026 | } |
| 4027 | |
| 4028 | /* |
| 4029 | * We explicitly add this flag here so the process looks like a normal |
| 4030 | * frozen process i.e. P_MEMSTAT_FROZEN and P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND. |
| 4031 | * We don't bother with assigning the 'active' memory |
| 4032 | * limits at this point because we are going to be killing it soon below. |
| 4033 | */ |
| 4034 | p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
| 4035 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 4036 | |
| 4037 | memorystatus_update_priority_locked(p, memorystatus_freeze_jetsam_band, FALSE, TRUE); |
| 4038 | } |
| 4039 | |
| 4040 | bucket = &memstat_bucket[memorystatus_freeze_jetsam_band]; |
| 4041 | bucket_count = bucket->count; |
| 4042 | proc_list_unlock(); |
| 4043 | |
| 4044 | /* |
| 4045 | * Bucket count is already stale at this point. But, we don't expect |
| 4046 | * freezing to continue since we have already disabled the freeze functionality. |
| 4047 | * However, an existing freeze might be in progress. So we might miss that process |
| 4048 | * in the first go-around. We hope to catch it in the next. |
| 4049 | */ |
| 4050 | |
| 4051 | errors_over_prev_iteration = 0; |
| 4052 | while (bucket_count) { |
| 4053 | |
| 4054 | bucket_count--; |
| 4055 | |
| 4056 | /* |
| 4057 | * memorystatus_kill_elevated_process() drops a reference, |
| 4058 | * so take another one so we can continue to use this exit reason |
| 4059 | * even after it returns. |
| 4060 | */ |
| 4061 | |
| 4062 | os_reason_ref(jetsam_reason); |
| 4063 | retval = memorystatus_kill_elevated_process( |
| 4064 | kMemorystatusKilledDiskSpaceShortage, |
| 4065 | jetsam_reason, |
| 4066 | memorystatus_freeze_jetsam_band, |
| 4067 | 0, /* the iteration of aggressive jetsam..ignored here */ |
| 4068 | &errors); |
| 4069 | |
| 4070 | if (errors > 0) { |
| 4071 | printf("memorystatus_disable_freeze: memorystatus_kill_elevated_process returned %d error(s)\n" , errors); |
| 4072 | errors_over_prev_iteration += errors; |
| 4073 | errors = 0; |
| 4074 | } |
| 4075 | |
| 4076 | if (retval == 0) { |
| 4077 | /* |
| 4078 | * No frozen processes left to kill. |
| 4079 | */ |
| 4080 | break; |
| 4081 | } |
| 4082 | |
| 4083 | killed = TRUE; |
| 4084 | } |
| 4085 | |
| 4086 | proc_list_lock(); |
| 4087 | |
| 4088 | if (memorystatus_frozen_count) { |
| 4089 | /* |
| 4090 | * A frozen process snuck in and so |
| 4091 | * go back around to kill it. That |
| 4092 | * process may have been resumed and |
| 4093 | * put into the FG band too. So we |
| 4094 | * have to do the relocation again. |
| 4095 | */ |
| 4096 | assert(memorystatus_freeze_enabled == FALSE); |
| 4097 | |
| 4098 | retries++; |
| 4099 | if (retries < 3) { |
| 4100 | proc_list_unlock(); |
| 4101 | goto again; |
| 4102 | } |
| 4103 | #if DEVELOPMENT || DEBUG |
| 4104 | panic("memorystatus_disable_freeze: Failed to kill all frozen processes, memorystatus_frozen_count = %d, errors = %d" , |
| 4105 | memorystatus_frozen_count, errors_over_prev_iteration); |
| 4106 | #endif /* DEVELOPMENT || DEBUG */ |
| 4107 | } |
| 4108 | proc_list_unlock(); |
| 4109 | |
| 4110 | os_reason_free(jetsam_reason); |
| 4111 | |
| 4112 | if (killed) { |
| 4113 | |
| 4114 | vm_swap_consider_defragmenting(VM_SWAP_FLAGS_FORCE_DEFRAG | VM_SWAP_FLAGS_FORCE_RECLAIM); |
| 4115 | |
| 4116 | proc_list_lock(); |
| 4117 | size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
| 4118 | sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count); |
| 4119 | uint64_t timestamp_now = mach_absolute_time(); |
| 4120 | memorystatus_jetsam_snapshot->notification_time = timestamp_now; |
| 4121 | memorystatus_jetsam_snapshot->js_gencount++; |
| 4122 | if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || |
| 4123 | timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { |
| 4124 | proc_list_unlock(); |
| 4125 | int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); |
| 4126 | if (!ret) { |
| 4127 | proc_list_lock(); |
| 4128 | memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; |
| 4129 | proc_list_unlock(); |
| 4130 | } |
| 4131 | } else { |
| 4132 | proc_list_unlock(); |
| 4133 | } |
| 4134 | } |
| 4135 | |
| 4136 | return; |
| 4137 | } |
| 4138 | #endif /* CONFIG_FREEZE */ |
| 4139 | |
| 4140 | static boolean_t |
| 4141 | memorystatus_act_on_hiwat_processes(uint32_t *errors, uint32_t *hwm_kill, boolean_t *post_snapshot, __unused boolean_t *is_critical) |
| 4142 | { |
| 4143 | boolean_t purged = FALSE; |
| 4144 | boolean_t killed = memorystatus_kill_hiwat_proc(errors, &purged); |
| 4145 | |
| 4146 | if (killed) { |
| 4147 | *hwm_kill = *hwm_kill + 1; |
| 4148 | *post_snapshot = TRUE; |
| 4149 | return TRUE; |
| 4150 | } else { |
| 4151 | if (purged == FALSE) { |
| 4152 | /* couldn't purge and couldn't kill */ |
| 4153 | memorystatus_hwm_candidates = FALSE; |
| 4154 | } |
| 4155 | } |
| 4156 | |
| 4157 | #if CONFIG_JETSAM |
| 4158 | /* No highwater processes to kill. Continue or stop for now? */ |
| 4159 | if (!is_reason_thrashing(kill_under_pressure_cause) && |
| 4160 | !is_reason_zone_map_exhaustion(kill_under_pressure_cause) && |
| 4161 | (memorystatus_available_pages > memorystatus_available_pages_critical)) { |
| 4162 | /* |
| 4163 | * We are _not_ out of pressure but we are above the critical threshold and there's: |
| 4164 | * - no compressor thrashing |
| 4165 | * - enough zone memory |
| 4166 | * - no more HWM processes left. |
| 4167 | * For now, don't kill any other processes. |
| 4168 | */ |
| 4169 | |
| 4170 | if (*hwm_kill == 0) { |
| 4171 | memorystatus_thread_wasted_wakeup++; |
| 4172 | } |
| 4173 | |
| 4174 | *is_critical = FALSE; |
| 4175 | |
| 4176 | return TRUE; |
| 4177 | } |
| 4178 | #endif /* CONFIG_JETSAM */ |
| 4179 | |
| 4180 | return FALSE; |
| 4181 | } |
| 4182 | |
| 4183 | static boolean_t |
| 4184 | memorystatus_act_aggressive(uint32_t cause, os_reason_t jetsam_reason, int *jld_idle_kills, boolean_t *corpse_list_purged, boolean_t *post_snapshot) |
| 4185 | { |
| 4186 | if (memorystatus_jld_enabled == TRUE) { |
| 4187 | |
| 4188 | boolean_t killed; |
| 4189 | uint32_t errors = 0; |
| 4190 | |
| 4191 | /* Jetsam Loop Detection - locals */ |
| 4192 | memstat_bucket_t *bucket; |
| 4193 | int jld_bucket_count = 0; |
| 4194 | struct timeval jld_now_tstamp = {0,0}; |
| 4195 | uint64_t jld_now_msecs = 0; |
| 4196 | int elevated_bucket_count = 0; |
| 4197 | |
| 4198 | /* Jetsam Loop Detection - statics */ |
| 4199 | static uint64_t jld_timestamp_msecs = 0; |
| 4200 | static int jld_idle_kill_candidates = 0; /* Number of available processes in band 0,1 at start */ |
| 4201 | static int jld_eval_aggressive_count = 0; /* Bumps the max priority in aggressive loop */ |
| 4202 | static int32_t jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT; |
| 4203 | /* |
| 4204 | * Jetsam Loop Detection: attempt to detect |
| 4205 | * rapid daemon relaunches in the lower bands. |
| 4206 | */ |
| 4207 | |
| 4208 | microuptime(&jld_now_tstamp); |
| 4209 | |
| 4210 | /* |
| 4211 | * Ignore usecs in this calculation. |
| 4212 | * msecs granularity is close enough. |
| 4213 | */ |
| 4214 | jld_now_msecs = (jld_now_tstamp.tv_sec * 1000); |
| 4215 | |
| 4216 | proc_list_lock(); |
| 4217 | switch (jetsam_aging_policy) { |
| 4218 | case kJetsamAgingPolicyLegacy: |
| 4219 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
| 4220 | jld_bucket_count = bucket->count; |
| 4221 | bucket = &memstat_bucket[JETSAM_PRIORITY_AGING_BAND1]; |
| 4222 | jld_bucket_count += bucket->count; |
| 4223 | break; |
| 4224 | case kJetsamAgingPolicySysProcsReclaimedFirst: |
| 4225 | case kJetsamAgingPolicyAppsReclaimedFirst: |
| 4226 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
| 4227 | jld_bucket_count = bucket->count; |
| 4228 | bucket = &memstat_bucket[system_procs_aging_band]; |
| 4229 | jld_bucket_count += bucket->count; |
| 4230 | bucket = &memstat_bucket[applications_aging_band]; |
| 4231 | jld_bucket_count += bucket->count; |
| 4232 | break; |
| 4233 | case kJetsamAgingPolicyNone: |
| 4234 | default: |
| 4235 | bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
| 4236 | jld_bucket_count = bucket->count; |
| 4237 | break; |
| 4238 | } |
| 4239 | |
| 4240 | bucket = &memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE]; |
| 4241 | elevated_bucket_count = bucket->count; |
| 4242 | |
| 4243 | proc_list_unlock(); |
| 4244 | |
| 4245 | /* |
| 4246 | * memorystatus_jld_eval_period_msecs is a tunable |
| 4247 | * memorystatus_jld_eval_aggressive_count is a tunable |
| 4248 | * memorystatus_jld_eval_aggressive_priority_band_max is a tunable |
| 4249 | */ |
| 4250 | if ( (jld_bucket_count == 0) || |
| 4251 | (jld_now_msecs > (jld_timestamp_msecs + memorystatus_jld_eval_period_msecs))) { |
| 4252 | |
| 4253 | /* |
| 4254 | * Refresh evaluation parameters |
| 4255 | */ |
| 4256 | jld_timestamp_msecs = jld_now_msecs; |
| 4257 | jld_idle_kill_candidates = jld_bucket_count; |
| 4258 | *jld_idle_kills = 0; |
| 4259 | jld_eval_aggressive_count = 0; |
| 4260 | jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT; |
| 4261 | } |
| 4262 | |
| 4263 | if (*jld_idle_kills > jld_idle_kill_candidates) { |
| 4264 | jld_eval_aggressive_count++; |
| 4265 | |
| 4266 | #if DEVELOPMENT || DEBUG |
| 4267 | printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n" , |
| 4268 | jld_eval_aggressive_count, |
| 4269 | jld_timestamp_msecs, |
| 4270 | jld_now_msecs); |
| 4271 | printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n" , |
| 4272 | jld_eval_aggressive_count, |
| 4273 | jld_idle_kill_candidates, |
| 4274 | *jld_idle_kills); |
| 4275 | #endif /* DEVELOPMENT || DEBUG */ |
| 4276 | |
| 4277 | if ((jld_eval_aggressive_count == memorystatus_jld_eval_aggressive_count) && |
| 4278 | (total_corpses_count() > 0) && (*corpse_list_purged == FALSE)) { |
| 4279 | /* |
| 4280 | * If we reach this aggressive cycle, corpses might be causing memory pressure. |
| 4281 | * So, in an effort to avoid jetsams in the FG band, we will attempt to purge |
| 4282 | * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT. |
| 4283 | */ |
| 4284 | task_purge_all_corpses(); |
| 4285 | *corpse_list_purged = TRUE; |
| 4286 | } |
| 4287 | else if (jld_eval_aggressive_count > memorystatus_jld_eval_aggressive_count) { |
| 4288 | /* |
| 4289 | * Bump up the jetsam priority limit (eg: the bucket index) |
| 4290 | * Enforce bucket index sanity. |
| 4291 | */ |
| 4292 | if ((memorystatus_jld_eval_aggressive_priority_band_max < 0) || |
| 4293 | (memorystatus_jld_eval_aggressive_priority_band_max >= MEMSTAT_BUCKET_COUNT)) { |
| 4294 | /* |
| 4295 | * Do nothing. Stick with the default level. |
| 4296 | */ |
| 4297 | } else { |
| 4298 | jld_priority_band_max = memorystatus_jld_eval_aggressive_priority_band_max; |
| 4299 | } |
| 4300 | } |
| 4301 | |
| 4302 | /* Visit elevated processes first */ |
| 4303 | while (elevated_bucket_count) { |
| 4304 | |
| 4305 | elevated_bucket_count--; |
| 4306 | |
| 4307 | /* |
| 4308 | * memorystatus_kill_elevated_process() drops a reference, |
| 4309 | * so take another one so we can continue to use this exit reason |
| 4310 | * even after it returns. |
| 4311 | */ |
| 4312 | |
| 4313 | os_reason_ref(jetsam_reason); |
| 4314 | killed = memorystatus_kill_elevated_process( |
| 4315 | cause, |
| 4316 | jetsam_reason, |
| 4317 | JETSAM_PRIORITY_ELEVATED_INACTIVE, |
| 4318 | jld_eval_aggressive_count, |
| 4319 | &errors); |
| 4320 | |
| 4321 | if (killed) { |
| 4322 | *post_snapshot = TRUE; |
| 4323 | if (memorystatus_avail_pages_below_pressure()) { |
| 4324 | /* |
| 4325 | * Still under pressure. |
| 4326 | * Find another pinned processes. |
| 4327 | */ |
| 4328 | continue; |
| 4329 | } else { |
| 4330 | return TRUE; |
| 4331 | } |
| 4332 | } else { |
| 4333 | /* |
| 4334 | * No pinned processes left to kill. |
| 4335 | * Abandon elevated band. |
| 4336 | */ |
| 4337 | break; |
| 4338 | } |
| 4339 | } |
| 4340 | |
| 4341 | /* |
| 4342 | * memorystatus_kill_top_process_aggressive() allocates its own |
| 4343 | * jetsam_reason so the kMemorystatusKilledProcThrashing cause |
| 4344 | * is consistent throughout the aggressive march. |
| 4345 | */ |
| 4346 | killed = memorystatus_kill_top_process_aggressive( |
| 4347 | kMemorystatusKilledProcThrashing, |
| 4348 | jld_eval_aggressive_count, |
| 4349 | jld_priority_band_max, |
| 4350 | &errors); |
| 4351 | |
| 4352 | if (killed) { |
| 4353 | /* Always generate logs after aggressive kill */ |
| 4354 | *post_snapshot = TRUE; |
| 4355 | *jld_idle_kills = 0; |
| 4356 | return TRUE; |
| 4357 | } |
| 4358 | } |
| 4359 | |
| 4360 | return FALSE; |
| 4361 | } |
| 4362 | |
| 4363 | return FALSE; |
| 4364 | } |
| 4365 | |
| 4366 | |
| 4367 | static void |
| 4368 | memorystatus_thread(void *param __unused, wait_result_t wr __unused) |
| 4369 | { |
| 4370 | boolean_t post_snapshot = FALSE; |
| 4371 | uint32_t errors = 0; |
| 4372 | uint32_t hwm_kill = 0; |
| 4373 | boolean_t sort_flag = TRUE; |
| 4374 | boolean_t corpse_list_purged = FALSE; |
| 4375 | int jld_idle_kills = 0; |
| 4376 | struct jetsam_thread_state *jetsam_thread = jetsam_current_thread(); |
| 4377 | |
| 4378 | if (jetsam_thread->inited == FALSE) { |
| 4379 | /* |
| 4380 | * It's the first time the thread has run, so just mark the thread as privileged and block. |
| 4381 | * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>. |
| 4382 | */ |
| 4383 | |
| 4384 | char name[32]; |
| 4385 | thread_wire(host_priv_self(), current_thread(), TRUE); |
| 4386 | snprintf(name, 32, "VM_memorystatus_%d" , jetsam_thread->index + 1); |
| 4387 | |
| 4388 | if (jetsam_thread->index == 0) { |
| 4389 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { |
| 4390 | thread_vm_bind_group_add(); |
| 4391 | } |
| 4392 | } |
| 4393 | thread_set_thread_name(current_thread(), name); |
| 4394 | jetsam_thread->inited = TRUE; |
| 4395 | memorystatus_thread_block(0, memorystatus_thread); |
| 4396 | } |
| 4397 | |
| 4398 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_START, |
| 4399 | memorystatus_available_pages, memorystatus_jld_enabled, memorystatus_jld_eval_period_msecs, memorystatus_jld_eval_aggressive_count,0); |
| 4400 | |
| 4401 | /* |
| 4402 | * Jetsam aware version. |
| 4403 | * |
| 4404 | * The VM pressure notification thread is working it's way through clients in parallel. |
| 4405 | * |
| 4406 | * So, while the pressure notification thread is targeting processes in order of |
| 4407 | * increasing jetsam priority, we can hopefully reduce / stop it's work by killing |
| 4408 | * any processes that have exceeded their highwater mark. |
| 4409 | * |
| 4410 | * If we run out of HWM processes and our available pages drops below the critical threshold, then, |
| 4411 | * we target the least recently used process in order of increasing jetsam priority (exception: the FG band). |
| 4412 | */ |
| 4413 | while (memorystatus_action_needed()) { |
| 4414 | boolean_t killed; |
| 4415 | int32_t priority; |
| 4416 | uint32_t cause; |
| 4417 | uint64_t jetsam_reason_code = JETSAM_REASON_INVALID; |
| 4418 | os_reason_t jetsam_reason = OS_REASON_NULL; |
| 4419 | |
| 4420 | cause = kill_under_pressure_cause; |
| 4421 | switch (cause) { |
| 4422 | case kMemorystatusKilledFCThrashing: |
| 4423 | jetsam_reason_code = JETSAM_REASON_MEMORY_FCTHRASHING; |
| 4424 | break; |
| 4425 | case kMemorystatusKilledVMCompressorThrashing: |
| 4426 | jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING; |
| 4427 | break; |
| 4428 | case kMemorystatusKilledVMCompressorSpaceShortage: |
| 4429 | jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE; |
| 4430 | break; |
| 4431 | case kMemorystatusKilledZoneMapExhaustion: |
| 4432 | jetsam_reason_code = JETSAM_REASON_ZONE_MAP_EXHAUSTION; |
| 4433 | break; |
| 4434 | case kMemorystatusKilledVMPageShortage: |
| 4435 | /* falls through */ |
| 4436 | default: |
| 4437 | jetsam_reason_code = JETSAM_REASON_MEMORY_VMPAGESHORTAGE; |
| 4438 | cause = kMemorystatusKilledVMPageShortage; |
| 4439 | break; |
| 4440 | } |
| 4441 | |
| 4442 | /* Highwater */ |
| 4443 | boolean_t is_critical = TRUE; |
| 4444 | if (memorystatus_act_on_hiwat_processes(&errors, &hwm_kill, &post_snapshot, &is_critical)) { |
| 4445 | if (is_critical == FALSE) { |
| 4446 | /* |
| 4447 | * For now, don't kill any other processes. |
| 4448 | */ |
| 4449 | break; |
| 4450 | } else { |
| 4451 | goto done; |
| 4452 | } |
| 4453 | } |
| 4454 | |
| 4455 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, jetsam_reason_code); |
| 4456 | if (jetsam_reason == OS_REASON_NULL) { |
| 4457 | printf("memorystatus_thread: failed to allocate jetsam reason\n" ); |
| 4458 | } |
| 4459 | |
| 4460 | if (memorystatus_act_aggressive(cause, jetsam_reason, &jld_idle_kills, &corpse_list_purged, &post_snapshot)) { |
| 4461 | goto done; |
| 4462 | } |
| 4463 | |
| 4464 | /* |
| 4465 | * memorystatus_kill_top_process() drops a reference, |
| 4466 | * so take another one so we can continue to use this exit reason |
| 4467 | * even after it returns |
| 4468 | */ |
| 4469 | os_reason_ref(jetsam_reason); |
| 4470 | |
| 4471 | /* LRU */ |
| 4472 | killed = memorystatus_kill_top_process(TRUE, sort_flag, cause, jetsam_reason, &priority, &errors); |
| 4473 | sort_flag = FALSE; |
| 4474 | |
| 4475 | if (killed) { |
| 4476 | if (memorystatus_post_snapshot(priority, cause) == TRUE) { |
| 4477 | |
| 4478 | post_snapshot = TRUE; |
| 4479 | } |
| 4480 | |
| 4481 | /* Jetsam Loop Detection */ |
| 4482 | if (memorystatus_jld_enabled == TRUE) { |
| 4483 | if ((priority == JETSAM_PRIORITY_IDLE) || (priority == system_procs_aging_band) || (priority == applications_aging_band)) { |
| 4484 | jld_idle_kills++; |
| 4485 | } else { |
| 4486 | /* |
| 4487 | * We've reached into bands beyond idle deferred. |
| 4488 | * We make no attempt to monitor them |
| 4489 | */ |
| 4490 | } |
| 4491 | } |
| 4492 | |
| 4493 | if ((priority >= JETSAM_PRIORITY_UI_SUPPORT) && (total_corpses_count() > 0) && (corpse_list_purged == FALSE)) { |
| 4494 | /* |
| 4495 | * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT |
| 4496 | * then we attempt to relieve pressure by purging corpse memory. |
| 4497 | */ |
| 4498 | task_purge_all_corpses(); |
| 4499 | corpse_list_purged = TRUE; |
| 4500 | } |
| 4501 | goto done; |
| 4502 | } |
| 4503 | |
| 4504 | if (memorystatus_avail_pages_below_critical()) { |
| 4505 | /* |
| 4506 | * Still under pressure and unable to kill a process - purge corpse memory |
| 4507 | */ |
| 4508 | if (total_corpses_count() > 0) { |
| 4509 | task_purge_all_corpses(); |
| 4510 | corpse_list_purged = TRUE; |
| 4511 | } |
| 4512 | |
| 4513 | if (memorystatus_avail_pages_below_critical()) { |
| 4514 | /* |
| 4515 | * Still under pressure and unable to kill a process - panic |
| 4516 | */ |
| 4517 | panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n" , (uint64_t)memorystatus_available_pages); |
| 4518 | } |
| 4519 | } |
| 4520 | |
| 4521 | done: |
| 4522 | |
| 4523 | /* |
| 4524 | * We do not want to over-kill when thrashing has been detected. |
| 4525 | * To avoid that, we reset the flag here and notify the |
| 4526 | * compressor. |
| 4527 | */ |
| 4528 | if (is_reason_thrashing(kill_under_pressure_cause)) { |
| 4529 | kill_under_pressure_cause = 0; |
| 4530 | #if CONFIG_JETSAM |
| 4531 | vm_thrashing_jetsam_done(); |
| 4532 | #endif /* CONFIG_JETSAM */ |
| 4533 | } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause)) { |
| 4534 | kill_under_pressure_cause = 0; |
| 4535 | } |
| 4536 | |
| 4537 | os_reason_free(jetsam_reason); |
| 4538 | } |
| 4539 | |
| 4540 | kill_under_pressure_cause = 0; |
| 4541 | |
| 4542 | if (errors) { |
| 4543 | memorystatus_clear_errors(); |
| 4544 | } |
| 4545 | |
| 4546 | if (post_snapshot) { |
| 4547 | proc_list_lock(); |
| 4548 | size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
| 4549 | sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count); |
| 4550 | uint64_t timestamp_now = mach_absolute_time(); |
| 4551 | memorystatus_jetsam_snapshot->notification_time = timestamp_now; |
| 4552 | memorystatus_jetsam_snapshot->js_gencount++; |
| 4553 | if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || |
| 4554 | timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { |
| 4555 | proc_list_unlock(); |
| 4556 | int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); |
| 4557 | if (!ret) { |
| 4558 | proc_list_lock(); |
| 4559 | memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; |
| 4560 | proc_list_unlock(); |
| 4561 | } |
| 4562 | } else { |
| 4563 | proc_list_unlock(); |
| 4564 | } |
| 4565 | } |
| 4566 | |
| 4567 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_END, |
| 4568 | memorystatus_available_pages, 0, 0, 0, 0); |
| 4569 | |
| 4570 | memorystatus_thread_block(0, memorystatus_thread); |
| 4571 | } |
| 4572 | |
| 4573 | /* |
| 4574 | * Returns TRUE: |
| 4575 | * when an idle-exitable proc was killed |
| 4576 | * Returns FALSE: |
| 4577 | * when there are no more idle-exitable procs found |
| 4578 | * when the attempt to kill an idle-exitable proc failed |
| 4579 | */ |
| 4580 | boolean_t memorystatus_idle_exit_from_VM(void) { |
| 4581 | |
| 4582 | /* |
| 4583 | * This routine should no longer be needed since we are |
| 4584 | * now using jetsam bands on all platforms and so will deal |
| 4585 | * with IDLE processes within the memorystatus thread itself. |
| 4586 | * |
| 4587 | * But we still use it because we observed that macos systems |
| 4588 | * started heavy compression/swapping with a bunch of |
| 4589 | * idle-exitable processes alive and doing nothing. We decided |
| 4590 | * to rather kill those processes than start swapping earlier. |
| 4591 | */ |
| 4592 | |
| 4593 | return(kill_idle_exit_proc()); |
| 4594 | } |
| 4595 | |
| 4596 | /* |
| 4597 | * Callback invoked when allowable physical memory footprint exceeded |
| 4598 | * (dirty pages + IOKit mappings) |
| 4599 | * |
| 4600 | * This is invoked for both advisory, non-fatal per-task high watermarks, |
| 4601 | * as well as the fatal task memory limits. |
| 4602 | */ |
| 4603 | void |
| 4604 | (boolean_t warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal) |
| 4605 | { |
| 4606 | os_reason_t jetsam_reason = OS_REASON_NULL; |
| 4607 | |
| 4608 | proc_t p = current_proc(); |
| 4609 | |
| 4610 | #if VM_PRESSURE_EVENTS |
| 4611 | if (warning == TRUE) { |
| 4612 | /* |
| 4613 | * This is a warning path which implies that the current process is close, but has |
| 4614 | * not yet exceeded its per-process memory limit. |
| 4615 | */ |
| 4616 | if (memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, FALSE /* not exceeded */) != TRUE) { |
| 4617 | /* Print warning, since it's possible that task has not registered for pressure notifications */ |
| 4618 | os_log(OS_LOG_DEFAULT, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n" , p->p_pid); |
| 4619 | } |
| 4620 | return; |
| 4621 | } |
| 4622 | #endif /* VM_PRESSURE_EVENTS */ |
| 4623 | |
| 4624 | if (memlimit_is_fatal) { |
| 4625 | /* |
| 4626 | * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task |
| 4627 | * has violated either the system-wide per-task memory limit OR its own task limit. |
| 4628 | */ |
| 4629 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_PERPROCESSLIMIT); |
| 4630 | if (jetsam_reason == NULL) { |
| 4631 | printf("task_exceeded footprint: failed to allocate jetsam reason\n" ); |
| 4632 | } else if (corpse_for_fatal_memkill != 0 && proc_send_synchronous_EXC_RESOURCE(p) == FALSE) { |
| 4633 | /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */ |
| 4634 | jetsam_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; |
| 4635 | } |
| 4636 | |
| 4637 | if (memorystatus_kill_process_sync(p->p_pid, kMemorystatusKilledPerProcessLimit, jetsam_reason) != TRUE) { |
| 4638 | printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n" ); |
| 4639 | } |
| 4640 | } else { |
| 4641 | /* |
| 4642 | * HWM offender exists. Done without locks or synchronization. |
| 4643 | * See comment near its declaration for more details. |
| 4644 | */ |
| 4645 | memorystatus_hwm_candidates = TRUE; |
| 4646 | |
| 4647 | #if VM_PRESSURE_EVENTS |
| 4648 | /* |
| 4649 | * The current process is not in the warning path. |
| 4650 | * This path implies the current process has exceeded a non-fatal (soft) memory limit. |
| 4651 | * Failure to send note is ignored here. |
| 4652 | */ |
| 4653 | (void)memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, TRUE /* exceeded */); |
| 4654 | |
| 4655 | #endif /* VM_PRESSURE_EVENTS */ |
| 4656 | } |
| 4657 | } |
| 4658 | |
| 4659 | void |
| 4660 | memorystatus_log_exception(const int , boolean_t memlimit_is_active, boolean_t memlimit_is_fatal) |
| 4661 | { |
| 4662 | proc_t p = current_proc(); |
| 4663 | |
| 4664 | /* |
| 4665 | * The limit violation is logged here, but only once per process per limit. |
| 4666 | * Soft memory limit is a non-fatal high-water-mark |
| 4667 | * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit. |
| 4668 | */ |
| 4669 | |
| 4670 | os_log_with_startup_serial(OS_LOG_DEFAULT, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n" , |
| 4671 | (*p->p_name ? p->p_name : "unknown" ), p->p_pid, (memlimit_is_active ? "Active" : "Inactive" ), |
| 4672 | (memlimit_is_fatal ? "Hard" : "Soft" ), max_footprint_mb, |
| 4673 | (memlimit_is_fatal ? "fatal" : "non-fatal" )); |
| 4674 | |
| 4675 | return; |
| 4676 | } |
| 4677 | |
| 4678 | |
| 4679 | /* |
| 4680 | * Description: |
| 4681 | * Evaluates process state to determine which limit |
| 4682 | * should be applied (active vs. inactive limit). |
| 4683 | * |
| 4684 | * Processes that have the 'elevated inactive jetsam band' attribute |
| 4685 | * are first evaluated based on their current priority band. |
| 4686 | * presently elevated ==> active |
| 4687 | * |
| 4688 | * Processes that opt into dirty tracking are evaluated |
| 4689 | * based on clean vs dirty state. |
| 4690 | * dirty ==> active |
| 4691 | * clean ==> inactive |
| 4692 | * |
| 4693 | * Process that do not opt into dirty tracking are |
| 4694 | * evalulated based on priority level. |
| 4695 | * Foreground or above ==> active |
| 4696 | * Below Foreground ==> inactive |
| 4697 | * |
| 4698 | * Return: TRUE if active |
| 4699 | * False if inactive |
| 4700 | */ |
| 4701 | |
| 4702 | static boolean_t |
| 4703 | proc_jetsam_state_is_active_locked(proc_t p) { |
| 4704 | |
| 4705 | if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) && |
| 4706 | (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE)) { |
| 4707 | /* |
| 4708 | * process has the 'elevated inactive jetsam band' attribute |
| 4709 | * and process is present in the elevated band |
| 4710 | * implies active state |
| 4711 | */ |
| 4712 | return TRUE; |
| 4713 | } else if (p->p_memstat_dirty & P_DIRTY_TRACK) { |
| 4714 | /* |
| 4715 | * process has opted into dirty tracking |
| 4716 | * active state is based on dirty vs. clean |
| 4717 | */ |
| 4718 | if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) { |
| 4719 | /* |
| 4720 | * process is dirty |
| 4721 | * implies active state |
| 4722 | */ |
| 4723 | return TRUE; |
| 4724 | } else { |
| 4725 | /* |
| 4726 | * process is clean |
| 4727 | * implies inactive state |
| 4728 | */ |
| 4729 | return FALSE; |
| 4730 | } |
| 4731 | } else if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) { |
| 4732 | /* |
| 4733 | * process is Foreground or higher |
| 4734 | * implies active state |
| 4735 | */ |
| 4736 | return TRUE; |
| 4737 | } else { |
| 4738 | /* |
| 4739 | * process found below Foreground |
| 4740 | * implies inactive state |
| 4741 | */ |
| 4742 | return FALSE; |
| 4743 | } |
| 4744 | } |
| 4745 | |
| 4746 | static boolean_t |
| 4747 | memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) { |
| 4748 | boolean_t res; |
| 4749 | |
| 4750 | uint32_t errors = 0; |
| 4751 | |
| 4752 | if (victim_pid == -1) { |
| 4753 | /* No pid, so kill first process */ |
| 4754 | res = memorystatus_kill_top_process(TRUE, TRUE, cause, jetsam_reason, NULL, &errors); |
| 4755 | } else { |
| 4756 | res = memorystatus_kill_specific_process(victim_pid, cause, jetsam_reason); |
| 4757 | } |
| 4758 | |
| 4759 | if (errors) { |
| 4760 | memorystatus_clear_errors(); |
| 4761 | } |
| 4762 | |
| 4763 | if (res == TRUE) { |
| 4764 | /* Fire off snapshot notification */ |
| 4765 | proc_list_lock(); |
| 4766 | size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + |
| 4767 | sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count; |
| 4768 | uint64_t timestamp_now = mach_absolute_time(); |
| 4769 | memorystatus_jetsam_snapshot->notification_time = timestamp_now; |
| 4770 | if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 || |
| 4771 | timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) { |
| 4772 | proc_list_unlock(); |
| 4773 | int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size)); |
| 4774 | if (!ret) { |
| 4775 | proc_list_lock(); |
| 4776 | memorystatus_jetsam_snapshot_last_timestamp = timestamp_now; |
| 4777 | proc_list_unlock(); |
| 4778 | } |
| 4779 | } else { |
| 4780 | proc_list_unlock(); |
| 4781 | } |
| 4782 | } |
| 4783 | |
| 4784 | return res; |
| 4785 | } |
| 4786 | |
| 4787 | /* |
| 4788 | * Jetsam a specific process. |
| 4789 | */ |
| 4790 | static boolean_t |
| 4791 | memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) { |
| 4792 | boolean_t killed; |
| 4793 | proc_t p; |
| 4794 | uint64_t killtime = 0; |
| 4795 | clock_sec_t tv_sec; |
| 4796 | clock_usec_t tv_usec; |
| 4797 | uint32_t tv_msec; |
| 4798 | |
| 4799 | /* TODO - add a victim queue and push this into the main jetsam thread */ |
| 4800 | |
| 4801 | p = proc_find(victim_pid); |
| 4802 | if (!p) { |
| 4803 | os_reason_free(jetsam_reason); |
| 4804 | return FALSE; |
| 4805 | } |
| 4806 | |
| 4807 | proc_list_lock(); |
| 4808 | |
| 4809 | if (memorystatus_jetsam_snapshot_count == 0) { |
| 4810 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
| 4811 | } |
| 4812 | |
| 4813 | killtime = mach_absolute_time(); |
| 4814 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
| 4815 | tv_msec = tv_usec / 1000; |
| 4816 | |
| 4817 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
| 4818 | |
| 4819 | proc_list_unlock(); |
| 4820 | |
| 4821 | os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
| 4822 | (unsigned long)tv_sec, tv_msec, victim_pid, (*p->p_name ? p->p_name : "unknown" ), |
| 4823 | memorystatus_kill_cause_name[cause], p->p_memstat_effectivepriority, (uint64_t)memorystatus_available_pages); |
| 4824 | |
| 4825 | killed = memorystatus_do_kill(p, cause, jetsam_reason); |
| 4826 | proc_rele(p); |
| 4827 | |
| 4828 | return killed; |
| 4829 | } |
| 4830 | |
| 4831 | |
| 4832 | /* |
| 4833 | * Toggle the P_MEMSTAT_TERMINATED state. |
| 4834 | * Takes the proc_list_lock. |
| 4835 | */ |
| 4836 | void |
| 4837 | proc_memstat_terminated(proc_t p, boolean_t set) |
| 4838 | { |
| 4839 | #if DEVELOPMENT || DEBUG |
| 4840 | if (p) { |
| 4841 | proc_list_lock(); |
| 4842 | if (set == TRUE) { |
| 4843 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
| 4844 | } else { |
| 4845 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
| 4846 | } |
| 4847 | proc_list_unlock(); |
| 4848 | } |
| 4849 | #else |
| 4850 | #pragma unused(p, set) |
| 4851 | /* |
| 4852 | * do nothing |
| 4853 | */ |
| 4854 | #endif /* DEVELOPMENT || DEBUG */ |
| 4855 | return; |
| 4856 | } |
| 4857 | |
| 4858 | |
| 4859 | #if CONFIG_JETSAM |
| 4860 | /* |
| 4861 | * This is invoked when cpulimits have been exceeded while in fatal mode. |
| 4862 | * The jetsam_flags do not apply as those are for memory related kills. |
| 4863 | * We call this routine so that the offending process is killed with |
| 4864 | * a non-zero exit status. |
| 4865 | */ |
| 4866 | void |
| 4867 | jetsam_on_ledger_cpulimit_exceeded(void) |
| 4868 | { |
| 4869 | int retval = 0; |
| 4870 | int jetsam_flags = 0; /* make it obvious */ |
| 4871 | proc_t p = current_proc(); |
| 4872 | os_reason_t jetsam_reason = OS_REASON_NULL; |
| 4873 | |
| 4874 | printf("task_exceeded_cpulimit: killing pid %d [%s]\n" , |
| 4875 | p->p_pid, (*p->p_name ? p->p_name : "(unknown)" )); |
| 4876 | |
| 4877 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_CPULIMIT); |
| 4878 | if (jetsam_reason == OS_REASON_NULL) { |
| 4879 | printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n" ); |
| 4880 | } |
| 4881 | |
| 4882 | retval = jetsam_do_kill(p, jetsam_flags, jetsam_reason); |
| 4883 | |
| 4884 | if (retval) { |
| 4885 | printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n" ); |
| 4886 | } |
| 4887 | } |
| 4888 | |
| 4889 | #endif /* CONFIG_JETSAM */ |
| 4890 | |
| 4891 | static void |
| 4892 | memorystatus_get_task_memory_region_count(task_t task, uint64_t *count) |
| 4893 | { |
| 4894 | assert(task); |
| 4895 | assert(count); |
| 4896 | |
| 4897 | *count = get_task_memory_region_count(task); |
| 4898 | } |
| 4899 | |
| 4900 | |
| 4901 | #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000 |
| 4902 | #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000 |
| 4903 | |
| 4904 | #if DEVELOPMENT || DEBUG |
| 4905 | |
| 4906 | /* |
| 4907 | * Sysctl only used to test memorystatus_allowed_vm_map_fork() path. |
| 4908 | * set a new pidwatch value |
| 4909 | * or |
| 4910 | * get the current pidwatch value |
| 4911 | * |
| 4912 | * The pidwatch_val starts out with a PID to watch for in the map_fork path. |
| 4913 | * Its value is: |
| 4914 | * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork. |
| 4915 | * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork. |
| 4916 | * - set to -1ull if the map_fork() is aborted for other reasons. |
| 4917 | */ |
| 4918 | |
| 4919 | uint64_t memorystatus_vm_map_fork_pidwatch_val = 0; |
| 4920 | |
| 4921 | static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS { |
| 4922 | #pragma unused(oidp, arg1, arg2) |
| 4923 | |
| 4924 | uint64_t new_value = 0; |
| 4925 | uint64_t old_value = 0; |
| 4926 | int error = 0; |
| 4927 | |
| 4928 | /* |
| 4929 | * The pid is held in the low 32 bits. |
| 4930 | * The 'allowed' flags are in the upper 32 bits. |
| 4931 | */ |
| 4932 | old_value = memorystatus_vm_map_fork_pidwatch_val; |
| 4933 | |
| 4934 | error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL); |
| 4935 | |
| 4936 | if (error || !req->newptr) { |
| 4937 | /* |
| 4938 | * No new value passed in. |
| 4939 | */ |
| 4940 | return(error); |
| 4941 | } |
| 4942 | |
| 4943 | /* |
| 4944 | * A new pid was passed in via req->newptr. |
| 4945 | * Ignore any attempt to set the higher order bits. |
| 4946 | */ |
| 4947 | memorystatus_vm_map_fork_pidwatch_val = new_value & 0xFFFFFFFF; |
| 4948 | printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n" , old_value, new_value); |
| 4949 | |
| 4950 | return(error); |
| 4951 | } |
| 4952 | |
| 4953 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_map_fork_pidwatch, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED| CTLFLAG_MASKED, |
| 4954 | 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch, "Q" , "get/set pid watched for in vm_map_fork" ); |
| 4955 | |
| 4956 | |
| 4957 | /* |
| 4958 | * Record if a watched process fails to qualify for a vm_map_fork(). |
| 4959 | */ |
| 4960 | void |
| 4961 | memorystatus_abort_vm_map_fork(task_t task) |
| 4962 | { |
| 4963 | if (memorystatus_vm_map_fork_pidwatch_val != 0) { |
| 4964 | proc_t p = get_bsdtask_info(task); |
| 4965 | if (p != NULL && memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid) { |
| 4966 | memorystatus_vm_map_fork_pidwatch_val = -1ull; |
| 4967 | } |
| 4968 | } |
| 4969 | } |
| 4970 | |
| 4971 | static void |
| 4972 | set_vm_map_fork_pidwatch(task_t task, uint64_t x) |
| 4973 | { |
| 4974 | if (memorystatus_vm_map_fork_pidwatch_val != 0) { |
| 4975 | proc_t p = get_bsdtask_info(task); |
| 4976 | if (p && (memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid)) { |
| 4977 | memorystatus_vm_map_fork_pidwatch_val |= x; |
| 4978 | } |
| 4979 | } |
| 4980 | } |
| 4981 | |
| 4982 | #else /* DEVELOPMENT || DEBUG */ |
| 4983 | |
| 4984 | |
| 4985 | static void |
| 4986 | set_vm_map_fork_pidwatch(task_t task, uint64_t x) |
| 4987 | { |
| 4988 | #pragma unused(task) |
| 4989 | #pragma unused(x) |
| 4990 | } |
| 4991 | |
| 4992 | #endif /* DEVELOPMENT || DEBUG */ |
| 4993 | |
| 4994 | /* |
| 4995 | * Called during EXC_RESOURCE handling when a process exceeds a soft |
| 4996 | * memory limit. This is the corpse fork path and here we decide if |
| 4997 | * vm_map_fork will be allowed when creating the corpse. |
| 4998 | * The task being considered is suspended. |
| 4999 | * |
| 5000 | * By default, a vm_map_fork is allowed to proceed. |
| 5001 | * |
| 5002 | * A few simple policy assumptions: |
| 5003 | * Desktop platform is not considered in this path. |
| 5004 | * The vm_map_fork is always allowed. |
| 5005 | * |
| 5006 | * If the device has a zero system-wide task limit, |
| 5007 | * then the vm_map_fork is allowed. |
| 5008 | * |
| 5009 | * And if a process's memory footprint calculates less |
| 5010 | * than or equal to half of the system-wide task limit, |
| 5011 | * then the vm_map_fork is allowed. This calculation |
| 5012 | * is based on the assumption that a process can |
| 5013 | * munch memory up to the system-wide task limit. |
| 5014 | */ |
| 5015 | boolean_t |
| 5016 | memorystatus_allowed_vm_map_fork(task_t task) |
| 5017 | { |
| 5018 | boolean_t is_allowed = TRUE; /* default */ |
| 5019 | |
| 5020 | #if CONFIG_EMBEDDED |
| 5021 | |
| 5022 | uint64_t footprint_in_bytes; |
| 5023 | uint64_t max_allowed_bytes; |
| 5024 | |
| 5025 | if (max_task_footprint_mb == 0) { |
| 5026 | set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED); |
| 5027 | return (is_allowed); |
| 5028 | } |
| 5029 | |
| 5030 | footprint_in_bytes = get_task_phys_footprint(task); |
| 5031 | |
| 5032 | /* |
| 5033 | * Maximum is 1/4 of the system-wide task limit. |
| 5034 | */ |
| 5035 | max_allowed_bytes = ((uint64_t)max_task_footprint_mb * 1024 * 1024) >> 2; |
| 5036 | |
| 5037 | if (footprint_in_bytes > max_allowed_bytes) { |
| 5038 | printf("memorystatus disallowed vm_map_fork %lld %lld\n" , footprint_in_bytes, max_allowed_bytes); |
| 5039 | set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED); |
| 5040 | return (!is_allowed); |
| 5041 | } |
| 5042 | #endif /* CONFIG_EMBEDDED */ |
| 5043 | |
| 5044 | set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED); |
| 5045 | return (is_allowed); |
| 5046 | |
| 5047 | } |
| 5048 | |
| 5049 | static void |
| 5050 | memorystatus_get_task_page_counts(task_t task, uint32_t *, uint32_t *, uint32_t *purgeable_pages) |
| 5051 | { |
| 5052 | assert(task); |
| 5053 | assert(footprint); |
| 5054 | |
| 5055 | uint64_t pages; |
| 5056 | |
| 5057 | pages = (get_task_phys_footprint(task) / PAGE_SIZE_64); |
| 5058 | assert(((uint32_t)pages) == pages); |
| 5059 | *footprint = (uint32_t)pages; |
| 5060 | |
| 5061 | if (max_footprint_lifetime) { |
| 5062 | pages = (get_task_resident_max(task) / PAGE_SIZE_64); |
| 5063 | assert(((uint32_t)pages) == pages); |
| 5064 | *max_footprint_lifetime = (uint32_t)pages; |
| 5065 | } |
| 5066 | if (purgeable_pages) { |
| 5067 | pages = (get_task_purgeable_size(task) / PAGE_SIZE_64); |
| 5068 | assert(((uint32_t)pages) == pages); |
| 5069 | *purgeable_pages = (uint32_t)pages; |
| 5070 | } |
| 5071 | } |
| 5072 | |
| 5073 | static void |
| 5074 | (task_t task, |
| 5075 | uint64_t *internal_pages, uint64_t *internal_compressed_pages, |
| 5076 | uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages, |
| 5077 | uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages, |
| 5078 | uint64_t *iokit_mapped_pages, uint64_t *page_table_pages) |
| 5079 | { |
| 5080 | assert(task); |
| 5081 | |
| 5082 | if (internal_pages) { |
| 5083 | *internal_pages = (get_task_internal(task) / PAGE_SIZE_64); |
| 5084 | } |
| 5085 | |
| 5086 | if (internal_compressed_pages) { |
| 5087 | *internal_compressed_pages = (get_task_internal_compressed(task) / PAGE_SIZE_64); |
| 5088 | } |
| 5089 | |
| 5090 | if (purgeable_nonvolatile_pages) { |
| 5091 | *purgeable_nonvolatile_pages = (get_task_purgeable_nonvolatile(task) / PAGE_SIZE_64); |
| 5092 | } |
| 5093 | |
| 5094 | if (purgeable_nonvolatile_compressed_pages) { |
| 5095 | *purgeable_nonvolatile_compressed_pages = (get_task_purgeable_nonvolatile_compressed(task) / PAGE_SIZE_64); |
| 5096 | } |
| 5097 | |
| 5098 | if (alternate_accounting_pages) { |
| 5099 | *alternate_accounting_pages = (get_task_alternate_accounting(task) / PAGE_SIZE_64); |
| 5100 | } |
| 5101 | |
| 5102 | if (alternate_accounting_compressed_pages) { |
| 5103 | *alternate_accounting_compressed_pages = (get_task_alternate_accounting_compressed(task) / PAGE_SIZE_64); |
| 5104 | } |
| 5105 | |
| 5106 | if (iokit_mapped_pages) { |
| 5107 | *iokit_mapped_pages = (get_task_iokit_mapped(task) / PAGE_SIZE_64); |
| 5108 | } |
| 5109 | |
| 5110 | if (page_table_pages) { |
| 5111 | *page_table_pages = (get_task_page_table(task) / PAGE_SIZE_64); |
| 5112 | } |
| 5113 | } |
| 5114 | |
| 5115 | /* |
| 5116 | * This routine only acts on the global jetsam event snapshot. |
| 5117 | * Updating the process's entry can race when the memorystatus_thread |
| 5118 | * has chosen to kill a process that is racing to exit on another core. |
| 5119 | */ |
| 5120 | static void |
| 5121 | memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime) |
| 5122 | { |
| 5123 | memorystatus_jetsam_snapshot_entry_t *entry = NULL; |
| 5124 | memorystatus_jetsam_snapshot_t *snapshot = NULL; |
| 5125 | memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL; |
| 5126 | |
| 5127 | unsigned int i; |
| 5128 | |
| 5129 | LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 5130 | |
| 5131 | if (memorystatus_jetsam_snapshot_count == 0) { |
| 5132 | /* |
| 5133 | * No active snapshot. |
| 5134 | * Nothing to do. |
| 5135 | */ |
| 5136 | return; |
| 5137 | } |
| 5138 | |
| 5139 | /* |
| 5140 | * Sanity check as this routine should only be called |
| 5141 | * from a jetsam kill path. |
| 5142 | */ |
| 5143 | assert(kill_cause != 0 && killtime != 0); |
| 5144 | |
| 5145 | snapshot = memorystatus_jetsam_snapshot; |
| 5146 | snapshot_list = memorystatus_jetsam_snapshot->entries; |
| 5147 | |
| 5148 | for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) { |
| 5149 | if (snapshot_list[i].pid == p->p_pid) { |
| 5150 | |
| 5151 | entry = &snapshot_list[i]; |
| 5152 | |
| 5153 | if (entry->killed || entry->jse_killtime) { |
| 5154 | /* |
| 5155 | * We apparently raced on the exit path |
| 5156 | * for this process, as it's snapshot entry |
| 5157 | * has already recorded a kill. |
| 5158 | */ |
| 5159 | assert(entry->killed && entry->jse_killtime); |
| 5160 | break; |
| 5161 | } |
| 5162 | |
| 5163 | /* |
| 5164 | * Update the entry we just found in the snapshot. |
| 5165 | */ |
| 5166 | |
| 5167 | entry->killed = kill_cause; |
| 5168 | entry->jse_killtime = killtime; |
| 5169 | entry->jse_gencount = snapshot->js_gencount; |
| 5170 | entry->jse_idle_delta = p->p_memstat_idle_delta; |
| 5171 | #if CONFIG_FREEZE |
| 5172 | entry->jse_thaw_count = p->p_memstat_thaw_count; |
| 5173 | #else /* CONFIG_FREEZE */ |
| 5174 | entry->jse_thaw_count = 0; |
| 5175 | #endif /* CONFIG_FREEZE */ |
| 5176 | |
| 5177 | /* |
| 5178 | * If a process has moved between bands since snapshot was |
| 5179 | * initialized, then likely these fields changed too. |
| 5180 | */ |
| 5181 | if (entry->priority != p->p_memstat_effectivepriority) { |
| 5182 | |
| 5183 | strlcpy(entry->name, p->p_name, sizeof(entry->name)); |
| 5184 | entry->priority = p->p_memstat_effectivepriority; |
| 5185 | entry->state = memorystatus_build_state(p); |
| 5186 | entry->user_data = p->p_memstat_userdata; |
| 5187 | entry->fds = p->p_fd->fd_nfiles; |
| 5188 | } |
| 5189 | |
| 5190 | /* |
| 5191 | * Always update the page counts on a kill. |
| 5192 | */ |
| 5193 | |
| 5194 | uint32_t pages = 0; |
| 5195 | uint32_t max_pages_lifetime = 0; |
| 5196 | uint32_t purgeable_pages = 0; |
| 5197 | |
| 5198 | memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages); |
| 5199 | entry->pages = (uint64_t)pages; |
| 5200 | entry->max_pages_lifetime = (uint64_t)max_pages_lifetime; |
| 5201 | entry->purgeable_pages = (uint64_t)purgeable_pages; |
| 5202 | |
| 5203 | uint64_t internal_pages = 0; |
| 5204 | uint64_t internal_compressed_pages = 0; |
| 5205 | uint64_t purgeable_nonvolatile_pages = 0; |
| 5206 | uint64_t purgeable_nonvolatile_compressed_pages = 0; |
| 5207 | uint64_t alternate_accounting_pages = 0; |
| 5208 | uint64_t alternate_accounting_compressed_pages = 0; |
| 5209 | uint64_t iokit_mapped_pages = 0; |
| 5210 | uint64_t page_table_pages = 0; |
| 5211 | |
| 5212 | memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages, |
| 5213 | &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages, |
| 5214 | &alternate_accounting_pages, &alternate_accounting_compressed_pages, |
| 5215 | &iokit_mapped_pages, &page_table_pages); |
| 5216 | |
| 5217 | entry->jse_internal_pages = internal_pages; |
| 5218 | entry->jse_internal_compressed_pages = internal_compressed_pages; |
| 5219 | entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages; |
| 5220 | entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages; |
| 5221 | entry->jse_alternate_accounting_pages = alternate_accounting_pages; |
| 5222 | entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages; |
| 5223 | entry->jse_iokit_mapped_pages = iokit_mapped_pages; |
| 5224 | entry->jse_page_table_pages = page_table_pages; |
| 5225 | |
| 5226 | uint64_t region_count = 0; |
| 5227 | memorystatus_get_task_memory_region_count(p->task, ®ion_count); |
| 5228 | entry->jse_memory_region_count = region_count; |
| 5229 | |
| 5230 | goto exit; |
| 5231 | } |
| 5232 | } |
| 5233 | |
| 5234 | if (entry == NULL) { |
| 5235 | /* |
| 5236 | * The entry was not found in the snapshot, so the process must have |
| 5237 | * launched after the snapshot was initialized. |
| 5238 | * Let's try to append the new entry. |
| 5239 | */ |
| 5240 | if (memorystatus_jetsam_snapshot_count < memorystatus_jetsam_snapshot_max) { |
| 5241 | /* |
| 5242 | * A populated snapshot buffer exists |
| 5243 | * and there is room to init a new entry. |
| 5244 | */ |
| 5245 | assert(memorystatus_jetsam_snapshot_count == snapshot->entry_count); |
| 5246 | |
| 5247 | unsigned int next = memorystatus_jetsam_snapshot_count; |
| 5248 | |
| 5249 | if(memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[next], (snapshot->js_gencount)) == TRUE) { |
| 5250 | |
| 5251 | entry = &snapshot_list[next]; |
| 5252 | entry->killed = kill_cause; |
| 5253 | entry->jse_killtime = killtime; |
| 5254 | |
| 5255 | snapshot->entry_count = ++next; |
| 5256 | memorystatus_jetsam_snapshot_count = next; |
| 5257 | |
| 5258 | if (memorystatus_jetsam_snapshot_count >= memorystatus_jetsam_snapshot_max) { |
| 5259 | /* |
| 5260 | * We just used the last slot in the snapshot buffer. |
| 5261 | * We only want to log it once... so we do it here |
| 5262 | * when we notice we've hit the max. |
| 5263 | */ |
| 5264 | printf("memorystatus: WARNING snapshot buffer is full, count %d\n" , |
| 5265 | memorystatus_jetsam_snapshot_count); |
| 5266 | } |
| 5267 | } |
| 5268 | } |
| 5269 | } |
| 5270 | |
| 5271 | exit: |
| 5272 | if (entry == NULL) { |
| 5273 | /* |
| 5274 | * If we reach here, the snapshot buffer could not be updated. |
| 5275 | * Most likely, the buffer is full, in which case we would have |
| 5276 | * logged a warning in the previous call. |
| 5277 | * |
| 5278 | * For now, we will stop appending snapshot entries. |
| 5279 | * When the buffer is consumed, the snapshot state will reset. |
| 5280 | */ |
| 5281 | |
| 5282 | MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n" , |
| 5283 | p->p_pid, p->p_memstat_effectivepriority, memorystatus_jetsam_snapshot_count); |
| 5284 | } |
| 5285 | |
| 5286 | return; |
| 5287 | } |
| 5288 | |
| 5289 | #if CONFIG_JETSAM |
| 5290 | void memorystatus_pages_update(unsigned int pages_avail) |
| 5291 | { |
| 5292 | memorystatus_available_pages = pages_avail; |
| 5293 | |
| 5294 | #if VM_PRESSURE_EVENTS |
| 5295 | /* |
| 5296 | * Since memorystatus_available_pages changes, we should |
| 5297 | * re-evaluate the pressure levels on the system and |
| 5298 | * check if we need to wake the pressure thread. |
| 5299 | * We also update memorystatus_level in that routine. |
| 5300 | */ |
| 5301 | vm_pressure_response(); |
| 5302 | |
| 5303 | if (memorystatus_available_pages <= memorystatus_available_pages_pressure) { |
| 5304 | |
| 5305 | if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) { |
| 5306 | memorystatus_thread_wake(); |
| 5307 | } |
| 5308 | } |
| 5309 | #if CONFIG_FREEZE |
| 5310 | /* |
| 5311 | * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect |
| 5312 | * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this |
| 5313 | * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here |
| 5314 | * will result in the "mutex with preemption disabled" panic. |
| 5315 | */ |
| 5316 | |
| 5317 | if (memorystatus_freeze_thread_should_run() == TRUE) { |
| 5318 | /* |
| 5319 | * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process). |
| 5320 | * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here. |
| 5321 | */ |
| 5322 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 5323 | thread_wakeup((event_t)&memorystatus_freeze_wakeup); |
| 5324 | } |
| 5325 | } |
| 5326 | #endif /* CONFIG_FREEZE */ |
| 5327 | |
| 5328 | #else /* VM_PRESSURE_EVENTS */ |
| 5329 | |
| 5330 | boolean_t critical, delta; |
| 5331 | |
| 5332 | if (!memorystatus_delta) { |
| 5333 | return; |
| 5334 | } |
| 5335 | |
| 5336 | critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE; |
| 5337 | delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta)) |
| 5338 | || (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE; |
| 5339 | |
| 5340 | if (critical || delta) { |
| 5341 | unsigned int total_pages; |
| 5342 | |
| 5343 | total_pages = (unsigned int) atop_64(max_mem); |
| 5344 | #if CONFIG_SECLUDED_MEMORY |
| 5345 | total_pages -= vm_page_secluded_count; |
| 5346 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 5347 | memorystatus_level = memorystatus_available_pages * 100 / total_pages; |
| 5348 | memorystatus_thread_wake(); |
| 5349 | } |
| 5350 | #endif /* VM_PRESSURE_EVENTS */ |
| 5351 | } |
| 5352 | #endif /* CONFIG_JETSAM */ |
| 5353 | |
| 5354 | static boolean_t |
| 5355 | memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount) |
| 5356 | { |
| 5357 | clock_sec_t tv_sec; |
| 5358 | clock_usec_t tv_usec; |
| 5359 | uint32_t pages = 0; |
| 5360 | uint32_t max_pages_lifetime = 0; |
| 5361 | uint32_t purgeable_pages = 0; |
| 5362 | uint64_t internal_pages = 0; |
| 5363 | uint64_t internal_compressed_pages = 0; |
| 5364 | uint64_t purgeable_nonvolatile_pages = 0; |
| 5365 | uint64_t purgeable_nonvolatile_compressed_pages = 0; |
| 5366 | uint64_t alternate_accounting_pages = 0; |
| 5367 | uint64_t alternate_accounting_compressed_pages = 0; |
| 5368 | uint64_t iokit_mapped_pages = 0; |
| 5369 | uint64_t page_table_pages =0; |
| 5370 | uint64_t region_count = 0; |
| 5371 | uint64_t cids[COALITION_NUM_TYPES]; |
| 5372 | |
| 5373 | memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t)); |
| 5374 | |
| 5375 | entry->pid = p->p_pid; |
| 5376 | strlcpy(&entry->name[0], p->p_name, sizeof(entry->name)); |
| 5377 | entry->priority = p->p_memstat_effectivepriority; |
| 5378 | |
| 5379 | memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages); |
| 5380 | entry->pages = (uint64_t)pages; |
| 5381 | entry->max_pages_lifetime = (uint64_t)max_pages_lifetime; |
| 5382 | entry->purgeable_pages = (uint64_t)purgeable_pages; |
| 5383 | |
| 5384 | memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages, |
| 5385 | &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages, |
| 5386 | &alternate_accounting_pages, &alternate_accounting_compressed_pages, |
| 5387 | &iokit_mapped_pages, &page_table_pages); |
| 5388 | |
| 5389 | entry->jse_internal_pages = internal_pages; |
| 5390 | entry->jse_internal_compressed_pages = internal_compressed_pages; |
| 5391 | entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages; |
| 5392 | entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages; |
| 5393 | entry->jse_alternate_accounting_pages = alternate_accounting_pages; |
| 5394 | entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages; |
| 5395 | entry->jse_iokit_mapped_pages = iokit_mapped_pages; |
| 5396 | entry->jse_page_table_pages = page_table_pages; |
| 5397 | |
| 5398 | memorystatus_get_task_memory_region_count(p->task, ®ion_count); |
| 5399 | entry->jse_memory_region_count = region_count; |
| 5400 | |
| 5401 | entry->state = memorystatus_build_state(p); |
| 5402 | entry->user_data = p->p_memstat_userdata; |
| 5403 | memcpy(&entry->uuid[0], &p->p_uuid[0], sizeof(p->p_uuid)); |
| 5404 | entry->fds = p->p_fd->fd_nfiles; |
| 5405 | |
| 5406 | absolutetime_to_microtime(get_task_cpu_time(p->task), &tv_sec, &tv_usec); |
| 5407 | entry->cpu_time.tv_sec = (int64_t)tv_sec; |
| 5408 | entry->cpu_time.tv_usec = (int64_t)tv_usec; |
| 5409 | |
| 5410 | assert(p->p_stats != NULL); |
| 5411 | entry->jse_starttime = p->p_stats->ps_start; /* abstime process started */ |
| 5412 | entry->jse_killtime = 0; /* abstime jetsam chose to kill process */ |
| 5413 | entry->killed = 0; /* the jetsam kill cause */ |
| 5414 | entry->jse_gencount = gencount; /* indicates a pass through jetsam thread, when process was targeted to be killed */ |
| 5415 | |
| 5416 | entry->jse_idle_delta = p->p_memstat_idle_delta; /* Most recent timespan spent in idle-band */ |
| 5417 | |
| 5418 | #if CONFIG_FREEZE |
| 5419 | entry->jse_thaw_count = p->p_memstat_thaw_count; |
| 5420 | #else /* CONFIG_FREEZE */ |
| 5421 | entry->jse_thaw_count = 0; |
| 5422 | #endif /* CONFIG_FREEZE */ |
| 5423 | |
| 5424 | proc_coalitionids(p, cids); |
| 5425 | entry->jse_coalition_jetsam_id = cids[COALITION_TYPE_JETSAM]; |
| 5426 | |
| 5427 | return TRUE; |
| 5428 | } |
| 5429 | |
| 5430 | static void |
| 5431 | memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t *snapshot) |
| 5432 | { |
| 5433 | kern_return_t kr = KERN_SUCCESS; |
| 5434 | mach_msg_type_number_t count = HOST_VM_INFO64_COUNT; |
| 5435 | vm_statistics64_data_t vm_stat; |
| 5436 | |
| 5437 | if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count)) != KERN_SUCCESS) { |
| 5438 | printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n" , kr); |
| 5439 | memset(&snapshot->stats, 0, sizeof(snapshot->stats)); |
| 5440 | } else { |
| 5441 | snapshot->stats.free_pages = vm_stat.free_count; |
| 5442 | snapshot->stats.active_pages = vm_stat.active_count; |
| 5443 | snapshot->stats.inactive_pages = vm_stat.inactive_count; |
| 5444 | snapshot->stats.throttled_pages = vm_stat.throttled_count; |
| 5445 | snapshot->stats.purgeable_pages = vm_stat.purgeable_count; |
| 5446 | snapshot->stats.wired_pages = vm_stat.wire_count; |
| 5447 | |
| 5448 | snapshot->stats.speculative_pages = vm_stat.speculative_count; |
| 5449 | snapshot->stats.filebacked_pages = vm_stat.external_page_count; |
| 5450 | snapshot->stats.anonymous_pages = vm_stat.internal_page_count; |
| 5451 | snapshot->stats.compressions = vm_stat.compressions; |
| 5452 | snapshot->stats.decompressions = vm_stat.decompressions; |
| 5453 | snapshot->stats.compressor_pages = vm_stat.compressor_page_count; |
| 5454 | snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor; |
| 5455 | } |
| 5456 | |
| 5457 | get_zone_map_size(&snapshot->stats.zone_map_size, &snapshot->stats.zone_map_capacity); |
| 5458 | get_largest_zone_info(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name), |
| 5459 | &snapshot->stats.largest_zone_size); |
| 5460 | } |
| 5461 | |
| 5462 | /* |
| 5463 | * Collect vm statistics at boot. |
| 5464 | * Called only once (see kern_exec.c) |
| 5465 | * Data can be consumed at any time. |
| 5466 | */ |
| 5467 | void |
| 5468 | memorystatus_init_at_boot_snapshot() { |
| 5469 | memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot); |
| 5470 | memorystatus_at_boot_snapshot.entry_count = 0; |
| 5471 | memorystatus_at_boot_snapshot.notification_time = 0; /* updated when consumed */ |
| 5472 | memorystatus_at_boot_snapshot.snapshot_time = mach_absolute_time(); |
| 5473 | } |
| 5474 | |
| 5475 | static void |
| 5476 | memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count ) |
| 5477 | { |
| 5478 | proc_t p, next_p; |
| 5479 | unsigned int b = 0, i = 0; |
| 5480 | |
| 5481 | memorystatus_jetsam_snapshot_t *snapshot = NULL; |
| 5482 | memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL; |
| 5483 | unsigned int snapshot_max = 0; |
| 5484 | |
| 5485 | LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 5486 | |
| 5487 | if (od_snapshot) { |
| 5488 | /* |
| 5489 | * This is an on_demand snapshot |
| 5490 | */ |
| 5491 | snapshot = od_snapshot; |
| 5492 | snapshot_list = od_snapshot->entries; |
| 5493 | snapshot_max = ods_list_count; |
| 5494 | } else { |
| 5495 | /* |
| 5496 | * This is a jetsam event snapshot |
| 5497 | */ |
| 5498 | snapshot = memorystatus_jetsam_snapshot; |
| 5499 | snapshot_list = memorystatus_jetsam_snapshot->entries; |
| 5500 | snapshot_max = memorystatus_jetsam_snapshot_max; |
| 5501 | } |
| 5502 | |
| 5503 | /* |
| 5504 | * Init the snapshot header information |
| 5505 | */ |
| 5506 | memorystatus_init_snapshot_vmstats(snapshot); |
| 5507 | snapshot->snapshot_time = mach_absolute_time(); |
| 5508 | snapshot->notification_time = 0; |
| 5509 | snapshot->js_gencount = 0; |
| 5510 | |
| 5511 | next_p = memorystatus_get_first_proc_locked(&b, TRUE); |
| 5512 | while (next_p) { |
| 5513 | p = next_p; |
| 5514 | next_p = memorystatus_get_next_proc_locked(&b, p, TRUE); |
| 5515 | |
| 5516 | if (FALSE == memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], snapshot->js_gencount)) { |
| 5517 | continue; |
| 5518 | } |
| 5519 | |
| 5520 | MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n" , |
| 5521 | p->p_pid, |
| 5522 | p->p_uuid[0], p->p_uuid[1], p->p_uuid[2], p->p_uuid[3], p->p_uuid[4], p->p_uuid[5], p->p_uuid[6], p->p_uuid[7], |
| 5523 | p->p_uuid[8], p->p_uuid[9], p->p_uuid[10], p->p_uuid[11], p->p_uuid[12], p->p_uuid[13], p->p_uuid[14], p->p_uuid[15]); |
| 5524 | |
| 5525 | if (++i == snapshot_max) { |
| 5526 | break; |
| 5527 | } |
| 5528 | } |
| 5529 | |
| 5530 | snapshot->entry_count = i; |
| 5531 | |
| 5532 | if (!od_snapshot) { |
| 5533 | /* update the system buffer count */ |
| 5534 | memorystatus_jetsam_snapshot_count = i; |
| 5535 | } |
| 5536 | } |
| 5537 | |
| 5538 | #if DEVELOPMENT || DEBUG |
| 5539 | |
| 5540 | #if CONFIG_JETSAM |
| 5541 | static int |
| 5542 | memorystatus_cmd_set_panic_bits(user_addr_t buffer, uint32_t buffer_size) { |
| 5543 | int ret; |
| 5544 | memorystatus_jetsam_panic_options_t debug; |
| 5545 | |
| 5546 | if (buffer_size != sizeof(memorystatus_jetsam_panic_options_t)) { |
| 5547 | return EINVAL; |
| 5548 | } |
| 5549 | |
| 5550 | ret = copyin(buffer, &debug, buffer_size); |
| 5551 | if (ret) { |
| 5552 | return ret; |
| 5553 | } |
| 5554 | |
| 5555 | /* Panic bits match kMemorystatusKilled* enum */ |
| 5556 | memorystatus_jetsam_panic_debug = (memorystatus_jetsam_panic_debug & ~debug.mask) | (debug.data & debug.mask); |
| 5557 | |
| 5558 | /* Copyout new value */ |
| 5559 | debug.data = memorystatus_jetsam_panic_debug; |
| 5560 | ret = copyout(&debug, buffer, sizeof(memorystatus_jetsam_panic_options_t)); |
| 5561 | |
| 5562 | return ret; |
| 5563 | } |
| 5564 | #endif /* CONFIG_JETSAM */ |
| 5565 | |
| 5566 | /* |
| 5567 | * Triggers a sort_order on a specified jetsam priority band. |
| 5568 | * This is for testing only, used to force a path through the sort |
| 5569 | * function. |
| 5570 | */ |
| 5571 | static int |
| 5572 | memorystatus_cmd_test_jetsam_sort(int priority, int sort_order) { |
| 5573 | |
| 5574 | int error = 0; |
| 5575 | |
| 5576 | unsigned int bucket_index = 0; |
| 5577 | |
| 5578 | if (priority == -1) { |
| 5579 | /* Use as shorthand for default priority */ |
| 5580 | bucket_index = JETSAM_PRIORITY_DEFAULT; |
| 5581 | } else { |
| 5582 | bucket_index = (unsigned int)priority; |
| 5583 | } |
| 5584 | |
| 5585 | error = memorystatus_sort_bucket(bucket_index, sort_order); |
| 5586 | |
| 5587 | return (error); |
| 5588 | } |
| 5589 | |
| 5590 | #endif /* DEVELOPMENT || DEBUG */ |
| 5591 | |
| 5592 | /* |
| 5593 | * Prepare the process to be killed (set state, update snapshot) and kill it. |
| 5594 | */ |
| 5595 | static uint64_t memorystatus_purge_before_jetsam_success = 0; |
| 5596 | |
| 5597 | static boolean_t |
| 5598 | memorystatus_kill_proc(proc_t p, uint32_t cause, os_reason_t jetsam_reason, boolean_t *killed) |
| 5599 | { |
| 5600 | pid_t aPid = 0; |
| 5601 | uint32_t aPid_ep = 0; |
| 5602 | |
| 5603 | uint64_t killtime = 0; |
| 5604 | clock_sec_t tv_sec; |
| 5605 | clock_usec_t tv_usec; |
| 5606 | uint32_t tv_msec; |
| 5607 | boolean_t retval = FALSE; |
| 5608 | uint64_t num_pages_purged = 0; |
| 5609 | |
| 5610 | aPid = p->p_pid; |
| 5611 | aPid_ep = p->p_memstat_effectivepriority; |
| 5612 | |
| 5613 | if (cause != kMemorystatusKilledVnodes && cause != kMemorystatusKilledZoneMapExhaustion) { |
| 5614 | /* |
| 5615 | * Genuine memory pressure and not other (vnode/zone) resource exhaustion. |
| 5616 | */ |
| 5617 | boolean_t success = FALSE; |
| 5618 | |
| 5619 | networking_memstatus_callout(p, cause); |
| 5620 | num_pages_purged = vm_purgeable_purge_task_owned(p->task); |
| 5621 | |
| 5622 | if (num_pages_purged) { |
| 5623 | /* |
| 5624 | * We actually purged something and so let's |
| 5625 | * check if we need to continue with the kill. |
| 5626 | */ |
| 5627 | if (cause == kMemorystatusKilledHiwat) { |
| 5628 | uint64_t = get_task_phys_footprint(p->task); |
| 5629 | uint64_t memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */ |
| 5630 | success = (footprint_in_bytes <= memlimit_in_bytes); |
| 5631 | } else { |
| 5632 | success = (memorystatus_avail_pages_below_pressure() == FALSE); |
| 5633 | } |
| 5634 | |
| 5635 | if (success) { |
| 5636 | |
| 5637 | memorystatus_purge_before_jetsam_success++; |
| 5638 | |
| 5639 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: purged %llu pages from pid %d [%s] and avoided %s\n" , |
| 5640 | num_pages_purged, aPid, (*p->p_name ? p->p_name : "unknown" ), memorystatus_kill_cause_name[cause]); |
| 5641 | |
| 5642 | *killed = FALSE; |
| 5643 | |
| 5644 | return TRUE; |
| 5645 | } |
| 5646 | } |
| 5647 | } |
| 5648 | |
| 5649 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
| 5650 | MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n" , |
| 5651 | (memorystatus_jetsam_policy & kPolicyDiagnoseActive) ? "suspending" : "killing" , |
| 5652 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
| 5653 | (footprint_in_bytes / (1024ULL * 1024ULL)), /* converted bytes to MB */ |
| 5654 | p->p_memstat_memlimit); |
| 5655 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
| 5656 | |
| 5657 | killtime = mach_absolute_time(); |
| 5658 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
| 5659 | tv_msec = tv_usec / 1000; |
| 5660 | |
| 5661 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
| 5662 | if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { |
| 5663 | if (cause == kMemorystatusKilledHiwat) { |
| 5664 | MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] for diagnosis - memorystatus_available_pages: %d\n" , |
| 5665 | aPid, (*p->p_name ? p->p_name: "(unknown)" ), memorystatus_available_pages); |
| 5666 | } else { |
| 5667 | int activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND; |
| 5668 | if (activeProcess) { |
| 5669 | MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memorystatus_available_pages: %d\n" , |
| 5670 | aPid, (*p->p_name ? p->p_name: "(unknown)" ), memorystatus_available_pages); |
| 5671 | |
| 5672 | if (memorystatus_jetsam_policy & kPolicyDiagnoseFirst) { |
| 5673 | jetsam_diagnostic_suspended_one_active_proc = 1; |
| 5674 | printf("jetsam: returning after suspending first active proc - %d\n" , aPid); |
| 5675 | } |
| 5676 | } |
| 5677 | } |
| 5678 | |
| 5679 | proc_list_lock(); |
| 5680 | /* This diagnostic code is going away soon. Ignore the kMemorystatusInvalid cause here. */ |
| 5681 | memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusInvalid, killtime); |
| 5682 | proc_list_unlock(); |
| 5683 | |
| 5684 | p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED; |
| 5685 | |
| 5686 | if (p) { |
| 5687 | task_suspend(p->task); |
| 5688 | *killed = TRUE; |
| 5689 | } |
| 5690 | } else |
| 5691 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
| 5692 | { |
| 5693 | proc_list_lock(); |
| 5694 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
| 5695 | proc_list_unlock(); |
| 5696 | |
| 5697 | char kill_reason_string[128]; |
| 5698 | |
| 5699 | if (cause == kMemorystatusKilledHiwat) { |
| 5700 | strlcpy(kill_reason_string, "killing_highwater_process" , 128); |
| 5701 | } else { |
| 5702 | if (aPid_ep == JETSAM_PRIORITY_IDLE) { |
| 5703 | strlcpy(kill_reason_string, "killing_idle_process" , 128); |
| 5704 | } else { |
| 5705 | strlcpy(kill_reason_string, "killing_top_process" , 128); |
| 5706 | } |
| 5707 | } |
| 5708 | |
| 5709 | os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
| 5710 | (unsigned long)tv_sec, tv_msec, kill_reason_string, |
| 5711 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
| 5712 | memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); |
| 5713 | |
| 5714 | /* |
| 5715 | * memorystatus_do_kill drops a reference, so take another one so we can |
| 5716 | * continue to use this exit reason even after memorystatus_do_kill() |
| 5717 | * returns |
| 5718 | */ |
| 5719 | os_reason_ref(jetsam_reason); |
| 5720 | |
| 5721 | retval = memorystatus_do_kill(p, cause, jetsam_reason); |
| 5722 | |
| 5723 | *killed = retval; |
| 5724 | } |
| 5725 | |
| 5726 | return retval; |
| 5727 | } |
| 5728 | |
| 5729 | /* |
| 5730 | * Jetsam the first process in the queue. |
| 5731 | */ |
| 5732 | static boolean_t |
| 5733 | memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, |
| 5734 | int32_t *priority, uint32_t *errors) |
| 5735 | { |
| 5736 | pid_t aPid; |
| 5737 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
| 5738 | boolean_t new_snapshot = FALSE, force_new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE; |
| 5739 | unsigned int i = 0; |
| 5740 | uint32_t aPid_ep; |
| 5741 | int32_t local_max_kill_prio = JETSAM_PRIORITY_IDLE; |
| 5742 | |
| 5743 | #ifndef CONFIG_FREEZE |
| 5744 | #pragma unused(any) |
| 5745 | #endif |
| 5746 | |
| 5747 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, |
| 5748 | memorystatus_available_pages, 0, 0, 0, 0); |
| 5749 | |
| 5750 | |
| 5751 | #if CONFIG_JETSAM |
| 5752 | if (sort_flag == TRUE) { |
| 5753 | (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT); |
| 5754 | } |
| 5755 | |
| 5756 | local_max_kill_prio = max_kill_priority; |
| 5757 | |
| 5758 | force_new_snapshot = FALSE; |
| 5759 | |
| 5760 | #else /* CONFIG_JETSAM */ |
| 5761 | |
| 5762 | if (sort_flag == TRUE) { |
| 5763 | (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE, JETSAM_SORT_DEFAULT); |
| 5764 | } |
| 5765 | |
| 5766 | /* |
| 5767 | * On macos, we currently only have 2 reasons to be here: |
| 5768 | * |
| 5769 | * kMemorystatusKilledZoneMapExhaustion |
| 5770 | * AND |
| 5771 | * kMemorystatusKilledVMCompressorSpaceShortage |
| 5772 | * |
| 5773 | * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider |
| 5774 | * any and all processes as eligible kill candidates since we need to avoid a panic. |
| 5775 | * |
| 5776 | * Since this function can be called async. it is harder to toggle the max_kill_priority |
| 5777 | * value before and after a call. And so we use this local variable to set the upper band |
| 5778 | * on the eligible kill bands. |
| 5779 | */ |
| 5780 | if (cause == kMemorystatusKilledZoneMapExhaustion) { |
| 5781 | local_max_kill_prio = JETSAM_PRIORITY_MAX; |
| 5782 | } else { |
| 5783 | local_max_kill_prio = max_kill_priority; |
| 5784 | } |
| 5785 | |
| 5786 | /* |
| 5787 | * And, because we are here under extreme circumstances, we force a snapshot even for |
| 5788 | * IDLE kills. |
| 5789 | */ |
| 5790 | force_new_snapshot = TRUE; |
| 5791 | |
| 5792 | #endif /* CONFIG_JETSAM */ |
| 5793 | |
| 5794 | proc_list_lock(); |
| 5795 | |
| 5796 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 5797 | while (next_p && (next_p->p_memstat_effectivepriority <= local_max_kill_prio)) { |
| 5798 | #if DEVELOPMENT || DEBUG |
| 5799 | int procSuspendedForDiagnosis; |
| 5800 | #endif /* DEVELOPMENT || DEBUG */ |
| 5801 | |
| 5802 | p = next_p; |
| 5803 | next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
| 5804 | |
| 5805 | #if DEVELOPMENT || DEBUG |
| 5806 | procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED; |
| 5807 | #endif /* DEVELOPMENT || DEBUG */ |
| 5808 | |
| 5809 | aPid = p->p_pid; |
| 5810 | aPid_ep = p->p_memstat_effectivepriority; |
| 5811 | |
| 5812 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
| 5813 | continue; /* with lock held */ |
| 5814 | } |
| 5815 | |
| 5816 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
| 5817 | if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) { |
| 5818 | printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n" , aPid); |
| 5819 | continue; |
| 5820 | } |
| 5821 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
| 5822 | |
| 5823 | if (cause == kMemorystatusKilledVnodes) |
| 5824 | { |
| 5825 | /* |
| 5826 | * If the system runs out of vnodes, we systematically jetsam |
| 5827 | * processes in hopes of stumbling onto a vnode gain that helps |
| 5828 | * the system recover. The process that happens to trigger |
| 5829 | * this path has no known relationship to the vnode shortage. |
| 5830 | * Deadlock avoidance: attempt to safeguard the caller. |
| 5831 | */ |
| 5832 | |
| 5833 | if (p == current_proc()) { |
| 5834 | /* do not jetsam the current process */ |
| 5835 | continue; |
| 5836 | } |
| 5837 | } |
| 5838 | |
| 5839 | #if CONFIG_FREEZE |
| 5840 | boolean_t skip; |
| 5841 | boolean_t reclaim_proc = !(p->p_memstat_state & P_MEMSTAT_LOCKED); |
| 5842 | if (any || reclaim_proc) { |
| 5843 | skip = FALSE; |
| 5844 | } else { |
| 5845 | skip = TRUE; |
| 5846 | } |
| 5847 | |
| 5848 | if (skip) { |
| 5849 | continue; |
| 5850 | } else |
| 5851 | #endif |
| 5852 | { |
| 5853 | if (proc_ref_locked(p) == p) { |
| 5854 | /* |
| 5855 | * Mark as terminated so that if exit1() indicates success, but the process (for example) |
| 5856 | * is blocked in task_exception_notify(), it'll be skipped if encountered again - see |
| 5857 | * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the |
| 5858 | * acquisition of the proc lock. |
| 5859 | */ |
| 5860 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
| 5861 | |
| 5862 | } else { |
| 5863 | /* |
| 5864 | * We need to restart the search again because |
| 5865 | * proc_ref_locked _can_ drop the proc_list lock |
| 5866 | * and we could have lost our stored next_p via |
| 5867 | * an exit() on another core. |
| 5868 | */ |
| 5869 | i = 0; |
| 5870 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 5871 | continue; |
| 5872 | } |
| 5873 | |
| 5874 | /* |
| 5875 | * Capture a snapshot if none exists and: |
| 5876 | * - we are forcing a new snapshot creation, either because: |
| 5877 | * - on a particular platform we need these snapshots every time, OR |
| 5878 | * - a boot-arg/embedded device tree property has been set. |
| 5879 | * - priority was not requested (this is something other than an ambient kill) |
| 5880 | * - the priority was requested *and* the targeted process is not at idle priority |
| 5881 | */ |
| 5882 | if ((memorystatus_jetsam_snapshot_count == 0) && |
| 5883 | (force_new_snapshot || memorystatus_idle_snapshot || ((!priority) || (priority && (aPid_ep != JETSAM_PRIORITY_IDLE))))) { |
| 5884 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
| 5885 | new_snapshot = TRUE; |
| 5886 | } |
| 5887 | |
| 5888 | proc_list_unlock(); |
| 5889 | |
| 5890 | freed_mem = memorystatus_kill_proc(p, cause, jetsam_reason, &killed); /* purged and/or killed 'p' */ |
| 5891 | /* Success? */ |
| 5892 | if (freed_mem) { |
| 5893 | if (killed) { |
| 5894 | if (priority) { |
| 5895 | *priority = aPid_ep; |
| 5896 | } |
| 5897 | } else { |
| 5898 | /* purged */ |
| 5899 | proc_list_lock(); |
| 5900 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
| 5901 | proc_list_unlock(); |
| 5902 | } |
| 5903 | proc_rele(p); |
| 5904 | goto exit; |
| 5905 | } |
| 5906 | |
| 5907 | /* |
| 5908 | * Failure - first unwind the state, |
| 5909 | * then fall through to restart the search. |
| 5910 | */ |
| 5911 | proc_list_lock(); |
| 5912 | proc_rele_locked(p); |
| 5913 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
| 5914 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
| 5915 | *errors += 1; |
| 5916 | |
| 5917 | i = 0; |
| 5918 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 5919 | } |
| 5920 | } |
| 5921 | |
| 5922 | proc_list_unlock(); |
| 5923 | |
| 5924 | exit: |
| 5925 | os_reason_free(jetsam_reason); |
| 5926 | |
| 5927 | /* Clear snapshot if freshly captured and no target was found */ |
| 5928 | if (new_snapshot && !killed) { |
| 5929 | proc_list_lock(); |
| 5930 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
| 5931 | proc_list_unlock(); |
| 5932 | } |
| 5933 | |
| 5934 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, |
| 5935 | memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); |
| 5936 | |
| 5937 | return killed; |
| 5938 | } |
| 5939 | |
| 5940 | /* |
| 5941 | * Jetsam aggressively |
| 5942 | */ |
| 5943 | static boolean_t |
| 5944 | memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count, |
| 5945 | int32_t priority_max, uint32_t *errors) |
| 5946 | { |
| 5947 | pid_t aPid; |
| 5948 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
| 5949 | boolean_t new_snapshot = FALSE, killed = FALSE; |
| 5950 | int kill_count = 0; |
| 5951 | unsigned int i = 0; |
| 5952 | int32_t aPid_ep = 0; |
| 5953 | unsigned int memorystatus_level_snapshot = 0; |
| 5954 | uint64_t killtime = 0; |
| 5955 | clock_sec_t tv_sec; |
| 5956 | clock_usec_t tv_usec; |
| 5957 | uint32_t tv_msec; |
| 5958 | os_reason_t jetsam_reason = OS_REASON_NULL; |
| 5959 | |
| 5960 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, |
| 5961 | memorystatus_available_pages, priority_max, 0, 0, 0); |
| 5962 | |
| 5963 | memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT); |
| 5964 | |
| 5965 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, cause); |
| 5966 | if (jetsam_reason == OS_REASON_NULL) { |
| 5967 | printf("memorystatus_kill_top_process_aggressive: failed to allocate exit reason\n" ); |
| 5968 | } |
| 5969 | |
| 5970 | proc_list_lock(); |
| 5971 | |
| 5972 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 5973 | while (next_p) { |
| 5974 | #if DEVELOPMENT || DEBUG |
| 5975 | int activeProcess; |
| 5976 | int procSuspendedForDiagnosis; |
| 5977 | #endif /* DEVELOPMENT || DEBUG */ |
| 5978 | |
| 5979 | if (((next_p->p_listflag & P_LIST_EXITED) != 0) || |
| 5980 | ((unsigned int)(next_p->p_memstat_effectivepriority) != i)) { |
| 5981 | |
| 5982 | /* |
| 5983 | * We have raced with next_p running on another core. |
| 5984 | * It may be exiting or it may have moved to a different |
| 5985 | * jetsam priority band. This means we have lost our |
| 5986 | * place in line while traversing the jetsam list. We |
| 5987 | * attempt to recover by rewinding to the beginning of the band |
| 5988 | * we were already traversing. By doing this, we do not guarantee |
| 5989 | * that no process escapes this aggressive march, but we can make |
| 5990 | * skipping an entire range of processes less likely. (PR-21069019) |
| 5991 | */ |
| 5992 | |
| 5993 | MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n" , |
| 5994 | aggr_count, i, (*next_p->p_name ? next_p->p_name : "unknown" ), next_p->p_pid); |
| 5995 | |
| 5996 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 5997 | continue; |
| 5998 | } |
| 5999 | |
| 6000 | p = next_p; |
| 6001 | next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
| 6002 | |
| 6003 | if (p->p_memstat_effectivepriority > priority_max) { |
| 6004 | /* |
| 6005 | * Bail out of this killing spree if we have |
| 6006 | * reached beyond the priority_max jetsam band. |
| 6007 | * That is, we kill up to and through the |
| 6008 | * priority_max jetsam band. |
| 6009 | */ |
| 6010 | proc_list_unlock(); |
| 6011 | goto exit; |
| 6012 | } |
| 6013 | |
| 6014 | #if DEVELOPMENT || DEBUG |
| 6015 | activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND; |
| 6016 | procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED; |
| 6017 | #endif /* DEVELOPMENT || DEBUG */ |
| 6018 | |
| 6019 | aPid = p->p_pid; |
| 6020 | aPid_ep = p->p_memstat_effectivepriority; |
| 6021 | |
| 6022 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
| 6023 | continue; |
| 6024 | } |
| 6025 | |
| 6026 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
| 6027 | if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) { |
| 6028 | printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n" , aPid); |
| 6029 | continue; |
| 6030 | } |
| 6031 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
| 6032 | |
| 6033 | /* |
| 6034 | * Capture a snapshot if none exists. |
| 6035 | */ |
| 6036 | if (memorystatus_jetsam_snapshot_count == 0) { |
| 6037 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
| 6038 | new_snapshot = TRUE; |
| 6039 | } |
| 6040 | |
| 6041 | /* |
| 6042 | * Mark as terminated so that if exit1() indicates success, but the process (for example) |
| 6043 | * is blocked in task_exception_notify(), it'll be skipped if encountered again - see |
| 6044 | * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the |
| 6045 | * acquisition of the proc lock. |
| 6046 | */ |
| 6047 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
| 6048 | |
| 6049 | killtime = mach_absolute_time(); |
| 6050 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
| 6051 | tv_msec = tv_usec / 1000; |
| 6052 | |
| 6053 | /* Shift queue, update stats */ |
| 6054 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
| 6055 | |
| 6056 | /* |
| 6057 | * In order to kill the target process, we will drop the proc_list_lock. |
| 6058 | * To guaranteee that p and next_p don't disappear out from under the lock, |
| 6059 | * we must take a ref on both. |
| 6060 | * If we cannot get a reference, then it's likely we've raced with |
| 6061 | * that process exiting on another core. |
| 6062 | */ |
| 6063 | if (proc_ref_locked(p) == p) { |
| 6064 | if (next_p) { |
| 6065 | while (next_p && (proc_ref_locked(next_p) != next_p)) { |
| 6066 | proc_t temp_p; |
| 6067 | |
| 6068 | /* |
| 6069 | * We must have raced with next_p exiting on another core. |
| 6070 | * Recover by getting the next eligible process in the band. |
| 6071 | */ |
| 6072 | |
| 6073 | MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n" , |
| 6074 | aggr_count, next_p->p_pid, (*next_p->p_name ? next_p->p_name : "(unknown)" )); |
| 6075 | |
| 6076 | temp_p = next_p; |
| 6077 | next_p = memorystatus_get_next_proc_locked(&i, temp_p, TRUE); |
| 6078 | } |
| 6079 | } |
| 6080 | proc_list_unlock(); |
| 6081 | |
| 6082 | printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
| 6083 | (unsigned long)tv_sec, tv_msec, |
| 6084 | ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive" ), |
| 6085 | aggr_count, aPid, (*p->p_name ? p->p_name : "unknown" ), |
| 6086 | memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); |
| 6087 | |
| 6088 | memorystatus_level_snapshot = memorystatus_level; |
| 6089 | |
| 6090 | /* |
| 6091 | * memorystatus_do_kill() drops a reference, so take another one so we can |
| 6092 | * continue to use this exit reason even after memorystatus_do_kill() |
| 6093 | * returns. |
| 6094 | */ |
| 6095 | os_reason_ref(jetsam_reason); |
| 6096 | killed = memorystatus_do_kill(p, cause, jetsam_reason); |
| 6097 | |
| 6098 | /* Success? */ |
| 6099 | if (killed) { |
| 6100 | proc_rele(p); |
| 6101 | kill_count++; |
| 6102 | p = NULL; |
| 6103 | killed = FALSE; |
| 6104 | |
| 6105 | /* |
| 6106 | * Continue the killing spree. |
| 6107 | */ |
| 6108 | proc_list_lock(); |
| 6109 | if (next_p) { |
| 6110 | proc_rele_locked(next_p); |
| 6111 | } |
| 6112 | |
| 6113 | if (aPid_ep == JETSAM_PRIORITY_FOREGROUND && memorystatus_aggressive_jetsam_lenient == TRUE) { |
| 6114 | if (memorystatus_level > memorystatus_level_snapshot && ((memorystatus_level - memorystatus_level_snapshot) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD)) { |
| 6115 | #if DEVELOPMENT || DEBUG |
| 6116 | printf("Disabling Lenient mode after one-time deployment.\n" ); |
| 6117 | #endif /* DEVELOPMENT || DEBUG */ |
| 6118 | memorystatus_aggressive_jetsam_lenient = FALSE; |
| 6119 | break; |
| 6120 | } |
| 6121 | } |
| 6122 | |
| 6123 | continue; |
| 6124 | } |
| 6125 | |
| 6126 | /* |
| 6127 | * Failure - first unwind the state, |
| 6128 | * then fall through to restart the search. |
| 6129 | */ |
| 6130 | proc_list_lock(); |
| 6131 | proc_rele_locked(p); |
| 6132 | if (next_p) { |
| 6133 | proc_rele_locked(next_p); |
| 6134 | } |
| 6135 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
| 6136 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
| 6137 | *errors += 1; |
| 6138 | p = NULL; |
| 6139 | } |
| 6140 | |
| 6141 | /* |
| 6142 | * Failure - restart the search at the beginning of |
| 6143 | * the band we were already traversing. |
| 6144 | * |
| 6145 | * We might have raced with "p" exiting on another core, resulting in no |
| 6146 | * ref on "p". Or, we may have failed to kill "p". |
| 6147 | * |
| 6148 | * Either way, we fall thru to here, leaving the proc in the |
| 6149 | * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state. |
| 6150 | * |
| 6151 | * And, we hold the the proc_list_lock at this point. |
| 6152 | */ |
| 6153 | |
| 6154 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 6155 | } |
| 6156 | |
| 6157 | proc_list_unlock(); |
| 6158 | |
| 6159 | exit: |
| 6160 | os_reason_free(jetsam_reason); |
| 6161 | |
| 6162 | /* Clear snapshot if freshly captured and no target was found */ |
| 6163 | if (new_snapshot && (kill_count == 0)) { |
| 6164 | proc_list_lock(); |
| 6165 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
| 6166 | proc_list_unlock(); |
| 6167 | } |
| 6168 | |
| 6169 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, |
| 6170 | memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0); |
| 6171 | |
| 6172 | if (kill_count > 0) { |
| 6173 | return(TRUE); |
| 6174 | } |
| 6175 | else { |
| 6176 | return(FALSE); |
| 6177 | } |
| 6178 | } |
| 6179 | |
| 6180 | static boolean_t |
| 6181 | memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged) |
| 6182 | { |
| 6183 | pid_t aPid = 0; |
| 6184 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
| 6185 | boolean_t new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE; |
| 6186 | unsigned int i = 0; |
| 6187 | uint32_t aPid_ep; |
| 6188 | os_reason_t jetsam_reason = OS_REASON_NULL; |
| 6189 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START, |
| 6190 | memorystatus_available_pages, 0, 0, 0, 0); |
| 6191 | |
| 6192 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_HIGHWATER); |
| 6193 | if (jetsam_reason == OS_REASON_NULL) { |
| 6194 | printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n" ); |
| 6195 | } |
| 6196 | |
| 6197 | proc_list_lock(); |
| 6198 | |
| 6199 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 6200 | while (next_p) { |
| 6201 | uint64_t = 0; |
| 6202 | uint64_t memlimit_in_bytes = 0; |
| 6203 | boolean_t skip = 0; |
| 6204 | |
| 6205 | p = next_p; |
| 6206 | next_p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
| 6207 | |
| 6208 | aPid = p->p_pid; |
| 6209 | aPid_ep = p->p_memstat_effectivepriority; |
| 6210 | |
| 6211 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
| 6212 | continue; |
| 6213 | } |
| 6214 | |
| 6215 | /* skip if no limit set */ |
| 6216 | if (p->p_memstat_memlimit <= 0) { |
| 6217 | continue; |
| 6218 | } |
| 6219 | |
| 6220 | footprint_in_bytes = get_task_phys_footprint(p->task); |
| 6221 | memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */ |
| 6222 | skip = (footprint_in_bytes <= memlimit_in_bytes); |
| 6223 | |
| 6224 | #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG) |
| 6225 | if (!skip && (memorystatus_jetsam_policy & kPolicyDiagnoseActive)) { |
| 6226 | if (p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED) { |
| 6227 | continue; |
| 6228 | } |
| 6229 | } |
| 6230 | #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */ |
| 6231 | |
| 6232 | #if CONFIG_FREEZE |
| 6233 | if (!skip) { |
| 6234 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
| 6235 | skip = TRUE; |
| 6236 | } else { |
| 6237 | skip = FALSE; |
| 6238 | } |
| 6239 | } |
| 6240 | #endif |
| 6241 | |
| 6242 | if (skip) { |
| 6243 | continue; |
| 6244 | } else { |
| 6245 | |
| 6246 | if (memorystatus_jetsam_snapshot_count == 0) { |
| 6247 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
| 6248 | new_snapshot = TRUE; |
| 6249 | } |
| 6250 | |
| 6251 | if (proc_ref_locked(p) == p) { |
| 6252 | /* |
| 6253 | * Mark as terminated so that if exit1() indicates success, but the process (for example) |
| 6254 | * is blocked in task_exception_notify(), it'll be skipped if encountered again - see |
| 6255 | * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the |
| 6256 | * acquisition of the proc lock. |
| 6257 | */ |
| 6258 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
| 6259 | |
| 6260 | proc_list_unlock(); |
| 6261 | } else { |
| 6262 | /* |
| 6263 | * We need to restart the search again because |
| 6264 | * proc_ref_locked _can_ drop the proc_list lock |
| 6265 | * and we could have lost our stored next_p via |
| 6266 | * an exit() on another core. |
| 6267 | */ |
| 6268 | i = 0; |
| 6269 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 6270 | continue; |
| 6271 | } |
| 6272 | |
| 6273 | freed_mem = memorystatus_kill_proc(p, kMemorystatusKilledHiwat, jetsam_reason, &killed); /* purged and/or killed 'p' */ |
| 6274 | |
| 6275 | /* Success? */ |
| 6276 | if (freed_mem) { |
| 6277 | if (killed == FALSE) { |
| 6278 | /* purged 'p'..don't reset HWM candidate count */ |
| 6279 | *purged = TRUE; |
| 6280 | |
| 6281 | proc_list_lock(); |
| 6282 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
| 6283 | proc_list_unlock(); |
| 6284 | } |
| 6285 | proc_rele(p); |
| 6286 | goto exit; |
| 6287 | } |
| 6288 | /* |
| 6289 | * Failure - first unwind the state, |
| 6290 | * then fall through to restart the search. |
| 6291 | */ |
| 6292 | proc_list_lock(); |
| 6293 | proc_rele_locked(p); |
| 6294 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
| 6295 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
| 6296 | *errors += 1; |
| 6297 | |
| 6298 | i = 0; |
| 6299 | next_p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 6300 | } |
| 6301 | } |
| 6302 | |
| 6303 | proc_list_unlock(); |
| 6304 | |
| 6305 | exit: |
| 6306 | os_reason_free(jetsam_reason); |
| 6307 | |
| 6308 | /* Clear snapshot if freshly captured and no target was found */ |
| 6309 | if (new_snapshot && !killed) { |
| 6310 | proc_list_lock(); |
| 6311 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
| 6312 | proc_list_unlock(); |
| 6313 | } |
| 6314 | |
| 6315 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END, |
| 6316 | memorystatus_available_pages, killed ? aPid : 0, 0, 0, 0); |
| 6317 | |
| 6318 | return killed; |
| 6319 | } |
| 6320 | |
| 6321 | /* |
| 6322 | * Jetsam a process pinned in the elevated band. |
| 6323 | * |
| 6324 | * Return: true -- at least one pinned process was jetsammed |
| 6325 | * false -- no pinned process was jetsammed |
| 6326 | */ |
| 6327 | static boolean_t |
| 6328 | memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors) |
| 6329 | { |
| 6330 | pid_t aPid = 0; |
| 6331 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
| 6332 | boolean_t new_snapshot = FALSE, killed = FALSE; |
| 6333 | int kill_count = 0; |
| 6334 | uint32_t aPid_ep; |
| 6335 | uint64_t killtime = 0; |
| 6336 | clock_sec_t tv_sec; |
| 6337 | clock_usec_t tv_usec; |
| 6338 | uint32_t tv_msec; |
| 6339 | |
| 6340 | |
| 6341 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START, |
| 6342 | memorystatus_available_pages, 0, 0, 0, 0); |
| 6343 | |
| 6344 | #if CONFIG_FREEZE |
| 6345 | boolean_t consider_frozen_only = FALSE; |
| 6346 | |
| 6347 | if (band == (unsigned int) memorystatus_freeze_jetsam_band) { |
| 6348 | consider_frozen_only = TRUE; |
| 6349 | } |
| 6350 | #endif /* CONFIG_FREEZE */ |
| 6351 | |
| 6352 | proc_list_lock(); |
| 6353 | |
| 6354 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
| 6355 | while (next_p) { |
| 6356 | |
| 6357 | p = next_p; |
| 6358 | next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); |
| 6359 | |
| 6360 | aPid = p->p_pid; |
| 6361 | aPid_ep = p->p_memstat_effectivepriority; |
| 6362 | |
| 6363 | /* |
| 6364 | * Only pick a process pinned in this elevated band |
| 6365 | */ |
| 6366 | if (!(p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) { |
| 6367 | continue; |
| 6368 | } |
| 6369 | |
| 6370 | if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) { |
| 6371 | continue; |
| 6372 | } |
| 6373 | |
| 6374 | #if CONFIG_FREEZE |
| 6375 | if (consider_frozen_only && ! (p->p_memstat_state & P_MEMSTAT_FROZEN)) { |
| 6376 | continue; |
| 6377 | } |
| 6378 | |
| 6379 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
| 6380 | continue; |
| 6381 | } |
| 6382 | #endif /* CONFIG_FREEZE */ |
| 6383 | |
| 6384 | #if DEVELOPMENT || DEBUG |
| 6385 | MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n" , |
| 6386 | aggr_count, |
| 6387 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
| 6388 | memorystatus_available_pages); |
| 6389 | #endif /* DEVELOPMENT || DEBUG */ |
| 6390 | |
| 6391 | if (memorystatus_jetsam_snapshot_count == 0) { |
| 6392 | memorystatus_init_jetsam_snapshot_locked(NULL,0); |
| 6393 | new_snapshot = TRUE; |
| 6394 | } |
| 6395 | |
| 6396 | p->p_memstat_state |= P_MEMSTAT_TERMINATED; |
| 6397 | |
| 6398 | killtime = mach_absolute_time(); |
| 6399 | absolutetime_to_microtime(killtime, &tv_sec, &tv_usec); |
| 6400 | tv_msec = tv_usec / 1000; |
| 6401 | |
| 6402 | memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime); |
| 6403 | |
| 6404 | if (proc_ref_locked(p) == p) { |
| 6405 | |
| 6406 | proc_list_unlock(); |
| 6407 | |
| 6408 | os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n" , |
| 6409 | (unsigned long)tv_sec, tv_msec, |
| 6410 | aggr_count, |
| 6411 | aPid, (*p->p_name ? p->p_name : "unknown" ), |
| 6412 | memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages); |
| 6413 | |
| 6414 | /* |
| 6415 | * memorystatus_do_kill drops a reference, so take another one so we can |
| 6416 | * continue to use this exit reason even after memorystatus_do_kill() |
| 6417 | * returns |
| 6418 | */ |
| 6419 | os_reason_ref(jetsam_reason); |
| 6420 | killed = memorystatus_do_kill(p, cause, jetsam_reason); |
| 6421 | |
| 6422 | /* Success? */ |
| 6423 | if (killed) { |
| 6424 | proc_rele(p); |
| 6425 | kill_count++; |
| 6426 | goto exit; |
| 6427 | } |
| 6428 | |
| 6429 | /* |
| 6430 | * Failure - first unwind the state, |
| 6431 | * then fall through to restart the search. |
| 6432 | */ |
| 6433 | proc_list_lock(); |
| 6434 | proc_rele_locked(p); |
| 6435 | p->p_memstat_state &= ~P_MEMSTAT_TERMINATED; |
| 6436 | p->p_memstat_state |= P_MEMSTAT_ERROR; |
| 6437 | *errors += 1; |
| 6438 | } |
| 6439 | |
| 6440 | /* |
| 6441 | * Failure - restart the search. |
| 6442 | * |
| 6443 | * We might have raced with "p" exiting on another core, resulting in no |
| 6444 | * ref on "p". Or, we may have failed to kill "p". |
| 6445 | * |
| 6446 | * Either way, we fall thru to here, leaving the proc in the |
| 6447 | * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state. |
| 6448 | * |
| 6449 | * And, we hold the the proc_list_lock at this point. |
| 6450 | */ |
| 6451 | |
| 6452 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
| 6453 | } |
| 6454 | |
| 6455 | proc_list_unlock(); |
| 6456 | |
| 6457 | exit: |
| 6458 | os_reason_free(jetsam_reason); |
| 6459 | |
| 6460 | /* Clear snapshot if freshly captured and no target was found */ |
| 6461 | if (new_snapshot && (kill_count == 0)) { |
| 6462 | proc_list_lock(); |
| 6463 | memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
| 6464 | proc_list_unlock(); |
| 6465 | } |
| 6466 | |
| 6467 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END, |
| 6468 | memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0); |
| 6469 | |
| 6470 | return (killed); |
| 6471 | } |
| 6472 | |
| 6473 | static boolean_t |
| 6474 | memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause) { |
| 6475 | /* |
| 6476 | * TODO: allow a general async path |
| 6477 | * |
| 6478 | * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to |
| 6479 | * add the appropriate exit reason code mapping. |
| 6480 | */ |
| 6481 | if ((victim_pid != -1) || |
| 6482 | (cause != kMemorystatusKilledVMPageShortage && |
| 6483 | cause != kMemorystatusKilledVMCompressorThrashing && |
| 6484 | cause != kMemorystatusKilledVMCompressorSpaceShortage && |
| 6485 | cause != kMemorystatusKilledFCThrashing && |
| 6486 | cause != kMemorystatusKilledZoneMapExhaustion)) { |
| 6487 | return FALSE; |
| 6488 | } |
| 6489 | |
| 6490 | kill_under_pressure_cause = cause; |
| 6491 | memorystatus_thread_wake(); |
| 6492 | return TRUE; |
| 6493 | } |
| 6494 | |
| 6495 | boolean_t |
| 6496 | memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async) { |
| 6497 | if (async) { |
| 6498 | return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage); |
| 6499 | } else { |
| 6500 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE); |
| 6501 | if (jetsam_reason == OS_REASON_NULL) { |
| 6502 | printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n" ); |
| 6503 | } |
| 6504 | |
| 6505 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage, jetsam_reason); |
| 6506 | } |
| 6507 | } |
| 6508 | |
| 6509 | #if CONFIG_JETSAM |
| 6510 | boolean_t |
| 6511 | memorystatus_kill_on_VM_compressor_thrashing(boolean_t async) { |
| 6512 | if (async) { |
| 6513 | return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing); |
| 6514 | } else { |
| 6515 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING); |
| 6516 | if (jetsam_reason == OS_REASON_NULL) { |
| 6517 | printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n" ); |
| 6518 | } |
| 6519 | |
| 6520 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing, jetsam_reason); |
| 6521 | } |
| 6522 | } |
| 6523 | |
| 6524 | boolean_t |
| 6525 | memorystatus_kill_on_VM_page_shortage(boolean_t async) { |
| 6526 | if (async) { |
| 6527 | return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage); |
| 6528 | } else { |
| 6529 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMPAGESHORTAGE); |
| 6530 | if (jetsam_reason == OS_REASON_NULL) { |
| 6531 | printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n" ); |
| 6532 | } |
| 6533 | |
| 6534 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage, jetsam_reason); |
| 6535 | } |
| 6536 | } |
| 6537 | |
| 6538 | boolean_t |
| 6539 | memorystatus_kill_on_FC_thrashing(boolean_t async) { |
| 6540 | |
| 6541 | |
| 6542 | if (async) { |
| 6543 | return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing); |
| 6544 | } else { |
| 6545 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_FCTHRASHING); |
| 6546 | if (jetsam_reason == OS_REASON_NULL) { |
| 6547 | printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n" ); |
| 6548 | } |
| 6549 | |
| 6550 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing, jetsam_reason); |
| 6551 | } |
| 6552 | } |
| 6553 | |
| 6554 | boolean_t |
| 6555 | memorystatus_kill_on_vnode_limit(void) { |
| 6556 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_VNODE); |
| 6557 | if (jetsam_reason == OS_REASON_NULL) { |
| 6558 | printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n" ); |
| 6559 | } |
| 6560 | |
| 6561 | return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes, jetsam_reason); |
| 6562 | } |
| 6563 | |
| 6564 | #endif /* CONFIG_JETSAM */ |
| 6565 | |
| 6566 | boolean_t |
| 6567 | memorystatus_kill_on_zone_map_exhaustion(pid_t pid) { |
| 6568 | boolean_t res = FALSE; |
| 6569 | if (pid == -1) { |
| 6570 | res = memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion); |
| 6571 | } else { |
| 6572 | os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_ZONE_MAP_EXHAUSTION); |
| 6573 | if (jetsam_reason == OS_REASON_NULL) { |
| 6574 | printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n" ); |
| 6575 | } |
| 6576 | |
| 6577 | res = memorystatus_kill_process_sync(pid, kMemorystatusKilledZoneMapExhaustion, jetsam_reason); |
| 6578 | } |
| 6579 | return res; |
| 6580 | } |
| 6581 | |
| 6582 | #if CONFIG_FREEZE |
| 6583 | |
| 6584 | __private_extern__ void |
| 6585 | memorystatus_freeze_init(void) |
| 6586 | { |
| 6587 | kern_return_t result; |
| 6588 | thread_t thread; |
| 6589 | |
| 6590 | freezer_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 6591 | freezer_lck_grp = lck_grp_alloc_init("freezer" , freezer_lck_grp_attr); |
| 6592 | |
| 6593 | lck_mtx_init(&freezer_mutex, freezer_lck_grp, NULL); |
| 6594 | |
| 6595 | /* |
| 6596 | * This is just the default value if the underlying |
| 6597 | * storage device doesn't have any specific budget. |
| 6598 | * We check with the storage layer in memorystatus_freeze_update_throttle() |
| 6599 | * before we start our freezing the first time. |
| 6600 | */ |
| 6601 | memorystatus_freeze_budget_pages_remaining = (memorystatus_freeze_daily_mb_max * 1024 * 1024) / PAGE_SIZE; |
| 6602 | |
| 6603 | result = kernel_thread_start(memorystatus_freeze_thread, NULL, &thread); |
| 6604 | if (result == KERN_SUCCESS) { |
| 6605 | |
| 6606 | proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2); |
| 6607 | proc_set_thread_policy(thread, TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 6608 | thread_set_thread_name(thread, "VM_freezer" ); |
| 6609 | |
| 6610 | thread_deallocate(thread); |
| 6611 | } else { |
| 6612 | panic("Could not create memorystatus_freeze_thread" ); |
| 6613 | } |
| 6614 | } |
| 6615 | |
| 6616 | static boolean_t |
| 6617 | memorystatus_is_process_eligible_for_freeze(proc_t p) |
| 6618 | { |
| 6619 | /* |
| 6620 | * Called with proc_list_lock held. |
| 6621 | */ |
| 6622 | |
| 6623 | LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 6624 | |
| 6625 | boolean_t should_freeze = FALSE; |
| 6626 | uint32_t state = 0, entry_count = 0, pages = 0, i = 0; |
| 6627 | int probability_of_use = 0; |
| 6628 | |
| 6629 | if (isApp(p) == FALSE) { |
| 6630 | goto out; |
| 6631 | } |
| 6632 | |
| 6633 | state = p->p_memstat_state; |
| 6634 | |
| 6635 | if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FREEZE_DISABLED | P_MEMSTAT_FREEZE_IGNORE)) || |
| 6636 | !(state & P_MEMSTAT_SUSPENDED)) { |
| 6637 | goto out; |
| 6638 | } |
| 6639 | |
| 6640 | /* Only freeze processes meeting our minimum resident page criteria */ |
| 6641 | memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL); |
| 6642 | if (pages < memorystatus_freeze_pages_min) { |
| 6643 | goto out; |
| 6644 | } |
| 6645 | |
| 6646 | entry_count = (memorystatus_global_probabilities_size / sizeof(memorystatus_internal_probabilities_t)); |
| 6647 | |
| 6648 | if (entry_count) { |
| 6649 | |
| 6650 | for (i=0; i < entry_count; i++ ) { |
| 6651 | if (strncmp(memorystatus_global_probabilities_table[i].proc_name, |
| 6652 | p->p_name, |
| 6653 | MAXCOMLEN + 1) == 0) { |
| 6654 | |
| 6655 | probability_of_use = memorystatus_global_probabilities_table[i].use_probability; |
| 6656 | break; |
| 6657 | } |
| 6658 | } |
| 6659 | |
| 6660 | if (probability_of_use == 0) { |
| 6661 | goto out; |
| 6662 | } |
| 6663 | } |
| 6664 | |
| 6665 | should_freeze = TRUE; |
| 6666 | out: |
| 6667 | return should_freeze; |
| 6668 | } |
| 6669 | |
| 6670 | /* |
| 6671 | * Synchronously freeze the passed proc. Called with a reference to the proc held. |
| 6672 | * |
| 6673 | * Doesn't deal with re-freezing because this is called on a specific process and |
| 6674 | * not by the freezer thread. If that changes, we'll have to teach it about |
| 6675 | * refreezing a frozen process. |
| 6676 | * |
| 6677 | * Returns EINVAL or the value returned by task_freeze(). |
| 6678 | */ |
| 6679 | int |
| 6680 | memorystatus_freeze_process_sync(proc_t p) |
| 6681 | { |
| 6682 | int ret = EINVAL; |
| 6683 | pid_t aPid = 0; |
| 6684 | boolean_t memorystatus_freeze_swap_low = FALSE; |
| 6685 | int freezer_error_code = 0; |
| 6686 | |
| 6687 | lck_mtx_lock(&freezer_mutex); |
| 6688 | |
| 6689 | if (p == NULL) { |
| 6690 | printf("memorystatus_freeze_process_sync: Invalid process\n" ); |
| 6691 | goto exit; |
| 6692 | } |
| 6693 | |
| 6694 | if (memorystatus_freeze_enabled == FALSE) { |
| 6695 | printf("memorystatus_freeze_process_sync: Freezing is DISABLED\n" ); |
| 6696 | goto exit; |
| 6697 | } |
| 6698 | |
| 6699 | if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low)) { |
| 6700 | printf("memorystatus_freeze_process_sync: Low compressor and/or low swap space...skipping freeze\n" ); |
| 6701 | goto exit; |
| 6702 | } |
| 6703 | |
| 6704 | memorystatus_freeze_update_throttle(&memorystatus_freeze_budget_pages_remaining); |
| 6705 | if (!memorystatus_freeze_budget_pages_remaining) { |
| 6706 | printf("memorystatus_freeze_process_sync: exit with NO available budget\n" ); |
| 6707 | goto exit; |
| 6708 | } |
| 6709 | |
| 6710 | proc_list_lock(); |
| 6711 | |
| 6712 | if (p != NULL) { |
| 6713 | uint32_t purgeable, wired, clean, dirty, shared; |
| 6714 | uint32_t max_pages, i; |
| 6715 | |
| 6716 | aPid = p->p_pid; |
| 6717 | |
| 6718 | /* Ensure the process is eligible for freezing */ |
| 6719 | if (memorystatus_is_process_eligible_for_freeze(p) == FALSE) { |
| 6720 | proc_list_unlock(); |
| 6721 | goto exit; |
| 6722 | } |
| 6723 | |
| 6724 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 6725 | |
| 6726 | max_pages = MIN(memorystatus_freeze_pages_max, memorystatus_freeze_budget_pages_remaining); |
| 6727 | |
| 6728 | } else { |
| 6729 | /* |
| 6730 | * We only have the compressor without any swap. |
| 6731 | */ |
| 6732 | max_pages = UINT32_MAX - 1; |
| 6733 | } |
| 6734 | |
| 6735 | /* Mark as locked temporarily to avoid kill */ |
| 6736 | p->p_memstat_state |= P_MEMSTAT_LOCKED; |
| 6737 | proc_list_unlock(); |
| 6738 | |
| 6739 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START, |
| 6740 | memorystatus_available_pages, 0, 0, 0, 0); |
| 6741 | |
| 6742 | ret = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); |
| 6743 | |
| 6744 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END, |
| 6745 | memorystatus_available_pages, aPid, 0, 0, 0); |
| 6746 | |
| 6747 | DTRACE_MEMORYSTATUS6(memorystatus_freeze, proc_t, p, unsigned int, memorystatus_available_pages, boolean_t, purgeable, unsigned int, wired, uint32_t, clean, uint32_t, dirty); |
| 6748 | |
| 6749 | MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - " |
| 6750 | "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n" , |
| 6751 | (ret == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED" , aPid, (*p->p_name ? p->p_name : "(unknown)" ), |
| 6752 | memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared); |
| 6753 | |
| 6754 | proc_list_lock(); |
| 6755 | |
| 6756 | if (ret == KERN_SUCCESS) { |
| 6757 | |
| 6758 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (specific) pid %d [%s]...done" , |
| 6759 | aPid, (*p->p_name ? p->p_name : "unknown" )); |
| 6760 | |
| 6761 | memorystatus_freeze_entry_t data = { aPid, TRUE, dirty }; |
| 6762 | |
| 6763 | p->p_memstat_freeze_sharedanon_pages += shared; |
| 6764 | |
| 6765 | memorystatus_frozen_shared_mb += shared; |
| 6766 | |
| 6767 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { |
| 6768 | p->p_memstat_state |= P_MEMSTAT_FROZEN; |
| 6769 | memorystatus_frozen_count++; |
| 6770 | } |
| 6771 | |
| 6772 | p->p_memstat_frozen_count++; |
| 6773 | |
| 6774 | /* |
| 6775 | * Still keeping the P_MEMSTAT_LOCKED bit till we are actually done elevating this frozen process |
| 6776 | * to its higher jetsam band. |
| 6777 | */ |
| 6778 | proc_list_unlock(); |
| 6779 | |
| 6780 | memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); |
| 6781 | |
| 6782 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 6783 | |
| 6784 | ret = memorystatus_update_inactive_jetsam_priority_band(p->p_pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, |
| 6785 | memorystatus_freeze_jetsam_band, TRUE); |
| 6786 | |
| 6787 | if (ret) { |
| 6788 | printf("Elevating the frozen process failed with %d\n" , ret); |
| 6789 | /* not fatal */ |
| 6790 | ret = 0; |
| 6791 | } |
| 6792 | |
| 6793 | proc_list_lock(); |
| 6794 | |
| 6795 | /* Update stats */ |
| 6796 | for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { |
| 6797 | throttle_intervals[i].pageouts += dirty; |
| 6798 | } |
| 6799 | } else { |
| 6800 | proc_list_lock(); |
| 6801 | } |
| 6802 | |
| 6803 | memorystatus_freeze_pageouts += dirty; |
| 6804 | |
| 6805 | if (memorystatus_frozen_count == (memorystatus_frozen_processes_max - 1)) { |
| 6806 | /* |
| 6807 | * Add some eviction logic here? At some point should we |
| 6808 | * jetsam a process to get back its swap space so that we |
| 6809 | * can freeze a more eligible process at this moment in time? |
| 6810 | */ |
| 6811 | } |
| 6812 | } else { |
| 6813 | char reason[128]; |
| 6814 | if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { |
| 6815 | strlcpy(reason, "too much shared memory" , 128); |
| 6816 | } |
| 6817 | |
| 6818 | if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { |
| 6819 | strlcpy(reason, "low private-shared pages ratio" , 128); |
| 6820 | } |
| 6821 | |
| 6822 | if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { |
| 6823 | strlcpy(reason, "no compressor space" , 128); |
| 6824 | } |
| 6825 | |
| 6826 | if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { |
| 6827 | strlcpy(reason, "no swap space" , 128); |
| 6828 | } |
| 6829 | |
| 6830 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (specific) pid %d [%s]...skipped (%s)" , |
| 6831 | aPid, (*p->p_name ? p->p_name : "unknown" ), reason); |
| 6832 | p->p_memstat_state |= P_MEMSTAT_FREEZE_IGNORE; |
| 6833 | } |
| 6834 | |
| 6835 | p->p_memstat_state &= ~P_MEMSTAT_LOCKED; |
| 6836 | proc_list_unlock(); |
| 6837 | } |
| 6838 | |
| 6839 | exit: |
| 6840 | lck_mtx_unlock(&freezer_mutex); |
| 6841 | |
| 6842 | return ret; |
| 6843 | } |
| 6844 | |
| 6845 | static int |
| 6846 | memorystatus_freeze_top_process(void) |
| 6847 | { |
| 6848 | pid_t aPid = 0; |
| 6849 | int ret = -1; |
| 6850 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
| 6851 | unsigned int i = 0; |
| 6852 | unsigned int band = JETSAM_PRIORITY_IDLE; |
| 6853 | boolean_t refreeze_processes = FALSE; |
| 6854 | |
| 6855 | proc_list_lock(); |
| 6856 | |
| 6857 | if (memorystatus_frozen_count >= memorystatus_frozen_processes_max) { |
| 6858 | /* |
| 6859 | * Freezer is already full but we are here and so let's |
| 6860 | * try to refreeze any processes we might have thawed |
| 6861 | * in the past and push out their compressed state out. |
| 6862 | */ |
| 6863 | refreeze_processes = TRUE; |
| 6864 | band = (unsigned int) memorystatus_freeze_jetsam_band; |
| 6865 | } |
| 6866 | |
| 6867 | freeze_process: |
| 6868 | |
| 6869 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
| 6870 | while (next_p) { |
| 6871 | kern_return_t kr; |
| 6872 | uint32_t purgeable, wired, clean, dirty, shared; |
| 6873 | uint32_t max_pages = 0; |
| 6874 | int freezer_error_code = 0; |
| 6875 | |
| 6876 | p = next_p; |
| 6877 | next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); |
| 6878 | |
| 6879 | aPid = p->p_pid; |
| 6880 | |
| 6881 | if (p->p_memstat_effectivepriority != (int32_t) band) { |
| 6882 | /* |
| 6883 | * We shouldn't be freezing processes outside the |
| 6884 | * prescribed band. |
| 6885 | */ |
| 6886 | break; |
| 6887 | } |
| 6888 | |
| 6889 | /* Ensure the process is eligible for (re-)freezing */ |
| 6890 | if (refreeze_processes) { |
| 6891 | /* |
| 6892 | * Has to have been frozen once before. |
| 6893 | */ |
| 6894 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { |
| 6895 | continue; |
| 6896 | } |
| 6897 | |
| 6898 | /* |
| 6899 | * Has to have been resumed once before. |
| 6900 | */ |
| 6901 | if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == FALSE) { |
| 6902 | continue; |
| 6903 | } |
| 6904 | |
| 6905 | /* |
| 6906 | * Not currently being looked at for something. |
| 6907 | */ |
| 6908 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
| 6909 | continue; |
| 6910 | } |
| 6911 | |
| 6912 | /* |
| 6913 | * We are going to try and refreeze and so re-evaluate |
| 6914 | * the process. We don't want to double count the shared |
| 6915 | * memory. So deduct the old snapshot here. |
| 6916 | */ |
| 6917 | memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages; |
| 6918 | p->p_memstat_freeze_sharedanon_pages = 0; |
| 6919 | |
| 6920 | p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; |
| 6921 | memorystatus_refreeze_eligible_count--; |
| 6922 | |
| 6923 | } else { |
| 6924 | if (memorystatus_is_process_eligible_for_freeze(p) == FALSE) { |
| 6925 | continue; // with lock held |
| 6926 | } |
| 6927 | } |
| 6928 | |
| 6929 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 6930 | /* |
| 6931 | * Freezer backed by the compressor and swap file(s) |
| 6932 | * will hold compressed data. |
| 6933 | */ |
| 6934 | |
| 6935 | max_pages = MIN(memorystatus_freeze_pages_max, memorystatus_freeze_budget_pages_remaining); |
| 6936 | |
| 6937 | } else { |
| 6938 | /* |
| 6939 | * We only have the compressor pool. |
| 6940 | */ |
| 6941 | max_pages = UINT32_MAX - 1; |
| 6942 | } |
| 6943 | |
| 6944 | /* Mark as locked temporarily to avoid kill */ |
| 6945 | p->p_memstat_state |= P_MEMSTAT_LOCKED; |
| 6946 | |
| 6947 | p = proc_ref_locked(p); |
| 6948 | if (!p) { |
| 6949 | break; |
| 6950 | } |
| 6951 | |
| 6952 | proc_list_unlock(); |
| 6953 | |
| 6954 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START, |
| 6955 | memorystatus_available_pages, 0, 0, 0, 0); |
| 6956 | |
| 6957 | kr = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, &freezer_error_code, FALSE /* eval only */); |
| 6958 | |
| 6959 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END, |
| 6960 | memorystatus_available_pages, aPid, 0, 0, 0); |
| 6961 | |
| 6962 | MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - " |
| 6963 | "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n" , |
| 6964 | (kr == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED" , aPid, (*p->p_name ? p->p_name : "(unknown)" ), |
| 6965 | memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared); |
| 6966 | |
| 6967 | proc_list_lock(); |
| 6968 | |
| 6969 | /* Success? */ |
| 6970 | if (KERN_SUCCESS == kr) { |
| 6971 | |
| 6972 | if (refreeze_processes) { |
| 6973 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: Refreezing (general) pid %d [%s]...done" , |
| 6974 | aPid, (*p->p_name ? p->p_name : "unknown" )); |
| 6975 | } else { |
| 6976 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (general) pid %d [%s]...done" , |
| 6977 | aPid, (*p->p_name ? p->p_name : "unknown" )); |
| 6978 | } |
| 6979 | |
| 6980 | memorystatus_freeze_entry_t data = { aPid, TRUE, dirty }; |
| 6981 | |
| 6982 | p->p_memstat_freeze_sharedanon_pages += shared; |
| 6983 | |
| 6984 | memorystatus_frozen_shared_mb += shared; |
| 6985 | |
| 6986 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == 0) { |
| 6987 | p->p_memstat_state |= P_MEMSTAT_FROZEN; |
| 6988 | memorystatus_frozen_count++; |
| 6989 | } |
| 6990 | |
| 6991 | p->p_memstat_frozen_count++; |
| 6992 | |
| 6993 | /* |
| 6994 | * Still keeping the P_MEMSTAT_LOCKED bit till we are actually done elevating this frozen process |
| 6995 | * to its higher jetsam band. |
| 6996 | */ |
| 6997 | proc_list_unlock(); |
| 6998 | |
| 6999 | memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data)); |
| 7000 | |
| 7001 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 7002 | |
| 7003 | ret = memorystatus_update_inactive_jetsam_priority_band(p->p_pid, MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE, memorystatus_freeze_jetsam_band, TRUE); |
| 7004 | |
| 7005 | if (ret) { |
| 7006 | printf("Elevating the frozen process failed with %d\n" , ret); |
| 7007 | /* not fatal */ |
| 7008 | ret = 0; |
| 7009 | } |
| 7010 | |
| 7011 | proc_list_lock(); |
| 7012 | |
| 7013 | /* Update stats */ |
| 7014 | for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) { |
| 7015 | throttle_intervals[i].pageouts += dirty; |
| 7016 | } |
| 7017 | } else { |
| 7018 | proc_list_lock(); |
| 7019 | } |
| 7020 | |
| 7021 | memorystatus_freeze_pageouts += dirty; |
| 7022 | |
| 7023 | if (memorystatus_frozen_count == (memorystatus_frozen_processes_max - 1)) { |
| 7024 | /* |
| 7025 | * Add some eviction logic here? At some point should we |
| 7026 | * jetsam a process to get back its swap space so that we |
| 7027 | * can freeze a more eligible process at this moment in time? |
| 7028 | */ |
| 7029 | } |
| 7030 | |
| 7031 | /* Return KERN_SUCCESS */ |
| 7032 | ret = kr; |
| 7033 | |
| 7034 | p->p_memstat_state &= ~P_MEMSTAT_LOCKED; |
| 7035 | proc_rele_locked(p); |
| 7036 | |
| 7037 | /* |
| 7038 | * We froze a process successfully. We can stop now |
| 7039 | * and see if that helped. |
| 7040 | */ |
| 7041 | |
| 7042 | break; |
| 7043 | } else { |
| 7044 | |
| 7045 | p->p_memstat_state &= ~P_MEMSTAT_LOCKED; |
| 7046 | |
| 7047 | if (refreeze_processes == TRUE) { |
| 7048 | if ((freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) || |
| 7049 | (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO)) { |
| 7050 | /* |
| 7051 | * Keeping this prior-frozen process in this high band when |
| 7052 | * we failed to re-freeze it due to bad shared memory usage |
| 7053 | * could cause excessive pressure on the lower bands. |
| 7054 | * We need to demote it for now. It'll get re-evaluated next |
| 7055 | * time because we don't set the P_MEMSTAT_FREEZE_IGNORE |
| 7056 | * bit. |
| 7057 | */ |
| 7058 | |
| 7059 | p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
| 7060 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 7061 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, TRUE, TRUE); |
| 7062 | } |
| 7063 | } else { |
| 7064 | p->p_memstat_state |= P_MEMSTAT_FREEZE_IGNORE; |
| 7065 | } |
| 7066 | |
| 7067 | proc_rele_locked(p); |
| 7068 | |
| 7069 | char reason[128]; |
| 7070 | if (freezer_error_code == FREEZER_ERROR_EXCESS_SHARED_MEMORY) { |
| 7071 | strlcpy(reason, "too much shared memory" , 128); |
| 7072 | } |
| 7073 | |
| 7074 | if (freezer_error_code == FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO) { |
| 7075 | strlcpy(reason, "low private-shared pages ratio" , 128); |
| 7076 | } |
| 7077 | |
| 7078 | if (freezer_error_code == FREEZER_ERROR_NO_COMPRESSOR_SPACE) { |
| 7079 | strlcpy(reason, "no compressor space" , 128); |
| 7080 | } |
| 7081 | |
| 7082 | if (freezer_error_code == FREEZER_ERROR_NO_SWAP_SPACE) { |
| 7083 | strlcpy(reason, "no swap space" , 128); |
| 7084 | } |
| 7085 | |
| 7086 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: freezing (general) pid %d [%s]...skipped (%s)" , |
| 7087 | aPid, (*p->p_name ? p->p_name : "unknown" ), reason); |
| 7088 | |
| 7089 | if (vm_compressor_low_on_space() || vm_swap_low_on_space()) { |
| 7090 | break; |
| 7091 | } |
| 7092 | } |
| 7093 | } |
| 7094 | |
| 7095 | if ((ret == -1) && |
| 7096 | (memorystatus_refreeze_eligible_count >= MIN_THAW_REFREEZE_THRESHOLD) && |
| 7097 | (refreeze_processes == FALSE)) { |
| 7098 | /* |
| 7099 | * We failed to freeze a process from the IDLE |
| 7100 | * band AND we have some thawed processes |
| 7101 | * AND haven't tried refreezing as yet. |
| 7102 | * Let's try and re-freeze processes in the |
| 7103 | * frozen band that have been resumed in the past |
| 7104 | * and so have brought in state from disk. |
| 7105 | */ |
| 7106 | |
| 7107 | band = (unsigned int) memorystatus_freeze_jetsam_band; |
| 7108 | |
| 7109 | refreeze_processes = TRUE; |
| 7110 | |
| 7111 | goto freeze_process; |
| 7112 | } |
| 7113 | |
| 7114 | proc_list_unlock(); |
| 7115 | |
| 7116 | return ret; |
| 7117 | } |
| 7118 | |
| 7119 | static inline boolean_t |
| 7120 | memorystatus_can_freeze_processes(void) |
| 7121 | { |
| 7122 | boolean_t ret; |
| 7123 | |
| 7124 | proc_list_lock(); |
| 7125 | |
| 7126 | if (memorystatus_suspended_count) { |
| 7127 | |
| 7128 | memorystatus_freeze_suspended_threshold = MIN(memorystatus_freeze_suspended_threshold, FREEZE_SUSPENDED_THRESHOLD_DEFAULT); |
| 7129 | |
| 7130 | if ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold) { |
| 7131 | ret = TRUE; |
| 7132 | } else { |
| 7133 | ret = FALSE; |
| 7134 | } |
| 7135 | } else { |
| 7136 | ret = FALSE; |
| 7137 | } |
| 7138 | |
| 7139 | proc_list_unlock(); |
| 7140 | |
| 7141 | return ret; |
| 7142 | } |
| 7143 | |
| 7144 | static boolean_t |
| 7145 | memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low) |
| 7146 | { |
| 7147 | boolean_t can_freeze = TRUE; |
| 7148 | |
| 7149 | /* Only freeze if we're sufficiently low on memory; this holds off freeze right |
| 7150 | after boot, and is generally is a no-op once we've reached steady state. */ |
| 7151 | if (memorystatus_available_pages > memorystatus_freeze_threshold) { |
| 7152 | return FALSE; |
| 7153 | } |
| 7154 | |
| 7155 | /* Check minimum suspended process threshold. */ |
| 7156 | if (!memorystatus_can_freeze_processes()) { |
| 7157 | return FALSE; |
| 7158 | } |
| 7159 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 7160 | |
| 7161 | if ( !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 7162 | /* |
| 7163 | * In-core compressor used for freezing WITHOUT on-disk swap support. |
| 7164 | */ |
| 7165 | if (vm_compressor_low_on_space()) { |
| 7166 | if (*memorystatus_freeze_swap_low) { |
| 7167 | *memorystatus_freeze_swap_low = TRUE; |
| 7168 | } |
| 7169 | |
| 7170 | can_freeze = FALSE; |
| 7171 | |
| 7172 | } else { |
| 7173 | if (*memorystatus_freeze_swap_low) { |
| 7174 | *memorystatus_freeze_swap_low = FALSE; |
| 7175 | } |
| 7176 | |
| 7177 | can_freeze = TRUE; |
| 7178 | } |
| 7179 | } else { |
| 7180 | /* |
| 7181 | * Freezing WITH on-disk swap support. |
| 7182 | * |
| 7183 | * In-core compressor fronts the swap. |
| 7184 | */ |
| 7185 | if (vm_swap_low_on_space()) { |
| 7186 | if (*memorystatus_freeze_swap_low) { |
| 7187 | *memorystatus_freeze_swap_low = TRUE; |
| 7188 | } |
| 7189 | |
| 7190 | can_freeze = FALSE; |
| 7191 | } |
| 7192 | |
| 7193 | } |
| 7194 | |
| 7195 | return can_freeze; |
| 7196 | } |
| 7197 | |
| 7198 | /* |
| 7199 | * This function evaluates if the currently frozen processes deserve |
| 7200 | * to stay in the higher jetsam band. If the # of thaws of a process |
| 7201 | * is below our threshold, then we will demote that process into the IDLE |
| 7202 | * band and put it at the head. We don't immediately kill the process here |
| 7203 | * because it already has state on disk and so it might be worth giving |
| 7204 | * it another shot at getting thawed/resumed and used. |
| 7205 | */ |
| 7206 | static void |
| 7207 | memorystatus_demote_frozen_processes(void) |
| 7208 | { |
| 7209 | unsigned int band = (unsigned int) memorystatus_freeze_jetsam_band; |
| 7210 | unsigned int demoted_proc_count = 0; |
| 7211 | proc_t p = PROC_NULL, next_p = PROC_NULL; |
| 7212 | |
| 7213 | proc_list_lock(); |
| 7214 | |
| 7215 | if (memorystatus_freeze_enabled == FALSE) { |
| 7216 | /* |
| 7217 | * Freeze has been disabled likely to |
| 7218 | * reclaim swap space. So don't change |
| 7219 | * any state on the frozen processes. |
| 7220 | */ |
| 7221 | proc_list_unlock(); |
| 7222 | return; |
| 7223 | } |
| 7224 | |
| 7225 | next_p = memorystatus_get_first_proc_locked(&band, FALSE); |
| 7226 | while (next_p) { |
| 7227 | |
| 7228 | p = next_p; |
| 7229 | next_p = memorystatus_get_next_proc_locked(&band, p, FALSE); |
| 7230 | |
| 7231 | if ((p->p_memstat_state & P_MEMSTAT_FROZEN) == FALSE) { |
| 7232 | continue; |
| 7233 | } |
| 7234 | |
| 7235 | if (p->p_memstat_state & P_MEMSTAT_LOCKED) { |
| 7236 | continue; |
| 7237 | } |
| 7238 | |
| 7239 | if (p->p_memstat_thaw_count < memorystatus_thaw_count_demotion_threshold) { |
| 7240 | p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND; |
| 7241 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 7242 | |
| 7243 | memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, TRUE, TRUE); |
| 7244 | #if DEVELOPMENT || DEBUG |
| 7245 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus_demote_frozen_process pid %d [%s]" , |
| 7246 | p->p_pid, (*p->p_name ? p->p_name : "unknown" )); |
| 7247 | #endif /* DEVELOPMENT || DEBUG */ |
| 7248 | |
| 7249 | /* |
| 7250 | * The freezer thread will consider this a normal app to be frozen |
| 7251 | * because it is in the IDLE band. So we don't need the |
| 7252 | * P_MEMSTAT_REFREEZE_ELIGIBLE state here. Also, if it gets resumed |
| 7253 | * we'll correctly count it as eligible for re-freeze again. |
| 7254 | * |
| 7255 | * We don't drop the frozen count because this process still has |
| 7256 | * state on disk. So there's a chance it gets resumed and then it |
| 7257 | * should land in the higher jetsam band. For that it needs to |
| 7258 | * remain marked frozen. |
| 7259 | */ |
| 7260 | if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) { |
| 7261 | p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE; |
| 7262 | memorystatus_refreeze_eligible_count--; |
| 7263 | } |
| 7264 | |
| 7265 | demoted_proc_count++; |
| 7266 | } |
| 7267 | |
| 7268 | if (demoted_proc_count == memorystatus_max_frozen_demotions_daily) { |
| 7269 | break; |
| 7270 | } |
| 7271 | } |
| 7272 | |
| 7273 | memorystatus_thaw_count = 0; |
| 7274 | proc_list_unlock(); |
| 7275 | } |
| 7276 | |
| 7277 | |
| 7278 | /* |
| 7279 | * This function will do 4 things: |
| 7280 | * |
| 7281 | * 1) check to see if we are currently in a degraded freezer mode, and if so: |
| 7282 | * - check to see if our window has expired and we should exit this mode, OR, |
| 7283 | * - return a budget based on the degraded throttle window's max. pageouts vs current pageouts. |
| 7284 | * |
| 7285 | * 2) check to see if we are in a NEW normal window and update the normal throttle window's params. |
| 7286 | * |
| 7287 | * 3) check what the current normal window allows for a budget. |
| 7288 | * |
| 7289 | * 4) calculate the current rate of pageouts for DEGRADED_WINDOW_MINS duration. If that rate is below |
| 7290 | * what we would normally expect, then we are running low on our daily budget and need to enter |
| 7291 | * degraded perf. mode. |
| 7292 | */ |
| 7293 | |
| 7294 | static void |
| 7295 | memorystatus_freeze_update_throttle(uint64_t *budget_pages_allowed) |
| 7296 | { |
| 7297 | clock_sec_t sec; |
| 7298 | clock_nsec_t nsec; |
| 7299 | mach_timespec_t ts; |
| 7300 | |
| 7301 | unsigned int freeze_daily_pageouts_max = 0; |
| 7302 | |
| 7303 | #if DEVELOPMENT || DEBUG |
| 7304 | if (!memorystatus_freeze_throttle_enabled) { |
| 7305 | /* |
| 7306 | * No throttling...we can use the full budget everytime. |
| 7307 | */ |
| 7308 | *budget_pages_allowed = UINT64_MAX; |
| 7309 | return; |
| 7310 | } |
| 7311 | #endif |
| 7312 | |
| 7313 | clock_get_system_nanotime(&sec, &nsec); |
| 7314 | ts.tv_sec = sec; |
| 7315 | ts.tv_nsec = nsec; |
| 7316 | |
| 7317 | struct throttle_interval_t *interval = NULL; |
| 7318 | |
| 7319 | if (memorystatus_freeze_degradation == TRUE) { |
| 7320 | |
| 7321 | interval = degraded_throttle_window; |
| 7322 | |
| 7323 | if (CMP_MACH_TIMESPEC(&ts, &interval->ts) >= 0) { |
| 7324 | memorystatus_freeze_degradation = FALSE; |
| 7325 | interval->pageouts = 0; |
| 7326 | interval->max_pageouts = 0; |
| 7327 | |
| 7328 | } else { |
| 7329 | *budget_pages_allowed = interval->max_pageouts - interval->pageouts; |
| 7330 | } |
| 7331 | } |
| 7332 | |
| 7333 | interval = normal_throttle_window; |
| 7334 | |
| 7335 | if (CMP_MACH_TIMESPEC(&ts, &interval->ts) >= 0) { |
| 7336 | /* |
| 7337 | * New throttle window. |
| 7338 | * Rollover any unused budget. |
| 7339 | * Also ask the storage layer what the new budget needs to be. |
| 7340 | */ |
| 7341 | uint64_t freeze_daily_budget = 0; |
| 7342 | unsigned int daily_budget_pageouts = 0; |
| 7343 | |
| 7344 | if (vm_swap_max_budget(&freeze_daily_budget)) { |
| 7345 | memorystatus_freeze_daily_mb_max = (freeze_daily_budget / (1024 * 1024)); |
| 7346 | os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: memorystatus_freeze_daily_mb_max set to %dMB\n" , memorystatus_freeze_daily_mb_max); |
| 7347 | } |
| 7348 | |
| 7349 | freeze_daily_pageouts_max = memorystatus_freeze_daily_mb_max * (1024 * 1024 / PAGE_SIZE); |
| 7350 | |
| 7351 | daily_budget_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / NORMAL_WINDOW_MINS)); |
| 7352 | interval->max_pageouts = (interval->max_pageouts - interval->pageouts) + daily_budget_pageouts; |
| 7353 | |
| 7354 | interval->ts.tv_sec = interval->mins * 60; |
| 7355 | interval->ts.tv_nsec = 0; |
| 7356 | ADD_MACH_TIMESPEC(&interval->ts, &ts); |
| 7357 | /* Since we update the throttle stats pre-freeze, adjust for overshoot here */ |
| 7358 | if (interval->pageouts > interval->max_pageouts) { |
| 7359 | interval->pageouts -= interval->max_pageouts; |
| 7360 | } else { |
| 7361 | interval->pageouts = 0; |
| 7362 | } |
| 7363 | *budget_pages_allowed = interval->max_pageouts; |
| 7364 | |
| 7365 | memorystatus_demote_frozen_processes(); |
| 7366 | |
| 7367 | } else { |
| 7368 | /* |
| 7369 | * Current throttle window. |
| 7370 | * Deny freezing if we have no budget left. |
| 7371 | * Try graceful degradation if we are within 25% of: |
| 7372 | * - the daily budget, and |
| 7373 | * - the current budget left is below our normal budget expectations. |
| 7374 | */ |
| 7375 | |
| 7376 | #if DEVELOPMENT || DEBUG |
| 7377 | /* |
| 7378 | * This can only happen in the INTERNAL configs because we allow modifying the daily budget for testing. |
| 7379 | */ |
| 7380 | |
| 7381 | if (freeze_daily_pageouts_max > interval->max_pageouts) { |
| 7382 | /* |
| 7383 | * We just bumped the daily budget. Re-evaluate our normal window params. |
| 7384 | */ |
| 7385 | interval->max_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / NORMAL_WINDOW_MINS)); |
| 7386 | memorystatus_freeze_degradation = FALSE; //we'll re-evaluate this below... |
| 7387 | } |
| 7388 | #endif /* DEVELOPMENT || DEBUG */ |
| 7389 | |
| 7390 | if (memorystatus_freeze_degradation == FALSE) { |
| 7391 | |
| 7392 | if (interval->pageouts >= interval->max_pageouts) { |
| 7393 | |
| 7394 | *budget_pages_allowed = 0; |
| 7395 | |
| 7396 | } else { |
| 7397 | |
| 7398 | int budget_left = interval->max_pageouts - interval->pageouts; |
| 7399 | int budget_threshold = (freeze_daily_pageouts_max * FREEZE_DEGRADATION_BUDGET_THRESHOLD) / 100; |
| 7400 | |
| 7401 | mach_timespec_t time_left = {0,0}; |
| 7402 | |
| 7403 | time_left.tv_sec = interval->ts.tv_sec; |
| 7404 | time_left.tv_nsec = 0; |
| 7405 | |
| 7406 | SUB_MACH_TIMESPEC(&time_left, &ts); |
| 7407 | |
| 7408 | if (budget_left <= budget_threshold) { |
| 7409 | |
| 7410 | /* |
| 7411 | * For the current normal window, calculate how much we would pageout in a DEGRADED_WINDOW_MINS duration. |
| 7412 | * And also calculate what we would pageout for the same DEGRADED_WINDOW_MINS duration if we had the full |
| 7413 | * daily pageout budget. |
| 7414 | */ |
| 7415 | |
| 7416 | unsigned int current_budget_rate_allowed = ((budget_left / time_left.tv_sec) / 60) * DEGRADED_WINDOW_MINS; |
| 7417 | unsigned int normal_budget_rate_allowed = (freeze_daily_pageouts_max / NORMAL_WINDOW_MINS) * DEGRADED_WINDOW_MINS; |
| 7418 | |
| 7419 | /* |
| 7420 | * The current rate of pageouts is below what we would expect for |
| 7421 | * the normal rate i.e. we have below normal budget left and so... |
| 7422 | */ |
| 7423 | |
| 7424 | if (current_budget_rate_allowed < normal_budget_rate_allowed) { |
| 7425 | |
| 7426 | memorystatus_freeze_degradation = TRUE; |
| 7427 | degraded_throttle_window->max_pageouts = current_budget_rate_allowed; |
| 7428 | degraded_throttle_window->pageouts = 0; |
| 7429 | |
| 7430 | /* |
| 7431 | * Switch over to the degraded throttle window so the budget |
| 7432 | * doled out is based on that window. |
| 7433 | */ |
| 7434 | interval = degraded_throttle_window; |
| 7435 | } |
| 7436 | } |
| 7437 | |
| 7438 | *budget_pages_allowed = interval->max_pageouts - interval->pageouts; |
| 7439 | } |
| 7440 | } |
| 7441 | } |
| 7442 | |
| 7443 | MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n" , |
| 7444 | interval->pageouts, interval->max_pageouts, interval->mins, (interval->ts.tv_sec - ts->tv_sec) / 60, |
| 7445 | interval->throttle ? "on" : "off" ); |
| 7446 | } |
| 7447 | |
| 7448 | static void |
| 7449 | memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused) |
| 7450 | { |
| 7451 | static boolean_t memorystatus_freeze_swap_low = FALSE; |
| 7452 | |
| 7453 | lck_mtx_lock(&freezer_mutex); |
| 7454 | |
| 7455 | if (memorystatus_freeze_enabled) { |
| 7456 | |
| 7457 | if ((memorystatus_frozen_count < memorystatus_frozen_processes_max) || |
| 7458 | (memorystatus_refreeze_eligible_count >= MIN_THAW_REFREEZE_THRESHOLD)) { |
| 7459 | |
| 7460 | if (memorystatus_can_freeze(&memorystatus_freeze_swap_low)) { |
| 7461 | |
| 7462 | /* Only freeze if we've not exceeded our pageout budgets.*/ |
| 7463 | memorystatus_freeze_update_throttle(&memorystatus_freeze_budget_pages_remaining); |
| 7464 | |
| 7465 | if (memorystatus_freeze_budget_pages_remaining) { |
| 7466 | memorystatus_freeze_top_process(); |
| 7467 | } |
| 7468 | } |
| 7469 | } |
| 7470 | } |
| 7471 | |
| 7472 | /* |
| 7473 | * We use memorystatus_apps_idle_delay_time because if/when we adopt aging for applications, |
| 7474 | * it'll tie neatly into running the freezer once we age an application. |
| 7475 | * |
| 7476 | * Till then, it serves as a good interval that can be tuned via a sysctl too. |
| 7477 | */ |
| 7478 | memorystatus_freezer_thread_next_run_ts = mach_absolute_time() + memorystatus_apps_idle_delay_time; |
| 7479 | |
| 7480 | assert_wait((event_t) &memorystatus_freeze_wakeup, THREAD_UNINT); |
| 7481 | lck_mtx_unlock(&freezer_mutex); |
| 7482 | |
| 7483 | thread_block((thread_continue_t) memorystatus_freeze_thread); |
| 7484 | } |
| 7485 | |
| 7486 | static boolean_t |
| 7487 | memorystatus_freeze_thread_should_run(void) |
| 7488 | { |
| 7489 | /* |
| 7490 | * No freezer_mutex held here...see why near call-site |
| 7491 | * within memorystatus_pages_update(). |
| 7492 | */ |
| 7493 | |
| 7494 | boolean_t should_run = FALSE; |
| 7495 | |
| 7496 | if (memorystatus_freeze_enabled == FALSE) { |
| 7497 | goto out; |
| 7498 | } |
| 7499 | |
| 7500 | if (memorystatus_available_pages > memorystatus_freeze_threshold) { |
| 7501 | goto out; |
| 7502 | } |
| 7503 | |
| 7504 | if ((memorystatus_frozen_count >= memorystatus_frozen_processes_max) && |
| 7505 | (memorystatus_refreeze_eligible_count < MIN_THAW_REFREEZE_THRESHOLD)) { |
| 7506 | goto out; |
| 7507 | } |
| 7508 | |
| 7509 | if (memorystatus_frozen_shared_mb_max && (memorystatus_frozen_shared_mb >= memorystatus_frozen_shared_mb_max)) { |
| 7510 | goto out; |
| 7511 | } |
| 7512 | |
| 7513 | uint64_t curr_time = mach_absolute_time(); |
| 7514 | |
| 7515 | if (curr_time < memorystatus_freezer_thread_next_run_ts) { |
| 7516 | goto out; |
| 7517 | } |
| 7518 | |
| 7519 | should_run = TRUE; |
| 7520 | |
| 7521 | out: |
| 7522 | return should_run; |
| 7523 | } |
| 7524 | |
| 7525 | static int |
| 7526 | sysctl_memorystatus_do_fastwake_warmup_all SYSCTL_HANDLER_ARGS |
| 7527 | { |
| 7528 | #pragma unused(oidp, req, arg1, arg2) |
| 7529 | |
| 7530 | /* Need to be root or have entitlement */ |
| 7531 | if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT)) { |
| 7532 | return EPERM; |
| 7533 | } |
| 7534 | |
| 7535 | if (memorystatus_freeze_enabled == FALSE) { |
| 7536 | return ENOTSUP; |
| 7537 | } |
| 7538 | |
| 7539 | do_fastwake_warmup_all(); |
| 7540 | |
| 7541 | return 0; |
| 7542 | } |
| 7543 | |
| 7544 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_do_fastwake_warmup_all, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 7545 | 0, 0, &sysctl_memorystatus_do_fastwake_warmup_all, "I" , "" ); |
| 7546 | |
| 7547 | #endif /* CONFIG_FREEZE */ |
| 7548 | |
| 7549 | #if VM_PRESSURE_EVENTS |
| 7550 | |
| 7551 | #if CONFIG_MEMORYSTATUS |
| 7552 | |
| 7553 | static int |
| 7554 | memorystatus_send_note(int event_code, void *data, size_t data_length) { |
| 7555 | int ret; |
| 7556 | struct kev_msg ev_msg; |
| 7557 | |
| 7558 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
| 7559 | ev_msg.kev_class = KEV_SYSTEM_CLASS; |
| 7560 | ev_msg.kev_subclass = KEV_MEMORYSTATUS_SUBCLASS; |
| 7561 | |
| 7562 | ev_msg.event_code = event_code; |
| 7563 | |
| 7564 | ev_msg.dv[0].data_length = data_length; |
| 7565 | ev_msg.dv[0].data_ptr = data; |
| 7566 | ev_msg.dv[1].data_length = 0; |
| 7567 | |
| 7568 | ret = kev_post_msg(&ev_msg); |
| 7569 | if (ret) { |
| 7570 | printf("%s: kev_post_msg() failed, err %d\n" , __func__, ret); |
| 7571 | } |
| 7572 | |
| 7573 | return ret; |
| 7574 | } |
| 7575 | |
| 7576 | boolean_t |
| 7577 | memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t limit_exceeded) { |
| 7578 | |
| 7579 | boolean_t ret = FALSE; |
| 7580 | boolean_t found_knote = FALSE; |
| 7581 | struct knote *kn = NULL; |
| 7582 | int send_knote_count = 0; |
| 7583 | |
| 7584 | /* |
| 7585 | * See comment in sysctl_memorystatus_vm_pressure_send. |
| 7586 | */ |
| 7587 | |
| 7588 | memorystatus_klist_lock(); |
| 7589 | |
| 7590 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
| 7591 | proc_t knote_proc = knote_get_kq(kn)->kq_p; |
| 7592 | pid_t knote_pid = knote_proc->p_pid; |
| 7593 | |
| 7594 | if (knote_pid == pid) { |
| 7595 | /* |
| 7596 | * By setting the "fflags" here, we are forcing |
| 7597 | * a process to deal with the case where it's |
| 7598 | * bumping up into its memory limits. If we don't |
| 7599 | * do this here, we will end up depending on the |
| 7600 | * system pressure snapshot evaluation in |
| 7601 | * filt_memorystatus(). |
| 7602 | */ |
| 7603 | |
| 7604 | #if CONFIG_EMBEDDED |
| 7605 | if (!limit_exceeded) { |
| 7606 | /* |
| 7607 | * Intentionally set either the unambiguous limit warning, |
| 7608 | * the system-wide critical or the system-wide warning |
| 7609 | * notification bit. |
| 7610 | */ |
| 7611 | |
| 7612 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
| 7613 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
| 7614 | found_knote = TRUE; |
| 7615 | send_knote_count++; |
| 7616 | } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { |
| 7617 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; |
| 7618 | found_knote = TRUE; |
| 7619 | send_knote_count++; |
| 7620 | } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) { |
| 7621 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
| 7622 | found_knote = TRUE; |
| 7623 | send_knote_count++; |
| 7624 | } |
| 7625 | } else { |
| 7626 | /* |
| 7627 | * Send this notification when a process has exceeded a soft limit. |
| 7628 | */ |
| 7629 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
| 7630 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
| 7631 | found_knote = TRUE; |
| 7632 | send_knote_count++; |
| 7633 | } |
| 7634 | } |
| 7635 | #else /* CONFIG_EMBEDDED */ |
| 7636 | if (!limit_exceeded) { |
| 7637 | |
| 7638 | /* |
| 7639 | * Processes on desktop are not expecting to handle a system-wide |
| 7640 | * critical or system-wide warning notification from this path. |
| 7641 | * Intentionally set only the unambiguous limit warning here. |
| 7642 | * |
| 7643 | * If the limit is soft, however, limit this to one notification per |
| 7644 | * active/inactive limit (per each registered listener). |
| 7645 | */ |
| 7646 | |
| 7647 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
| 7648 | found_knote=TRUE; |
| 7649 | if (!is_fatal) { |
| 7650 | /* |
| 7651 | * Restrict proc_limit_warn notifications when |
| 7652 | * non-fatal (soft) limit is at play. |
| 7653 | */ |
| 7654 | if (is_active) { |
| 7655 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) { |
| 7656 | /* |
| 7657 | * Mark this knote for delivery. |
| 7658 | */ |
| 7659 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
| 7660 | /* |
| 7661 | * And suppress it from future notifications. |
| 7662 | */ |
| 7663 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
| 7664 | send_knote_count++; |
| 7665 | } |
| 7666 | } else { |
| 7667 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) { |
| 7668 | /* |
| 7669 | * Mark this knote for delivery. |
| 7670 | */ |
| 7671 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
| 7672 | /* |
| 7673 | * And suppress it from future notifications. |
| 7674 | */ |
| 7675 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
| 7676 | send_knote_count++; |
| 7677 | } |
| 7678 | } |
| 7679 | } else { |
| 7680 | /* |
| 7681 | * No restriction on proc_limit_warn notifications when |
| 7682 | * fatal (hard) limit is at play. |
| 7683 | */ |
| 7684 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
| 7685 | send_knote_count++; |
| 7686 | } |
| 7687 | } |
| 7688 | } else { |
| 7689 | /* |
| 7690 | * Send this notification when a process has exceeded a soft limit, |
| 7691 | */ |
| 7692 | |
| 7693 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
| 7694 | found_knote = TRUE; |
| 7695 | if (!is_fatal) { |
| 7696 | /* |
| 7697 | * Restrict critical notifications for soft limits. |
| 7698 | */ |
| 7699 | |
| 7700 | if (is_active) { |
| 7701 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) { |
| 7702 | /* |
| 7703 | * Suppress future proc_limit_critical notifications |
| 7704 | * for the active soft limit. |
| 7705 | */ |
| 7706 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
| 7707 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
| 7708 | send_knote_count++; |
| 7709 | |
| 7710 | } |
| 7711 | } else { |
| 7712 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) { |
| 7713 | /* |
| 7714 | * Suppress future proc_limit_critical_notifications |
| 7715 | * for the inactive soft limit. |
| 7716 | */ |
| 7717 | kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
| 7718 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
| 7719 | send_knote_count++; |
| 7720 | } |
| 7721 | } |
| 7722 | } else { |
| 7723 | /* |
| 7724 | * We should never be trying to send a critical notification for |
| 7725 | * a hard limit... the process would be killed before it could be |
| 7726 | * received. |
| 7727 | */ |
| 7728 | panic("Caught sending pid %d a critical warning for a fatal limit.\n" , pid); |
| 7729 | } |
| 7730 | } |
| 7731 | } |
| 7732 | #endif /* CONFIG_EMBEDDED */ |
| 7733 | } |
| 7734 | } |
| 7735 | |
| 7736 | if (found_knote) { |
| 7737 | if (send_knote_count > 0) { |
| 7738 | KNOTE(&memorystatus_klist, 0); |
| 7739 | } |
| 7740 | ret = TRUE; |
| 7741 | } |
| 7742 | |
| 7743 | memorystatus_klist_unlock(); |
| 7744 | |
| 7745 | return ret; |
| 7746 | } |
| 7747 | |
| 7748 | /* |
| 7749 | * Can only be set by the current task on itself. |
| 7750 | */ |
| 7751 | int |
| 7752 | memorystatus_low_mem_privileged_listener(uint32_t op_flags) |
| 7753 | { |
| 7754 | boolean_t set_privilege = FALSE; |
| 7755 | /* |
| 7756 | * Need an entitlement check here? |
| 7757 | */ |
| 7758 | if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE) { |
| 7759 | set_privilege = TRUE; |
| 7760 | } else if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE) { |
| 7761 | set_privilege = FALSE; |
| 7762 | } else { |
| 7763 | return EINVAL; |
| 7764 | } |
| 7765 | |
| 7766 | return (task_low_mem_privileged_listener(current_task(), set_privilege, NULL)); |
| 7767 | } |
| 7768 | |
| 7769 | int |
| 7770 | memorystatus_send_pressure_note(pid_t pid) { |
| 7771 | MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n" , pid); |
| 7772 | return memorystatus_send_note(kMemorystatusPressureNote, &pid, sizeof(pid)); |
| 7773 | } |
| 7774 | |
| 7775 | void |
| 7776 | memorystatus_send_low_swap_note(void) { |
| 7777 | |
| 7778 | struct knote *kn = NULL; |
| 7779 | |
| 7780 | memorystatus_klist_lock(); |
| 7781 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
| 7782 | /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the |
| 7783 | * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist |
| 7784 | * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with |
| 7785 | * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */ |
| 7786 | if (is_knote_registered_modify_task_pressure_bits(kn, NOTE_MEMORYSTATUS_LOW_SWAP, NULL, 0, 0) == TRUE) { |
| 7787 | KNOTE(&memorystatus_klist, kMemorystatusLowSwap); |
| 7788 | break; |
| 7789 | } |
| 7790 | } |
| 7791 | |
| 7792 | memorystatus_klist_unlock(); |
| 7793 | } |
| 7794 | |
| 7795 | boolean_t |
| 7796 | memorystatus_bg_pressure_eligible(proc_t p) { |
| 7797 | boolean_t eligible = FALSE; |
| 7798 | |
| 7799 | proc_list_lock(); |
| 7800 | |
| 7801 | MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n" , p->p_pid, p->p_memstat_state); |
| 7802 | |
| 7803 | /* Foreground processes have already been dealt with at this point, so just test for eligibility */ |
| 7804 | if (!(p->p_memstat_state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN))) { |
| 7805 | eligible = TRUE; |
| 7806 | } |
| 7807 | |
| 7808 | if (p->p_memstat_effectivepriority < JETSAM_PRIORITY_BACKGROUND_OPPORTUNISTIC) { |
| 7809 | /* |
| 7810 | * IDLE and IDLE_DEFERRED bands contain processes |
| 7811 | * that have dropped memory to be under their inactive |
| 7812 | * memory limits. And so they can't really give back |
| 7813 | * anything. |
| 7814 | */ |
| 7815 | eligible = FALSE; |
| 7816 | } |
| 7817 | |
| 7818 | proc_list_unlock(); |
| 7819 | |
| 7820 | return eligible; |
| 7821 | } |
| 7822 | |
| 7823 | boolean_t |
| 7824 | memorystatus_is_foreground_locked(proc_t p) { |
| 7825 | return ((p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND) || |
| 7826 | (p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND_SUPPORT)); |
| 7827 | } |
| 7828 | |
| 7829 | /* |
| 7830 | * This is meant for stackshot and kperf -- it does not take the proc_list_lock |
| 7831 | * to access the p_memstat_dirty field. |
| 7832 | */ |
| 7833 | void memorystatus_proc_flags_unsafe(void * v, boolean_t *is_dirty, boolean_t *is_dirty_tracked, boolean_t *allow_idle_exit) |
| 7834 | { |
| 7835 | if (!v) { |
| 7836 | *is_dirty = FALSE; |
| 7837 | *is_dirty_tracked = FALSE; |
| 7838 | *allow_idle_exit = FALSE; |
| 7839 | } else { |
| 7840 | proc_t p = (proc_t)v; |
| 7841 | *is_dirty = (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) != 0; |
| 7842 | *is_dirty_tracked = (p->p_memstat_dirty & P_DIRTY_TRACK) != 0; |
| 7843 | *allow_idle_exit = (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) != 0; |
| 7844 | } |
| 7845 | } |
| 7846 | |
| 7847 | #endif /* CONFIG_MEMORYSTATUS */ |
| 7848 | |
| 7849 | /* |
| 7850 | * Trigger levels to test the mechanism. |
| 7851 | * Can be used via a sysctl. |
| 7852 | */ |
| 7853 | #define TEST_LOW_MEMORY_TRIGGER_ONE 1 |
| 7854 | #define TEST_LOW_MEMORY_TRIGGER_ALL 2 |
| 7855 | #define TEST_PURGEABLE_TRIGGER_ONE 3 |
| 7856 | #define TEST_PURGEABLE_TRIGGER_ALL 4 |
| 7857 | #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5 |
| 7858 | #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6 |
| 7859 | |
| 7860 | boolean_t memorystatus_manual_testing_on = FALSE; |
| 7861 | vm_pressure_level_t memorystatus_manual_testing_level = kVMPressureNormal; |
| 7862 | |
| 7863 | extern struct knote * |
| 7864 | vm_pressure_select_optimal_candidate_to_notify(struct klist *, int, boolean_t); |
| 7865 | |
| 7866 | |
| 7867 | #define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */ |
| 7868 | |
| 7869 | #if DEBUG |
| 7870 | #define VM_PRESSURE_DEBUG(cond, format, ...) \ |
| 7871 | do { \ |
| 7872 | if (cond) { printf(format, ##__VA_ARGS__); } \ |
| 7873 | } while(0) |
| 7874 | #else |
| 7875 | #define VM_PRESSURE_DEBUG(cond, format, ...) |
| 7876 | #endif |
| 7877 | |
| 7878 | #define INTER_NOTIFICATION_DELAY (250000) /* .25 second */ |
| 7879 | |
| 7880 | void memorystatus_on_pageout_scan_end(void) { |
| 7881 | /* No-op */ |
| 7882 | } |
| 7883 | |
| 7884 | /* |
| 7885 | * kn_max - knote |
| 7886 | * |
| 7887 | * knote_pressure_level - to check if the knote is registered for this notification level. |
| 7888 | * |
| 7889 | * task - task whose bits we'll be modifying |
| 7890 | * |
| 7891 | * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again. |
| 7892 | * |
| 7893 | * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately. |
| 7894 | * |
| 7895 | */ |
| 7896 | |
| 7897 | boolean_t |
| 7898 | is_knote_registered_modify_task_pressure_bits(struct knote *kn_max, int knote_pressure_level, task_t task, vm_pressure_level_t pressure_level_to_clear, vm_pressure_level_t pressure_level_to_set) |
| 7899 | { |
| 7900 | if (kn_max->kn_sfflags & knote_pressure_level) { |
| 7901 | |
| 7902 | if (pressure_level_to_clear && task_has_been_notified(task, pressure_level_to_clear) == TRUE) { |
| 7903 | |
| 7904 | task_clear_has_been_notified(task, pressure_level_to_clear); |
| 7905 | } |
| 7906 | |
| 7907 | task_mark_has_been_notified(task, pressure_level_to_set); |
| 7908 | return TRUE; |
| 7909 | } |
| 7910 | |
| 7911 | return FALSE; |
| 7912 | } |
| 7913 | |
| 7914 | void |
| 7915 | memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear) |
| 7916 | { |
| 7917 | struct knote *kn = NULL; |
| 7918 | |
| 7919 | memorystatus_klist_lock(); |
| 7920 | SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) { |
| 7921 | |
| 7922 | proc_t p = PROC_NULL; |
| 7923 | struct task* t = TASK_NULL; |
| 7924 | |
| 7925 | p = knote_get_kq(kn)->kq_p; |
| 7926 | proc_list_lock(); |
| 7927 | if (p != proc_ref_locked(p)) { |
| 7928 | p = PROC_NULL; |
| 7929 | proc_list_unlock(); |
| 7930 | continue; |
| 7931 | } |
| 7932 | proc_list_unlock(); |
| 7933 | |
| 7934 | t = (struct task *)(p->task); |
| 7935 | |
| 7936 | task_clear_has_been_notified(t, pressure_level_to_clear); |
| 7937 | |
| 7938 | proc_rele(p); |
| 7939 | } |
| 7940 | |
| 7941 | memorystatus_klist_unlock(); |
| 7942 | } |
| 7943 | |
| 7944 | extern kern_return_t vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process); |
| 7945 | |
| 7946 | struct knote * |
| 7947 | vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process); |
| 7948 | |
| 7949 | /* |
| 7950 | * Used by the vm_pressure_thread which is |
| 7951 | * signalled from within vm_pageout_scan(). |
| 7952 | */ |
| 7953 | static void vm_dispatch_memory_pressure(void); |
| 7954 | void consider_vm_pressure_events(void); |
| 7955 | |
| 7956 | void consider_vm_pressure_events(void) |
| 7957 | { |
| 7958 | vm_dispatch_memory_pressure(); |
| 7959 | } |
| 7960 | static void vm_dispatch_memory_pressure(void) |
| 7961 | { |
| 7962 | memorystatus_update_vm_pressure(FALSE); |
| 7963 | } |
| 7964 | |
| 7965 | extern vm_pressure_level_t |
| 7966 | convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t); |
| 7967 | |
| 7968 | struct knote * |
| 7969 | vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process) |
| 7970 | { |
| 7971 | struct knote *kn = NULL, *kn_max = NULL; |
| 7972 | uint64_t resident_max = 0; /* MB */ |
| 7973 | struct timeval curr_tstamp = {0, 0}; |
| 7974 | int elapsed_msecs = 0; |
| 7975 | int selected_task_importance = 0; |
| 7976 | static int pressure_snapshot = -1; |
| 7977 | boolean_t pressure_increase = FALSE; |
| 7978 | |
| 7979 | if (pressure_snapshot == -1) { |
| 7980 | /* |
| 7981 | * Initial snapshot. |
| 7982 | */ |
| 7983 | pressure_snapshot = level; |
| 7984 | pressure_increase = TRUE; |
| 7985 | } else { |
| 7986 | |
| 7987 | if (level && (level >= pressure_snapshot)) { |
| 7988 | pressure_increase = TRUE; |
| 7989 | } else { |
| 7990 | pressure_increase = FALSE; |
| 7991 | } |
| 7992 | |
| 7993 | pressure_snapshot = level; |
| 7994 | } |
| 7995 | |
| 7996 | if (pressure_increase == TRUE) { |
| 7997 | /* |
| 7998 | * We'll start by considering the largest |
| 7999 | * unimportant task in our list. |
| 8000 | */ |
| 8001 | selected_task_importance = INT_MAX; |
| 8002 | } else { |
| 8003 | /* |
| 8004 | * We'll start by considering the largest |
| 8005 | * important task in our list. |
| 8006 | */ |
| 8007 | selected_task_importance = 0; |
| 8008 | } |
| 8009 | |
| 8010 | microuptime(&curr_tstamp); |
| 8011 | |
| 8012 | SLIST_FOREACH(kn, candidate_list, kn_selnext) { |
| 8013 | |
| 8014 | uint64_t resident_size = 0; /* MB */ |
| 8015 | proc_t p = PROC_NULL; |
| 8016 | struct task* t = TASK_NULL; |
| 8017 | int curr_task_importance = 0; |
| 8018 | boolean_t consider_knote = FALSE; |
| 8019 | boolean_t privileged_listener = FALSE; |
| 8020 | |
| 8021 | p = knote_get_kq(kn)->kq_p; |
| 8022 | proc_list_lock(); |
| 8023 | if (p != proc_ref_locked(p)) { |
| 8024 | p = PROC_NULL; |
| 8025 | proc_list_unlock(); |
| 8026 | continue; |
| 8027 | } |
| 8028 | proc_list_unlock(); |
| 8029 | |
| 8030 | #if CONFIG_MEMORYSTATUS |
| 8031 | if (target_foreground_process == TRUE && !memorystatus_is_foreground_locked(p)) { |
| 8032 | /* |
| 8033 | * Skip process not marked foreground. |
| 8034 | */ |
| 8035 | proc_rele(p); |
| 8036 | continue; |
| 8037 | } |
| 8038 | #endif /* CONFIG_MEMORYSTATUS */ |
| 8039 | |
| 8040 | t = (struct task *)(p->task); |
| 8041 | |
| 8042 | timevalsub(&curr_tstamp, &p->vm_pressure_last_notify_tstamp); |
| 8043 | elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000; |
| 8044 | |
| 8045 | vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(level); |
| 8046 | |
| 8047 | if ((kn->kn_sfflags & dispatch_level) == 0) { |
| 8048 | proc_rele(p); |
| 8049 | continue; |
| 8050 | } |
| 8051 | |
| 8052 | #if CONFIG_MEMORYSTATUS |
| 8053 | if (target_foreground_process == FALSE && !memorystatus_bg_pressure_eligible(p)) { |
| 8054 | VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n" , p->p_pid); |
| 8055 | proc_rele(p); |
| 8056 | continue; |
| 8057 | } |
| 8058 | #endif /* CONFIG_MEMORYSTATUS */ |
| 8059 | |
| 8060 | #if CONFIG_EMBEDDED |
| 8061 | curr_task_importance = p->p_memstat_effectivepriority; |
| 8062 | #else /* CONFIG_EMBEDDED */ |
| 8063 | curr_task_importance = task_importance_estimate(t); |
| 8064 | #endif /* CONFIG_EMBEDDED */ |
| 8065 | |
| 8066 | /* |
| 8067 | * Privileged listeners are only considered in the multi-level pressure scheme |
| 8068 | * AND only if the pressure is increasing. |
| 8069 | */ |
| 8070 | if (level > 0) { |
| 8071 | |
| 8072 | if (task_has_been_notified(t, level) == FALSE) { |
| 8073 | |
| 8074 | /* |
| 8075 | * Is this a privileged listener? |
| 8076 | */ |
| 8077 | if (task_low_mem_privileged_listener(t, FALSE, &privileged_listener) == 0) { |
| 8078 | |
| 8079 | if (privileged_listener) { |
| 8080 | kn_max = kn; |
| 8081 | proc_rele(p); |
| 8082 | goto done_scanning; |
| 8083 | } |
| 8084 | } |
| 8085 | } else { |
| 8086 | proc_rele(p); |
| 8087 | continue; |
| 8088 | } |
| 8089 | } else if (level == 0) { |
| 8090 | |
| 8091 | /* |
| 8092 | * Task wasn't notified when the pressure was increasing and so |
| 8093 | * no need to notify it that the pressure is decreasing. |
| 8094 | */ |
| 8095 | if ((task_has_been_notified(t, kVMPressureWarning) == FALSE) && (task_has_been_notified(t, kVMPressureCritical) == FALSE)) { |
| 8096 | proc_rele(p); |
| 8097 | continue; |
| 8098 | } |
| 8099 | } |
| 8100 | |
| 8101 | /* |
| 8102 | * We don't want a small process to block large processes from |
| 8103 | * being notified again. <rdar://problem/7955532> |
| 8104 | */ |
| 8105 | resident_size = (get_task_phys_footprint(t))/(1024*1024ULL); /* MB */ |
| 8106 | |
| 8107 | if (resident_size >= vm_pressure_task_footprint_min) { |
| 8108 | |
| 8109 | if (level > 0) { |
| 8110 | /* |
| 8111 | * Warning or Critical Pressure. |
| 8112 | */ |
| 8113 | if (pressure_increase) { |
| 8114 | if ((curr_task_importance < selected_task_importance) || |
| 8115 | ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { |
| 8116 | |
| 8117 | /* |
| 8118 | * We have found a candidate process which is: |
| 8119 | * a) at a lower importance than the current selected process |
| 8120 | * OR |
| 8121 | * b) has importance equal to that of the current selected process but is larger |
| 8122 | */ |
| 8123 | |
| 8124 | consider_knote = TRUE; |
| 8125 | } |
| 8126 | } else { |
| 8127 | if ((curr_task_importance > selected_task_importance) || |
| 8128 | ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { |
| 8129 | |
| 8130 | /* |
| 8131 | * We have found a candidate process which is: |
| 8132 | * a) at a higher importance than the current selected process |
| 8133 | * OR |
| 8134 | * b) has importance equal to that of the current selected process but is larger |
| 8135 | */ |
| 8136 | |
| 8137 | consider_knote = TRUE; |
| 8138 | } |
| 8139 | } |
| 8140 | } else if (level == 0) { |
| 8141 | /* |
| 8142 | * Pressure back to normal. |
| 8143 | */ |
| 8144 | if ((curr_task_importance > selected_task_importance) || |
| 8145 | ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) { |
| 8146 | |
| 8147 | consider_knote = TRUE; |
| 8148 | } |
| 8149 | } |
| 8150 | |
| 8151 | if (consider_knote) { |
| 8152 | resident_max = resident_size; |
| 8153 | kn_max = kn; |
| 8154 | selected_task_importance = curr_task_importance; |
| 8155 | consider_knote = FALSE; /* reset for the next candidate */ |
| 8156 | } |
| 8157 | } else { |
| 8158 | /* There was no candidate with enough resident memory to scavenge */ |
| 8159 | VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n" , p->p_pid, resident_size); |
| 8160 | } |
| 8161 | proc_rele(p); |
| 8162 | } |
| 8163 | |
| 8164 | done_scanning: |
| 8165 | if (kn_max) { |
| 8166 | VM_DEBUG_CONSTANT_EVENT(vm_pressure_event, VM_PRESSURE_EVENT, DBG_FUNC_NONE, knote_get_kq(kn_max)->kq_p->p_pid, resident_max, 0, 0); |
| 8167 | VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n" , knote_get_kq(kn_max)->kq_p->p_pid, resident_max); |
| 8168 | } |
| 8169 | |
| 8170 | return kn_max; |
| 8171 | } |
| 8172 | |
| 8173 | #define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */ |
| 8174 | #define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */ |
| 8175 | #define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */ |
| 8176 | |
| 8177 | uint64_t next_warning_notification_sent_at_ts = 0; |
| 8178 | uint64_t next_critical_notification_sent_at_ts = 0; |
| 8179 | |
| 8180 | kern_return_t |
| 8181 | memorystatus_update_vm_pressure(boolean_t target_foreground_process) |
| 8182 | { |
| 8183 | struct knote *kn_max = NULL; |
| 8184 | struct knote *kn_cur = NULL, *kn_temp = NULL; /* for safe list traversal */ |
| 8185 | pid_t target_pid = -1; |
| 8186 | struct klist dispatch_klist = { NULL }; |
| 8187 | proc_t target_proc = PROC_NULL; |
| 8188 | struct task *task = NULL; |
| 8189 | boolean_t found_candidate = FALSE; |
| 8190 | |
| 8191 | static vm_pressure_level_t level_snapshot = kVMPressureNormal; |
| 8192 | static vm_pressure_level_t prev_level_snapshot = kVMPressureNormal; |
| 8193 | boolean_t smoothing_window_started = FALSE; |
| 8194 | struct timeval smoothing_window_start_tstamp = {0, 0}; |
| 8195 | struct timeval curr_tstamp = {0, 0}; |
| 8196 | int elapsed_msecs = 0; |
| 8197 | uint64_t curr_ts = mach_absolute_time(); |
| 8198 | |
| 8199 | #if !CONFIG_JETSAM |
| 8200 | #define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */ |
| 8201 | |
| 8202 | int idle_kill_counter = 0; |
| 8203 | |
| 8204 | /* |
| 8205 | * On desktop we take this opportunity to free up memory pressure |
| 8206 | * by immediately killing idle exitable processes. We use a delay |
| 8207 | * to avoid overkill. And we impose a max counter as a fail safe |
| 8208 | * in case daemons re-launch too fast. |
| 8209 | */ |
| 8210 | while ((memorystatus_vm_pressure_level != kVMPressureNormal) && (idle_kill_counter < MAX_IDLE_KILLS)) { |
| 8211 | if (memorystatus_idle_exit_from_VM() == FALSE) { |
| 8212 | /* No idle exitable processes left to kill */ |
| 8213 | break; |
| 8214 | } |
| 8215 | idle_kill_counter++; |
| 8216 | |
| 8217 | if (memorystatus_manual_testing_on == TRUE) { |
| 8218 | /* |
| 8219 | * Skip the delay when testing |
| 8220 | * the pressure notification scheme. |
| 8221 | */ |
| 8222 | } else { |
| 8223 | delay(1000000); /* 1 second */ |
| 8224 | } |
| 8225 | } |
| 8226 | #endif /* !CONFIG_JETSAM */ |
| 8227 | |
| 8228 | if (level_snapshot != kVMPressureNormal) { |
| 8229 | |
| 8230 | /* |
| 8231 | * Check to see if we are still in the 'resting' period |
| 8232 | * after having notified all clients interested in |
| 8233 | * a particular pressure level. |
| 8234 | */ |
| 8235 | |
| 8236 | level_snapshot = memorystatus_vm_pressure_level; |
| 8237 | |
| 8238 | if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { |
| 8239 | |
| 8240 | if (next_warning_notification_sent_at_ts) { |
| 8241 | if (curr_ts < next_warning_notification_sent_at_ts) { |
| 8242 | delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */); |
| 8243 | return KERN_SUCCESS; |
| 8244 | } |
| 8245 | |
| 8246 | next_warning_notification_sent_at_ts = 0; |
| 8247 | memorystatus_klist_reset_all_for_level(kVMPressureWarning); |
| 8248 | } |
| 8249 | } else if (level_snapshot == kVMPressureCritical) { |
| 8250 | |
| 8251 | if (next_critical_notification_sent_at_ts) { |
| 8252 | if (curr_ts < next_critical_notification_sent_at_ts) { |
| 8253 | delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */); |
| 8254 | return KERN_SUCCESS; |
| 8255 | } |
| 8256 | next_critical_notification_sent_at_ts = 0; |
| 8257 | memorystatus_klist_reset_all_for_level(kVMPressureCritical); |
| 8258 | } |
| 8259 | } |
| 8260 | } |
| 8261 | |
| 8262 | while (1) { |
| 8263 | |
| 8264 | /* |
| 8265 | * There is a race window here. But it's not clear |
| 8266 | * how much we benefit from having extra synchronization. |
| 8267 | */ |
| 8268 | level_snapshot = memorystatus_vm_pressure_level; |
| 8269 | |
| 8270 | if (prev_level_snapshot > level_snapshot) { |
| 8271 | /* |
| 8272 | * Pressure decreased? Let's take a little breather |
| 8273 | * and see if this condition stays. |
| 8274 | */ |
| 8275 | if (smoothing_window_started == FALSE) { |
| 8276 | |
| 8277 | smoothing_window_started = TRUE; |
| 8278 | microuptime(&smoothing_window_start_tstamp); |
| 8279 | } |
| 8280 | |
| 8281 | microuptime(&curr_tstamp); |
| 8282 | timevalsub(&curr_tstamp, &smoothing_window_start_tstamp); |
| 8283 | elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000; |
| 8284 | |
| 8285 | if (elapsed_msecs < VM_PRESSURE_DECREASED_SMOOTHING_PERIOD) { |
| 8286 | |
| 8287 | delay(INTER_NOTIFICATION_DELAY); |
| 8288 | continue; |
| 8289 | } |
| 8290 | } |
| 8291 | |
| 8292 | prev_level_snapshot = level_snapshot; |
| 8293 | smoothing_window_started = FALSE; |
| 8294 | |
| 8295 | memorystatus_klist_lock(); |
| 8296 | kn_max = vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist, level_snapshot, target_foreground_process); |
| 8297 | |
| 8298 | if (kn_max == NULL) { |
| 8299 | memorystatus_klist_unlock(); |
| 8300 | |
| 8301 | /* |
| 8302 | * No more level-based clients to notify. |
| 8303 | * |
| 8304 | * Start the 'resting' window within which clients will not be re-notified. |
| 8305 | */ |
| 8306 | |
| 8307 | if (level_snapshot != kVMPressureNormal) { |
| 8308 | if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { |
| 8309 | nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts); |
| 8310 | |
| 8311 | /* Next warning notification (if nothing changes) won't be sent before...*/ |
| 8312 | next_warning_notification_sent_at_ts = mach_absolute_time() + curr_ts; |
| 8313 | } |
| 8314 | |
| 8315 | if (level_snapshot == kVMPressureCritical) { |
| 8316 | nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts); |
| 8317 | |
| 8318 | /* Next critical notification (if nothing changes) won't be sent before...*/ |
| 8319 | next_critical_notification_sent_at_ts = mach_absolute_time() + curr_ts; |
| 8320 | } |
| 8321 | } |
| 8322 | return KERN_FAILURE; |
| 8323 | } |
| 8324 | |
| 8325 | target_proc = knote_get_kq(kn_max)->kq_p; |
| 8326 | |
| 8327 | proc_list_lock(); |
| 8328 | if (target_proc != proc_ref_locked(target_proc)) { |
| 8329 | target_proc = PROC_NULL; |
| 8330 | proc_list_unlock(); |
| 8331 | memorystatus_klist_unlock(); |
| 8332 | continue; |
| 8333 | } |
| 8334 | proc_list_unlock(); |
| 8335 | |
| 8336 | target_pid = target_proc->p_pid; |
| 8337 | |
| 8338 | task = (struct task *)(target_proc->task); |
| 8339 | |
| 8340 | if (level_snapshot != kVMPressureNormal) { |
| 8341 | |
| 8342 | if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) { |
| 8343 | |
| 8344 | if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_WARN, task, 0, kVMPressureWarning) == TRUE) { |
| 8345 | found_candidate = TRUE; |
| 8346 | } |
| 8347 | } else { |
| 8348 | if (level_snapshot == kVMPressureCritical) { |
| 8349 | |
| 8350 | if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL, task, 0, kVMPressureCritical) == TRUE) { |
| 8351 | found_candidate = TRUE; |
| 8352 | } |
| 8353 | } |
| 8354 | } |
| 8355 | } else { |
| 8356 | if (kn_max->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
| 8357 | |
| 8358 | task_clear_has_been_notified(task, kVMPressureWarning); |
| 8359 | task_clear_has_been_notified(task, kVMPressureCritical); |
| 8360 | |
| 8361 | found_candidate = TRUE; |
| 8362 | } |
| 8363 | } |
| 8364 | |
| 8365 | if (found_candidate == FALSE) { |
| 8366 | proc_rele(target_proc); |
| 8367 | memorystatus_klist_unlock(); |
| 8368 | continue; |
| 8369 | } |
| 8370 | |
| 8371 | SLIST_FOREACH_SAFE(kn_cur, &memorystatus_klist, kn_selnext, kn_temp) { |
| 8372 | |
| 8373 | int knote_pressure_level = convert_internal_pressure_level_to_dispatch_level(level_snapshot); |
| 8374 | |
| 8375 | if (is_knote_registered_modify_task_pressure_bits(kn_cur, knote_pressure_level, task, 0, level_snapshot) == TRUE) { |
| 8376 | proc_t knote_proc = knote_get_kq(kn_cur)->kq_p; |
| 8377 | pid_t knote_pid = knote_proc->p_pid; |
| 8378 | if (knote_pid == target_pid) { |
| 8379 | KNOTE_DETACH(&memorystatus_klist, kn_cur); |
| 8380 | KNOTE_ATTACH(&dispatch_klist, kn_cur); |
| 8381 | } |
| 8382 | } |
| 8383 | } |
| 8384 | |
| 8385 | KNOTE(&dispatch_klist, (level_snapshot != kVMPressureNormal) ? kMemorystatusPressure : kMemorystatusNoPressure); |
| 8386 | |
| 8387 | SLIST_FOREACH_SAFE(kn_cur, &dispatch_klist, kn_selnext, kn_temp) { |
| 8388 | KNOTE_DETACH(&dispatch_klist, kn_cur); |
| 8389 | KNOTE_ATTACH(&memorystatus_klist, kn_cur); |
| 8390 | } |
| 8391 | |
| 8392 | memorystatus_klist_unlock(); |
| 8393 | |
| 8394 | microuptime(&target_proc->vm_pressure_last_notify_tstamp); |
| 8395 | proc_rele(target_proc); |
| 8396 | |
| 8397 | if (memorystatus_manual_testing_on == TRUE && target_foreground_process == TRUE) { |
| 8398 | break; |
| 8399 | } |
| 8400 | |
| 8401 | if (memorystatus_manual_testing_on == TRUE) { |
| 8402 | /* |
| 8403 | * Testing out the pressure notification scheme. |
| 8404 | * No need for delays etc. |
| 8405 | */ |
| 8406 | } else { |
| 8407 | |
| 8408 | uint32_t sleep_interval = INTER_NOTIFICATION_DELAY; |
| 8409 | #if CONFIG_JETSAM |
| 8410 | unsigned int page_delta = 0; |
| 8411 | unsigned int skip_delay_page_threshold = 0; |
| 8412 | |
| 8413 | assert(memorystatus_available_pages_pressure >= memorystatus_available_pages_critical_base); |
| 8414 | |
| 8415 | page_delta = (memorystatus_available_pages_pressure - memorystatus_available_pages_critical_base) / 2; |
| 8416 | skip_delay_page_threshold = memorystatus_available_pages_pressure - page_delta; |
| 8417 | |
| 8418 | if (memorystatus_available_pages <= skip_delay_page_threshold) { |
| 8419 | /* |
| 8420 | * We are nearing the critcal mark fast and can't afford to wait between |
| 8421 | * notifications. |
| 8422 | */ |
| 8423 | sleep_interval = 0; |
| 8424 | } |
| 8425 | #endif /* CONFIG_JETSAM */ |
| 8426 | |
| 8427 | if (sleep_interval) { |
| 8428 | delay(sleep_interval); |
| 8429 | } |
| 8430 | } |
| 8431 | } |
| 8432 | |
| 8433 | return KERN_SUCCESS; |
| 8434 | } |
| 8435 | |
| 8436 | vm_pressure_level_t |
| 8437 | convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level) |
| 8438 | { |
| 8439 | vm_pressure_level_t dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; |
| 8440 | |
| 8441 | switch (internal_pressure_level) { |
| 8442 | |
| 8443 | case kVMPressureNormal: |
| 8444 | { |
| 8445 | dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; |
| 8446 | break; |
| 8447 | } |
| 8448 | |
| 8449 | case kVMPressureWarning: |
| 8450 | case kVMPressureUrgent: |
| 8451 | { |
| 8452 | dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
| 8453 | break; |
| 8454 | } |
| 8455 | |
| 8456 | case kVMPressureCritical: |
| 8457 | { |
| 8458 | dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; |
| 8459 | break; |
| 8460 | } |
| 8461 | |
| 8462 | default: |
| 8463 | break; |
| 8464 | } |
| 8465 | |
| 8466 | return dispatch_level; |
| 8467 | } |
| 8468 | |
| 8469 | static int |
| 8470 | sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS |
| 8471 | { |
| 8472 | #pragma unused(arg1, arg2, oidp) |
| 8473 | #if CONFIG_EMBEDDED |
| 8474 | int error = 0; |
| 8475 | |
| 8476 | error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0); |
| 8477 | if (error) |
| 8478 | return (error); |
| 8479 | |
| 8480 | #endif /* CONFIG_EMBEDDED */ |
| 8481 | vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level); |
| 8482 | |
| 8483 | return SYSCTL_OUT(req, &dispatch_level, sizeof(dispatch_level)); |
| 8484 | } |
| 8485 | |
| 8486 | #if DEBUG || DEVELOPMENT |
| 8487 | |
| 8488 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED, |
| 8489 | 0, 0, &sysctl_memorystatus_vm_pressure_level, "I" , "" ); |
| 8490 | |
| 8491 | #else /* DEBUG || DEVELOPMENT */ |
| 8492 | |
| 8493 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 8494 | 0, 0, &sysctl_memorystatus_vm_pressure_level, "I" , "" ); |
| 8495 | |
| 8496 | #endif /* DEBUG || DEVELOPMENT */ |
| 8497 | |
| 8498 | |
| 8499 | static int |
| 8500 | sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS |
| 8501 | { |
| 8502 | #pragma unused(arg1, arg2) |
| 8503 | |
| 8504 | int level = 0; |
| 8505 | int error = 0; |
| 8506 | int pressure_level = 0; |
| 8507 | int trigger_request = 0; |
| 8508 | int force_purge; |
| 8509 | |
| 8510 | error = sysctl_handle_int(oidp, &level, 0, req); |
| 8511 | if (error || !req->newptr) { |
| 8512 | return (error); |
| 8513 | } |
| 8514 | |
| 8515 | memorystatus_manual_testing_on = TRUE; |
| 8516 | |
| 8517 | trigger_request = (level >> 16) & 0xFFFF; |
| 8518 | pressure_level = (level & 0xFFFF); |
| 8519 | |
| 8520 | if (trigger_request < TEST_LOW_MEMORY_TRIGGER_ONE || |
| 8521 | trigger_request > TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL) { |
| 8522 | return EINVAL; |
| 8523 | } |
| 8524 | switch (pressure_level) { |
| 8525 | case NOTE_MEMORYSTATUS_PRESSURE_NORMAL: |
| 8526 | case NOTE_MEMORYSTATUS_PRESSURE_WARN: |
| 8527 | case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL: |
| 8528 | break; |
| 8529 | default: |
| 8530 | return EINVAL; |
| 8531 | } |
| 8532 | |
| 8533 | /* |
| 8534 | * The pressure level is being set from user-space. |
| 8535 | * And user-space uses the constants in sys/event.h |
| 8536 | * So we translate those events to our internal levels here. |
| 8537 | */ |
| 8538 | if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
| 8539 | |
| 8540 | memorystatus_manual_testing_level = kVMPressureNormal; |
| 8541 | force_purge = 0; |
| 8542 | |
| 8543 | } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_WARN) { |
| 8544 | |
| 8545 | memorystatus_manual_testing_level = kVMPressureWarning; |
| 8546 | force_purge = vm_pageout_state.memorystatus_purge_on_warning; |
| 8547 | |
| 8548 | } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { |
| 8549 | |
| 8550 | memorystatus_manual_testing_level = kVMPressureCritical; |
| 8551 | force_purge = vm_pageout_state.memorystatus_purge_on_critical; |
| 8552 | } |
| 8553 | |
| 8554 | memorystatus_vm_pressure_level = memorystatus_manual_testing_level; |
| 8555 | |
| 8556 | /* purge according to the new pressure level */ |
| 8557 | switch (trigger_request) { |
| 8558 | case TEST_PURGEABLE_TRIGGER_ONE: |
| 8559 | case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE: |
| 8560 | if (force_purge == 0) { |
| 8561 | /* no purging requested */ |
| 8562 | break; |
| 8563 | } |
| 8564 | vm_purgeable_object_purge_one_unlocked(force_purge); |
| 8565 | break; |
| 8566 | case TEST_PURGEABLE_TRIGGER_ALL: |
| 8567 | case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL: |
| 8568 | if (force_purge == 0) { |
| 8569 | /* no purging requested */ |
| 8570 | break; |
| 8571 | } |
| 8572 | while (vm_purgeable_object_purge_one_unlocked(force_purge)); |
| 8573 | break; |
| 8574 | } |
| 8575 | |
| 8576 | if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ONE) || |
| 8577 | (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE)) { |
| 8578 | |
| 8579 | memorystatus_update_vm_pressure(TRUE); |
| 8580 | } |
| 8581 | |
| 8582 | if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ALL) || |
| 8583 | (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL)) { |
| 8584 | |
| 8585 | while (memorystatus_update_vm_pressure(FALSE) == KERN_SUCCESS) { |
| 8586 | continue; |
| 8587 | } |
| 8588 | } |
| 8589 | |
| 8590 | if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
| 8591 | memorystatus_manual_testing_on = FALSE; |
| 8592 | } |
| 8593 | |
| 8594 | return 0; |
| 8595 | } |
| 8596 | |
| 8597 | SYSCTL_PROC(_kern, OID_AUTO, memorypressure_manual_trigger, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 8598 | 0, 0, &sysctl_memorypressure_manual_trigger, "I" , "" ); |
| 8599 | |
| 8600 | |
| 8601 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_warning, CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_warning, 0, "" ); |
| 8602 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_urgent, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_urgent, 0, "" ); |
| 8603 | SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_critical, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pageout_state.memorystatus_purge_on_critical, 0, "" ); |
| 8604 | |
| 8605 | #if DEBUG || DEVELOPMENT |
| 8606 | SYSCTL_UINT(_kern, OID_AUTO, memorystatus_vm_pressure_events_enabled, CTLFLAG_RW|CTLFLAG_LOCKED, &vm_pressure_events_enabled, 0, "" ); |
| 8607 | #endif |
| 8608 | |
| 8609 | #endif /* VM_PRESSURE_EVENTS */ |
| 8610 | |
| 8611 | /* Return both allocated and actual size, since there's a race between allocation and list compilation */ |
| 8612 | static int |
| 8613 | memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only) |
| 8614 | { |
| 8615 | uint32_t list_count, i = 0; |
| 8616 | memorystatus_priority_entry_t *list_entry; |
| 8617 | proc_t p; |
| 8618 | |
| 8619 | list_count = memorystatus_list_count; |
| 8620 | *list_size = sizeof(memorystatus_priority_entry_t) * list_count; |
| 8621 | |
| 8622 | /* Just a size check? */ |
| 8623 | if (size_only) { |
| 8624 | return 0; |
| 8625 | } |
| 8626 | |
| 8627 | /* Otherwise, validate the size of the buffer */ |
| 8628 | if (*buffer_size < *list_size) { |
| 8629 | return EINVAL; |
| 8630 | } |
| 8631 | |
| 8632 | *list_ptr = (memorystatus_priority_entry_t*)kalloc(*list_size); |
| 8633 | if (!*list_ptr) { |
| 8634 | return ENOMEM; |
| 8635 | } |
| 8636 | |
| 8637 | memset(*list_ptr, 0, *list_size); |
| 8638 | |
| 8639 | *buffer_size = *list_size; |
| 8640 | *list_size = 0; |
| 8641 | |
| 8642 | list_entry = *list_ptr; |
| 8643 | |
| 8644 | proc_list_lock(); |
| 8645 | |
| 8646 | p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 8647 | while (p && (*list_size < *buffer_size)) { |
| 8648 | list_entry->pid = p->p_pid; |
| 8649 | list_entry->priority = p->p_memstat_effectivepriority; |
| 8650 | list_entry->user_data = p->p_memstat_userdata; |
| 8651 | |
| 8652 | if (p->p_memstat_memlimit <= 0) { |
| 8653 | task_get_phys_footprint_limit(p->task, &list_entry->limit); |
| 8654 | } else { |
| 8655 | list_entry->limit = p->p_memstat_memlimit; |
| 8656 | } |
| 8657 | |
| 8658 | list_entry->state = memorystatus_build_state(p); |
| 8659 | list_entry++; |
| 8660 | |
| 8661 | *list_size += sizeof(memorystatus_priority_entry_t); |
| 8662 | |
| 8663 | p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
| 8664 | } |
| 8665 | |
| 8666 | proc_list_unlock(); |
| 8667 | |
| 8668 | MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n" , (unsigned long)*list_size); |
| 8669 | |
| 8670 | return 0; |
| 8671 | } |
| 8672 | |
| 8673 | static int |
| 8674 | memorystatus_get_priority_pid(pid_t pid, user_addr_t buffer, size_t buffer_size) { |
| 8675 | int error = 0; |
| 8676 | memorystatus_priority_entry_t mp_entry; |
| 8677 | |
| 8678 | /* Validate inputs */ |
| 8679 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_entry_t))) { |
| 8680 | return EINVAL; |
| 8681 | } |
| 8682 | |
| 8683 | proc_t p = proc_find(pid); |
| 8684 | if (!p) { |
| 8685 | return ESRCH; |
| 8686 | } |
| 8687 | |
| 8688 | memset (&mp_entry, 0, sizeof(memorystatus_priority_entry_t)); |
| 8689 | |
| 8690 | mp_entry.pid = p->p_pid; |
| 8691 | mp_entry.priority = p->p_memstat_effectivepriority; |
| 8692 | mp_entry.user_data = p->p_memstat_userdata; |
| 8693 | if (p->p_memstat_memlimit <= 0) { |
| 8694 | task_get_phys_footprint_limit(p->task, &mp_entry.limit); |
| 8695 | } else { |
| 8696 | mp_entry.limit = p->p_memstat_memlimit; |
| 8697 | } |
| 8698 | mp_entry.state = memorystatus_build_state(p); |
| 8699 | |
| 8700 | proc_rele(p); |
| 8701 | |
| 8702 | error = copyout(&mp_entry, buffer, buffer_size); |
| 8703 | |
| 8704 | return (error); |
| 8705 | } |
| 8706 | |
| 8707 | static int |
| 8708 | memorystatus_cmd_get_priority_list(pid_t pid, user_addr_t buffer, size_t buffer_size, int32_t *retval) { |
| 8709 | int error = 0; |
| 8710 | boolean_t size_only; |
| 8711 | size_t list_size; |
| 8712 | |
| 8713 | /* |
| 8714 | * When a non-zero pid is provided, the 'list' has only one entry. |
| 8715 | */ |
| 8716 | |
| 8717 | size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE); |
| 8718 | |
| 8719 | if (pid != 0) { |
| 8720 | list_size = sizeof(memorystatus_priority_entry_t) * 1; |
| 8721 | if (!size_only) { |
| 8722 | error = memorystatus_get_priority_pid(pid, buffer, buffer_size); |
| 8723 | } |
| 8724 | } else { |
| 8725 | memorystatus_priority_entry_t *list = NULL; |
| 8726 | error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only); |
| 8727 | |
| 8728 | if (error == 0) { |
| 8729 | if (!size_only) { |
| 8730 | error = copyout(list, buffer, list_size); |
| 8731 | } |
| 8732 | } |
| 8733 | |
| 8734 | if (list) { |
| 8735 | kfree(list, buffer_size); |
| 8736 | } |
| 8737 | } |
| 8738 | |
| 8739 | if (error == 0) { |
| 8740 | *retval = list_size; |
| 8741 | } |
| 8742 | |
| 8743 | return (error); |
| 8744 | } |
| 8745 | |
| 8746 | static void |
| 8747 | memorystatus_clear_errors(void) |
| 8748 | { |
| 8749 | proc_t p; |
| 8750 | unsigned int i = 0; |
| 8751 | |
| 8752 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 8753 | |
| 8754 | proc_list_lock(); |
| 8755 | |
| 8756 | p = memorystatus_get_first_proc_locked(&i, TRUE); |
| 8757 | while (p) { |
| 8758 | if (p->p_memstat_state & P_MEMSTAT_ERROR) { |
| 8759 | p->p_memstat_state &= ~P_MEMSTAT_ERROR; |
| 8760 | } |
| 8761 | p = memorystatus_get_next_proc_locked(&i, p, TRUE); |
| 8762 | } |
| 8763 | |
| 8764 | proc_list_unlock(); |
| 8765 | |
| 8766 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 8767 | } |
| 8768 | |
| 8769 | #if CONFIG_JETSAM |
| 8770 | static void |
| 8771 | memorystatus_update_levels_locked(boolean_t critical_only) { |
| 8772 | |
| 8773 | memorystatus_available_pages_critical = memorystatus_available_pages_critical_base; |
| 8774 | |
| 8775 | /* |
| 8776 | * If there's an entry in the first bucket, we have idle processes. |
| 8777 | */ |
| 8778 | |
| 8779 | memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
| 8780 | if (first_bucket->count) { |
| 8781 | memorystatus_available_pages_critical += memorystatus_available_pages_critical_idle_offset; |
| 8782 | |
| 8783 | if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) { |
| 8784 | /* |
| 8785 | * The critical threshold must never exceed the pressure threshold |
| 8786 | */ |
| 8787 | memorystatus_available_pages_critical = memorystatus_available_pages_pressure; |
| 8788 | } |
| 8789 | } |
| 8790 | |
| 8791 | #if DEBUG || DEVELOPMENT |
| 8792 | if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { |
| 8793 | memorystatus_available_pages_critical += memorystatus_jetsam_policy_offset_pages_diagnostic; |
| 8794 | |
| 8795 | if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) { |
| 8796 | /* |
| 8797 | * The critical threshold must never exceed the pressure threshold |
| 8798 | */ |
| 8799 | memorystatus_available_pages_critical = memorystatus_available_pages_pressure; |
| 8800 | } |
| 8801 | } |
| 8802 | #endif /* DEBUG || DEVELOPMENT */ |
| 8803 | |
| 8804 | if (memorystatus_jetsam_policy & kPolicyMoreFree) { |
| 8805 | memorystatus_available_pages_critical += memorystatus_policy_more_free_offset_pages; |
| 8806 | } |
| 8807 | |
| 8808 | if (critical_only) { |
| 8809 | return; |
| 8810 | } |
| 8811 | |
| 8812 | #if VM_PRESSURE_EVENTS |
| 8813 | memorystatus_available_pages_pressure = (pressure_threshold_percentage / delta_percentage) * memorystatus_delta; |
| 8814 | #if DEBUG || DEVELOPMENT |
| 8815 | if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) { |
| 8816 | memorystatus_available_pages_pressure += memorystatus_jetsam_policy_offset_pages_diagnostic; |
| 8817 | } |
| 8818 | #endif |
| 8819 | #endif |
| 8820 | } |
| 8821 | |
| 8822 | void |
| 8823 | memorystatus_fast_jetsam_override(boolean_t enable_override) |
| 8824 | { |
| 8825 | /* If fast jetsam is not enabled, simply return */ |
| 8826 | if (!fast_jetsam_enabled) |
| 8827 | return; |
| 8828 | |
| 8829 | if (enable_override) { |
| 8830 | if ((memorystatus_jetsam_policy & kPolicyMoreFree) == kPolicyMoreFree) |
| 8831 | return; |
| 8832 | proc_list_lock(); |
| 8833 | memorystatus_jetsam_policy |= kPolicyMoreFree; |
| 8834 | memorystatus_thread_pool_max(); |
| 8835 | memorystatus_update_levels_locked(TRUE); |
| 8836 | proc_list_unlock(); |
| 8837 | } else { |
| 8838 | if ((memorystatus_jetsam_policy & kPolicyMoreFree) == 0) |
| 8839 | return; |
| 8840 | proc_list_lock(); |
| 8841 | memorystatus_jetsam_policy &= ~kPolicyMoreFree; |
| 8842 | memorystatus_thread_pool_default(); |
| 8843 | memorystatus_update_levels_locked(TRUE); |
| 8844 | proc_list_unlock(); |
| 8845 | } |
| 8846 | } |
| 8847 | |
| 8848 | |
| 8849 | static int |
| 8850 | sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS |
| 8851 | { |
| 8852 | #pragma unused(arg1, arg2, oidp) |
| 8853 | int error = 0, more_free = 0; |
| 8854 | |
| 8855 | /* |
| 8856 | * TODO: Enable this privilege check? |
| 8857 | * |
| 8858 | * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0); |
| 8859 | * if (error) |
| 8860 | * return (error); |
| 8861 | */ |
| 8862 | |
| 8863 | error = sysctl_handle_int(oidp, &more_free, 0, req); |
| 8864 | if (error || !req->newptr) |
| 8865 | return (error); |
| 8866 | |
| 8867 | if (more_free) { |
| 8868 | memorystatus_fast_jetsam_override(true); |
| 8869 | } else { |
| 8870 | memorystatus_fast_jetsam_override(false); |
| 8871 | } |
| 8872 | |
| 8873 | return 0; |
| 8874 | } |
| 8875 | SYSCTL_PROC(_kern, OID_AUTO, memorystatus_policy_more_free, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED, |
| 8876 | 0, 0, &sysctl_kern_memorystatus_policy_more_free, "I" , "" ); |
| 8877 | |
| 8878 | #endif /* CONFIG_JETSAM */ |
| 8879 | |
| 8880 | /* |
| 8881 | * Get the at_boot snapshot |
| 8882 | */ |
| 8883 | static int |
| 8884 | memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
| 8885 | size_t input_size = *snapshot_size; |
| 8886 | |
| 8887 | /* |
| 8888 | * The at_boot snapshot has no entry list. |
| 8889 | */ |
| 8890 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t); |
| 8891 | |
| 8892 | if (size_only) { |
| 8893 | return 0; |
| 8894 | } |
| 8895 | |
| 8896 | /* |
| 8897 | * Validate the size of the snapshot buffer |
| 8898 | */ |
| 8899 | if (input_size < *snapshot_size) { |
| 8900 | return EINVAL; |
| 8901 | } |
| 8902 | |
| 8903 | /* |
| 8904 | * Update the notification_time only |
| 8905 | */ |
| 8906 | memorystatus_at_boot_snapshot.notification_time = mach_absolute_time(); |
| 8907 | *snapshot = &memorystatus_at_boot_snapshot; |
| 8908 | |
| 8909 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n" , |
| 8910 | (long)input_size, (long)*snapshot_size, 0); |
| 8911 | return 0; |
| 8912 | } |
| 8913 | |
| 8914 | /* |
| 8915 | * Get the previous fully populated snapshot |
| 8916 | */ |
| 8917 | static int |
| 8918 | memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
| 8919 | size_t input_size = *snapshot_size; |
| 8920 | |
| 8921 | if (memorystatus_jetsam_snapshot_copy_count > 0) { |
| 8922 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_copy_count)); |
| 8923 | } else { |
| 8924 | *snapshot_size = 0; |
| 8925 | } |
| 8926 | |
| 8927 | if (size_only) { |
| 8928 | return 0; |
| 8929 | } |
| 8930 | |
| 8931 | if (input_size < *snapshot_size) { |
| 8932 | return EINVAL; |
| 8933 | } |
| 8934 | |
| 8935 | *snapshot = memorystatus_jetsam_snapshot_copy; |
| 8936 | |
| 8937 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n" , |
| 8938 | (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_copy_count); |
| 8939 | |
| 8940 | return 0; |
| 8941 | } |
| 8942 | |
| 8943 | static int |
| 8944 | memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
| 8945 | size_t input_size = *snapshot_size; |
| 8946 | uint32_t ods_list_count = memorystatus_list_count; |
| 8947 | memorystatus_jetsam_snapshot_t *ods = NULL; /* The on_demand snapshot buffer */ |
| 8948 | |
| 8949 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (ods_list_count)); |
| 8950 | |
| 8951 | if (size_only) { |
| 8952 | return 0; |
| 8953 | } |
| 8954 | |
| 8955 | /* |
| 8956 | * Validate the size of the snapshot buffer. |
| 8957 | * This is inherently racey. May want to revisit |
| 8958 | * this error condition and trim the output when |
| 8959 | * it doesn't fit. |
| 8960 | */ |
| 8961 | if (input_size < *snapshot_size) { |
| 8962 | return EINVAL; |
| 8963 | } |
| 8964 | |
| 8965 | /* |
| 8966 | * Allocate and initialize a snapshot buffer. |
| 8967 | */ |
| 8968 | ods = (memorystatus_jetsam_snapshot_t *)kalloc(*snapshot_size); |
| 8969 | if (!ods) { |
| 8970 | return (ENOMEM); |
| 8971 | } |
| 8972 | |
| 8973 | memset(ods, 0, *snapshot_size); |
| 8974 | |
| 8975 | proc_list_lock(); |
| 8976 | memorystatus_init_jetsam_snapshot_locked(ods, ods_list_count); |
| 8977 | proc_list_unlock(); |
| 8978 | |
| 8979 | /* |
| 8980 | * Return the kernel allocated, on_demand buffer. |
| 8981 | * The caller of this routine will copy the data out |
| 8982 | * to user space and then free the kernel allocated |
| 8983 | * buffer. |
| 8984 | */ |
| 8985 | *snapshot = ods; |
| 8986 | |
| 8987 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n" , |
| 8988 | (long)input_size, (long)*snapshot_size, (long)ods_list_count); |
| 8989 | |
| 8990 | return 0; |
| 8991 | } |
| 8992 | |
| 8993 | static int |
| 8994 | memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) { |
| 8995 | size_t input_size = *snapshot_size; |
| 8996 | |
| 8997 | if (memorystatus_jetsam_snapshot_count > 0) { |
| 8998 | *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count)); |
| 8999 | } else { |
| 9000 | *snapshot_size = 0; |
| 9001 | } |
| 9002 | |
| 9003 | if (size_only) { |
| 9004 | return 0; |
| 9005 | } |
| 9006 | |
| 9007 | if (input_size < *snapshot_size) { |
| 9008 | return EINVAL; |
| 9009 | } |
| 9010 | |
| 9011 | *snapshot = memorystatus_jetsam_snapshot; |
| 9012 | |
| 9013 | MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n" , |
| 9014 | (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_count); |
| 9015 | |
| 9016 | return 0; |
| 9017 | } |
| 9018 | |
| 9019 | |
| 9020 | static int |
| 9021 | memorystatus_cmd_get_jetsam_snapshot(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) { |
| 9022 | int error = EINVAL; |
| 9023 | boolean_t size_only; |
| 9024 | boolean_t is_default_snapshot = FALSE; |
| 9025 | boolean_t is_on_demand_snapshot = FALSE; |
| 9026 | boolean_t is_at_boot_snapshot = FALSE; |
| 9027 | memorystatus_jetsam_snapshot_t *snapshot; |
| 9028 | |
| 9029 | size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE); |
| 9030 | |
| 9031 | if (flags == 0) { |
| 9032 | /* Default */ |
| 9033 | is_default_snapshot = TRUE; |
| 9034 | error = memorystatus_get_jetsam_snapshot(&snapshot, &buffer_size, size_only); |
| 9035 | } else { |
| 9036 | if (flags & ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT | MEMORYSTATUS_SNAPSHOT_COPY)) { |
| 9037 | /* |
| 9038 | * Unsupported bit set in flag. |
| 9039 | */ |
| 9040 | return EINVAL; |
| 9041 | } |
| 9042 | |
| 9043 | if (flags & (flags - 0x1)) { |
| 9044 | /* |
| 9045 | * Can't have multiple flags set at the same time. |
| 9046 | */ |
| 9047 | return EINVAL; |
| 9048 | } |
| 9049 | |
| 9050 | if (flags & MEMORYSTATUS_SNAPSHOT_ON_DEMAND) { |
| 9051 | is_on_demand_snapshot = TRUE; |
| 9052 | /* |
| 9053 | * When not requesting the size only, the following call will allocate |
| 9054 | * an on_demand snapshot buffer, which is freed below. |
| 9055 | */ |
| 9056 | error = memorystatus_get_on_demand_snapshot(&snapshot, &buffer_size, size_only); |
| 9057 | |
| 9058 | } else if (flags & MEMORYSTATUS_SNAPSHOT_AT_BOOT) { |
| 9059 | is_at_boot_snapshot = TRUE; |
| 9060 | error = memorystatus_get_at_boot_snapshot(&snapshot, &buffer_size, size_only); |
| 9061 | } else if (flags & MEMORYSTATUS_SNAPSHOT_COPY) { |
| 9062 | error = memorystatus_get_jetsam_snapshot_copy(&snapshot, &buffer_size, size_only); |
| 9063 | } else { |
| 9064 | /* |
| 9065 | * Invalid flag setting. |
| 9066 | */ |
| 9067 | return EINVAL; |
| 9068 | } |
| 9069 | } |
| 9070 | |
| 9071 | if (error) { |
| 9072 | goto out; |
| 9073 | } |
| 9074 | |
| 9075 | /* |
| 9076 | * Copy the data out to user space and clear the snapshot buffer. |
| 9077 | * If working with the jetsam snapshot, |
| 9078 | * clearing the buffer means, reset the count. |
| 9079 | * If working with an on_demand snapshot |
| 9080 | * clearing the buffer means, free it. |
| 9081 | * If working with the at_boot snapshot |
| 9082 | * there is nothing to clear or update. |
| 9083 | * If working with a copy of the snapshot |
| 9084 | * there is nothing to clear or update. |
| 9085 | */ |
| 9086 | if (!size_only) { |
| 9087 | if ((error = copyout(snapshot, buffer, buffer_size)) == 0) { |
| 9088 | if (is_default_snapshot) { |
| 9089 | /* |
| 9090 | * The jetsam snapshot is never freed, its count is simply reset. |
| 9091 | * However, we make a copy for any parties that might be interested |
| 9092 | * in the previous fully populated snapshot. |
| 9093 | */ |
| 9094 | proc_list_lock(); |
| 9095 | memcpy(memorystatus_jetsam_snapshot_copy, memorystatus_jetsam_snapshot, memorystatus_jetsam_snapshot_size); |
| 9096 | memorystatus_jetsam_snapshot_copy_count = memorystatus_jetsam_snapshot_count; |
| 9097 | snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0; |
| 9098 | memorystatus_jetsam_snapshot_last_timestamp = 0; |
| 9099 | proc_list_unlock(); |
| 9100 | } |
| 9101 | } |
| 9102 | |
| 9103 | if (is_on_demand_snapshot) { |
| 9104 | /* |
| 9105 | * The on_demand snapshot is always freed, |
| 9106 | * even if the copyout failed. |
| 9107 | */ |
| 9108 | if(snapshot) { |
| 9109 | kfree(snapshot, buffer_size); |
| 9110 | } |
| 9111 | } |
| 9112 | } |
| 9113 | |
| 9114 | if (error == 0) { |
| 9115 | *retval = buffer_size; |
| 9116 | } |
| 9117 | out: |
| 9118 | return error; |
| 9119 | } |
| 9120 | |
| 9121 | /* |
| 9122 | * Routine: memorystatus_cmd_grp_set_priorities |
| 9123 | * Purpose: Update priorities for a group of processes. |
| 9124 | * |
| 9125 | * [priority] |
| 9126 | * Move each process out of its effective priority |
| 9127 | * band and into a new priority band. |
| 9128 | * Maintains relative order from lowest to highest priority. |
| 9129 | * In single band, maintains relative order from head to tail. |
| 9130 | * |
| 9131 | * eg: before [effectivepriority | pid] |
| 9132 | * [18 | p101 ] |
| 9133 | * [17 | p55, p67, p19 ] |
| 9134 | * [12 | p103 p10 ] |
| 9135 | * [ 7 | p25 ] |
| 9136 | * [ 0 | p71, p82, ] |
| 9137 | * |
| 9138 | * after [ new band | pid] |
| 9139 | * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101] |
| 9140 | * |
| 9141 | * Returns: 0 on success, else non-zero. |
| 9142 | * |
| 9143 | * Caveat: We know there is a race window regarding recycled pids. |
| 9144 | * A process could be killed before the kernel can act on it here. |
| 9145 | * If a pid cannot be found in any of the jetsam priority bands, |
| 9146 | * then we simply ignore it. No harm. |
| 9147 | * But, if the pid has been recycled then it could be an issue. |
| 9148 | * In that scenario, we might move an unsuspecting process to the new |
| 9149 | * priority band. It's not clear how the kernel can safeguard |
| 9150 | * against this, but it would be an extremely rare case anyway. |
| 9151 | * The caller of this api might avoid such race conditions by |
| 9152 | * ensuring that the processes passed in the pid list are suspended. |
| 9153 | */ |
| 9154 | |
| 9155 | |
| 9156 | static int |
| 9157 | memorystatus_cmd_grp_set_priorities(user_addr_t buffer, size_t buffer_size) |
| 9158 | { |
| 9159 | |
| 9160 | /* |
| 9161 | * We only handle setting priority |
| 9162 | * per process |
| 9163 | */ |
| 9164 | |
| 9165 | int error = 0; |
| 9166 | memorystatus_properties_entry_v1_t *entries = NULL; |
| 9167 | uint32_t entry_count = 0; |
| 9168 | |
| 9169 | /* This will be the ordered proc list */ |
| 9170 | typedef struct memorystatus_internal_properties { |
| 9171 | proc_t proc; |
| 9172 | int32_t priority; |
| 9173 | } memorystatus_internal_properties_t; |
| 9174 | |
| 9175 | memorystatus_internal_properties_t *table = NULL; |
| 9176 | size_t table_size = 0; |
| 9177 | uint32_t table_count = 0; |
| 9178 | |
| 9179 | uint32_t i = 0; |
| 9180 | uint32_t bucket_index = 0; |
| 9181 | boolean_t head_insert; |
| 9182 | int32_t new_priority; |
| 9183 | |
| 9184 | proc_t p; |
| 9185 | |
| 9186 | /* Verify inputs */ |
| 9187 | if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) { |
| 9188 | error = EINVAL; |
| 9189 | goto out; |
| 9190 | } |
| 9191 | |
| 9192 | entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t)); |
| 9193 | if ((entries = (memorystatus_properties_entry_v1_t *)kalloc(buffer_size)) == NULL) { |
| 9194 | error = ENOMEM; |
| 9195 | goto out; |
| 9196 | } |
| 9197 | |
| 9198 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, 0, 0, 0); |
| 9199 | |
| 9200 | if ((error = copyin(buffer, entries, buffer_size)) != 0) { |
| 9201 | goto out; |
| 9202 | } |
| 9203 | |
| 9204 | /* Verify sanity of input priorities */ |
| 9205 | if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) { |
| 9206 | if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) { |
| 9207 | error = EINVAL; |
| 9208 | goto out; |
| 9209 | } |
| 9210 | } else { |
| 9211 | error = EINVAL; |
| 9212 | goto out; |
| 9213 | } |
| 9214 | |
| 9215 | for (i=0; i < entry_count; i++) { |
| 9216 | if (entries[i].priority == -1) { |
| 9217 | /* Use as shorthand for default priority */ |
| 9218 | entries[i].priority = JETSAM_PRIORITY_DEFAULT; |
| 9219 | } else if ((entries[i].priority == system_procs_aging_band) || (entries[i].priority == applications_aging_band)) { |
| 9220 | /* Both the aging bands are reserved for internal use; |
| 9221 | * if requested, adjust to JETSAM_PRIORITY_IDLE. */ |
| 9222 | entries[i].priority = JETSAM_PRIORITY_IDLE; |
| 9223 | } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { |
| 9224 | /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle |
| 9225 | * queue */ |
| 9226 | /* Deal with this later */ |
| 9227 | } else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) { |
| 9228 | /* Sanity check */ |
| 9229 | error = EINVAL; |
| 9230 | goto out; |
| 9231 | } |
| 9232 | } |
| 9233 | |
| 9234 | table_size = sizeof(memorystatus_internal_properties_t) * entry_count; |
| 9235 | if ( (table = (memorystatus_internal_properties_t *)kalloc(table_size)) == NULL) { |
| 9236 | error = ENOMEM; |
| 9237 | goto out; |
| 9238 | } |
| 9239 | memset(table, 0, table_size); |
| 9240 | |
| 9241 | |
| 9242 | /* |
| 9243 | * For each jetsam bucket entry, spin through the input property list. |
| 9244 | * When a matching pid is found, populate an adjacent table with the |
| 9245 | * appropriate proc pointer and new property values. |
| 9246 | * This traversal automatically preserves order from lowest |
| 9247 | * to highest priority. |
| 9248 | */ |
| 9249 | |
| 9250 | bucket_index=0; |
| 9251 | |
| 9252 | proc_list_lock(); |
| 9253 | |
| 9254 | /* Create the ordered table */ |
| 9255 | p = memorystatus_get_first_proc_locked(&bucket_index, TRUE); |
| 9256 | while (p && (table_count < entry_count)) { |
| 9257 | for (i=0; i < entry_count; i++ ) { |
| 9258 | if (p->p_pid == entries[i].pid) { |
| 9259 | /* Build the table data */ |
| 9260 | table[table_count].proc = p; |
| 9261 | table[table_count].priority = entries[i].priority; |
| 9262 | table_count++; |
| 9263 | break; |
| 9264 | } |
| 9265 | } |
| 9266 | p = memorystatus_get_next_proc_locked(&bucket_index, p, TRUE); |
| 9267 | } |
| 9268 | |
| 9269 | /* We now have ordered list of procs ready to move */ |
| 9270 | for (i=0; i < table_count; i++) { |
| 9271 | p = table[i].proc; |
| 9272 | assert(p != NULL); |
| 9273 | |
| 9274 | /* Allow head inserts -- but relative order is now */ |
| 9275 | if (table[i].priority == JETSAM_PRIORITY_IDLE_HEAD) { |
| 9276 | new_priority = JETSAM_PRIORITY_IDLE; |
| 9277 | head_insert = true; |
| 9278 | } else { |
| 9279 | new_priority = table[i].priority; |
| 9280 | head_insert = false; |
| 9281 | } |
| 9282 | |
| 9283 | /* Not allowed */ |
| 9284 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
| 9285 | continue; |
| 9286 | } |
| 9287 | |
| 9288 | /* |
| 9289 | * Take appropriate steps if moving proc out of |
| 9290 | * either of the aging bands. |
| 9291 | */ |
| 9292 | if ((p->p_memstat_effectivepriority == system_procs_aging_band) || (p->p_memstat_effectivepriority == applications_aging_band)) { |
| 9293 | memorystatus_invalidate_idle_demotion_locked(p, TRUE); |
| 9294 | } |
| 9295 | |
| 9296 | memorystatus_update_priority_locked(p, new_priority, head_insert, false); |
| 9297 | } |
| 9298 | |
| 9299 | proc_list_unlock(); |
| 9300 | |
| 9301 | /* |
| 9302 | * if (table_count != entry_count) |
| 9303 | * then some pids were not found in a jetsam band. |
| 9304 | * harmless but interesting... |
| 9305 | */ |
| 9306 | out: |
| 9307 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, table_count, 0, 0); |
| 9308 | |
| 9309 | if (entries) |
| 9310 | kfree(entries, buffer_size); |
| 9311 | if (table) |
| 9312 | kfree(table, table_size); |
| 9313 | |
| 9314 | return (error); |
| 9315 | } |
| 9316 | |
| 9317 | static int |
| 9318 | memorystatus_cmd_grp_set_probabilities(user_addr_t buffer, size_t buffer_size) |
| 9319 | { |
| 9320 | int error = 0; |
| 9321 | memorystatus_properties_entry_v1_t *entries = NULL; |
| 9322 | uint32_t entry_count = 0, i = 0; |
| 9323 | memorystatus_internal_probabilities_t *tmp_table_new = NULL, *tmp_table_old = NULL; |
| 9324 | size_t tmp_table_new_size = 0, tmp_table_old_size = 0; |
| 9325 | |
| 9326 | /* Verify inputs */ |
| 9327 | if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) { |
| 9328 | error = EINVAL; |
| 9329 | goto out; |
| 9330 | } |
| 9331 | |
| 9332 | entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t)); |
| 9333 | |
| 9334 | if ((entries = (memorystatus_properties_entry_v1_t *) kalloc(buffer_size)) == NULL) { |
| 9335 | error = ENOMEM; |
| 9336 | goto out; |
| 9337 | } |
| 9338 | |
| 9339 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, 0, 0, 0); |
| 9340 | |
| 9341 | if ((error = copyin(buffer, entries, buffer_size)) != 0) { |
| 9342 | goto out; |
| 9343 | } |
| 9344 | |
| 9345 | if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) { |
| 9346 | if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) { |
| 9347 | error = EINVAL; |
| 9348 | goto out; |
| 9349 | } |
| 9350 | } else { |
| 9351 | error = EINVAL; |
| 9352 | goto out; |
| 9353 | } |
| 9354 | |
| 9355 | /* Verify sanity of input priorities */ |
| 9356 | for (i=0; i < entry_count; i++) { |
| 9357 | /* |
| 9358 | * 0 - low probability of use. |
| 9359 | * 1 - high probability of use. |
| 9360 | * |
| 9361 | * Keeping this field an int (& not a bool) to allow |
| 9362 | * us to experiment with different values/approaches |
| 9363 | * later on. |
| 9364 | */ |
| 9365 | if (entries[i].use_probability > 1) { |
| 9366 | error = EINVAL; |
| 9367 | goto out; |
| 9368 | } |
| 9369 | } |
| 9370 | |
| 9371 | tmp_table_new_size = sizeof(memorystatus_internal_probabilities_t) * entry_count; |
| 9372 | |
| 9373 | if ( (tmp_table_new = (memorystatus_internal_probabilities_t *) kalloc(tmp_table_new_size)) == NULL) { |
| 9374 | error = ENOMEM; |
| 9375 | goto out; |
| 9376 | } |
| 9377 | memset(tmp_table_new, 0, tmp_table_new_size); |
| 9378 | |
| 9379 | proc_list_lock(); |
| 9380 | |
| 9381 | if (memorystatus_global_probabilities_table) { |
| 9382 | tmp_table_old = memorystatus_global_probabilities_table; |
| 9383 | tmp_table_old_size = memorystatus_global_probabilities_size; |
| 9384 | } |
| 9385 | |
| 9386 | memorystatus_global_probabilities_table = tmp_table_new; |
| 9387 | memorystatus_global_probabilities_size = tmp_table_new_size; |
| 9388 | tmp_table_new = NULL; |
| 9389 | |
| 9390 | for (i=0; i < entry_count; i++ ) { |
| 9391 | /* Build the table data */ |
| 9392 | strlcpy(memorystatus_global_probabilities_table[i].proc_name, entries[i].proc_name, MAXCOMLEN + 1); |
| 9393 | memorystatus_global_probabilities_table[i].use_probability = entries[i].use_probability; |
| 9394 | } |
| 9395 | |
| 9396 | proc_list_unlock(); |
| 9397 | |
| 9398 | out: |
| 9399 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, tmp_table_new_size, 0, 0); |
| 9400 | |
| 9401 | if (entries) { |
| 9402 | kfree(entries, buffer_size); |
| 9403 | entries = NULL; |
| 9404 | } |
| 9405 | |
| 9406 | if (tmp_table_old) { |
| 9407 | kfree(tmp_table_old, tmp_table_old_size); |
| 9408 | tmp_table_old = NULL; |
| 9409 | } |
| 9410 | |
| 9411 | return (error); |
| 9412 | |
| 9413 | } |
| 9414 | |
| 9415 | static int |
| 9416 | memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) |
| 9417 | { |
| 9418 | int error = 0; |
| 9419 | |
| 9420 | if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) { |
| 9421 | |
| 9422 | error = memorystatus_cmd_grp_set_priorities(buffer, buffer_size); |
| 9423 | |
| 9424 | } else if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) { |
| 9425 | |
| 9426 | error = memorystatus_cmd_grp_set_probabilities(buffer, buffer_size); |
| 9427 | |
| 9428 | } else { |
| 9429 | error = EINVAL; |
| 9430 | } |
| 9431 | |
| 9432 | return error; |
| 9433 | } |
| 9434 | |
| 9435 | /* |
| 9436 | * This routine is used to update a process's jetsam priority position and stored user_data. |
| 9437 | * It is not used for the setting of memory limits, which is why the last 6 args to the |
| 9438 | * memorystatus_update() call are 0 or FALSE. |
| 9439 | */ |
| 9440 | |
| 9441 | static int |
| 9442 | memorystatus_cmd_set_priority_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
| 9443 | int error = 0; |
| 9444 | memorystatus_priority_properties_t mpp_entry; |
| 9445 | |
| 9446 | /* Validate inputs */ |
| 9447 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_properties_t))) { |
| 9448 | return EINVAL; |
| 9449 | } |
| 9450 | |
| 9451 | error = copyin(buffer, &mpp_entry, buffer_size); |
| 9452 | |
| 9453 | if (error == 0) { |
| 9454 | proc_t p; |
| 9455 | |
| 9456 | p = proc_find(pid); |
| 9457 | if (!p) { |
| 9458 | return ESRCH; |
| 9459 | } |
| 9460 | |
| 9461 | if (p->p_memstat_state & P_MEMSTAT_INTERNAL) { |
| 9462 | proc_rele(p); |
| 9463 | return EPERM; |
| 9464 | } |
| 9465 | |
| 9466 | error = memorystatus_update(p, mpp_entry.priority, mpp_entry.user_data, FALSE, FALSE, 0, 0, FALSE, FALSE); |
| 9467 | proc_rele(p); |
| 9468 | } |
| 9469 | |
| 9470 | return(error); |
| 9471 | } |
| 9472 | |
| 9473 | static int |
| 9474 | memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
| 9475 | int error = 0; |
| 9476 | memorystatus_memlimit_properties_t mmp_entry; |
| 9477 | |
| 9478 | /* Validate inputs */ |
| 9479 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) { |
| 9480 | return EINVAL; |
| 9481 | } |
| 9482 | |
| 9483 | error = copyin(buffer, &mmp_entry, buffer_size); |
| 9484 | |
| 9485 | if (error == 0) { |
| 9486 | error = memorystatus_set_memlimit_properties(pid, &mmp_entry); |
| 9487 | } |
| 9488 | |
| 9489 | return(error); |
| 9490 | } |
| 9491 | |
| 9492 | /* |
| 9493 | * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit(). |
| 9494 | * That gets the proc's cached memlimit and there is no guarantee that the active/inactive |
| 9495 | * limits will be the same in the no-limit case. Instead we convert limits <= 0 using |
| 9496 | * task_convert_phys_footprint_limit(). It computes the same limit value that would be written |
| 9497 | * to the task's ledgers via task_set_phys_footprint_limit(). |
| 9498 | */ |
| 9499 | static int |
| 9500 | memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
| 9501 | int error = 0; |
| 9502 | memorystatus_memlimit_properties_t mmp_entry; |
| 9503 | |
| 9504 | /* Validate inputs */ |
| 9505 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) { |
| 9506 | return EINVAL; |
| 9507 | } |
| 9508 | |
| 9509 | memset (&mmp_entry, 0, sizeof(memorystatus_memlimit_properties_t)); |
| 9510 | |
| 9511 | proc_t p = proc_find(pid); |
| 9512 | if (!p) { |
| 9513 | return ESRCH; |
| 9514 | } |
| 9515 | |
| 9516 | /* |
| 9517 | * Get the active limit and attributes. |
| 9518 | * No locks taken since we hold a reference to the proc. |
| 9519 | */ |
| 9520 | |
| 9521 | if (p->p_memstat_memlimit_active > 0 ) { |
| 9522 | mmp_entry.memlimit_active = p->p_memstat_memlimit_active; |
| 9523 | } else { |
| 9524 | task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_active); |
| 9525 | } |
| 9526 | |
| 9527 | if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { |
| 9528 | mmp_entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
| 9529 | } |
| 9530 | |
| 9531 | /* |
| 9532 | * Get the inactive limit and attributes |
| 9533 | */ |
| 9534 | if (p->p_memstat_memlimit_inactive <= 0) { |
| 9535 | task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_inactive); |
| 9536 | } else { |
| 9537 | mmp_entry.memlimit_inactive = p->p_memstat_memlimit_inactive; |
| 9538 | } |
| 9539 | if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { |
| 9540 | mmp_entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
| 9541 | } |
| 9542 | proc_rele(p); |
| 9543 | |
| 9544 | error = copyout(&mmp_entry, buffer, buffer_size); |
| 9545 | |
| 9546 | return(error); |
| 9547 | } |
| 9548 | |
| 9549 | |
| 9550 | /* |
| 9551 | * SPI for kbd - pr24956468 |
| 9552 | * This is a very simple snapshot that calculates how much a |
| 9553 | * process's phys_footprint exceeds a specific memory limit. |
| 9554 | * Only the inactive memory limit is supported for now. |
| 9555 | * The delta is returned as bytes in excess or zero. |
| 9556 | */ |
| 9557 | static int |
| 9558 | memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) { |
| 9559 | int error = 0; |
| 9560 | uint64_t = 0; |
| 9561 | uint64_t delta_in_bytes = 0; |
| 9562 | int32_t memlimit_mb = 0; |
| 9563 | uint64_t memlimit_bytes = 0; |
| 9564 | |
| 9565 | /* Validate inputs */ |
| 9566 | if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(uint64_t)) || (flags != 0)) { |
| 9567 | return EINVAL; |
| 9568 | } |
| 9569 | |
| 9570 | proc_t p = proc_find(pid); |
| 9571 | if (!p) { |
| 9572 | return ESRCH; |
| 9573 | } |
| 9574 | |
| 9575 | /* |
| 9576 | * Get the inactive limit. |
| 9577 | * No locks taken since we hold a reference to the proc. |
| 9578 | */ |
| 9579 | |
| 9580 | if (p->p_memstat_memlimit_inactive <= 0) { |
| 9581 | task_convert_phys_footprint_limit(-1, &memlimit_mb); |
| 9582 | } else { |
| 9583 | memlimit_mb = p->p_memstat_memlimit_inactive; |
| 9584 | } |
| 9585 | |
| 9586 | footprint_in_bytes = get_task_phys_footprint(p->task); |
| 9587 | |
| 9588 | proc_rele(p); |
| 9589 | |
| 9590 | memlimit_bytes = memlimit_mb * 1024 * 1024; /* MB to bytes */ |
| 9591 | |
| 9592 | /* |
| 9593 | * Computed delta always returns >= 0 bytes |
| 9594 | */ |
| 9595 | if (footprint_in_bytes > memlimit_bytes) { |
| 9596 | delta_in_bytes = footprint_in_bytes - memlimit_bytes; |
| 9597 | } |
| 9598 | |
| 9599 | error = copyout(&delta_in_bytes, buffer, sizeof(delta_in_bytes)); |
| 9600 | |
| 9601 | return(error); |
| 9602 | } |
| 9603 | |
| 9604 | |
| 9605 | static int |
| 9606 | memorystatus_cmd_get_pressure_status(int32_t *retval) { |
| 9607 | int error; |
| 9608 | |
| 9609 | /* Need privilege for check */ |
| 9610 | error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0); |
| 9611 | if (error) { |
| 9612 | return (error); |
| 9613 | } |
| 9614 | |
| 9615 | /* Inherently racy, so it's not worth taking a lock here */ |
| 9616 | *retval = (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0; |
| 9617 | |
| 9618 | return error; |
| 9619 | } |
| 9620 | |
| 9621 | int |
| 9622 | memorystatus_get_pressure_status_kdp() { |
| 9623 | return (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0; |
| 9624 | } |
| 9625 | |
| 9626 | /* |
| 9627 | * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM. |
| 9628 | * |
| 9629 | * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal |
| 9630 | * So, with 2-level HWM preserving previous behavior will map as follows. |
| 9631 | * - treat the limit passed in as both an active and inactive limit. |
| 9632 | * - treat the is_fatal_limit flag as though it applies to both active and inactive limits. |
| 9633 | * |
| 9634 | * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK |
| 9635 | * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft |
| 9636 | * - so mapping is (active/non-fatal, inactive/non-fatal) |
| 9637 | * |
| 9638 | * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT |
| 9639 | * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard |
| 9640 | * - so mapping is (active/fatal, inactive/fatal) |
| 9641 | */ |
| 9642 | |
| 9643 | #if CONFIG_JETSAM |
| 9644 | static int |
| 9645 | memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit) { |
| 9646 | int error = 0; |
| 9647 | memorystatus_memlimit_properties_t entry; |
| 9648 | |
| 9649 | entry.memlimit_active = high_water_mark; |
| 9650 | entry.memlimit_active_attr = 0; |
| 9651 | entry.memlimit_inactive = high_water_mark; |
| 9652 | entry.memlimit_inactive_attr = 0; |
| 9653 | |
| 9654 | if (is_fatal_limit == TRUE) { |
| 9655 | entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
| 9656 | entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL; |
| 9657 | } |
| 9658 | |
| 9659 | error = memorystatus_set_memlimit_properties(pid, &entry); |
| 9660 | return (error); |
| 9661 | } |
| 9662 | #endif /* CONFIG_JETSAM */ |
| 9663 | |
| 9664 | static int |
| 9665 | memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry) { |
| 9666 | |
| 9667 | int32_t memlimit_active; |
| 9668 | boolean_t memlimit_active_is_fatal; |
| 9669 | int32_t memlimit_inactive; |
| 9670 | boolean_t memlimit_inactive_is_fatal; |
| 9671 | uint32_t valid_attrs = 0; |
| 9672 | int error = 0; |
| 9673 | |
| 9674 | proc_t p = proc_find(pid); |
| 9675 | if (!p) { |
| 9676 | return ESRCH; |
| 9677 | } |
| 9678 | |
| 9679 | /* |
| 9680 | * Check for valid attribute flags. |
| 9681 | */ |
| 9682 | valid_attrs |= (MEMORYSTATUS_MEMLIMIT_ATTR_FATAL); |
| 9683 | if ((entry->memlimit_active_attr & (~valid_attrs)) != 0) { |
| 9684 | proc_rele(p); |
| 9685 | return EINVAL; |
| 9686 | } |
| 9687 | if ((entry->memlimit_inactive_attr & (~valid_attrs)) != 0) { |
| 9688 | proc_rele(p); |
| 9689 | return EINVAL; |
| 9690 | } |
| 9691 | |
| 9692 | /* |
| 9693 | * Setup the active memlimit properties |
| 9694 | */ |
| 9695 | memlimit_active = entry->memlimit_active; |
| 9696 | if (entry->memlimit_active_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) { |
| 9697 | memlimit_active_is_fatal = TRUE; |
| 9698 | } else { |
| 9699 | memlimit_active_is_fatal = FALSE; |
| 9700 | } |
| 9701 | |
| 9702 | /* |
| 9703 | * Setup the inactive memlimit properties |
| 9704 | */ |
| 9705 | memlimit_inactive = entry->memlimit_inactive; |
| 9706 | if (entry->memlimit_inactive_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) { |
| 9707 | memlimit_inactive_is_fatal = TRUE; |
| 9708 | } else { |
| 9709 | memlimit_inactive_is_fatal = FALSE; |
| 9710 | } |
| 9711 | |
| 9712 | /* |
| 9713 | * Setting a limit of <= 0 implies that the process has no |
| 9714 | * high-water-mark and has no per-task-limit. That means |
| 9715 | * the system_wide task limit is in place, which by the way, |
| 9716 | * is always fatal. |
| 9717 | */ |
| 9718 | |
| 9719 | if (memlimit_active <= 0) { |
| 9720 | /* |
| 9721 | * Enforce the fatal system_wide task limit while process is active. |
| 9722 | */ |
| 9723 | memlimit_active = -1; |
| 9724 | memlimit_active_is_fatal = TRUE; |
| 9725 | } |
| 9726 | |
| 9727 | if (memlimit_inactive <= 0) { |
| 9728 | /* |
| 9729 | * Enforce the fatal system_wide task limit while process is inactive. |
| 9730 | */ |
| 9731 | memlimit_inactive = -1; |
| 9732 | memlimit_inactive_is_fatal = TRUE; |
| 9733 | } |
| 9734 | |
| 9735 | proc_list_lock(); |
| 9736 | |
| 9737 | /* |
| 9738 | * Store the active limit variants in the proc. |
| 9739 | */ |
| 9740 | SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal); |
| 9741 | |
| 9742 | /* |
| 9743 | * Store the inactive limit variants in the proc. |
| 9744 | */ |
| 9745 | SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal); |
| 9746 | |
| 9747 | /* |
| 9748 | * Enforce appropriate limit variant by updating the cached values |
| 9749 | * and writing the ledger. |
| 9750 | * Limit choice is based on process active/inactive state. |
| 9751 | */ |
| 9752 | |
| 9753 | if (memorystatus_highwater_enabled) { |
| 9754 | boolean_t is_fatal; |
| 9755 | boolean_t use_active; |
| 9756 | |
| 9757 | if (proc_jetsam_state_is_active_locked(p) == TRUE) { |
| 9758 | CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 9759 | use_active = TRUE; |
| 9760 | } else { |
| 9761 | CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal); |
| 9762 | use_active = FALSE; |
| 9763 | } |
| 9764 | |
| 9765 | /* Enforce the limit by writing to the ledgers */ |
| 9766 | error = (task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal) == 0) ? 0 : EINVAL; |
| 9767 | |
| 9768 | MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n" , |
| 9769 | p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1), |
| 9770 | (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF" ), p->p_memstat_effectivepriority, p->p_memstat_dirty, |
| 9771 | (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean" ) : "" )); |
| 9772 | DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1)); |
| 9773 | } |
| 9774 | |
| 9775 | proc_list_unlock(); |
| 9776 | proc_rele(p); |
| 9777 | |
| 9778 | return error; |
| 9779 | } |
| 9780 | |
| 9781 | /* |
| 9782 | * Returns the jetsam priority (effective or requested) of the process |
| 9783 | * associated with this task. |
| 9784 | */ |
| 9785 | int |
| 9786 | proc_get_memstat_priority(proc_t p, boolean_t effective_priority) |
| 9787 | { |
| 9788 | if (p) { |
| 9789 | if (effective_priority) { |
| 9790 | return p->p_memstat_effectivepriority; |
| 9791 | } else { |
| 9792 | return p->p_memstat_requestedpriority; |
| 9793 | } |
| 9794 | } |
| 9795 | return 0; |
| 9796 | } |
| 9797 | |
| 9798 | static int |
| 9799 | memorystatus_get_process_is_managed(pid_t pid, int *is_managed) |
| 9800 | { |
| 9801 | proc_t p = NULL; |
| 9802 | |
| 9803 | /* Validate inputs */ |
| 9804 | if (pid == 0) { |
| 9805 | return EINVAL; |
| 9806 | } |
| 9807 | |
| 9808 | p = proc_find(pid); |
| 9809 | if (!p) { |
| 9810 | return ESRCH; |
| 9811 | } |
| 9812 | |
| 9813 | proc_list_lock(); |
| 9814 | *is_managed = ((p->p_memstat_state & P_MEMSTAT_MANAGED) ? 1 : 0); |
| 9815 | proc_rele_locked(p); |
| 9816 | proc_list_unlock(); |
| 9817 | |
| 9818 | return 0; |
| 9819 | } |
| 9820 | |
| 9821 | static int |
| 9822 | memorystatus_set_process_is_managed(pid_t pid, boolean_t set_managed) |
| 9823 | { |
| 9824 | proc_t p = NULL; |
| 9825 | |
| 9826 | /* Validate inputs */ |
| 9827 | if (pid == 0) { |
| 9828 | return EINVAL; |
| 9829 | } |
| 9830 | |
| 9831 | p = proc_find(pid); |
| 9832 | if (!p) { |
| 9833 | return ESRCH; |
| 9834 | } |
| 9835 | |
| 9836 | proc_list_lock(); |
| 9837 | if (set_managed == TRUE) { |
| 9838 | p->p_memstat_state |= P_MEMSTAT_MANAGED; |
| 9839 | } else { |
| 9840 | p->p_memstat_state &= ~P_MEMSTAT_MANAGED; |
| 9841 | } |
| 9842 | proc_rele_locked(p); |
| 9843 | proc_list_unlock(); |
| 9844 | |
| 9845 | return 0; |
| 9846 | } |
| 9847 | |
| 9848 | static int |
| 9849 | memorystatus_get_process_is_freezable(pid_t pid, int *is_freezable) |
| 9850 | { |
| 9851 | proc_t p = PROC_NULL; |
| 9852 | |
| 9853 | if (pid == 0) { |
| 9854 | return EINVAL; |
| 9855 | } |
| 9856 | |
| 9857 | p = proc_find(pid); |
| 9858 | if (!p) { |
| 9859 | return ESRCH; |
| 9860 | } |
| 9861 | |
| 9862 | /* |
| 9863 | * Only allow this on the current proc for now. |
| 9864 | * We can check for privileges and allow targeting another process in the future. |
| 9865 | */ |
| 9866 | if (p != current_proc()) { |
| 9867 | proc_rele(p); |
| 9868 | return EPERM; |
| 9869 | } |
| 9870 | |
| 9871 | proc_list_lock(); |
| 9872 | *is_freezable = ((p->p_memstat_state & P_MEMSTAT_FREEZE_DISABLED) ? 0 : 1); |
| 9873 | proc_rele_locked(p); |
| 9874 | proc_list_unlock(); |
| 9875 | |
| 9876 | return 0; |
| 9877 | } |
| 9878 | |
| 9879 | static int |
| 9880 | memorystatus_set_process_is_freezable(pid_t pid, boolean_t is_freezable) |
| 9881 | { |
| 9882 | proc_t p = PROC_NULL; |
| 9883 | |
| 9884 | if (pid == 0) { |
| 9885 | return EINVAL; |
| 9886 | } |
| 9887 | |
| 9888 | p = proc_find(pid); |
| 9889 | if (!p) { |
| 9890 | return ESRCH; |
| 9891 | } |
| 9892 | |
| 9893 | /* |
| 9894 | * Only allow this on the current proc for now. |
| 9895 | * We can check for privileges and allow targeting another process in the future. |
| 9896 | */ |
| 9897 | if (p != current_proc()) { |
| 9898 | proc_rele(p); |
| 9899 | return EPERM; |
| 9900 | } |
| 9901 | |
| 9902 | proc_list_lock(); |
| 9903 | if (is_freezable == FALSE) { |
| 9904 | /* Freeze preference set to FALSE. Set the P_MEMSTAT_FREEZE_DISABLED bit. */ |
| 9905 | p->p_memstat_state |= P_MEMSTAT_FREEZE_DISABLED; |
| 9906 | printf("memorystatus_set_process_is_freezable: disabling freeze for pid %d [%s]\n" , |
| 9907 | p->p_pid, (*p->p_name ? p->p_name : "unknown" )); |
| 9908 | } else { |
| 9909 | p->p_memstat_state &= ~P_MEMSTAT_FREEZE_DISABLED; |
| 9910 | printf("memorystatus_set_process_is_freezable: enabling freeze for pid %d [%s]\n" , |
| 9911 | p->p_pid, (*p->p_name ? p->p_name : "unknown" )); |
| 9912 | } |
| 9913 | proc_rele_locked(p); |
| 9914 | proc_list_unlock(); |
| 9915 | |
| 9916 | return 0; |
| 9917 | } |
| 9918 | |
| 9919 | int |
| 9920 | memorystatus_control(struct proc *p __unused, struct memorystatus_control_args *args, int *ret) { |
| 9921 | int error = EINVAL; |
| 9922 | boolean_t skip_auth_check = FALSE; |
| 9923 | os_reason_t jetsam_reason = OS_REASON_NULL; |
| 9924 | |
| 9925 | #if !CONFIG_JETSAM |
| 9926 | #pragma unused(ret) |
| 9927 | #pragma unused(jetsam_reason) |
| 9928 | #endif |
| 9929 | |
| 9930 | /* We don't need entitlements if we're setting/ querying the freeze preference for a process. Skip the check below. */ |
| 9931 | if (args->command == MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE || args->command == MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE) { |
| 9932 | skip_auth_check = TRUE; |
| 9933 | } |
| 9934 | |
| 9935 | /* Need to be root or have entitlement. */ |
| 9936 | if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT) && !skip_auth_check) { |
| 9937 | error = EPERM; |
| 9938 | goto out; |
| 9939 | } |
| 9940 | |
| 9941 | /* |
| 9942 | * Sanity check. |
| 9943 | * Do not enforce it for snapshots. |
| 9944 | */ |
| 9945 | if (args->command != MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT) { |
| 9946 | if (args->buffersize > MEMORYSTATUS_BUFFERSIZE_MAX) { |
| 9947 | error = EINVAL; |
| 9948 | goto out; |
| 9949 | } |
| 9950 | } |
| 9951 | |
| 9952 | switch (args->command) { |
| 9953 | case MEMORYSTATUS_CMD_GET_PRIORITY_LIST: |
| 9954 | error = memorystatus_cmd_get_priority_list(args->pid, args->buffer, args->buffersize, ret); |
| 9955 | break; |
| 9956 | case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES: |
| 9957 | error = memorystatus_cmd_set_priority_properties(args->pid, args->buffer, args->buffersize, ret); |
| 9958 | break; |
| 9959 | case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES: |
| 9960 | error = memorystatus_cmd_set_memlimit_properties(args->pid, args->buffer, args->buffersize, ret); |
| 9961 | break; |
| 9962 | case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES: |
| 9963 | error = memorystatus_cmd_get_memlimit_properties(args->pid, args->buffer, args->buffersize, ret); |
| 9964 | break; |
| 9965 | case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS: |
| 9966 | error = memorystatus_cmd_get_memlimit_excess_np(args->pid, args->flags, args->buffer, args->buffersize, ret); |
| 9967 | break; |
| 9968 | case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES: |
| 9969 | error = memorystatus_cmd_grp_set_properties((int32_t)args->flags, args->buffer, args->buffersize, ret); |
| 9970 | break; |
| 9971 | case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT: |
| 9972 | error = memorystatus_cmd_get_jetsam_snapshot((int32_t)args->flags, args->buffer, args->buffersize, ret); |
| 9973 | break; |
| 9974 | case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS: |
| 9975 | error = memorystatus_cmd_get_pressure_status(ret); |
| 9976 | break; |
| 9977 | #if CONFIG_JETSAM |
| 9978 | case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK: |
| 9979 | /* |
| 9980 | * This call does not distinguish between active and inactive limits. |
| 9981 | * Default behavior in 2-level HWM world is to set both. |
| 9982 | * Non-fatal limit is also assumed for both. |
| 9983 | */ |
| 9984 | error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, FALSE); |
| 9985 | break; |
| 9986 | case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT: |
| 9987 | /* |
| 9988 | * This call does not distinguish between active and inactive limits. |
| 9989 | * Default behavior in 2-level HWM world is to set both. |
| 9990 | * Fatal limit is also assumed for both. |
| 9991 | */ |
| 9992 | error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, TRUE); |
| 9993 | break; |
| 9994 | #endif /* CONFIG_JETSAM */ |
| 9995 | /* Test commands */ |
| 9996 | #if DEVELOPMENT || DEBUG |
| 9997 | case MEMORYSTATUS_CMD_TEST_JETSAM: |
| 9998 | jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_GENERIC); |
| 9999 | if (jetsam_reason == OS_REASON_NULL) { |
| 10000 | printf("memorystatus_control: failed to allocate jetsam reason\n" ); |
| 10001 | } |
| 10002 | |
| 10003 | error = memorystatus_kill_process_sync(args->pid, kMemorystatusKilled, jetsam_reason) ? 0 : EINVAL; |
| 10004 | break; |
| 10005 | case MEMORYSTATUS_CMD_TEST_JETSAM_SORT: |
| 10006 | error = memorystatus_cmd_test_jetsam_sort(args->pid, (int32_t)args->flags); |
| 10007 | break; |
| 10008 | #if CONFIG_JETSAM |
| 10009 | case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS: |
| 10010 | error = memorystatus_cmd_set_panic_bits(args->buffer, args->buffersize); |
| 10011 | break; |
| 10012 | #endif /* CONFIG_JETSAM */ |
| 10013 | #else /* DEVELOPMENT || DEBUG */ |
| 10014 | #pragma unused(jetsam_reason) |
| 10015 | #endif /* DEVELOPMENT || DEBUG */ |
| 10016 | case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE: |
| 10017 | if (memorystatus_aggressive_jetsam_lenient_allowed == FALSE) { |
| 10018 | #if DEVELOPMENT || DEBUG |
| 10019 | printf("Enabling Lenient Mode\n" ); |
| 10020 | #endif /* DEVELOPMENT || DEBUG */ |
| 10021 | |
| 10022 | memorystatus_aggressive_jetsam_lenient_allowed = TRUE; |
| 10023 | memorystatus_aggressive_jetsam_lenient = TRUE; |
| 10024 | error = 0; |
| 10025 | } |
| 10026 | break; |
| 10027 | case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE: |
| 10028 | #if DEVELOPMENT || DEBUG |
| 10029 | printf("Disabling Lenient mode\n" ); |
| 10030 | #endif /* DEVELOPMENT || DEBUG */ |
| 10031 | memorystatus_aggressive_jetsam_lenient_allowed = FALSE; |
| 10032 | memorystatus_aggressive_jetsam_lenient = FALSE; |
| 10033 | error = 0; |
| 10034 | break; |
| 10035 | case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE: |
| 10036 | case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE: |
| 10037 | error = memorystatus_low_mem_privileged_listener(args->command); |
| 10038 | break; |
| 10039 | |
| 10040 | case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE: |
| 10041 | case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE: |
| 10042 | error = memorystatus_update_inactive_jetsam_priority_band(args->pid, args->command, JETSAM_PRIORITY_ELEVATED_INACTIVE, args->flags ? TRUE : FALSE); |
| 10043 | break; |
| 10044 | case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED: |
| 10045 | error = memorystatus_set_process_is_managed(args->pid, args->flags); |
| 10046 | break; |
| 10047 | |
| 10048 | case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED: |
| 10049 | error = memorystatus_get_process_is_managed(args->pid, ret); |
| 10050 | break; |
| 10051 | |
| 10052 | case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE: |
| 10053 | error = memorystatus_set_process_is_freezable(args->pid, args->flags ? TRUE : FALSE); |
| 10054 | break; |
| 10055 | |
| 10056 | case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE: |
| 10057 | error = memorystatus_get_process_is_freezable(args->pid, ret); |
| 10058 | break; |
| 10059 | |
| 10060 | #if CONFIG_FREEZE |
| 10061 | #if DEVELOPMENT || DEBUG |
| 10062 | case MEMORYSTATUS_CMD_FREEZER_CONTROL: |
| 10063 | error = memorystatus_freezer_control(args->flags, args->buffer, args->buffersize, ret); |
| 10064 | break; |
| 10065 | #endif /* DEVELOPMENT || DEBUG */ |
| 10066 | #endif /* CONFIG_FREEZE */ |
| 10067 | |
| 10068 | default: |
| 10069 | break; |
| 10070 | } |
| 10071 | |
| 10072 | out: |
| 10073 | return error; |
| 10074 | } |
| 10075 | |
| 10076 | |
| 10077 | static int |
| 10078 | filt_memorystatusattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
| 10079 | { |
| 10080 | int error; |
| 10081 | |
| 10082 | kn->kn_flags |= EV_CLEAR; |
| 10083 | error = memorystatus_knote_register(kn); |
| 10084 | if (error) { |
| 10085 | kn->kn_flags = EV_ERROR; |
| 10086 | kn->kn_data = error; |
| 10087 | } |
| 10088 | return 0; |
| 10089 | } |
| 10090 | |
| 10091 | static void |
| 10092 | filt_memorystatusdetach(struct knote *kn) |
| 10093 | { |
| 10094 | memorystatus_knote_unregister(kn); |
| 10095 | } |
| 10096 | |
| 10097 | static int |
| 10098 | filt_memorystatus(struct knote *kn __unused, long hint) |
| 10099 | { |
| 10100 | if (hint) { |
| 10101 | switch (hint) { |
| 10102 | case kMemorystatusNoPressure: |
| 10103 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) { |
| 10104 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_NORMAL; |
| 10105 | } |
| 10106 | break; |
| 10107 | case kMemorystatusPressure: |
| 10108 | if (memorystatus_vm_pressure_level == kVMPressureWarning || memorystatus_vm_pressure_level == kVMPressureUrgent) { |
| 10109 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) { |
| 10110 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN; |
| 10111 | } |
| 10112 | } else if (memorystatus_vm_pressure_level == kVMPressureCritical) { |
| 10113 | |
| 10114 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) { |
| 10115 | kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL; |
| 10116 | } |
| 10117 | } |
| 10118 | break; |
| 10119 | case kMemorystatusLowSwap: |
| 10120 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_LOW_SWAP) { |
| 10121 | kn->kn_fflags = NOTE_MEMORYSTATUS_LOW_SWAP; |
| 10122 | } |
| 10123 | break; |
| 10124 | |
| 10125 | case kMemorystatusProcLimitWarn: |
| 10126 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
| 10127 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN; |
| 10128 | } |
| 10129 | break; |
| 10130 | |
| 10131 | case kMemorystatusProcLimitCritical: |
| 10132 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
| 10133 | kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL; |
| 10134 | } |
| 10135 | break; |
| 10136 | |
| 10137 | default: |
| 10138 | break; |
| 10139 | } |
| 10140 | } |
| 10141 | |
| 10142 | #if 0 |
| 10143 | if (kn->kn_fflags != 0) { |
| 10144 | proc_t knote_proc = knote_get_kq(kn)->kq_p; |
| 10145 | pid_t knote_pid = knote_proc->p_pid; |
| 10146 | |
| 10147 | printf("filt_memorystatus: sending kn 0x%lx (event 0x%x) for pid (%d)\n" , |
| 10148 | (unsigned long)kn, kn->kn_fflags, knote_pid); |
| 10149 | } |
| 10150 | #endif |
| 10151 | |
| 10152 | return (kn->kn_fflags != 0); |
| 10153 | } |
| 10154 | |
| 10155 | static int |
| 10156 | filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev) |
| 10157 | { |
| 10158 | int res; |
| 10159 | int prev_kn_sfflags = 0; |
| 10160 | |
| 10161 | memorystatus_klist_lock(); |
| 10162 | |
| 10163 | /* |
| 10164 | * copy in new kevent settings |
| 10165 | * (saving the "desired" data and fflags). |
| 10166 | */ |
| 10167 | |
| 10168 | prev_kn_sfflags = kn->kn_sfflags; |
| 10169 | kn->kn_sfflags = (kev->fflags & EVFILT_MEMORYSTATUS_ALL_MASK); |
| 10170 | |
| 10171 | #if !CONFIG_EMBEDDED |
| 10172 | /* |
| 10173 | * Only on desktop do we restrict notifications to |
| 10174 | * one per active/inactive state (soft limits only). |
| 10175 | */ |
| 10176 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
| 10177 | /* |
| 10178 | * Is there previous state to preserve? |
| 10179 | */ |
| 10180 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
| 10181 | /* |
| 10182 | * This knote was previously interested in proc_limit_warn, |
| 10183 | * so yes, preserve previous state. |
| 10184 | */ |
| 10185 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) { |
| 10186 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
| 10187 | } |
| 10188 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) { |
| 10189 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
| 10190 | } |
| 10191 | } else { |
| 10192 | /* |
| 10193 | * This knote was not previously interested in proc_limit_warn, |
| 10194 | * but it is now. Set both states. |
| 10195 | */ |
| 10196 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
| 10197 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
| 10198 | } |
| 10199 | } |
| 10200 | |
| 10201 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
| 10202 | /* |
| 10203 | * Is there previous state to preserve? |
| 10204 | */ |
| 10205 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
| 10206 | /* |
| 10207 | * This knote was previously interested in proc_limit_critical, |
| 10208 | * so yes, preserve previous state. |
| 10209 | */ |
| 10210 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) { |
| 10211 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
| 10212 | } |
| 10213 | if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) { |
| 10214 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
| 10215 | } |
| 10216 | } else { |
| 10217 | /* |
| 10218 | * This knote was not previously interested in proc_limit_critical, |
| 10219 | * but it is now. Set both states. |
| 10220 | */ |
| 10221 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
| 10222 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
| 10223 | } |
| 10224 | } |
| 10225 | #endif /* !CONFIG_EMBEDDED */ |
| 10226 | |
| 10227 | /* |
| 10228 | * reset the output flags based on a |
| 10229 | * combination of the old events and |
| 10230 | * the new desired event list. |
| 10231 | */ |
| 10232 | //kn->kn_fflags &= kn->kn_sfflags; |
| 10233 | |
| 10234 | res = (kn->kn_fflags != 0); |
| 10235 | |
| 10236 | memorystatus_klist_unlock(); |
| 10237 | |
| 10238 | return res; |
| 10239 | } |
| 10240 | |
| 10241 | static int |
| 10242 | filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
| 10243 | { |
| 10244 | #pragma unused(data) |
| 10245 | int res; |
| 10246 | |
| 10247 | memorystatus_klist_lock(); |
| 10248 | res = (kn->kn_fflags != 0); |
| 10249 | if (res) { |
| 10250 | *kev = kn->kn_kevent; |
| 10251 | kn->kn_flags |= EV_CLEAR; /* automatic */ |
| 10252 | kn->kn_fflags = 0; |
| 10253 | kn->kn_data = 0; |
| 10254 | } |
| 10255 | memorystatus_klist_unlock(); |
| 10256 | |
| 10257 | return res; |
| 10258 | } |
| 10259 | |
| 10260 | static void |
| 10261 | memorystatus_klist_lock(void) { |
| 10262 | lck_mtx_lock(&memorystatus_klist_mutex); |
| 10263 | } |
| 10264 | |
| 10265 | static void |
| 10266 | memorystatus_klist_unlock(void) { |
| 10267 | lck_mtx_unlock(&memorystatus_klist_mutex); |
| 10268 | } |
| 10269 | |
| 10270 | void |
| 10271 | memorystatus_kevent_init(lck_grp_t *grp, lck_attr_t *attr) { |
| 10272 | lck_mtx_init(&memorystatus_klist_mutex, grp, attr); |
| 10273 | klist_init(&memorystatus_klist); |
| 10274 | } |
| 10275 | |
| 10276 | int |
| 10277 | memorystatus_knote_register(struct knote *kn) { |
| 10278 | int error = 0; |
| 10279 | |
| 10280 | memorystatus_klist_lock(); |
| 10281 | |
| 10282 | /* |
| 10283 | * Support only userspace visible flags. |
| 10284 | */ |
| 10285 | if ((kn->kn_sfflags & EVFILT_MEMORYSTATUS_ALL_MASK) == (unsigned int) kn->kn_sfflags) { |
| 10286 | |
| 10287 | #if !CONFIG_EMBEDDED |
| 10288 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) { |
| 10289 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE; |
| 10290 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE; |
| 10291 | } |
| 10292 | |
| 10293 | if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) { |
| 10294 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE; |
| 10295 | kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE; |
| 10296 | } |
| 10297 | #endif /* !CONFIG_EMBEDDED */ |
| 10298 | |
| 10299 | KNOTE_ATTACH(&memorystatus_klist, kn); |
| 10300 | |
| 10301 | } else { |
| 10302 | error = ENOTSUP; |
| 10303 | } |
| 10304 | |
| 10305 | memorystatus_klist_unlock(); |
| 10306 | |
| 10307 | return error; |
| 10308 | } |
| 10309 | |
| 10310 | void |
| 10311 | memorystatus_knote_unregister(struct knote *kn __unused) { |
| 10312 | memorystatus_klist_lock(); |
| 10313 | KNOTE_DETACH(&memorystatus_klist, kn); |
| 10314 | memorystatus_klist_unlock(); |
| 10315 | } |
| 10316 | |
| 10317 | |
| 10318 | #if 0 |
| 10319 | #if CONFIG_JETSAM && VM_PRESSURE_EVENTS |
| 10320 | static boolean_t |
| 10321 | memorystatus_issue_pressure_kevent(boolean_t pressured) { |
| 10322 | memorystatus_klist_lock(); |
| 10323 | KNOTE(&memorystatus_klist, pressured ? kMemorystatusPressure : kMemorystatusNoPressure); |
| 10324 | memorystatus_klist_unlock(); |
| 10325 | return TRUE; |
| 10326 | } |
| 10327 | #endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */ |
| 10328 | #endif /* 0 */ |
| 10329 | |
| 10330 | /* Coalition support */ |
| 10331 | |
| 10332 | /* sorting info for a particular priority bucket */ |
| 10333 | typedef struct memstat_sort_info { |
| 10334 | coalition_t msi_coal; |
| 10335 | uint64_t msi_page_count; |
| 10336 | pid_t msi_pid; |
| 10337 | int msi_ntasks; |
| 10338 | } memstat_sort_info_t; |
| 10339 | |
| 10340 | /* |
| 10341 | * qsort from smallest page count to largest page count |
| 10342 | * |
| 10343 | * return < 0 for a < b |
| 10344 | * 0 for a == b |
| 10345 | * > 0 for a > b |
| 10346 | */ |
| 10347 | static int memstat_asc_cmp(const void *a, const void *b) |
| 10348 | { |
| 10349 | const memstat_sort_info_t *msA = (const memstat_sort_info_t *)a; |
| 10350 | const memstat_sort_info_t *msB = (const memstat_sort_info_t *)b; |
| 10351 | |
| 10352 | return (int)((uint64_t)msA->msi_page_count - (uint64_t)msB->msi_page_count); |
| 10353 | } |
| 10354 | |
| 10355 | /* |
| 10356 | * Return the number of pids rearranged during this sort. |
| 10357 | */ |
| 10358 | static int |
| 10359 | memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order) |
| 10360 | { |
| 10361 | #define MAX_SORT_PIDS 80 |
| 10362 | #define MAX_COAL_LEADERS 10 |
| 10363 | |
| 10364 | unsigned int b = bucket_index; |
| 10365 | int nleaders = 0; |
| 10366 | int ntasks = 0; |
| 10367 | proc_t p = NULL; |
| 10368 | coalition_t coal = COALITION_NULL; |
| 10369 | int pids_moved = 0; |
| 10370 | int total_pids_moved = 0; |
| 10371 | int i; |
| 10372 | |
| 10373 | /* |
| 10374 | * The system is typically under memory pressure when in this |
| 10375 | * path, hence, we want to avoid dynamic memory allocation. |
| 10376 | */ |
| 10377 | memstat_sort_info_t leaders[MAX_COAL_LEADERS]; |
| 10378 | pid_t pid_list[MAX_SORT_PIDS]; |
| 10379 | |
| 10380 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
| 10381 | return(0); |
| 10382 | } |
| 10383 | |
| 10384 | /* |
| 10385 | * Clear the array that holds coalition leader information |
| 10386 | */ |
| 10387 | for (i=0; i < MAX_COAL_LEADERS; i++) { |
| 10388 | leaders[i].msi_coal = COALITION_NULL; |
| 10389 | leaders[i].msi_page_count = 0; /* will hold total coalition page count */ |
| 10390 | leaders[i].msi_pid = 0; /* will hold coalition leader pid */ |
| 10391 | leaders[i].msi_ntasks = 0; /* will hold the number of tasks in a coalition */ |
| 10392 | } |
| 10393 | |
| 10394 | p = memorystatus_get_first_proc_locked(&b, FALSE); |
| 10395 | while (p) { |
| 10396 | if (coalition_is_leader(p->task, COALITION_TYPE_JETSAM, &coal)) { |
| 10397 | if (nleaders < MAX_COAL_LEADERS) { |
| 10398 | int coal_ntasks = 0; |
| 10399 | uint64_t coal_page_count = coalition_get_page_count(coal, &coal_ntasks); |
| 10400 | leaders[nleaders].msi_coal = coal; |
| 10401 | leaders[nleaders].msi_page_count = coal_page_count; |
| 10402 | leaders[nleaders].msi_pid = p->p_pid; /* the coalition leader */ |
| 10403 | leaders[nleaders].msi_ntasks = coal_ntasks; |
| 10404 | nleaders++; |
| 10405 | } else { |
| 10406 | /* |
| 10407 | * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions. |
| 10408 | * Abandoned coalitions will linger at the tail of the priority band |
| 10409 | * when this sort session ends. |
| 10410 | * TODO: should this be an assert? |
| 10411 | */ |
| 10412 | printf("%s: WARNING: more than %d leaders in priority band [%d]\n" , |
| 10413 | __FUNCTION__, MAX_COAL_LEADERS, bucket_index); |
| 10414 | break; |
| 10415 | } |
| 10416 | } |
| 10417 | p=memorystatus_get_next_proc_locked(&b, p, FALSE); |
| 10418 | } |
| 10419 | |
| 10420 | if (nleaders == 0) { |
| 10421 | /* Nothing to sort */ |
| 10422 | return(0); |
| 10423 | } |
| 10424 | |
| 10425 | /* |
| 10426 | * Sort the coalition leader array, from smallest coalition page count |
| 10427 | * to largest coalition page count. When inserted in the priority bucket, |
| 10428 | * smallest coalition is handled first, resulting in the last to be jetsammed. |
| 10429 | */ |
| 10430 | if (nleaders > 1) { |
| 10431 | qsort(leaders, nleaders, sizeof(memstat_sort_info_t), memstat_asc_cmp); |
| 10432 | } |
| 10433 | |
| 10434 | #if 0 |
| 10435 | for (i = 0; i < nleaders; i++) { |
| 10436 | printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n" , |
| 10437 | __FUNCTION__, i, nleaders, leaders[i].msi_pid, leaders[i].msi_page_count, |
| 10438 | leaders[i].msi_ntasks); |
| 10439 | } |
| 10440 | #endif |
| 10441 | |
| 10442 | /* |
| 10443 | * During coalition sorting, processes in a priority band are rearranged |
| 10444 | * by being re-inserted at the head of the queue. So, when handling a |
| 10445 | * list, the first process that gets moved to the head of the queue, |
| 10446 | * ultimately gets pushed toward the queue tail, and hence, jetsams last. |
| 10447 | * |
| 10448 | * So, for example, the coalition leader is expected to jetsam last, |
| 10449 | * after its coalition members. Therefore, the coalition leader is |
| 10450 | * inserted at the head of the queue first. |
| 10451 | * |
| 10452 | * After processing a coalition, the jetsam order is as follows: |
| 10453 | * undefs(jetsam first), extensions, xpc services, leader(jetsam last) |
| 10454 | */ |
| 10455 | |
| 10456 | /* |
| 10457 | * Coalition members are rearranged in the priority bucket here, |
| 10458 | * based on their coalition role. |
| 10459 | */ |
| 10460 | total_pids_moved = 0; |
| 10461 | for (i=0; i < nleaders; i++) { |
| 10462 | |
| 10463 | /* a bit of bookkeeping */ |
| 10464 | pids_moved = 0; |
| 10465 | |
| 10466 | /* Coalition leaders are jetsammed last, so move into place first */ |
| 10467 | pid_list[0] = leaders[i].msi_pid; |
| 10468 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, 1); |
| 10469 | |
| 10470 | /* xpc services should jetsam after extensions */ |
| 10471 | ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_XPC, |
| 10472 | coal_sort_order, pid_list, MAX_SORT_PIDS); |
| 10473 | |
| 10474 | if (ntasks > 0) { |
| 10475 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, |
| 10476 | (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); |
| 10477 | } |
| 10478 | |
| 10479 | /* extensions should jetsam after unmarked processes */ |
| 10480 | ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_EXT, |
| 10481 | coal_sort_order, pid_list, MAX_SORT_PIDS); |
| 10482 | |
| 10483 | if (ntasks > 0) { |
| 10484 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, |
| 10485 | (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); |
| 10486 | } |
| 10487 | |
| 10488 | /* undefined coalition members should be the first to jetsam */ |
| 10489 | ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_UNDEF, |
| 10490 | coal_sort_order, pid_list, MAX_SORT_PIDS); |
| 10491 | |
| 10492 | if (ntasks > 0) { |
| 10493 | pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, |
| 10494 | (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS)); |
| 10495 | } |
| 10496 | |
| 10497 | #if 0 |
| 10498 | if (pids_moved == leaders[i].msi_ntasks) { |
| 10499 | /* |
| 10500 | * All the pids in the coalition were found in this band. |
| 10501 | */ |
| 10502 | printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n" , __FUNCTION__, |
| 10503 | pids_moved, leaders[i].msi_ntasks); |
| 10504 | } else if (pids_moved > leaders[i].msi_ntasks) { |
| 10505 | /* |
| 10506 | * Apparently new coalition members showed up during the sort? |
| 10507 | */ |
| 10508 | printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n" , __FUNCTION__, |
| 10509 | pids_moved, leaders[i].msi_ntasks); |
| 10510 | } else { |
| 10511 | /* |
| 10512 | * Apparently not all the pids in the coalition were found in this band? |
| 10513 | */ |
| 10514 | printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n" , __FUNCTION__, |
| 10515 | pids_moved, leaders[i].msi_ntasks); |
| 10516 | } |
| 10517 | #endif |
| 10518 | |
| 10519 | total_pids_moved += pids_moved; |
| 10520 | |
| 10521 | } /* end for */ |
| 10522 | |
| 10523 | return(total_pids_moved); |
| 10524 | } |
| 10525 | |
| 10526 | |
| 10527 | /* |
| 10528 | * Traverse a list of pids, searching for each within the priority band provided. |
| 10529 | * If pid is found, move it to the front of the priority band. |
| 10530 | * Never searches outside the priority band provided. |
| 10531 | * |
| 10532 | * Input: |
| 10533 | * bucket_index - jetsam priority band. |
| 10534 | * pid_list - pointer to a list of pids. |
| 10535 | * list_sz - number of pids in the list. |
| 10536 | * |
| 10537 | * Pid list ordering is important in that, |
| 10538 | * pid_list[n] is expected to jetsam ahead of pid_list[n+1]. |
| 10539 | * The sort_order is set by the coalition default. |
| 10540 | * |
| 10541 | * Return: |
| 10542 | * the number of pids found and hence moved within the priority band. |
| 10543 | */ |
| 10544 | static int |
| 10545 | memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz) |
| 10546 | { |
| 10547 | memstat_bucket_t *current_bucket; |
| 10548 | int i; |
| 10549 | int found_pids = 0; |
| 10550 | |
| 10551 | if ((pid_list == NULL) || (list_sz <= 0)) { |
| 10552 | return(0); |
| 10553 | } |
| 10554 | |
| 10555 | if (bucket_index >= MEMSTAT_BUCKET_COUNT) { |
| 10556 | return(0); |
| 10557 | } |
| 10558 | |
| 10559 | current_bucket = &memstat_bucket[bucket_index]; |
| 10560 | for (i=0; i < list_sz; i++) { |
| 10561 | unsigned int b = bucket_index; |
| 10562 | proc_t p = NULL; |
| 10563 | proc_t aProc = NULL; |
| 10564 | pid_t aPid; |
| 10565 | int list_index; |
| 10566 | |
| 10567 | list_index = ((list_sz - 1) - i); |
| 10568 | aPid = pid_list[list_index]; |
| 10569 | |
| 10570 | /* never search beyond bucket_index provided */ |
| 10571 | p = memorystatus_get_first_proc_locked(&b, FALSE); |
| 10572 | while (p) { |
| 10573 | if (p->p_pid == aPid) { |
| 10574 | aProc = p; |
| 10575 | break; |
| 10576 | } |
| 10577 | p = memorystatus_get_next_proc_locked(&b, p, FALSE); |
| 10578 | } |
| 10579 | |
| 10580 | if (aProc == NULL) { |
| 10581 | /* pid not found in this band, just skip it */ |
| 10582 | continue; |
| 10583 | } else { |
| 10584 | TAILQ_REMOVE(¤t_bucket->list, aProc, p_memstat_list); |
| 10585 | TAILQ_INSERT_HEAD(¤t_bucket->list, aProc, p_memstat_list); |
| 10586 | found_pids++; |
| 10587 | } |
| 10588 | } |
| 10589 | return(found_pids); |
| 10590 | } |
| 10591 | |
| 10592 | int |
| 10593 | memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index) |
| 10594 | { |
| 10595 | int32_t i = JETSAM_PRIORITY_IDLE; |
| 10596 | int count = 0; |
| 10597 | |
| 10598 | if (max_bucket_index >= MEMSTAT_BUCKET_COUNT) { |
| 10599 | return(-1); |
| 10600 | } |
| 10601 | |
| 10602 | while(i <= max_bucket_index) { |
| 10603 | count += memstat_bucket[i++].count; |
| 10604 | } |
| 10605 | |
| 10606 | return count; |
| 10607 | } |
| 10608 | |
| 10609 | int |
| 10610 | memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap) |
| 10611 | { |
| 10612 | #if !CONFIG_JETSAM |
| 10613 | if (!p || (!isApp(p)) || (p->p_memstat_state & (P_MEMSTAT_INTERNAL | P_MEMSTAT_MANAGED))) { |
| 10614 | /* |
| 10615 | * Ineligible processes OR system processes e.g. launchd. |
| 10616 | * |
| 10617 | * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e. |
| 10618 | * they're managed by assertiond. These are iOS apps that have been ported |
| 10619 | * to macOS. assertiond might be in the process of modifying the app's |
| 10620 | * priority / memory limit - so it might have the proc_list lock, and then try |
| 10621 | * to take the task lock. Meanwhile we've entered this function with the task lock |
| 10622 | * held, and we need the proc_list lock below. So we'll deadlock with assertiond. |
| 10623 | * |
| 10624 | * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list |
| 10625 | * lock here, since assertiond only sets this bit on process launch. |
| 10626 | */ |
| 10627 | return -1; |
| 10628 | } |
| 10629 | |
| 10630 | /* |
| 10631 | * For macOS only: |
| 10632 | * We would like to use memorystatus_update() here to move the processes |
| 10633 | * within the bands. Unfortunately memorystatus_update() calls |
| 10634 | * memorystatus_update_priority_locked() which uses any band transitions |
| 10635 | * as an indication to modify ledgers. For that it needs the task lock |
| 10636 | * and since we came into this function with the task lock held, we'll deadlock. |
| 10637 | * |
| 10638 | * Unfortunately we can't completely disable ledger updates because we still |
| 10639 | * need the ledger updates for a subset of processes i.e. daemons. |
| 10640 | * When all processes on all platforms support memory limits, we can simply call |
| 10641 | * memorystatus_update(). |
| 10642 | |
| 10643 | * It also has some logic to deal with 'aging' which, currently, is only applicable |
| 10644 | * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need |
| 10645 | * to do this explicit band transition. |
| 10646 | */ |
| 10647 | |
| 10648 | memstat_bucket_t *current_bucket, *new_bucket; |
| 10649 | int32_t priority = 0; |
| 10650 | |
| 10651 | proc_list_lock(); |
| 10652 | |
| 10653 | if (((p->p_listflag & P_LIST_EXITED) != 0) || |
| 10654 | (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED))) { |
| 10655 | /* |
| 10656 | * If the process is on its way out OR |
| 10657 | * jetsam has alread tried and failed to kill this process, |
| 10658 | * let's skip the whole jetsam band transition. |
| 10659 | */ |
| 10660 | proc_list_unlock(); |
| 10661 | return(0); |
| 10662 | } |
| 10663 | |
| 10664 | if (is_appnap) { |
| 10665 | current_bucket = &memstat_bucket[p->p_memstat_effectivepriority]; |
| 10666 | new_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
| 10667 | priority = JETSAM_PRIORITY_IDLE; |
| 10668 | } else { |
| 10669 | if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) { |
| 10670 | /* |
| 10671 | * It is possible that someone pulled this process |
| 10672 | * out of the IDLE band without updating its app-nap |
| 10673 | * parameters. |
| 10674 | */ |
| 10675 | proc_list_unlock(); |
| 10676 | return (0); |
| 10677 | } |
| 10678 | |
| 10679 | current_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE]; |
| 10680 | new_bucket = &memstat_bucket[p->p_memstat_requestedpriority]; |
| 10681 | priority = p->p_memstat_requestedpriority; |
| 10682 | } |
| 10683 | |
| 10684 | TAILQ_REMOVE(¤t_bucket->list, p, p_memstat_list); |
| 10685 | current_bucket->count--; |
| 10686 | |
| 10687 | TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list); |
| 10688 | new_bucket->count++; |
| 10689 | |
| 10690 | /* |
| 10691 | * Record idle start or idle delta. |
| 10692 | */ |
| 10693 | if (p->p_memstat_effectivepriority == priority) { |
| 10694 | /* |
| 10695 | * This process is not transitioning between |
| 10696 | * jetsam priority buckets. Do nothing. |
| 10697 | */ |
| 10698 | } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) { |
| 10699 | uint64_t now; |
| 10700 | /* |
| 10701 | * Transitioning out of the idle priority bucket. |
| 10702 | * Record idle delta. |
| 10703 | */ |
| 10704 | assert(p->p_memstat_idle_start != 0); |
| 10705 | now = mach_absolute_time(); |
| 10706 | if (now > p->p_memstat_idle_start) { |
| 10707 | p->p_memstat_idle_delta = now - p->p_memstat_idle_start; |
| 10708 | } |
| 10709 | } else if (priority == JETSAM_PRIORITY_IDLE) { |
| 10710 | /* |
| 10711 | * Transitioning into the idle priority bucket. |
| 10712 | * Record idle start. |
| 10713 | */ |
| 10714 | p->p_memstat_idle_start = mach_absolute_time(); |
| 10715 | } |
| 10716 | |
| 10717 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0); |
| 10718 | |
| 10719 | p->p_memstat_effectivepriority = priority; |
| 10720 | |
| 10721 | proc_list_unlock(); |
| 10722 | |
| 10723 | return (0); |
| 10724 | |
| 10725 | #else /* !CONFIG_JETSAM */ |
| 10726 | #pragma unused(p) |
| 10727 | #pragma unused(is_appnap) |
| 10728 | return -1; |
| 10729 | #endif /* !CONFIG_JETSAM */ |
| 10730 | } |
| 10731 | |