| 1 | /* |
| 2 | * Copyright (c) 2000-2007, 2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * (c) UNIX System Laboratories, Inc. |
| 33 | * All or some portions of this file are derived from material licensed |
| 34 | * to the University of California by American Telephone and Telegraph |
| 35 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with |
| 36 | * the permission of UNIX System Laboratories, Inc. |
| 37 | * |
| 38 | * Redistribution and use in source and binary forms, with or without |
| 39 | * modification, are permitted provided that the following conditions |
| 40 | * are met: |
| 41 | * 1. Redistributions of source code must retain the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer. |
| 43 | * 2. Redistributions in binary form must reproduce the above copyright |
| 44 | * notice, this list of conditions and the following disclaimer in the |
| 45 | * documentation and/or other materials provided with the distribution. |
| 46 | * 3. All advertising materials mentioning features or use of this software |
| 47 | * must display the following acknowledgement: |
| 48 | * This product includes software developed by the University of |
| 49 | * California, Berkeley and its contributors. |
| 50 | * 4. Neither the name of the University nor the names of its contributors |
| 51 | * may be used to endorse or promote products derived from this software |
| 52 | * without specific prior written permission. |
| 53 | * |
| 54 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 55 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 56 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 57 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 58 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 59 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 60 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 61 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 62 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 63 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 64 | * SUCH DAMAGE. |
| 65 | * |
| 66 | * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95 |
| 67 | */ |
| 68 | /* |
| 69 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
| 70 | * support for mandatory and extensible security protections. This notice |
| 71 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 72 | * Version 2.0. |
| 73 | */ |
| 74 | /* |
| 75 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 76 | * support for mandatory and extensible security protections. This notice |
| 77 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 78 | * Version 2.0. |
| 79 | */ |
| 80 | |
| 81 | #include <kern/assert.h> |
| 82 | #include <sys/param.h> |
| 83 | #include <sys/systm.h> |
| 84 | #include <sys/filedesc.h> |
| 85 | #include <sys/kernel.h> |
| 86 | #include <sys/malloc.h> |
| 87 | #include <sys/proc_internal.h> |
| 88 | #include <sys/kauth.h> |
| 89 | #include <sys/user.h> |
| 90 | #include <sys/reason.h> |
| 91 | #include <sys/resourcevar.h> |
| 92 | #include <sys/vnode_internal.h> |
| 93 | #include <sys/file_internal.h> |
| 94 | #include <sys/acct.h> |
| 95 | #include <sys/codesign.h> |
| 96 | #include <sys/sysproto.h> |
| 97 | #if CONFIG_PERSONAS |
| 98 | #include <sys/persona.h> |
| 99 | #endif |
| 100 | #include <sys/doc_tombstone.h> |
| 101 | #if CONFIG_DTRACE |
| 102 | /* Do not include dtrace.h, it redefines kmem_[alloc/free] */ |
| 103 | extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t); |
| 104 | extern void dtrace_proc_fork(proc_t, proc_t, int); |
| 105 | |
| 106 | /* |
| 107 | * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c, |
| 108 | * we will store its value before actually calling it. |
| 109 | */ |
| 110 | static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL; |
| 111 | |
| 112 | #include <sys/dtrace_ptss.h> |
| 113 | #endif |
| 114 | |
| 115 | #include <security/audit/audit.h> |
| 116 | |
| 117 | #include <mach/mach_types.h> |
| 118 | #include <kern/coalition.h> |
| 119 | #include <kern/kern_types.h> |
| 120 | #include <kern/kalloc.h> |
| 121 | #include <kern/mach_param.h> |
| 122 | #include <kern/task.h> |
| 123 | #include <kern/thread.h> |
| 124 | #include <kern/thread_call.h> |
| 125 | #include <kern/zalloc.h> |
| 126 | |
| 127 | #include <os/log.h> |
| 128 | |
| 129 | #include <os/log.h> |
| 130 | |
| 131 | #if CONFIG_MACF |
| 132 | #include <security/mac_framework.h> |
| 133 | #include <security/mac_mach_internal.h> |
| 134 | #endif |
| 135 | |
| 136 | #include <vm/vm_map.h> |
| 137 | #include <vm/vm_protos.h> |
| 138 | #include <vm/vm_shared_region.h> |
| 139 | |
| 140 | #include <sys/shm_internal.h> /* for shmfork() */ |
| 141 | #include <mach/task.h> /* for thread_create() */ |
| 142 | #include <mach/thread_act.h> /* for thread_resume() */ |
| 143 | |
| 144 | #include <sys/sdt.h> |
| 145 | |
| 146 | #if CONFIG_MEMORYSTATUS |
| 147 | #include <sys/kern_memorystatus.h> |
| 148 | #endif |
| 149 | |
| 150 | /* XXX routines which should have Mach prototypes, but don't */ |
| 151 | void thread_set_parent(thread_t parent, int pid); |
| 152 | extern void act_thread_catt(void *ctx); |
| 153 | void thread_set_child(thread_t child, int pid); |
| 154 | void *act_thread_csave(void); |
| 155 | extern boolean_t task_is_exec_copy(task_t); |
| 156 | |
| 157 | |
| 158 | thread_t cloneproc(task_t, coalition_t *, proc_t, int, int); |
| 159 | proc_t forkproc(proc_t); |
| 160 | void forkproc_free(proc_t); |
| 161 | thread_t fork_create_child(task_t parent_task, |
| 162 | coalition_t *parent_coalitions, |
| 163 | proc_t child, |
| 164 | int inherit_memory, |
| 165 | int is_64bit_addr, |
| 166 | int is_64bit_data, |
| 167 | int in_exec); |
| 168 | void proc_vfork_begin(proc_t parent_proc); |
| 169 | void proc_vfork_end(proc_t parent_proc); |
| 170 | |
| 171 | #define DOFORK 0x1 /* fork() system call */ |
| 172 | #define DOVFORK 0x2 /* vfork() system call */ |
| 173 | |
| 174 | /* |
| 175 | * proc_vfork_begin |
| 176 | * |
| 177 | * Description: start a vfork on a process |
| 178 | * |
| 179 | * Parameters: parent_proc process (re)entering vfork state |
| 180 | * |
| 181 | * Returns: (void) |
| 182 | * |
| 183 | * Notes: Although this function increments a count, a count in |
| 184 | * excess of 1 is not currently supported. According to the |
| 185 | * POSIX standard, calling anything other than execve() or |
| 186 | * _exit() following a vfork(), including calling vfork() |
| 187 | * itself again, will result in undefined behaviour |
| 188 | */ |
| 189 | void |
| 190 | proc_vfork_begin(proc_t parent_proc) |
| 191 | { |
| 192 | proc_lock(parent_proc); |
| 193 | parent_proc->p_lflag |= P_LVFORK; |
| 194 | parent_proc->p_vforkcnt++; |
| 195 | proc_unlock(parent_proc); |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * proc_vfork_end |
| 200 | * |
| 201 | * Description: stop a vfork on a process |
| 202 | * |
| 203 | * Parameters: parent_proc process leaving vfork state |
| 204 | * |
| 205 | * Returns: (void) |
| 206 | * |
| 207 | * Notes: Decrements the count; currently, reentrancy of vfork() |
| 208 | * is unsupported on the current process |
| 209 | */ |
| 210 | void |
| 211 | proc_vfork_end(proc_t parent_proc) |
| 212 | { |
| 213 | proc_lock(parent_proc); |
| 214 | parent_proc->p_vforkcnt--; |
| 215 | if (parent_proc->p_vforkcnt < 0) |
| 216 | panic("vfork cnt is -ve" ); |
| 217 | if (parent_proc->p_vforkcnt == 0) |
| 218 | parent_proc->p_lflag &= ~P_LVFORK; |
| 219 | proc_unlock(parent_proc); |
| 220 | } |
| 221 | |
| 222 | |
| 223 | /* |
| 224 | * vfork |
| 225 | * |
| 226 | * Description: vfork system call |
| 227 | * |
| 228 | * Parameters: void [no arguments] |
| 229 | * |
| 230 | * Retval: 0 (to child process) |
| 231 | * !0 pid of child (to parent process) |
| 232 | * -1 error (see "Returns:") |
| 233 | * |
| 234 | * Returns: EAGAIN Administrative limit reached |
| 235 | * EINVAL vfork() called during vfork() |
| 236 | * ENOMEM Failed to allocate new process |
| 237 | * |
| 238 | * Note: After a successful call to this function, the parent process |
| 239 | * has its task, thread, and uthread lent to the child process, |
| 240 | * and control is returned to the caller; if this function is |
| 241 | * invoked as a system call, the return is to user space, and |
| 242 | * is effectively running on the child process. |
| 243 | * |
| 244 | * Subsequent calls that operate on process state are permitted, |
| 245 | * though discouraged, and will operate on the child process; any |
| 246 | * operations on the task, thread, or uthread will result in |
| 247 | * changes in the parent state, and, if inheritable, the child |
| 248 | * state, when a task, thread, and uthread are realized for the |
| 249 | * child process at execve() time, will also be effected. Given |
| 250 | * this, it's recemmended that people use the posix_spawn() call |
| 251 | * instead. |
| 252 | * |
| 253 | * BLOCK DIAGRAM OF VFORK |
| 254 | * |
| 255 | * Before: |
| 256 | * |
| 257 | * ,----------------. ,-------------. |
| 258 | * | | task | | |
| 259 | * | parent_thread | ------> | parent_task | |
| 260 | * | | <.list. | | |
| 261 | * `----------------' `-------------' |
| 262 | * uthread | ^ bsd_info | ^ |
| 263 | * v | vc_thread v | task |
| 264 | * ,----------------. ,-------------. |
| 265 | * | | | | |
| 266 | * | parent_uthread | <.list. | parent_proc | <-- current_proc() |
| 267 | * | | | | |
| 268 | * `----------------' `-------------' |
| 269 | * uu_proc | |
| 270 | * v |
| 271 | * NULL |
| 272 | * |
| 273 | * After: |
| 274 | * |
| 275 | * ,----------------. ,-------------. |
| 276 | * | | task | | |
| 277 | * ,----> | parent_thread | ------> | parent_task | |
| 278 | * | | | <.list. | | |
| 279 | * | `----------------' `-------------' |
| 280 | * | uthread | ^ bsd_info | ^ |
| 281 | * | v | vc_thread v | task |
| 282 | * | ,----------------. ,-------------. |
| 283 | * | | | | | |
| 284 | * | | parent_uthread | <.list. | parent_proc | |
| 285 | * | | | | | |
| 286 | * | `----------------' `-------------' |
| 287 | * | uu_proc | . list |
| 288 | * | v v |
| 289 | * | ,----------------. |
| 290 | * `----- | | |
| 291 | * p_vforkact | child_proc | <-- current_proc() |
| 292 | * | | |
| 293 | * `----------------' |
| 294 | */ |
| 295 | int |
| 296 | vfork(proc_t parent_proc, __unused struct vfork_args *uap, int32_t *retval) |
| 297 | { |
| 298 | thread_t child_thread; |
| 299 | int err; |
| 300 | |
| 301 | if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_VFORK, NULL)) != 0) { |
| 302 | retval[1] = 0; |
| 303 | } else { |
| 304 | uthread_t ut = get_bsdthread_info(current_thread()); |
| 305 | proc_t child_proc = ut->uu_proc; |
| 306 | |
| 307 | retval[0] = child_proc->p_pid; |
| 308 | retval[1] = 1; /* flag child return for user space */ |
| 309 | |
| 310 | /* |
| 311 | * Drop the signal lock on the child which was taken on our |
| 312 | * behalf by forkproc()/cloneproc() to prevent signals being |
| 313 | * received by the child in a partially constructed state. |
| 314 | */ |
| 315 | proc_signalend(child_proc, 0); |
| 316 | proc_transend(child_proc, 0); |
| 317 | |
| 318 | proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid); |
| 319 | DTRACE_PROC1(create, proc_t, child_proc); |
| 320 | ut->uu_flag &= ~UT_VFORKING; |
| 321 | } |
| 322 | |
| 323 | return (err); |
| 324 | } |
| 325 | |
| 326 | |
| 327 | /* |
| 328 | * fork1 |
| 329 | * |
| 330 | * Description: common code used by all new process creation other than the |
| 331 | * bootstrap of the initial process on the system |
| 332 | * |
| 333 | * Parameters: parent_proc parent process of the process being |
| 334 | * child_threadp pointer to location to receive the |
| 335 | * Mach thread_t of the child process |
| 336 | * created |
| 337 | * kind kind of creation being requested |
| 338 | * coalitions if spawn, the set of coalitions the |
| 339 | * child process should join, or NULL to |
| 340 | * inherit the parent's. On non-spawns, |
| 341 | * this param is ignored and the child |
| 342 | * always inherits the parent's |
| 343 | * coalitions. |
| 344 | * |
| 345 | * Notes: Permissable values for 'kind': |
| 346 | * |
| 347 | * PROC_CREATE_FORK Create a complete process which will |
| 348 | * return actively running in both the |
| 349 | * parent and the child; the child copies |
| 350 | * the parent address space. |
| 351 | * PROC_CREATE_SPAWN Create a complete process which will |
| 352 | * return actively running in the parent |
| 353 | * only after returning actively running |
| 354 | * in the child; the child address space |
| 355 | * is newly created by an image activator, |
| 356 | * after which the child is run. |
| 357 | * PROC_CREATE_VFORK Creates a partial process which will |
| 358 | * borrow the parent task, thread, and |
| 359 | * uthread to return running in the child; |
| 360 | * the child address space and other parts |
| 361 | * are lazily created at execve() time, or |
| 362 | * the child is terminated, and the parent |
| 363 | * does not actively run until that |
| 364 | * happens. |
| 365 | * |
| 366 | * At first it may seem strange that we return the child thread |
| 367 | * address rather than process structure, since the process is |
| 368 | * the only part guaranteed to be "new"; however, since we do |
| 369 | * not actualy adjust other references between Mach and BSD (see |
| 370 | * the block diagram above the implementation of vfork()), this |
| 371 | * is the only method which guarantees us the ability to get |
| 372 | * back to the other information. |
| 373 | */ |
| 374 | int |
| 375 | fork1(proc_t parent_proc, thread_t *child_threadp, int kind, coalition_t *coalitions) |
| 376 | { |
| 377 | thread_t parent_thread = (thread_t)current_thread(); |
| 378 | uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread); |
| 379 | proc_t child_proc = NULL; /* set in switch, but compiler... */ |
| 380 | thread_t child_thread = NULL; |
| 381 | uid_t uid; |
| 382 | int count; |
| 383 | int err = 0; |
| 384 | int spawn = 0; |
| 385 | |
| 386 | /* |
| 387 | * Although process entries are dynamically created, we still keep |
| 388 | * a global limit on the maximum number we will create. Don't allow |
| 389 | * a nonprivileged user to use the last process; don't let root |
| 390 | * exceed the limit. The variable nprocs is the current number of |
| 391 | * processes, maxproc is the limit. |
| 392 | */ |
| 393 | uid = kauth_getruid(); |
| 394 | proc_list_lock(); |
| 395 | if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) { |
| 396 | #if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED |
| 397 | /* |
| 398 | * On the development kernel, panic so that the fact that we hit |
| 399 | * the process limit is obvious, as this may very well wedge the |
| 400 | * system. |
| 401 | */ |
| 402 | panic("The process table is full; parent pid=%d" , parent_proc->p_pid); |
| 403 | #endif |
| 404 | proc_list_unlock(); |
| 405 | tablefull("proc" ); |
| 406 | return (EAGAIN); |
| 407 | } |
| 408 | proc_list_unlock(); |
| 409 | |
| 410 | /* |
| 411 | * Increment the count of procs running with this uid. Don't allow |
| 412 | * a nonprivileged user to exceed their current limit, which is |
| 413 | * always less than what an rlim_t can hold. |
| 414 | * (locking protection is provided by list lock held in chgproccnt) |
| 415 | */ |
| 416 | count = chgproccnt(uid, 1); |
| 417 | if (uid != 0 && |
| 418 | (rlim_t)count > parent_proc->p_rlimit[RLIMIT_NPROC].rlim_cur) { |
| 419 | #if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED |
| 420 | /* |
| 421 | * On the development kernel, panic so that the fact that we hit |
| 422 | * the per user process limit is obvious. This may be less dire |
| 423 | * than hitting the global process limit, but we cannot rely on |
| 424 | * that. |
| 425 | */ |
| 426 | panic("The per-user process limit has been hit; parent pid=%d, uid=%d" , parent_proc->p_pid, uid); |
| 427 | #endif |
| 428 | err = EAGAIN; |
| 429 | goto bad; |
| 430 | } |
| 431 | |
| 432 | #if CONFIG_MACF |
| 433 | /* |
| 434 | * Determine if MAC policies applied to the process will allow |
| 435 | * it to fork. This is an advisory-only check. |
| 436 | */ |
| 437 | err = mac_proc_check_fork(parent_proc); |
| 438 | if (err != 0) { |
| 439 | goto bad; |
| 440 | } |
| 441 | #endif |
| 442 | |
| 443 | switch(kind) { |
| 444 | case PROC_CREATE_VFORK: |
| 445 | /* |
| 446 | * Prevent a vfork while we are in vfork(); we should |
| 447 | * also likely preventing a fork here as well, and this |
| 448 | * check should then be outside the switch statement, |
| 449 | * since the proc struct contents will copy from the |
| 450 | * child and the tash/thread/uthread from the parent in |
| 451 | * that case. We do not support vfork() in vfork() |
| 452 | * because we don't have to; the same non-requirement |
| 453 | * is true of both fork() and posix_spawn() and any |
| 454 | * call other than execve() amd _exit(), but we've |
| 455 | * been historically lenient, so we continue to be so |
| 456 | * (for now). |
| 457 | * |
| 458 | * <rdar://6640521> Probably a source of random panics |
| 459 | */ |
| 460 | if (parent_uthread->uu_flag & UT_VFORK) { |
| 461 | printf("fork1 called within vfork by %s\n" , parent_proc->p_comm); |
| 462 | err = EINVAL; |
| 463 | goto bad; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Flag us in progress; if we chose to support vfork() in |
| 468 | * vfork(), we would chain our parent at this point (in |
| 469 | * effect, a stack push). We don't, since we actually want |
| 470 | * to disallow everything not specified in the standard |
| 471 | */ |
| 472 | proc_vfork_begin(parent_proc); |
| 473 | |
| 474 | /* The newly created process comes with signal lock held */ |
| 475 | if ((child_proc = forkproc(parent_proc)) == NULL) { |
| 476 | /* Failed to allocate new process */ |
| 477 | proc_vfork_end(parent_proc); |
| 478 | err = ENOMEM; |
| 479 | goto bad; |
| 480 | } |
| 481 | |
| 482 | // XXX BEGIN: wants to move to be common code (and safe) |
| 483 | #if CONFIG_MACF |
| 484 | /* |
| 485 | * allow policies to associate the credential/label that |
| 486 | * we referenced from the parent ... with the child |
| 487 | * JMM - this really isn't safe, as we can drop that |
| 488 | * association without informing the policy in other |
| 489 | * situations (keep long enough to get policies changed) |
| 490 | */ |
| 491 | mac_cred_label_associate_fork(child_proc->p_ucred, child_proc); |
| 492 | #endif |
| 493 | |
| 494 | /* |
| 495 | * Propogate change of PID - may get new cred if auditing. |
| 496 | * |
| 497 | * NOTE: This has no effect in the vfork case, since |
| 498 | * child_proc->task != current_task(), but we duplicate it |
| 499 | * because this is probably, ultimately, wrong, since we |
| 500 | * will be running in the "child" which is the parent task |
| 501 | * with the wrong token until we get to the execve() or |
| 502 | * _exit() call; a lot of "undefined" can happen before |
| 503 | * that. |
| 504 | * |
| 505 | * <rdar://6640530> disallow everything but exeve()/_exit()? |
| 506 | */ |
| 507 | set_security_token(child_proc); |
| 508 | |
| 509 | AUDIT_ARG(pid, child_proc->p_pid); |
| 510 | |
| 511 | // XXX END: wants to move to be common code (and safe) |
| 512 | |
| 513 | /* |
| 514 | * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD |
| 515 | * |
| 516 | * Note: this is where we would "push" state instead of setting |
| 517 | * it for nested vfork() support (see proc_vfork_end() for |
| 518 | * description if issues here). |
| 519 | */ |
| 520 | child_proc->task = parent_proc->task; |
| 521 | |
| 522 | child_proc->p_lflag |= P_LINVFORK; |
| 523 | child_proc->p_vforkact = parent_thread; |
| 524 | child_proc->p_stat = SRUN; |
| 525 | |
| 526 | /* |
| 527 | * Until UT_VFORKING is cleared at the end of the vfork |
| 528 | * syscall, the process identity of this thread is slightly |
| 529 | * murky. |
| 530 | * |
| 531 | * As long as UT_VFORK and it's associated field (uu_proc) |
| 532 | * is set, current_proc() will always return the child process. |
| 533 | * |
| 534 | * However dtrace_proc_selfpid() returns the parent pid to |
| 535 | * ensure that e.g. the proc:::create probe actions accrue |
| 536 | * to the parent. (Otherwise the child magically seems to |
| 537 | * have created itself!) |
| 538 | */ |
| 539 | parent_uthread->uu_flag |= UT_VFORK | UT_VFORKING; |
| 540 | parent_uthread->uu_proc = child_proc; |
| 541 | parent_uthread->uu_userstate = (void *)act_thread_csave(); |
| 542 | parent_uthread->uu_vforkmask = parent_uthread->uu_sigmask; |
| 543 | |
| 544 | /* temporarily drop thread-set-id state */ |
| 545 | if (parent_uthread->uu_flag & UT_SETUID) { |
| 546 | parent_uthread->uu_flag |= UT_WASSETUID; |
| 547 | parent_uthread->uu_flag &= ~UT_SETUID; |
| 548 | } |
| 549 | |
| 550 | /* blow thread state information */ |
| 551 | /* XXX is this actually necessary, given syscall return? */ |
| 552 | thread_set_child(parent_thread, child_proc->p_pid); |
| 553 | |
| 554 | child_proc->p_acflag = AFORK; /* forked but not exec'ed */ |
| 555 | |
| 556 | /* |
| 557 | * Preserve synchronization semantics of vfork. If |
| 558 | * waiting for child to exec or exit, set P_PPWAIT |
| 559 | * on child, and sleep on our proc (in case of exit). |
| 560 | */ |
| 561 | child_proc->p_lflag |= P_LPPWAIT; |
| 562 | pinsertchild(parent_proc, child_proc); /* set visible */ |
| 563 | |
| 564 | break; |
| 565 | |
| 566 | case PROC_CREATE_SPAWN: |
| 567 | /* |
| 568 | * A spawned process differs from a forked process in that |
| 569 | * the spawned process does not carry around the parents |
| 570 | * baggage with regard to address space copying, dtrace, |
| 571 | * and so on. |
| 572 | */ |
| 573 | spawn = 1; |
| 574 | |
| 575 | /* FALLSTHROUGH */ |
| 576 | |
| 577 | case PROC_CREATE_FORK: |
| 578 | /* |
| 579 | * When we clone the parent process, we are going to inherit |
| 580 | * its task attributes and memory, since when we fork, we |
| 581 | * will, in effect, create a duplicate of it, with only minor |
| 582 | * differences. Contrarily, spawned processes do not inherit. |
| 583 | */ |
| 584 | if ((child_thread = cloneproc(parent_proc->task, |
| 585 | spawn ? coalitions : NULL, |
| 586 | parent_proc, |
| 587 | spawn ? FALSE : TRUE, |
| 588 | FALSE)) == NULL) { |
| 589 | /* Failed to create thread */ |
| 590 | err = EAGAIN; |
| 591 | goto bad; |
| 592 | } |
| 593 | |
| 594 | /* copy current thread state into the child thread (only for fork) */ |
| 595 | if (!spawn) { |
| 596 | thread_dup(child_thread); |
| 597 | } |
| 598 | |
| 599 | /* child_proc = child_thread->task->proc; */ |
| 600 | child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread))); |
| 601 | |
| 602 | // XXX BEGIN: wants to move to be common code (and safe) |
| 603 | #if CONFIG_MACF |
| 604 | /* |
| 605 | * allow policies to associate the credential/label that |
| 606 | * we referenced from the parent ... with the child |
| 607 | * JMM - this really isn't safe, as we can drop that |
| 608 | * association without informing the policy in other |
| 609 | * situations (keep long enough to get policies changed) |
| 610 | */ |
| 611 | mac_cred_label_associate_fork(child_proc->p_ucred, child_proc); |
| 612 | #endif |
| 613 | |
| 614 | /* |
| 615 | * Propogate change of PID - may get new cred if auditing. |
| 616 | * |
| 617 | * NOTE: This has no effect in the vfork case, since |
| 618 | * child_proc->task != current_task(), but we duplicate it |
| 619 | * because this is probably, ultimately, wrong, since we |
| 620 | * will be running in the "child" which is the parent task |
| 621 | * with the wrong token until we get to the execve() or |
| 622 | * _exit() call; a lot of "undefined" can happen before |
| 623 | * that. |
| 624 | * |
| 625 | * <rdar://6640530> disallow everything but exeve()/_exit()? |
| 626 | */ |
| 627 | set_security_token(child_proc); |
| 628 | |
| 629 | AUDIT_ARG(pid, child_proc->p_pid); |
| 630 | |
| 631 | // XXX END: wants to move to be common code (and safe) |
| 632 | |
| 633 | /* |
| 634 | * Blow thread state information; this is what gives the child |
| 635 | * process its "return" value from a fork() call. |
| 636 | * |
| 637 | * Note: this should probably move to fork() proper, since it |
| 638 | * is not relevent to spawn, and the value won't matter |
| 639 | * until we resume the child there. If you are in here |
| 640 | * refactoring code, consider doing this at the same time. |
| 641 | */ |
| 642 | thread_set_child(child_thread, child_proc->p_pid); |
| 643 | |
| 644 | child_proc->p_acflag = AFORK; /* forked but not exec'ed */ |
| 645 | |
| 646 | #if CONFIG_DTRACE |
| 647 | dtrace_proc_fork(parent_proc, child_proc, spawn); |
| 648 | #endif /* CONFIG_DTRACE */ |
| 649 | if (!spawn) { |
| 650 | /* |
| 651 | * Of note, we need to initialize the bank context behind |
| 652 | * the protection of the proc_trans lock to prevent a race with exit. |
| 653 | */ |
| 654 | task_bank_init(get_threadtask(child_thread)); |
| 655 | } |
| 656 | |
| 657 | break; |
| 658 | |
| 659 | default: |
| 660 | panic("fork1 called with unknown kind %d" , kind); |
| 661 | break; |
| 662 | } |
| 663 | |
| 664 | |
| 665 | /* return the thread pointer to the caller */ |
| 666 | *child_threadp = child_thread; |
| 667 | |
| 668 | bad: |
| 669 | /* |
| 670 | * In the error case, we return a 0 value for the returned pid (but |
| 671 | * it is ignored in the trampoline due to the error return); this |
| 672 | * is probably not necessary. |
| 673 | */ |
| 674 | if (err) { |
| 675 | (void)chgproccnt(uid, -1); |
| 676 | } |
| 677 | |
| 678 | return (err); |
| 679 | } |
| 680 | |
| 681 | |
| 682 | /* |
| 683 | * vfork_return |
| 684 | * |
| 685 | * Description: "Return" to parent vfork thread() following execve/_exit; |
| 686 | * this is done by reassociating the parent process structure |
| 687 | * with the task, thread, and uthread. |
| 688 | * |
| 689 | * Refer to the ASCII art above vfork() to figure out the |
| 690 | * state we're undoing. |
| 691 | * |
| 692 | * Parameters: child_proc Child process |
| 693 | * retval System call return value array |
| 694 | * rval Return value to present to parent |
| 695 | * |
| 696 | * Returns: void |
| 697 | * |
| 698 | * Notes: The caller resumes or exits the parent, as appropriate, after |
| 699 | * calling this function. |
| 700 | */ |
| 701 | void |
| 702 | vfork_return(proc_t child_proc, int32_t *retval, int rval) |
| 703 | { |
| 704 | task_t parent_task = get_threadtask(child_proc->p_vforkact); |
| 705 | proc_t parent_proc = get_bsdtask_info(parent_task); |
| 706 | thread_t th = current_thread(); |
| 707 | uthread_t uth = get_bsdthread_info(th); |
| 708 | |
| 709 | act_thread_catt(uth->uu_userstate); |
| 710 | |
| 711 | /* clear vfork state in parent proc structure */ |
| 712 | proc_vfork_end(parent_proc); |
| 713 | |
| 714 | /* REPATRIATE PARENT TASK, THREAD, UTHREAD */ |
| 715 | uth->uu_userstate = 0; |
| 716 | uth->uu_flag &= ~UT_VFORK; |
| 717 | /* restore thread-set-id state */ |
| 718 | if (uth->uu_flag & UT_WASSETUID) { |
| 719 | uth->uu_flag |= UT_SETUID; |
| 720 | uth->uu_flag &= UT_WASSETUID; |
| 721 | } |
| 722 | uth->uu_proc = 0; |
| 723 | uth->uu_sigmask = uth->uu_vforkmask; |
| 724 | |
| 725 | proc_lock(child_proc); |
| 726 | child_proc->p_lflag &= ~P_LINVFORK; |
| 727 | child_proc->p_vforkact = 0; |
| 728 | proc_unlock(child_proc); |
| 729 | |
| 730 | thread_set_parent(th, rval); |
| 731 | |
| 732 | if (retval) { |
| 733 | retval[0] = rval; |
| 734 | retval[1] = 0; /* mark parent */ |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | |
| 739 | /* |
| 740 | * fork_create_child |
| 741 | * |
| 742 | * Description: Common operations associated with the creation of a child |
| 743 | * process |
| 744 | * |
| 745 | * Parameters: parent_task parent task |
| 746 | * parent_coalitions parent's set of coalitions |
| 747 | * child_proc child process |
| 748 | * inherit_memory TRUE, if the parents address space is |
| 749 | * to be inherited by the child |
| 750 | * is_64bit_addr TRUE, if the child being created will |
| 751 | * be associated with a 64 bit address space |
| 752 | * is_64bit_data TRUE if the child being created will use a |
| 753 | 64-bit register state |
| 754 | * in_exec TRUE, if called from execve or posix spawn set exec |
| 755 | * FALSE, if called from fork or vfexec |
| 756 | * |
| 757 | * Note: This code is called in the fork() case, from the execve() call |
| 758 | * graph, if implementing an execve() following a vfork(), from |
| 759 | * the posix_spawn() call graph (which implicitly includes a |
| 760 | * vfork() equivalent call, and in the system bootstrap case. |
| 761 | * |
| 762 | * It creates a new task and thread (and as a side effect of the |
| 763 | * thread creation, a uthread) in the parent coalition set, which is |
| 764 | * then associated with the process 'child'. If the parent |
| 765 | * process address space is to be inherited, then a flag |
| 766 | * indicates that the newly created task should inherit this from |
| 767 | * the child task. |
| 768 | * |
| 769 | * As a special concession to bootstrapping the initial process |
| 770 | * in the system, it's possible for 'parent_task' to be TASK_NULL; |
| 771 | * in this case, 'inherit_memory' MUST be FALSE. |
| 772 | */ |
| 773 | thread_t |
| 774 | fork_create_child(task_t parent_task, |
| 775 | coalition_t *parent_coalitions, |
| 776 | proc_t child_proc, |
| 777 | int inherit_memory, |
| 778 | int is_64bit_addr, |
| 779 | int is_64bit_data, |
| 780 | int in_exec) |
| 781 | { |
| 782 | thread_t child_thread = NULL; |
| 783 | task_t child_task; |
| 784 | kern_return_t result; |
| 785 | |
| 786 | /* Create a new task for the child process */ |
| 787 | result = task_create_internal(parent_task, |
| 788 | parent_coalitions, |
| 789 | inherit_memory, |
| 790 | is_64bit_addr, |
| 791 | is_64bit_data, |
| 792 | TF_LRETURNWAIT | TF_LRETURNWAITER, /* All created threads will wait in task_wait_to_return */ |
| 793 | in_exec ? TPF_EXEC_COPY : TPF_NONE, /* Mark the task exec copy if in execve */ |
| 794 | &child_task); |
| 795 | if (result != KERN_SUCCESS) { |
| 796 | printf("%s: task_create_internal failed. Code: %d\n" , |
| 797 | __func__, result); |
| 798 | goto bad; |
| 799 | } |
| 800 | |
| 801 | if (!in_exec) { |
| 802 | /* |
| 803 | * Set the child process task to the new task if not in exec, |
| 804 | * will set the task for exec case in proc_exec_switch_task after image activation. |
| 805 | */ |
| 806 | child_proc->task = child_task; |
| 807 | } |
| 808 | |
| 809 | /* Set child task process to child proc */ |
| 810 | set_bsdtask_info(child_task, child_proc); |
| 811 | |
| 812 | /* Propagate CPU limit timer from parent */ |
| 813 | if (timerisset(&child_proc->p_rlim_cpu)) |
| 814 | task_vtimer_set(child_task, TASK_VTIMER_RLIM); |
| 815 | |
| 816 | /* |
| 817 | * Set child process BSD visible scheduler priority if nice value |
| 818 | * inherited from parent |
| 819 | */ |
| 820 | if (child_proc->p_nice != 0) |
| 821 | resetpriority(child_proc); |
| 822 | |
| 823 | /* |
| 824 | * Create a new thread for the child process |
| 825 | * The new thread is waiting on the event triggered by 'task_clear_return_wait' |
| 826 | */ |
| 827 | result = thread_create_waiting(child_task, |
| 828 | (thread_continue_t)task_wait_to_return, |
| 829 | task_get_return_wait_event(child_task), |
| 830 | &child_thread); |
| 831 | |
| 832 | if (result != KERN_SUCCESS) { |
| 833 | printf("%s: thread_create failed. Code: %d\n" , |
| 834 | __func__, result); |
| 835 | task_deallocate(child_task); |
| 836 | child_task = NULL; |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * Tag thread as being the first thread in its task. |
| 841 | */ |
| 842 | thread_set_tag(child_thread, THREAD_TAG_MAINTHREAD); |
| 843 | |
| 844 | bad: |
| 845 | thread_yield_internal(1); |
| 846 | |
| 847 | return(child_thread); |
| 848 | } |
| 849 | |
| 850 | |
| 851 | /* |
| 852 | * fork |
| 853 | * |
| 854 | * Description: fork system call. |
| 855 | * |
| 856 | * Parameters: parent Parent process to fork |
| 857 | * uap (void) [unused] |
| 858 | * retval Return value |
| 859 | * |
| 860 | * Returns: 0 Success |
| 861 | * EAGAIN Resource unavailable, try again |
| 862 | * |
| 863 | * Notes: Attempts to create a new child process which inherits state |
| 864 | * from the parent process. If successful, the call returns |
| 865 | * having created an initially suspended child process with an |
| 866 | * extra Mach task and thread reference, for which the thread |
| 867 | * is initially suspended. Until we resume the child process, |
| 868 | * it is not yet running. |
| 869 | * |
| 870 | * The return information to the child is contained in the |
| 871 | * thread state structure of the new child, and does not |
| 872 | * become visible to the child through a normal return process, |
| 873 | * since it never made the call into the kernel itself in the |
| 874 | * first place. |
| 875 | * |
| 876 | * After resuming the thread, this function returns directly to |
| 877 | * the parent process which invoked the fork() system call. |
| 878 | * |
| 879 | * Important: The child thread_resume occurs before the parent returns; |
| 880 | * depending on scheduling latency, this means that it is not |
| 881 | * deterministic as to whether the parent or child is scheduled |
| 882 | * to run first. It is entirely possible that the child could |
| 883 | * run to completion prior to the parent running. |
| 884 | */ |
| 885 | int |
| 886 | fork(proc_t parent_proc, __unused struct fork_args *uap, int32_t *retval) |
| 887 | { |
| 888 | thread_t child_thread; |
| 889 | int err; |
| 890 | |
| 891 | retval[1] = 0; /* flag parent return for user space */ |
| 892 | |
| 893 | if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_FORK, NULL)) == 0) { |
| 894 | task_t child_task; |
| 895 | proc_t child_proc; |
| 896 | |
| 897 | /* Return to the parent */ |
| 898 | child_proc = (proc_t)get_bsdthreadtask_info(child_thread); |
| 899 | retval[0] = child_proc->p_pid; |
| 900 | |
| 901 | /* |
| 902 | * Drop the signal lock on the child which was taken on our |
| 903 | * behalf by forkproc()/cloneproc() to prevent signals being |
| 904 | * received by the child in a partially constructed state. |
| 905 | */ |
| 906 | proc_signalend(child_proc, 0); |
| 907 | proc_transend(child_proc, 0); |
| 908 | |
| 909 | /* flag the fork has occurred */ |
| 910 | proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid); |
| 911 | DTRACE_PROC1(create, proc_t, child_proc); |
| 912 | |
| 913 | #if CONFIG_DTRACE |
| 914 | if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) |
| 915 | (*dtrace_proc_waitfor_hook)(child_proc); |
| 916 | #endif |
| 917 | |
| 918 | /* "Return" to the child */ |
| 919 | task_clear_return_wait(get_threadtask(child_thread)); |
| 920 | |
| 921 | /* drop the extra references we got during the creation */ |
| 922 | if ((child_task = (task_t)get_threadtask(child_thread)) != NULL) { |
| 923 | task_deallocate(child_task); |
| 924 | } |
| 925 | thread_deallocate(child_thread); |
| 926 | } |
| 927 | |
| 928 | return(err); |
| 929 | } |
| 930 | |
| 931 | |
| 932 | /* |
| 933 | * cloneproc |
| 934 | * |
| 935 | * Description: Create a new process from a specified process. |
| 936 | * |
| 937 | * Parameters: parent_task The parent task to be cloned, or |
| 938 | * TASK_NULL is task characteristics |
| 939 | * are not to be inherited |
| 940 | * be cloned, or TASK_NULL if the new |
| 941 | * task is not to inherit the VM |
| 942 | * characteristics of the parent |
| 943 | * parent_proc The parent process to be cloned |
| 944 | * inherit_memory True if the child is to inherit |
| 945 | * memory from the parent; if this is |
| 946 | * non-NULL, then the parent_task must |
| 947 | * also be non-NULL |
| 948 | * memstat_internal Whether to track the process in the |
| 949 | * jetsam priority list (if configured) |
| 950 | * |
| 951 | * Returns: !NULL pointer to new child thread |
| 952 | * NULL Failure (unspecified) |
| 953 | * |
| 954 | * Note: On return newly created child process has signal lock held |
| 955 | * to block delivery of signal to it if called with lock set. |
| 956 | * fork() code needs to explicity remove this lock before |
| 957 | * signals can be delivered |
| 958 | * |
| 959 | * In the case of bootstrap, this function can be called from |
| 960 | * bsd_utaskbootstrap() in order to bootstrap the first process; |
| 961 | * the net effect is to provide a uthread structure for the |
| 962 | * kernel process associated with the kernel task. |
| 963 | * |
| 964 | * XXX: Tristating using the value parent_task as the major key |
| 965 | * and inherit_memory as the minor key is something we should |
| 966 | * refactor later; we owe the current semantics, ultimately, |
| 967 | * to the semantics of task_create_internal. For now, we will |
| 968 | * live with this being somewhat awkward. |
| 969 | */ |
| 970 | thread_t |
| 971 | cloneproc(task_t parent_task, coalition_t *parent_coalitions, proc_t parent_proc, int inherit_memory, int memstat_internal) |
| 972 | { |
| 973 | #if !CONFIG_MEMORYSTATUS |
| 974 | #pragma unused(memstat_internal) |
| 975 | #endif |
| 976 | task_t child_task; |
| 977 | proc_t child_proc; |
| 978 | thread_t child_thread = NULL; |
| 979 | |
| 980 | if ((child_proc = forkproc(parent_proc)) == NULL) { |
| 981 | /* Failed to allocate new process */ |
| 982 | goto bad; |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * In the case where the parent_task is TASK_NULL (during the init path) |
| 987 | * we make the assumption that the register size will be the same as the |
| 988 | * address space size since there's no way to determine the possible |
| 989 | * register size until an image is exec'd. |
| 990 | * |
| 991 | * The only architecture that has different address space and register sizes |
| 992 | * (arm64_32) isn't being used within kernel-space, so the above assumption |
| 993 | * always holds true for the init path. |
| 994 | */ |
| 995 | const int parent_64bit_addr = parent_proc->p_flag & P_LP64; |
| 996 | const int parent_64bit_data = (parent_task == TASK_NULL) ? parent_64bit_addr : task_get_64bit_data(parent_task); |
| 997 | |
| 998 | child_thread = fork_create_child(parent_task, |
| 999 | parent_coalitions, |
| 1000 | child_proc, |
| 1001 | inherit_memory, |
| 1002 | parent_64bit_addr, |
| 1003 | parent_64bit_data, |
| 1004 | FALSE); |
| 1005 | |
| 1006 | if (child_thread == NULL) { |
| 1007 | /* |
| 1008 | * Failed to create thread; now we must deconstruct the new |
| 1009 | * process previously obtained from forkproc(). |
| 1010 | */ |
| 1011 | forkproc_free(child_proc); |
| 1012 | goto bad; |
| 1013 | } |
| 1014 | |
| 1015 | child_task = get_threadtask(child_thread); |
| 1016 | if (parent_64bit_addr) { |
| 1017 | OSBitOrAtomic(P_LP64, (UInt32 *)&child_proc->p_flag); |
| 1018 | } else { |
| 1019 | OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child_proc->p_flag); |
| 1020 | } |
| 1021 | |
| 1022 | #if CONFIG_MEMORYSTATUS |
| 1023 | if (memstat_internal) { |
| 1024 | proc_list_lock(); |
| 1025 | child_proc->p_memstat_state |= P_MEMSTAT_INTERNAL; |
| 1026 | proc_list_unlock(); |
| 1027 | } |
| 1028 | #endif |
| 1029 | |
| 1030 | /* make child visible */ |
| 1031 | pinsertchild(parent_proc, child_proc); |
| 1032 | |
| 1033 | /* |
| 1034 | * Make child runnable, set start time. |
| 1035 | */ |
| 1036 | child_proc->p_stat = SRUN; |
| 1037 | bad: |
| 1038 | return(child_thread); |
| 1039 | } |
| 1040 | |
| 1041 | |
| 1042 | /* |
| 1043 | * Destroy a process structure that resulted from a call to forkproc(), but |
| 1044 | * which must be returned to the system because of a subsequent failure |
| 1045 | * preventing it from becoming active. |
| 1046 | * |
| 1047 | * Parameters: p The incomplete process from forkproc() |
| 1048 | * |
| 1049 | * Returns: (void) |
| 1050 | * |
| 1051 | * Note: This function should only be used in an error handler following |
| 1052 | * a call to forkproc(). |
| 1053 | * |
| 1054 | * Operations occur in reverse order of those in forkproc(). |
| 1055 | */ |
| 1056 | void |
| 1057 | forkproc_free(proc_t p) |
| 1058 | { |
| 1059 | #if CONFIG_PERSONAS |
| 1060 | persona_proc_drop(p); |
| 1061 | #endif /* CONFIG_PERSONAS */ |
| 1062 | |
| 1063 | #if PSYNCH |
| 1064 | pth_proc_hashdelete(p); |
| 1065 | #endif /* PSYNCH */ |
| 1066 | |
| 1067 | /* We held signal and a transition locks; drop them */ |
| 1068 | proc_signalend(p, 0); |
| 1069 | proc_transend(p, 0); |
| 1070 | |
| 1071 | /* |
| 1072 | * If we have our own copy of the resource limits structure, we |
| 1073 | * need to free it. If it's a shared copy, we need to drop our |
| 1074 | * reference on it. |
| 1075 | */ |
| 1076 | proc_limitdrop(p, 0); |
| 1077 | p->p_limit = NULL; |
| 1078 | |
| 1079 | #if SYSV_SHM |
| 1080 | /* Need to drop references to the shared memory segment(s), if any */ |
| 1081 | if (p->vm_shm) { |
| 1082 | /* |
| 1083 | * Use shmexec(): we have no address space, so no mappings |
| 1084 | * |
| 1085 | * XXX Yes, the routine is badly named. |
| 1086 | */ |
| 1087 | shmexec(p); |
| 1088 | } |
| 1089 | #endif |
| 1090 | |
| 1091 | /* Need to undo the effects of the fdcopy(), if any */ |
| 1092 | fdfree(p); |
| 1093 | |
| 1094 | /* |
| 1095 | * Drop the reference on a text vnode pointer, if any |
| 1096 | * XXX This code is broken in forkproc(); see <rdar://4256419>; |
| 1097 | * XXX if anyone ever uses this field, we will be extremely unhappy. |
| 1098 | */ |
| 1099 | if (p->p_textvp) { |
| 1100 | vnode_rele(p->p_textvp); |
| 1101 | p->p_textvp = NULL; |
| 1102 | } |
| 1103 | |
| 1104 | /* Stop the profiling clock */ |
| 1105 | stopprofclock(p); |
| 1106 | |
| 1107 | /* Update the audit session proc count */ |
| 1108 | AUDIT_SESSION_PROCEXIT(p); |
| 1109 | |
| 1110 | #if CONFIG_FINE_LOCK_GROUPS |
| 1111 | lck_mtx_destroy(&p->p_mlock, proc_mlock_grp); |
| 1112 | lck_mtx_destroy(&p->p_fdmlock, proc_fdmlock_grp); |
| 1113 | lck_mtx_destroy(&p->p_ucred_mlock, proc_ucred_mlock_grp); |
| 1114 | #if CONFIG_DTRACE |
| 1115 | lck_mtx_destroy(&p->p_dtrace_sprlock, proc_lck_grp); |
| 1116 | #endif |
| 1117 | lck_spin_destroy(&p->p_slock, proc_slock_grp); |
| 1118 | #else /* CONFIG_FINE_LOCK_GROUPS */ |
| 1119 | lck_mtx_destroy(&p->p_mlock, proc_lck_grp); |
| 1120 | lck_mtx_destroy(&p->p_fdmlock, proc_lck_grp); |
| 1121 | lck_mtx_destroy(&p->p_ucred_mlock, proc_lck_grp); |
| 1122 | #if CONFIG_DTRACE |
| 1123 | lck_mtx_destroy(&p->p_dtrace_sprlock, proc_lck_grp); |
| 1124 | #endif |
| 1125 | lck_spin_destroy(&p->p_slock, proc_lck_grp); |
| 1126 | #endif /* CONFIG_FINE_LOCK_GROUPS */ |
| 1127 | |
| 1128 | /* Release the credential reference */ |
| 1129 | kauth_cred_unref(&p->p_ucred); |
| 1130 | |
| 1131 | proc_list_lock(); |
| 1132 | /* Decrement the count of processes in the system */ |
| 1133 | nprocs--; |
| 1134 | |
| 1135 | /* Take it out of process hash */ |
| 1136 | LIST_REMOVE(p, p_hash); |
| 1137 | |
| 1138 | proc_list_unlock(); |
| 1139 | |
| 1140 | thread_call_free(p->p_rcall); |
| 1141 | |
| 1142 | /* Free allocated memory */ |
| 1143 | FREE_ZONE(p->p_sigacts, sizeof *p->p_sigacts, M_SIGACTS); |
| 1144 | p->p_sigacts = NULL; |
| 1145 | FREE_ZONE(p->p_stats, sizeof *p->p_stats, M_PSTATS); |
| 1146 | p->p_stats = NULL; |
| 1147 | |
| 1148 | proc_checkdeadrefs(p); |
| 1149 | FREE_ZONE(p, sizeof *p, M_PROC); |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | /* |
| 1154 | * forkproc |
| 1155 | * |
| 1156 | * Description: Create a new process structure, given a parent process |
| 1157 | * structure. |
| 1158 | * |
| 1159 | * Parameters: parent_proc The parent process |
| 1160 | * |
| 1161 | * Returns: !NULL The new process structure |
| 1162 | * NULL Error (insufficient free memory) |
| 1163 | * |
| 1164 | * Note: When successful, the newly created process structure is |
| 1165 | * partially initialized; if a caller needs to deconstruct the |
| 1166 | * returned structure, they must call forkproc_free() to do so. |
| 1167 | */ |
| 1168 | proc_t |
| 1169 | forkproc(proc_t parent_proc) |
| 1170 | { |
| 1171 | proc_t child_proc; /* Our new process */ |
| 1172 | static int nextpid = 0, pidwrap = 0, nextpidversion = 0; |
| 1173 | static uint64_t nextuniqueid = 0; |
| 1174 | int error = 0; |
| 1175 | struct session *sessp; |
| 1176 | uthread_t parent_uthread = (uthread_t)get_bsdthread_info(current_thread()); |
| 1177 | |
| 1178 | MALLOC_ZONE(child_proc, proc_t , sizeof *child_proc, M_PROC, M_WAITOK); |
| 1179 | if (child_proc == NULL) { |
| 1180 | printf("forkproc: M_PROC zone exhausted\n" ); |
| 1181 | goto bad; |
| 1182 | } |
| 1183 | /* zero it out as we need to insert in hash */ |
| 1184 | bzero(child_proc, sizeof *child_proc); |
| 1185 | |
| 1186 | MALLOC_ZONE(child_proc->p_stats, struct pstats *, |
| 1187 | sizeof *child_proc->p_stats, M_PSTATS, M_WAITOK); |
| 1188 | if (child_proc->p_stats == NULL) { |
| 1189 | printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n" ); |
| 1190 | FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); |
| 1191 | child_proc = NULL; |
| 1192 | goto bad; |
| 1193 | } |
| 1194 | MALLOC_ZONE(child_proc->p_sigacts, struct sigacts *, |
| 1195 | sizeof *child_proc->p_sigacts, M_SIGACTS, M_WAITOK); |
| 1196 | if (child_proc->p_sigacts == NULL) { |
| 1197 | printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n" ); |
| 1198 | FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS); |
| 1199 | child_proc->p_stats = NULL; |
| 1200 | FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); |
| 1201 | child_proc = NULL; |
| 1202 | goto bad; |
| 1203 | } |
| 1204 | |
| 1205 | /* allocate a callout for use by interval timers */ |
| 1206 | child_proc->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child_proc); |
| 1207 | if (child_proc->p_rcall == NULL) { |
| 1208 | FREE_ZONE(child_proc->p_sigacts, sizeof *child_proc->p_sigacts, M_SIGACTS); |
| 1209 | child_proc->p_sigacts = NULL; |
| 1210 | FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS); |
| 1211 | child_proc->p_stats = NULL; |
| 1212 | FREE_ZONE(child_proc, sizeof *child_proc, M_PROC); |
| 1213 | child_proc = NULL; |
| 1214 | goto bad; |
| 1215 | } |
| 1216 | |
| 1217 | |
| 1218 | /* |
| 1219 | * Find an unused PID. |
| 1220 | */ |
| 1221 | |
| 1222 | proc_list_lock(); |
| 1223 | |
| 1224 | nextpid++; |
| 1225 | retry: |
| 1226 | /* |
| 1227 | * If the process ID prototype has wrapped around, |
| 1228 | * restart somewhat above 0, as the low-numbered procs |
| 1229 | * tend to include daemons that don't exit. |
| 1230 | */ |
| 1231 | if (nextpid >= PID_MAX) { |
| 1232 | nextpid = 100; |
| 1233 | pidwrap = 1; |
| 1234 | } |
| 1235 | if (pidwrap != 0) { |
| 1236 | |
| 1237 | /* if the pid stays in hash both for zombie and runniing state */ |
| 1238 | if (pfind_locked(nextpid) != PROC_NULL) { |
| 1239 | nextpid++; |
| 1240 | goto retry; |
| 1241 | } |
| 1242 | |
| 1243 | if (pgfind_internal(nextpid) != PGRP_NULL) { |
| 1244 | nextpid++; |
| 1245 | goto retry; |
| 1246 | } |
| 1247 | if (session_find_internal(nextpid) != SESSION_NULL) { |
| 1248 | nextpid++; |
| 1249 | goto retry; |
| 1250 | } |
| 1251 | } |
| 1252 | nprocs++; |
| 1253 | child_proc->p_pid = nextpid; |
| 1254 | child_proc->p_responsible_pid = nextpid; /* initially responsible for self */ |
| 1255 | child_proc->p_idversion = nextpidversion++; |
| 1256 | /* kernel process is handcrafted and not from fork, so start from 1 */ |
| 1257 | child_proc->p_uniqueid = ++nextuniqueid; |
| 1258 | #if 1 |
| 1259 | if (child_proc->p_pid != 0) { |
| 1260 | if (pfind_locked(child_proc->p_pid) != PROC_NULL) |
| 1261 | panic("proc in the list already\n" ); |
| 1262 | } |
| 1263 | #endif |
| 1264 | /* Insert in the hash */ |
| 1265 | child_proc->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE); |
| 1266 | LIST_INSERT_HEAD(PIDHASH(child_proc->p_pid), child_proc, p_hash); |
| 1267 | proc_list_unlock(); |
| 1268 | |
| 1269 | if (child_proc->p_uniqueid == startup_serial_num_procs) { |
| 1270 | /* |
| 1271 | * Turn off startup serial logging now that we have reached |
| 1272 | * the defined number of startup processes. |
| 1273 | */ |
| 1274 | startup_serial_logging_active = false; |
| 1275 | } |
| 1276 | |
| 1277 | /* |
| 1278 | * We've identified the PID we are going to use; initialize the new |
| 1279 | * process structure. |
| 1280 | */ |
| 1281 | child_proc->p_stat = SIDL; |
| 1282 | child_proc->p_pgrpid = PGRPID_DEAD; |
| 1283 | |
| 1284 | /* |
| 1285 | * The zero'ing of the proc was at the allocation time due to need |
| 1286 | * for insertion to hash. Copy the section that is to be copied |
| 1287 | * directly from the parent. |
| 1288 | */ |
| 1289 | bcopy(&parent_proc->p_startcopy, &child_proc->p_startcopy, |
| 1290 | (unsigned) ((caddr_t)&child_proc->p_endcopy - (caddr_t)&child_proc->p_startcopy)); |
| 1291 | |
| 1292 | /* |
| 1293 | * Some flags are inherited from the parent. |
| 1294 | * Duplicate sub-structures as needed. |
| 1295 | * Increase reference counts on shared objects. |
| 1296 | * The p_stats and p_sigacts substructs are set in vm_fork. |
| 1297 | */ |
| 1298 | #if !CONFIG_EMBEDDED |
| 1299 | child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_DISABLE_ASLR | P_DELAYIDLESLEEP | P_SUGID)); |
| 1300 | #else /* !CONFIG_EMBEDDED */ |
| 1301 | child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_DISABLE_ASLR | P_SUGID)); |
| 1302 | #endif /* !CONFIG_EMBEDDED */ |
| 1303 | if (parent_proc->p_flag & P_PROFIL) |
| 1304 | startprofclock(child_proc); |
| 1305 | |
| 1306 | child_proc->p_vfs_iopolicy = (parent_proc->p_vfs_iopolicy & (P_VFS_IOPOLICY_VALID_MASK)); |
| 1307 | |
| 1308 | /* |
| 1309 | * Note that if the current thread has an assumed identity, this |
| 1310 | * credential will be granted to the new process. |
| 1311 | */ |
| 1312 | child_proc->p_ucred = kauth_cred_get_with_ref(); |
| 1313 | /* update cred on proc */ |
| 1314 | PROC_UPDATE_CREDS_ONPROC(child_proc); |
| 1315 | /* update audit session proc count */ |
| 1316 | AUDIT_SESSION_PROCNEW(child_proc); |
| 1317 | |
| 1318 | #if CONFIG_FINE_LOCK_GROUPS |
| 1319 | lck_mtx_init(&child_proc->p_mlock, proc_mlock_grp, proc_lck_attr); |
| 1320 | lck_mtx_init(&child_proc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr); |
| 1321 | lck_mtx_init(&child_proc->p_ucred_mlock, proc_ucred_mlock_grp, proc_lck_attr); |
| 1322 | #if CONFIG_DTRACE |
| 1323 | lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr); |
| 1324 | #endif |
| 1325 | lck_spin_init(&child_proc->p_slock, proc_slock_grp, proc_lck_attr); |
| 1326 | #else /* !CONFIG_FINE_LOCK_GROUPS */ |
| 1327 | lck_mtx_init(&child_proc->p_mlock, proc_lck_grp, proc_lck_attr); |
| 1328 | lck_mtx_init(&child_proc->p_fdmlock, proc_lck_grp, proc_lck_attr); |
| 1329 | lck_mtx_init(&child_proc->p_ucred_mlock, proc_lck_grp, proc_lck_attr); |
| 1330 | #if CONFIG_DTRACE |
| 1331 | lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr); |
| 1332 | #endif |
| 1333 | lck_spin_init(&child_proc->p_slock, proc_lck_grp, proc_lck_attr); |
| 1334 | #endif /* !CONFIG_FINE_LOCK_GROUPS */ |
| 1335 | klist_init(&child_proc->p_klist); |
| 1336 | |
| 1337 | if (child_proc->p_textvp != NULLVP) { |
| 1338 | /* bump references to the text vnode */ |
| 1339 | /* Need to hold iocount across the ref call */ |
| 1340 | if (vnode_getwithref(child_proc->p_textvp) == 0) { |
| 1341 | error = vnode_ref(child_proc->p_textvp); |
| 1342 | vnode_put(child_proc->p_textvp); |
| 1343 | if (error != 0) |
| 1344 | child_proc->p_textvp = NULLVP; |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | /* |
| 1349 | * Copy the parents per process open file table to the child; if |
| 1350 | * there is a per-thread current working directory, set the childs |
| 1351 | * per-process current working directory to that instead of the |
| 1352 | * parents. |
| 1353 | * |
| 1354 | * XXX may fail to copy descriptors to child |
| 1355 | */ |
| 1356 | child_proc->p_fd = fdcopy(parent_proc, parent_uthread->uu_cdir); |
| 1357 | |
| 1358 | #if SYSV_SHM |
| 1359 | if (parent_proc->vm_shm) { |
| 1360 | /* XXX may fail to attach shm to child */ |
| 1361 | (void)shmfork(parent_proc, child_proc); |
| 1362 | } |
| 1363 | #endif |
| 1364 | /* |
| 1365 | * inherit the limit structure to child |
| 1366 | */ |
| 1367 | proc_limitfork(parent_proc, child_proc); |
| 1368 | |
| 1369 | if (child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
| 1370 | uint64_t rlim_cur = child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur; |
| 1371 | child_proc->p_rlim_cpu.tv_sec = (rlim_cur > __INT_MAX__) ? __INT_MAX__ : rlim_cur; |
| 1372 | } |
| 1373 | |
| 1374 | /* Intialize new process stats, including start time */ |
| 1375 | /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */ |
| 1376 | bzero(child_proc->p_stats, sizeof(*child_proc->p_stats)); |
| 1377 | microtime_with_abstime(&child_proc->p_start, &child_proc->p_stats->ps_start); |
| 1378 | |
| 1379 | if (parent_proc->p_sigacts != NULL) |
| 1380 | (void)memcpy(child_proc->p_sigacts, |
| 1381 | parent_proc->p_sigacts, sizeof *child_proc->p_sigacts); |
| 1382 | else |
| 1383 | (void)memset(child_proc->p_sigacts, 0, sizeof *child_proc->p_sigacts); |
| 1384 | |
| 1385 | sessp = proc_session(parent_proc); |
| 1386 | if (sessp->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT) |
| 1387 | OSBitOrAtomic(P_CONTROLT, &child_proc->p_flag); |
| 1388 | session_rele(sessp); |
| 1389 | |
| 1390 | /* |
| 1391 | * block all signals to reach the process. |
| 1392 | * no transition race should be occuring with the child yet, |
| 1393 | * but indicate that the process is in (the creation) transition. |
| 1394 | */ |
| 1395 | proc_signalstart(child_proc, 0); |
| 1396 | proc_transstart(child_proc, 0, 0); |
| 1397 | |
| 1398 | child_proc->p_pcaction = 0; |
| 1399 | |
| 1400 | TAILQ_INIT(&child_proc->p_uthlist); |
| 1401 | TAILQ_INIT(&child_proc->p_aio_activeq); |
| 1402 | TAILQ_INIT(&child_proc->p_aio_doneq); |
| 1403 | |
| 1404 | /* Inherit the parent flags for code sign */ |
| 1405 | child_proc->p_csflags = (parent_proc->p_csflags & ~CS_KILLED); |
| 1406 | |
| 1407 | /* |
| 1408 | * Copy work queue information |
| 1409 | * |
| 1410 | * Note: This should probably only happen in the case where we are |
| 1411 | * creating a child that is a copy of the parent; since this |
| 1412 | * routine is called in the non-duplication case of vfork() |
| 1413 | * or posix_spawn(), then this information should likely not |
| 1414 | * be duplicated. |
| 1415 | * |
| 1416 | * <rdar://6640553> Work queue pointers that no longer point to code |
| 1417 | */ |
| 1418 | child_proc->p_wqthread = parent_proc->p_wqthread; |
| 1419 | child_proc->p_threadstart = parent_proc->p_threadstart; |
| 1420 | child_proc->p_pthsize = parent_proc->p_pthsize; |
| 1421 | if ((parent_proc->p_lflag & P_LREGISTER) != 0) { |
| 1422 | child_proc->p_lflag |= P_LREGISTER; |
| 1423 | } |
| 1424 | child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset; |
| 1425 | child_proc->p_dispatchqueue_serialno_offset = parent_proc->p_dispatchqueue_serialno_offset; |
| 1426 | child_proc->p_return_to_kernel_offset = parent_proc->p_return_to_kernel_offset; |
| 1427 | child_proc->p_mach_thread_self_offset = parent_proc->p_mach_thread_self_offset; |
| 1428 | child_proc->p_pth_tsd_offset = parent_proc->p_pth_tsd_offset; |
| 1429 | #if PSYNCH |
| 1430 | pth_proc_hashinit(child_proc); |
| 1431 | #endif /* PSYNCH */ |
| 1432 | |
| 1433 | #if CONFIG_PERSONAS |
| 1434 | child_proc->p_persona = NULL; |
| 1435 | error = persona_proc_inherit(child_proc, parent_proc); |
| 1436 | if (error != 0) { |
| 1437 | printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n" , persona_get_uid(parent_proc->p_persona)); |
| 1438 | forkproc_free(child_proc); |
| 1439 | child_proc = NULL; |
| 1440 | goto bad; |
| 1441 | } |
| 1442 | #endif |
| 1443 | |
| 1444 | #if CONFIG_MEMORYSTATUS |
| 1445 | /* Memorystatus init */ |
| 1446 | child_proc->p_memstat_state = 0; |
| 1447 | child_proc->p_memstat_effectivepriority = JETSAM_PRIORITY_DEFAULT; |
| 1448 | child_proc->p_memstat_requestedpriority = JETSAM_PRIORITY_DEFAULT; |
| 1449 | child_proc->p_memstat_userdata = 0; |
| 1450 | child_proc->p_memstat_idle_start = 0; |
| 1451 | child_proc->p_memstat_idle_delta = 0; |
| 1452 | child_proc->p_memstat_memlimit = 0; |
| 1453 | child_proc->p_memstat_memlimit_active = 0; |
| 1454 | child_proc->p_memstat_memlimit_inactive = 0; |
| 1455 | #if CONFIG_FREEZE |
| 1456 | child_proc->p_memstat_freeze_sharedanon_pages = 0; |
| 1457 | #endif |
| 1458 | child_proc->p_memstat_dirty = 0; |
| 1459 | child_proc->p_memstat_idledeadline = 0; |
| 1460 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1461 | |
| 1462 | bad: |
| 1463 | return(child_proc); |
| 1464 | } |
| 1465 | |
| 1466 | void |
| 1467 | proc_lock(proc_t p) |
| 1468 | { |
| 1469 | LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_NOTOWNED); |
| 1470 | lck_mtx_lock(&p->p_mlock); |
| 1471 | } |
| 1472 | |
| 1473 | void |
| 1474 | proc_unlock(proc_t p) |
| 1475 | { |
| 1476 | lck_mtx_unlock(&p->p_mlock); |
| 1477 | } |
| 1478 | |
| 1479 | void |
| 1480 | proc_spinlock(proc_t p) |
| 1481 | { |
| 1482 | lck_spin_lock(&p->p_slock); |
| 1483 | } |
| 1484 | |
| 1485 | void |
| 1486 | proc_spinunlock(proc_t p) |
| 1487 | { |
| 1488 | lck_spin_unlock(&p->p_slock); |
| 1489 | } |
| 1490 | |
| 1491 | void |
| 1492 | proc_list_lock(void) |
| 1493 | { |
| 1494 | lck_mtx_lock(proc_list_mlock); |
| 1495 | } |
| 1496 | |
| 1497 | void |
| 1498 | proc_list_unlock(void) |
| 1499 | { |
| 1500 | lck_mtx_unlock(proc_list_mlock); |
| 1501 | } |
| 1502 | |
| 1503 | void |
| 1504 | proc_ucred_lock(proc_t p) |
| 1505 | { |
| 1506 | lck_mtx_lock(&p->p_ucred_mlock); |
| 1507 | } |
| 1508 | |
| 1509 | void |
| 1510 | proc_ucred_unlock(proc_t p) |
| 1511 | { |
| 1512 | lck_mtx_unlock(&p->p_ucred_mlock); |
| 1513 | } |
| 1514 | |
| 1515 | #include <kern/zalloc.h> |
| 1516 | |
| 1517 | struct zone *uthread_zone = NULL; |
| 1518 | |
| 1519 | static lck_grp_t *rethrottle_lock_grp; |
| 1520 | static lck_attr_t *rethrottle_lock_attr; |
| 1521 | static lck_grp_attr_t *rethrottle_lock_grp_attr; |
| 1522 | |
| 1523 | static void |
| 1524 | uthread_zone_init(void) |
| 1525 | { |
| 1526 | assert(uthread_zone == NULL); |
| 1527 | |
| 1528 | rethrottle_lock_grp_attr = lck_grp_attr_alloc_init(); |
| 1529 | rethrottle_lock_grp = lck_grp_alloc_init("rethrottle" , rethrottle_lock_grp_attr); |
| 1530 | rethrottle_lock_attr = lck_attr_alloc_init(); |
| 1531 | |
| 1532 | uthread_zone = zinit(sizeof(struct uthread), |
| 1533 | thread_max * sizeof(struct uthread), |
| 1534 | THREAD_CHUNK * sizeof(struct uthread), |
| 1535 | "uthreads" ); |
| 1536 | } |
| 1537 | |
| 1538 | void * |
| 1539 | uthread_alloc(task_t task, thread_t thread, int noinherit) |
| 1540 | { |
| 1541 | proc_t p; |
| 1542 | uthread_t uth; |
| 1543 | uthread_t uth_parent; |
| 1544 | void *ut; |
| 1545 | |
| 1546 | if (uthread_zone == NULL) |
| 1547 | uthread_zone_init(); |
| 1548 | |
| 1549 | ut = (void *)zalloc(uthread_zone); |
| 1550 | bzero(ut, sizeof(struct uthread)); |
| 1551 | |
| 1552 | p = (proc_t) get_bsdtask_info(task); |
| 1553 | uth = (uthread_t)ut; |
| 1554 | uth->uu_thread = thread; |
| 1555 | |
| 1556 | lck_spin_init(&uth->uu_rethrottle_lock, rethrottle_lock_grp, |
| 1557 | rethrottle_lock_attr); |
| 1558 | |
| 1559 | /* |
| 1560 | * Thread inherits credential from the creating thread, if both |
| 1561 | * are in the same task. |
| 1562 | * |
| 1563 | * If the creating thread has no credential or is from another |
| 1564 | * task we can leave the new thread credential NULL. If it needs |
| 1565 | * one later, it will be lazily assigned from the task's process. |
| 1566 | */ |
| 1567 | uth_parent = (uthread_t)get_bsdthread_info(current_thread()); |
| 1568 | if ((noinherit == 0) && task == current_task() && |
| 1569 | uth_parent != NULL && |
| 1570 | IS_VALID_CRED(uth_parent->uu_ucred)) { |
| 1571 | /* |
| 1572 | * XXX The new thread is, in theory, being created in context |
| 1573 | * XXX of parent thread, so a direct reference to the parent |
| 1574 | * XXX is OK. |
| 1575 | */ |
| 1576 | kauth_cred_ref(uth_parent->uu_ucred); |
| 1577 | uth->uu_ucred = uth_parent->uu_ucred; |
| 1578 | /* the credential we just inherited is an assumed credential */ |
| 1579 | if (uth_parent->uu_flag & UT_SETUID) |
| 1580 | uth->uu_flag |= UT_SETUID; |
| 1581 | } else { |
| 1582 | /* sometimes workqueue threads are created out task context */ |
| 1583 | if ((task != kernel_task) && (p != PROC_NULL)) |
| 1584 | uth->uu_ucred = kauth_cred_proc_ref(p); |
| 1585 | else |
| 1586 | uth->uu_ucred = NOCRED; |
| 1587 | } |
| 1588 | |
| 1589 | |
| 1590 | if ((task != kernel_task) && p) { |
| 1591 | |
| 1592 | proc_lock(p); |
| 1593 | if (noinherit != 0) { |
| 1594 | /* workq threads will not inherit masks */ |
| 1595 | uth->uu_sigmask = ~workq_threadmask; |
| 1596 | } else if (uth_parent) { |
| 1597 | if (uth_parent->uu_flag & UT_SAS_OLDMASK) |
| 1598 | uth->uu_sigmask = uth_parent->uu_oldmask; |
| 1599 | else |
| 1600 | uth->uu_sigmask = uth_parent->uu_sigmask; |
| 1601 | } |
| 1602 | uth->uu_context.vc_thread = thread; |
| 1603 | /* |
| 1604 | * Do not add the uthread to proc uthlist for exec copy task, |
| 1605 | * since they do not hold a ref on proc. |
| 1606 | */ |
| 1607 | if (!task_is_exec_copy(task)) { |
| 1608 | TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list); |
| 1609 | } |
| 1610 | proc_unlock(p); |
| 1611 | |
| 1612 | #if CONFIG_DTRACE |
| 1613 | if (p->p_dtrace_ptss_pages != NULL && !task_is_exec_copy(task)) { |
| 1614 | uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p); |
| 1615 | } |
| 1616 | #endif |
| 1617 | } |
| 1618 | |
| 1619 | return (ut); |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * This routine frees the thread name field of the uthread_t structure. Split out of |
| 1624 | * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork. |
| 1625 | */ |
| 1626 | void |
| 1627 | uthread_cleanup_name(void *uthread) |
| 1628 | { |
| 1629 | uthread_t uth = (uthread_t)uthread; |
| 1630 | |
| 1631 | /* |
| 1632 | * <rdar://17834538> |
| 1633 | * Set pth_name to NULL before calling free(). |
| 1634 | * Previously there was a race condition in the |
| 1635 | * case this code was executing during a stackshot |
| 1636 | * where the stackshot could try and copy pth_name |
| 1637 | * after it had been freed and before if was marked |
| 1638 | * as null. |
| 1639 | */ |
| 1640 | if (uth->pth_name != NULL) { |
| 1641 | void *pth_name = uth->pth_name; |
| 1642 | uth->pth_name = NULL; |
| 1643 | kfree(pth_name, MAXTHREADNAMESIZE); |
| 1644 | } |
| 1645 | return; |
| 1646 | } |
| 1647 | |
| 1648 | /* |
| 1649 | * This routine frees all the BSD context in uthread except the credential. |
| 1650 | * It does not free the uthread structure as well |
| 1651 | */ |
| 1652 | void |
| 1653 | uthread_cleanup(task_t task, void *uthread, void * bsd_info) |
| 1654 | { |
| 1655 | struct _select *sel; |
| 1656 | uthread_t uth = (uthread_t)uthread; |
| 1657 | proc_t p = (proc_t)bsd_info; |
| 1658 | |
| 1659 | #if PROC_REF_DEBUG |
| 1660 | if (__improbable(uthread_get_proc_refcount(uthread) != 0)) { |
| 1661 | panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0" , uthread); |
| 1662 | } |
| 1663 | #endif |
| 1664 | |
| 1665 | if (uth->uu_lowpri_window || uth->uu_throttle_info) { |
| 1666 | /* |
| 1667 | * task is marked as a low priority I/O type |
| 1668 | * and we've somehow managed to not dismiss the throttle |
| 1669 | * through the normal exit paths back to user space... |
| 1670 | * no need to throttle this thread since its going away |
| 1671 | * but we do need to update our bookeeping w/r to throttled threads |
| 1672 | * |
| 1673 | * Calling this routine will clean up any throttle info reference |
| 1674 | * still inuse by the thread. |
| 1675 | */ |
| 1676 | throttle_lowpri_io(0); |
| 1677 | } |
| 1678 | /* |
| 1679 | * Per-thread audit state should never last beyond system |
| 1680 | * call return. Since we don't audit the thread creation/ |
| 1681 | * removal, the thread state pointer should never be |
| 1682 | * non-NULL when we get here. |
| 1683 | */ |
| 1684 | assert(uth->uu_ar == NULL); |
| 1685 | |
| 1686 | if (uth->uu_kqr_bound) { |
| 1687 | kqueue_threadreq_unbind(p, uth->uu_kqr_bound); |
| 1688 | } |
| 1689 | |
| 1690 | sel = &uth->uu_select; |
| 1691 | /* cleanup the select bit space */ |
| 1692 | if (sel->nbytes) { |
| 1693 | FREE(sel->ibits, M_TEMP); |
| 1694 | FREE(sel->obits, M_TEMP); |
| 1695 | sel->nbytes = 0; |
| 1696 | } |
| 1697 | |
| 1698 | if (uth->uu_cdir) { |
| 1699 | vnode_rele(uth->uu_cdir); |
| 1700 | uth->uu_cdir = NULLVP; |
| 1701 | } |
| 1702 | |
| 1703 | if (uth->uu_wqset) { |
| 1704 | if (waitq_set_is_valid(uth->uu_wqset)) |
| 1705 | waitq_set_deinit(uth->uu_wqset); |
| 1706 | FREE(uth->uu_wqset, M_SELECT); |
| 1707 | uth->uu_wqset = NULL; |
| 1708 | uth->uu_wqstate_sz = 0; |
| 1709 | } |
| 1710 | |
| 1711 | os_reason_free(uth->uu_exit_reason); |
| 1712 | |
| 1713 | if ((task != kernel_task) && p) { |
| 1714 | |
| 1715 | if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL)) { |
| 1716 | vfork_exit_internal(uth->uu_proc, 0, 1); |
| 1717 | } |
| 1718 | /* |
| 1719 | * Remove the thread from the process list and |
| 1720 | * transfer [appropriate] pending signals to the process. |
| 1721 | * Do not remove the uthread from proc uthlist for exec |
| 1722 | * copy task, since they does not have a ref on proc and |
| 1723 | * would not have been added to the list. |
| 1724 | */ |
| 1725 | if (get_bsdtask_info(task) == p && !task_is_exec_copy(task)) { |
| 1726 | proc_lock(p); |
| 1727 | |
| 1728 | TAILQ_REMOVE(&p->p_uthlist, uth, uu_list); |
| 1729 | p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask)); |
| 1730 | proc_unlock(p); |
| 1731 | } |
| 1732 | #if CONFIG_DTRACE |
| 1733 | struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch; |
| 1734 | uth->t_dtrace_scratch = NULL; |
| 1735 | if (tmpptr != NULL && !task_is_exec_copy(task)) { |
| 1736 | dtrace_ptss_release_entry(p, tmpptr); |
| 1737 | } |
| 1738 | #endif |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | /* This routine releases the credential stored in uthread */ |
| 1743 | void |
| 1744 | uthread_cred_free(void *uthread) |
| 1745 | { |
| 1746 | uthread_t uth = (uthread_t)uthread; |
| 1747 | |
| 1748 | /* and free the uthread itself */ |
| 1749 | if (IS_VALID_CRED(uth->uu_ucred)) { |
| 1750 | kauth_cred_t oldcred = uth->uu_ucred; |
| 1751 | uth->uu_ucred = NOCRED; |
| 1752 | kauth_cred_unref(&oldcred); |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | /* This routine frees the uthread structure held in thread structure */ |
| 1757 | void |
| 1758 | uthread_zone_free(void *uthread) |
| 1759 | { |
| 1760 | uthread_t uth = (uthread_t)uthread; |
| 1761 | |
| 1762 | if (uth->t_tombstone) { |
| 1763 | kfree(uth->t_tombstone, sizeof(struct doc_tombstone)); |
| 1764 | uth->t_tombstone = NULL; |
| 1765 | } |
| 1766 | |
| 1767 | lck_spin_destroy(&uth->uu_rethrottle_lock, rethrottle_lock_grp); |
| 1768 | |
| 1769 | uthread_cleanup_name(uthread); |
| 1770 | /* and free the uthread itself */ |
| 1771 | zfree(uthread_zone, uthread); |
| 1772 | } |
| 1773 | |