| 1 | /* |
| 2 | * Copyright (c) 2000-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | * |
| 28 | */ |
| 29 | /*- |
| 30 | * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * |
| 42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 52 | * SUCH DAMAGE. |
| 53 | */ |
| 54 | /* |
| 55 | * @(#)kern_event.c 1.0 (3/31/2000) |
| 56 | */ |
| 57 | #include <stdint.h> |
| 58 | #include <machine/atomic.h> |
| 59 | |
| 60 | #include <sys/param.h> |
| 61 | #include <sys/systm.h> |
| 62 | #include <sys/filedesc.h> |
| 63 | #include <sys/kernel.h> |
| 64 | #include <sys/proc_internal.h> |
| 65 | #include <sys/kauth.h> |
| 66 | #include <sys/malloc.h> |
| 67 | #include <sys/unistd.h> |
| 68 | #include <sys/file_internal.h> |
| 69 | #include <sys/fcntl.h> |
| 70 | #include <sys/select.h> |
| 71 | #include <sys/queue.h> |
| 72 | #include <sys/event.h> |
| 73 | #include <sys/eventvar.h> |
| 74 | #include <sys/protosw.h> |
| 75 | #include <sys/socket.h> |
| 76 | #include <sys/socketvar.h> |
| 77 | #include <sys/stat.h> |
| 78 | #include <sys/sysctl.h> |
| 79 | #include <sys/uio.h> |
| 80 | #include <sys/sysproto.h> |
| 81 | #include <sys/user.h> |
| 82 | #include <sys/vnode_internal.h> |
| 83 | #include <string.h> |
| 84 | #include <sys/proc_info.h> |
| 85 | #include <sys/codesign.h> |
| 86 | #include <sys/pthread_shims.h> |
| 87 | #include <sys/kdebug.h> |
| 88 | #include <sys/reason.h> |
| 89 | #include <os/reason_private.h> |
| 90 | #include <pexpert/pexpert.h> |
| 91 | |
| 92 | #include <kern/locks.h> |
| 93 | #include <kern/clock.h> |
| 94 | #include <kern/cpu_data.h> |
| 95 | #include <kern/policy_internal.h> |
| 96 | #include <kern/thread_call.h> |
| 97 | #include <kern/sched_prim.h> |
| 98 | #include <kern/waitq.h> |
| 99 | #include <kern/zalloc.h> |
| 100 | #include <kern/kalloc.h> |
| 101 | #include <kern/assert.h> |
| 102 | #include <kern/ast.h> |
| 103 | #include <kern/thread.h> |
| 104 | #include <kern/kcdata.h> |
| 105 | |
| 106 | #include <pthread/priority_private.h> |
| 107 | #include <pthread/workqueue_syscalls.h> |
| 108 | #include <pthread/workqueue_internal.h> |
| 109 | #include <libkern/libkern.h> |
| 110 | #include <libkern/OSAtomic.h> |
| 111 | |
| 112 | #include "net/net_str_id.h" |
| 113 | |
| 114 | #include <mach/task.h> |
| 115 | #include <libkern/section_keywords.h> |
| 116 | |
| 117 | #if CONFIG_MEMORYSTATUS |
| 118 | #include <sys/kern_memorystatus.h> |
| 119 | #endif |
| 120 | |
| 121 | extern thread_t port_name_to_thread(mach_port_name_t port_name); /* osfmk/kern/ipc_tt.h */ |
| 122 | extern mach_port_name_t ipc_entry_name_mask(mach_port_name_t name); /* osfmk/ipc/ipc_entry.h */ |
| 123 | |
| 124 | #define KEV_EVTID(code) BSDDBG_CODE(DBG_BSD_KEVENT, (code)) |
| 125 | |
| 126 | MALLOC_DEFINE(M_KQUEUE, "kqueue" , "memory for kqueue system" ); |
| 127 | |
| 128 | #define KQ_EVENT NO_EVENT64 |
| 129 | |
| 130 | static int kqueue_read(struct fileproc *fp, struct uio *uio, |
| 131 | int flags, vfs_context_t ctx); |
| 132 | static int kqueue_write(struct fileproc *fp, struct uio *uio, |
| 133 | int flags, vfs_context_t ctx); |
| 134 | static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data, |
| 135 | vfs_context_t ctx); |
| 136 | static int kqueue_select(struct fileproc *fp, int which, void *wq_link_id, |
| 137 | vfs_context_t ctx); |
| 138 | static int kqueue_close(struct fileglob *fg, vfs_context_t ctx); |
| 139 | static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, |
| 140 | struct kevent_internal_s *kev, vfs_context_t ctx); |
| 141 | static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx); |
| 142 | |
| 143 | static const struct fileops kqueueops = { |
| 144 | .fo_type = DTYPE_KQUEUE, |
| 145 | .fo_read = kqueue_read, |
| 146 | .fo_write = kqueue_write, |
| 147 | .fo_ioctl = kqueue_ioctl, |
| 148 | .fo_select = kqueue_select, |
| 149 | .fo_close = kqueue_close, |
| 150 | .fo_kqfilter = kqueue_kqfilter, |
| 151 | .fo_drain = kqueue_drain, |
| 152 | }; |
| 153 | |
| 154 | static void kevent_put_kq(struct proc *p, kqueue_id_t id, struct fileproc *fp, struct kqueue *kq); |
| 155 | static int kevent_internal(struct proc *p, |
| 156 | kqueue_id_t id, kqueue_id_t *id_out, |
| 157 | user_addr_t changelist, int nchanges, |
| 158 | user_addr_t eventlist, int nevents, |
| 159 | user_addr_t data_out, uint64_t data_available, |
| 160 | unsigned int flags, user_addr_t utimeout, |
| 161 | kqueue_continue_t continuation, |
| 162 | int32_t *retval); |
| 163 | static int kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp, |
| 164 | struct proc *p, unsigned int flags); |
| 165 | static int kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp, |
| 166 | struct proc *p, unsigned int flags); |
| 167 | char * kevent_description(struct kevent_internal_s *kevp, char *s, size_t n); |
| 168 | |
| 169 | static int kevent_register_wait_prepare(struct knote *kn, struct kevent_internal_s *kev); |
| 170 | static void kevent_register_wait_block(struct turnstile *ts, thread_t handoff_thread, |
| 171 | struct knote_lock_ctx *knlc, thread_continue_t cont, |
| 172 | struct _kevent_register *cont_args) __dead2; |
| 173 | static void kevent_register_wait_return(struct _kevent_register *cont_args) __dead2; |
| 174 | static void kevent_register_wait_cleanup(struct knote *kn); |
| 175 | static inline void kqueue_release_last(struct proc *p, kqueue_t kqu); |
| 176 | static void kqueue_interrupt(struct kqueue *kq); |
| 177 | static int kevent_callback(struct kqueue *kq, struct kevent_internal_s *kevp, |
| 178 | void *data); |
| 179 | static void kevent_continue(struct kqueue *kq, void *data, int error); |
| 180 | static void kqueue_scan_continue(void *contp, wait_result_t wait_result); |
| 181 | static int kqueue_process(struct kqueue *kq, kevent_callback_t callback, void *callback_data, |
| 182 | struct filt_process_s *process_data, int *countp); |
| 183 | static int kqueue_queue_empty(struct kqueue *kq, kq_index_t qos_index); |
| 184 | |
| 185 | static struct kqtailq *kqueue_get_suppressed_queue(kqueue_t kq, struct knote *kn); |
| 186 | static void kqueue_threadreq_initiate(struct kqueue *kq, struct kqrequest *kqr, kq_index_t qos, int flags); |
| 187 | |
| 188 | static void kqworkq_update_override(struct kqworkq *kqwq, struct knote *kn, kq_index_t qos); |
| 189 | static void kqworkq_unbind(proc_t p, struct kqrequest *kqr); |
| 190 | static thread_qos_t kqworkq_unbind_locked(struct kqworkq *kqwq, struct kqrequest *kqr, thread_t thread); |
| 191 | static struct kqrequest *kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index); |
| 192 | |
| 193 | static void kqworkloop_update_override(struct kqworkloop *kqwl, kq_index_t override_index); |
| 194 | static void kqworkloop_unbind(proc_t p, struct kqworkloop *kwql); |
| 195 | static thread_qos_t kqworkloop_unbind_locked(struct kqworkloop *kwql, thread_t thread); |
| 196 | static kq_index_t kqworkloop_owner_override(struct kqworkloop *kqwl); |
| 197 | enum { |
| 198 | KQWL_UTQ_NONE, |
| 199 | /* |
| 200 | * The wakeup qos is the qos of QUEUED knotes. |
| 201 | * |
| 202 | * This QoS is accounted for with the events override in the |
| 203 | * kqr_override_index field. It is raised each time a new knote is queued at |
| 204 | * a given QoS. The kqr_wakeup_indexes field is a superset of the non empty |
| 205 | * knote buckets and is recomputed after each event delivery. |
| 206 | */ |
| 207 | KQWL_UTQ_UPDATE_WAKEUP_QOS, |
| 208 | KQWL_UTQ_UPDATE_STAYACTIVE_QOS, |
| 209 | KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, |
| 210 | KQWL_UTQ_UNBINDING, /* attempt to rebind */ |
| 211 | KQWL_UTQ_PARKING, |
| 212 | /* |
| 213 | * The wakeup override is for suppressed knotes that have fired again at |
| 214 | * a higher QoS than the one for which they are suppressed already. |
| 215 | * This override is cleared when the knote suppressed list becomes empty. |
| 216 | */ |
| 217 | KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, |
| 218 | KQWL_UTQ_RESET_WAKEUP_OVERRIDE, |
| 219 | /* |
| 220 | * The QoS is the maximum QoS of an event enqueued on this workloop in |
| 221 | * userland. It is copied from the only EVFILT_WORKLOOP knote with |
| 222 | * a NOTE_WL_THREAD_REQUEST bit set allowed on this workloop. If there is no |
| 223 | * such knote, this QoS is 0. |
| 224 | */ |
| 225 | KQWL_UTQ_SET_QOS_INDEX, |
| 226 | KQWL_UTQ_REDRIVE_EVENTS, |
| 227 | }; |
| 228 | static void kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos); |
| 229 | static void kqworkloop_request_help(struct kqworkloop *kqwl, kq_index_t qos_index); |
| 230 | static int kqworkloop_end_processing(struct kqworkloop *kqwl, int flags, int kevent_flags); |
| 231 | |
| 232 | static int knote_process(struct knote *kn, kevent_callback_t callback, void *callback_data, |
| 233 | struct filt_process_s *process_data); |
| 234 | |
| 235 | static int kq_add_knote(struct kqueue *kq, struct knote *kn, |
| 236 | struct knote_lock_ctx *knlc, struct proc *p); |
| 237 | static struct knote *kq_find_knote_and_kq_lock(struct kqueue *kq, struct kevent_internal_s *kev, bool is_fd, struct proc *p); |
| 238 | |
| 239 | static void knote_drop(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc); |
| 240 | static struct knote *knote_alloc(void); |
| 241 | static void knote_free(struct knote *kn); |
| 242 | |
| 243 | static void knote_activate(struct knote *kn); |
| 244 | static void knote_deactivate(struct knote *kn); |
| 245 | |
| 246 | static void knote_enable(struct knote *kn); |
| 247 | static void knote_disable(struct knote *kn); |
| 248 | |
| 249 | static int knote_enqueue(struct knote *kn); |
| 250 | static void knote_dequeue(struct knote *kn); |
| 251 | |
| 252 | static void knote_suppress(struct knote *kn); |
| 253 | static void knote_unsuppress(struct knote *kn); |
| 254 | static void knote_wakeup(struct knote *kn); |
| 255 | |
| 256 | static bool knote_should_apply_qos_override(struct kqueue *kq, struct knote *kn, |
| 257 | int result, thread_qos_t *qos_out); |
| 258 | static void knote_apply_qos_override(struct knote *kn, kq_index_t qos_index); |
| 259 | static void knote_adjust_qos(struct kqueue *kq, struct knote *kn, int result); |
| 260 | static void knote_reset_priority(struct knote *kn, pthread_priority_t pp); |
| 261 | static kq_index_t knote_get_qos_override_index(struct knote *kn); |
| 262 | static void knote_set_qos_overcommit(struct knote *kn); |
| 263 | |
| 264 | static zone_t knote_zone; |
| 265 | static zone_t kqfile_zone; |
| 266 | static zone_t kqworkq_zone; |
| 267 | static zone_t kqworkloop_zone; |
| 268 | #if DEVELOPMENT || DEBUG |
| 269 | #define KEVENT_PANIC_ON_WORKLOOP_OWNERSHIP_LEAK (1U << 0) |
| 270 | #define KEVENT_PANIC_ON_NON_ENQUEUED_PROCESS (1U << 1) |
| 271 | #define KEVENT_PANIC_BOOT_ARG_INITIALIZED (1U << 31) |
| 272 | |
| 273 | #define KEVENT_PANIC_DEFAULT_VALUE (0) |
| 274 | static uint32_t |
| 275 | kevent_debug_flags(void) |
| 276 | { |
| 277 | static uint32_t flags = KEVENT_PANIC_DEFAULT_VALUE; |
| 278 | |
| 279 | if ((flags & KEVENT_PANIC_BOOT_ARG_INITIALIZED) == 0) { |
| 280 | uint32_t value = 0; |
| 281 | if (!PE_parse_boot_argn("kevent_debug" , &value, sizeof(value))) { |
| 282 | value = KEVENT_PANIC_DEFAULT_VALUE; |
| 283 | } |
| 284 | value |= KEVENT_PANIC_BOOT_ARG_INITIALIZED; |
| 285 | os_atomic_store(&flags, value, relaxed); |
| 286 | } |
| 287 | return flags; |
| 288 | } |
| 289 | #endif |
| 290 | |
| 291 | #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) |
| 292 | |
| 293 | /* placeholder for not-yet-implemented filters */ |
| 294 | static int filt_badattach(struct knote *kn, struct kevent_internal_s *kev); |
| 295 | static int filt_badevent(struct knote *kn, long hint); |
| 296 | SECURITY_READ_ONLY_EARLY(static struct filterops) bad_filtops = { |
| 297 | .f_attach = filt_badattach, |
| 298 | }; |
| 299 | |
| 300 | #if CONFIG_MEMORYSTATUS |
| 301 | extern const struct filterops memorystatus_filtops; |
| 302 | #endif /* CONFIG_MEMORYSTATUS */ |
| 303 | extern const struct filterops fs_filtops; |
| 304 | extern const struct filterops sig_filtops; |
| 305 | extern const struct filterops machport_filtops; |
| 306 | extern const struct filterops pipe_rfiltops; |
| 307 | extern const struct filterops pipe_wfiltops; |
| 308 | extern const struct filterops ptsd_kqops; |
| 309 | extern const struct filterops ptmx_kqops; |
| 310 | extern const struct filterops soread_filtops; |
| 311 | extern const struct filterops sowrite_filtops; |
| 312 | extern const struct filterops sock_filtops; |
| 313 | extern const struct filterops soexcept_filtops; |
| 314 | extern const struct filterops spec_filtops; |
| 315 | extern const struct filterops bpfread_filtops; |
| 316 | extern const struct filterops necp_fd_rfiltops; |
| 317 | extern const struct filterops fsevent_filtops; |
| 318 | extern const struct filterops vnode_filtops; |
| 319 | extern const struct filterops tty_filtops; |
| 320 | |
| 321 | const static struct filterops file_filtops; |
| 322 | const static struct filterops kqread_filtops; |
| 323 | const static struct filterops proc_filtops; |
| 324 | const static struct filterops timer_filtops; |
| 325 | const static struct filterops user_filtops; |
| 326 | const static struct filterops workloop_filtops; |
| 327 | |
| 328 | /* |
| 329 | * |
| 330 | * Rules for adding new filters to the system: |
| 331 | * Public filters: |
| 332 | * - Add a new "EVFILT_" option value to bsd/sys/event.h (typically a negative value) |
| 333 | * in the exported section of the header |
| 334 | * - Update the EVFILT_SYSCOUNT value to reflect the new addition |
| 335 | * - Add a filterops to the sysfilt_ops array. Public filters should be added at the end |
| 336 | * of the Public Filters section in the array. |
| 337 | * Private filters: |
| 338 | * - Add a new "EVFILT_" value to bsd/sys/event.h (typically a positive value) |
| 339 | * in the XNU_KERNEL_PRIVATE section of the header |
| 340 | * - Update the EVFILTID_MAX value to reflect the new addition |
| 341 | * - Add a filterops to the sysfilt_ops. Private filters should be added at the end of |
| 342 | * the Private filters section of the array. |
| 343 | */ |
| 344 | SECURITY_READ_ONLY_EARLY(static struct filterops *) sysfilt_ops[EVFILTID_MAX] = { |
| 345 | /* Public Filters */ |
| 346 | [~EVFILT_READ] = &file_filtops, |
| 347 | [~EVFILT_WRITE] = &file_filtops, |
| 348 | [~EVFILT_AIO] = &bad_filtops, |
| 349 | [~EVFILT_VNODE] = &file_filtops, |
| 350 | [~EVFILT_PROC] = &proc_filtops, |
| 351 | [~EVFILT_SIGNAL] = &sig_filtops, |
| 352 | [~EVFILT_TIMER] = &timer_filtops, |
| 353 | [~EVFILT_MACHPORT] = &machport_filtops, |
| 354 | [~EVFILT_FS] = &fs_filtops, |
| 355 | [~EVFILT_USER] = &user_filtops, |
| 356 | &bad_filtops, |
| 357 | [~EVFILT_VM] = &bad_filtops, |
| 358 | [~EVFILT_SOCK] = &file_filtops, |
| 359 | #if CONFIG_MEMORYSTATUS |
| 360 | [~EVFILT_MEMORYSTATUS] = &memorystatus_filtops, |
| 361 | #else |
| 362 | [~EVFILT_MEMORYSTATUS] = &bad_filtops, |
| 363 | #endif |
| 364 | [~EVFILT_EXCEPT] = &file_filtops, |
| 365 | [~EVFILT_WORKLOOP] = &workloop_filtops, |
| 366 | |
| 367 | /* Private filters */ |
| 368 | [EVFILTID_KQREAD] = &kqread_filtops, |
| 369 | [EVFILTID_PIPE_R] = &pipe_rfiltops, |
| 370 | [EVFILTID_PIPE_W] = &pipe_wfiltops, |
| 371 | [EVFILTID_PTSD] = &ptsd_kqops, |
| 372 | [EVFILTID_SOREAD] = &soread_filtops, |
| 373 | [EVFILTID_SOWRITE] = &sowrite_filtops, |
| 374 | [EVFILTID_SCK] = &sock_filtops, |
| 375 | [EVFILTID_SOEXCEPT] = &soexcept_filtops, |
| 376 | [EVFILTID_SPEC] = &spec_filtops, |
| 377 | [EVFILTID_BPFREAD] = &bpfread_filtops, |
| 378 | [EVFILTID_NECP_FD] = &necp_fd_rfiltops, |
| 379 | [EVFILTID_FSEVENT] = &fsevent_filtops, |
| 380 | [EVFILTID_VN] = &vnode_filtops, |
| 381 | [EVFILTID_TTY] = &tty_filtops, |
| 382 | [EVFILTID_PTMX] = &ptmx_kqops, |
| 383 | }; |
| 384 | |
| 385 | /* waitq prepost callback */ |
| 386 | void waitq_set__CALLING_PREPOST_HOOK__(void *kq_hook, void *knote_hook, int qos); |
| 387 | |
| 388 | static inline struct kqworkloop * |
| 389 | kqr_kqworkloop(struct kqrequest *kqr) |
| 390 | { |
| 391 | if (kqr->kqr_state & KQR_WORKLOOP) { |
| 392 | return __container_of(kqr, struct kqworkloop, kqwl_request); |
| 393 | } |
| 394 | return NULL; |
| 395 | } |
| 396 | |
| 397 | static inline kqueue_t |
| 398 | kqr_kqueue(proc_t p, struct kqrequest *kqr) |
| 399 | { |
| 400 | kqueue_t kqu; |
| 401 | if (kqr->kqr_state & KQR_WORKLOOP) { |
| 402 | kqu.kqwl = kqr_kqworkloop(kqr); |
| 403 | } else { |
| 404 | kqu.kqwq = (struct kqworkq *)p->p_fd->fd_wqkqueue; |
| 405 | assert(kqr >= kqu.kqwq->kqwq_request && |
| 406 | kqr < kqu.kqwq->kqwq_request + KQWQ_NBUCKETS); |
| 407 | } |
| 408 | return kqu; |
| 409 | } |
| 410 | |
| 411 | static inline boolean_t |
| 412 | is_workqueue_thread(thread_t thread) |
| 413 | { |
| 414 | return (thread_get_tag(thread) & THREAD_TAG_WORKQUEUE); |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * kqueue/note lock implementations |
| 419 | * |
| 420 | * The kqueue lock guards the kq state, the state of its queues, |
| 421 | * and the kqueue-aware status and locks of individual knotes. |
| 422 | * |
| 423 | * The kqueue workq lock is used to protect state guarding the |
| 424 | * interaction of the kqueue with the workq. This state cannot |
| 425 | * be guarded by the kq lock - as it needs to be taken when we |
| 426 | * already have the waitq set lock held (during the waitq hook |
| 427 | * callback). It might be better to use the waitq lock itself |
| 428 | * for this, but the IRQ requirements make that difficult). |
| 429 | * |
| 430 | * Knote flags, filter flags, and associated data are protected |
| 431 | * by the underlying object lock - and are only ever looked at |
| 432 | * by calling the filter to get a [consistent] snapshot of that |
| 433 | * data. |
| 434 | */ |
| 435 | static lck_grp_attr_t *kq_lck_grp_attr; |
| 436 | static lck_grp_t *kq_lck_grp; |
| 437 | static lck_attr_t *kq_lck_attr; |
| 438 | |
| 439 | static inline void |
| 440 | kqlock(kqueue_t kqu) |
| 441 | { |
| 442 | lck_spin_lock(&kqu.kq->kq_lock); |
| 443 | } |
| 444 | |
| 445 | static inline void |
| 446 | kqlock_held(__assert_only kqueue_t kqu) |
| 447 | { |
| 448 | LCK_SPIN_ASSERT(&kqu.kq->kq_lock, LCK_ASSERT_OWNED); |
| 449 | } |
| 450 | |
| 451 | static inline void |
| 452 | kqunlock(kqueue_t kqu) |
| 453 | { |
| 454 | lck_spin_unlock(&kqu.kq->kq_lock); |
| 455 | } |
| 456 | |
| 457 | static inline void |
| 458 | kq_req_lock(kqueue_t kqu) |
| 459 | { |
| 460 | assert(kqu.kq->kq_state & (KQ_WORKLOOP | KQ_WORKQ)); |
| 461 | lck_spin_lock(&kqu.kq->kq_reqlock); |
| 462 | } |
| 463 | |
| 464 | static inline void |
| 465 | kq_req_unlock(kqueue_t kqu) |
| 466 | { |
| 467 | assert(kqu.kq->kq_state & (KQ_WORKLOOP | KQ_WORKQ)); |
| 468 | lck_spin_unlock(&kqu.kq->kq_reqlock); |
| 469 | } |
| 470 | |
| 471 | static inline void |
| 472 | kq_req_held(__assert_only kqueue_t kqu) |
| 473 | { |
| 474 | assert(kqu.kq->kq_state & (KQ_WORKLOOP | KQ_WORKQ)); |
| 475 | LCK_SPIN_ASSERT(&kqu.kq->kq_reqlock, LCK_ASSERT_OWNED); |
| 476 | } |
| 477 | |
| 478 | static inline void |
| 479 | knhash_lock(proc_t p) |
| 480 | { |
| 481 | lck_mtx_lock(&p->p_fd->fd_knhashlock); |
| 482 | } |
| 483 | |
| 484 | static inline void |
| 485 | knhash_unlock(proc_t p) |
| 486 | { |
| 487 | lck_mtx_unlock(&p->p_fd->fd_knhashlock); |
| 488 | } |
| 489 | |
| 490 | #pragma mark knote locks |
| 491 | |
| 492 | /* |
| 493 | * Enum used by the knote_lock_* functions. |
| 494 | * |
| 495 | * KNOTE_KQ_LOCK_ALWAYS |
| 496 | * The function will always return with the kq lock held. |
| 497 | * |
| 498 | * KNOTE_KQ_UNLOCK_ON_SUCCESS |
| 499 | * The function will return with the kq lock held if it was successful |
| 500 | * (knote_lock() is the only function that can fail). |
| 501 | * |
| 502 | * KNOTE_KQ_UNLOCK_ON_FAILURE |
| 503 | * The function will return with the kq lock held if it was unsuccessful |
| 504 | * (knote_lock() is the only function that can fail). |
| 505 | * |
| 506 | * KNOTE_KQ_UNLOCK: |
| 507 | * The function returns with the kq unlocked. |
| 508 | */ |
| 509 | #define KNOTE_KQ_LOCK_ALWAYS 0x0 |
| 510 | #define KNOTE_KQ_LOCK_ON_SUCCESS 0x1 |
| 511 | #define KNOTE_KQ_LOCK_ON_FAILURE 0x2 |
| 512 | #define KNOTE_KQ_UNLOCK 0x3 |
| 513 | |
| 514 | #if DEBUG || DEVELOPMENT |
| 515 | __attribute__((noinline, not_tail_called, disable_tail_calls)) |
| 516 | void knote_lock_ctx_chk(struct knote_lock_ctx *knlc) |
| 517 | { |
| 518 | /* evil hackery to make sure no one forgets to unlock */ |
| 519 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_UNLOCKED); |
| 520 | } |
| 521 | #endif |
| 522 | |
| 523 | static struct knote_lock_ctx * |
| 524 | knote_lock_ctx_find(struct kqueue *kq, struct knote *kn) |
| 525 | { |
| 526 | struct knote_lock_ctx *ctx; |
| 527 | LIST_FOREACH(ctx, &kq->kq_knlocks, knlc_le) { |
| 528 | if (ctx->knlc_knote == kn) return ctx; |
| 529 | } |
| 530 | panic("knote lock context not found: %p" , kn); |
| 531 | __builtin_trap(); |
| 532 | } |
| 533 | |
| 534 | /* slowpath of knote_lock() */ |
| 535 | __attribute__((noinline)) |
| 536 | static bool __result_use_check |
| 537 | knote_lock_slow(struct kqueue *kq, struct knote *kn, |
| 538 | struct knote_lock_ctx *knlc, int kqlocking) |
| 539 | { |
| 540 | kqlock_held(kq); |
| 541 | |
| 542 | struct knote_lock_ctx *owner_lc = knote_lock_ctx_find(kq, kn); |
| 543 | thread_t owner_thread = owner_lc->knlc_thread; |
| 544 | |
| 545 | #if DEBUG || DEVELOPMENT |
| 546 | knlc->knlc_state = KNOTE_LOCK_CTX_WAITING; |
| 547 | #endif |
| 548 | |
| 549 | thread_reference(owner_thread); |
| 550 | TAILQ_INSERT_TAIL(&owner_lc->knlc_head, knlc, knlc_tqe); |
| 551 | assert_wait(&kn->kn_status, THREAD_UNINT | THREAD_WAIT_NOREPORT); |
| 552 | kqunlock(kq); |
| 553 | |
| 554 | if (thread_handoff_deallocate(owner_thread) == THREAD_RESTART) { |
| 555 | if (kqlocking == KNOTE_KQ_LOCK_ALWAYS || |
| 556 | kqlocking == KNOTE_KQ_LOCK_ON_FAILURE) { |
| 557 | kqlock(kq); |
| 558 | } |
| 559 | #if DEBUG || DEVELOPMENT |
| 560 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_WAITING); |
| 561 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; |
| 562 | #endif |
| 563 | return false; |
| 564 | } |
| 565 | #if DEBUG || DEVELOPMENT |
| 566 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_LOCKED); |
| 567 | #endif |
| 568 | if (kqlocking == KNOTE_KQ_LOCK_ALWAYS || |
| 569 | kqlocking == KNOTE_KQ_LOCK_ON_SUCCESS) { |
| 570 | kqlock(kq); |
| 571 | } |
| 572 | return true; |
| 573 | } |
| 574 | |
| 575 | /* |
| 576 | * Attempts to take the "knote" lock. |
| 577 | * |
| 578 | * Called with the kqueue lock held. |
| 579 | * |
| 580 | * Returns true if the knote lock is acquired, false if it has been dropped |
| 581 | */ |
| 582 | static bool __result_use_check |
| 583 | knote_lock(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc, |
| 584 | int kqlocking) |
| 585 | { |
| 586 | kqlock_held(kq); |
| 587 | |
| 588 | #if DEBUG || DEVELOPMENT |
| 589 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_UNLOCKED); |
| 590 | #endif |
| 591 | knlc->knlc_knote = kn; |
| 592 | knlc->knlc_thread = current_thread(); |
| 593 | TAILQ_INIT(&knlc->knlc_head); |
| 594 | |
| 595 | if (__improbable(kn->kn_status & KN_LOCKED)) { |
| 596 | return knote_lock_slow(kq, kn, knlc, kqlocking); |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * When the knote will be dropped, the knote lock is taken before |
| 601 | * KN_DROPPING is set, and then the knote will be removed from any |
| 602 | * hash table that references it before the lock is canceled. |
| 603 | */ |
| 604 | assert((kn->kn_status & KN_DROPPING) == 0); |
| 605 | LIST_INSERT_HEAD(&kq->kq_knlocks, knlc, knlc_le); |
| 606 | kn->kn_status |= KN_LOCKED; |
| 607 | #if DEBUG || DEVELOPMENT |
| 608 | knlc->knlc_state = KNOTE_LOCK_CTX_LOCKED; |
| 609 | #endif |
| 610 | |
| 611 | if (kqlocking == KNOTE_KQ_UNLOCK || |
| 612 | kqlocking == KNOTE_KQ_LOCK_ON_FAILURE) { |
| 613 | kqunlock(kq); |
| 614 | } |
| 615 | return true; |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | * Unlocks a knote successfully locked with knote_lock(). |
| 620 | * |
| 621 | * Called with the kqueue lock held. |
| 622 | * |
| 623 | * Returns with the kqueue lock held according to KNOTE_KQ_* flags |
| 624 | */ |
| 625 | static void |
| 626 | knote_unlock(struct kqueue *kq, struct knote *kn, |
| 627 | struct knote_lock_ctx *knlc, int flags) |
| 628 | { |
| 629 | kqlock_held(kq); |
| 630 | |
| 631 | assert(knlc->knlc_knote == kn); |
| 632 | assert(kn->kn_status & KN_LOCKED); |
| 633 | #if DEBUG || DEVELOPMENT |
| 634 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_LOCKED); |
| 635 | #endif |
| 636 | |
| 637 | struct knote_lock_ctx *next_owner_lc = TAILQ_FIRST(&knlc->knlc_head); |
| 638 | |
| 639 | LIST_REMOVE(knlc, knlc_le); |
| 640 | |
| 641 | if (next_owner_lc) { |
| 642 | assert(next_owner_lc->knlc_knote == kn); |
| 643 | TAILQ_REMOVE(&knlc->knlc_head, next_owner_lc, knlc_tqe); |
| 644 | |
| 645 | assert(TAILQ_EMPTY(&next_owner_lc->knlc_head)); |
| 646 | TAILQ_CONCAT(&next_owner_lc->knlc_head, &knlc->knlc_head, knlc_tqe); |
| 647 | LIST_INSERT_HEAD(&kq->kq_knlocks, next_owner_lc, knlc_le); |
| 648 | #if DEBUG || DEVELOPMENT |
| 649 | next_owner_lc->knlc_state = KNOTE_LOCK_CTX_LOCKED; |
| 650 | #endif |
| 651 | } else { |
| 652 | kn->kn_status &= ~KN_LOCKED; |
| 653 | } |
| 654 | if (kn->kn_inuse == 0) { |
| 655 | /* |
| 656 | * No f_event() in flight anymore, we can leave QoS "Merge" mode |
| 657 | * |
| 658 | * See knote_should_apply_qos_override() |
| 659 | */ |
| 660 | kn->kn_status &= ~KN_MERGE_QOS; |
| 661 | } |
| 662 | if (flags & KNOTE_KQ_UNLOCK) { |
| 663 | kqunlock(kq); |
| 664 | } |
| 665 | if (next_owner_lc) { |
| 666 | thread_wakeup_thread(&kn->kn_status, next_owner_lc->knlc_thread); |
| 667 | } |
| 668 | #if DEBUG || DEVELOPMENT |
| 669 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; |
| 670 | #endif |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * Aborts all waiters for a knote lock, and unlock the knote. |
| 675 | * |
| 676 | * Called with the kqueue lock held. |
| 677 | * |
| 678 | * Returns with the kqueue lock held according to KNOTE_KQ_* flags |
| 679 | */ |
| 680 | static void |
| 681 | knote_unlock_cancel(struct kqueue *kq, struct knote *kn, |
| 682 | struct knote_lock_ctx *knlc, int kqlocking) |
| 683 | { |
| 684 | kqlock_held(kq); |
| 685 | |
| 686 | assert(knlc->knlc_knote == kn); |
| 687 | assert(kn->kn_status & KN_LOCKED); |
| 688 | assert(kn->kn_status & KN_DROPPING); |
| 689 | |
| 690 | LIST_REMOVE(knlc, knlc_le); |
| 691 | kn->kn_status &= ~KN_LOCKED; |
| 692 | |
| 693 | if (kqlocking == KNOTE_KQ_UNLOCK || |
| 694 | kqlocking == KNOTE_KQ_LOCK_ON_FAILURE) { |
| 695 | kqunlock(kq); |
| 696 | } |
| 697 | if (!TAILQ_EMPTY(&knlc->knlc_head)) { |
| 698 | thread_wakeup_with_result(&kn->kn_status, THREAD_RESTART); |
| 699 | } |
| 700 | #if DEBUG || DEVELOPMENT |
| 701 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; |
| 702 | #endif |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * Call the f_event hook of a given filter. |
| 707 | * |
| 708 | * Takes a use count to protect against concurrent drops. |
| 709 | */ |
| 710 | static void |
| 711 | knote_call_filter_event(struct kqueue *kq, struct knote *kn, long hint) |
| 712 | { |
| 713 | int result, dropping = 0; |
| 714 | |
| 715 | kqlock_held(kq); |
| 716 | |
| 717 | if (kn->kn_status & (KN_DROPPING | KN_VANISHED)) |
| 718 | return; |
| 719 | |
| 720 | kn->kn_inuse++; |
| 721 | kqunlock(kq); |
| 722 | result = filter_call(knote_fops(kn), f_event(kn, hint)); |
| 723 | kqlock(kq); |
| 724 | |
| 725 | dropping = (kn->kn_status & KN_DROPPING); |
| 726 | |
| 727 | if (!dropping && (result & FILTER_ACTIVE)) { |
| 728 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) |
| 729 | knote_adjust_qos(kq, kn, result); |
| 730 | knote_activate(kn); |
| 731 | } |
| 732 | |
| 733 | if (--kn->kn_inuse == 0) { |
| 734 | if ((kn->kn_status & KN_LOCKED) == 0) { |
| 735 | /* |
| 736 | * We're the last f_event() call and there's no other f_* call in |
| 737 | * flight, we can leave QoS "Merge" mode. |
| 738 | * |
| 739 | * See knote_should_apply_qos_override() |
| 740 | */ |
| 741 | kn->kn_status &= ~KN_MERGE_QOS; |
| 742 | } |
| 743 | if (dropping) { |
| 744 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
| 745 | CAST_EVENT64_T(&kn->kn_inuse), |
| 746 | THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * Called by knote_drop() to wait for the last f_event() caller to be done. |
| 753 | * |
| 754 | * - kq locked at entry |
| 755 | * - kq unlocked at exit |
| 756 | */ |
| 757 | static void |
| 758 | knote_wait_for_filter_events(struct kqueue *kq, struct knote *kn) |
| 759 | { |
| 760 | wait_result_t wr = THREAD_NOT_WAITING; |
| 761 | |
| 762 | kqlock_held(kq); |
| 763 | |
| 764 | assert(kn->kn_status & KN_DROPPING); |
| 765 | |
| 766 | if (kn->kn_inuse) { |
| 767 | wr = waitq_assert_wait64((struct waitq *)&kq->kq_wqs, |
| 768 | CAST_EVENT64_T(&kn->kn_inuse), |
| 769 | THREAD_UNINT | THREAD_WAIT_NOREPORT, TIMEOUT_WAIT_FOREVER); |
| 770 | } |
| 771 | kqunlock(kq); |
| 772 | if (wr == THREAD_WAITING) { |
| 773 | thread_block(THREAD_CONTINUE_NULL); |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | #pragma mark file_filtops |
| 778 | |
| 779 | static int |
| 780 | filt_fileattach(struct knote *kn, struct kevent_internal_s *kev) |
| 781 | { |
| 782 | return fo_kqfilter(kn->kn_fp, kn, kev, vfs_context_current()); |
| 783 | } |
| 784 | |
| 785 | SECURITY_READ_ONLY_EARLY(static struct filterops) file_filtops = { |
| 786 | .f_isfd = 1, |
| 787 | .f_attach = filt_fileattach, |
| 788 | }; |
| 789 | |
| 790 | #pragma mark kqread_filtops |
| 791 | |
| 792 | #define f_flag f_fglob->fg_flag |
| 793 | #define f_ops f_fglob->fg_ops |
| 794 | #define f_data f_fglob->fg_data |
| 795 | |
| 796 | static void |
| 797 | filt_kqdetach(struct knote *kn) |
| 798 | { |
| 799 | struct kqfile *kqf = (struct kqfile *)kn->kn_fp->f_data; |
| 800 | struct kqueue *kq = &kqf->kqf_kqueue; |
| 801 | |
| 802 | kqlock(kq); |
| 803 | KNOTE_DETACH(&kqf->kqf_sel.si_note, kn); |
| 804 | kqunlock(kq); |
| 805 | } |
| 806 | |
| 807 | static int |
| 808 | filt_kqueue(struct knote *kn, __unused long hint) |
| 809 | { |
| 810 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; |
| 811 | |
| 812 | return (kq->kq_count > 0); |
| 813 | } |
| 814 | |
| 815 | static int |
| 816 | filt_kqtouch(struct knote *kn, struct kevent_internal_s *kev) |
| 817 | { |
| 818 | #pragma unused(kev) |
| 819 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; |
| 820 | int res; |
| 821 | |
| 822 | kqlock(kq); |
| 823 | kn->kn_data = kq->kq_count; |
| 824 | res = (kn->kn_data > 0); |
| 825 | |
| 826 | kqunlock(kq); |
| 827 | |
| 828 | return res; |
| 829 | } |
| 830 | |
| 831 | static int |
| 832 | filt_kqprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
| 833 | { |
| 834 | #pragma unused(data) |
| 835 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; |
| 836 | int res; |
| 837 | |
| 838 | kqlock(kq); |
| 839 | kn->kn_data = kq->kq_count; |
| 840 | res = (kn->kn_data > 0); |
| 841 | if (res) { |
| 842 | *kev = kn->kn_kevent; |
| 843 | if (kn->kn_flags & EV_CLEAR) |
| 844 | kn->kn_data = 0; |
| 845 | } |
| 846 | kqunlock(kq); |
| 847 | |
| 848 | return res; |
| 849 | } |
| 850 | |
| 851 | SECURITY_READ_ONLY_EARLY(static struct filterops) kqread_filtops = { |
| 852 | .f_isfd = 1, |
| 853 | .f_detach = filt_kqdetach, |
| 854 | .f_event = filt_kqueue, |
| 855 | .f_touch = filt_kqtouch, |
| 856 | .f_process = filt_kqprocess, |
| 857 | }; |
| 858 | |
| 859 | #pragma mark proc_filtops |
| 860 | |
| 861 | static int |
| 862 | filt_procattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
| 863 | { |
| 864 | struct proc *p; |
| 865 | |
| 866 | assert(PID_MAX < NOTE_PDATAMASK); |
| 867 | |
| 868 | if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) { |
| 869 | knote_set_error(kn, ENOTSUP); |
| 870 | return 0; |
| 871 | } |
| 872 | |
| 873 | p = proc_find(kn->kn_id); |
| 874 | if (p == NULL) { |
| 875 | knote_set_error(kn, ESRCH); |
| 876 | return 0; |
| 877 | } |
| 878 | |
| 879 | const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS; |
| 880 | |
| 881 | if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits) |
| 882 | do { |
| 883 | pid_t selfpid = proc_selfpid(); |
| 884 | |
| 885 | if (p->p_ppid == selfpid) |
| 886 | break; /* parent => ok */ |
| 887 | |
| 888 | if ((p->p_lflag & P_LTRACED) != 0 && |
| 889 | (p->p_oppid == selfpid)) |
| 890 | break; /* parent-in-waiting => ok */ |
| 891 | |
| 892 | proc_rele(p); |
| 893 | knote_set_error(kn, EACCES); |
| 894 | return 0; |
| 895 | } while (0); |
| 896 | |
| 897 | proc_klist_lock(); |
| 898 | |
| 899 | kn->kn_ptr.p_proc = p; /* store the proc handle */ |
| 900 | |
| 901 | KNOTE_ATTACH(&p->p_klist, kn); |
| 902 | |
| 903 | proc_klist_unlock(); |
| 904 | |
| 905 | proc_rele(p); |
| 906 | |
| 907 | /* |
| 908 | * only captures edge-triggered events after this point |
| 909 | * so it can't already be fired. |
| 910 | */ |
| 911 | return (0); |
| 912 | } |
| 913 | |
| 914 | |
| 915 | /* |
| 916 | * The knote may be attached to a different process, which may exit, |
| 917 | * leaving nothing for the knote to be attached to. In that case, |
| 918 | * the pointer to the process will have already been nulled out. |
| 919 | */ |
| 920 | static void |
| 921 | filt_procdetach(struct knote *kn) |
| 922 | { |
| 923 | struct proc *p; |
| 924 | |
| 925 | proc_klist_lock(); |
| 926 | |
| 927 | p = kn->kn_ptr.p_proc; |
| 928 | if (p != PROC_NULL) { |
| 929 | kn->kn_ptr.p_proc = PROC_NULL; |
| 930 | KNOTE_DETACH(&p->p_klist, kn); |
| 931 | } |
| 932 | |
| 933 | proc_klist_unlock(); |
| 934 | } |
| 935 | |
| 936 | static int |
| 937 | filt_proc(struct knote *kn, long hint) |
| 938 | { |
| 939 | u_int event; |
| 940 | |
| 941 | /* ALWAYS CALLED WITH proc_klist_lock */ |
| 942 | |
| 943 | /* |
| 944 | * Note: a lot of bits in hint may be obtained from the knote |
| 945 | * To free some of those bits, see <rdar://problem/12592988> Freeing up |
| 946 | * bits in hint for filt_proc |
| 947 | * |
| 948 | * mask off extra data |
| 949 | */ |
| 950 | event = (u_int)hint & NOTE_PCTRLMASK; |
| 951 | |
| 952 | /* |
| 953 | * termination lifecycle events can happen while a debugger |
| 954 | * has reparented a process, in which case notifications |
| 955 | * should be quashed except to the tracing parent. When |
| 956 | * the debugger reaps the child (either via wait4(2) or |
| 957 | * process exit), the child will be reparented to the original |
| 958 | * parent and these knotes re-fired. |
| 959 | */ |
| 960 | if (event & NOTE_EXIT) { |
| 961 | if ((kn->kn_ptr.p_proc->p_oppid != 0) |
| 962 | && (knote_get_kq(kn)->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) { |
| 963 | /* |
| 964 | * This knote is not for the current ptrace(2) parent, ignore. |
| 965 | */ |
| 966 | return 0; |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | /* |
| 971 | * if the user is interested in this event, record it. |
| 972 | */ |
| 973 | if (kn->kn_sfflags & event) |
| 974 | kn->kn_fflags |= event; |
| 975 | |
| 976 | #pragma clang diagnostic push |
| 977 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 978 | if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) { |
| 979 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); |
| 980 | } |
| 981 | #pragma clang diagnostic pop |
| 982 | |
| 983 | |
| 984 | /* |
| 985 | * The kernel has a wrapper in place that returns the same data |
| 986 | * as is collected here, in kn_data. Any changes to how |
| 987 | * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected |
| 988 | * should also be reflected in the proc_pidnoteexit() wrapper. |
| 989 | */ |
| 990 | if (event == NOTE_EXIT) { |
| 991 | kn->kn_data = 0; |
| 992 | if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) { |
| 993 | kn->kn_fflags |= NOTE_EXITSTATUS; |
| 994 | kn->kn_data |= (hint & NOTE_PDATAMASK); |
| 995 | } |
| 996 | if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) { |
| 997 | kn->kn_fflags |= NOTE_EXIT_DETAIL; |
| 998 | if ((kn->kn_ptr.p_proc->p_lflag & |
| 999 | P_LTERM_DECRYPTFAIL) != 0) { |
| 1000 | kn->kn_data |= NOTE_EXIT_DECRYPTFAIL; |
| 1001 | } |
| 1002 | if ((kn->kn_ptr.p_proc->p_lflag & |
| 1003 | P_LTERM_JETSAM) != 0) { |
| 1004 | kn->kn_data |= NOTE_EXIT_MEMORY; |
| 1005 | switch (kn->kn_ptr.p_proc->p_lflag & P_JETSAM_MASK) { |
| 1006 | case P_JETSAM_VMPAGESHORTAGE: |
| 1007 | kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE; |
| 1008 | break; |
| 1009 | case P_JETSAM_VMTHRASHING: |
| 1010 | kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING; |
| 1011 | break; |
| 1012 | case P_JETSAM_FCTHRASHING: |
| 1013 | kn->kn_data |= NOTE_EXIT_MEMORY_FCTHRASHING; |
| 1014 | break; |
| 1015 | case P_JETSAM_VNODE: |
| 1016 | kn->kn_data |= NOTE_EXIT_MEMORY_VNODE; |
| 1017 | break; |
| 1018 | case P_JETSAM_HIWAT: |
| 1019 | kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT; |
| 1020 | break; |
| 1021 | case P_JETSAM_PID: |
| 1022 | kn->kn_data |= NOTE_EXIT_MEMORY_PID; |
| 1023 | break; |
| 1024 | case P_JETSAM_IDLEEXIT: |
| 1025 | kn->kn_data |= NOTE_EXIT_MEMORY_IDLE; |
| 1026 | break; |
| 1027 | } |
| 1028 | } |
| 1029 | if ((kn->kn_ptr.p_proc->p_csflags & |
| 1030 | CS_KILLED) != 0) { |
| 1031 | kn->kn_data |= NOTE_EXIT_CSERROR; |
| 1032 | } |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | /* if we have any matching state, activate the knote */ |
| 1037 | return (kn->kn_fflags != 0); |
| 1038 | } |
| 1039 | |
| 1040 | static int |
| 1041 | filt_proctouch(struct knote *kn, struct kevent_internal_s *kev) |
| 1042 | { |
| 1043 | int res; |
| 1044 | |
| 1045 | proc_klist_lock(); |
| 1046 | |
| 1047 | /* accept new filter flags and mask off output events no long interesting */ |
| 1048 | kn->kn_sfflags = kev->fflags; |
| 1049 | |
| 1050 | /* restrict the current results to the (smaller?) set of new interest */ |
| 1051 | /* |
| 1052 | * For compatibility with previous implementations, we leave kn_fflags |
| 1053 | * as they were before. |
| 1054 | */ |
| 1055 | //kn->kn_fflags &= kn->kn_sfflags; |
| 1056 | |
| 1057 | res = (kn->kn_fflags != 0); |
| 1058 | |
| 1059 | proc_klist_unlock(); |
| 1060 | |
| 1061 | return res; |
| 1062 | } |
| 1063 | |
| 1064 | static int |
| 1065 | filt_procprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
| 1066 | { |
| 1067 | #pragma unused(data) |
| 1068 | int res; |
| 1069 | |
| 1070 | proc_klist_lock(); |
| 1071 | res = (kn->kn_fflags != 0); |
| 1072 | if (res) { |
| 1073 | *kev = kn->kn_kevent; |
| 1074 | kn->kn_flags |= EV_CLEAR; /* automatically set */ |
| 1075 | kn->kn_fflags = 0; |
| 1076 | kn->kn_data = 0; |
| 1077 | } |
| 1078 | proc_klist_unlock(); |
| 1079 | return res; |
| 1080 | } |
| 1081 | |
| 1082 | SECURITY_READ_ONLY_EARLY(static struct filterops) proc_filtops = { |
| 1083 | .f_attach = filt_procattach, |
| 1084 | .f_detach = filt_procdetach, |
| 1085 | .f_event = filt_proc, |
| 1086 | .f_touch = filt_proctouch, |
| 1087 | .f_process = filt_procprocess, |
| 1088 | }; |
| 1089 | |
| 1090 | #pragma mark timer_filtops |
| 1091 | |
| 1092 | struct filt_timer_params { |
| 1093 | uint64_t deadline; /* deadline in abs/cont time |
| 1094 | (or 0 if NOTE_ABSOLUTE and deadline is in past) */ |
| 1095 | uint64_t leeway; /* leeway in abstime, or 0 if none */ |
| 1096 | uint64_t interval; /* interval in abstime or 0 if non-repeating timer */ |
| 1097 | }; |
| 1098 | |
| 1099 | /* |
| 1100 | * Values stored in the knote at rest (using Mach absolute time units) |
| 1101 | * |
| 1102 | * kn->kn_hook where the thread_call object is stored |
| 1103 | * kn->kn_ext[0] next deadline or 0 if immediate expiration |
| 1104 | * kn->kn_ext[1] leeway value |
| 1105 | * kn->kn_sdata interval timer: the interval |
| 1106 | * absolute/deadline timer: 0 |
| 1107 | * kn->kn_hookid timer state |
| 1108 | * |
| 1109 | * TIMER_IDLE: |
| 1110 | * The timer has either never been scheduled or been cancelled. |
| 1111 | * It is safe to schedule a new one in this state. |
| 1112 | * |
| 1113 | * TIMER_ARMED: |
| 1114 | * The timer has been scheduled |
| 1115 | * |
| 1116 | * TIMER_FIRED |
| 1117 | * The timer has fired and an event needs to be delivered. |
| 1118 | * When in this state, the callout may still be running. |
| 1119 | * |
| 1120 | * TIMER_IMMEDIATE |
| 1121 | * The timer has fired at registration time, and the callout was never |
| 1122 | * dispatched. |
| 1123 | */ |
| 1124 | #define TIMER_IDLE 0x0 |
| 1125 | #define TIMER_ARMED 0x1 |
| 1126 | #define TIMER_FIRED 0x2 |
| 1127 | #define TIMER_IMMEDIATE 0x3 |
| 1128 | |
| 1129 | static void |
| 1130 | filt_timer_set_params(struct knote *kn, struct filt_timer_params *params) |
| 1131 | { |
| 1132 | kn->kn_ext[0] = params->deadline; |
| 1133 | kn->kn_ext[1] = params->leeway; |
| 1134 | kn->kn_sdata = params->interval; |
| 1135 | } |
| 1136 | |
| 1137 | /* |
| 1138 | * filt_timervalidate - process data from user |
| 1139 | * |
| 1140 | * Sets up the deadline, interval, and leeway from the provided user data |
| 1141 | * |
| 1142 | * Input: |
| 1143 | * kn_sdata timer deadline or interval time |
| 1144 | * kn_sfflags style of timer, unit of measurement |
| 1145 | * |
| 1146 | * Output: |
| 1147 | * struct filter_timer_params to apply to the filter with |
| 1148 | * filt_timer_set_params when changes are ready to be commited. |
| 1149 | * |
| 1150 | * Returns: |
| 1151 | * EINVAL Invalid user data parameters |
| 1152 | * ERANGE Various overflows with the parameters |
| 1153 | * |
| 1154 | * Called with timer filter lock held. |
| 1155 | */ |
| 1156 | static int |
| 1157 | filt_timervalidate(const struct kevent_internal_s *kev, |
| 1158 | struct filt_timer_params *params) |
| 1159 | { |
| 1160 | /* |
| 1161 | * There are 5 knobs that need to be chosen for a timer registration: |
| 1162 | * |
| 1163 | * A) Units of time (what is the time duration of the specified number) |
| 1164 | * Absolute and interval take: |
| 1165 | * NOTE_SECONDS, NOTE_USECONDS, NOTE_NSECONDS, NOTE_MACHTIME |
| 1166 | * Defaults to milliseconds if not specified |
| 1167 | * |
| 1168 | * B) Clock epoch (what is the zero point of the specified number) |
| 1169 | * For interval, there is none |
| 1170 | * For absolute, defaults to the gettimeofday/calendar epoch |
| 1171 | * With NOTE_MACHTIME, uses mach_absolute_time() |
| 1172 | * With NOTE_MACHTIME and NOTE_MACH_CONTINUOUS_TIME, uses mach_continuous_time() |
| 1173 | * |
| 1174 | * C) The knote's behavior on delivery |
| 1175 | * Interval timer causes the knote to arm for the next interval unless one-shot is set |
| 1176 | * Absolute is a forced one-shot timer which deletes on delivery |
| 1177 | * TODO: Add a way for absolute to be not forced one-shot |
| 1178 | * |
| 1179 | * D) Whether the time duration is relative to now or absolute |
| 1180 | * Interval fires at now + duration when it is set up |
| 1181 | * Absolute fires at now + difference between now walltime and passed in walltime |
| 1182 | * With NOTE_MACHTIME it fires at an absolute MAT or MCT. |
| 1183 | * |
| 1184 | * E) Whether the timer continues to tick across sleep |
| 1185 | * By default all three do not. |
| 1186 | * For interval and absolute, NOTE_MACH_CONTINUOUS_TIME causes them to tick across sleep |
| 1187 | * With NOTE_ABSOLUTE | NOTE_MACHTIME | NOTE_MACH_CONTINUOUS_TIME: |
| 1188 | * expires when mach_continuous_time() is > the passed in value. |
| 1189 | */ |
| 1190 | |
| 1191 | uint64_t multiplier; |
| 1192 | |
| 1193 | boolean_t use_abstime = FALSE; |
| 1194 | |
| 1195 | switch (kev->fflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS|NOTE_MACHTIME)) { |
| 1196 | case NOTE_SECONDS: |
| 1197 | multiplier = NSEC_PER_SEC; |
| 1198 | break; |
| 1199 | case NOTE_USECONDS: |
| 1200 | multiplier = NSEC_PER_USEC; |
| 1201 | break; |
| 1202 | case NOTE_NSECONDS: |
| 1203 | multiplier = 1; |
| 1204 | break; |
| 1205 | case NOTE_MACHTIME: |
| 1206 | multiplier = 0; |
| 1207 | use_abstime = TRUE; |
| 1208 | break; |
| 1209 | case 0: /* milliseconds (default) */ |
| 1210 | multiplier = NSEC_PER_SEC / 1000; |
| 1211 | break; |
| 1212 | default: |
| 1213 | return (EINVAL); |
| 1214 | } |
| 1215 | |
| 1216 | /* transform the leeway in kn_ext[1] to same time scale */ |
| 1217 | if (kev->fflags & NOTE_LEEWAY) { |
| 1218 | uint64_t leeway_abs; |
| 1219 | |
| 1220 | if (use_abstime) { |
| 1221 | leeway_abs = (uint64_t)kev->ext[1]; |
| 1222 | } else { |
| 1223 | uint64_t leeway_ns; |
| 1224 | if (os_mul_overflow((uint64_t)kev->ext[1], multiplier, &leeway_ns)) |
| 1225 | return (ERANGE); |
| 1226 | |
| 1227 | nanoseconds_to_absolutetime(leeway_ns, &leeway_abs); |
| 1228 | } |
| 1229 | |
| 1230 | params->leeway = leeway_abs; |
| 1231 | } else { |
| 1232 | params->leeway = 0; |
| 1233 | } |
| 1234 | |
| 1235 | if (kev->fflags & NOTE_ABSOLUTE) { |
| 1236 | uint64_t deadline_abs; |
| 1237 | |
| 1238 | if (use_abstime) { |
| 1239 | deadline_abs = (uint64_t)kev->data; |
| 1240 | } else { |
| 1241 | uint64_t calendar_deadline_ns; |
| 1242 | |
| 1243 | if (os_mul_overflow((uint64_t)kev->data, multiplier, &calendar_deadline_ns)) |
| 1244 | return (ERANGE); |
| 1245 | |
| 1246 | /* calendar_deadline_ns is in nanoseconds since the epoch */ |
| 1247 | |
| 1248 | clock_sec_t seconds; |
| 1249 | clock_nsec_t nanoseconds; |
| 1250 | |
| 1251 | /* |
| 1252 | * Note that the conversion through wall-time is only done once. |
| 1253 | * |
| 1254 | * If the relationship between MAT and gettimeofday changes, |
| 1255 | * the underlying timer does not update. |
| 1256 | * |
| 1257 | * TODO: build a wall-time denominated timer_call queue |
| 1258 | * and a flag to request DTRTing with wall-time timers |
| 1259 | */ |
| 1260 | clock_get_calendar_nanotime(&seconds, &nanoseconds); |
| 1261 | |
| 1262 | uint64_t calendar_now_ns = (uint64_t)seconds * NSEC_PER_SEC + nanoseconds; |
| 1263 | |
| 1264 | /* if deadline is in the future */ |
| 1265 | if (calendar_now_ns < calendar_deadline_ns) { |
| 1266 | uint64_t interval_ns = calendar_deadline_ns - calendar_now_ns; |
| 1267 | uint64_t interval_abs; |
| 1268 | |
| 1269 | nanoseconds_to_absolutetime(interval_ns, &interval_abs); |
| 1270 | |
| 1271 | /* |
| 1272 | * Note that the NOTE_MACH_CONTINUOUS_TIME flag here only |
| 1273 | * causes the timer to keep ticking across sleep, but |
| 1274 | * it does not change the calendar timebase. |
| 1275 | */ |
| 1276 | |
| 1277 | if (kev->fflags & NOTE_MACH_CONTINUOUS_TIME) |
| 1278 | clock_continuoustime_interval_to_deadline(interval_abs, |
| 1279 | &deadline_abs); |
| 1280 | else |
| 1281 | clock_absolutetime_interval_to_deadline(interval_abs, |
| 1282 | &deadline_abs); |
| 1283 | } else { |
| 1284 | deadline_abs = 0; /* cause immediate expiration */ |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | params->deadline = deadline_abs; |
| 1289 | params->interval = 0; /* NOTE_ABSOLUTE is non-repeating */ |
| 1290 | } else if (kev->data < 0) { |
| 1291 | /* |
| 1292 | * Negative interval timers fire immediately, once. |
| 1293 | * |
| 1294 | * Ideally a negative interval would be an error, but certain clients |
| 1295 | * pass negative values on accident, and expect an event back. |
| 1296 | * |
| 1297 | * In the old implementation the timer would repeat with no delay |
| 1298 | * N times until mach_absolute_time() + (N * interval) underflowed, |
| 1299 | * then it would wait ~forever by accidentally arming a timer for the far future. |
| 1300 | * |
| 1301 | * We now skip the power-wasting hot spin phase and go straight to the idle phase. |
| 1302 | */ |
| 1303 | |
| 1304 | params->deadline = 0; /* expire immediately */ |
| 1305 | params->interval = 0; /* non-repeating */ |
| 1306 | } else { |
| 1307 | uint64_t interval_abs = 0; |
| 1308 | |
| 1309 | if (use_abstime) { |
| 1310 | interval_abs = (uint64_t)kev->data; |
| 1311 | } else { |
| 1312 | uint64_t interval_ns; |
| 1313 | if (os_mul_overflow((uint64_t)kev->data, multiplier, &interval_ns)) |
| 1314 | return (ERANGE); |
| 1315 | |
| 1316 | nanoseconds_to_absolutetime(interval_ns, &interval_abs); |
| 1317 | } |
| 1318 | |
| 1319 | uint64_t deadline = 0; |
| 1320 | |
| 1321 | if (kev->fflags & NOTE_MACH_CONTINUOUS_TIME) |
| 1322 | clock_continuoustime_interval_to_deadline(interval_abs, &deadline); |
| 1323 | else |
| 1324 | clock_absolutetime_interval_to_deadline(interval_abs, &deadline); |
| 1325 | |
| 1326 | params->deadline = deadline; |
| 1327 | params->interval = interval_abs; |
| 1328 | } |
| 1329 | |
| 1330 | return (0); |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * filt_timerexpire - the timer callout routine |
| 1335 | */ |
| 1336 | static void |
| 1337 | filt_timerexpire(void *knx, __unused void *spare) |
| 1338 | { |
| 1339 | struct knote *kn = knx; |
| 1340 | int v; |
| 1341 | |
| 1342 | if (os_atomic_cmpxchgv(&kn->kn_hookid, TIMER_ARMED, TIMER_FIRED, |
| 1343 | &v, relaxed)) { |
| 1344 | // our f_event always would say FILTER_ACTIVE, |
| 1345 | // so be leaner and just do it. |
| 1346 | struct kqueue *kq = knote_get_kq(kn); |
| 1347 | kqlock(kq); |
| 1348 | knote_activate(kn); |
| 1349 | kqunlock(kq); |
| 1350 | } else { |
| 1351 | /* |
| 1352 | * From TIMER_ARMED, the only allowed transition are: |
| 1353 | * - to TIMER_FIRED through the timer callout just above |
| 1354 | * - to TIMER_IDLE due to filt_timercancel() which will wait for the |
| 1355 | * timer callout (and any possible invocation of filt_timerexpire) to |
| 1356 | * have finished before the state is changed again. |
| 1357 | */ |
| 1358 | assert(v == TIMER_IDLE); |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | static void |
| 1363 | filt_timercancel(struct knote *kn) |
| 1364 | { |
| 1365 | if (os_atomic_xchg(&kn->kn_hookid, TIMER_IDLE, relaxed) == TIMER_ARMED) { |
| 1366 | /* cancel the thread call and wait for any filt_timerexpire in flight */ |
| 1367 | thread_call_cancel_wait((thread_call_t)kn->kn_hook); |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | /* |
| 1372 | * Does this deadline needs a timer armed for it, or has it expired? |
| 1373 | */ |
| 1374 | static bool |
| 1375 | filt_timer_is_ready(struct knote *kn) |
| 1376 | { |
| 1377 | uint64_t now, deadline = kn->kn_ext[0]; |
| 1378 | |
| 1379 | if (deadline == 0) { |
| 1380 | return true; |
| 1381 | } |
| 1382 | |
| 1383 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) { |
| 1384 | now = mach_continuous_time(); |
| 1385 | } else { |
| 1386 | now = mach_absolute_time(); |
| 1387 | } |
| 1388 | return deadline <= now; |
| 1389 | } |
| 1390 | |
| 1391 | /* |
| 1392 | * Arm a timer |
| 1393 | * |
| 1394 | * It is the responsibility of the caller to make sure the timer call |
| 1395 | * has completed or been cancelled properly prior to arming it. |
| 1396 | */ |
| 1397 | static void |
| 1398 | filt_timerarm(struct knote *kn) |
| 1399 | { |
| 1400 | uint64_t deadline = kn->kn_ext[0]; |
| 1401 | uint64_t leeway = kn->kn_ext[1]; |
| 1402 | |
| 1403 | int filter_flags = kn->kn_sfflags; |
| 1404 | unsigned int timer_flags = 0; |
| 1405 | |
| 1406 | assert(os_atomic_load(&kn->kn_hookid, relaxed) == TIMER_IDLE); |
| 1407 | |
| 1408 | if (filter_flags & NOTE_CRITICAL) |
| 1409 | timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; |
| 1410 | else if (filter_flags & NOTE_BACKGROUND) |
| 1411 | timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; |
| 1412 | else |
| 1413 | timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; |
| 1414 | |
| 1415 | if (filter_flags & NOTE_LEEWAY) |
| 1416 | timer_flags |= THREAD_CALL_DELAY_LEEWAY; |
| 1417 | |
| 1418 | if (filter_flags & NOTE_MACH_CONTINUOUS_TIME) |
| 1419 | timer_flags |= THREAD_CALL_CONTINUOUS; |
| 1420 | |
| 1421 | os_atomic_store(&kn->kn_hookid, TIMER_ARMED, relaxed); |
| 1422 | thread_call_enter_delayed_with_leeway((thread_call_t)kn->kn_hook, NULL, |
| 1423 | deadline, leeway, timer_flags); |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * Allocate a thread call for the knote's lifetime, and kick off the timer. |
| 1428 | */ |
| 1429 | static int |
| 1430 | filt_timerattach(struct knote *kn, struct kevent_internal_s *kev) |
| 1431 | { |
| 1432 | thread_call_t callout; |
| 1433 | struct filt_timer_params params; |
| 1434 | int error; |
| 1435 | |
| 1436 | if ((error = filt_timervalidate(kev, ¶ms)) != 0) { |
| 1437 | knote_set_error(kn, error); |
| 1438 | return 0; |
| 1439 | } |
| 1440 | |
| 1441 | callout = thread_call_allocate_with_options(filt_timerexpire, |
| 1442 | (thread_call_param_t)kn, THREAD_CALL_PRIORITY_HIGH, |
| 1443 | THREAD_CALL_OPTIONS_ONCE); |
| 1444 | |
| 1445 | if (NULL == callout) { |
| 1446 | knote_set_error(kn, ENOMEM); |
| 1447 | return 0; |
| 1448 | } |
| 1449 | |
| 1450 | filt_timer_set_params(kn, ¶ms); |
| 1451 | kn->kn_hook = callout; |
| 1452 | kn->kn_flags |= EV_CLEAR; |
| 1453 | os_atomic_store(&kn->kn_hookid, TIMER_IDLE, relaxed); |
| 1454 | |
| 1455 | /* NOTE_ABSOLUTE implies EV_ONESHOT */ |
| 1456 | if (kn->kn_sfflags & NOTE_ABSOLUTE) |
| 1457 | kn->kn_flags |= EV_ONESHOT; |
| 1458 | |
| 1459 | if (filt_timer_is_ready(kn)) { |
| 1460 | os_atomic_store(&kn->kn_hookid, TIMER_IMMEDIATE, relaxed); |
| 1461 | return FILTER_ACTIVE; |
| 1462 | } else { |
| 1463 | filt_timerarm(kn); |
| 1464 | return 0; |
| 1465 | } |
| 1466 | } |
| 1467 | |
| 1468 | /* |
| 1469 | * Shut down the timer if it's running, and free the callout. |
| 1470 | */ |
| 1471 | static void |
| 1472 | filt_timerdetach(struct knote *kn) |
| 1473 | { |
| 1474 | __assert_only boolean_t freed; |
| 1475 | |
| 1476 | /* |
| 1477 | * Unconditionally cancel to make sure there can't be any filt_timerexpire() |
| 1478 | * running anymore. |
| 1479 | */ |
| 1480 | thread_call_cancel_wait((thread_call_t)kn->kn_hook); |
| 1481 | freed = thread_call_free((thread_call_t)kn->kn_hook); |
| 1482 | assert(freed); |
| 1483 | } |
| 1484 | |
| 1485 | /* |
| 1486 | * filt_timertouch - update timer knote with new user input |
| 1487 | * |
| 1488 | * Cancel and restart the timer based on new user data. When |
| 1489 | * the user picks up a knote, clear the count of how many timer |
| 1490 | * pops have gone off (in kn_data). |
| 1491 | */ |
| 1492 | static int |
| 1493 | filt_timertouch(struct knote *kn, struct kevent_internal_s *kev) |
| 1494 | { |
| 1495 | struct filt_timer_params params; |
| 1496 | uint32_t changed_flags = (kn->kn_sfflags ^ kev->fflags); |
| 1497 | int error; |
| 1498 | |
| 1499 | if (changed_flags & NOTE_ABSOLUTE) { |
| 1500 | kev->flags |= EV_ERROR; |
| 1501 | kev->data = EINVAL; |
| 1502 | return 0; |
| 1503 | } |
| 1504 | |
| 1505 | if ((error = filt_timervalidate(kev, ¶ms)) != 0) { |
| 1506 | kev->flags |= EV_ERROR; |
| 1507 | kev->data = error; |
| 1508 | return 0; |
| 1509 | } |
| 1510 | |
| 1511 | /* capture the new values used to compute deadline */ |
| 1512 | filt_timercancel(kn); |
| 1513 | filt_timer_set_params(kn, ¶ms); |
| 1514 | kn->kn_sfflags = kev->fflags; |
| 1515 | |
| 1516 | if (filt_timer_is_ready(kn)) { |
| 1517 | os_atomic_store(&kn->kn_hookid, TIMER_IMMEDIATE, relaxed); |
| 1518 | return FILTER_ACTIVE | FILTER_UPDATE_REQ_QOS; |
| 1519 | } else { |
| 1520 | filt_timerarm(kn); |
| 1521 | return FILTER_UPDATE_REQ_QOS; |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | /* |
| 1526 | * filt_timerprocess - query state of knote and snapshot event data |
| 1527 | * |
| 1528 | * Determine if the timer has fired in the past, snapshot the state |
| 1529 | * of the kevent for returning to user-space, and clear pending event |
| 1530 | * counters for the next time. |
| 1531 | */ |
| 1532 | static int |
| 1533 | filt_timerprocess( |
| 1534 | struct knote *kn, |
| 1535 | __unused struct filt_process_s *data, |
| 1536 | struct kevent_internal_s *kev) |
| 1537 | { |
| 1538 | /* |
| 1539 | * filt_timerprocess is serialized with any filter routine except for |
| 1540 | * filt_timerexpire which atomically does a TIMER_ARMED -> TIMER_FIRED |
| 1541 | * transition, and on success, activates the knote. |
| 1542 | * |
| 1543 | * Hence, we don't need atomic modifications of the state, only to peek at |
| 1544 | * whether we see any of the "FIRED" state, and if we do, it is safe to |
| 1545 | * do simple state machine transitions. |
| 1546 | */ |
| 1547 | switch (os_atomic_load(&kn->kn_hookid, relaxed)) { |
| 1548 | case TIMER_IDLE: |
| 1549 | case TIMER_ARMED: |
| 1550 | /* |
| 1551 | * This can happen if a touch resets a timer that had fired |
| 1552 | * without being processed |
| 1553 | */ |
| 1554 | return 0; |
| 1555 | } |
| 1556 | |
| 1557 | os_atomic_store(&kn->kn_hookid, TIMER_IDLE, relaxed); |
| 1558 | |
| 1559 | /* |
| 1560 | * Copy out the interesting kevent state, |
| 1561 | * but don't leak out the raw time calculations. |
| 1562 | * |
| 1563 | * TODO: potential enhancements - tell the user about: |
| 1564 | * - deadline to which this timer thought it was expiring |
| 1565 | * - return kn_sfflags in the fflags field so the client can know |
| 1566 | * under what flags the timer fired |
| 1567 | */ |
| 1568 | *kev = kn->kn_kevent; |
| 1569 | kev->ext[0] = 0; |
| 1570 | /* kev->ext[1] = 0; JMM - shouldn't we hide this too? */ |
| 1571 | |
| 1572 | if (kn->kn_sdata == 0) { |
| 1573 | kev->data = 1; |
| 1574 | } else { |
| 1575 | /* |
| 1576 | * This is a 'repeating' timer, so we have to emit |
| 1577 | * how many intervals expired between the arm |
| 1578 | * and the process. |
| 1579 | * |
| 1580 | * A very strange style of interface, because |
| 1581 | * this could easily be done in the client... |
| 1582 | */ |
| 1583 | |
| 1584 | uint64_t now; |
| 1585 | |
| 1586 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) |
| 1587 | now = mach_continuous_time(); |
| 1588 | else |
| 1589 | now = mach_absolute_time(); |
| 1590 | |
| 1591 | uint64_t first_deadline = kn->kn_ext[0]; |
| 1592 | uint64_t interval_abs = kn->kn_sdata; |
| 1593 | uint64_t orig_arm_time = first_deadline - interval_abs; |
| 1594 | |
| 1595 | assert(now > orig_arm_time); |
| 1596 | assert(now > first_deadline); |
| 1597 | |
| 1598 | uint64_t elapsed = now - orig_arm_time; |
| 1599 | |
| 1600 | uint64_t num_fired = elapsed / interval_abs; |
| 1601 | |
| 1602 | /* |
| 1603 | * To reach this code, we must have seen the timer pop |
| 1604 | * and be in repeating mode, so therefore it must have been |
| 1605 | * more than 'interval' time since the attach or last |
| 1606 | * successful touch. |
| 1607 | */ |
| 1608 | assert(num_fired > 0); |
| 1609 | |
| 1610 | /* report how many intervals have elapsed to the user */ |
| 1611 | kev->data = (int64_t)num_fired; |
| 1612 | |
| 1613 | /* We only need to re-arm the timer if it's not about to be destroyed */ |
| 1614 | if ((kn->kn_flags & EV_ONESHOT) == 0) { |
| 1615 | /* fire at the end of the next interval */ |
| 1616 | uint64_t new_deadline = first_deadline + num_fired * interval_abs; |
| 1617 | |
| 1618 | assert(new_deadline > now); |
| 1619 | |
| 1620 | kn->kn_ext[0] = new_deadline; |
| 1621 | |
| 1622 | /* |
| 1623 | * This can't shortcut setting up the thread call, because |
| 1624 | * knote_process deactivates EV_CLEAR knotes unconditionnally. |
| 1625 | */ |
| 1626 | filt_timerarm(kn); |
| 1627 | } |
| 1628 | } |
| 1629 | |
| 1630 | return FILTER_ACTIVE; |
| 1631 | } |
| 1632 | |
| 1633 | SECURITY_READ_ONLY_EARLY(static struct filterops) timer_filtops = { |
| 1634 | .f_extended_codes = true, |
| 1635 | .f_attach = filt_timerattach, |
| 1636 | .f_detach = filt_timerdetach, |
| 1637 | .f_event = filt_badevent, |
| 1638 | .f_touch = filt_timertouch, |
| 1639 | .f_process = filt_timerprocess, |
| 1640 | }; |
| 1641 | |
| 1642 | #pragma mark user_filtops |
| 1643 | |
| 1644 | static int |
| 1645 | filt_userattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
| 1646 | { |
| 1647 | if (kn->kn_sfflags & NOTE_TRIGGER) { |
| 1648 | kn->kn_hookid = FILTER_ACTIVE; |
| 1649 | } else { |
| 1650 | kn->kn_hookid = 0; |
| 1651 | } |
| 1652 | return (kn->kn_hookid); |
| 1653 | } |
| 1654 | |
| 1655 | static void |
| 1656 | filt_userdetach(__unused struct knote *kn) |
| 1657 | { |
| 1658 | /* EVFILT_USER knotes are not attached to anything in the kernel */ |
| 1659 | } |
| 1660 | |
| 1661 | static int |
| 1662 | filt_usertouch(struct knote *kn, struct kevent_internal_s *kev) |
| 1663 | { |
| 1664 | uint32_t ffctrl; |
| 1665 | int fflags; |
| 1666 | |
| 1667 | ffctrl = kev->fflags & NOTE_FFCTRLMASK; |
| 1668 | fflags = kev->fflags & NOTE_FFLAGSMASK; |
| 1669 | switch (ffctrl) { |
| 1670 | case NOTE_FFNOP: |
| 1671 | break; |
| 1672 | case NOTE_FFAND: |
| 1673 | kn->kn_sfflags &= fflags; |
| 1674 | break; |
| 1675 | case NOTE_FFOR: |
| 1676 | kn->kn_sfflags |= fflags; |
| 1677 | break; |
| 1678 | case NOTE_FFCOPY: |
| 1679 | kn->kn_sfflags = fflags; |
| 1680 | break; |
| 1681 | } |
| 1682 | kn->kn_sdata = kev->data; |
| 1683 | |
| 1684 | if (kev->fflags & NOTE_TRIGGER) { |
| 1685 | kn->kn_hookid = FILTER_ACTIVE; |
| 1686 | } |
| 1687 | return (int)kn->kn_hookid; |
| 1688 | } |
| 1689 | |
| 1690 | static int |
| 1691 | filt_userprocess( |
| 1692 | struct knote *kn, |
| 1693 | __unused struct filt_process_s *data, |
| 1694 | struct kevent_internal_s *kev) |
| 1695 | { |
| 1696 | int result = (int)kn->kn_hookid; |
| 1697 | |
| 1698 | if (result) { |
| 1699 | *kev = kn->kn_kevent; |
| 1700 | kev->fflags = kn->kn_sfflags; |
| 1701 | kev->data = kn->kn_sdata; |
| 1702 | if (kn->kn_flags & EV_CLEAR) { |
| 1703 | kn->kn_hookid = 0; |
| 1704 | kn->kn_data = 0; |
| 1705 | kn->kn_fflags = 0; |
| 1706 | } |
| 1707 | } |
| 1708 | |
| 1709 | return result; |
| 1710 | } |
| 1711 | |
| 1712 | SECURITY_READ_ONLY_EARLY(static struct filterops) user_filtops = { |
| 1713 | .f_extended_codes = true, |
| 1714 | .f_attach = filt_userattach, |
| 1715 | .f_detach = filt_userdetach, |
| 1716 | .f_event = filt_badevent, |
| 1717 | .f_touch = filt_usertouch, |
| 1718 | .f_process = filt_userprocess, |
| 1719 | }; |
| 1720 | |
| 1721 | #pragma mark workloop_filtops |
| 1722 | |
| 1723 | static inline void |
| 1724 | filt_wllock(struct kqworkloop *kqwl) |
| 1725 | { |
| 1726 | lck_mtx_lock(&kqwl->kqwl_statelock); |
| 1727 | } |
| 1728 | |
| 1729 | static inline void |
| 1730 | filt_wlunlock(struct kqworkloop *kqwl) |
| 1731 | { |
| 1732 | lck_mtx_unlock(&kqwl->kqwl_statelock); |
| 1733 | } |
| 1734 | |
| 1735 | /* |
| 1736 | * Returns true when the interlock for the turnstile is the workqueue lock |
| 1737 | * |
| 1738 | * When this is the case, all turnstiles operations are delegated |
| 1739 | * to the workqueue subsystem. |
| 1740 | * |
| 1741 | * This is required because kqueue_threadreq_bind_prepost only holds the |
| 1742 | * workqueue lock but needs to move the inheritor from the workloop turnstile |
| 1743 | * away from the creator thread, so that this now fulfilled request cannot be |
| 1744 | * picked anymore by other threads. |
| 1745 | */ |
| 1746 | static inline bool |
| 1747 | filt_wlturnstile_interlock_is_workq(struct kqworkloop *kqwl) |
| 1748 | { |
| 1749 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 1750 | return (kqr->kqr_state & KQR_THREQUESTED) && |
| 1751 | (kqr->kqr_thread == THREAD_NULL); |
| 1752 | } |
| 1753 | |
| 1754 | static void |
| 1755 | filt_wlupdate_inheritor(struct kqworkloop *kqwl, struct turnstile *ts, |
| 1756 | turnstile_update_flags_t flags) |
| 1757 | { |
| 1758 | turnstile_inheritor_t inheritor = TURNSTILE_INHERITOR_NULL; |
| 1759 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 1760 | |
| 1761 | /* |
| 1762 | * binding to the workq should always happen through |
| 1763 | * workq_kern_threadreq_update_inheritor() |
| 1764 | */ |
| 1765 | assert(!filt_wlturnstile_interlock_is_workq(kqwl)); |
| 1766 | |
| 1767 | if ((inheritor = kqwl->kqwl_owner)) { |
| 1768 | flags |= TURNSTILE_INHERITOR_THREAD; |
| 1769 | } else if ((inheritor = kqr->kqr_thread)) { |
| 1770 | flags |= TURNSTILE_INHERITOR_THREAD; |
| 1771 | } |
| 1772 | |
| 1773 | turnstile_update_inheritor(ts, inheritor, flags); |
| 1774 | } |
| 1775 | |
| 1776 | #define FILT_WLATTACH 0 |
| 1777 | #define FILT_WLTOUCH 1 |
| 1778 | #define FILT_WLDROP 2 |
| 1779 | |
| 1780 | __result_use_check |
| 1781 | static int |
| 1782 | filt_wlupdate(struct kqworkloop *kqwl, struct knote *kn, |
| 1783 | struct kevent_internal_s *kev, kq_index_t qos_index, int op) |
| 1784 | { |
| 1785 | user_addr_t uaddr = CAST_USER_ADDR_T(kev->ext[EV_EXTIDX_WL_ADDR]); |
| 1786 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 1787 | thread_t cur_owner, new_owner, = THREAD_NULL; |
| 1788 | kq_index_t cur_owner_override = THREAD_QOS_UNSPECIFIED; |
| 1789 | int action = KQWL_UTQ_NONE, error = 0; |
| 1790 | bool needs_wake = false, needs_wllock = false; |
| 1791 | uint64_t kdata = kev->ext[EV_EXTIDX_WL_VALUE]; |
| 1792 | uint64_t mask = kev->ext[EV_EXTIDX_WL_MASK]; |
| 1793 | uint64_t udata = 0; |
| 1794 | |
| 1795 | if (kev->fflags & (NOTE_WL_END_OWNERSHIP | NOTE_WL_DISCOVER_OWNER)) { |
| 1796 | /* |
| 1797 | * If we're maybe going to change the kqwl_owner, |
| 1798 | * then we need to hold the filt_wllock(). |
| 1799 | */ |
| 1800 | needs_wllock = true; |
| 1801 | } else if (kqr->kqr_thread == current_thread()) { |
| 1802 | /* |
| 1803 | * <rdar://problem/41531764> Servicer updates need to be serialized with |
| 1804 | * any ownership change too, as the kqr_thread value influences the |
| 1805 | * outcome of handling NOTE_WL_DISCOVER_OWNER. |
| 1806 | */ |
| 1807 | needs_wllock = true; |
| 1808 | } |
| 1809 | |
| 1810 | if (needs_wllock) { |
| 1811 | filt_wllock(kqwl); |
| 1812 | /* |
| 1813 | * The kqwl owner is set under both the req and filter lock, |
| 1814 | * meaning it's fine to look at it under any. |
| 1815 | */ |
| 1816 | new_owner = cur_owner = kqwl->kqwl_owner; |
| 1817 | } else { |
| 1818 | new_owner = cur_owner = THREAD_NULL; |
| 1819 | } |
| 1820 | |
| 1821 | /* |
| 1822 | * Phase 1: |
| 1823 | * |
| 1824 | * If asked, load the uint64 value at the user provided address and compare |
| 1825 | * it against the passed in mask and expected value. |
| 1826 | * |
| 1827 | * If NOTE_WL_DISCOVER_OWNER is specified, translate the loaded name as |
| 1828 | * a thread reference. |
| 1829 | * |
| 1830 | * If NOTE_WL_END_OWNERSHIP is specified and the currently known owner is |
| 1831 | * the current thread, then end ownership. |
| 1832 | * |
| 1833 | * Lastly decide whether we need to perform a QoS update. |
| 1834 | */ |
| 1835 | if (uaddr) { |
| 1836 | error = copyin_word(uaddr, &udata, sizeof(udata)); |
| 1837 | if (error) { |
| 1838 | goto out; |
| 1839 | } |
| 1840 | |
| 1841 | /* Update state as copied in. */ |
| 1842 | kev->ext[EV_EXTIDX_WL_VALUE] = udata; |
| 1843 | |
| 1844 | if ((udata & mask) != (kdata & mask)) { |
| 1845 | error = ESTALE; |
| 1846 | } else if (kev->fflags & NOTE_WL_DISCOVER_OWNER) { |
| 1847 | /* |
| 1848 | * Decipher the owner port name, and translate accordingly. |
| 1849 | * The low 2 bits were borrowed for other flags, so mask them off. |
| 1850 | * |
| 1851 | * Then attempt translation to a thread reference or fail. |
| 1852 | */ |
| 1853 | mach_port_name_t name = (mach_port_name_t)udata & ~0x3; |
| 1854 | if (name != MACH_PORT_NULL) { |
| 1855 | name = ipc_entry_name_mask(name); |
| 1856 | extra_thread_ref = port_name_to_thread(name); |
| 1857 | if (extra_thread_ref == THREAD_NULL) { |
| 1858 | error = EOWNERDEAD; |
| 1859 | goto out; |
| 1860 | } |
| 1861 | new_owner = extra_thread_ref; |
| 1862 | } |
| 1863 | } |
| 1864 | } |
| 1865 | |
| 1866 | if ((kev->fflags & NOTE_WL_END_OWNERSHIP) && new_owner == current_thread()) { |
| 1867 | new_owner = THREAD_NULL; |
| 1868 | } |
| 1869 | |
| 1870 | if (error == 0) { |
| 1871 | if ((kev->fflags & NOTE_WL_THREAD_REQUEST) && (kev->flags & EV_DELETE)) { |
| 1872 | action = KQWL_UTQ_SET_QOS_INDEX; |
| 1873 | } else if (qos_index && kqr->kqr_qos_index != qos_index) { |
| 1874 | action = KQWL_UTQ_SET_QOS_INDEX; |
| 1875 | } |
| 1876 | |
| 1877 | if (op == FILT_WLTOUCH) { |
| 1878 | /* |
| 1879 | * Save off any additional fflags/data we just accepted |
| 1880 | * But only keep the last round of "update" bits we acted on which helps |
| 1881 | * debugging a lot. |
| 1882 | */ |
| 1883 | kn->kn_sfflags &= ~NOTE_WL_UPDATES_MASK; |
| 1884 | kn->kn_sfflags |= kev->fflags; |
| 1885 | kn->kn_sdata = kev->data; |
| 1886 | if (kev->fflags & NOTE_WL_SYNC_WAKE) { |
| 1887 | needs_wake = (kn->kn_hook != THREAD_NULL); |
| 1888 | } |
| 1889 | } else if (op == FILT_WLDROP) { |
| 1890 | if ((kn->kn_sfflags & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE)) == |
| 1891 | NOTE_WL_SYNC_WAIT) { |
| 1892 | /* |
| 1893 | * When deleting a SYNC_WAIT knote that hasn't been woken up |
| 1894 | * explicitly, issue a wake up. |
| 1895 | */ |
| 1896 | kn->kn_sfflags |= NOTE_WL_SYNC_WAKE; |
| 1897 | needs_wake = (kn->kn_hook != THREAD_NULL); |
| 1898 | } |
| 1899 | } |
| 1900 | } |
| 1901 | |
| 1902 | /* |
| 1903 | * Phase 2: |
| 1904 | * |
| 1905 | * Commit ownership and QoS changes if any, possibly wake up waiters |
| 1906 | */ |
| 1907 | |
| 1908 | if (cur_owner == new_owner && action == KQWL_UTQ_NONE && !needs_wake) { |
| 1909 | goto out; |
| 1910 | } |
| 1911 | |
| 1912 | kq_req_lock(kqwl); |
| 1913 | |
| 1914 | /* If already tracked as servicer, don't track as owner */ |
| 1915 | if (new_owner == kqr->kqr_thread) { |
| 1916 | new_owner = THREAD_NULL; |
| 1917 | } |
| 1918 | |
| 1919 | if (cur_owner != new_owner) { |
| 1920 | kqwl->kqwl_owner = new_owner; |
| 1921 | if (new_owner == extra_thread_ref) { |
| 1922 | /* we just transfered this ref to kqwl_owner */ |
| 1923 | extra_thread_ref = THREAD_NULL; |
| 1924 | } |
| 1925 | cur_owner_override = kqworkloop_owner_override(kqwl); |
| 1926 | |
| 1927 | if (cur_owner) { |
| 1928 | thread_ends_owning_workloop(cur_owner); |
| 1929 | } |
| 1930 | |
| 1931 | if (new_owner) { |
| 1932 | /* override it before we drop the old */ |
| 1933 | if (cur_owner_override != THREAD_QOS_UNSPECIFIED) { |
| 1934 | thread_add_ipc_override(new_owner, cur_owner_override); |
| 1935 | } |
| 1936 | thread_starts_owning_workloop(new_owner); |
| 1937 | if ((kqr->kqr_state & KQR_THREQUESTED) && !kqr->kqr_thread) { |
| 1938 | if (action == KQWL_UTQ_NONE) { |
| 1939 | action = KQWL_UTQ_REDRIVE_EVENTS; |
| 1940 | } |
| 1941 | } |
| 1942 | } else { |
| 1943 | if ((kqr->kqr_state & (KQR_THREQUESTED | KQR_WAKEUP)) == KQR_WAKEUP) { |
| 1944 | if (action == KQWL_UTQ_NONE) { |
| 1945 | action = KQWL_UTQ_REDRIVE_EVENTS; |
| 1946 | } |
| 1947 | } |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | struct turnstile *ts = kqwl->kqwl_turnstile; |
| 1952 | bool wl_inheritor_updated = false; |
| 1953 | |
| 1954 | if (action != KQWL_UTQ_NONE) { |
| 1955 | kqworkloop_update_threads_qos(kqwl, action, qos_index); |
| 1956 | } |
| 1957 | |
| 1958 | if (cur_owner != new_owner && ts) { |
| 1959 | if (action == KQWL_UTQ_REDRIVE_EVENTS) { |
| 1960 | /* |
| 1961 | * Note that when action is KQWL_UTQ_REDRIVE_EVENTS, |
| 1962 | * the code went through workq_kern_threadreq_initiate() |
| 1963 | * and the workqueue has set the inheritor already |
| 1964 | */ |
| 1965 | assert(filt_wlturnstile_interlock_is_workq(kqwl)); |
| 1966 | } else if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 1967 | workq_kern_threadreq_lock(kqwl->kqwl_p); |
| 1968 | workq_kern_threadreq_update_inheritor(kqwl->kqwl_p, kqr, new_owner, |
| 1969 | ts, TURNSTILE_IMMEDIATE_UPDATE); |
| 1970 | workq_kern_threadreq_unlock(kqwl->kqwl_p); |
| 1971 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 1972 | /* |
| 1973 | * If the workq is no longer the interlock, then |
| 1974 | * workq_kern_threadreq_update_inheritor() has finished a bind |
| 1975 | * and we need to fallback to the regular path. |
| 1976 | */ |
| 1977 | filt_wlupdate_inheritor(kqwl, ts, TURNSTILE_IMMEDIATE_UPDATE); |
| 1978 | } |
| 1979 | wl_inheritor_updated = true; |
| 1980 | } else { |
| 1981 | filt_wlupdate_inheritor(kqwl, ts, TURNSTILE_IMMEDIATE_UPDATE); |
| 1982 | wl_inheritor_updated = true; |
| 1983 | } |
| 1984 | |
| 1985 | /* |
| 1986 | * We need a turnstile reference because we are dropping the interlock |
| 1987 | * and the caller has not called turnstile_prepare. |
| 1988 | */ |
| 1989 | if (wl_inheritor_updated) { |
| 1990 | turnstile_reference(ts); |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | if (needs_wake && ts) { |
| 1995 | waitq_wakeup64_thread(&ts->ts_waitq, CAST_EVENT64_T((event_t)kn), |
| 1996 | (thread_t)kn->kn_hook, THREAD_AWAKENED); |
| 1997 | } |
| 1998 | |
| 1999 | kq_req_unlock(kqwl); |
| 2000 | |
| 2001 | if (wl_inheritor_updated) { |
| 2002 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_NOT_HELD); |
| 2003 | turnstile_deallocate(ts); |
| 2004 | } |
| 2005 | |
| 2006 | out: |
| 2007 | /* |
| 2008 | * Phase 3: |
| 2009 | * |
| 2010 | * Unlock and cleanup various lingering references and things. |
| 2011 | */ |
| 2012 | if (needs_wllock) { |
| 2013 | filt_wlunlock(kqwl); |
| 2014 | } |
| 2015 | |
| 2016 | #if CONFIG_WORKLOOP_DEBUG |
| 2017 | KQWL_HISTORY_WRITE_ENTRY(kqwl, { |
| 2018 | .updater = current_thread(), |
| 2019 | .servicer = kqr->kqr_thread, /* Note: racy */ |
| 2020 | .old_owner = cur_owner, |
| 2021 | .new_owner = new_owner, |
| 2022 | |
| 2023 | .kev_ident = kev->ident, |
| 2024 | .error = (int16_t)error, |
| 2025 | .kev_flags = kev->flags, |
| 2026 | .kev_fflags = kev->fflags, |
| 2027 | |
| 2028 | .kev_mask = mask, |
| 2029 | .kev_value = kdata, |
| 2030 | .in_value = udata, |
| 2031 | }); |
| 2032 | #endif // CONFIG_WORKLOOP_DEBUG |
| 2033 | |
| 2034 | if (cur_owner && new_owner != cur_owner) { |
| 2035 | if (cur_owner_override != THREAD_QOS_UNSPECIFIED) { |
| 2036 | thread_drop_ipc_override(cur_owner); |
| 2037 | } |
| 2038 | thread_deallocate(cur_owner); |
| 2039 | } |
| 2040 | |
| 2041 | if (extra_thread_ref) { |
| 2042 | thread_deallocate(extra_thread_ref); |
| 2043 | } |
| 2044 | return error; |
| 2045 | } |
| 2046 | |
| 2047 | /* |
| 2048 | * Remembers the last updated that came in from userspace for debugging reasons. |
| 2049 | * - fflags is mirrored from the userspace kevent |
| 2050 | * - ext[i, i != VALUE] is mirrored from the userspace kevent |
| 2051 | * - ext[VALUE] is set to what the kernel loaded atomically |
| 2052 | * - data is set to the error if any |
| 2053 | */ |
| 2054 | static inline void |
| 2055 | filt_wlremember_last_update(struct knote *kn, struct kevent_internal_s *kev, |
| 2056 | int error) |
| 2057 | { |
| 2058 | kn->kn_fflags = kev->fflags; |
| 2059 | kn->kn_data = error; |
| 2060 | memcpy(kn->kn_ext, kev->ext, sizeof(kev->ext)); |
| 2061 | } |
| 2062 | |
| 2063 | static int |
| 2064 | filt_wlattach(struct knote *kn, struct kevent_internal_s *kev) |
| 2065 | { |
| 2066 | struct kqueue *kq = knote_get_kq(kn); |
| 2067 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 2068 | int error = 0; |
| 2069 | kq_index_t qos_index = 0; |
| 2070 | |
| 2071 | if ((kq->kq_state & KQ_WORKLOOP) == 0) { |
| 2072 | error = ENOTSUP; |
| 2073 | goto out; |
| 2074 | } |
| 2075 | |
| 2076 | #if DEVELOPMENT || DEBUG |
| 2077 | if (kev->ident == 0 && kev->udata == 0 && kev->fflags == 0) { |
| 2078 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 2079 | |
| 2080 | kq_req_lock(kqwl); |
| 2081 | kev->fflags = 0; |
| 2082 | if (kqr->kqr_dsync_waiters) { |
| 2083 | kev->fflags |= NOTE_WL_SYNC_WAIT; |
| 2084 | } |
| 2085 | if (kqr->kqr_qos_index) { |
| 2086 | kev->fflags |= NOTE_WL_THREAD_REQUEST; |
| 2087 | } |
| 2088 | kev->ext[0] = thread_tid(kqwl->kqwl_owner); |
| 2089 | kev->ext[1] = thread_tid(kqwl->kqwl_request.kqr_thread); |
| 2090 | kev->ext[2] = thread_owned_workloops_count(current_thread()); |
| 2091 | kev->ext[3] = kn->kn_kevent.ext[3]; |
| 2092 | kq_req_unlock(kqwl); |
| 2093 | error = EBUSY; |
| 2094 | goto out; |
| 2095 | } |
| 2096 | #endif |
| 2097 | |
| 2098 | int command = (kn->kn_sfflags & NOTE_WL_COMMANDS_MASK); |
| 2099 | switch (command) { |
| 2100 | case NOTE_WL_THREAD_REQUEST: |
| 2101 | if (kn->kn_id != kqwl->kqwl_dynamicid) { |
| 2102 | error = EINVAL; |
| 2103 | goto out; |
| 2104 | } |
| 2105 | qos_index = _pthread_priority_thread_qos(kn->kn_qos); |
| 2106 | if (qos_index == THREAD_QOS_UNSPECIFIED) { |
| 2107 | error = ERANGE; |
| 2108 | goto out; |
| 2109 | } |
| 2110 | if (kqwl->kqwl_request.kqr_qos_index) { |
| 2111 | /* |
| 2112 | * There already is a thread request, and well, you're only allowed |
| 2113 | * one per workloop, so fail the attach. |
| 2114 | */ |
| 2115 | error = EALREADY; |
| 2116 | goto out; |
| 2117 | } |
| 2118 | break; |
| 2119 | case NOTE_WL_SYNC_WAIT: |
| 2120 | case NOTE_WL_SYNC_WAKE: |
| 2121 | if (kn->kn_id == kqwl->kqwl_dynamicid) { |
| 2122 | error = EINVAL; |
| 2123 | goto out; |
| 2124 | } |
| 2125 | if ((kn->kn_flags & EV_DISABLE) == 0) { |
| 2126 | error = EINVAL; |
| 2127 | goto out; |
| 2128 | } |
| 2129 | if (kn->kn_sfflags & NOTE_WL_END_OWNERSHIP) { |
| 2130 | error = EINVAL; |
| 2131 | goto out; |
| 2132 | } |
| 2133 | break; |
| 2134 | default: |
| 2135 | error = EINVAL; |
| 2136 | goto out; |
| 2137 | } |
| 2138 | |
| 2139 | error = filt_wlupdate(kqwl, kn, kev, qos_index, FILT_WLATTACH); |
| 2140 | |
| 2141 | out: |
| 2142 | if (error) { |
| 2143 | /* If userland wants ESTALE to be hidden, fail the attach anyway */ |
| 2144 | if (error == ESTALE && (kn->kn_sfflags & NOTE_WL_IGNORE_ESTALE)) { |
| 2145 | error = 0; |
| 2146 | } |
| 2147 | knote_set_error(kn, error); |
| 2148 | return 0; |
| 2149 | } |
| 2150 | if (command == NOTE_WL_SYNC_WAIT) { |
| 2151 | return kevent_register_wait_prepare(kn, kev); |
| 2152 | } |
| 2153 | /* Just attaching the thread request successfully will fire it */ |
| 2154 | if (command == NOTE_WL_THREAD_REQUEST) { |
| 2155 | /* |
| 2156 | * Thread Request knotes need an explicit touch to be active again, |
| 2157 | * so delivering an event needs to also consume it. |
| 2158 | */ |
| 2159 | kn->kn_flags |= EV_CLEAR; |
| 2160 | return FILTER_ACTIVE; |
| 2161 | } |
| 2162 | return 0; |
| 2163 | } |
| 2164 | |
| 2165 | static void __dead2 |
| 2166 | filt_wlwait_continue(void *parameter, wait_result_t wr) |
| 2167 | { |
| 2168 | struct _kevent_register *cont_args = parameter; |
| 2169 | struct kqworkloop *kqwl = (struct kqworkloop *)cont_args->kq; |
| 2170 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 2171 | |
| 2172 | kq_req_lock(kqwl); |
| 2173 | kqr->kqr_dsync_waiters--; |
| 2174 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2175 | workq_kern_threadreq_lock(kqwl->kqwl_p); |
| 2176 | turnstile_complete((uintptr_t)kqwl, &kqwl->kqwl_turnstile, NULL); |
| 2177 | workq_kern_threadreq_unlock(kqwl->kqwl_p); |
| 2178 | } else { |
| 2179 | turnstile_complete((uintptr_t)kqwl, &kqwl->kqwl_turnstile, NULL); |
| 2180 | } |
| 2181 | kq_req_unlock(kqwl); |
| 2182 | |
| 2183 | turnstile_cleanup(); |
| 2184 | |
| 2185 | if (wr == THREAD_INTERRUPTED) { |
| 2186 | cont_args->kev.flags |= EV_ERROR; |
| 2187 | cont_args->kev.data = EINTR; |
| 2188 | } else if (wr != THREAD_AWAKENED) { |
| 2189 | panic("Unexpected wait result: %d" , wr); |
| 2190 | } |
| 2191 | |
| 2192 | kevent_register_wait_return(cont_args); |
| 2193 | } |
| 2194 | |
| 2195 | /* |
| 2196 | * Called with the workloop mutex held, most of the time never returns as it |
| 2197 | * calls filt_wlwait_continue through a continuation. |
| 2198 | */ |
| 2199 | static void __dead2 |
| 2200 | filt_wlpost_register_wait(struct uthread *uth, struct knote_lock_ctx *knlc, |
| 2201 | struct _kevent_register *cont_args) |
| 2202 | { |
| 2203 | struct kqworkloop *kqwl = (struct kqworkloop *)cont_args->kq; |
| 2204 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 2205 | struct turnstile *ts; |
| 2206 | bool workq_locked = false; |
| 2207 | |
| 2208 | kq_req_lock(kqwl); |
| 2209 | |
| 2210 | kqr->kqr_dsync_waiters++; |
| 2211 | |
| 2212 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2213 | workq_kern_threadreq_lock(kqwl->kqwl_p); |
| 2214 | workq_locked = true; |
| 2215 | } |
| 2216 | |
| 2217 | ts = turnstile_prepare((uintptr_t)kqwl, &kqwl->kqwl_turnstile, |
| 2218 | TURNSTILE_NULL, TURNSTILE_WORKLOOPS); |
| 2219 | |
| 2220 | if (workq_locked) { |
| 2221 | workq_kern_threadreq_update_inheritor(kqwl->kqwl_p, |
| 2222 | &kqwl->kqwl_request, kqwl->kqwl_owner, ts, |
| 2223 | TURNSTILE_DELAYED_UPDATE); |
| 2224 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2225 | /* |
| 2226 | * if the interlock is no longer the workqueue lock, |
| 2227 | * then we don't need to hold it anymore. |
| 2228 | */ |
| 2229 | workq_kern_threadreq_unlock(kqwl->kqwl_p); |
| 2230 | workq_locked = false; |
| 2231 | } |
| 2232 | } |
| 2233 | if (!workq_locked) { |
| 2234 | /* |
| 2235 | * If the interlock is the workloop's, then it's our responsibility to |
| 2236 | * call update_inheritor, so just do it. |
| 2237 | */ |
| 2238 | filt_wlupdate_inheritor(kqwl, ts, TURNSTILE_DELAYED_UPDATE); |
| 2239 | } |
| 2240 | |
| 2241 | thread_set_pending_block_hint(uth->uu_thread, kThreadWaitWorkloopSyncWait); |
| 2242 | waitq_assert_wait64(&ts->ts_waitq, CAST_EVENT64_T(cont_args->knote), |
| 2243 | THREAD_ABORTSAFE, TIMEOUT_WAIT_FOREVER); |
| 2244 | |
| 2245 | if (workq_locked) { |
| 2246 | workq_kern_threadreq_unlock(kqwl->kqwl_p); |
| 2247 | } |
| 2248 | |
| 2249 | thread_t thread = kqwl->kqwl_owner ?: kqr->kqr_thread; |
| 2250 | if (thread) { |
| 2251 | thread_reference(thread); |
| 2252 | } |
| 2253 | kq_req_unlock(kqwl); |
| 2254 | |
| 2255 | kevent_register_wait_block(ts, thread, knlc, filt_wlwait_continue, cont_args); |
| 2256 | } |
| 2257 | |
| 2258 | /* called in stackshot context to report the thread responsible for blocking this thread */ |
| 2259 | void |
| 2260 | kdp_workloop_sync_wait_find_owner(__assert_only thread_t thread, |
| 2261 | event64_t event, thread_waitinfo_t *waitinfo) |
| 2262 | { |
| 2263 | struct knote *kn = (struct knote *)event; |
| 2264 | assert(kdp_is_in_zone(kn, "knote zone" )); |
| 2265 | |
| 2266 | assert(kn->kn_hook == thread); |
| 2267 | |
| 2268 | struct kqueue *kq = knote_get_kq(kn); |
| 2269 | assert(kdp_is_in_zone(kq, "kqueue workloop zone" )); |
| 2270 | assert(kq->kq_state & KQ_WORKLOOP); |
| 2271 | |
| 2272 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 2273 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 2274 | |
| 2275 | thread_t kqwl_owner = kqwl->kqwl_owner; |
| 2276 | thread_t servicer = kqr->kqr_thread; |
| 2277 | |
| 2278 | if (kqwl_owner != THREAD_NULL) { |
| 2279 | assert(kdp_is_in_zone(kqwl_owner, "threads" )); |
| 2280 | |
| 2281 | waitinfo->owner = thread_tid(kqwl->kqwl_owner); |
| 2282 | } else if (servicer != THREAD_NULL) { |
| 2283 | assert(kdp_is_in_zone(servicer, "threads" )); |
| 2284 | |
| 2285 | waitinfo->owner = thread_tid(servicer); |
| 2286 | } else if (kqr->kqr_state & KQR_THREQUESTED) { |
| 2287 | waitinfo->owner = STACKSHOT_WAITOWNER_THREQUESTED; |
| 2288 | } else { |
| 2289 | waitinfo->owner = 0; |
| 2290 | } |
| 2291 | |
| 2292 | waitinfo->context = kqwl->kqwl_dynamicid; |
| 2293 | } |
| 2294 | |
| 2295 | static void |
| 2296 | filt_wldetach(__assert_only struct knote *kn) |
| 2297 | { |
| 2298 | assert(knote_get_kq(kn)->kq_state & KQ_WORKLOOP); |
| 2299 | if (kn->kn_hook) { |
| 2300 | kevent_register_wait_cleanup(kn); |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | static int |
| 2305 | filt_wlvalidate_kev_flags(struct knote *kn, struct kevent_internal_s *kev, |
| 2306 | thread_qos_t *qos_index) |
| 2307 | { |
| 2308 | int new_commands = kev->fflags & NOTE_WL_COMMANDS_MASK; |
| 2309 | int sav_commands = kn->kn_sfflags & NOTE_WL_COMMANDS_MASK; |
| 2310 | |
| 2311 | if ((kev->fflags & NOTE_WL_DISCOVER_OWNER) && (kev->flags & EV_DELETE)) { |
| 2312 | return EINVAL; |
| 2313 | } |
| 2314 | if (kev->fflags & NOTE_WL_UPDATE_QOS) { |
| 2315 | if (kev->flags & EV_DELETE) { |
| 2316 | return EINVAL; |
| 2317 | } |
| 2318 | if (sav_commands != NOTE_WL_THREAD_REQUEST) { |
| 2319 | return EINVAL; |
| 2320 | } |
| 2321 | if (!(*qos_index = _pthread_priority_thread_qos(kev->qos))) { |
| 2322 | return ERANGE; |
| 2323 | } |
| 2324 | } |
| 2325 | |
| 2326 | switch (new_commands) { |
| 2327 | case NOTE_WL_THREAD_REQUEST: |
| 2328 | /* thread requests can only update themselves */ |
| 2329 | if (sav_commands != NOTE_WL_THREAD_REQUEST) |
| 2330 | return EINVAL; |
| 2331 | break; |
| 2332 | |
| 2333 | case NOTE_WL_SYNC_WAIT: |
| 2334 | if (kev->fflags & NOTE_WL_END_OWNERSHIP) |
| 2335 | return EINVAL; |
| 2336 | goto sync_checks; |
| 2337 | |
| 2338 | case NOTE_WL_SYNC_WAKE: |
| 2339 | sync_checks: |
| 2340 | if (!(sav_commands & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE))) |
| 2341 | return EINVAL; |
| 2342 | if ((kev->flags & (EV_ENABLE | EV_DELETE)) == EV_ENABLE) |
| 2343 | return EINVAL; |
| 2344 | break; |
| 2345 | |
| 2346 | default: |
| 2347 | return EINVAL; |
| 2348 | } |
| 2349 | return 0; |
| 2350 | } |
| 2351 | |
| 2352 | static int |
| 2353 | filt_wltouch(struct knote *kn, struct kevent_internal_s *kev) |
| 2354 | { |
| 2355 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); |
| 2356 | thread_qos_t qos_index = THREAD_QOS_UNSPECIFIED; |
| 2357 | |
| 2358 | int error = filt_wlvalidate_kev_flags(kn, kev, &qos_index); |
| 2359 | if (error) { |
| 2360 | goto out; |
| 2361 | } |
| 2362 | |
| 2363 | error = filt_wlupdate(kqwl, kn, kev, qos_index, FILT_WLTOUCH); |
| 2364 | filt_wlremember_last_update(kn, kev, error); |
| 2365 | if (error) { |
| 2366 | goto out; |
| 2367 | } |
| 2368 | |
| 2369 | out: |
| 2370 | if (error) { |
| 2371 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { |
| 2372 | /* If userland wants ESTALE to be hidden, do not activate */ |
| 2373 | return 0; |
| 2374 | } |
| 2375 | kev->flags |= EV_ERROR; |
| 2376 | kev->data = error; |
| 2377 | return 0; |
| 2378 | } |
| 2379 | int command = kev->fflags & NOTE_WL_COMMANDS_MASK; |
| 2380 | if (command == NOTE_WL_SYNC_WAIT && !(kn->kn_sfflags & NOTE_WL_SYNC_WAKE)) { |
| 2381 | return kevent_register_wait_prepare(kn, kev); |
| 2382 | } |
| 2383 | /* Just touching the thread request successfully will fire it */ |
| 2384 | if (command == NOTE_WL_THREAD_REQUEST) { |
| 2385 | if (kev->fflags & NOTE_WL_UPDATE_QOS) { |
| 2386 | return FILTER_ACTIVE | FILTER_UPDATE_REQ_QOS; |
| 2387 | } |
| 2388 | return FILTER_ACTIVE; |
| 2389 | } |
| 2390 | return 0; |
| 2391 | } |
| 2392 | |
| 2393 | static bool |
| 2394 | filt_wlallow_drop(struct knote *kn, struct kevent_internal_s *kev) |
| 2395 | { |
| 2396 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); |
| 2397 | |
| 2398 | int error = filt_wlvalidate_kev_flags(kn, kev, NULL); |
| 2399 | if (error) { |
| 2400 | goto out; |
| 2401 | } |
| 2402 | |
| 2403 | error = filt_wlupdate(kqwl, kn, kev, 0, FILT_WLDROP); |
| 2404 | filt_wlremember_last_update(kn, kev, error); |
| 2405 | if (error) { |
| 2406 | goto out; |
| 2407 | } |
| 2408 | |
| 2409 | out: |
| 2410 | if (error) { |
| 2411 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { |
| 2412 | return false; |
| 2413 | } |
| 2414 | kev->flags |= EV_ERROR; |
| 2415 | kev->data = error; |
| 2416 | return false; |
| 2417 | } |
| 2418 | return true; |
| 2419 | } |
| 2420 | |
| 2421 | static int |
| 2422 | filt_wlprocess( |
| 2423 | struct knote *kn, |
| 2424 | __unused struct filt_process_s *data, |
| 2425 | struct kevent_internal_s *kev) |
| 2426 | { |
| 2427 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); |
| 2428 | int rc = 0; |
| 2429 | |
| 2430 | assert(kn->kn_sfflags & NOTE_WL_THREAD_REQUEST); |
| 2431 | |
| 2432 | filt_wllock(kqwl); |
| 2433 | |
| 2434 | if (kqwl->kqwl_owner) { |
| 2435 | /* |
| 2436 | * <rdar://problem/33584321> userspace sometimes due to events being |
| 2437 | * delivered but not triggering a drain session can cause a process |
| 2438 | * of the thread request knote. |
| 2439 | * |
| 2440 | * When that happens, the automatic deactivation due to process |
| 2441 | * would swallow the event, so we have to activate the knote again. |
| 2442 | */ |
| 2443 | kqlock(kqwl); |
| 2444 | knote_activate(kn); |
| 2445 | kqunlock(kqwl); |
| 2446 | } else { |
| 2447 | #if DEBUG || DEVELOPMENT |
| 2448 | if (kevent_debug_flags() & KEVENT_PANIC_ON_NON_ENQUEUED_PROCESS) { |
| 2449 | /* |
| 2450 | * see src/queue_internal.h in libdispatch |
| 2451 | */ |
| 2452 | #define DISPATCH_QUEUE_ENQUEUED 0x1ull |
| 2453 | user_addr_t addr = CAST_USER_ADDR_T(kn->kn_ext[EV_EXTIDX_WL_ADDR]); |
| 2454 | task_t t = current_task(); |
| 2455 | uint64_t val; |
| 2456 | if (addr && task_is_active(t) && !task_is_halting(t) && |
| 2457 | copyin_word(addr, &val, sizeof(val)) == 0 && |
| 2458 | val && (val & DISPATCH_QUEUE_ENQUEUED) == 0 && |
| 2459 | (val >> 48) != 0xdead && (val >> 48) != 0 && (val >> 48) != 0xffff) { |
| 2460 | panic("kevent: workloop %#016llx is not enqueued " |
| 2461 | "(kn:%p dq_state:%#016llx kev.dq_state:%#016llx)" , |
| 2462 | kn->kn_udata, kn, val, kn->kn_ext[EV_EXTIDX_WL_VALUE]); |
| 2463 | } |
| 2464 | } |
| 2465 | #endif |
| 2466 | *kev = kn->kn_kevent; |
| 2467 | kev->fflags = kn->kn_sfflags; |
| 2468 | kev->data = kn->kn_sdata; |
| 2469 | kev->qos = kn->kn_qos; |
| 2470 | rc |= FILTER_ACTIVE; |
| 2471 | } |
| 2472 | |
| 2473 | filt_wlunlock(kqwl); |
| 2474 | |
| 2475 | if (rc & FILTER_ACTIVE) { |
| 2476 | workq_thread_set_max_qos(kqwl->kqwl_p, &kqwl->kqwl_request); |
| 2477 | } |
| 2478 | return rc; |
| 2479 | } |
| 2480 | |
| 2481 | SECURITY_READ_ONLY_EARLY(static struct filterops) workloop_filtops = { |
| 2482 | .f_extended_codes = true, |
| 2483 | .f_attach = filt_wlattach, |
| 2484 | .f_detach = filt_wldetach, |
| 2485 | .f_event = filt_badevent, |
| 2486 | .f_touch = filt_wltouch, |
| 2487 | .f_process = filt_wlprocess, |
| 2488 | .f_allow_drop = filt_wlallow_drop, |
| 2489 | .f_post_register_wait = filt_wlpost_register_wait, |
| 2490 | }; |
| 2491 | |
| 2492 | #pragma mark kevent / knotes |
| 2493 | |
| 2494 | /* |
| 2495 | * JMM - placeholder for not-yet-implemented filters |
| 2496 | */ |
| 2497 | static int |
| 2498 | filt_badevent(struct knote *kn, long hint) |
| 2499 | { |
| 2500 | panic("%s[%d](%p, %ld)" , __func__, kn->kn_filter, kn, hint); |
| 2501 | return 0; |
| 2502 | } |
| 2503 | |
| 2504 | static int |
| 2505 | filt_badattach(__unused struct knote *kn, __unused struct kevent_internal_s *kev) |
| 2506 | { |
| 2507 | knote_set_error(kn, ENOTSUP); |
| 2508 | return 0; |
| 2509 | } |
| 2510 | |
| 2511 | struct kqueue * |
| 2512 | kqueue_alloc(struct proc *p, unsigned int flags) |
| 2513 | { |
| 2514 | struct filedesc *fdp = p->p_fd; |
| 2515 | struct kqueue *kq = NULL; |
| 2516 | int policy; |
| 2517 | void *hook = NULL; |
| 2518 | |
| 2519 | if (flags & KEVENT_FLAG_WORKQ) { |
| 2520 | struct kqworkq *kqwq; |
| 2521 | int i; |
| 2522 | |
| 2523 | kqwq = (struct kqworkq *)zalloc(kqworkq_zone); |
| 2524 | if (kqwq == NULL) |
| 2525 | return NULL; |
| 2526 | |
| 2527 | kq = &kqwq->kqwq_kqueue; |
| 2528 | bzero(kqwq, sizeof (struct kqworkq)); |
| 2529 | |
| 2530 | kqwq->kqwq_state = KQ_WORKQ; |
| 2531 | |
| 2532 | for (i = 0; i < KQWQ_NBUCKETS; i++) { |
| 2533 | TAILQ_INIT(&kqwq->kqwq_queue[i]); |
| 2534 | } |
| 2535 | for (i = 0; i < KQWQ_NBUCKETS; i++) { |
| 2536 | if (i != KQWQ_QOS_MANAGER) { |
| 2537 | /* |
| 2538 | * Because of how the bucketized system works, we mix overcommit |
| 2539 | * sources with not overcommit: each time we move a knote from |
| 2540 | * one bucket to the next due to overrides, we'd had to track |
| 2541 | * overcommitness, and it's really not worth it in the workloop |
| 2542 | * enabled world that track this faithfully. |
| 2543 | * |
| 2544 | * Incidentally, this behaves like the original manager-based |
| 2545 | * kqwq where event delivery always happened (hence is |
| 2546 | * "overcommit") |
| 2547 | */ |
| 2548 | kqwq->kqwq_request[i].kqr_state |= KQR_THOVERCOMMIT; |
| 2549 | } |
| 2550 | kqwq->kqwq_request[i].kqr_qos_index = i; |
| 2551 | TAILQ_INIT(&kqwq->kqwq_request[i].kqr_suppressed); |
| 2552 | } |
| 2553 | |
| 2554 | policy = SYNC_POLICY_FIFO; |
| 2555 | hook = (void *)kqwq; |
| 2556 | } else if (flags & KEVENT_FLAG_WORKLOOP) { |
| 2557 | struct kqworkloop *kqwl; |
| 2558 | int i; |
| 2559 | |
| 2560 | kqwl = (struct kqworkloop *)zalloc(kqworkloop_zone); |
| 2561 | if (kqwl == NULL) |
| 2562 | return NULL; |
| 2563 | |
| 2564 | bzero(kqwl, sizeof (struct kqworkloop)); |
| 2565 | |
| 2566 | kqwl->kqwl_state = KQ_WORKLOOP | KQ_DYNAMIC; |
| 2567 | kqwl->kqwl_retains = 1; /* donate a retain to creator */ |
| 2568 | kqwl->kqwl_request.kqr_state = KQR_WORKLOOP; |
| 2569 | |
| 2570 | kq = &kqwl->kqwl_kqueue; |
| 2571 | for (i = 0; i < KQWL_NBUCKETS; i++) { |
| 2572 | TAILQ_INIT(&kqwl->kqwl_queue[i]); |
| 2573 | } |
| 2574 | TAILQ_INIT(&kqwl->kqwl_request.kqr_suppressed); |
| 2575 | |
| 2576 | lck_mtx_init(&kqwl->kqwl_statelock, kq_lck_grp, kq_lck_attr); |
| 2577 | |
| 2578 | policy = SYNC_POLICY_FIFO; |
| 2579 | hook = (void *)kqwl; |
| 2580 | } else { |
| 2581 | struct kqfile *kqf; |
| 2582 | |
| 2583 | kqf = (struct kqfile *)zalloc(kqfile_zone); |
| 2584 | if (kqf == NULL) |
| 2585 | return NULL; |
| 2586 | |
| 2587 | kq = &kqf->kqf_kqueue; |
| 2588 | bzero(kqf, sizeof (struct kqfile)); |
| 2589 | TAILQ_INIT(&kqf->kqf_queue); |
| 2590 | TAILQ_INIT(&kqf->kqf_suppressed); |
| 2591 | |
| 2592 | policy = SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST; |
| 2593 | } |
| 2594 | |
| 2595 | waitq_set_init(&kq->kq_wqs, policy, NULL, hook); |
| 2596 | lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr); |
| 2597 | lck_spin_init(&kq->kq_reqlock, kq_lck_grp, kq_lck_attr); |
| 2598 | kq->kq_p = p; |
| 2599 | |
| 2600 | if (fdp->fd_knlistsize < 0) { |
| 2601 | proc_fdlock(p); |
| 2602 | if (fdp->fd_knlistsize < 0) |
| 2603 | fdp->fd_knlistsize = 0; /* this process has had a kq */ |
| 2604 | proc_fdunlock(p); |
| 2605 | } |
| 2606 | |
| 2607 | return (kq); |
| 2608 | } |
| 2609 | |
| 2610 | /* |
| 2611 | * knotes_dealloc - detach all knotes for the process and drop them |
| 2612 | * |
| 2613 | * Called with proc_fdlock held. |
| 2614 | * Returns with it locked. |
| 2615 | * May drop it temporarily. |
| 2616 | * Process is in such a state that it will not try to allocate |
| 2617 | * any more knotes during this process (stopped for exit or exec). |
| 2618 | */ |
| 2619 | void |
| 2620 | knotes_dealloc(proc_t p) |
| 2621 | { |
| 2622 | struct filedesc *fdp = p->p_fd; |
| 2623 | struct kqueue *kq; |
| 2624 | struct knote *kn; |
| 2625 | struct klist *kn_hash = NULL; |
| 2626 | int i; |
| 2627 | |
| 2628 | /* Close all the fd-indexed knotes up front */ |
| 2629 | if (fdp->fd_knlistsize > 0) { |
| 2630 | for (i = 0; i < fdp->fd_knlistsize; i++) { |
| 2631 | while ((kn = SLIST_FIRST(&fdp->fd_knlist[i])) != NULL) { |
| 2632 | kq = knote_get_kq(kn); |
| 2633 | kqlock(kq); |
| 2634 | proc_fdunlock(p); |
| 2635 | knote_drop(kq, kn, NULL); |
| 2636 | proc_fdlock(p); |
| 2637 | } |
| 2638 | } |
| 2639 | /* free the table */ |
| 2640 | FREE(fdp->fd_knlist, M_KQUEUE); |
| 2641 | fdp->fd_knlist = NULL; |
| 2642 | } |
| 2643 | fdp->fd_knlistsize = -1; |
| 2644 | |
| 2645 | knhash_lock(p); |
| 2646 | proc_fdunlock(p); |
| 2647 | |
| 2648 | /* Clean out all the hashed knotes as well */ |
| 2649 | if (fdp->fd_knhashmask != 0) { |
| 2650 | for (i = 0; i <= (int)fdp->fd_knhashmask; i++) { |
| 2651 | while ((kn = SLIST_FIRST(&fdp->fd_knhash[i])) != NULL) { |
| 2652 | kq = knote_get_kq(kn); |
| 2653 | kqlock(kq); |
| 2654 | knhash_unlock(p); |
| 2655 | knote_drop(kq, kn, NULL); |
| 2656 | knhash_lock(p); |
| 2657 | } |
| 2658 | } |
| 2659 | kn_hash = fdp->fd_knhash; |
| 2660 | fdp->fd_knhashmask = 0; |
| 2661 | fdp->fd_knhash = NULL; |
| 2662 | } |
| 2663 | |
| 2664 | knhash_unlock(p); |
| 2665 | |
| 2666 | /* free the kn_hash table */ |
| 2667 | if (kn_hash) |
| 2668 | FREE(kn_hash, M_KQUEUE); |
| 2669 | |
| 2670 | proc_fdlock(p); |
| 2671 | } |
| 2672 | |
| 2673 | /* |
| 2674 | * kqworkloop_invalidate |
| 2675 | * |
| 2676 | * Invalidate ownership of a workloop. |
| 2677 | * |
| 2678 | * This is meant to be used so that any remnant of overrides and ownership |
| 2679 | * information is dropped before a kqworkloop can no longer be found in the |
| 2680 | * global hash table and have ghost workloop ownership left over. |
| 2681 | * |
| 2682 | * Possibly returns a thread to deallocate in a safe context. |
| 2683 | */ |
| 2684 | static thread_t |
| 2685 | kqworkloop_invalidate(struct kqworkloop *kqwl) |
| 2686 | { |
| 2687 | thread_t cur_owner = kqwl->kqwl_owner; |
| 2688 | |
| 2689 | assert(TAILQ_EMPTY(&kqwl->kqwl_request.kqr_suppressed)); |
| 2690 | if (cur_owner) { |
| 2691 | /* |
| 2692 | * If the kqueue had an owner that prevented the thread request to |
| 2693 | * go through, then no unbind happened, and we may have lingering |
| 2694 | * overrides to drop. |
| 2695 | */ |
| 2696 | if (kqworkloop_owner_override(kqwl) != THREAD_QOS_UNSPECIFIED) { |
| 2697 | thread_drop_ipc_override(cur_owner); |
| 2698 | } |
| 2699 | thread_ends_owning_workloop(cur_owner); |
| 2700 | kqwl->kqwl_owner = THREAD_NULL; |
| 2701 | } |
| 2702 | |
| 2703 | return cur_owner; |
| 2704 | } |
| 2705 | |
| 2706 | /* |
| 2707 | * kqueue_dealloc - detach all knotes from a kqueue and free it |
| 2708 | * |
| 2709 | * We walk each list looking for knotes referencing this |
| 2710 | * this kqueue. If we find one, we try to drop it. But |
| 2711 | * if we fail to get a drop reference, that will wait |
| 2712 | * until it is dropped. So, we can just restart again |
| 2713 | * safe in the assumption that the list will eventually |
| 2714 | * not contain any more references to this kqueue (either |
| 2715 | * we dropped them all, or someone else did). |
| 2716 | * |
| 2717 | * Assumes no new events are being added to the kqueue. |
| 2718 | * Nothing locked on entry or exit. |
| 2719 | * |
| 2720 | * Workloop kqueues cant get here unless all the knotes |
| 2721 | * are already gone and all requested threads have come |
| 2722 | * and gone (cancelled or arrived). |
| 2723 | */ |
| 2724 | void |
| 2725 | kqueue_dealloc(struct kqueue *kq) |
| 2726 | { |
| 2727 | struct proc *p; |
| 2728 | struct filedesc *fdp; |
| 2729 | struct knote *kn; |
| 2730 | int i; |
| 2731 | |
| 2732 | if (kq == NULL) |
| 2733 | return; |
| 2734 | |
| 2735 | p = kq->kq_p; |
| 2736 | fdp = p->p_fd; |
| 2737 | |
| 2738 | /* |
| 2739 | * Workloops are refcounted by their knotes, so there's no point |
| 2740 | * spending a lot of time under these locks just to deallocate one. |
| 2741 | */ |
| 2742 | if ((kq->kq_state & KQ_WORKLOOP) == 0) { |
| 2743 | KNOTE_LOCK_CTX(knlc); |
| 2744 | |
| 2745 | proc_fdlock(p); |
| 2746 | for (i = 0; i < fdp->fd_knlistsize; i++) { |
| 2747 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); |
| 2748 | while (kn != NULL) { |
| 2749 | if (kq == knote_get_kq(kn)) { |
| 2750 | kqlock(kq); |
| 2751 | proc_fdunlock(p); |
| 2752 | if (knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 2753 | knote_drop(kq, kn, &knlc); |
| 2754 | } |
| 2755 | proc_fdlock(p); |
| 2756 | /* start over at beginning of list */ |
| 2757 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); |
| 2758 | continue; |
| 2759 | } |
| 2760 | kn = SLIST_NEXT(kn, kn_link); |
| 2761 | } |
| 2762 | } |
| 2763 | |
| 2764 | knhash_lock(p); |
| 2765 | proc_fdunlock(p); |
| 2766 | |
| 2767 | if (fdp->fd_knhashmask != 0) { |
| 2768 | for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { |
| 2769 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); |
| 2770 | while (kn != NULL) { |
| 2771 | if (kq == knote_get_kq(kn)) { |
| 2772 | kqlock(kq); |
| 2773 | knhash_unlock(p); |
| 2774 | if (knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 2775 | knote_drop(kq, kn, &knlc); |
| 2776 | } |
| 2777 | knhash_lock(p); |
| 2778 | /* start over at beginning of list */ |
| 2779 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); |
| 2780 | continue; |
| 2781 | } |
| 2782 | kn = SLIST_NEXT(kn, kn_link); |
| 2783 | } |
| 2784 | } |
| 2785 | } |
| 2786 | knhash_unlock(p); |
| 2787 | } |
| 2788 | |
| 2789 | if (kq->kq_state & KQ_WORKLOOP) { |
| 2790 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 2791 | thread_t cur_owner = kqworkloop_invalidate(kqwl); |
| 2792 | |
| 2793 | if (cur_owner) thread_deallocate(cur_owner); |
| 2794 | |
| 2795 | if (kqwl->kqwl_request.kqr_state & KQR_ALLOCATED_TURNSTILE) { |
| 2796 | struct turnstile *ts; |
| 2797 | turnstile_complete((uintptr_t)kqwl, &kqwl->kqwl_turnstile, &ts); |
| 2798 | turnstile_cleanup(); |
| 2799 | turnstile_deallocate(ts); |
| 2800 | } else { |
| 2801 | assert(kqwl->kqwl_turnstile == NULL); |
| 2802 | } |
| 2803 | } |
| 2804 | |
| 2805 | /* |
| 2806 | * waitq_set_deinit() remove the KQ's waitq set from |
| 2807 | * any select sets to which it may belong. |
| 2808 | */ |
| 2809 | waitq_set_deinit(&kq->kq_wqs); |
| 2810 | lck_spin_destroy(&kq->kq_lock, kq_lck_grp); |
| 2811 | lck_spin_destroy(&kq->kq_reqlock, kq_lck_grp); |
| 2812 | |
| 2813 | if (kq->kq_state & KQ_WORKQ) { |
| 2814 | zfree(kqworkq_zone, (struct kqworkq *)kq); |
| 2815 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 2816 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 2817 | |
| 2818 | assert(kqwl->kqwl_retains == 0); |
| 2819 | lck_mtx_destroy(&kqwl->kqwl_statelock, kq_lck_grp); |
| 2820 | zfree(kqworkloop_zone, kqwl); |
| 2821 | } else { |
| 2822 | zfree(kqfile_zone, (struct kqfile *)kq); |
| 2823 | } |
| 2824 | } |
| 2825 | |
| 2826 | static inline void |
| 2827 | kqueue_retain(struct kqueue *kq) |
| 2828 | { |
| 2829 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 2830 | uint32_t previous; |
| 2831 | |
| 2832 | if ((kq->kq_state & KQ_DYNAMIC) == 0) |
| 2833 | return; |
| 2834 | |
| 2835 | previous = OSIncrementAtomic(&kqwl->kqwl_retains); |
| 2836 | if (previous == KQ_WORKLOOP_RETAINS_MAX) |
| 2837 | panic("kq(%p) retain overflow" , kq); |
| 2838 | |
| 2839 | if (previous == 0) |
| 2840 | panic("kq(%p) resurrection" , kq); |
| 2841 | } |
| 2842 | |
| 2843 | #define KQUEUE_CANT_BE_LAST_REF 0 |
| 2844 | #define KQUEUE_MIGHT_BE_LAST_REF 1 |
| 2845 | |
| 2846 | static inline int |
| 2847 | kqueue_release(kqueue_t kqu, __assert_only int possibly_last) |
| 2848 | { |
| 2849 | if ((kqu.kq->kq_state & KQ_DYNAMIC) == 0) { |
| 2850 | return 0; |
| 2851 | } |
| 2852 | |
| 2853 | assert(kqu.kq->kq_state & KQ_WORKLOOP); /* for now */ |
| 2854 | uint32_t refs = OSDecrementAtomic(&kqu.kqwl->kqwl_retains); |
| 2855 | if (__improbable(refs == 0)) { |
| 2856 | panic("kq(%p) over-release" , kqu.kq); |
| 2857 | } |
| 2858 | if (refs == 1) { |
| 2859 | assert(possibly_last); |
| 2860 | } |
| 2861 | return refs == 1; |
| 2862 | } |
| 2863 | |
| 2864 | int |
| 2865 | kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval) |
| 2866 | { |
| 2867 | struct kqueue *kq; |
| 2868 | struct fileproc *fp; |
| 2869 | int fd, error; |
| 2870 | |
| 2871 | error = falloc_withalloc(p, |
| 2872 | &fp, &fd, vfs_context_current(), fp_zalloc, cra); |
| 2873 | if (error) { |
| 2874 | return (error); |
| 2875 | } |
| 2876 | |
| 2877 | kq = kqueue_alloc(p, 0); |
| 2878 | if (kq == NULL) { |
| 2879 | fp_free(p, fd, fp); |
| 2880 | return (ENOMEM); |
| 2881 | } |
| 2882 | |
| 2883 | fp->f_flag = FREAD | FWRITE; |
| 2884 | fp->f_ops = &kqueueops; |
| 2885 | fp->f_data = kq; |
| 2886 | |
| 2887 | proc_fdlock(p); |
| 2888 | *fdflags(p, fd) |= UF_EXCLOSE; |
| 2889 | procfdtbl_releasefd(p, fd, NULL); |
| 2890 | fp_drop(p, fd, fp, 1); |
| 2891 | proc_fdunlock(p); |
| 2892 | |
| 2893 | *retval = fd; |
| 2894 | return (error); |
| 2895 | } |
| 2896 | |
| 2897 | int |
| 2898 | kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval) |
| 2899 | { |
| 2900 | return (kqueue_body(p, fileproc_alloc_init, NULL, retval)); |
| 2901 | } |
| 2902 | |
| 2903 | static int |
| 2904 | kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp, struct proc *p, |
| 2905 | unsigned int flags) |
| 2906 | { |
| 2907 | int advance; |
| 2908 | int error; |
| 2909 | |
| 2910 | if (flags & KEVENT_FLAG_LEGACY32) { |
| 2911 | bzero(kevp, sizeof (*kevp)); |
| 2912 | |
| 2913 | if (IS_64BIT_PROCESS(p)) { |
| 2914 | struct user64_kevent kev64; |
| 2915 | |
| 2916 | advance = sizeof (kev64); |
| 2917 | error = copyin(*addrp, (caddr_t)&kev64, advance); |
| 2918 | if (error) |
| 2919 | return (error); |
| 2920 | kevp->ident = kev64.ident; |
| 2921 | kevp->filter = kev64.filter; |
| 2922 | kevp->flags = kev64.flags; |
| 2923 | kevp->udata = kev64.udata; |
| 2924 | kevp->fflags = kev64.fflags; |
| 2925 | kevp->data = kev64.data; |
| 2926 | } else { |
| 2927 | struct user32_kevent kev32; |
| 2928 | |
| 2929 | advance = sizeof (kev32); |
| 2930 | error = copyin(*addrp, (caddr_t)&kev32, advance); |
| 2931 | if (error) |
| 2932 | return (error); |
| 2933 | kevp->ident = (uintptr_t)kev32.ident; |
| 2934 | kevp->filter = kev32.filter; |
| 2935 | kevp->flags = kev32.flags; |
| 2936 | kevp->udata = CAST_USER_ADDR_T(kev32.udata); |
| 2937 | kevp->fflags = kev32.fflags; |
| 2938 | kevp->data = (intptr_t)kev32.data; |
| 2939 | } |
| 2940 | } else if (flags & KEVENT_FLAG_LEGACY64) { |
| 2941 | struct kevent64_s kev64; |
| 2942 | |
| 2943 | bzero(kevp, sizeof (*kevp)); |
| 2944 | |
| 2945 | advance = sizeof (struct kevent64_s); |
| 2946 | error = copyin(*addrp, (caddr_t)&kev64, advance); |
| 2947 | if (error) |
| 2948 | return(error); |
| 2949 | kevp->ident = kev64.ident; |
| 2950 | kevp->filter = kev64.filter; |
| 2951 | kevp->flags = kev64.flags; |
| 2952 | kevp->udata = kev64.udata; |
| 2953 | kevp->fflags = kev64.fflags; |
| 2954 | kevp->data = kev64.data; |
| 2955 | kevp->ext[0] = kev64.ext[0]; |
| 2956 | kevp->ext[1] = kev64.ext[1]; |
| 2957 | |
| 2958 | } else { |
| 2959 | struct kevent_qos_s kevqos; |
| 2960 | |
| 2961 | bzero(kevp, sizeof (*kevp)); |
| 2962 | |
| 2963 | advance = sizeof (struct kevent_qos_s); |
| 2964 | error = copyin(*addrp, (caddr_t)&kevqos, advance); |
| 2965 | if (error) |
| 2966 | return error; |
| 2967 | kevp->ident = kevqos.ident; |
| 2968 | kevp->filter = kevqos.filter; |
| 2969 | kevp->flags = kevqos.flags; |
| 2970 | kevp->qos = kevqos.qos; |
| 2971 | // kevp->xflags = kevqos.xflags; |
| 2972 | kevp->udata = kevqos.udata; |
| 2973 | kevp->fflags = kevqos.fflags; |
| 2974 | kevp->data = kevqos.data; |
| 2975 | kevp->ext[0] = kevqos.ext[0]; |
| 2976 | kevp->ext[1] = kevqos.ext[1]; |
| 2977 | kevp->ext[2] = kevqos.ext[2]; |
| 2978 | kevp->ext[3] = kevqos.ext[3]; |
| 2979 | } |
| 2980 | if (!error) |
| 2981 | *addrp += advance; |
| 2982 | return (error); |
| 2983 | } |
| 2984 | |
| 2985 | static int |
| 2986 | kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp, struct proc *p, |
| 2987 | unsigned int flags) |
| 2988 | { |
| 2989 | user_addr_t addr = *addrp; |
| 2990 | int advance; |
| 2991 | int error; |
| 2992 | |
| 2993 | /* |
| 2994 | * fully initialize the differnt output event structure |
| 2995 | * types from the internal kevent (and some universal |
| 2996 | * defaults for fields not represented in the internal |
| 2997 | * form). |
| 2998 | */ |
| 2999 | if (flags & KEVENT_FLAG_LEGACY32) { |
| 3000 | assert((flags & KEVENT_FLAG_STACK_EVENTS) == 0); |
| 3001 | |
| 3002 | if (IS_64BIT_PROCESS(p)) { |
| 3003 | struct user64_kevent kev64; |
| 3004 | |
| 3005 | advance = sizeof (kev64); |
| 3006 | bzero(&kev64, advance); |
| 3007 | |
| 3008 | /* |
| 3009 | * deal with the special case of a user-supplied |
| 3010 | * value of (uintptr_t)-1. |
| 3011 | */ |
| 3012 | kev64.ident = (kevp->ident == (uintptr_t)-1) ? |
| 3013 | (uint64_t)-1LL : (uint64_t)kevp->ident; |
| 3014 | |
| 3015 | kev64.filter = kevp->filter; |
| 3016 | kev64.flags = kevp->flags; |
| 3017 | kev64.fflags = kevp->fflags; |
| 3018 | kev64.data = (int64_t) kevp->data; |
| 3019 | kev64.udata = kevp->udata; |
| 3020 | error = copyout((caddr_t)&kev64, addr, advance); |
| 3021 | } else { |
| 3022 | struct user32_kevent kev32; |
| 3023 | |
| 3024 | advance = sizeof (kev32); |
| 3025 | bzero(&kev32, advance); |
| 3026 | kev32.ident = (uint32_t)kevp->ident; |
| 3027 | kev32.filter = kevp->filter; |
| 3028 | kev32.flags = kevp->flags; |
| 3029 | kev32.fflags = kevp->fflags; |
| 3030 | kev32.data = (int32_t)kevp->data; |
| 3031 | kev32.udata = kevp->udata; |
| 3032 | error = copyout((caddr_t)&kev32, addr, advance); |
| 3033 | } |
| 3034 | } else if (flags & KEVENT_FLAG_LEGACY64) { |
| 3035 | struct kevent64_s kev64; |
| 3036 | |
| 3037 | advance = sizeof (struct kevent64_s); |
| 3038 | if (flags & KEVENT_FLAG_STACK_EVENTS) { |
| 3039 | addr -= advance; |
| 3040 | } |
| 3041 | bzero(&kev64, advance); |
| 3042 | kev64.ident = kevp->ident; |
| 3043 | kev64.filter = kevp->filter; |
| 3044 | kev64.flags = kevp->flags; |
| 3045 | kev64.fflags = kevp->fflags; |
| 3046 | kev64.data = (int64_t) kevp->data; |
| 3047 | kev64.udata = kevp->udata; |
| 3048 | kev64.ext[0] = kevp->ext[0]; |
| 3049 | kev64.ext[1] = kevp->ext[1]; |
| 3050 | error = copyout((caddr_t)&kev64, addr, advance); |
| 3051 | } else { |
| 3052 | struct kevent_qos_s kevqos; |
| 3053 | |
| 3054 | advance = sizeof (struct kevent_qos_s); |
| 3055 | if (flags & KEVENT_FLAG_STACK_EVENTS) { |
| 3056 | addr -= advance; |
| 3057 | } |
| 3058 | bzero(&kevqos, advance); |
| 3059 | kevqos.ident = kevp->ident; |
| 3060 | kevqos.filter = kevp->filter; |
| 3061 | kevqos.flags = kevp->flags; |
| 3062 | kevqos.qos = kevp->qos; |
| 3063 | kevqos.udata = kevp->udata; |
| 3064 | kevqos.fflags = kevp->fflags; |
| 3065 | kevqos.xflags = 0; |
| 3066 | kevqos.data = (int64_t) kevp->data; |
| 3067 | kevqos.ext[0] = kevp->ext[0]; |
| 3068 | kevqos.ext[1] = kevp->ext[1]; |
| 3069 | kevqos.ext[2] = kevp->ext[2]; |
| 3070 | kevqos.ext[3] = kevp->ext[3]; |
| 3071 | error = copyout((caddr_t)&kevqos, addr, advance); |
| 3072 | } |
| 3073 | if (!error) { |
| 3074 | if (flags & KEVENT_FLAG_STACK_EVENTS) |
| 3075 | *addrp = addr; |
| 3076 | else |
| 3077 | *addrp = addr + advance; |
| 3078 | } |
| 3079 | return (error); |
| 3080 | } |
| 3081 | |
| 3082 | static int |
| 3083 | kevent_get_data_size( |
| 3084 | struct proc *p, |
| 3085 | uint64_t data_available, |
| 3086 | unsigned int flags, |
| 3087 | user_size_t *residp) |
| 3088 | { |
| 3089 | user_size_t resid; |
| 3090 | int error = 0; |
| 3091 | |
| 3092 | if (data_available != USER_ADDR_NULL) { |
| 3093 | if (flags & KEVENT_FLAG_KERNEL) { |
| 3094 | resid = *(user_size_t *)(uintptr_t)data_available; |
| 3095 | } else if (IS_64BIT_PROCESS(p)) { |
| 3096 | user64_size_t usize; |
| 3097 | error = copyin((user_addr_t)data_available, &usize, sizeof(usize)); |
| 3098 | resid = (user_size_t)usize; |
| 3099 | } else { |
| 3100 | user32_size_t usize; |
| 3101 | error = copyin((user_addr_t)data_available, &usize, sizeof(usize)); |
| 3102 | resid = (user_size_t)usize; |
| 3103 | } |
| 3104 | if (error) |
| 3105 | return(error); |
| 3106 | } else { |
| 3107 | resid = 0; |
| 3108 | } |
| 3109 | *residp = resid; |
| 3110 | return 0; |
| 3111 | } |
| 3112 | |
| 3113 | static int |
| 3114 | kevent_put_data_size( |
| 3115 | struct proc *p, |
| 3116 | uint64_t data_available, |
| 3117 | unsigned int flags, |
| 3118 | user_size_t resid) |
| 3119 | { |
| 3120 | int error = 0; |
| 3121 | |
| 3122 | if (data_available) { |
| 3123 | if (flags & KEVENT_FLAG_KERNEL) { |
| 3124 | *(user_size_t *)(uintptr_t)data_available = resid; |
| 3125 | } else if (IS_64BIT_PROCESS(p)) { |
| 3126 | user64_size_t usize = (user64_size_t)resid; |
| 3127 | error = copyout(&usize, (user_addr_t)data_available, sizeof(usize)); |
| 3128 | } else { |
| 3129 | user32_size_t usize = (user32_size_t)resid; |
| 3130 | error = copyout(&usize, (user_addr_t)data_available, sizeof(usize)); |
| 3131 | } |
| 3132 | } |
| 3133 | return error; |
| 3134 | } |
| 3135 | |
| 3136 | /* |
| 3137 | * kevent_continue - continue a kevent syscall after blocking |
| 3138 | * |
| 3139 | * assume we inherit a use count on the kq fileglob. |
| 3140 | */ |
| 3141 | __attribute__((noreturn)) |
| 3142 | static void |
| 3143 | kevent_continue(__unused struct kqueue *kq, void *data, int error) |
| 3144 | { |
| 3145 | struct _kevent *cont_args; |
| 3146 | struct fileproc *fp; |
| 3147 | uint64_t data_available; |
| 3148 | user_size_t data_size; |
| 3149 | user_size_t data_resid; |
| 3150 | unsigned int flags; |
| 3151 | int32_t *retval; |
| 3152 | int noutputs; |
| 3153 | int fd; |
| 3154 | struct proc *p = current_proc(); |
| 3155 | |
| 3156 | cont_args = (struct _kevent *)data; |
| 3157 | data_available = cont_args->data_available; |
| 3158 | flags = cont_args->process_data.fp_flags; |
| 3159 | data_size = cont_args->process_data.fp_data_size; |
| 3160 | data_resid = cont_args->process_data.fp_data_resid; |
| 3161 | noutputs = cont_args->eventout; |
| 3162 | retval = cont_args->retval; |
| 3163 | fd = cont_args->fd; |
| 3164 | fp = cont_args->fp; |
| 3165 | |
| 3166 | kevent_put_kq(p, fd, fp, kq); |
| 3167 | |
| 3168 | /* don't abandon other output just because of residual copyout failures */ |
| 3169 | if (error == 0 && data_available && data_resid != data_size) { |
| 3170 | (void)kevent_put_data_size(p, data_available, flags, data_resid); |
| 3171 | } |
| 3172 | |
| 3173 | /* don't restart after signals... */ |
| 3174 | if (error == ERESTART) |
| 3175 | error = EINTR; |
| 3176 | else if (error == EWOULDBLOCK) |
| 3177 | error = 0; |
| 3178 | if (error == 0) |
| 3179 | *retval = noutputs; |
| 3180 | unix_syscall_return(error); |
| 3181 | } |
| 3182 | |
| 3183 | /* |
| 3184 | * kevent - [syscall] register and wait for kernel events |
| 3185 | * |
| 3186 | */ |
| 3187 | int |
| 3188 | kevent(struct proc *p, struct kevent_args *uap, int32_t *retval) |
| 3189 | { |
| 3190 | unsigned int flags = KEVENT_FLAG_LEGACY32; |
| 3191 | |
| 3192 | return kevent_internal(p, |
| 3193 | (kqueue_id_t)uap->fd, NULL, |
| 3194 | uap->changelist, uap->nchanges, |
| 3195 | uap->eventlist, uap->nevents, |
| 3196 | 0ULL, 0ULL, |
| 3197 | flags, |
| 3198 | uap->timeout, |
| 3199 | kevent_continue, |
| 3200 | retval); |
| 3201 | } |
| 3202 | |
| 3203 | int |
| 3204 | kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval) |
| 3205 | { |
| 3206 | unsigned int flags; |
| 3207 | |
| 3208 | /* restrict to user flags and set legacy64 */ |
| 3209 | flags = uap->flags & KEVENT_FLAG_USER; |
| 3210 | flags |= KEVENT_FLAG_LEGACY64; |
| 3211 | |
| 3212 | return kevent_internal(p, |
| 3213 | (kqueue_id_t)uap->fd, NULL, |
| 3214 | uap->changelist, uap->nchanges, |
| 3215 | uap->eventlist, uap->nevents, |
| 3216 | 0ULL, 0ULL, |
| 3217 | flags, |
| 3218 | uap->timeout, |
| 3219 | kevent_continue, |
| 3220 | retval); |
| 3221 | } |
| 3222 | |
| 3223 | int |
| 3224 | kevent_qos(struct proc *p, struct kevent_qos_args *uap, int32_t *retval) |
| 3225 | { |
| 3226 | /* restrict to user flags */ |
| 3227 | uap->flags &= KEVENT_FLAG_USER; |
| 3228 | |
| 3229 | return kevent_internal(p, |
| 3230 | (kqueue_id_t)uap->fd, NULL, |
| 3231 | uap->changelist, uap->nchanges, |
| 3232 | uap->eventlist, uap->nevents, |
| 3233 | uap->data_out, (uint64_t)uap->data_available, |
| 3234 | uap->flags, |
| 3235 | 0ULL, |
| 3236 | kevent_continue, |
| 3237 | retval); |
| 3238 | } |
| 3239 | |
| 3240 | int |
| 3241 | kevent_qos_internal(struct proc *p, int fd, |
| 3242 | user_addr_t changelist, int nchanges, |
| 3243 | user_addr_t eventlist, int nevents, |
| 3244 | user_addr_t data_out, user_size_t *data_available, |
| 3245 | unsigned int flags, |
| 3246 | int32_t *retval) |
| 3247 | { |
| 3248 | return kevent_internal(p, |
| 3249 | (kqueue_id_t)fd, NULL, |
| 3250 | changelist, nchanges, |
| 3251 | eventlist, nevents, |
| 3252 | data_out, (uint64_t)data_available, |
| 3253 | (flags | KEVENT_FLAG_KERNEL), |
| 3254 | 0ULL, |
| 3255 | NULL, |
| 3256 | retval); |
| 3257 | } |
| 3258 | |
| 3259 | int |
| 3260 | kevent_id(struct proc *p, struct kevent_id_args *uap, int32_t *retval) |
| 3261 | { |
| 3262 | /* restrict to user flags */ |
| 3263 | uap->flags &= KEVENT_FLAG_USER; |
| 3264 | |
| 3265 | return kevent_internal(p, |
| 3266 | (kqueue_id_t)uap->id, NULL, |
| 3267 | uap->changelist, uap->nchanges, |
| 3268 | uap->eventlist, uap->nevents, |
| 3269 | uap->data_out, (uint64_t)uap->data_available, |
| 3270 | (uap->flags | KEVENT_FLAG_DYNAMIC_KQUEUE), |
| 3271 | 0ULL, |
| 3272 | kevent_continue, |
| 3273 | retval); |
| 3274 | } |
| 3275 | |
| 3276 | int |
| 3277 | kevent_id_internal(struct proc *p, kqueue_id_t *id, |
| 3278 | user_addr_t changelist, int nchanges, |
| 3279 | user_addr_t eventlist, int nevents, |
| 3280 | user_addr_t data_out, user_size_t *data_available, |
| 3281 | unsigned int flags, |
| 3282 | int32_t *retval) |
| 3283 | { |
| 3284 | return kevent_internal(p, |
| 3285 | *id, id, |
| 3286 | changelist, nchanges, |
| 3287 | eventlist, nevents, |
| 3288 | data_out, (uint64_t)data_available, |
| 3289 | (flags | KEVENT_FLAG_KERNEL | KEVENT_FLAG_DYNAMIC_KQUEUE), |
| 3290 | 0ULL, |
| 3291 | NULL, |
| 3292 | retval); |
| 3293 | } |
| 3294 | |
| 3295 | static int |
| 3296 | kevent_get_timeout(struct proc *p, |
| 3297 | user_addr_t utimeout, |
| 3298 | unsigned int flags, |
| 3299 | struct timeval *atvp) |
| 3300 | { |
| 3301 | struct timeval atv; |
| 3302 | int error = 0; |
| 3303 | |
| 3304 | if (flags & KEVENT_FLAG_IMMEDIATE) { |
| 3305 | getmicrouptime(&atv); |
| 3306 | } else if (utimeout != USER_ADDR_NULL) { |
| 3307 | struct timeval rtv; |
| 3308 | if (flags & KEVENT_FLAG_KERNEL) { |
| 3309 | struct timespec *tsp = (struct timespec *)utimeout; |
| 3310 | TIMESPEC_TO_TIMEVAL(&rtv, tsp); |
| 3311 | } else if (IS_64BIT_PROCESS(p)) { |
| 3312 | struct user64_timespec ts; |
| 3313 | error = copyin(utimeout, &ts, sizeof(ts)); |
| 3314 | if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0) |
| 3315 | error = EINVAL; |
| 3316 | else |
| 3317 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); |
| 3318 | } else { |
| 3319 | struct user32_timespec ts; |
| 3320 | error = copyin(utimeout, &ts, sizeof(ts)); |
| 3321 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); |
| 3322 | } |
| 3323 | if (error) |
| 3324 | return (error); |
| 3325 | if (itimerfix(&rtv)) |
| 3326 | return (EINVAL); |
| 3327 | getmicrouptime(&atv); |
| 3328 | timevaladd(&atv, &rtv); |
| 3329 | } else { |
| 3330 | /* wait forever value */ |
| 3331 | atv.tv_sec = 0; |
| 3332 | atv.tv_usec = 0; |
| 3333 | } |
| 3334 | *atvp = atv; |
| 3335 | return 0; |
| 3336 | } |
| 3337 | |
| 3338 | static int |
| 3339 | kevent_set_kq_mode(struct kqueue *kq, unsigned int flags) |
| 3340 | { |
| 3341 | /* each kq should only be used for events of one type */ |
| 3342 | kqlock(kq); |
| 3343 | if (kq->kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS)) { |
| 3344 | if (flags & KEVENT_FLAG_LEGACY32) { |
| 3345 | if ((kq->kq_state & KQ_KEV32) == 0) { |
| 3346 | kqunlock(kq); |
| 3347 | return EINVAL; |
| 3348 | } |
| 3349 | } else if (kq->kq_state & KQ_KEV32) { |
| 3350 | kqunlock(kq); |
| 3351 | return EINVAL; |
| 3352 | } |
| 3353 | } else if (flags & KEVENT_FLAG_LEGACY32) { |
| 3354 | kq->kq_state |= KQ_KEV32; |
| 3355 | } else if (flags & KEVENT_FLAG_LEGACY64) { |
| 3356 | kq->kq_state |= KQ_KEV64; |
| 3357 | } else { |
| 3358 | kq->kq_state |= KQ_KEV_QOS; |
| 3359 | } |
| 3360 | kqunlock(kq); |
| 3361 | return 0; |
| 3362 | } |
| 3363 | |
| 3364 | #define KQ_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) |
| 3365 | #define CONFIG_KQ_HASHSIZE CONFIG_KN_HASHSIZE |
| 3366 | |
| 3367 | static inline void |
| 3368 | kqhash_lock(proc_t p) |
| 3369 | { |
| 3370 | lck_mtx_lock_spin_always(&p->p_fd->fd_kqhashlock); |
| 3371 | } |
| 3372 | |
| 3373 | static inline void |
| 3374 | kqhash_lock_held(__assert_only proc_t p) |
| 3375 | { |
| 3376 | LCK_MTX_ASSERT(&p->p_fd->fd_kqhashlock, LCK_MTX_ASSERT_OWNED); |
| 3377 | } |
| 3378 | |
| 3379 | static inline void |
| 3380 | kqhash_unlock(proc_t p) |
| 3381 | { |
| 3382 | lck_mtx_unlock(&p->p_fd->fd_kqhashlock); |
| 3383 | } |
| 3384 | |
| 3385 | static void |
| 3386 | kqueue_hash_init_if_needed(proc_t p) |
| 3387 | { |
| 3388 | struct filedesc *fdp = p->p_fd; |
| 3389 | |
| 3390 | kqhash_lock_held(p); |
| 3391 | |
| 3392 | if (__improbable(fdp->fd_kqhash == NULL)) { |
| 3393 | struct kqlist *alloc_hash; |
| 3394 | u_long alloc_mask; |
| 3395 | |
| 3396 | kqhash_unlock(p); |
| 3397 | alloc_hash = hashinit(CONFIG_KQ_HASHSIZE, M_KQUEUE, &alloc_mask); |
| 3398 | kqhash_lock(p); |
| 3399 | |
| 3400 | /* See if we won the race */ |
| 3401 | if (fdp->fd_kqhashmask == 0) { |
| 3402 | fdp->fd_kqhash = alloc_hash; |
| 3403 | fdp->fd_kqhashmask = alloc_mask; |
| 3404 | } else { |
| 3405 | kqhash_unlock(p); |
| 3406 | FREE(alloc_hash, M_KQUEUE); |
| 3407 | kqhash_lock(p); |
| 3408 | } |
| 3409 | } |
| 3410 | } |
| 3411 | |
| 3412 | /* |
| 3413 | * Called with the kqhash_lock() held |
| 3414 | */ |
| 3415 | static void |
| 3416 | kqueue_hash_insert( |
| 3417 | struct proc *p, |
| 3418 | kqueue_id_t id, |
| 3419 | struct kqueue *kq) |
| 3420 | { |
| 3421 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 3422 | struct filedesc *fdp = p->p_fd; |
| 3423 | struct kqlist *list; |
| 3424 | |
| 3425 | /* should hold the kq hash lock */ |
| 3426 | kqhash_lock_held(p); |
| 3427 | |
| 3428 | if ((kq->kq_state & KQ_DYNAMIC) == 0) { |
| 3429 | assert(kq->kq_state & KQ_DYNAMIC); |
| 3430 | return; |
| 3431 | } |
| 3432 | |
| 3433 | /* only dynamically allocate workloop kqs for now */ |
| 3434 | assert(kq->kq_state & KQ_WORKLOOP); |
| 3435 | assert(fdp->fd_kqhash); |
| 3436 | |
| 3437 | kqwl->kqwl_dynamicid = id; |
| 3438 | |
| 3439 | list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; |
| 3440 | SLIST_INSERT_HEAD(list, kqwl, kqwl_hashlink); |
| 3441 | } |
| 3442 | |
| 3443 | /* Called with kqhash_lock held */ |
| 3444 | static void |
| 3445 | kqueue_hash_remove( |
| 3446 | struct proc *p, |
| 3447 | struct kqueue *kq) |
| 3448 | { |
| 3449 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 3450 | struct filedesc *fdp = p->p_fd; |
| 3451 | struct kqlist *list; |
| 3452 | |
| 3453 | /* should hold the kq hash lock */ |
| 3454 | kqhash_lock_held(p); |
| 3455 | |
| 3456 | if ((kq->kq_state & KQ_DYNAMIC) == 0) { |
| 3457 | assert(kq->kq_state & KQ_DYNAMIC); |
| 3458 | return; |
| 3459 | } |
| 3460 | assert(kq->kq_state & KQ_WORKLOOP); /* for now */ |
| 3461 | list = &fdp->fd_kqhash[KQ_HASH(kqwl->kqwl_dynamicid, fdp->fd_kqhashmask)]; |
| 3462 | SLIST_REMOVE(list, kqwl, kqworkloop, kqwl_hashlink); |
| 3463 | } |
| 3464 | |
| 3465 | /* Called with kqhash_lock held */ |
| 3466 | static struct kqueue * |
| 3467 | kqueue_hash_lookup(struct proc *p, kqueue_id_t id) |
| 3468 | { |
| 3469 | struct filedesc *fdp = p->p_fd; |
| 3470 | struct kqlist *list; |
| 3471 | struct kqworkloop *kqwl; |
| 3472 | |
| 3473 | /* should hold the kq hash lock */ |
| 3474 | kqhash_lock_held(p); |
| 3475 | |
| 3476 | if (fdp->fd_kqhashmask == 0) return NULL; |
| 3477 | |
| 3478 | list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; |
| 3479 | SLIST_FOREACH(kqwl, list, kqwl_hashlink) { |
| 3480 | if (kqwl->kqwl_dynamicid == id) { |
| 3481 | struct kqueue *kq = (struct kqueue *)kqwl; |
| 3482 | |
| 3483 | assert(kq->kq_state & KQ_DYNAMIC); |
| 3484 | assert(kq->kq_state & KQ_WORKLOOP); /* for now */ |
| 3485 | return kq; |
| 3486 | } |
| 3487 | } |
| 3488 | return NULL; |
| 3489 | } |
| 3490 | |
| 3491 | static inline void |
| 3492 | kqueue_release_last(struct proc *p, kqueue_t kqu) |
| 3493 | { |
| 3494 | struct kqueue *kq = kqu.kq; |
| 3495 | if (kq->kq_state & KQ_DYNAMIC) { |
| 3496 | kqhash_lock(p); |
| 3497 | if (kqueue_release(kq, KQUEUE_MIGHT_BE_LAST_REF)) { |
| 3498 | thread_t cur_owner = kqworkloop_invalidate(kqu.kqwl); |
| 3499 | kqueue_hash_remove(p, kq); |
| 3500 | kqhash_unlock(p); |
| 3501 | if (cur_owner) thread_deallocate(cur_owner); |
| 3502 | kqueue_dealloc(kq); |
| 3503 | } else { |
| 3504 | kqhash_unlock(p); |
| 3505 | } |
| 3506 | } |
| 3507 | } |
| 3508 | |
| 3509 | /* |
| 3510 | * kqworkloops_dealloc - rebalance retains on kqworkloops created with |
| 3511 | * scheduling parameters |
| 3512 | * |
| 3513 | * Called with proc_fdlock held. |
| 3514 | * Returns with it locked. |
| 3515 | * Process is in such a state that it will not try to allocate |
| 3516 | * any more knotes during this process (stopped for exit or exec). |
| 3517 | */ |
| 3518 | void |
| 3519 | kqworkloops_dealloc(proc_t p) |
| 3520 | { |
| 3521 | struct filedesc *fdp = p->p_fd; |
| 3522 | struct kqlist *list; |
| 3523 | struct kqworkloop *kqwl, *kqwln; |
| 3524 | struct kqlist tofree; |
| 3525 | int i; |
| 3526 | |
| 3527 | if (!(fdp->fd_flags & FD_WORKLOOP)) { |
| 3528 | return; |
| 3529 | } |
| 3530 | |
| 3531 | SLIST_INIT(&tofree); |
| 3532 | |
| 3533 | kqhash_lock(p); |
| 3534 | assert(fdp->fd_kqhashmask != 0); |
| 3535 | |
| 3536 | for (i = 0; i <= (int)fdp->fd_kqhashmask; i++) { |
| 3537 | list = &fdp->fd_kqhash[i]; |
| 3538 | SLIST_FOREACH_SAFE(kqwl, list, kqwl_hashlink, kqwln) { |
| 3539 | /* |
| 3540 | * kqworkloops that have scheduling parameters have an |
| 3541 | * implicit retain from kqueue_workloop_ctl that needs |
| 3542 | * to be balanced on process exit. |
| 3543 | */ |
| 3544 | assert(kqwl->kqwl_params); |
| 3545 | SLIST_REMOVE(list, kqwl, kqworkloop, kqwl_hashlink); |
| 3546 | SLIST_INSERT_HEAD(&tofree, kqwl, kqwl_hashlink); |
| 3547 | } |
| 3548 | } |
| 3549 | |
| 3550 | kqhash_unlock(p); |
| 3551 | |
| 3552 | SLIST_FOREACH_SAFE(kqwl, &tofree, kqwl_hashlink, kqwln) { |
| 3553 | struct kqueue *kq = (struct kqueue *)kqwl; |
| 3554 | __assert_only bool released; |
| 3555 | released = kqueue_release(kq, KQUEUE_MIGHT_BE_LAST_REF); |
| 3556 | assert(released); |
| 3557 | kqueue_dealloc(kq); |
| 3558 | } |
| 3559 | } |
| 3560 | |
| 3561 | static struct kqueue * |
| 3562 | kevent_get_bound_kqworkloop(thread_t thread) |
| 3563 | { |
| 3564 | struct uthread *ut = get_bsdthread_info(thread); |
| 3565 | struct kqrequest *kqr = ut->uu_kqr_bound; |
| 3566 | |
| 3567 | return kqr ? (struct kqueue *)kqr_kqworkloop(kqr) : NULL; |
| 3568 | } |
| 3569 | |
| 3570 | static int |
| 3571 | kevent_get_kq(struct proc *p, kqueue_id_t id, workq_threadreq_param_t *trp, |
| 3572 | unsigned int flags, struct fileproc **fpp, int *fdp, |
| 3573 | struct kqueue **kqp) |
| 3574 | { |
| 3575 | struct filedesc *descp = p->p_fd; |
| 3576 | struct fileproc *fp = NULL; |
| 3577 | struct kqueue *kq = NULL; |
| 3578 | int fd = 0; |
| 3579 | int error = 0; |
| 3580 | thread_t th = current_thread(); |
| 3581 | |
| 3582 | assert(!trp || (flags & KEVENT_FLAG_WORKLOOP)); |
| 3583 | |
| 3584 | /* Was the workloop flag passed? Then it is for sure only a workloop */ |
| 3585 | if (flags & KEVENT_FLAG_DYNAMIC_KQUEUE) { |
| 3586 | assert(flags & KEVENT_FLAG_WORKLOOP); |
| 3587 | assert(!trp || (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)); |
| 3588 | kq = kevent_get_bound_kqworkloop(th); |
| 3589 | |
| 3590 | /* |
| 3591 | * when kevent_id_internal is called from within the |
| 3592 | * kernel, and the passed 'id' value is '-1' then we |
| 3593 | * look for the currently bound workloop kq. |
| 3594 | */ |
| 3595 | if (id == (kqueue_id_t)-1 && |
| 3596 | (flags & KEVENT_FLAG_KERNEL) && |
| 3597 | (flags & KEVENT_FLAG_WORKLOOP)) { |
| 3598 | |
| 3599 | if (!is_workqueue_thread(th) || !kq) { |
| 3600 | return EINVAL; |
| 3601 | } |
| 3602 | |
| 3603 | kqueue_retain(kq); |
| 3604 | goto out; |
| 3605 | } |
| 3606 | |
| 3607 | if (id == 0 || id == (kqueue_id_t)-1) { |
| 3608 | return EINVAL; |
| 3609 | } |
| 3610 | |
| 3611 | /* try shortcut on kq lookup for bound threads */ |
| 3612 | if (kq != NULL && ((struct kqworkloop *)kq)->kqwl_dynamicid == id) { |
| 3613 | |
| 3614 | if (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST) { |
| 3615 | return EEXIST; |
| 3616 | } |
| 3617 | |
| 3618 | /* retain a reference while working with this kq. */ |
| 3619 | assert(kq->kq_state & KQ_DYNAMIC); |
| 3620 | kqueue_retain(kq); |
| 3621 | goto out; |
| 3622 | } |
| 3623 | |
| 3624 | /* look for the kq on the hash table */ |
| 3625 | kqhash_lock(p); |
| 3626 | kq = kqueue_hash_lookup(p, id); |
| 3627 | if (kq == NULL) { |
| 3628 | kqhash_unlock(p); |
| 3629 | |
| 3630 | if (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST) { |
| 3631 | return ENOENT; |
| 3632 | } |
| 3633 | |
| 3634 | struct kqueue *alloc_kq; |
| 3635 | alloc_kq = kqueue_alloc(p, flags); |
| 3636 | if (!alloc_kq) { |
| 3637 | return ENOMEM; |
| 3638 | } |
| 3639 | |
| 3640 | kqhash_lock(p); |
| 3641 | kqueue_hash_init_if_needed(p); |
| 3642 | kq = kqueue_hash_lookup(p, id); |
| 3643 | if (kq == NULL) { |
| 3644 | /* insert our new one */ |
| 3645 | kq = alloc_kq; |
| 3646 | if (trp) { |
| 3647 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 3648 | kqwl->kqwl_params = trp->trp_value; |
| 3649 | } |
| 3650 | kqueue_hash_insert(p, id, kq); |
| 3651 | kqhash_unlock(p); |
| 3652 | } else if (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST) { |
| 3653 | /* lost race and caller wants an error */ |
| 3654 | kqhash_unlock(p); |
| 3655 | kqueue_release(alloc_kq, KQUEUE_MIGHT_BE_LAST_REF); |
| 3656 | kqueue_dealloc(alloc_kq); |
| 3657 | return EEXIST; |
| 3658 | } else { |
| 3659 | /* lost race, retain existing workloop */ |
| 3660 | kqueue_retain(kq); |
| 3661 | kqhash_unlock(p); |
| 3662 | kqueue_release(alloc_kq, KQUEUE_MIGHT_BE_LAST_REF); |
| 3663 | kqueue_dealloc(alloc_kq); |
| 3664 | } |
| 3665 | } else { |
| 3666 | |
| 3667 | if (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST) { |
| 3668 | kqhash_unlock(p); |
| 3669 | return EEXIST; |
| 3670 | } |
| 3671 | |
| 3672 | /* retain a reference while working with this kq. */ |
| 3673 | assert(kq->kq_state & KQ_DYNAMIC); |
| 3674 | kqueue_retain(kq); |
| 3675 | kqhash_unlock(p); |
| 3676 | } |
| 3677 | |
| 3678 | } else if (flags & KEVENT_FLAG_WORKQ) { |
| 3679 | /* must already exist for bound threads. */ |
| 3680 | if (flags & KEVENT_FLAG_KERNEL) { |
| 3681 | assert(descp->fd_wqkqueue != NULL); |
| 3682 | } |
| 3683 | |
| 3684 | /* |
| 3685 | * use the private kq associated with the proc workq. |
| 3686 | * Just being a thread within the process (and not |
| 3687 | * being the exit/exec thread) is enough to hold a |
| 3688 | * reference on this special kq. |
| 3689 | */ |
| 3690 | kq = descp->fd_wqkqueue; |
| 3691 | if (kq == NULL) { |
| 3692 | struct kqueue *alloc_kq = kqueue_alloc(p, KEVENT_FLAG_WORKQ); |
| 3693 | if (alloc_kq == NULL) { |
| 3694 | return ENOMEM; |
| 3695 | } |
| 3696 | |
| 3697 | knhash_lock(p); |
| 3698 | if (descp->fd_wqkqueue == NULL) { |
| 3699 | kq = descp->fd_wqkqueue = alloc_kq; |
| 3700 | knhash_unlock(p); |
| 3701 | } else { |
| 3702 | knhash_unlock(p); |
| 3703 | kq = descp->fd_wqkqueue; |
| 3704 | kqueue_dealloc(alloc_kq); |
| 3705 | } |
| 3706 | } |
| 3707 | } else { |
| 3708 | /* get a usecount for the kq itself */ |
| 3709 | fd = (int)id; |
| 3710 | if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0) |
| 3711 | return (error); |
| 3712 | } |
| 3713 | if ((error = kevent_set_kq_mode(kq, flags)) != 0) { |
| 3714 | /* drop the usecount */ |
| 3715 | if (fp != NULL) |
| 3716 | fp_drop(p, fd, fp, 0); |
| 3717 | return error; |
| 3718 | } |
| 3719 | |
| 3720 | out: |
| 3721 | *fpp = fp; |
| 3722 | *fdp = fd; |
| 3723 | *kqp = kq; |
| 3724 | |
| 3725 | return error; |
| 3726 | } |
| 3727 | |
| 3728 | static void |
| 3729 | kevent_put_kq( |
| 3730 | struct proc *p, |
| 3731 | kqueue_id_t id, |
| 3732 | struct fileproc *fp, |
| 3733 | struct kqueue *kq) |
| 3734 | { |
| 3735 | kqueue_release_last(p, kq); |
| 3736 | if (fp != NULL) { |
| 3737 | assert((kq->kq_state & KQ_WORKQ) == 0); |
| 3738 | fp_drop(p, (int)id, fp, 0); |
| 3739 | } |
| 3740 | } |
| 3741 | |
| 3742 | static uint64_t |
| 3743 | kevent_workloop_serial_no_copyin(proc_t p, uint64_t workloop_id) |
| 3744 | { |
| 3745 | uint64_t serial_no = 0; |
| 3746 | user_addr_t addr; |
| 3747 | int rc; |
| 3748 | |
| 3749 | if (workloop_id == 0 || p->p_dispatchqueue_serialno_offset == 0) { |
| 3750 | return 0; |
| 3751 | } |
| 3752 | addr = (user_addr_t)(workloop_id + p->p_dispatchqueue_serialno_offset); |
| 3753 | |
| 3754 | if (proc_is64bit(p)) { |
| 3755 | rc = copyin(addr, (caddr_t)&serial_no, sizeof(serial_no)); |
| 3756 | } else { |
| 3757 | uint32_t serial_no32 = 0; |
| 3758 | rc = copyin(addr, (caddr_t)&serial_no32, sizeof(serial_no32)); |
| 3759 | serial_no = serial_no32; |
| 3760 | } |
| 3761 | return rc == 0 ? serial_no : 0; |
| 3762 | } |
| 3763 | |
| 3764 | int |
| 3765 | kevent_exit_on_workloop_ownership_leak(thread_t thread) |
| 3766 | { |
| 3767 | proc_t p = current_proc(); |
| 3768 | struct filedesc *fdp = p->p_fd; |
| 3769 | kqueue_id_t workloop_id = 0; |
| 3770 | os_reason_t reason = OS_REASON_NULL; |
| 3771 | mach_vm_address_t addr; |
| 3772 | uint32_t reason_size; |
| 3773 | |
| 3774 | kqhash_lock(p); |
| 3775 | if (fdp->fd_kqhashmask > 0) { |
| 3776 | for (uint32_t i = 0; i < fdp->fd_kqhashmask + 1; i++) { |
| 3777 | struct kqworkloop *kqwl; |
| 3778 | |
| 3779 | SLIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { |
| 3780 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 3781 | if ((kq->kq_state & KQ_DYNAMIC) && kqwl->kqwl_owner == thread) { |
| 3782 | workloop_id = kqwl->kqwl_dynamicid; |
| 3783 | break; |
| 3784 | } |
| 3785 | } |
| 3786 | } |
| 3787 | } |
| 3788 | kqhash_unlock(p); |
| 3789 | |
| 3790 | reason = os_reason_create(OS_REASON_LIBSYSTEM, |
| 3791 | OS_REASON_LIBSYSTEM_CODE_WORKLOOP_OWNERSHIP_LEAK); |
| 3792 | if (reason == OS_REASON_NULL) { |
| 3793 | goto out; |
| 3794 | } |
| 3795 | |
| 3796 | reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; |
| 3797 | reason_size = 2 * sizeof(uint64_t); |
| 3798 | reason_size = kcdata_estimate_required_buffer_size(2, reason_size); |
| 3799 | if (os_reason_alloc_buffer(reason, reason_size) != 0) { |
| 3800 | goto out; |
| 3801 | } |
| 3802 | |
| 3803 | if (workloop_id) { |
| 3804 | struct kcdata_descriptor *kcd = &reason->osr_kcd_descriptor; |
| 3805 | |
| 3806 | if (kcdata_get_memory_addr(kcd, EXIT_REASON_WORKLOOP_ID, |
| 3807 | sizeof(workloop_id), &addr) == KERN_SUCCESS) { |
| 3808 | kcdata_memcpy(kcd, addr, &workloop_id, sizeof(workloop_id)); |
| 3809 | } |
| 3810 | |
| 3811 | uint64_t serial_no = kevent_workloop_serial_no_copyin(p, workloop_id); |
| 3812 | if (serial_no && kcdata_get_memory_addr(kcd, EXIT_REASON_DISPATCH_QUEUE_NO, |
| 3813 | sizeof(serial_no), &addr) == KERN_SUCCESS) { |
| 3814 | kcdata_memcpy(kcd, addr, &serial_no, sizeof(serial_no)); |
| 3815 | } |
| 3816 | } |
| 3817 | out: |
| 3818 | #if DEVELOPMENT || DEBUG |
| 3819 | if (kevent_debug_flags() & KEVENT_PANIC_ON_WORKLOOP_OWNERSHIP_LEAK) { |
| 3820 | panic("thread %p in task %p is leaked workloop 0x%016llx ownership" , |
| 3821 | thread, p->task, workloop_id); |
| 3822 | } |
| 3823 | psignal_try_thread_with_reason(p, thread, SIGABRT, reason); |
| 3824 | return 0; |
| 3825 | #else |
| 3826 | return exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, |
| 3827 | FALSE, FALSE, 0, reason); |
| 3828 | #endif |
| 3829 | } |
| 3830 | |
| 3831 | static inline boolean_t |
| 3832 | kevent_args_requesting_events(unsigned int flags, int nevents) |
| 3833 | { |
| 3834 | return (!(flags & KEVENT_FLAG_ERROR_EVENTS) && nevents > 0); |
| 3835 | } |
| 3836 | |
| 3837 | static int |
| 3838 | kevent_internal(struct proc *p, |
| 3839 | kqueue_id_t id, kqueue_id_t *id_out, |
| 3840 | user_addr_t changelist, int nchanges, |
| 3841 | user_addr_t ueventlist, int nevents, |
| 3842 | user_addr_t data_out, uint64_t data_available, |
| 3843 | unsigned int flags, |
| 3844 | user_addr_t utimeout, |
| 3845 | kqueue_continue_t continuation, |
| 3846 | int32_t *retval) |
| 3847 | { |
| 3848 | uthread_t ut; |
| 3849 | struct kqueue *kq; |
| 3850 | struct fileproc *fp = NULL; |
| 3851 | int fd = 0; |
| 3852 | struct kevent_internal_s kev; |
| 3853 | int error, noutputs, register_rc; |
| 3854 | bool needs_end_processing = false; |
| 3855 | struct timeval atv; |
| 3856 | user_size_t data_size; |
| 3857 | user_size_t data_resid; |
| 3858 | thread_t thread = current_thread(); |
| 3859 | KNOTE_LOCK_CTX(knlc); |
| 3860 | |
| 3861 | /* Don't allow user-space threads to process output events from the workq kqs */ |
| 3862 | if (((flags & (KEVENT_FLAG_WORKQ | KEVENT_FLAG_KERNEL)) == KEVENT_FLAG_WORKQ) && |
| 3863 | kevent_args_requesting_events(flags, nevents)) |
| 3864 | return EINVAL; |
| 3865 | |
| 3866 | if (flags & KEVENT_FLAG_PARKING) { |
| 3867 | if (!kevent_args_requesting_events(flags, nevents) || id != (kqueue_id_t)-1) |
| 3868 | return EINVAL; |
| 3869 | } |
| 3870 | |
| 3871 | /* restrict dynamic kqueue allocation to workloops (for now) */ |
| 3872 | if ((flags & (KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP)) == KEVENT_FLAG_DYNAMIC_KQUEUE) |
| 3873 | return EINVAL; |
| 3874 | |
| 3875 | if ((flags & (KEVENT_FLAG_WORKLOOP)) && (flags & (KEVENT_FLAG_WORKQ))) |
| 3876 | return EINVAL; |
| 3877 | |
| 3878 | if (flags & (KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST | KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)) { |
| 3879 | |
| 3880 | /* allowed only on workloops when calling kevent_id from user-space */ |
| 3881 | if (!(flags & KEVENT_FLAG_WORKLOOP) || (flags & KEVENT_FLAG_KERNEL) || !(flags & KEVENT_FLAG_DYNAMIC_KQUEUE)) |
| 3882 | return EINVAL; |
| 3883 | } |
| 3884 | |
| 3885 | /* prepare to deal with stack-wise allocation of out events */ |
| 3886 | if (flags & KEVENT_FLAG_STACK_EVENTS) { |
| 3887 | int scale = ((flags & KEVENT_FLAG_LEGACY32) ? |
| 3888 | (IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : |
| 3889 | sizeof(struct user32_kevent)) : |
| 3890 | ((flags & KEVENT_FLAG_LEGACY64) ? sizeof(struct kevent64_s) : |
| 3891 | sizeof(struct kevent_qos_s))); |
| 3892 | ueventlist += nevents * scale; |
| 3893 | } |
| 3894 | |
| 3895 | /* convert timeout to absolute - if we have one (and not immediate) */ |
| 3896 | error = kevent_get_timeout(p, utimeout, flags, &atv); |
| 3897 | if (error) |
| 3898 | return error; |
| 3899 | |
| 3900 | /* copyin initial value of data residual from data_available */ |
| 3901 | error = kevent_get_data_size(p, data_available, flags, &data_size); |
| 3902 | if (error) |
| 3903 | return error; |
| 3904 | |
| 3905 | /* get the kq we are going to be working on */ |
| 3906 | error = kevent_get_kq(p, id, NULL, flags, &fp, &fd, &kq); |
| 3907 | #if CONFIG_WORKLOOP_DEBUG |
| 3908 | ut = (uthread_t)get_bsdthread_info(thread); |
| 3909 | UU_KEVENT_HISTORY_WRITE_ENTRY(ut, { |
| 3910 | .uu_kqid = id, |
| 3911 | .uu_kq = error ? NULL : kq, |
| 3912 | .uu_error = error, |
| 3913 | .uu_nchanges = nchanges, |
| 3914 | .uu_nevents = nevents, |
| 3915 | .uu_flags = flags, |
| 3916 | }); |
| 3917 | #endif // CONFIG_WORKLOOP_DEBUG |
| 3918 | if (error) |
| 3919 | return error; |
| 3920 | |
| 3921 | /* only bound threads can receive events on workloops */ |
| 3922 | if (flags & KEVENT_FLAG_WORKLOOP) { |
| 3923 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 3924 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 3925 | |
| 3926 | assert(kq->kq_state & KQ_WORKLOOP); |
| 3927 | |
| 3928 | if (kevent_args_requesting_events(flags, nevents)) { |
| 3929 | if (kq != kevent_get_bound_kqworkloop(thread)) { |
| 3930 | error = EXDEV; |
| 3931 | goto out; |
| 3932 | } |
| 3933 | |
| 3934 | kq_req_lock(kqwl); |
| 3935 | /* |
| 3936 | * Disable the R2K notification while doing a register, if the |
| 3937 | * caller wants events too, we don't want the AST to be set if we |
| 3938 | * will process these events soon. |
| 3939 | */ |
| 3940 | kqr->kqr_state &= ~KQR_R2K_NOTIF_ARMED; |
| 3941 | needs_end_processing = true; |
| 3942 | kq_req_unlock(kq); |
| 3943 | } |
| 3944 | |
| 3945 | if (id_out) { |
| 3946 | *id_out = kqwl->kqwl_dynamicid; |
| 3947 | } |
| 3948 | |
| 3949 | } |
| 3950 | |
| 3951 | /* register all the change requests the user provided... */ |
| 3952 | noutputs = 0; |
| 3953 | while (nchanges > 0 && error == 0) { |
| 3954 | error = kevent_copyin(&changelist, &kev, p, flags); |
| 3955 | if (error) |
| 3956 | break; |
| 3957 | |
| 3958 | /* Make sure user doesn't pass in any system flags */ |
| 3959 | kev.flags &= ~EV_SYSFLAGS; |
| 3960 | |
| 3961 | register_rc = kevent_register(kq, &kev, &knlc); |
| 3962 | if (register_rc & FILTER_REGISTER_WAIT) { |
| 3963 | kqlock_held(kq); |
| 3964 | |
| 3965 | // f_post_register_wait is meant to call a continuation and not to |
| 3966 | // return, which is why we don't support FILTER_REGISTER_WAIT if |
| 3967 | // KEVENT_FLAG_ERROR_EVENTS is not passed, or if the event that |
| 3968 | // waits isn't the last. |
| 3969 | // |
| 3970 | // It is implementable, but not used by any userspace code at the |
| 3971 | // moment, so for now return ENOTSUP if someone tries to do it. |
| 3972 | if (nchanges == 1 && nevents >= 1 && (flags & KEVENT_FLAG_ERROR_EVENTS)) { |
| 3973 | struct _kevent_register *cont_args; |
| 3974 | /* store the continuation/completion data in the uthread */ |
| 3975 | ut = (uthread_t)get_bsdthread_info(thread); |
| 3976 | cont_args = &ut->uu_save.uus_kevent_register; |
| 3977 | cont_args->kev = kev; |
| 3978 | cont_args->kq = kq; |
| 3979 | cont_args->fp = fp; |
| 3980 | cont_args->fd = fd; |
| 3981 | cont_args->ueventlist = ueventlist; |
| 3982 | cont_args->flags = flags; |
| 3983 | cont_args->retval = retval; |
| 3984 | cont_args->eventcount = nevents; |
| 3985 | cont_args->eventout = noutputs; |
| 3986 | knote_fops(cont_args->knote)->f_post_register_wait(ut, &knlc, cont_args); |
| 3987 | panic("f_post_register_wait returned (kev: %p)" , &kev); |
| 3988 | } |
| 3989 | |
| 3990 | kev.flags |= EV_ERROR; |
| 3991 | kev.data = ENOTSUP; |
| 3992 | knote_unlock(kq, knlc.knlc_knote, &knlc, KNOTE_KQ_UNLOCK); |
| 3993 | } |
| 3994 | |
| 3995 | // keep in sync with kevent_register_wait_return() |
| 3996 | if (nevents > 0 && (kev.flags & (EV_ERROR|EV_RECEIPT))) { |
| 3997 | if ((kev.flags & EV_ERROR) == 0) { |
| 3998 | kev.flags |= EV_ERROR; |
| 3999 | kev.data = 0; |
| 4000 | } |
| 4001 | error = kevent_copyout(&kev, &ueventlist, p, flags); |
| 4002 | if (error == 0) { |
| 4003 | nevents--; |
| 4004 | noutputs++; |
| 4005 | } |
| 4006 | } else if (kev.flags & EV_ERROR) { |
| 4007 | error = kev.data; |
| 4008 | } |
| 4009 | nchanges--; |
| 4010 | } |
| 4011 | |
| 4012 | /* short-circuit the scan if we only want error events */ |
| 4013 | if (flags & KEVENT_FLAG_ERROR_EVENTS) |
| 4014 | nevents = 0; |
| 4015 | |
| 4016 | /* process pending events */ |
| 4017 | if (nevents > 0 && noutputs == 0 && error == 0) { |
| 4018 | struct _kevent *cont_args; |
| 4019 | /* store the continuation/completion data in the uthread */ |
| 4020 | ut = (uthread_t)get_bsdthread_info(thread); |
| 4021 | cont_args = &ut->uu_save.uus_kevent; |
| 4022 | cont_args->fp = fp; |
| 4023 | cont_args->fd = fd; |
| 4024 | cont_args->retval = retval; |
| 4025 | cont_args->eventlist = ueventlist; |
| 4026 | cont_args->eventcount = nevents; |
| 4027 | cont_args->eventout = noutputs; |
| 4028 | cont_args->data_available = data_available; |
| 4029 | cont_args->process_data.fp_fd = (int)id; |
| 4030 | cont_args->process_data.fp_flags = flags; |
| 4031 | cont_args->process_data.fp_data_out = data_out; |
| 4032 | cont_args->process_data.fp_data_size = data_size; |
| 4033 | cont_args->process_data.fp_data_resid = data_size; |
| 4034 | |
| 4035 | /* |
| 4036 | * kqworkloop_end_processing() will happen at the end of kqueue_scan() |
| 4037 | */ |
| 4038 | needs_end_processing = false; |
| 4039 | |
| 4040 | error = kqueue_scan(kq, kevent_callback, |
| 4041 | continuation, cont_args, |
| 4042 | &cont_args->process_data, |
| 4043 | &atv, p); |
| 4044 | |
| 4045 | /* process remaining outputs */ |
| 4046 | noutputs = cont_args->eventout; |
| 4047 | data_resid = cont_args->process_data.fp_data_resid; |
| 4048 | |
| 4049 | /* copyout residual data size value (if it needs to be copied out) */ |
| 4050 | /* don't abandon other output just because of residual copyout failures */ |
| 4051 | if (error == 0 && data_available && data_resid != data_size) { |
| 4052 | (void)kevent_put_data_size(p, data_available, flags, data_resid); |
| 4053 | } |
| 4054 | } |
| 4055 | |
| 4056 | out: |
| 4057 | if (__improbable(needs_end_processing)) { |
| 4058 | /* |
| 4059 | * If we didn't through kqworkloop_end_processing(), |
| 4060 | * we need to do it here. |
| 4061 | */ |
| 4062 | kqlock(kq); |
| 4063 | kqworkloop_end_processing((struct kqworkloop *)kq, 0, 0); |
| 4064 | kqunlock(kq); |
| 4065 | } |
| 4066 | kevent_put_kq(p, id, fp, kq); |
| 4067 | |
| 4068 | /* don't restart after signals... */ |
| 4069 | if (error == ERESTART) |
| 4070 | error = EINTR; |
| 4071 | else if (error == EWOULDBLOCK) |
| 4072 | error = 0; |
| 4073 | if (error == 0) |
| 4074 | *retval = noutputs; |
| 4075 | return (error); |
| 4076 | } |
| 4077 | |
| 4078 | |
| 4079 | /* |
| 4080 | * kevent_callback - callback for each individual event |
| 4081 | * |
| 4082 | * called with nothing locked |
| 4083 | * caller holds a reference on the kqueue |
| 4084 | */ |
| 4085 | static int |
| 4086 | kevent_callback(__unused struct kqueue *kq, struct kevent_internal_s *kevp, |
| 4087 | void *data) |
| 4088 | { |
| 4089 | struct _kevent *cont_args; |
| 4090 | int error; |
| 4091 | |
| 4092 | cont_args = (struct _kevent *)data; |
| 4093 | assert(cont_args->eventout < cont_args->eventcount); |
| 4094 | |
| 4095 | /* |
| 4096 | * Copy out the appropriate amount of event data for this user. |
| 4097 | */ |
| 4098 | error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), |
| 4099 | cont_args->process_data.fp_flags); |
| 4100 | |
| 4101 | /* |
| 4102 | * If there isn't space for additional events, return |
| 4103 | * a harmless error to stop the processing here |
| 4104 | */ |
| 4105 | if (error == 0 && ++cont_args->eventout == cont_args->eventcount) |
| 4106 | error = EWOULDBLOCK; |
| 4107 | return (error); |
| 4108 | } |
| 4109 | |
| 4110 | /* |
| 4111 | * kevent_description - format a description of a kevent for diagnostic output |
| 4112 | * |
| 4113 | * called with a 256-byte string buffer |
| 4114 | */ |
| 4115 | |
| 4116 | char * |
| 4117 | kevent_description(struct kevent_internal_s *kevp, char *s, size_t n) |
| 4118 | { |
| 4119 | snprintf(s, n, |
| 4120 | "kevent=" |
| 4121 | "{.ident=%#llx, .filter=%d, .flags=%#x, .udata=%#llx, .fflags=%#x, .data=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}" , |
| 4122 | kevp->ident, |
| 4123 | kevp->filter, |
| 4124 | kevp->flags, |
| 4125 | kevp->udata, |
| 4126 | kevp->fflags, |
| 4127 | kevp->data, |
| 4128 | kevp->ext[0], |
| 4129 | kevp->ext[1] ); |
| 4130 | |
| 4131 | return (s); |
| 4132 | } |
| 4133 | |
| 4134 | static int |
| 4135 | kevent_register_validate_priority(struct kqueue *kq, struct knote *kn, |
| 4136 | struct kevent_internal_s *kev) |
| 4137 | { |
| 4138 | /* We don't care about the priority of a disabled or deleted knote */ |
| 4139 | if (kev->flags & (EV_DISABLE | EV_DELETE)) { |
| 4140 | return 0; |
| 4141 | } |
| 4142 | |
| 4143 | if (kq->kq_state & KQ_WORKLOOP) { |
| 4144 | /* |
| 4145 | * Workloops need valid priorities with a QOS (excluding manager) for |
| 4146 | * any enabled knote. |
| 4147 | * |
| 4148 | * When it is pre-existing, just make sure it has a valid QoS as |
| 4149 | * kevent_register() will not use the incoming priority (filters who do |
| 4150 | * have the responsibility to validate it again, see filt_wltouch). |
| 4151 | * |
| 4152 | * If the knote is being made, validate the incoming priority. |
| 4153 | */ |
| 4154 | if (!_pthread_priority_thread_qos(kn ? kn->kn_qos : kev->qos)) { |
| 4155 | return ERANGE; |
| 4156 | } |
| 4157 | } |
| 4158 | |
| 4159 | return 0; |
| 4160 | } |
| 4161 | |
| 4162 | /* |
| 4163 | * Prepare a filter for waiting after register. |
| 4164 | * |
| 4165 | * The f_post_register_wait hook will be called later by kevent_register() |
| 4166 | * and should call kevent_register_wait_block() |
| 4167 | */ |
| 4168 | static int |
| 4169 | kevent_register_wait_prepare(struct knote *kn, struct kevent_internal_s *kev) |
| 4170 | { |
| 4171 | thread_t thread = current_thread(); |
| 4172 | struct uthread *uth = get_bsdthread_info(thread); |
| 4173 | |
| 4174 | assert(knote_fops(kn)->f_extended_codes); |
| 4175 | |
| 4176 | if (kn->kn_hook == NULL) { |
| 4177 | thread_reference(thread); |
| 4178 | kn->kn_hook = thread; |
| 4179 | } else if (kn->kn_hook != thread) { |
| 4180 | /* |
| 4181 | * kn_hook may be set from a previous aborted wait |
| 4182 | * However, it has to be from the same thread. |
| 4183 | */ |
| 4184 | kev->flags |= EV_ERROR; |
| 4185 | kev->data = EXDEV; |
| 4186 | return 0; |
| 4187 | } |
| 4188 | |
| 4189 | uth->uu_save.uus_kevent_register.knote = kn; |
| 4190 | return FILTER_REGISTER_WAIT; |
| 4191 | } |
| 4192 | |
| 4193 | /* |
| 4194 | * Cleanup a kevent_register_wait_prepare() effect for threads that have been |
| 4195 | * aborted instead of properly woken up with thread_wakeup_thread(). |
| 4196 | */ |
| 4197 | static void |
| 4198 | kevent_register_wait_cleanup(struct knote *kn) |
| 4199 | { |
| 4200 | thread_t thread = kn->kn_hook; |
| 4201 | kn->kn_hook = NULL; |
| 4202 | thread_deallocate(thread); |
| 4203 | } |
| 4204 | |
| 4205 | /* |
| 4206 | * Must be called at the end of a f_post_register_wait call from a filter. |
| 4207 | */ |
| 4208 | static void |
| 4209 | kevent_register_wait_block(struct turnstile *ts, thread_t thread, |
| 4210 | struct knote_lock_ctx *knlc, thread_continue_t cont, |
| 4211 | struct _kevent_register *cont_args) |
| 4212 | { |
| 4213 | knote_unlock(cont_args->kq, cont_args->knote, knlc, KNOTE_KQ_UNLOCK); |
| 4214 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_NOT_HELD); |
| 4215 | cont_args->handoff_thread = thread; |
| 4216 | thread_handoff_parameter(thread, cont, cont_args); |
| 4217 | } |
| 4218 | |
| 4219 | /* |
| 4220 | * Called by Filters using a f_post_register_wait to return from their wait. |
| 4221 | */ |
| 4222 | static void |
| 4223 | kevent_register_wait_return(struct _kevent_register *cont_args) |
| 4224 | { |
| 4225 | struct kqueue *kq = cont_args->kq; |
| 4226 | proc_t p = kq->kq_p; |
| 4227 | struct kevent_internal_s *kev = &cont_args->kev; |
| 4228 | int error = 0; |
| 4229 | |
| 4230 | if (cont_args->handoff_thread) { |
| 4231 | thread_deallocate(cont_args->handoff_thread); |
| 4232 | } |
| 4233 | |
| 4234 | if (kev->flags & (EV_ERROR|EV_RECEIPT)) { |
| 4235 | if ((kev->flags & EV_ERROR) == 0) { |
| 4236 | kev->flags |= EV_ERROR; |
| 4237 | kev->data = 0; |
| 4238 | } |
| 4239 | error = kevent_copyout(kev, &cont_args->ueventlist, p, cont_args->flags); |
| 4240 | if (error == 0) cont_args->eventout++; |
| 4241 | } |
| 4242 | |
| 4243 | kevent_put_kq(p, cont_args->fd, cont_args->fp, kq); |
| 4244 | if (error == 0) { |
| 4245 | *cont_args->retval = cont_args->eventout; |
| 4246 | } |
| 4247 | unix_syscall_return(error); |
| 4248 | } |
| 4249 | |
| 4250 | /* |
| 4251 | * kevent_register - add a new event to a kqueue |
| 4252 | * |
| 4253 | * Creates a mapping between the event source and |
| 4254 | * the kqueue via a knote data structure. |
| 4255 | * |
| 4256 | * Because many/most the event sources are file |
| 4257 | * descriptor related, the knote is linked off |
| 4258 | * the filedescriptor table for quick access. |
| 4259 | * |
| 4260 | * called with nothing locked |
| 4261 | * caller holds a reference on the kqueue |
| 4262 | */ |
| 4263 | |
| 4264 | int |
| 4265 | kevent_register(struct kqueue *kq, struct kevent_internal_s *kev, |
| 4266 | struct knote_lock_ctx *knlc) |
| 4267 | { |
| 4268 | struct proc *p = kq->kq_p; |
| 4269 | const struct filterops *fops; |
| 4270 | struct knote *kn = NULL; |
| 4271 | int result = 0, error = 0; |
| 4272 | unsigned short kev_flags = kev->flags; |
| 4273 | |
| 4274 | if (kev->filter < 0) { |
| 4275 | if (kev->filter + EVFILT_SYSCOUNT < 0) { |
| 4276 | error = EINVAL; |
| 4277 | goto out; |
| 4278 | } |
| 4279 | fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ |
| 4280 | } else { |
| 4281 | error = EINVAL; |
| 4282 | goto out; |
| 4283 | } |
| 4284 | |
| 4285 | /* restrict EV_VANISHED to adding udata-specific dispatch kevents */ |
| 4286 | if ((kev->flags & EV_VANISHED) && |
| 4287 | (kev->flags & (EV_ADD | EV_DISPATCH2)) != (EV_ADD | EV_DISPATCH2)) { |
| 4288 | error = EINVAL; |
| 4289 | goto out; |
| 4290 | } |
| 4291 | |
| 4292 | /* Simplify the flags - delete and disable overrule */ |
| 4293 | if (kev->flags & EV_DELETE) |
| 4294 | kev->flags &= ~EV_ADD; |
| 4295 | if (kev->flags & EV_DISABLE) |
| 4296 | kev->flags &= ~EV_ENABLE; |
| 4297 | |
| 4298 | if (kq->kq_state & KQ_WORKLOOP) { |
| 4299 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_REGISTER), |
| 4300 | ((struct kqworkloop *)kq)->kqwl_dynamicid, |
| 4301 | kev->udata, kev->flags, kev->filter); |
| 4302 | } else if (kq->kq_state & KQ_WORKQ) { |
| 4303 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_REGISTER), |
| 4304 | 0, kev->udata, kev->flags, kev->filter); |
| 4305 | } else { |
| 4306 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_REGISTER), |
| 4307 | VM_KERNEL_UNSLIDE_OR_PERM(kq), |
| 4308 | kev->udata, kev->flags, kev->filter); |
| 4309 | } |
| 4310 | |
| 4311 | restart: |
| 4312 | /* find the matching knote from the fd tables/hashes */ |
| 4313 | kn = kq_find_knote_and_kq_lock(kq, kev, fops->f_isfd, p); |
| 4314 | error = kevent_register_validate_priority(kq, kn, kev); |
| 4315 | result = 0; |
| 4316 | if (error) { |
| 4317 | goto out; |
| 4318 | } |
| 4319 | |
| 4320 | if (kn == NULL && (kev->flags & EV_ADD) == 0) { |
| 4321 | /* |
| 4322 | * No knote found, EV_ADD wasn't specified |
| 4323 | */ |
| 4324 | |
| 4325 | if ((kev_flags & EV_ADD) && (kev_flags & EV_DELETE) && |
| 4326 | (kq->kq_state & KQ_WORKLOOP)) { |
| 4327 | /* |
| 4328 | * For workloops, understand EV_ADD|EV_DELETE as a "soft" delete |
| 4329 | * that doesn't care about ENOENT, so just pretend the deletion |
| 4330 | * happened. |
| 4331 | */ |
| 4332 | } else { |
| 4333 | error = ENOENT; |
| 4334 | } |
| 4335 | goto out; |
| 4336 | |
| 4337 | } else if (kn == NULL) { |
| 4338 | /* |
| 4339 | * No knote found, need to attach a new one (attach) |
| 4340 | */ |
| 4341 | |
| 4342 | struct fileproc *knote_fp = NULL; |
| 4343 | |
| 4344 | /* grab a file reference for the new knote */ |
| 4345 | if (fops->f_isfd) { |
| 4346 | if ((error = fp_lookup(p, kev->ident, &knote_fp, 0)) != 0) { |
| 4347 | goto out; |
| 4348 | } |
| 4349 | } |
| 4350 | |
| 4351 | kn = knote_alloc(); |
| 4352 | if (kn == NULL) { |
| 4353 | error = ENOMEM; |
| 4354 | if (knote_fp != NULL) |
| 4355 | fp_drop(p, kev->ident, knote_fp, 0); |
| 4356 | goto out; |
| 4357 | } |
| 4358 | |
| 4359 | kn->kn_fp = knote_fp; |
| 4360 | kn->kn_kq_packed = (intptr_t)(struct kqueue *)kq; |
| 4361 | kqueue_retain(kq); /* retain a kq ref */ |
| 4362 | kn->kn_filtid = ~kev->filter; |
| 4363 | kn->kn_status = KN_ATTACHING | KN_ATTACHED; |
| 4364 | |
| 4365 | /* was vanish support requested */ |
| 4366 | if (kev->flags & EV_VANISHED) { |
| 4367 | kev->flags &= ~EV_VANISHED; |
| 4368 | kn->kn_status |= KN_REQVANISH; |
| 4369 | } |
| 4370 | |
| 4371 | /* snapshot matching/dispatching protcol flags into knote */ |
| 4372 | if (kev->flags & EV_DISPATCH) |
| 4373 | kn->kn_status |= KN_DISPATCH; |
| 4374 | if (kev->flags & EV_UDATA_SPECIFIC) |
| 4375 | kn->kn_status |= KN_UDATA_SPECIFIC; |
| 4376 | if (kev->flags & EV_DISABLE) |
| 4377 | kn->kn_status |= KN_DISABLED; |
| 4378 | |
| 4379 | /* |
| 4380 | * copy the kevent state into knote |
| 4381 | * protocol is that fflags and data |
| 4382 | * are saved off, and cleared before |
| 4383 | * calling the attach routine. |
| 4384 | */ |
| 4385 | kn->kn_kevent = *kev; |
| 4386 | kn->kn_sfflags = kev->fflags; |
| 4387 | kn->kn_sdata = kev->data; |
| 4388 | kn->kn_fflags = 0; |
| 4389 | kn->kn_data = 0; |
| 4390 | knote_reset_priority(kn, kev->qos); |
| 4391 | |
| 4392 | /* Add the knote for lookup thru the fd table */ |
| 4393 | error = kq_add_knote(kq, kn, knlc, p); |
| 4394 | if (error) { |
| 4395 | (void)kqueue_release(kq, KQUEUE_CANT_BE_LAST_REF); |
| 4396 | knote_free(kn); |
| 4397 | if (knote_fp != NULL) |
| 4398 | fp_drop(p, kev->ident, knote_fp, 0); |
| 4399 | |
| 4400 | if (error == ERESTART) { |
| 4401 | goto restart; |
| 4402 | } |
| 4403 | goto out; |
| 4404 | } |
| 4405 | |
| 4406 | /* fp reference count now applies to knote */ |
| 4407 | |
| 4408 | /* |
| 4409 | * we can't use filter_call() because f_attach can change the filter ops |
| 4410 | * for a filter that supports f_extended_codes, so we need to reload |
| 4411 | * knote_fops() and not use `fops`. |
| 4412 | */ |
| 4413 | result = fops->f_attach(kn, kev); |
| 4414 | if (result && !knote_fops(kn)->f_extended_codes) { |
| 4415 | result = FILTER_ACTIVE; |
| 4416 | } |
| 4417 | |
| 4418 | kqlock(kq); |
| 4419 | |
| 4420 | if (kn->kn_flags & EV_ERROR) { |
| 4421 | /* |
| 4422 | * Failed to attach correctly, so drop. |
| 4423 | */ |
| 4424 | kn->kn_status &= ~(KN_ATTACHED | KN_ATTACHING); |
| 4425 | error = kn->kn_data; |
| 4426 | knote_drop(kq, kn, knlc); |
| 4427 | result = 0; |
| 4428 | goto out; |
| 4429 | } |
| 4430 | |
| 4431 | /* |
| 4432 | * end "attaching" phase - now just attached |
| 4433 | * |
| 4434 | * Mark the thread request overcommit, if appropos |
| 4435 | * |
| 4436 | * If the attach routine indicated that an |
| 4437 | * event is already fired, activate the knote. |
| 4438 | */ |
| 4439 | kn->kn_status &= ~KN_ATTACHING; |
| 4440 | knote_set_qos_overcommit(kn); |
| 4441 | |
| 4442 | if (result & FILTER_ACTIVE) { |
| 4443 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) |
| 4444 | knote_adjust_qos(kq, kn, result); |
| 4445 | knote_activate(kn); |
| 4446 | } |
| 4447 | |
| 4448 | } else if (!knote_lock(kq, kn, knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 4449 | |
| 4450 | /* |
| 4451 | * The knote was dropped while we were waiting for the lock, |
| 4452 | * we need to re-evaluate entirely |
| 4453 | */ |
| 4454 | |
| 4455 | goto restart; |
| 4456 | |
| 4457 | } else if (kev->flags & EV_DELETE) { |
| 4458 | /* |
| 4459 | * Deletion of a knote (drop) |
| 4460 | * |
| 4461 | * If the filter wants to filter drop events, let it do so. |
| 4462 | * |
| 4463 | * defer-delete: when trying to delete a disabled EV_DISPATCH2 knote, |
| 4464 | * we must wait for the knote to be re-enabled (unless it is being |
| 4465 | * re-enabled atomically here). |
| 4466 | */ |
| 4467 | |
| 4468 | if (knote_fops(kn)->f_allow_drop) { |
| 4469 | bool drop; |
| 4470 | |
| 4471 | kqunlock(kq); |
| 4472 | drop = knote_fops(kn)->f_allow_drop(kn, kev); |
| 4473 | kqlock(kq); |
| 4474 | |
| 4475 | if (!drop) goto out_unlock; |
| 4476 | } |
| 4477 | |
| 4478 | if ((kev->flags & EV_ENABLE) == 0 && |
| 4479 | (kn->kn_status & (KN_DISPATCH2 | KN_DISABLED)) == |
| 4480 | (KN_DISPATCH2 | KN_DISABLED)) { |
| 4481 | kn->kn_status |= KN_DEFERDELETE; |
| 4482 | error = EINPROGRESS; |
| 4483 | goto out_unlock; |
| 4484 | } |
| 4485 | |
| 4486 | knote_drop(kq, kn, knlc); |
| 4487 | goto out; |
| 4488 | |
| 4489 | } else { |
| 4490 | /* |
| 4491 | * Regular update of a knote (touch) |
| 4492 | * |
| 4493 | * Call touch routine to notify filter of changes in filter values |
| 4494 | * (and to re-determine if any events are fired). |
| 4495 | * |
| 4496 | * If the knote is in defer-delete, avoid calling the filter touch |
| 4497 | * routine (it has delivered its last event already). |
| 4498 | * |
| 4499 | * If the touch routine had no failure, |
| 4500 | * apply the requested side effects to the knote. |
| 4501 | */ |
| 4502 | |
| 4503 | if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) { |
| 4504 | if (kev->flags & EV_ENABLE) { |
| 4505 | result = FILTER_ACTIVE; |
| 4506 | } |
| 4507 | } else { |
| 4508 | kqunlock(kq); |
| 4509 | result = filter_call(knote_fops(kn), f_touch(kn, kev)); |
| 4510 | kqlock(kq); |
| 4511 | } |
| 4512 | |
| 4513 | if (kev->flags & EV_ERROR) { |
| 4514 | result = 0; |
| 4515 | } else { |
| 4516 | /* accept new kevent state */ |
| 4517 | if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) |
| 4518 | kn->kn_udata = kev->udata; |
| 4519 | if (kev->flags & EV_DISABLE) |
| 4520 | knote_disable(kn); |
| 4521 | if (result & (FILTER_UPDATE_REQ_QOS | FILTER_ADJUST_EVENT_QOS_BIT)) |
| 4522 | knote_dequeue(kn); |
| 4523 | if ((result & FILTER_UPDATE_REQ_QOS) && |
| 4524 | kev->qos && kev->qos != kn->kn_qos) { |
| 4525 | knote_reset_priority(kn, kev->qos); |
| 4526 | } |
| 4527 | if (result & FILTER_ACTIVE) { |
| 4528 | thread_qos_t qos; |
| 4529 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) { |
| 4530 | if (knote_should_apply_qos_override(kq, kn, result, &qos)) { |
| 4531 | knote_apply_qos_override(kn, qos); |
| 4532 | } |
| 4533 | } |
| 4534 | knote_activate(kn); |
| 4535 | } |
| 4536 | if (result & (FILTER_UPDATE_REQ_QOS | FILTER_ADJUST_EVENT_QOS_BIT)) { |
| 4537 | if (knote_enqueue(kn) && (kn->kn_status & KN_ACTIVE)) { |
| 4538 | knote_wakeup(kn); |
| 4539 | } |
| 4540 | } |
| 4541 | if (kev->flags & EV_ENABLE) |
| 4542 | knote_enable(kn); |
| 4543 | } |
| 4544 | } |
| 4545 | |
| 4546 | out_unlock: |
| 4547 | if ((result & FILTER_REGISTER_WAIT) == 0) { |
| 4548 | /* |
| 4549 | * When the filter asked for a post-register wait, |
| 4550 | * we leave the knote and kqueue locked for kevent_register() |
| 4551 | * to call the filter's f_post_register_wait hook. |
| 4552 | */ |
| 4553 | knote_unlock(kq, kn, knlc, KNOTE_KQ_UNLOCK); |
| 4554 | } |
| 4555 | |
| 4556 | out: |
| 4557 | /* output local errors through the kevent */ |
| 4558 | if (error) { |
| 4559 | kev->flags |= EV_ERROR; |
| 4560 | kev->data = error; |
| 4561 | } |
| 4562 | return result; |
| 4563 | } |
| 4564 | |
| 4565 | /* |
| 4566 | * knote_process - process a triggered event |
| 4567 | * |
| 4568 | * Validate that it is really still a triggered event |
| 4569 | * by calling the filter routines (if necessary). Hold |
| 4570 | * a use reference on the knote to avoid it being detached. |
| 4571 | * |
| 4572 | * If it is still considered triggered, we will have taken |
| 4573 | * a copy of the state under the filter lock. We use that |
| 4574 | * snapshot to dispatch the knote for future processing (or |
| 4575 | * not, if this was a lost event). |
| 4576 | * |
| 4577 | * Our caller assures us that nobody else can be processing |
| 4578 | * events from this knote during the whole operation. But |
| 4579 | * others can be touching or posting events to the knote |
| 4580 | * interspersed with our processing it. |
| 4581 | * |
| 4582 | * caller holds a reference on the kqueue. |
| 4583 | * kqueue locked on entry and exit - but may be dropped |
| 4584 | */ |
| 4585 | static int |
| 4586 | knote_process(struct knote *kn, |
| 4587 | kevent_callback_t callback, |
| 4588 | void *callback_data, |
| 4589 | struct filt_process_s *process_data) |
| 4590 | { |
| 4591 | struct kevent_internal_s kev; |
| 4592 | struct kqueue *kq = knote_get_kq(kn); |
| 4593 | KNOTE_LOCK_CTX(knlc); |
| 4594 | int result = FILTER_ACTIVE; |
| 4595 | int error = 0; |
| 4596 | bool drop = false; |
| 4597 | |
| 4598 | bzero(&kev, sizeof(kev)); |
| 4599 | |
| 4600 | /* |
| 4601 | * Must be active or stayactive |
| 4602 | * Must be queued and not disabled/suppressed |
| 4603 | */ |
| 4604 | assert(kn->kn_status & KN_QUEUED); |
| 4605 | assert(kn->kn_status & (KN_ACTIVE|KN_STAYACTIVE)); |
| 4606 | assert(!(kn->kn_status & (KN_DISABLED|KN_SUPPRESSED|KN_DROPPING))); |
| 4607 | |
| 4608 | if (kq->kq_state & KQ_WORKLOOP) { |
| 4609 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS), |
| 4610 | ((struct kqworkloop *)kq)->kqwl_dynamicid, |
| 4611 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 4612 | kn->kn_filtid); |
| 4613 | } else if (kq->kq_state & KQ_WORKQ) { |
| 4614 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS), |
| 4615 | 0, kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 4616 | kn->kn_filtid); |
| 4617 | } else { |
| 4618 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS), |
| 4619 | VM_KERNEL_UNSLIDE_OR_PERM(kq), kn->kn_udata, |
| 4620 | kn->kn_status | (kn->kn_id << 32), kn->kn_filtid); |
| 4621 | } |
| 4622 | |
| 4623 | if ((kn->kn_status & KN_DROPPING) || |
| 4624 | !knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS)) { |
| 4625 | /* |
| 4626 | * When the knote is dropping or has dropped, |
| 4627 | * then there's nothing we want to process. |
| 4628 | */ |
| 4629 | return EJUSTRETURN; |
| 4630 | } |
| 4631 | |
| 4632 | /* |
| 4633 | * For deferred-drop or vanished events, we just create a fake |
| 4634 | * event to acknowledge end-of-life. Otherwise, we call the |
| 4635 | * filter's process routine to snapshot the kevent state under |
| 4636 | * the filter's locking protocol. |
| 4637 | * |
| 4638 | * suppress knotes to avoid returning the same event multiple times in |
| 4639 | * a single call. |
| 4640 | */ |
| 4641 | knote_suppress(kn); |
| 4642 | |
| 4643 | if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) { |
| 4644 | /* create fake event */ |
| 4645 | kev.filter = kn->kn_filter; |
| 4646 | kev.ident = kn->kn_id; |
| 4647 | kev.flags = (kn->kn_status & KN_DEFERDELETE) ? EV_DELETE : EV_VANISHED; |
| 4648 | kev.flags |= (EV_DISPATCH2 | EV_ONESHOT); |
| 4649 | kev.udata = kn->kn_udata; |
| 4650 | } else { |
| 4651 | /* deactivate - so new activations indicate a wakeup */ |
| 4652 | knote_deactivate(kn); |
| 4653 | |
| 4654 | kqunlock(kq); |
| 4655 | result = filter_call(knote_fops(kn), f_process(kn, process_data, &kev)); |
| 4656 | kqlock(kq); |
| 4657 | } |
| 4658 | |
| 4659 | /* |
| 4660 | * Determine how to dispatch the knote for future event handling. |
| 4661 | * not-fired: just return (do not callout, leave deactivated). |
| 4662 | * One-shot: If dispatch2, enter deferred-delete mode (unless this is |
| 4663 | * is the deferred delete event delivery itself). Otherwise, |
| 4664 | * drop it. |
| 4665 | * Dispatch: don't clear state, just mark it disabled. |
| 4666 | * Cleared: just leave it deactivated. |
| 4667 | * Others: re-activate as there may be more events to handle. |
| 4668 | * This will not wake up more handlers right now, but |
| 4669 | * at the completion of handling events it may trigger |
| 4670 | * more handler threads (TODO: optimize based on more than |
| 4671 | * just this one event being detected by the filter). |
| 4672 | */ |
| 4673 | if ((result & FILTER_ACTIVE) == 0) { |
| 4674 | if ((kn->kn_status & (KN_ACTIVE | KN_STAYACTIVE)) == 0) { |
| 4675 | /* |
| 4676 | * Stay active knotes should not be unsuppressed or we'd create an |
| 4677 | * infinite loop. |
| 4678 | * |
| 4679 | * Some knotes (like EVFILT_WORKLOOP) can be reactivated from |
| 4680 | * within f_process() but that doesn't necessarily make them |
| 4681 | * ready to process, so we should leave them be. |
| 4682 | * |
| 4683 | * For other knotes, since we will not return an event, |
| 4684 | * there's no point keeping the knote suppressed. |
| 4685 | */ |
| 4686 | knote_unsuppress(kn); |
| 4687 | } |
| 4688 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS); |
| 4689 | return EJUSTRETURN; |
| 4690 | } |
| 4691 | |
| 4692 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) |
| 4693 | knote_adjust_qos(kq, kn, result); |
| 4694 | kev.qos = _pthread_priority_combine(kn->kn_qos, kn->kn_qos_override); |
| 4695 | |
| 4696 | if (kev.flags & EV_ONESHOT) { |
| 4697 | if ((kn->kn_status & (KN_DISPATCH2 | KN_DEFERDELETE)) == KN_DISPATCH2) { |
| 4698 | /* defer dropping non-delete oneshot dispatch2 events */ |
| 4699 | kn->kn_status |= KN_DEFERDELETE; |
| 4700 | knote_disable(kn); |
| 4701 | } else { |
| 4702 | drop = true; |
| 4703 | } |
| 4704 | } else if (kn->kn_status & KN_DISPATCH) { |
| 4705 | /* disable all dispatch knotes */ |
| 4706 | knote_disable(kn); |
| 4707 | } else if ((kev.flags & EV_CLEAR) == 0) { |
| 4708 | /* re-activate in case there are more events */ |
| 4709 | knote_activate(kn); |
| 4710 | } |
| 4711 | |
| 4712 | /* |
| 4713 | * callback to handle each event as we find it. |
| 4714 | * If we have to detach and drop the knote, do |
| 4715 | * it while we have the kq unlocked. |
| 4716 | */ |
| 4717 | if (drop) { |
| 4718 | knote_drop(kq, kn, &knlc); |
| 4719 | } else { |
| 4720 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_UNLOCK); |
| 4721 | } |
| 4722 | |
| 4723 | if (kev.flags & EV_VANISHED) { |
| 4724 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KNOTE_VANISHED), |
| 4725 | kev.ident, kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 4726 | kn->kn_filtid); |
| 4727 | } |
| 4728 | |
| 4729 | error = (callback)(kq, &kev, callback_data); |
| 4730 | kqlock(kq); |
| 4731 | return error; |
| 4732 | } |
| 4733 | |
| 4734 | /* |
| 4735 | * Returns -1 if the kqueue was unbound and processing should not happen |
| 4736 | */ |
| 4737 | #define KQWQAE_BEGIN_PROCESSING 1 |
| 4738 | #define KQWQAE_END_PROCESSING 2 |
| 4739 | #define KQWQAE_UNBIND 3 |
| 4740 | static int |
| 4741 | kqworkq_acknowledge_events(struct kqworkq *kqwq, struct kqrequest *kqr, |
| 4742 | int kevent_flags, int kqwqae_op) |
| 4743 | { |
| 4744 | thread_qos_t old_override = THREAD_QOS_UNSPECIFIED; |
| 4745 | thread_t thread = kqr->kqr_thread; |
| 4746 | struct knote *kn; |
| 4747 | int rc = 0; |
| 4748 | bool seen_stayactive = false, unbind; |
| 4749 | |
| 4750 | kqlock_held(&kqwq->kqwq_kqueue); |
| 4751 | |
| 4752 | if (!TAILQ_EMPTY(&kqr->kqr_suppressed)) { |
| 4753 | /* |
| 4754 | * Return suppressed knotes to their original state. |
| 4755 | * For workq kqueues, suppressed ones that are still |
| 4756 | * truly active (not just forced into the queue) will |
| 4757 | * set flags we check below to see if anything got |
| 4758 | * woken up. |
| 4759 | */ |
| 4760 | while ((kn = TAILQ_FIRST(&kqr->kqr_suppressed)) != NULL) { |
| 4761 | assert(kn->kn_status & KN_SUPPRESSED); |
| 4762 | knote_unsuppress(kn); |
| 4763 | if (kn->kn_status & KN_STAYACTIVE) { |
| 4764 | seen_stayactive = true; |
| 4765 | } |
| 4766 | } |
| 4767 | } |
| 4768 | |
| 4769 | kq_req_lock(kqwq); |
| 4770 | |
| 4771 | #if DEBUG || DEVELOPMENT |
| 4772 | thread_t self = current_thread(); |
| 4773 | struct uthread *ut = get_bsdthread_info(self); |
| 4774 | |
| 4775 | assert(kqr->kqr_state & KQR_THREQUESTED); |
| 4776 | assert(kqr->kqr_thread == self); |
| 4777 | assert(ut->uu_kqr_bound == kqr); |
| 4778 | #endif // DEBUG || DEVELOPMENT |
| 4779 | |
| 4780 | if (kqwqae_op == KQWQAE_UNBIND) { |
| 4781 | unbind = true; |
| 4782 | } else if ((kevent_flags & KEVENT_FLAG_PARKING) == 0) { |
| 4783 | unbind = false; |
| 4784 | } else if (kqwqae_op == KQWQAE_BEGIN_PROCESSING && seen_stayactive) { |
| 4785 | /* |
| 4786 | * When we unsuppress stayactive knotes, for the kind that are hooked |
| 4787 | * through select, we need to process once before we can assert there's |
| 4788 | * no event pending. Hence we can't unbind during BEGIN PROCESSING. |
| 4789 | */ |
| 4790 | unbind = false; |
| 4791 | } else { |
| 4792 | unbind = ((kqr->kqr_state & KQR_WAKEUP) == 0); |
| 4793 | } |
| 4794 | if (unbind) { |
| 4795 | old_override = kqworkq_unbind_locked(kqwq, kqr, thread); |
| 4796 | rc = -1; |
| 4797 | /* |
| 4798 | * request a new thread if we didn't process the whole queue or real events |
| 4799 | * have happened (not just putting stay-active events back). |
| 4800 | */ |
| 4801 | if (kqr->kqr_state & KQR_WAKEUP) { |
| 4802 | kqueue_threadreq_initiate(&kqwq->kqwq_kqueue, kqr, |
| 4803 | kqr->kqr_qos_index, 0); |
| 4804 | } |
| 4805 | } |
| 4806 | |
| 4807 | if (rc == 0) { |
| 4808 | /* |
| 4809 | * Reset wakeup bit to notice events firing while we are processing, |
| 4810 | * as we cannot rely on the bucket queue emptiness because of stay |
| 4811 | * active knotes. |
| 4812 | */ |
| 4813 | kqr->kqr_state &= ~KQR_WAKEUP; |
| 4814 | } |
| 4815 | |
| 4816 | kq_req_unlock(kqwq); |
| 4817 | |
| 4818 | if (old_override) { |
| 4819 | thread_drop_ipc_override(thread); |
| 4820 | } |
| 4821 | |
| 4822 | return rc; |
| 4823 | } |
| 4824 | |
| 4825 | /* |
| 4826 | * Return 0 to indicate that processing should proceed, |
| 4827 | * -1 if there is nothing to process. |
| 4828 | * |
| 4829 | * Called with kqueue locked and returns the same way, |
| 4830 | * but may drop lock temporarily. |
| 4831 | */ |
| 4832 | static int |
| 4833 | kqworkq_begin_processing(struct kqworkq *kqwq, struct kqrequest *kqr, |
| 4834 | int kevent_flags) |
| 4835 | { |
| 4836 | int rc = 0; |
| 4837 | |
| 4838 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_START, |
| 4839 | 0, kqr->kqr_qos_index); |
| 4840 | |
| 4841 | rc = kqworkq_acknowledge_events(kqwq, kqr, kevent_flags, |
| 4842 | KQWQAE_BEGIN_PROCESSING); |
| 4843 | |
| 4844 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 4845 | thread_tid(kqr->kqr_thread), kqr->kqr_state); |
| 4846 | |
| 4847 | return rc; |
| 4848 | } |
| 4849 | |
| 4850 | static inline bool |
| 4851 | kqworkloop_is_processing_on_current_thread(struct kqworkloop *kqwl) |
| 4852 | { |
| 4853 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 4854 | |
| 4855 | kqlock_held(kq); |
| 4856 | |
| 4857 | if (kq->kq_state & KQ_PROCESSING) { |
| 4858 | /* |
| 4859 | * KQ_PROCESSING is unset with the kqlock held, and the kqr thread is |
| 4860 | * never modified while KQ_PROCESSING is set, meaning that peeking at |
| 4861 | * its value is safe from this context. |
| 4862 | */ |
| 4863 | return kqwl->kqwl_request.kqr_thread == current_thread(); |
| 4864 | } |
| 4865 | return false; |
| 4866 | } |
| 4867 | |
| 4868 | static thread_qos_t |
| 4869 | kqworkloop_acknowledge_events(struct kqworkloop *kqwl) |
| 4870 | { |
| 4871 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 4872 | kq_index_t qos = THREAD_QOS_UNSPECIFIED; |
| 4873 | struct knote *kn, *tmp; |
| 4874 | |
| 4875 | kqlock_held(&kqwl->kqwl_kqueue); |
| 4876 | |
| 4877 | TAILQ_FOREACH_SAFE(kn, &kqr->kqr_suppressed, kn_tqe, tmp) { |
| 4878 | /* |
| 4879 | * If a knote that can adjust QoS is disabled because of the automatic |
| 4880 | * behavior of EV_DISPATCH, the knotes should stay suppressed so that |
| 4881 | * further overrides keep pushing. |
| 4882 | */ |
| 4883 | if (knote_fops(kn)->f_adjusts_qos && (kn->kn_status & KN_DISABLED) && |
| 4884 | (kn->kn_status & (KN_STAYACTIVE | KN_DROPPING)) == 0 && |
| 4885 | (kn->kn_flags & (EV_DISPATCH | EV_DISABLE)) == EV_DISPATCH) { |
| 4886 | qos = MAX(qos, knote_get_qos_override_index(kn)); |
| 4887 | continue; |
| 4888 | } |
| 4889 | knote_unsuppress(kn); |
| 4890 | } |
| 4891 | |
| 4892 | return qos; |
| 4893 | } |
| 4894 | |
| 4895 | static int |
| 4896 | kqworkloop_begin_processing(struct kqworkloop *kqwl, unsigned int kevent_flags) |
| 4897 | { |
| 4898 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 4899 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 4900 | thread_qos_t old_override = THREAD_QOS_UNSPECIFIED, qos_override; |
| 4901 | thread_t thread = kqr->kqr_thread; |
| 4902 | int rc = 0, op = KQWL_UTQ_NONE; |
| 4903 | |
| 4904 | kqlock_held(kq); |
| 4905 | |
| 4906 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_START, |
| 4907 | kqwl->kqwl_dynamicid, 0, 0); |
| 4908 | |
| 4909 | /* nobody else should still be processing */ |
| 4910 | assert((kq->kq_state & KQ_PROCESSING) == 0); |
| 4911 | |
| 4912 | kq->kq_state |= KQ_PROCESSING; |
| 4913 | |
| 4914 | if (!TAILQ_EMPTY(&kqr->kqr_suppressed)) { |
| 4915 | op = KQWL_UTQ_RESET_WAKEUP_OVERRIDE; |
| 4916 | } |
| 4917 | |
| 4918 | if (kevent_flags & KEVENT_FLAG_PARKING) { |
| 4919 | /* |
| 4920 | * When "parking" we want to process events and if no events are found |
| 4921 | * unbind. |
| 4922 | * |
| 4923 | * However, non overcommit threads sometimes park even when they have |
| 4924 | * more work so that the pool can narrow. For these, we need to unbind |
| 4925 | * early, so that calling kqworkloop_update_threads_qos() can ask the |
| 4926 | * workqueue subsystem whether the thread should park despite having |
| 4927 | * pending events. |
| 4928 | */ |
| 4929 | if (kqr->kqr_state & KQR_THOVERCOMMIT) { |
| 4930 | op = KQWL_UTQ_PARKING; |
| 4931 | } else { |
| 4932 | op = KQWL_UTQ_UNBINDING; |
| 4933 | } |
| 4934 | } |
| 4935 | if (op == KQWL_UTQ_NONE) { |
| 4936 | goto done; |
| 4937 | } |
| 4938 | |
| 4939 | qos_override = kqworkloop_acknowledge_events(kqwl); |
| 4940 | |
| 4941 | kq_req_lock(kqwl); |
| 4942 | |
| 4943 | if (op == KQWL_UTQ_UNBINDING) { |
| 4944 | old_override = kqworkloop_unbind_locked(kqwl, thread); |
| 4945 | (void)kqueue_release(kqwl, KQUEUE_CANT_BE_LAST_REF); |
| 4946 | } |
| 4947 | kqworkloop_update_threads_qos(kqwl, op, qos_override); |
| 4948 | if (op == KQWL_UTQ_PARKING) { |
| 4949 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[KQWL_BUCKET_STAYACTIVE])) { |
| 4950 | /* |
| 4951 | * We cannot trust KQR_WAKEUP when looking at stay active knotes. |
| 4952 | * We need to process once, and kqworkloop_end_processing will |
| 4953 | * handle the unbind. |
| 4954 | */ |
| 4955 | } else if ((kqr->kqr_state & KQR_WAKEUP) == 0 || kqwl->kqwl_owner) { |
| 4956 | old_override = kqworkloop_unbind_locked(kqwl, thread); |
| 4957 | (void)kqueue_release(kqwl, KQUEUE_CANT_BE_LAST_REF); |
| 4958 | rc = -1; |
| 4959 | } |
| 4960 | } else if (op == KQWL_UTQ_UNBINDING) { |
| 4961 | if (kqr->kqr_thread == thread) { |
| 4962 | /* |
| 4963 | * The thread request fired again, passed the admission check and |
| 4964 | * got bound to the current thread again. |
| 4965 | */ |
| 4966 | } else { |
| 4967 | rc = -1; |
| 4968 | } |
| 4969 | } |
| 4970 | |
| 4971 | if (rc == 0) { |
| 4972 | /* |
| 4973 | * Reset wakeup bit to notice stay active events firing while we are |
| 4974 | * processing, as we cannot rely on the stayactive bucket emptiness. |
| 4975 | */ |
| 4976 | kqr->kqr_wakeup_indexes &= ~KQWL_STAYACTIVE_FIRED_BIT; |
| 4977 | } else { |
| 4978 | kq->kq_state &= ~KQ_PROCESSING; |
| 4979 | } |
| 4980 | |
| 4981 | kq_req_unlock(kqwl); |
| 4982 | |
| 4983 | if (old_override) { |
| 4984 | thread_drop_ipc_override(thread); |
| 4985 | } |
| 4986 | |
| 4987 | done: |
| 4988 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_END, |
| 4989 | kqwl->kqwl_dynamicid, 0, 0); |
| 4990 | |
| 4991 | return rc; |
| 4992 | } |
| 4993 | |
| 4994 | /* |
| 4995 | * Return 0 to indicate that processing should proceed, |
| 4996 | * -1 if there is nothing to process. |
| 4997 | * |
| 4998 | * Called with kqueue locked and returns the same way, |
| 4999 | * but may drop lock temporarily. |
| 5000 | * May block. |
| 5001 | */ |
| 5002 | static int |
| 5003 | kqfile_begin_processing(struct kqueue *kq) |
| 5004 | { |
| 5005 | struct kqtailq *suppressq; |
| 5006 | |
| 5007 | kqlock_held(kq); |
| 5008 | |
| 5009 | assert((kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0); |
| 5010 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_START, |
| 5011 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 0); |
| 5012 | |
| 5013 | /* wait to become the exclusive processing thread */ |
| 5014 | for (;;) { |
| 5015 | if (kq->kq_state & KQ_DRAIN) { |
| 5016 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 5017 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 2); |
| 5018 | return -1; |
| 5019 | } |
| 5020 | |
| 5021 | if ((kq->kq_state & KQ_PROCESSING) == 0) |
| 5022 | break; |
| 5023 | |
| 5024 | /* if someone else is processing the queue, wait */ |
| 5025 | kq->kq_state |= KQ_PROCWAIT; |
| 5026 | suppressq = kqueue_get_suppressed_queue(kq, NULL); |
| 5027 | waitq_assert_wait64((struct waitq *)&kq->kq_wqs, |
| 5028 | CAST_EVENT64_T(suppressq), THREAD_UNINT | THREAD_WAIT_NOREPORT, |
| 5029 | TIMEOUT_WAIT_FOREVER); |
| 5030 | |
| 5031 | kqunlock(kq); |
| 5032 | thread_block(THREAD_CONTINUE_NULL); |
| 5033 | kqlock(kq); |
| 5034 | } |
| 5035 | |
| 5036 | /* Nobody else processing */ |
| 5037 | |
| 5038 | /* clear pre-posts and KQ_WAKEUP now, in case we bail early */ |
| 5039 | waitq_set_clear_preposts(&kq->kq_wqs); |
| 5040 | kq->kq_state &= ~KQ_WAKEUP; |
| 5041 | |
| 5042 | /* anything left to process? */ |
| 5043 | if (kqueue_queue_empty(kq, QOS_INDEX_KQFILE)) { |
| 5044 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 5045 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 1); |
| 5046 | return -1; |
| 5047 | } |
| 5048 | |
| 5049 | /* convert to processing mode */ |
| 5050 | kq->kq_state |= KQ_PROCESSING; |
| 5051 | |
| 5052 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 5053 | VM_KERNEL_UNSLIDE_OR_PERM(kq)); |
| 5054 | |
| 5055 | return 0; |
| 5056 | } |
| 5057 | |
| 5058 | /* |
| 5059 | * Try to end the processing, only called when a workq thread is attempting to |
| 5060 | * park (KEVENT_FLAG_PARKING is set). |
| 5061 | * |
| 5062 | * When returning -1, the kqworkq is setup again so that it is ready to be |
| 5063 | * processed. |
| 5064 | */ |
| 5065 | static int |
| 5066 | kqworkq_end_processing(struct kqworkq *kqwq, struct kqrequest *kqr, |
| 5067 | int kevent_flags) |
| 5068 | { |
| 5069 | if (!kqueue_queue_empty(&kqwq->kqwq_kqueue, kqr->kqr_qos_index)) { |
| 5070 | /* remember we didn't process everything */ |
| 5071 | kq_req_lock(kqwq); |
| 5072 | kqr->kqr_state |= KQR_WAKEUP; |
| 5073 | kq_req_unlock(kqwq); |
| 5074 | } |
| 5075 | |
| 5076 | if (kevent_flags & KEVENT_FLAG_PARKING) { |
| 5077 | /* |
| 5078 | * if acknowledge events "succeeds" it means there are events, |
| 5079 | * which is a failure condition for end_processing. |
| 5080 | */ |
| 5081 | int rc = kqworkq_acknowledge_events(kqwq, kqr, kevent_flags, |
| 5082 | KQWQAE_END_PROCESSING); |
| 5083 | if (rc == 0) { |
| 5084 | return -1; |
| 5085 | } |
| 5086 | } |
| 5087 | |
| 5088 | return 0; |
| 5089 | } |
| 5090 | |
| 5091 | /* |
| 5092 | * Try to end the processing, only called when a workq thread is attempting to |
| 5093 | * park (KEVENT_FLAG_PARKING is set). |
| 5094 | * |
| 5095 | * When returning -1, the kqworkq is setup again so that it is ready to be |
| 5096 | * processed (as if kqworkloop_begin_processing had just been called). |
| 5097 | * |
| 5098 | * If successful and KEVENT_FLAG_PARKING was set in the kevent_flags, |
| 5099 | * the kqworkloop is unbound from its servicer as a side effect. |
| 5100 | */ |
| 5101 | static int |
| 5102 | kqworkloop_end_processing(struct kqworkloop *kqwl, int flags, int kevent_flags) |
| 5103 | { |
| 5104 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 5105 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 5106 | thread_qos_t old_override = THREAD_QOS_UNSPECIFIED, qos_override; |
| 5107 | thread_t thread = kqr->kqr_thread; |
| 5108 | int rc = 0; |
| 5109 | |
| 5110 | kqlock_held(kq); |
| 5111 | |
| 5112 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_START, |
| 5113 | kqwl->kqwl_dynamicid, 0, 0); |
| 5114 | |
| 5115 | if (flags & KQ_PROCESSING) { |
| 5116 | assert(kq->kq_state & KQ_PROCESSING); |
| 5117 | |
| 5118 | /* |
| 5119 | * If we still have queued stayactive knotes, remember we didn't finish |
| 5120 | * processing all of them. This should be extremely rare and would |
| 5121 | * require to have a lot of them registered and fired. |
| 5122 | */ |
| 5123 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[KQWL_BUCKET_STAYACTIVE])) { |
| 5124 | kq_req_lock(kqwl); |
| 5125 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_WAKEUP_QOS, |
| 5126 | KQWL_BUCKET_STAYACTIVE); |
| 5127 | kq_req_unlock(kqwl); |
| 5128 | } |
| 5129 | |
| 5130 | /* |
| 5131 | * When KEVENT_FLAG_PARKING is set, we need to attempt an unbind while |
| 5132 | * still under the lock. |
| 5133 | * |
| 5134 | * So we do everything kqworkloop_unbind() would do, but because we're |
| 5135 | * inside kqueue_process(), if the workloop actually received events |
| 5136 | * while our locks were dropped, we have the opportunity to fail the end |
| 5137 | * processing and loop again. |
| 5138 | * |
| 5139 | * This avoids going through the process-wide workqueue lock hence |
| 5140 | * scales better. |
| 5141 | */ |
| 5142 | if (kevent_flags & KEVENT_FLAG_PARKING) { |
| 5143 | qos_override = kqworkloop_acknowledge_events(kqwl); |
| 5144 | } |
| 5145 | } |
| 5146 | |
| 5147 | kq_req_lock(kqwl); |
| 5148 | |
| 5149 | if (kevent_flags & KEVENT_FLAG_PARKING) { |
| 5150 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_PARKING, qos_override); |
| 5151 | if ((kqr->kqr_state & KQR_WAKEUP) && !kqwl->kqwl_owner) { |
| 5152 | /* |
| 5153 | * Reset wakeup bit to notice stay active events firing while we are |
| 5154 | * processing, as we cannot rely on the stayactive bucket emptiness. |
| 5155 | */ |
| 5156 | kqr->kqr_wakeup_indexes &= ~KQWL_STAYACTIVE_FIRED_BIT; |
| 5157 | rc = -1; |
| 5158 | } else { |
| 5159 | old_override = kqworkloop_unbind_locked(kqwl, thread); |
| 5160 | (void)kqueue_release(kqwl, KQUEUE_CANT_BE_LAST_REF); |
| 5161 | kq->kq_state &= ~flags; |
| 5162 | } |
| 5163 | } else { |
| 5164 | kq->kq_state &= ~flags; |
| 5165 | kqr->kqr_state |= KQR_R2K_NOTIF_ARMED; |
| 5166 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, 0); |
| 5167 | } |
| 5168 | |
| 5169 | kq_req_unlock(kqwl); |
| 5170 | |
| 5171 | if (old_override) { |
| 5172 | thread_drop_ipc_override(thread); |
| 5173 | } |
| 5174 | |
| 5175 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_END, |
| 5176 | kqwl->kqwl_dynamicid, 0, 0); |
| 5177 | |
| 5178 | return rc; |
| 5179 | } |
| 5180 | |
| 5181 | /* |
| 5182 | * Called with kqueue lock held. |
| 5183 | */ |
| 5184 | static void |
| 5185 | kqfile_end_processing(struct kqueue *kq) |
| 5186 | { |
| 5187 | struct knote *kn; |
| 5188 | struct kqtailq *suppressq; |
| 5189 | int procwait; |
| 5190 | |
| 5191 | kqlock_held(kq); |
| 5192 | |
| 5193 | assert((kq->kq_state & (KQ_WORKQ|KQ_WORKLOOP)) == 0); |
| 5194 | |
| 5195 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_END), |
| 5196 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 0); |
| 5197 | |
| 5198 | /* |
| 5199 | * Return suppressed knotes to their original state. |
| 5200 | */ |
| 5201 | suppressq = kqueue_get_suppressed_queue(kq, NULL); |
| 5202 | while ((kn = TAILQ_FIRST(suppressq)) != NULL) { |
| 5203 | assert(kn->kn_status & KN_SUPPRESSED); |
| 5204 | knote_unsuppress(kn); |
| 5205 | } |
| 5206 | |
| 5207 | procwait = (kq->kq_state & KQ_PROCWAIT); |
| 5208 | kq->kq_state &= ~(KQ_PROCESSING | KQ_PROCWAIT); |
| 5209 | |
| 5210 | if (procwait) { |
| 5211 | /* first wake up any thread already waiting to process */ |
| 5212 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
| 5213 | CAST_EVENT64_T(suppressq), |
| 5214 | THREAD_AWAKENED, |
| 5215 | WAITQ_ALL_PRIORITIES); |
| 5216 | } |
| 5217 | } |
| 5218 | |
| 5219 | static int |
| 5220 | kqueue_workloop_ctl_internal(proc_t p, uintptr_t cmd, uint64_t __unused options, |
| 5221 | struct kqueue_workloop_params *params, int *retval) |
| 5222 | { |
| 5223 | int error = 0; |
| 5224 | int fd; |
| 5225 | struct fileproc *fp; |
| 5226 | struct kqueue *kq; |
| 5227 | struct kqworkloop *kqwl; |
| 5228 | struct filedesc *fdp = p->p_fd; |
| 5229 | workq_threadreq_param_t trp = { }; |
| 5230 | |
| 5231 | switch (cmd) { |
| 5232 | case KQ_WORKLOOP_CREATE: |
| 5233 | if (!params->kqwlp_flags) { |
| 5234 | error = EINVAL; |
| 5235 | break; |
| 5236 | } |
| 5237 | |
| 5238 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_PRI) && |
| 5239 | (params->kqwlp_sched_pri < 1 || |
| 5240 | params->kqwlp_sched_pri > 63 /* MAXPRI_USER */)) { |
| 5241 | error = EINVAL; |
| 5242 | break; |
| 5243 | } |
| 5244 | |
| 5245 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_POL) && |
| 5246 | invalid_policy(params->kqwlp_sched_pol)) { |
| 5247 | error = EINVAL; |
| 5248 | break; |
| 5249 | } |
| 5250 | |
| 5251 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_CPU_PERCENT) && |
| 5252 | (params->kqwlp_cpu_percent <= 0 || |
| 5253 | params->kqwlp_cpu_percent > 100 || |
| 5254 | params->kqwlp_cpu_refillms <= 0 || |
| 5255 | params->kqwlp_cpu_refillms > 0x00ffffff)) { |
| 5256 | error = EINVAL; |
| 5257 | break; |
| 5258 | } |
| 5259 | |
| 5260 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_PRI) { |
| 5261 | trp.trp_flags |= TRP_PRIORITY; |
| 5262 | trp.trp_pri = params->kqwlp_sched_pri; |
| 5263 | } |
| 5264 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_POL) { |
| 5265 | trp.trp_flags |= TRP_POLICY; |
| 5266 | trp.trp_pol = params->kqwlp_sched_pol; |
| 5267 | } |
| 5268 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_CPU_PERCENT) { |
| 5269 | trp.trp_flags |= TRP_CPUPERCENT; |
| 5270 | trp.trp_cpupercent = (uint8_t)params->kqwlp_cpu_percent; |
| 5271 | trp.trp_refillms = params->kqwlp_cpu_refillms; |
| 5272 | } |
| 5273 | |
| 5274 | error = kevent_get_kq(p, params->kqwlp_id, &trp, |
| 5275 | KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP | |
| 5276 | KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST , &fp, &fd, &kq); |
| 5277 | if (error) { |
| 5278 | break; |
| 5279 | } |
| 5280 | |
| 5281 | if (!(fdp->fd_flags & FD_WORKLOOP)) { |
| 5282 | /* FD_WORKLOOP indicates we've ever created a workloop |
| 5283 | * via this syscall but its only ever added to a process, never |
| 5284 | * removed. |
| 5285 | */ |
| 5286 | proc_fdlock(p); |
| 5287 | fdp->fd_flags |= FD_WORKLOOP; |
| 5288 | proc_fdunlock(p); |
| 5289 | } |
| 5290 | break; |
| 5291 | case KQ_WORKLOOP_DESTROY: |
| 5292 | error = kevent_get_kq(p, params->kqwlp_id, NULL, |
| 5293 | KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP | |
| 5294 | KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST , &fp, &fd, &kq); |
| 5295 | if (error) { |
| 5296 | break; |
| 5297 | } |
| 5298 | kqlock(kq); |
| 5299 | kqwl = (struct kqworkloop *)kq; |
| 5300 | trp.trp_value = kqwl->kqwl_params; |
| 5301 | if (trp.trp_flags && !(trp.trp_flags & TRP_RELEASED)) { |
| 5302 | trp.trp_flags |= TRP_RELEASED; |
| 5303 | kqueue_release(kq, KQUEUE_CANT_BE_LAST_REF); |
| 5304 | } else { |
| 5305 | error = EINVAL; |
| 5306 | } |
| 5307 | kqunlock(kq); |
| 5308 | kqueue_release_last(p, kq); |
| 5309 | break; |
| 5310 | } |
| 5311 | *retval = 0; |
| 5312 | return error; |
| 5313 | } |
| 5314 | |
| 5315 | int |
| 5316 | kqueue_workloop_ctl(proc_t p, struct kqueue_workloop_ctl_args *uap, int *retval) |
| 5317 | { |
| 5318 | struct kqueue_workloop_params params = { |
| 5319 | .kqwlp_id = 0, |
| 5320 | }; |
| 5321 | if (uap->sz < sizeof(params.kqwlp_version)) { |
| 5322 | return EINVAL; |
| 5323 | } |
| 5324 | |
| 5325 | size_t copyin_sz = MIN(sizeof(params), uap->sz); |
| 5326 | int rv = copyin(uap->addr, ¶ms, copyin_sz); |
| 5327 | if (rv) { |
| 5328 | return rv; |
| 5329 | } |
| 5330 | |
| 5331 | if (params.kqwlp_version != (int)uap->sz) { |
| 5332 | return EINVAL; |
| 5333 | } |
| 5334 | |
| 5335 | return kqueue_workloop_ctl_internal(p, uap->cmd, uap->options, ¶ms, |
| 5336 | retval); |
| 5337 | } |
| 5338 | |
| 5339 | /* |
| 5340 | * kqueue_process - process the triggered events in a kqueue |
| 5341 | * |
| 5342 | * Walk the queued knotes and validate that they are really still triggered |
| 5343 | * events by calling the filter routines (if necessary). |
| 5344 | * |
| 5345 | * For each event that is still considered triggered, invoke the callback |
| 5346 | * routine provided. |
| 5347 | * |
| 5348 | * caller holds a reference on the kqueue. |
| 5349 | * kqueue locked on entry and exit - but may be dropped |
| 5350 | * kqueue list locked (held for duration of call) |
| 5351 | */ |
| 5352 | static int |
| 5353 | kqueue_process(struct kqueue *kq, |
| 5354 | kevent_callback_t callback, |
| 5355 | void *callback_data, |
| 5356 | struct filt_process_s *process_data, |
| 5357 | int *countp) |
| 5358 | { |
| 5359 | struct uthread *ut = get_bsdthread_info(current_thread()); |
| 5360 | struct kqrequest *kqr = ut->uu_kqr_bound; |
| 5361 | struct knote *kn; |
| 5362 | unsigned int flags = process_data ? process_data->fp_flags : 0; |
| 5363 | int nevents = 0, error = 0, rc = 0; |
| 5364 | struct kqtailq *base_queue, *queue; |
| 5365 | kqueue_t kqu = { .kq = kq }; |
| 5366 | #if DEBUG || DEVELOPMENT |
| 5367 | int retries = 64; |
| 5368 | #endif |
| 5369 | |
| 5370 | if (kq->kq_state & KQ_WORKQ) { |
| 5371 | if (kqr == NULL || (kqr->kqr_state & KQR_WORKLOOP)) { |
| 5372 | return EJUSTRETURN; |
| 5373 | } |
| 5374 | rc = kqworkq_begin_processing(kqu.kqwq, kqr, flags); |
| 5375 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 5376 | if (ut->uu_kqr_bound != &kqu.kqwl->kqwl_request) { |
| 5377 | return EJUSTRETURN; |
| 5378 | } |
| 5379 | rc = kqworkloop_begin_processing(kqu.kqwl, flags); |
| 5380 | } else { |
| 5381 | rc = kqfile_begin_processing(kq); |
| 5382 | } |
| 5383 | |
| 5384 | if (rc == -1) { |
| 5385 | /* Nothing to process */ |
| 5386 | *countp = 0; |
| 5387 | return 0; |
| 5388 | } |
| 5389 | |
| 5390 | /* |
| 5391 | * loop through the enqueued knotes associated with this request, |
| 5392 | * processing each one. Each request may have several queues |
| 5393 | * of knotes to process (depending on the type of kqueue) so we |
| 5394 | * have to loop through all the queues as long as we have additional |
| 5395 | * space. |
| 5396 | */ |
| 5397 | |
| 5398 | process_again: |
| 5399 | if (kq->kq_state & KQ_WORKQ) { |
| 5400 | base_queue = queue = &kqu.kqwq->kqwq_queue[kqr->kqr_qos_index]; |
| 5401 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 5402 | base_queue = &kqu.kqwl->kqwl_queue[0]; |
| 5403 | queue = &kqu.kqwl->kqwl_queue[KQWL_NBUCKETS - 1]; |
| 5404 | } else { |
| 5405 | base_queue = queue = &kq->kq_queue[QOS_INDEX_KQFILE]; |
| 5406 | } |
| 5407 | |
| 5408 | do { |
| 5409 | while (error == 0 && (kn = TAILQ_FIRST(queue)) != NULL) { |
| 5410 | error = knote_process(kn, callback, callback_data, process_data); |
| 5411 | if (error == EJUSTRETURN) { |
| 5412 | error = 0; |
| 5413 | } else { |
| 5414 | nevents++; |
| 5415 | } |
| 5416 | /* error is EWOULDBLOCK when the out event array is full */ |
| 5417 | } |
| 5418 | |
| 5419 | if (error == EWOULDBLOCK) { |
| 5420 | /* break out if no more space for additional events */ |
| 5421 | error = 0; |
| 5422 | break; |
| 5423 | } |
| 5424 | } while (queue-- > base_queue); |
| 5425 | |
| 5426 | *countp = nevents; |
| 5427 | |
| 5428 | /* |
| 5429 | * If KEVENT_FLAG_PARKING is set, and no kevents have been returned, |
| 5430 | * we want to unbind the kqrequest from the thread. |
| 5431 | * |
| 5432 | * However, because the kq locks are dropped several times during process, |
| 5433 | * new knotes may have fired again, in which case, we want to fail the end |
| 5434 | * processing and process again, until it converges. |
| 5435 | * |
| 5436 | * If we returned events however, end processing never fails. |
| 5437 | */ |
| 5438 | if (error || nevents) flags &= ~KEVENT_FLAG_PARKING; |
| 5439 | if (kq->kq_state & KQ_WORKQ) { |
| 5440 | rc = kqworkq_end_processing(kqu.kqwq, kqr, flags); |
| 5441 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 5442 | rc = kqworkloop_end_processing(kqu.kqwl, KQ_PROCESSING, flags); |
| 5443 | } else { |
| 5444 | kqfile_end_processing(kq); |
| 5445 | rc = 0; |
| 5446 | } |
| 5447 | if (rc == -1) { |
| 5448 | assert(flags & KEVENT_FLAG_PARKING); |
| 5449 | #if DEBUG || DEVELOPMENT |
| 5450 | if (retries-- == 0) { |
| 5451 | panic("kevent: way too many knote_process retries, kq: %p (0x%02x)" , |
| 5452 | kq, kq->kq_state); |
| 5453 | } |
| 5454 | #endif |
| 5455 | goto process_again; |
| 5456 | } |
| 5457 | return error; |
| 5458 | } |
| 5459 | |
| 5460 | static void |
| 5461 | kqueue_scan_continue(void *data, wait_result_t wait_result) |
| 5462 | { |
| 5463 | thread_t self = current_thread(); |
| 5464 | uthread_t ut = (uthread_t)get_bsdthread_info(self); |
| 5465 | struct _kqueue_scan * cont_args = &ut->uu_save.uus_kqueue_scan; |
| 5466 | struct kqueue *kq = (struct kqueue *)data; |
| 5467 | struct filt_process_s *process_data = cont_args->process_data; |
| 5468 | int error; |
| 5469 | int count; |
| 5470 | |
| 5471 | /* convert the (previous) wait_result to a proper error */ |
| 5472 | switch (wait_result) { |
| 5473 | case THREAD_AWAKENED: { |
| 5474 | kqlock(kq); |
| 5475 | retry: |
| 5476 | error = kqueue_process(kq, cont_args->call, cont_args->data, |
| 5477 | process_data, &count); |
| 5478 | if (error == 0 && count == 0) { |
| 5479 | if (kq->kq_state & KQ_DRAIN) { |
| 5480 | kqunlock(kq); |
| 5481 | goto drain; |
| 5482 | } |
| 5483 | |
| 5484 | if (kq->kq_state & KQ_WAKEUP) |
| 5485 | goto retry; |
| 5486 | |
| 5487 | waitq_assert_wait64((struct waitq *)&kq->kq_wqs, |
| 5488 | KQ_EVENT, THREAD_ABORTSAFE, |
| 5489 | cont_args->deadline); |
| 5490 | kq->kq_state |= KQ_SLEEP; |
| 5491 | kqunlock(kq); |
| 5492 | thread_block_parameter(kqueue_scan_continue, kq); |
| 5493 | /* NOTREACHED */ |
| 5494 | } |
| 5495 | kqunlock(kq); |
| 5496 | } break; |
| 5497 | case THREAD_TIMED_OUT: |
| 5498 | error = EWOULDBLOCK; |
| 5499 | break; |
| 5500 | case THREAD_INTERRUPTED: |
| 5501 | error = EINTR; |
| 5502 | break; |
| 5503 | case THREAD_RESTART: |
| 5504 | drain: |
| 5505 | error = EBADF; |
| 5506 | break; |
| 5507 | default: |
| 5508 | panic("%s: - invalid wait_result (%d)" , __func__, |
| 5509 | wait_result); |
| 5510 | error = 0; |
| 5511 | } |
| 5512 | |
| 5513 | /* call the continuation with the results */ |
| 5514 | assert(cont_args->cont != NULL); |
| 5515 | (cont_args->cont)(kq, cont_args->data, error); |
| 5516 | } |
| 5517 | |
| 5518 | |
| 5519 | /* |
| 5520 | * kqueue_scan - scan and wait for events in a kqueue |
| 5521 | * |
| 5522 | * Process the triggered events in a kqueue. |
| 5523 | * |
| 5524 | * If there are no events triggered arrange to |
| 5525 | * wait for them. If the caller provided a |
| 5526 | * continuation routine, then kevent_scan will |
| 5527 | * also. |
| 5528 | * |
| 5529 | * The callback routine must be valid. |
| 5530 | * The caller must hold a use-count reference on the kq. |
| 5531 | */ |
| 5532 | int |
| 5533 | kqueue_scan(struct kqueue *kq, |
| 5534 | kevent_callback_t callback, |
| 5535 | kqueue_continue_t continuation, |
| 5536 | void *callback_data, |
| 5537 | struct filt_process_s *process_data, |
| 5538 | struct timeval *atvp, |
| 5539 | __unused struct proc *p) |
| 5540 | { |
| 5541 | thread_continue_t cont = THREAD_CONTINUE_NULL; |
| 5542 | unsigned int flags; |
| 5543 | uint64_t deadline; |
| 5544 | int error; |
| 5545 | int first; |
| 5546 | int fd; |
| 5547 | |
| 5548 | assert(callback != NULL); |
| 5549 | |
| 5550 | /* |
| 5551 | * Determine which QoS index we are servicing |
| 5552 | */ |
| 5553 | flags = (process_data) ? process_data->fp_flags : 0; |
| 5554 | fd = (process_data) ? process_data->fp_fd : -1; |
| 5555 | |
| 5556 | first = 1; |
| 5557 | for (;;) { |
| 5558 | wait_result_t wait_result; |
| 5559 | int count; |
| 5560 | |
| 5561 | /* |
| 5562 | * Make a pass through the kq to find events already |
| 5563 | * triggered. |
| 5564 | */ |
| 5565 | kqlock(kq); |
| 5566 | error = kqueue_process(kq, callback, callback_data, |
| 5567 | process_data, &count); |
| 5568 | if (error || count) |
| 5569 | break; /* lock still held */ |
| 5570 | |
| 5571 | /* looks like we have to consider blocking */ |
| 5572 | if (first) { |
| 5573 | first = 0; |
| 5574 | /* convert the timeout to a deadline once */ |
| 5575 | if (atvp->tv_sec || atvp->tv_usec) { |
| 5576 | uint64_t now; |
| 5577 | |
| 5578 | clock_get_uptime(&now); |
| 5579 | nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC + |
| 5580 | atvp->tv_usec * (long)NSEC_PER_USEC, |
| 5581 | &deadline); |
| 5582 | if (now >= deadline) { |
| 5583 | /* non-blocking call */ |
| 5584 | error = EWOULDBLOCK; |
| 5585 | break; /* lock still held */ |
| 5586 | } |
| 5587 | deadline -= now; |
| 5588 | clock_absolutetime_interval_to_deadline(deadline, &deadline); |
| 5589 | } else { |
| 5590 | deadline = 0; /* block forever */ |
| 5591 | } |
| 5592 | |
| 5593 | if (continuation) { |
| 5594 | uthread_t ut = (uthread_t)get_bsdthread_info(current_thread()); |
| 5595 | struct _kqueue_scan *cont_args = &ut->uu_save.uus_kqueue_scan; |
| 5596 | |
| 5597 | cont_args->call = callback; |
| 5598 | cont_args->cont = continuation; |
| 5599 | cont_args->deadline = deadline; |
| 5600 | cont_args->data = callback_data; |
| 5601 | cont_args->process_data = process_data; |
| 5602 | cont = kqueue_scan_continue; |
| 5603 | } |
| 5604 | } |
| 5605 | |
| 5606 | if (kq->kq_state & KQ_DRAIN) { |
| 5607 | kqunlock(kq); |
| 5608 | return EBADF; |
| 5609 | } |
| 5610 | |
| 5611 | /* If awakened during processing, try again */ |
| 5612 | if (kq->kq_state & KQ_WAKEUP) { |
| 5613 | kqunlock(kq); |
| 5614 | continue; |
| 5615 | } |
| 5616 | |
| 5617 | /* go ahead and wait */ |
| 5618 | waitq_assert_wait64_leeway((struct waitq *)&kq->kq_wqs, |
| 5619 | KQ_EVENT, THREAD_ABORTSAFE, |
| 5620 | TIMEOUT_URGENCY_USER_NORMAL, |
| 5621 | deadline, TIMEOUT_NO_LEEWAY); |
| 5622 | kq->kq_state |= KQ_SLEEP; |
| 5623 | kqunlock(kq); |
| 5624 | wait_result = thread_block_parameter(cont, kq); |
| 5625 | /* NOTREACHED if (continuation != NULL) */ |
| 5626 | |
| 5627 | switch (wait_result) { |
| 5628 | case THREAD_AWAKENED: |
| 5629 | continue; |
| 5630 | case THREAD_TIMED_OUT: |
| 5631 | return EWOULDBLOCK; |
| 5632 | case THREAD_INTERRUPTED: |
| 5633 | return EINTR; |
| 5634 | case THREAD_RESTART: |
| 5635 | return EBADF; |
| 5636 | default: |
| 5637 | panic("%s: - bad wait_result (%d)" , __func__, |
| 5638 | wait_result); |
| 5639 | error = 0; |
| 5640 | } |
| 5641 | } |
| 5642 | kqunlock(kq); |
| 5643 | return (error); |
| 5644 | } |
| 5645 | |
| 5646 | |
| 5647 | /* |
| 5648 | * XXX |
| 5649 | * This could be expanded to call kqueue_scan, if desired. |
| 5650 | */ |
| 5651 | /*ARGSUSED*/ |
| 5652 | static int |
| 5653 | kqueue_read(__unused struct fileproc *fp, |
| 5654 | __unused struct uio *uio, |
| 5655 | __unused int flags, |
| 5656 | __unused vfs_context_t ctx) |
| 5657 | { |
| 5658 | return (ENXIO); |
| 5659 | } |
| 5660 | |
| 5661 | /*ARGSUSED*/ |
| 5662 | static int |
| 5663 | kqueue_write(__unused struct fileproc *fp, |
| 5664 | __unused struct uio *uio, |
| 5665 | __unused int flags, |
| 5666 | __unused vfs_context_t ctx) |
| 5667 | { |
| 5668 | return (ENXIO); |
| 5669 | } |
| 5670 | |
| 5671 | /*ARGSUSED*/ |
| 5672 | static int |
| 5673 | kqueue_ioctl(__unused struct fileproc *fp, |
| 5674 | __unused u_long com, |
| 5675 | __unused caddr_t data, |
| 5676 | __unused vfs_context_t ctx) |
| 5677 | { |
| 5678 | return (ENOTTY); |
| 5679 | } |
| 5680 | |
| 5681 | /*ARGSUSED*/ |
| 5682 | static int |
| 5683 | kqueue_select(struct fileproc *fp, int which, void *wq_link_id, |
| 5684 | __unused vfs_context_t ctx) |
| 5685 | { |
| 5686 | struct kqueue *kq = (struct kqueue *)fp->f_data; |
| 5687 | struct kqtailq *queue; |
| 5688 | struct kqtailq *suppressq; |
| 5689 | struct knote *kn; |
| 5690 | int retnum = 0; |
| 5691 | |
| 5692 | if (which != FREAD) |
| 5693 | return (0); |
| 5694 | |
| 5695 | kqlock(kq); |
| 5696 | |
| 5697 | assert((kq->kq_state & KQ_WORKQ) == 0); |
| 5698 | |
| 5699 | /* |
| 5700 | * If this is the first pass, link the wait queue associated with the |
| 5701 | * the kqueue onto the wait queue set for the select(). Normally we |
| 5702 | * use selrecord() for this, but it uses the wait queue within the |
| 5703 | * selinfo structure and we need to use the main one for the kqueue to |
| 5704 | * catch events from KN_STAYQUEUED sources. So we do the linkage manually. |
| 5705 | * (The select() call will unlink them when it ends). |
| 5706 | */ |
| 5707 | if (wq_link_id != NULL) { |
| 5708 | thread_t cur_act = current_thread(); |
| 5709 | struct uthread * ut = get_bsdthread_info(cur_act); |
| 5710 | |
| 5711 | kq->kq_state |= KQ_SEL; |
| 5712 | waitq_link((struct waitq *)&kq->kq_wqs, ut->uu_wqset, |
| 5713 | WAITQ_SHOULD_LOCK, (uint64_t *)wq_link_id); |
| 5714 | |
| 5715 | /* always consume the reserved link object */ |
| 5716 | waitq_link_release(*(uint64_t *)wq_link_id); |
| 5717 | *(uint64_t *)wq_link_id = 0; |
| 5718 | |
| 5719 | /* |
| 5720 | * selprocess() is expecting that we send it back the waitq |
| 5721 | * that was just added to the thread's waitq set. In order |
| 5722 | * to not change the selrecord() API (which is exported to |
| 5723 | * kexts), we pass this value back through the |
| 5724 | * void *wq_link_id pointer we were passed. We need to use |
| 5725 | * memcpy here because the pointer may not be properly aligned |
| 5726 | * on 32-bit systems. |
| 5727 | */ |
| 5728 | void *wqptr = &kq->kq_wqs; |
| 5729 | memcpy(wq_link_id, (void *)&wqptr, sizeof(void *)); |
| 5730 | } |
| 5731 | |
| 5732 | if (kqfile_begin_processing(kq) == -1) { |
| 5733 | kqunlock(kq); |
| 5734 | return (0); |
| 5735 | } |
| 5736 | |
| 5737 | queue = &kq->kq_queue[QOS_INDEX_KQFILE]; |
| 5738 | if (!TAILQ_EMPTY(queue)) { |
| 5739 | /* |
| 5740 | * there is something queued - but it might be a |
| 5741 | * KN_STAYACTIVE knote, which may or may not have |
| 5742 | * any events pending. Otherwise, we have to walk |
| 5743 | * the list of knotes to see, and peek at the |
| 5744 | * (non-vanished) stay-active ones to be really sure. |
| 5745 | */ |
| 5746 | while ((kn = (struct knote *)TAILQ_FIRST(queue)) != NULL) { |
| 5747 | if (kn->kn_status & KN_ACTIVE) { |
| 5748 | retnum = 1; |
| 5749 | goto out; |
| 5750 | } |
| 5751 | assert(kn->kn_status & KN_STAYACTIVE); |
| 5752 | knote_suppress(kn); |
| 5753 | } |
| 5754 | |
| 5755 | /* |
| 5756 | * There were no regular events on the queue, so take |
| 5757 | * a deeper look at the stay-queued ones we suppressed. |
| 5758 | */ |
| 5759 | suppressq = kqueue_get_suppressed_queue(kq, NULL); |
| 5760 | while ((kn = (struct knote *)TAILQ_FIRST(suppressq)) != NULL) { |
| 5761 | KNOTE_LOCK_CTX(knlc); |
| 5762 | int result = 0; |
| 5763 | |
| 5764 | /* If didn't vanish while suppressed - peek at it */ |
| 5765 | if ((kn->kn_status & KN_DROPPING) || !knote_lock(kq, kn, &knlc, |
| 5766 | KNOTE_KQ_LOCK_ON_FAILURE)) { |
| 5767 | continue; |
| 5768 | } |
| 5769 | |
| 5770 | result = filter_call(knote_fops(kn), f_peek(kn)); |
| 5771 | |
| 5772 | kqlock(kq); |
| 5773 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_LOCK_ALWAYS); |
| 5774 | |
| 5775 | /* unsuppress it */ |
| 5776 | knote_unsuppress(kn); |
| 5777 | |
| 5778 | /* has data or it has to report a vanish */ |
| 5779 | if (result & FILTER_ACTIVE) { |
| 5780 | retnum = 1; |
| 5781 | goto out; |
| 5782 | } |
| 5783 | } |
| 5784 | } |
| 5785 | |
| 5786 | out: |
| 5787 | kqfile_end_processing(kq); |
| 5788 | kqunlock(kq); |
| 5789 | return (retnum); |
| 5790 | } |
| 5791 | |
| 5792 | /* |
| 5793 | * kqueue_close - |
| 5794 | */ |
| 5795 | /*ARGSUSED*/ |
| 5796 | static int |
| 5797 | kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx) |
| 5798 | { |
| 5799 | struct kqfile *kqf = (struct kqfile *)fg->fg_data; |
| 5800 | |
| 5801 | assert((kqf->kqf_state & KQ_WORKQ) == 0); |
| 5802 | kqueue_dealloc(&kqf->kqf_kqueue); |
| 5803 | fg->fg_data = NULL; |
| 5804 | return (0); |
| 5805 | } |
| 5806 | |
| 5807 | /* |
| 5808 | * Max depth of the nested kq path that can be created. |
| 5809 | * Note that this has to be less than the size of kq_level |
| 5810 | * to avoid wrapping around and mislabeling the level. |
| 5811 | */ |
| 5812 | #define MAX_NESTED_KQ 1000 |
| 5813 | |
| 5814 | /*ARGSUSED*/ |
| 5815 | /* |
| 5816 | * The callers has taken a use-count reference on this kqueue and will donate it |
| 5817 | * to the kqueue we are being added to. This keeps the kqueue from closing until |
| 5818 | * that relationship is torn down. |
| 5819 | */ |
| 5820 | static int |
| 5821 | kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, |
| 5822 | __unused struct kevent_internal_s *kev, __unused vfs_context_t ctx) |
| 5823 | { |
| 5824 | struct kqfile *kqf = (struct kqfile *)kn->kn_fp->f_data; |
| 5825 | struct kqueue *kq = &kqf->kqf_kqueue; |
| 5826 | struct kqueue *parentkq = knote_get_kq(kn); |
| 5827 | uint16_t plevel = 0; |
| 5828 | |
| 5829 | assert((kqf->kqf_state & KQ_WORKQ) == 0); |
| 5830 | |
| 5831 | if (parentkq == kq || kn->kn_filter != EVFILT_READ) { |
| 5832 | knote_set_error(kn, EINVAL); |
| 5833 | return 0; |
| 5834 | } |
| 5835 | |
| 5836 | /* |
| 5837 | * We have to avoid creating a cycle when nesting kqueues |
| 5838 | * inside another. Rather than trying to walk the whole |
| 5839 | * potential DAG of nested kqueues, we just use a simple |
| 5840 | * ceiling protocol. When a kqueue is inserted into another, |
| 5841 | * we check that the (future) parent is not already nested |
| 5842 | * into another kqueue at a lower level than the potenial |
| 5843 | * child (because it could indicate a cycle). If that test |
| 5844 | * passes, we just mark the nesting levels accordingly. |
| 5845 | * |
| 5846 | * Only up to MAX_NESTED_KQ can be nested. |
| 5847 | */ |
| 5848 | |
| 5849 | kqlock(parentkq); |
| 5850 | if (parentkq->kq_level > 0 && |
| 5851 | parentkq->kq_level < kq->kq_level) |
| 5852 | { |
| 5853 | kqunlock(parentkq); |
| 5854 | knote_set_error(kn, EINVAL); |
| 5855 | return 0; |
| 5856 | } else { |
| 5857 | /* set parent level appropriately */ |
| 5858 | plevel = (parentkq->kq_level == 0)? 2: parentkq->kq_level; |
| 5859 | if (plevel < kq->kq_level + 1) { |
| 5860 | if (kq->kq_level + 1 > MAX_NESTED_KQ) { |
| 5861 | kqunlock(parentkq); |
| 5862 | knote_set_error(kn, EINVAL); |
| 5863 | return 0; |
| 5864 | } |
| 5865 | plevel = kq->kq_level + 1; |
| 5866 | } |
| 5867 | |
| 5868 | parentkq->kq_level = plevel; |
| 5869 | kqunlock(parentkq); |
| 5870 | |
| 5871 | kn->kn_filtid = EVFILTID_KQREAD; |
| 5872 | kqlock(kq); |
| 5873 | KNOTE_ATTACH(&kqf->kqf_sel.si_note, kn); |
| 5874 | /* indicate nesting in child, if needed */ |
| 5875 | if (kq->kq_level == 0) |
| 5876 | kq->kq_level = 1; |
| 5877 | |
| 5878 | int count = kq->kq_count; |
| 5879 | kqunlock(kq); |
| 5880 | return (count > 0); |
| 5881 | } |
| 5882 | } |
| 5883 | |
| 5884 | /* |
| 5885 | * kqueue_drain - called when kq is closed |
| 5886 | */ |
| 5887 | /*ARGSUSED*/ |
| 5888 | static int |
| 5889 | kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx) |
| 5890 | { |
| 5891 | struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data; |
| 5892 | |
| 5893 | assert((kq->kq_state & KQ_WORKQ) == 0); |
| 5894 | |
| 5895 | kqlock(kq); |
| 5896 | kq->kq_state |= KQ_DRAIN; |
| 5897 | kqueue_interrupt(kq); |
| 5898 | kqunlock(kq); |
| 5899 | return (0); |
| 5900 | } |
| 5901 | |
| 5902 | /*ARGSUSED*/ |
| 5903 | int |
| 5904 | kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p) |
| 5905 | { |
| 5906 | assert((kq->kq_state & KQ_WORKQ) == 0); |
| 5907 | |
| 5908 | kqlock(kq); |
| 5909 | if (isstat64 != 0) { |
| 5910 | struct stat64 *sb64 = (struct stat64 *)ub; |
| 5911 | |
| 5912 | bzero((void *)sb64, sizeof(*sb64)); |
| 5913 | sb64->st_size = kq->kq_count; |
| 5914 | if (kq->kq_state & KQ_KEV_QOS) |
| 5915 | sb64->st_blksize = sizeof(struct kevent_qos_s); |
| 5916 | else if (kq->kq_state & KQ_KEV64) |
| 5917 | sb64->st_blksize = sizeof(struct kevent64_s); |
| 5918 | else if (IS_64BIT_PROCESS(p)) |
| 5919 | sb64->st_blksize = sizeof(struct user64_kevent); |
| 5920 | else |
| 5921 | sb64->st_blksize = sizeof(struct user32_kevent); |
| 5922 | sb64->st_mode = S_IFIFO; |
| 5923 | } else { |
| 5924 | struct stat *sb = (struct stat *)ub; |
| 5925 | |
| 5926 | bzero((void *)sb, sizeof(*sb)); |
| 5927 | sb->st_size = kq->kq_count; |
| 5928 | if (kq->kq_state & KQ_KEV_QOS) |
| 5929 | sb->st_blksize = sizeof(struct kevent_qos_s); |
| 5930 | else if (kq->kq_state & KQ_KEV64) |
| 5931 | sb->st_blksize = sizeof(struct kevent64_s); |
| 5932 | else if (IS_64BIT_PROCESS(p)) |
| 5933 | sb->st_blksize = sizeof(struct user64_kevent); |
| 5934 | else |
| 5935 | sb->st_blksize = sizeof(struct user32_kevent); |
| 5936 | sb->st_mode = S_IFIFO; |
| 5937 | } |
| 5938 | kqunlock(kq); |
| 5939 | return (0); |
| 5940 | } |
| 5941 | |
| 5942 | /* |
| 5943 | * Interact with the pthread kext to request a servicing there at a specific QoS |
| 5944 | * level. |
| 5945 | * |
| 5946 | * - Caller holds the workq request lock |
| 5947 | * |
| 5948 | * - May be called with the kqueue's wait queue set locked, |
| 5949 | * so cannot do anything that could recurse on that. |
| 5950 | */ |
| 5951 | static void |
| 5952 | kqueue_threadreq_initiate(struct kqueue *kq, struct kqrequest *kqr, |
| 5953 | kq_index_t qos, int flags) |
| 5954 | { |
| 5955 | assert(kqr->kqr_state & KQR_WAKEUP); |
| 5956 | assert(kqr->kqr_thread == THREAD_NULL); |
| 5957 | assert((kqr->kqr_state & KQR_THREQUESTED) == 0); |
| 5958 | struct turnstile *ts = TURNSTILE_NULL; |
| 5959 | |
| 5960 | if (workq_is_exiting(kq->kq_p)) { |
| 5961 | return; |
| 5962 | } |
| 5963 | |
| 5964 | /* Add a thread request reference on the kqueue. */ |
| 5965 | kqueue_retain(kq); |
| 5966 | |
| 5967 | kq_req_held(kq); |
| 5968 | |
| 5969 | if (kq->kq_state & KQ_WORKLOOP) { |
| 5970 | __assert_only struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 5971 | |
| 5972 | assert(kqwl->kqwl_owner == THREAD_NULL); |
| 5973 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_THREQUEST), |
| 5974 | kqwl->kqwl_dynamicid, 0, qos, kqr->kqr_state); |
| 5975 | ts = kqwl->kqwl_turnstile; |
| 5976 | } else { |
| 5977 | assert(kq->kq_state & KQ_WORKQ); |
| 5978 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_THREQUEST), |
| 5979 | -1, 0, qos, kqr->kqr_state); |
| 5980 | } |
| 5981 | |
| 5982 | kqr->kqr_state |= KQR_THREQUESTED; |
| 5983 | |
| 5984 | /* |
| 5985 | * New-style thread request supported. |
| 5986 | * Provide the pthread kext a pointer to a workq_threadreq_s structure for |
| 5987 | * its use until a corresponding kqueue_threadreq_bind callback. |
| 5988 | */ |
| 5989 | if ((kq->kq_state & KQ_WORKLOOP) && current_proc() == kq->kq_p) { |
| 5990 | flags |= WORKQ_THREADREQ_SET_AST_ON_FAILURE; |
| 5991 | } |
| 5992 | if (qos == KQWQ_QOS_MANAGER) { |
| 5993 | qos = WORKQ_THREAD_QOS_MANAGER; |
| 5994 | } |
| 5995 | if (!workq_kern_threadreq_initiate(kq->kq_p, kqr, ts, qos, flags)) { |
| 5996 | /* |
| 5997 | * Process is shutting down or exec'ing. |
| 5998 | * All the kqueues are going to be cleaned up |
| 5999 | * soon. Forget we even asked for a thread - |
| 6000 | * and make sure we don't ask for more. |
| 6001 | */ |
| 6002 | kqr->kqr_state &= ~(KQR_THREQUESTED | KQR_R2K_NOTIF_ARMED); |
| 6003 | kqueue_release(kq, KQUEUE_CANT_BE_LAST_REF); |
| 6004 | } |
| 6005 | } |
| 6006 | |
| 6007 | /* |
| 6008 | * kqueue_threadreq_bind_prepost - prepost the bind to kevent |
| 6009 | * |
| 6010 | * This is used when kqueue_threadreq_bind may cause a lock inversion. |
| 6011 | */ |
| 6012 | void |
| 6013 | kqueue_threadreq_bind_prepost(struct proc *p __unused, workq_threadreq_t req, |
| 6014 | thread_t thread) |
| 6015 | { |
| 6016 | struct kqrequest *kqr = __container_of(req, struct kqrequest, kqr_req); |
| 6017 | struct uthread *ut = get_bsdthread_info(thread); |
| 6018 | |
| 6019 | req->tr_binding_thread = thread; |
| 6020 | ut->uu_kqr_bound = kqr; |
| 6021 | req->tr_state = TR_STATE_BINDING; |
| 6022 | |
| 6023 | struct kqworkloop *kqwl = kqr_kqworkloop(kqr); |
| 6024 | if (kqwl && kqwl->kqwl_turnstile) { |
| 6025 | struct turnstile *ts = kqwl->kqwl_turnstile; |
| 6026 | /* |
| 6027 | * While a thread request is in flight, the workqueue |
| 6028 | * is the interlock for the turnstile and can update the inheritor. |
| 6029 | */ |
| 6030 | turnstile_update_inheritor(ts, thread, TURNSTILE_IMMEDIATE_UPDATE | |
| 6031 | TURNSTILE_INHERITOR_THREAD); |
| 6032 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_HELD); |
| 6033 | } |
| 6034 | } |
| 6035 | |
| 6036 | /* |
| 6037 | * kqueue_threadreq_bind_commit - commit a bind prepost |
| 6038 | * |
| 6039 | * The workq code has to commit any binding prepost before the thread has |
| 6040 | * a chance to come back to userspace (and do kevent syscalls) or be aborted. |
| 6041 | */ |
| 6042 | void |
| 6043 | kqueue_threadreq_bind_commit(struct proc *p, thread_t thread) |
| 6044 | { |
| 6045 | struct uthread *ut = get_bsdthread_info(thread); |
| 6046 | struct kqrequest *kqr = ut->uu_kqr_bound; |
| 6047 | kqueue_t kqu = kqr_kqueue(p, kqr); |
| 6048 | |
| 6049 | kq_req_lock(kqu); |
| 6050 | if (kqr->kqr_req.tr_state == TR_STATE_BINDING) { |
| 6051 | kqueue_threadreq_bind(p, &kqr->kqr_req, thread, 0); |
| 6052 | } |
| 6053 | kq_req_unlock(kqu); |
| 6054 | } |
| 6055 | |
| 6056 | static void |
| 6057 | kqueue_threadreq_modify(struct kqueue *kq, struct kqrequest *kqr, kq_index_t qos) |
| 6058 | { |
| 6059 | assert(kqr->kqr_state & KQR_THREQUESTED); |
| 6060 | assert(kqr->kqr_thread == THREAD_NULL); |
| 6061 | |
| 6062 | kq_req_held(kq); |
| 6063 | |
| 6064 | int flags = 0; |
| 6065 | if ((kq->kq_state & KQ_WORKLOOP) && kq->kq_p == current_proc()) { |
| 6066 | flags |= WORKQ_THREADREQ_SET_AST_ON_FAILURE; |
| 6067 | } |
| 6068 | workq_kern_threadreq_modify(kq->kq_p, kqr, qos, flags); |
| 6069 | } |
| 6070 | |
| 6071 | /* |
| 6072 | * kqueue_threadreq_bind - bind thread to processing kqrequest |
| 6073 | * |
| 6074 | * The provided thread will be responsible for delivering events |
| 6075 | * associated with the given kqrequest. Bind it and get ready for |
| 6076 | * the thread to eventually arrive. |
| 6077 | */ |
| 6078 | void |
| 6079 | kqueue_threadreq_bind(struct proc *p, workq_threadreq_t req, thread_t thread, |
| 6080 | unsigned int flags) |
| 6081 | { |
| 6082 | struct kqrequest *kqr = __container_of(req, struct kqrequest, kqr_req); |
| 6083 | kqueue_t kqu = kqr_kqueue(p, kqr); |
| 6084 | struct uthread *ut = get_bsdthread_info(thread); |
| 6085 | |
| 6086 | kq_req_held(kqu); |
| 6087 | |
| 6088 | assert(kqr->kqr_state & KQR_THREQUESTED); |
| 6089 | assert(kqr->kqr_thread == THREAD_NULL); |
| 6090 | assert(ut->uu_kqueue_override == 0); |
| 6091 | |
| 6092 | if (kqr->kqr_req.tr_state == TR_STATE_BINDING) { |
| 6093 | assert(ut->uu_kqr_bound == kqr); |
| 6094 | assert(kqr->kqr_req.tr_binding_thread == thread); |
| 6095 | kqr->kqr_req.tr_state = TR_STATE_IDLE; |
| 6096 | kqr->kqr_req.tr_binding_thread = NULL; |
| 6097 | } else { |
| 6098 | assert(ut->uu_kqr_bound == NULL); |
| 6099 | } |
| 6100 | |
| 6101 | ut->uu_kqr_bound = kqr; |
| 6102 | kqr->kqr_thread = thread; |
| 6103 | |
| 6104 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 6105 | struct turnstile *ts = kqu.kqwl->kqwl_turnstile; |
| 6106 | |
| 6107 | if (__improbable(thread == kqu.kqwl->kqwl_owner)) { |
| 6108 | /* |
| 6109 | * <rdar://problem/38626999> shows that asserting here is not ok. |
| 6110 | * |
| 6111 | * This is not supposed to happen for correct use of the interface, |
| 6112 | * but it is sadly possible for userspace (with the help of memory |
| 6113 | * corruption, such as over-release of a dispatch queue) to make |
| 6114 | * the creator thread the "owner" of a workloop. |
| 6115 | * |
| 6116 | * Once that happens, and that creator thread picks up the same |
| 6117 | * workloop as a servicer, we trip this codepath. We need to fixup |
| 6118 | * the state to forget about this thread being the owner, as the |
| 6119 | * entire workloop state machine expects servicers to never be |
| 6120 | * owners and everything would basically go downhill from here. |
| 6121 | */ |
| 6122 | kqu.kqwl->kqwl_owner = THREAD_NULL; |
| 6123 | if (kqworkloop_owner_override(kqu.kqwl)) { |
| 6124 | thread_drop_ipc_override(thread); |
| 6125 | } |
| 6126 | thread_ends_owning_workloop(thread); |
| 6127 | } |
| 6128 | |
| 6129 | if (ts && (flags & KQUEUE_THREADERQ_BIND_NO_INHERITOR_UPDATE) == 0) { |
| 6130 | /* |
| 6131 | * Past this point, the interlock is the kq req lock again, |
| 6132 | * so we can fix the inheritor for good. |
| 6133 | */ |
| 6134 | filt_wlupdate_inheritor(kqu.kqwl, ts, TURNSTILE_IMMEDIATE_UPDATE); |
| 6135 | turnstile_update_inheritor_complete(ts, TURNSTILE_INTERLOCK_HELD); |
| 6136 | } |
| 6137 | |
| 6138 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_BIND), kqu.kqwl->kqwl_dynamicid, |
| 6139 | thread_tid(thread), kqr->kqr_qos_index, |
| 6140 | (kqr->kqr_override_index << 16) | kqr->kqr_state); |
| 6141 | |
| 6142 | ut->uu_kqueue_override = kqr->kqr_override_index; |
| 6143 | if (kqr->kqr_override_index) { |
| 6144 | thread_add_ipc_override(thread, kqr->kqr_override_index); |
| 6145 | } |
| 6146 | } else { |
| 6147 | assert(kqr->kqr_override_index == 0); |
| 6148 | |
| 6149 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_BIND), -1, |
| 6150 | thread_tid(thread), kqr->kqr_qos_index, |
| 6151 | (kqr->kqr_override_index << 16) | kqr->kqr_state); |
| 6152 | } |
| 6153 | } |
| 6154 | |
| 6155 | /* |
| 6156 | * kqueue_threadreq_cancel - abort a pending thread request |
| 6157 | * |
| 6158 | * Called when exiting/exec'ing. Forget our pending request. |
| 6159 | */ |
| 6160 | void |
| 6161 | kqueue_threadreq_cancel(struct proc *p, workq_threadreq_t req) |
| 6162 | { |
| 6163 | struct kqrequest *kqr = __container_of(req, struct kqrequest, kqr_req); |
| 6164 | kqueue_t kqu = kqr_kqueue(p, kqr); |
| 6165 | |
| 6166 | kq_req_lock(kqu); |
| 6167 | |
| 6168 | assert(kqr->kqr_thread == THREAD_NULL); |
| 6169 | assert(kqr->kqr_state & KQR_THREQUESTED); |
| 6170 | kqr->kqr_state &= ~(KQR_THREQUESTED | KQR_R2K_NOTIF_ARMED); |
| 6171 | |
| 6172 | kq_req_unlock(kqu); |
| 6173 | |
| 6174 | kqueue_release_last(p, kqu); /* may dealloc kqu */ |
| 6175 | } |
| 6176 | |
| 6177 | workq_threadreq_param_t |
| 6178 | kqueue_threadreq_workloop_param(workq_threadreq_t req) |
| 6179 | { |
| 6180 | struct kqrequest *kqr = __container_of(req, struct kqrequest, kqr_req); |
| 6181 | struct kqworkloop *kqwl; |
| 6182 | workq_threadreq_param_t trp; |
| 6183 | |
| 6184 | assert(kqr->kqr_state & KQR_WORKLOOP); |
| 6185 | kqwl = __container_of(kqr, struct kqworkloop, kqwl_request); |
| 6186 | trp.trp_value = kqwl->kqwl_params; |
| 6187 | return trp; |
| 6188 | } |
| 6189 | |
| 6190 | /* |
| 6191 | * kqueue_threadreq_unbind - unbind thread from processing kqueue |
| 6192 | * |
| 6193 | * End processing the per-QoS bucket of events and allow other threads |
| 6194 | * to be requested for future servicing. |
| 6195 | * |
| 6196 | * caller holds a reference on the kqueue. |
| 6197 | */ |
| 6198 | void |
| 6199 | kqueue_threadreq_unbind(struct proc *p, struct kqrequest *kqr) |
| 6200 | { |
| 6201 | if (kqr->kqr_state & KQR_WORKLOOP) { |
| 6202 | kqworkloop_unbind(p, kqr_kqworkloop(kqr)); |
| 6203 | } else { |
| 6204 | kqworkq_unbind(p, kqr); |
| 6205 | } |
| 6206 | } |
| 6207 | |
| 6208 | /* |
| 6209 | * If we aren't already busy processing events [for this QoS], |
| 6210 | * request workq thread support as appropriate. |
| 6211 | * |
| 6212 | * TBD - for now, we don't segregate out processing by QoS. |
| 6213 | * |
| 6214 | * - May be called with the kqueue's wait queue set locked, |
| 6215 | * so cannot do anything that could recurse on that. |
| 6216 | */ |
| 6217 | static void |
| 6218 | kqworkq_request_help(struct kqworkq *kqwq, kq_index_t qos_index) |
| 6219 | { |
| 6220 | struct kqrequest *kqr; |
| 6221 | |
| 6222 | /* convert to thread qos value */ |
| 6223 | assert(qos_index < KQWQ_NBUCKETS); |
| 6224 | |
| 6225 | kq_req_lock(kqwq); |
| 6226 | kqr = kqworkq_get_request(kqwq, qos_index); |
| 6227 | |
| 6228 | if ((kqr->kqr_state & KQR_WAKEUP) == 0) { |
| 6229 | kqr->kqr_state |= KQR_WAKEUP; |
| 6230 | if ((kqr->kqr_state & KQR_THREQUESTED) == 0) { |
| 6231 | kqueue_threadreq_initiate(&kqwq->kqwq_kqueue, kqr, qos_index, 0); |
| 6232 | } |
| 6233 | } |
| 6234 | kq_req_unlock(kqwq); |
| 6235 | } |
| 6236 | |
| 6237 | static kq_index_t |
| 6238 | kqworkloop_owner_override(struct kqworkloop *kqwl) |
| 6239 | { |
| 6240 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 6241 | return MAX(kqr->kqr_qos_index, kqr->kqr_override_index); |
| 6242 | } |
| 6243 | |
| 6244 | static inline void |
| 6245 | kqworkloop_request_fire_r2k_notification(struct kqworkloop *kqwl) |
| 6246 | { |
| 6247 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 6248 | |
| 6249 | kq_req_held(kqwl); |
| 6250 | |
| 6251 | if (kqr->kqr_state & KQR_R2K_NOTIF_ARMED) { |
| 6252 | assert(kqr->kqr_thread); |
| 6253 | kqr->kqr_state &= ~KQR_R2K_NOTIF_ARMED; |
| 6254 | act_set_astkevent(kqr->kqr_thread, AST_KEVENT_RETURN_TO_KERNEL); |
| 6255 | } |
| 6256 | } |
| 6257 | |
| 6258 | static void |
| 6259 | kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos) |
| 6260 | { |
| 6261 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 6262 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 6263 | kq_index_t old_owner_override = kqworkloop_owner_override(kqwl); |
| 6264 | kq_index_t i; |
| 6265 | |
| 6266 | /* must hold the kqr lock */ |
| 6267 | kq_req_held(kqwl); |
| 6268 | |
| 6269 | switch (op) { |
| 6270 | case KQWL_UTQ_UPDATE_WAKEUP_QOS: |
| 6271 | if (qos == KQWL_BUCKET_STAYACTIVE) { |
| 6272 | /* |
| 6273 | * the KQWL_BUCKET_STAYACTIVE is not a QoS bucket, we only remember |
| 6274 | * a high watermark (kqr_stayactive_qos) of any stay active knote |
| 6275 | * that was ever registered with this workloop. |
| 6276 | * |
| 6277 | * When waitq_set__CALLING_PREPOST_HOOK__() wakes up any stay active |
| 6278 | * knote, we use this high-watermark as a wakeup-index, and also set |
| 6279 | * the magic KQWL_BUCKET_STAYACTIVE bit to make sure we remember |
| 6280 | * there is at least one stay active knote fired until the next full |
| 6281 | * processing of this bucket. |
| 6282 | */ |
| 6283 | kqr->kqr_wakeup_indexes |= KQWL_STAYACTIVE_FIRED_BIT; |
| 6284 | qos = kqr->kqr_stayactive_qos; |
| 6285 | assert(qos); |
| 6286 | } |
| 6287 | if (kqr->kqr_wakeup_indexes & (1 << qos)) { |
| 6288 | assert(kqr->kqr_state & KQR_WAKEUP); |
| 6289 | break; |
| 6290 | } |
| 6291 | |
| 6292 | kqr->kqr_wakeup_indexes |= (1 << qos); |
| 6293 | kqr->kqr_state |= KQR_WAKEUP; |
| 6294 | kqworkloop_request_fire_r2k_notification(kqwl); |
| 6295 | goto recompute; |
| 6296 | |
| 6297 | case KQWL_UTQ_UPDATE_STAYACTIVE_QOS: |
| 6298 | assert(qos); |
| 6299 | if (kqr->kqr_stayactive_qos < qos) { |
| 6300 | kqr->kqr_stayactive_qos = qos; |
| 6301 | if (kqr->kqr_wakeup_indexes & KQWL_STAYACTIVE_FIRED_BIT) { |
| 6302 | assert(kqr->kqr_state & KQR_WAKEUP); |
| 6303 | kqr->kqr_wakeup_indexes |= (1 << qos); |
| 6304 | goto recompute; |
| 6305 | } |
| 6306 | } |
| 6307 | break; |
| 6308 | |
| 6309 | case KQWL_UTQ_PARKING: |
| 6310 | case KQWL_UTQ_UNBINDING: |
| 6311 | kqr->kqr_override_index = qos; |
| 6312 | /* FALLTHROUGH */ |
| 6313 | case KQWL_UTQ_RECOMPUTE_WAKEUP_QOS: |
| 6314 | if (op == KQWL_UTQ_RECOMPUTE_WAKEUP_QOS) { |
| 6315 | assert(qos == THREAD_QOS_UNSPECIFIED); |
| 6316 | } |
| 6317 | kqlock_held(kqwl); // to look at kq_queues |
| 6318 | i = KQWL_BUCKET_STAYACTIVE; |
| 6319 | if (TAILQ_EMPTY(&kqr->kqr_suppressed)) { |
| 6320 | kqr->kqr_override_index = THREAD_QOS_UNSPECIFIED; |
| 6321 | } |
| 6322 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[i]) && |
| 6323 | (kqr->kqr_wakeup_indexes & KQWL_STAYACTIVE_FIRED_BIT)) { |
| 6324 | /* |
| 6325 | * If the KQWL_STAYACTIVE_FIRED_BIT is set, it means a stay active |
| 6326 | * knote may have fired, so we need to merge in kqr_stayactive_qos. |
| 6327 | * |
| 6328 | * Unlike other buckets, this one is never empty but could be idle. |
| 6329 | */ |
| 6330 | kqr->kqr_wakeup_indexes &= KQWL_STAYACTIVE_FIRED_BIT; |
| 6331 | kqr->kqr_wakeup_indexes |= (1 << kqr->kqr_stayactive_qos); |
| 6332 | } else { |
| 6333 | kqr->kqr_wakeup_indexes = 0; |
| 6334 | } |
| 6335 | for (i = THREAD_QOS_UNSPECIFIED + 1; i < KQWL_BUCKET_STAYACTIVE; i++) { |
| 6336 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[i])) { |
| 6337 | kqr->kqr_wakeup_indexes |= (1 << i); |
| 6338 | } |
| 6339 | } |
| 6340 | if (kqr->kqr_wakeup_indexes) { |
| 6341 | kqr->kqr_state |= KQR_WAKEUP; |
| 6342 | kqworkloop_request_fire_r2k_notification(kqwl); |
| 6343 | } else { |
| 6344 | kqr->kqr_state &= ~KQR_WAKEUP; |
| 6345 | } |
| 6346 | goto recompute; |
| 6347 | |
| 6348 | case KQWL_UTQ_RESET_WAKEUP_OVERRIDE: |
| 6349 | kqr->kqr_override_index = qos; |
| 6350 | goto recompute; |
| 6351 | |
| 6352 | case KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE: |
| 6353 | recompute: |
| 6354 | /* |
| 6355 | * When modifying the wakeup QoS or the override QoS, we always need to |
| 6356 | * maintain our invariant that kqr_override_index is at least as large |
| 6357 | * as the highest QoS for which an event is fired. |
| 6358 | * |
| 6359 | * However this override index can be larger when there is an overriden |
| 6360 | * suppressed knote pushing on the kqueue. |
| 6361 | */ |
| 6362 | if (kqr->kqr_wakeup_indexes > (1 << qos)) { |
| 6363 | qos = fls(kqr->kqr_wakeup_indexes) - 1; /* fls is 1-based */ |
| 6364 | } |
| 6365 | if (kqr->kqr_override_index < qos) { |
| 6366 | kqr->kqr_override_index = qos; |
| 6367 | } |
| 6368 | break; |
| 6369 | |
| 6370 | case KQWL_UTQ_REDRIVE_EVENTS: |
| 6371 | break; |
| 6372 | |
| 6373 | case KQWL_UTQ_SET_QOS_INDEX: |
| 6374 | kqr->kqr_qos_index = qos; |
| 6375 | break; |
| 6376 | |
| 6377 | default: |
| 6378 | panic("unknown kqwl thread qos update operation: %d" , op); |
| 6379 | } |
| 6380 | |
| 6381 | thread_t kqwl_owner = kqwl->kqwl_owner; |
| 6382 | thread_t servicer = kqr->kqr_thread; |
| 6383 | boolean_t qos_changed = FALSE; |
| 6384 | kq_index_t new_owner_override = kqworkloop_owner_override(kqwl); |
| 6385 | |
| 6386 | /* |
| 6387 | * Apply the diffs to the owner if applicable |
| 6388 | */ |
| 6389 | if (kqwl_owner) { |
| 6390 | #if 0 |
| 6391 | /* JMM - need new trace hooks for owner overrides */ |
| 6392 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), |
| 6393 | kqwl->kqwl_dynamicid, thread_tid(kqwl_owner), kqr->kqr_qos_index, |
| 6394 | (kqr->kqr_override_index << 16) | kqr->kqr_state); |
| 6395 | #endif |
| 6396 | if (new_owner_override == old_owner_override) { |
| 6397 | // nothing to do |
| 6398 | } else if (old_owner_override == THREAD_QOS_UNSPECIFIED) { |
| 6399 | thread_add_ipc_override(kqwl_owner, new_owner_override); |
| 6400 | } else if (new_owner_override == THREAD_QOS_UNSPECIFIED) { |
| 6401 | thread_drop_ipc_override(kqwl_owner); |
| 6402 | } else /* old_owner_override != new_owner_override */ { |
| 6403 | thread_update_ipc_override(kqwl_owner, new_owner_override); |
| 6404 | } |
| 6405 | } |
| 6406 | |
| 6407 | /* |
| 6408 | * apply the diffs to the servicer |
| 6409 | */ |
| 6410 | if ((kqr->kqr_state & KQR_THREQUESTED) == 0) { |
| 6411 | /* |
| 6412 | * No servicer, nor thread-request |
| 6413 | * |
| 6414 | * Make a new thread request, unless there is an owner (or the workloop |
| 6415 | * is suspended in userland) or if there is no asynchronous work in the |
| 6416 | * first place. |
| 6417 | */ |
| 6418 | |
| 6419 | if (kqwl_owner == NULL && (kqr->kqr_state & KQR_WAKEUP)) { |
| 6420 | int initiate_flags = 0; |
| 6421 | if (op == KQWL_UTQ_UNBINDING) { |
| 6422 | initiate_flags = WORKQ_THREADREQ_ATTEMPT_REBIND; |
| 6423 | } |
| 6424 | kqueue_threadreq_initiate(kq, kqr, new_owner_override, |
| 6425 | initiate_flags); |
| 6426 | } |
| 6427 | } else if (servicer) { |
| 6428 | /* |
| 6429 | * Servicer in flight |
| 6430 | * |
| 6431 | * Just apply the diff to the servicer |
| 6432 | */ |
| 6433 | struct uthread *ut = get_bsdthread_info(servicer); |
| 6434 | if (ut->uu_kqueue_override != kqr->kqr_override_index) { |
| 6435 | if (ut->uu_kqueue_override == THREAD_QOS_UNSPECIFIED) { |
| 6436 | thread_add_ipc_override(servicer, kqr->kqr_override_index); |
| 6437 | } else if (kqr->kqr_override_index == THREAD_QOS_UNSPECIFIED) { |
| 6438 | thread_drop_ipc_override(servicer); |
| 6439 | } else /* ut->uu_kqueue_override != kqr->kqr_override_index */ { |
| 6440 | thread_update_ipc_override(servicer, kqr->kqr_override_index); |
| 6441 | } |
| 6442 | ut->uu_kqueue_override = kqr->kqr_override_index; |
| 6443 | qos_changed = TRUE; |
| 6444 | } |
| 6445 | } else if (new_owner_override == THREAD_QOS_UNSPECIFIED) { |
| 6446 | /* |
| 6447 | * No events to deliver anymore. |
| 6448 | * |
| 6449 | * However canceling with turnstiles is challenging, so the fact that |
| 6450 | * the request isn't useful will be discovered by the servicer himself |
| 6451 | * later on. |
| 6452 | */ |
| 6453 | } else if (old_owner_override != new_owner_override) { |
| 6454 | /* |
| 6455 | * Request is in flight |
| 6456 | * |
| 6457 | * Apply the diff to the thread request |
| 6458 | */ |
| 6459 | kqueue_threadreq_modify(kq, kqr, new_owner_override); |
| 6460 | qos_changed = TRUE; |
| 6461 | } |
| 6462 | |
| 6463 | if (qos_changed) { |
| 6464 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), kqwl->kqwl_dynamicid, |
| 6465 | thread_tid(kqr->kqr_thread), kqr->kqr_qos_index, |
| 6466 | (kqr->kqr_override_index << 16) | kqr->kqr_state); |
| 6467 | } |
| 6468 | } |
| 6469 | |
| 6470 | static void |
| 6471 | kqworkloop_request_help(struct kqworkloop *kqwl, kq_index_t qos_index) |
| 6472 | { |
| 6473 | /* convert to thread qos value */ |
| 6474 | assert(qos_index < KQWL_NBUCKETS); |
| 6475 | |
| 6476 | kq_req_lock(kqwl); |
| 6477 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_WAKEUP_QOS, qos_index); |
| 6478 | kq_req_unlock(kqwl); |
| 6479 | } |
| 6480 | |
| 6481 | static struct kqtailq * |
| 6482 | kqueue_get_queue(struct kqueue *kq, kq_index_t qos_index) |
| 6483 | { |
| 6484 | if (kq->kq_state & KQ_WORKQ) { |
| 6485 | assert(qos_index < KQWQ_NBUCKETS); |
| 6486 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 6487 | assert(qos_index < KQWL_NBUCKETS); |
| 6488 | } else { |
| 6489 | assert(qos_index == QOS_INDEX_KQFILE); |
| 6490 | } |
| 6491 | static_assert(offsetof(struct kqueue, kq_queue) == sizeof(struct kqueue), |
| 6492 | "struct kqueue::kq_queue must be exactly at the end" ); |
| 6493 | return &kq->kq_queue[qos_index]; |
| 6494 | } |
| 6495 | |
| 6496 | static int |
| 6497 | kqueue_queue_empty(struct kqueue *kq, kq_index_t qos_index) |
| 6498 | { |
| 6499 | return TAILQ_EMPTY(kqueue_get_queue(kq, qos_index)); |
| 6500 | } |
| 6501 | |
| 6502 | static struct kqtailq * |
| 6503 | kqueue_get_suppressed_queue(kqueue_t kq, struct knote *kn) |
| 6504 | { |
| 6505 | if (kq.kq->kq_state & KQ_WORKQ) { |
| 6506 | return &kqworkq_get_request(kq.kqwq, kn->kn_qos_index)->kqr_suppressed; |
| 6507 | } else if (kq.kq->kq_state & KQ_WORKLOOP) { |
| 6508 | return &kq.kqwl->kqwl_request.kqr_suppressed; |
| 6509 | } else { |
| 6510 | return &kq.kqf->kqf_suppressed; |
| 6511 | } |
| 6512 | } |
| 6513 | |
| 6514 | static struct turnstile * |
| 6515 | kqueue_get_turnstile(kqueue_t kqu, bool can_alloc) |
| 6516 | { |
| 6517 | uint8_t kqr_state; |
| 6518 | |
| 6519 | if ((kqu.kq->kq_state & KQ_WORKLOOP) == 0) { |
| 6520 | return TURNSTILE_NULL; |
| 6521 | } |
| 6522 | |
| 6523 | kqr_state = os_atomic_load(&kqu.kqwl->kqwl_request.kqr_state, relaxed); |
| 6524 | if (kqr_state & KQR_ALLOCATED_TURNSTILE) { |
| 6525 | /* force a dependency to pair with the atomic or with release below */ |
| 6526 | return os_atomic_load_with_dependency_on(&kqu.kqwl->kqwl_turnstile, |
| 6527 | kqr_state); |
| 6528 | } |
| 6529 | |
| 6530 | if (!can_alloc) { |
| 6531 | return TURNSTILE_NULL; |
| 6532 | } |
| 6533 | |
| 6534 | struct turnstile *ts = turnstile_alloc(), *free_ts = TURNSTILE_NULL; |
| 6535 | |
| 6536 | kq_req_lock(kqu); |
| 6537 | if (filt_wlturnstile_interlock_is_workq(kqu.kqwl)) { |
| 6538 | workq_kern_threadreq_lock(kqu.kqwl->kqwl_p); |
| 6539 | } |
| 6540 | |
| 6541 | if (kqu.kqwl->kqwl_request.kqr_state & KQR_ALLOCATED_TURNSTILE) { |
| 6542 | free_ts = ts; |
| 6543 | ts = kqu.kqwl->kqwl_turnstile; |
| 6544 | } else { |
| 6545 | ts = turnstile_prepare((uintptr_t)kqu.kqwl, &kqu.kqwl->kqwl_turnstile, |
| 6546 | ts, TURNSTILE_WORKLOOPS); |
| 6547 | |
| 6548 | /* release-barrier to pair with the unlocked load of kqwl_turnstile above */ |
| 6549 | os_atomic_or(&kqu.kqwl->kqwl_request.kqr_state, |
| 6550 | KQR_ALLOCATED_TURNSTILE, release); |
| 6551 | } |
| 6552 | |
| 6553 | if (filt_wlturnstile_interlock_is_workq(kqu.kqwl)) { |
| 6554 | workq_kern_threadreq_unlock(kqu.kqwl->kqwl_p); |
| 6555 | } |
| 6556 | kq_req_unlock(kqu.kqwl); |
| 6557 | |
| 6558 | if (free_ts) { |
| 6559 | turnstile_deallocate(free_ts); |
| 6560 | } |
| 6561 | return ts; |
| 6562 | } |
| 6563 | |
| 6564 | struct turnstile * |
| 6565 | kqueue_turnstile(struct kqueue *kq) |
| 6566 | { |
| 6567 | return kqueue_get_turnstile(kq, false); |
| 6568 | } |
| 6569 | |
| 6570 | struct turnstile * |
| 6571 | kqueue_alloc_turnstile(struct kqueue *kq) |
| 6572 | { |
| 6573 | return kqueue_get_turnstile(kq, true); |
| 6574 | } |
| 6575 | |
| 6576 | static struct kqtailq * |
| 6577 | knote_get_queue(struct knote *kn) |
| 6578 | { |
| 6579 | return kqueue_get_queue(knote_get_kq(kn), kn->kn_qos_index); |
| 6580 | } |
| 6581 | |
| 6582 | static void |
| 6583 | knote_reset_priority(struct knote *kn, pthread_priority_t pp) |
| 6584 | { |
| 6585 | struct kqueue *kq = knote_get_kq(kn); |
| 6586 | kq_index_t qos = _pthread_priority_thread_qos(pp); |
| 6587 | |
| 6588 | assert((kn->kn_status & KN_QUEUED) == 0); |
| 6589 | |
| 6590 | if (kq->kq_state & KQ_WORKQ) { |
| 6591 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 6592 | /* On workqueues, outside of QoS means MANAGER */ |
| 6593 | qos = KQWQ_QOS_MANAGER; |
| 6594 | pp = _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; |
| 6595 | } else { |
| 6596 | pp = _pthread_priority_normalize(pp); |
| 6597 | } |
| 6598 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 6599 | assert((pp & _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG) == 0); |
| 6600 | pp = _pthread_priority_normalize(pp); |
| 6601 | } else { |
| 6602 | pp = _pthread_unspecified_priority(); |
| 6603 | qos = THREAD_QOS_UNSPECIFIED; |
| 6604 | } |
| 6605 | |
| 6606 | kn->kn_qos = pp; |
| 6607 | kn->kn_req_index = qos; |
| 6608 | |
| 6609 | if ((kn->kn_status & KN_MERGE_QOS) == 0 || qos > kn->kn_qos_override) { |
| 6610 | /* Never lower QoS when in "Merge" mode */ |
| 6611 | kn->kn_qos_override = qos; |
| 6612 | } |
| 6613 | |
| 6614 | /* only adjust in-use qos index when not suppressed */ |
| 6615 | if ((kn->kn_status & KN_SUPPRESSED) == 0) { |
| 6616 | kn->kn_qos_index = qos; |
| 6617 | } else if (kq->kq_state & KQ_WORKQ) { |
| 6618 | kqworkq_update_override((struct kqworkq *)kq, kn, qos); |
| 6619 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 6620 | kqworkloop_update_override((struct kqworkloop *)kq, qos); |
| 6621 | } |
| 6622 | } |
| 6623 | |
| 6624 | static void |
| 6625 | knote_set_qos_overcommit(struct knote *kn) |
| 6626 | { |
| 6627 | struct kqueue *kq = knote_get_kq(kn); |
| 6628 | |
| 6629 | /* turn overcommit on for the appropriate thread request? */ |
| 6630 | if ((kn->kn_qos & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) && |
| 6631 | (kq->kq_state & KQ_WORKLOOP)) { |
| 6632 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 6633 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 6634 | |
| 6635 | /* |
| 6636 | * This test is racy, but since we never remove this bit, |
| 6637 | * it allows us to avoid taking a lock. |
| 6638 | */ |
| 6639 | if (kqr->kqr_state & KQR_THOVERCOMMIT) { |
| 6640 | return; |
| 6641 | } |
| 6642 | |
| 6643 | kq_req_lock(kqwl); |
| 6644 | kqr->kqr_state |= KQR_THOVERCOMMIT; |
| 6645 | if (!kqr->kqr_thread && (kqr->kqr_state & KQR_THREQUESTED)) { |
| 6646 | kqueue_threadreq_modify(kq, kqr, kqr->kqr_req.tr_qos); |
| 6647 | } |
| 6648 | kq_req_unlock(kqwl); |
| 6649 | } |
| 6650 | } |
| 6651 | |
| 6652 | static kq_index_t |
| 6653 | knote_get_qos_override_index(struct knote *kn) |
| 6654 | { |
| 6655 | return kn->kn_qos_override; |
| 6656 | } |
| 6657 | |
| 6658 | static void |
| 6659 | kqworkq_update_override(struct kqworkq *kqwq, struct knote *kn, |
| 6660 | kq_index_t override_index) |
| 6661 | { |
| 6662 | struct kqrequest *kqr; |
| 6663 | kq_index_t old_override_index; |
| 6664 | kq_index_t queue_index = kn->kn_qos_index; |
| 6665 | |
| 6666 | if (override_index <= queue_index) { |
| 6667 | return; |
| 6668 | } |
| 6669 | |
| 6670 | kqr = kqworkq_get_request(kqwq, queue_index); |
| 6671 | |
| 6672 | kq_req_lock(kqwq); |
| 6673 | old_override_index = kqr->kqr_override_index; |
| 6674 | if (override_index > MAX(kqr->kqr_qos_index, old_override_index)) { |
| 6675 | kqr->kqr_override_index = override_index; |
| 6676 | |
| 6677 | /* apply the override to [incoming?] servicing thread */ |
| 6678 | if (kqr->kqr_thread) { |
| 6679 | if (old_override_index) |
| 6680 | thread_update_ipc_override(kqr->kqr_thread, override_index); |
| 6681 | else |
| 6682 | thread_add_ipc_override(kqr->kqr_thread, override_index); |
| 6683 | } |
| 6684 | } |
| 6685 | kq_req_unlock(kqwq); |
| 6686 | } |
| 6687 | |
| 6688 | static void |
| 6689 | kqworkloop_update_override(struct kqworkloop *kqwl, kq_index_t override_index) |
| 6690 | { |
| 6691 | kq_req_lock(kqwl); |
| 6692 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, |
| 6693 | override_index); |
| 6694 | kq_req_unlock(kqwl); |
| 6695 | } |
| 6696 | |
| 6697 | static thread_qos_t |
| 6698 | kqworkloop_unbind_locked(struct kqworkloop *kqwl, thread_t thread) |
| 6699 | { |
| 6700 | struct uthread *ut = get_bsdthread_info(thread); |
| 6701 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 6702 | kq_index_t ipc_override = ut->uu_kqueue_override; |
| 6703 | |
| 6704 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_UNBIND), kqwl->kqwl_dynamicid, |
| 6705 | thread_tid(thread), 0, 0); |
| 6706 | |
| 6707 | kq_req_held(kqwl); |
| 6708 | assert(ut->uu_kqr_bound == kqr); |
| 6709 | ut->uu_kqr_bound = NULL; |
| 6710 | ut->uu_kqueue_override = THREAD_QOS_UNSPECIFIED; |
| 6711 | |
| 6712 | if (kqwl->kqwl_owner == NULL && kqwl->kqwl_turnstile) { |
| 6713 | turnstile_update_inheritor(kqwl->kqwl_turnstile, |
| 6714 | TURNSTILE_INHERITOR_NULL, TURNSTILE_IMMEDIATE_UPDATE); |
| 6715 | turnstile_update_inheritor_complete(kqwl->kqwl_turnstile, |
| 6716 | TURNSTILE_INTERLOCK_HELD); |
| 6717 | } |
| 6718 | |
| 6719 | kqr->kqr_thread = NULL; |
| 6720 | kqr->kqr_state &= ~(KQR_THREQUESTED | KQR_R2K_NOTIF_ARMED); |
| 6721 | return ipc_override; |
| 6722 | } |
| 6723 | |
| 6724 | /* |
| 6725 | * kqworkloop_unbind - Unbind the servicer thread of a workloop kqueue |
| 6726 | * |
| 6727 | * It will acknowledge events, and possibly request a new thread if: |
| 6728 | * - there were active events left |
| 6729 | * - we pended waitq hook callouts during processing |
| 6730 | * - we pended wakeups while processing (or unsuppressing) |
| 6731 | * |
| 6732 | * Called with kqueue lock held. |
| 6733 | */ |
| 6734 | static void |
| 6735 | kqworkloop_unbind(proc_t p, struct kqworkloop *kqwl) |
| 6736 | { |
| 6737 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 6738 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 6739 | thread_t thread = kqr->kqr_thread; |
| 6740 | int op = KQWL_UTQ_PARKING; |
| 6741 | kq_index_t ipc_override, qos_override = THREAD_QOS_UNSPECIFIED; |
| 6742 | |
| 6743 | assert(thread == current_thread()); |
| 6744 | |
| 6745 | kqlock(kqwl); |
| 6746 | |
| 6747 | /* |
| 6748 | * Forcing the KQ_PROCESSING flag allows for QoS updates because of |
| 6749 | * unsuppressing knotes not to be applied until the eventual call to |
| 6750 | * kqworkloop_update_threads_qos() below. |
| 6751 | */ |
| 6752 | assert((kq->kq_state & KQ_PROCESSING) == 0); |
| 6753 | if (!TAILQ_EMPTY(&kqr->kqr_suppressed)) { |
| 6754 | kq->kq_state |= KQ_PROCESSING; |
| 6755 | qos_override = kqworkloop_acknowledge_events(kqwl); |
| 6756 | kq->kq_state &= ~KQ_PROCESSING; |
| 6757 | } |
| 6758 | |
| 6759 | kq_req_lock(kqwl); |
| 6760 | |
| 6761 | ipc_override = kqworkloop_unbind_locked(kqwl, thread); |
| 6762 | kqworkloop_update_threads_qos(kqwl, op, qos_override); |
| 6763 | |
| 6764 | kq_req_unlock(kqwl); |
| 6765 | |
| 6766 | kqunlock(kqwl); |
| 6767 | |
| 6768 | /* |
| 6769 | * Drop the override on the current thread last, after the call to |
| 6770 | * kqworkloop_update_threads_qos above. |
| 6771 | */ |
| 6772 | if (ipc_override) { |
| 6773 | thread_drop_ipc_override(thread); |
| 6774 | } |
| 6775 | |
| 6776 | /* If last reference, dealloc the workloop kq */ |
| 6777 | kqueue_release_last(p, kqwl); |
| 6778 | } |
| 6779 | |
| 6780 | static thread_qos_t |
| 6781 | kqworkq_unbind_locked(__assert_only struct kqworkq *kqwq, |
| 6782 | struct kqrequest *kqr, thread_t thread) |
| 6783 | { |
| 6784 | struct uthread *ut = get_bsdthread_info(thread); |
| 6785 | kq_index_t old_override = kqr->kqr_override_index; |
| 6786 | |
| 6787 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_UNBIND), -1, |
| 6788 | thread_tid(kqr->kqr_thread), kqr->kqr_qos_index, 0); |
| 6789 | |
| 6790 | kq_req_held(kqwq); |
| 6791 | assert(ut->uu_kqr_bound == kqr); |
| 6792 | ut->uu_kqr_bound = NULL; |
| 6793 | kqr->kqr_thread = NULL; |
| 6794 | kqr->kqr_state &= ~(KQR_THREQUESTED | KQR_R2K_NOTIF_ARMED); |
| 6795 | kqr->kqr_override_index = THREAD_QOS_UNSPECIFIED; |
| 6796 | |
| 6797 | return old_override; |
| 6798 | } |
| 6799 | |
| 6800 | /* |
| 6801 | * kqworkq_unbind - unbind of a workq kqueue from a thread |
| 6802 | * |
| 6803 | * We may have to request new threads. |
| 6804 | * This can happen there are no waiting processing threads and: |
| 6805 | * - there were active events we never got to (count > 0) |
| 6806 | * - we pended waitq hook callouts during processing |
| 6807 | * - we pended wakeups while processing (or unsuppressing) |
| 6808 | */ |
| 6809 | static void |
| 6810 | kqworkq_unbind(proc_t p, struct kqrequest *kqr) |
| 6811 | { |
| 6812 | struct kqworkq *kqwq = (struct kqworkq *)p->p_fd->fd_wqkqueue; |
| 6813 | __assert_only int rc; |
| 6814 | |
| 6815 | kqlock(kqwq); |
| 6816 | rc = kqworkq_acknowledge_events(kqwq, kqr, 0, KQWQAE_UNBIND); |
| 6817 | assert(rc == -1); |
| 6818 | kqunlock(kqwq); |
| 6819 | } |
| 6820 | |
| 6821 | struct kqrequest * |
| 6822 | kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index) |
| 6823 | { |
| 6824 | assert(qos_index < KQWQ_NBUCKETS); |
| 6825 | return &kqwq->kqwq_request[qos_index]; |
| 6826 | } |
| 6827 | |
| 6828 | static void |
| 6829 | knote_apply_qos_override(struct knote *kn, kq_index_t qos_index) |
| 6830 | { |
| 6831 | assert((kn->kn_status & KN_QUEUED) == 0); |
| 6832 | |
| 6833 | kn->kn_qos_override = qos_index; |
| 6834 | |
| 6835 | if (kn->kn_status & KN_SUPPRESSED) { |
| 6836 | struct kqueue *kq = knote_get_kq(kn); |
| 6837 | /* |
| 6838 | * For suppressed events, the kn_qos_index field cannot be touched as it |
| 6839 | * allows us to know on which supress queue the knote is for a kqworkq. |
| 6840 | * |
| 6841 | * Also, there's no natural push applied on the kqueues when this field |
| 6842 | * changes anyway. We hence need to apply manual overrides in this case, |
| 6843 | * which will be cleared when the events are later acknowledged. |
| 6844 | */ |
| 6845 | if (kq->kq_state & KQ_WORKQ) { |
| 6846 | kqworkq_update_override((struct kqworkq *)kq, kn, qos_index); |
| 6847 | } else { |
| 6848 | kqworkloop_update_override((struct kqworkloop *)kq, qos_index); |
| 6849 | } |
| 6850 | } else { |
| 6851 | kn->kn_qos_index = qos_index; |
| 6852 | } |
| 6853 | } |
| 6854 | |
| 6855 | static bool |
| 6856 | knote_should_apply_qos_override(struct kqueue *kq, struct knote *kn, int result, |
| 6857 | thread_qos_t *qos_out) |
| 6858 | { |
| 6859 | thread_qos_t qos_index = (result >> FILTER_ADJUST_EVENT_QOS_SHIFT) & 7; |
| 6860 | |
| 6861 | kqlock_held(kq); |
| 6862 | |
| 6863 | assert(result & FILTER_ADJUST_EVENT_QOS_BIT); |
| 6864 | assert(qos_index < THREAD_QOS_LAST); |
| 6865 | |
| 6866 | /* |
| 6867 | * Early exit for knotes that should not change QoS |
| 6868 | * |
| 6869 | * It is safe to test kn_req_index against MANAGER / STAYACTIVE because |
| 6870 | * knotes with such kn_req_index values never change for their entire |
| 6871 | * lifetime. |
| 6872 | */ |
| 6873 | if (__improbable(!knote_fops(kn)->f_adjusts_qos)) { |
| 6874 | panic("filter %d cannot change QoS" , kn->kn_filtid); |
| 6875 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 6876 | if (kn->kn_req_index == KQWL_BUCKET_STAYACTIVE) { |
| 6877 | return false; |
| 6878 | } |
| 6879 | } else if (kq->kq_state & KQ_WORKQ) { |
| 6880 | if (kn->kn_req_index == KQWQ_QOS_MANAGER) { |
| 6881 | return false; |
| 6882 | } |
| 6883 | } else { |
| 6884 | return false; |
| 6885 | } |
| 6886 | |
| 6887 | /* |
| 6888 | * knotes with the FALLBACK flag will only use their registration QoS if the |
| 6889 | * incoming event has no QoS, else, the registration QoS acts as a floor. |
| 6890 | */ |
| 6891 | if (kn->kn_qos & _PTHREAD_PRIORITY_FALLBACK_FLAG) { |
| 6892 | if (qos_index == THREAD_QOS_UNSPECIFIED) |
| 6893 | qos_index = kn->kn_req_index; |
| 6894 | } else { |
| 6895 | if (qos_index < kn->kn_req_index) |
| 6896 | qos_index = kn->kn_req_index; |
| 6897 | } |
| 6898 | if ((kn->kn_status & KN_MERGE_QOS) && (qos_index < kn->kn_qos_override)) { |
| 6899 | /* Never lower QoS when in "Merge" mode */ |
| 6900 | return false; |
| 6901 | } |
| 6902 | |
| 6903 | if ((kn->kn_status & KN_LOCKED) && kn->kn_inuse) { |
| 6904 | /* |
| 6905 | * When we're trying to update the QoS override and that both an |
| 6906 | * f_event() and other f_* calls are running concurrently, any of these |
| 6907 | * in flight calls may want to perform overrides that aren't properly |
| 6908 | * serialized with each other. |
| 6909 | * |
| 6910 | * The first update that observes this racy situation enters a "Merge" |
| 6911 | * mode which causes subsequent override requests to saturate the |
| 6912 | * override instead of replacing its value. |
| 6913 | * |
| 6914 | * This mode is left when knote_unlock() or knote_call_filter_event() |
| 6915 | * observe that no other f_* routine is in flight. |
| 6916 | */ |
| 6917 | kn->kn_status |= KN_MERGE_QOS; |
| 6918 | } |
| 6919 | |
| 6920 | if (kn->kn_qos_override == qos_index) { |
| 6921 | return false; |
| 6922 | } |
| 6923 | |
| 6924 | *qos_out = qos_index; |
| 6925 | return true; |
| 6926 | } |
| 6927 | |
| 6928 | static void |
| 6929 | knote_adjust_qos(struct kqueue *kq, struct knote *kn, int result) |
| 6930 | { |
| 6931 | thread_qos_t qos; |
| 6932 | if (knote_should_apply_qos_override(kq, kn, result, &qos)) { |
| 6933 | knote_dequeue(kn); |
| 6934 | knote_apply_qos_override(kn, qos); |
| 6935 | if (knote_enqueue(kn) && (kn->kn_status & KN_ACTIVE)) { |
| 6936 | knote_wakeup(kn); |
| 6937 | } |
| 6938 | } |
| 6939 | } |
| 6940 | |
| 6941 | static void |
| 6942 | knote_wakeup(struct knote *kn) |
| 6943 | { |
| 6944 | struct kqueue *kq = knote_get_kq(kn); |
| 6945 | |
| 6946 | kqlock_held(kq); |
| 6947 | |
| 6948 | if (kq->kq_state & KQ_WORKQ) { |
| 6949 | struct kqworkq *kqwq = (struct kqworkq *)kq; |
| 6950 | |
| 6951 | kqworkq_request_help(kqwq, kn->kn_qos_index); |
| 6952 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 6953 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 6954 | |
| 6955 | /* |
| 6956 | * kqworkloop_end_processing() will perform the required QoS |
| 6957 | * computations when it unsets the processing mode. |
| 6958 | */ |
| 6959 | if (!kqworkloop_is_processing_on_current_thread(kqwl)) { |
| 6960 | kqworkloop_request_help(kqwl, kn->kn_qos_index); |
| 6961 | } |
| 6962 | } else { |
| 6963 | struct kqfile *kqf = (struct kqfile *)kq; |
| 6964 | |
| 6965 | /* flag wakeups during processing */ |
| 6966 | if (kq->kq_state & KQ_PROCESSING) |
| 6967 | kq->kq_state |= KQ_WAKEUP; |
| 6968 | |
| 6969 | /* wakeup a thread waiting on this queue */ |
| 6970 | if (kq->kq_state & (KQ_SLEEP | KQ_SEL)) { |
| 6971 | kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); |
| 6972 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, KQ_EVENT, |
| 6973 | THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); |
| 6974 | } |
| 6975 | |
| 6976 | /* wakeup other kqueues/select sets we're inside */ |
| 6977 | KNOTE(&kqf->kqf_sel.si_note, 0); |
| 6978 | } |
| 6979 | } |
| 6980 | |
| 6981 | /* |
| 6982 | * Called with the kqueue locked |
| 6983 | */ |
| 6984 | static void |
| 6985 | kqueue_interrupt(struct kqueue *kq) |
| 6986 | { |
| 6987 | assert((kq->kq_state & KQ_WORKQ) == 0); |
| 6988 | |
| 6989 | /* wakeup sleeping threads */ |
| 6990 | if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0) { |
| 6991 | kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); |
| 6992 | (void)waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
| 6993 | KQ_EVENT, |
| 6994 | THREAD_RESTART, |
| 6995 | WAITQ_ALL_PRIORITIES); |
| 6996 | } |
| 6997 | |
| 6998 | /* wakeup threads waiting their turn to process */ |
| 6999 | if (kq->kq_state & KQ_PROCWAIT) { |
| 7000 | struct kqtailq *suppressq; |
| 7001 | |
| 7002 | assert(kq->kq_state & KQ_PROCESSING); |
| 7003 | |
| 7004 | kq->kq_state &= ~KQ_PROCWAIT; |
| 7005 | suppressq = kqueue_get_suppressed_queue(kq, NULL); |
| 7006 | (void)waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
| 7007 | CAST_EVENT64_T(suppressq), |
| 7008 | THREAD_RESTART, |
| 7009 | WAITQ_ALL_PRIORITIES); |
| 7010 | } |
| 7011 | } |
| 7012 | |
| 7013 | /* |
| 7014 | * Called back from waitq code when no threads waiting and the hook was set. |
| 7015 | * |
| 7016 | * Interrupts are likely disabled and spin locks are held - minimal work |
| 7017 | * can be done in this context!!! |
| 7018 | * |
| 7019 | * JMM - in the future, this will try to determine which knotes match the |
| 7020 | * wait queue wakeup and apply these wakeups against those knotes themselves. |
| 7021 | * For now, all the events dispatched this way are dispatch-manager handled, |
| 7022 | * so hard-code that for now. |
| 7023 | */ |
| 7024 | void |
| 7025 | waitq_set__CALLING_PREPOST_HOOK__(void *kq_hook, void *knote_hook, int qos) |
| 7026 | { |
| 7027 | #pragma unused(knote_hook, qos) |
| 7028 | |
| 7029 | struct kqueue *kq = (struct kqueue *)kq_hook; |
| 7030 | |
| 7031 | if (kq->kq_state & KQ_WORKQ) { |
| 7032 | struct kqworkq *kqwq = (struct kqworkq *)kq; |
| 7033 | |
| 7034 | kqworkq_request_help(kqwq, KQWQ_QOS_MANAGER); |
| 7035 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 7036 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 7037 | |
| 7038 | kqworkloop_request_help(kqwl, KQWL_BUCKET_STAYACTIVE); |
| 7039 | } |
| 7040 | } |
| 7041 | |
| 7042 | void |
| 7043 | klist_init(struct klist *list) |
| 7044 | { |
| 7045 | SLIST_INIT(list); |
| 7046 | } |
| 7047 | |
| 7048 | |
| 7049 | /* |
| 7050 | * Query/Post each knote in the object's list |
| 7051 | * |
| 7052 | * The object lock protects the list. It is assumed |
| 7053 | * that the filter/event routine for the object can |
| 7054 | * determine that the object is already locked (via |
| 7055 | * the hint) and not deadlock itself. |
| 7056 | * |
| 7057 | * The object lock should also hold off pending |
| 7058 | * detach/drop operations. |
| 7059 | */ |
| 7060 | void |
| 7061 | knote(struct klist *list, long hint) |
| 7062 | { |
| 7063 | struct knote *kn; |
| 7064 | |
| 7065 | SLIST_FOREACH(kn, list, kn_selnext) { |
| 7066 | struct kqueue *kq = knote_get_kq(kn); |
| 7067 | kqlock(kq); |
| 7068 | knote_call_filter_event(kq, kn, hint); |
| 7069 | kqunlock(kq); |
| 7070 | } |
| 7071 | } |
| 7072 | |
| 7073 | /* |
| 7074 | * attach a knote to the specified list. Return true if this is the first entry. |
| 7075 | * The list is protected by whatever lock the object it is associated with uses. |
| 7076 | */ |
| 7077 | int |
| 7078 | knote_attach(struct klist *list, struct knote *kn) |
| 7079 | { |
| 7080 | int ret = SLIST_EMPTY(list); |
| 7081 | SLIST_INSERT_HEAD(list, kn, kn_selnext); |
| 7082 | return (ret); |
| 7083 | } |
| 7084 | |
| 7085 | /* |
| 7086 | * detach a knote from the specified list. Return true if that was the last entry. |
| 7087 | * The list is protected by whatever lock the object it is associated with uses. |
| 7088 | */ |
| 7089 | int |
| 7090 | knote_detach(struct klist *list, struct knote *kn) |
| 7091 | { |
| 7092 | SLIST_REMOVE(list, kn, knote, kn_selnext); |
| 7093 | return (SLIST_EMPTY(list)); |
| 7094 | } |
| 7095 | |
| 7096 | /* |
| 7097 | * knote_vanish - Indicate that the source has vanished |
| 7098 | * |
| 7099 | * If the knote has requested EV_VANISHED delivery, |
| 7100 | * arrange for that. Otherwise, deliver a NOTE_REVOKE |
| 7101 | * event for backward compatibility. |
| 7102 | * |
| 7103 | * The knote is marked as having vanished, but is not |
| 7104 | * actually detached from the source in this instance. |
| 7105 | * The actual detach is deferred until the knote drop. |
| 7106 | * |
| 7107 | * Our caller already has the object lock held. Calling |
| 7108 | * the detach routine would try to take that lock |
| 7109 | * recursively - which likely is not supported. |
| 7110 | */ |
| 7111 | void |
| 7112 | knote_vanish(struct klist *list) |
| 7113 | { |
| 7114 | struct knote *kn; |
| 7115 | struct knote *kn_next; |
| 7116 | |
| 7117 | SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn_next) { |
| 7118 | struct kqueue *kq = knote_get_kq(kn); |
| 7119 | |
| 7120 | kqlock(kq); |
| 7121 | if (kn->kn_status & KN_REQVANISH) { |
| 7122 | /* If EV_VANISH supported - prepare to deliver one */ |
| 7123 | kn->kn_status |= KN_VANISHED; |
| 7124 | knote_activate(kn); |
| 7125 | } else { |
| 7126 | knote_call_filter_event(kq, kn, NOTE_REVOKE); |
| 7127 | } |
| 7128 | kqunlock(kq); |
| 7129 | } |
| 7130 | } |
| 7131 | |
| 7132 | /* |
| 7133 | * Force a lazy allocation of the waitqset link |
| 7134 | * of the kq_wqs associated with the kn |
| 7135 | * if it wasn't already allocated. |
| 7136 | * |
| 7137 | * This allows knote_link_waitq to never block |
| 7138 | * if reserved_link is not NULL. |
| 7139 | */ |
| 7140 | void |
| 7141 | knote_link_waitqset_lazy_alloc(struct knote *kn) |
| 7142 | { |
| 7143 | struct kqueue *kq = knote_get_kq(kn); |
| 7144 | waitq_set_lazy_init_link(&kq->kq_wqs); |
| 7145 | } |
| 7146 | |
| 7147 | /* |
| 7148 | * Check if a lazy allocation for the waitqset link |
| 7149 | * of the kq_wqs is needed. |
| 7150 | */ |
| 7151 | boolean_t |
| 7152 | knote_link_waitqset_should_lazy_alloc(struct knote *kn) |
| 7153 | { |
| 7154 | struct kqueue *kq = knote_get_kq(kn); |
| 7155 | return waitq_set_should_lazy_init_link(&kq->kq_wqs); |
| 7156 | } |
| 7157 | |
| 7158 | /* |
| 7159 | * For a given knote, link a provided wait queue directly with the kqueue. |
| 7160 | * Wakeups will happen via recursive wait queue support. But nothing will move |
| 7161 | * the knote to the active list at wakeup (nothing calls knote()). Instead, |
| 7162 | * we permanently enqueue them here. |
| 7163 | * |
| 7164 | * kqueue and knote references are held by caller. |
| 7165 | * waitq locked by caller. |
| 7166 | * |
| 7167 | * caller provides the wait queue link structure and insures that the kq->kq_wqs |
| 7168 | * is linked by previously calling knote_link_waitqset_lazy_alloc. |
| 7169 | */ |
| 7170 | int |
| 7171 | knote_link_waitq(struct knote *kn, struct waitq *wq, uint64_t *reserved_link) |
| 7172 | { |
| 7173 | struct kqueue *kq = knote_get_kq(kn); |
| 7174 | kern_return_t kr; |
| 7175 | |
| 7176 | kr = waitq_link(wq, &kq->kq_wqs, WAITQ_ALREADY_LOCKED, reserved_link); |
| 7177 | if (kr == KERN_SUCCESS) { |
| 7178 | knote_markstayactive(kn); |
| 7179 | return (0); |
| 7180 | } else { |
| 7181 | return (EINVAL); |
| 7182 | } |
| 7183 | } |
| 7184 | |
| 7185 | /* |
| 7186 | * Unlink the provided wait queue from the kqueue associated with a knote. |
| 7187 | * Also remove it from the magic list of directly attached knotes. |
| 7188 | * |
| 7189 | * Note that the unlink may have already happened from the other side, so |
| 7190 | * ignore any failures to unlink and just remove it from the kqueue list. |
| 7191 | * |
| 7192 | * On success, caller is responsible for the link structure |
| 7193 | */ |
| 7194 | int |
| 7195 | knote_unlink_waitq(struct knote *kn, struct waitq *wq) |
| 7196 | { |
| 7197 | struct kqueue *kq = knote_get_kq(kn); |
| 7198 | kern_return_t kr; |
| 7199 | |
| 7200 | kr = waitq_unlink(wq, &kq->kq_wqs); |
| 7201 | knote_clearstayactive(kn); |
| 7202 | return ((kr != KERN_SUCCESS) ? EINVAL : 0); |
| 7203 | } |
| 7204 | |
| 7205 | /* |
| 7206 | * remove all knotes referencing a specified fd |
| 7207 | * |
| 7208 | * Entered with the proc_fd lock already held. |
| 7209 | * It returns the same way, but may drop it temporarily. |
| 7210 | */ |
| 7211 | void |
| 7212 | knote_fdclose(struct proc *p, int fd) |
| 7213 | { |
| 7214 | struct klist *list; |
| 7215 | struct knote *kn; |
| 7216 | KNOTE_LOCK_CTX(knlc); |
| 7217 | |
| 7218 | restart: |
| 7219 | list = &p->p_fd->fd_knlist[fd]; |
| 7220 | SLIST_FOREACH(kn, list, kn_link) { |
| 7221 | struct kqueue *kq = knote_get_kq(kn); |
| 7222 | |
| 7223 | kqlock(kq); |
| 7224 | |
| 7225 | if (kq->kq_p != p) |
| 7226 | panic("%s: proc mismatch (kq->kq_p=%p != p=%p)" , |
| 7227 | __func__, kq->kq_p, p); |
| 7228 | |
| 7229 | /* |
| 7230 | * If the knote supports EV_VANISHED delivery, |
| 7231 | * transition it to vanished mode (or skip over |
| 7232 | * it if already vanished). |
| 7233 | */ |
| 7234 | if (kn->kn_status & KN_VANISHED) { |
| 7235 | kqunlock(kq); |
| 7236 | continue; |
| 7237 | } |
| 7238 | |
| 7239 | proc_fdunlock(p); |
| 7240 | if (!knote_lock(kq, kn, &knlc, KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 7241 | /* the knote was dropped by someone, nothing to do */ |
| 7242 | } else if (kn->kn_status & KN_REQVANISH) { |
| 7243 | kn->kn_status |= KN_VANISHED; |
| 7244 | kn->kn_status &= ~KN_ATTACHED; |
| 7245 | |
| 7246 | kqunlock(kq); |
| 7247 | knote_fops(kn)->f_detach(kn); |
| 7248 | if (knote_fops(kn)->f_isfd) |
| 7249 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); |
| 7250 | kqlock(kq); |
| 7251 | |
| 7252 | knote_activate(kn); |
| 7253 | knote_unlock(kq, kn, &knlc, KNOTE_KQ_UNLOCK); |
| 7254 | } else { |
| 7255 | knote_drop(kq, kn, &knlc); |
| 7256 | } |
| 7257 | |
| 7258 | proc_fdlock(p); |
| 7259 | goto restart; |
| 7260 | } |
| 7261 | } |
| 7262 | |
| 7263 | /* |
| 7264 | * knote_fdfind - lookup a knote in the fd table for process |
| 7265 | * |
| 7266 | * If the filter is file-based, lookup based on fd index. |
| 7267 | * Otherwise use a hash based on the ident. |
| 7268 | * |
| 7269 | * Matching is based on kq, filter, and ident. Optionally, |
| 7270 | * it may also be based on the udata field in the kevent - |
| 7271 | * allowing multiple event registration for the file object |
| 7272 | * per kqueue. |
| 7273 | * |
| 7274 | * fd_knhashlock or fdlock held on entry (and exit) |
| 7275 | */ |
| 7276 | static struct knote * |
| 7277 | knote_fdfind(struct kqueue *kq, |
| 7278 | struct kevent_internal_s *kev, |
| 7279 | bool is_fd, |
| 7280 | struct proc *p) |
| 7281 | { |
| 7282 | struct filedesc *fdp = p->p_fd; |
| 7283 | struct klist *list = NULL; |
| 7284 | struct knote *kn = NULL; |
| 7285 | |
| 7286 | /* |
| 7287 | * determine where to look for the knote |
| 7288 | */ |
| 7289 | if (is_fd) { |
| 7290 | /* fd-based knotes are linked off the fd table */ |
| 7291 | if (kev->ident < (u_int)fdp->fd_knlistsize) { |
| 7292 | list = &fdp->fd_knlist[kev->ident]; |
| 7293 | } |
| 7294 | } else if (fdp->fd_knhashmask != 0) { |
| 7295 | /* hash non-fd knotes here too */ |
| 7296 | list = &fdp->fd_knhash[KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; |
| 7297 | } |
| 7298 | |
| 7299 | /* |
| 7300 | * scan the selected list looking for a match |
| 7301 | */ |
| 7302 | if (list != NULL) { |
| 7303 | SLIST_FOREACH(kn, list, kn_link) { |
| 7304 | if (kq == knote_get_kq(kn) && |
| 7305 | kev->ident == kn->kn_id && |
| 7306 | kev->filter == kn->kn_filter) { |
| 7307 | if (kev->flags & EV_UDATA_SPECIFIC) { |
| 7308 | if ((kn->kn_status & KN_UDATA_SPECIFIC) && |
| 7309 | kev->udata == kn->kn_udata) { |
| 7310 | break; /* matching udata-specific knote */ |
| 7311 | } |
| 7312 | } else if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) { |
| 7313 | break; /* matching non-udata-specific knote */ |
| 7314 | } |
| 7315 | } |
| 7316 | } |
| 7317 | } |
| 7318 | return kn; |
| 7319 | } |
| 7320 | |
| 7321 | /* |
| 7322 | * kq_add_knote- Add knote to the fd table for process |
| 7323 | * while checking for duplicates. |
| 7324 | * |
| 7325 | * All file-based filters associate a list of knotes by file |
| 7326 | * descriptor index. All other filters hash the knote by ident. |
| 7327 | * |
| 7328 | * May have to grow the table of knote lists to cover the |
| 7329 | * file descriptor index presented. |
| 7330 | * |
| 7331 | * fd_knhashlock and fdlock unheld on entry (and exit). |
| 7332 | * |
| 7333 | * Takes a rwlock boost if inserting the knote is successful. |
| 7334 | */ |
| 7335 | static int |
| 7336 | kq_add_knote(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc, |
| 7337 | struct proc *p) |
| 7338 | { |
| 7339 | struct filedesc *fdp = p->p_fd; |
| 7340 | struct klist *list = NULL; |
| 7341 | int ret = 0; |
| 7342 | bool is_fd = knote_fops(kn)->f_isfd; |
| 7343 | |
| 7344 | if (is_fd) |
| 7345 | proc_fdlock(p); |
| 7346 | else |
| 7347 | knhash_lock(p); |
| 7348 | |
| 7349 | if (knote_fdfind(kq, &kn->kn_kevent, is_fd, p) != NULL) { |
| 7350 | /* found an existing knote: we can't add this one */ |
| 7351 | ret = ERESTART; |
| 7352 | goto out_locked; |
| 7353 | } |
| 7354 | |
| 7355 | /* knote was not found: add it now */ |
| 7356 | if (!is_fd) { |
| 7357 | if (fdp->fd_knhashmask == 0) { |
| 7358 | u_long size = 0; |
| 7359 | |
| 7360 | list = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE, &size); |
| 7361 | if (list == NULL) { |
| 7362 | ret = ENOMEM; |
| 7363 | goto out_locked; |
| 7364 | } |
| 7365 | |
| 7366 | fdp->fd_knhash = list; |
| 7367 | fdp->fd_knhashmask = size; |
| 7368 | } |
| 7369 | |
| 7370 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; |
| 7371 | SLIST_INSERT_HEAD(list, kn, kn_link); |
| 7372 | ret = 0; |
| 7373 | goto out_locked; |
| 7374 | |
| 7375 | } else { |
| 7376 | /* knote is fd based */ |
| 7377 | |
| 7378 | if ((u_int)fdp->fd_knlistsize <= kn->kn_id) { |
| 7379 | u_int size = 0; |
| 7380 | |
| 7381 | if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur |
| 7382 | || kn->kn_id >= (uint64_t)maxfiles) { |
| 7383 | ret = EINVAL; |
| 7384 | goto out_locked; |
| 7385 | } |
| 7386 | /* have to grow the fd_knlist */ |
| 7387 | size = fdp->fd_knlistsize; |
| 7388 | while (size <= kn->kn_id) |
| 7389 | size += KQEXTENT; |
| 7390 | |
| 7391 | if (size >= (UINT_MAX/sizeof(struct klist *))) { |
| 7392 | ret = EINVAL; |
| 7393 | goto out_locked; |
| 7394 | } |
| 7395 | |
| 7396 | MALLOC(list, struct klist *, |
| 7397 | size * sizeof(struct klist *), M_KQUEUE, M_WAITOK); |
| 7398 | if (list == NULL) { |
| 7399 | ret = ENOMEM; |
| 7400 | goto out_locked; |
| 7401 | } |
| 7402 | |
| 7403 | bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list, |
| 7404 | fdp->fd_knlistsize * sizeof(struct klist *)); |
| 7405 | bzero((caddr_t)list + |
| 7406 | fdp->fd_knlistsize * sizeof(struct klist *), |
| 7407 | (size - fdp->fd_knlistsize) * sizeof(struct klist *)); |
| 7408 | FREE(fdp->fd_knlist, M_KQUEUE); |
| 7409 | fdp->fd_knlist = list; |
| 7410 | fdp->fd_knlistsize = size; |
| 7411 | } |
| 7412 | |
| 7413 | list = &fdp->fd_knlist[kn->kn_id]; |
| 7414 | SLIST_INSERT_HEAD(list, kn, kn_link); |
| 7415 | ret = 0; |
| 7416 | goto out_locked; |
| 7417 | |
| 7418 | } |
| 7419 | |
| 7420 | out_locked: |
| 7421 | if (ret == 0) { |
| 7422 | kqlock(kq); |
| 7423 | assert((kn->kn_status & KN_LOCKED) == 0); |
| 7424 | (void)knote_lock(kq, kn, knlc, KNOTE_KQ_UNLOCK); |
| 7425 | } |
| 7426 | if (is_fd) |
| 7427 | proc_fdunlock(p); |
| 7428 | else |
| 7429 | knhash_unlock(p); |
| 7430 | |
| 7431 | return ret; |
| 7432 | } |
| 7433 | |
| 7434 | /* |
| 7435 | * kq_remove_knote - remove a knote from the fd table for process |
| 7436 | * |
| 7437 | * If the filter is file-based, remove based on fd index. |
| 7438 | * Otherwise remove from the hash based on the ident. |
| 7439 | * |
| 7440 | * fd_knhashlock and fdlock unheld on entry (and exit). |
| 7441 | */ |
| 7442 | static void |
| 7443 | kq_remove_knote(struct kqueue *kq, struct knote *kn, struct proc *p, |
| 7444 | struct knote_lock_ctx *knlc) |
| 7445 | { |
| 7446 | struct filedesc *fdp = p->p_fd; |
| 7447 | struct klist *list = NULL; |
| 7448 | uint16_t kq_state; |
| 7449 | bool is_fd; |
| 7450 | |
| 7451 | is_fd = knote_fops(kn)->f_isfd; |
| 7452 | |
| 7453 | if (is_fd) |
| 7454 | proc_fdlock(p); |
| 7455 | else |
| 7456 | knhash_lock(p); |
| 7457 | |
| 7458 | if (is_fd) { |
| 7459 | assert ((u_int)fdp->fd_knlistsize > kn->kn_id); |
| 7460 | list = &fdp->fd_knlist[kn->kn_id]; |
| 7461 | } else { |
| 7462 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; |
| 7463 | } |
| 7464 | SLIST_REMOVE(list, kn, knote, kn_link); |
| 7465 | |
| 7466 | kqlock(kq); |
| 7467 | kq_state = kq->kq_state; |
| 7468 | if (knlc) { |
| 7469 | knote_unlock_cancel(kq, kn, knlc, KNOTE_KQ_UNLOCK); |
| 7470 | } else { |
| 7471 | kqunlock(kq); |
| 7472 | } |
| 7473 | if (is_fd) |
| 7474 | proc_fdunlock(p); |
| 7475 | else |
| 7476 | knhash_unlock(p); |
| 7477 | |
| 7478 | if (kq_state & KQ_DYNAMIC) |
| 7479 | kqueue_release_last(p, kq); |
| 7480 | } |
| 7481 | |
| 7482 | /* |
| 7483 | * kq_find_knote_and_kq_lock - lookup a knote in the fd table for process |
| 7484 | * and, if the knote is found, acquires the kqlock while holding the fd table lock/spinlock. |
| 7485 | * |
| 7486 | * fd_knhashlock or fdlock unheld on entry (and exit) |
| 7487 | */ |
| 7488 | |
| 7489 | static struct knote * |
| 7490 | kq_find_knote_and_kq_lock(struct kqueue *kq, struct kevent_internal_s *kev, |
| 7491 | bool is_fd, struct proc *p) |
| 7492 | { |
| 7493 | struct knote * ret; |
| 7494 | |
| 7495 | if (is_fd) |
| 7496 | proc_fdlock(p); |
| 7497 | else |
| 7498 | knhash_lock(p); |
| 7499 | |
| 7500 | ret = knote_fdfind(kq, kev, is_fd, p); |
| 7501 | |
| 7502 | if (ret) { |
| 7503 | kqlock(kq); |
| 7504 | } |
| 7505 | |
| 7506 | if (is_fd) |
| 7507 | proc_fdunlock(p); |
| 7508 | else |
| 7509 | knhash_unlock(p); |
| 7510 | |
| 7511 | return ret; |
| 7512 | } |
| 7513 | /* |
| 7514 | * knote_drop - disconnect and drop the knote |
| 7515 | * |
| 7516 | * Called with the kqueue locked, returns with the kqueue unlocked. |
| 7517 | * |
| 7518 | * If a knote locking context is passed, it is canceled. |
| 7519 | * |
| 7520 | * The knote may have already been detached from |
| 7521 | * (or not yet attached to) its source object. |
| 7522 | */ |
| 7523 | static void |
| 7524 | knote_drop(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc) |
| 7525 | { |
| 7526 | struct proc *p = kq->kq_p; |
| 7527 | |
| 7528 | kqlock_held(kq); |
| 7529 | |
| 7530 | assert((kn->kn_status & KN_DROPPING) == 0); |
| 7531 | if (knlc == NULL) { |
| 7532 | assert((kn->kn_status & KN_LOCKED) == 0); |
| 7533 | } |
| 7534 | kn->kn_status |= KN_DROPPING; |
| 7535 | |
| 7536 | knote_unsuppress(kn); |
| 7537 | knote_dequeue(kn); |
| 7538 | knote_wait_for_filter_events(kq, kn); |
| 7539 | |
| 7540 | /* If we are attached, disconnect from the source first */ |
| 7541 | if (kn->kn_status & KN_ATTACHED) { |
| 7542 | knote_fops(kn)->f_detach(kn); |
| 7543 | } |
| 7544 | |
| 7545 | /* kq may be freed when kq_remove_knote() returns */ |
| 7546 | kq_remove_knote(kq, kn, p, knlc); |
| 7547 | if (knote_fops(kn)->f_isfd && ((kn->kn_status & KN_VANISHED) == 0)) |
| 7548 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); |
| 7549 | |
| 7550 | knote_free(kn); |
| 7551 | } |
| 7552 | |
| 7553 | /* called with kqueue lock held */ |
| 7554 | static void |
| 7555 | knote_activate(struct knote *kn) |
| 7556 | { |
| 7557 | if (kn->kn_status & KN_ACTIVE) |
| 7558 | return; |
| 7559 | |
| 7560 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KNOTE_ACTIVATE), |
| 7561 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 7562 | kn->kn_filtid); |
| 7563 | |
| 7564 | kn->kn_status |= KN_ACTIVE; |
| 7565 | if (knote_enqueue(kn)) |
| 7566 | knote_wakeup(kn); |
| 7567 | } |
| 7568 | |
| 7569 | /* called with kqueue lock held */ |
| 7570 | static void |
| 7571 | knote_deactivate(struct knote *kn) |
| 7572 | { |
| 7573 | kn->kn_status &= ~KN_ACTIVE; |
| 7574 | if ((kn->kn_status & KN_STAYACTIVE) == 0) |
| 7575 | knote_dequeue(kn); |
| 7576 | } |
| 7577 | |
| 7578 | /* called with kqueue lock held */ |
| 7579 | static void |
| 7580 | knote_enable(struct knote *kn) |
| 7581 | { |
| 7582 | if ((kn->kn_status & KN_DISABLED) == 0) |
| 7583 | return; |
| 7584 | |
| 7585 | kn->kn_status &= ~KN_DISABLED; |
| 7586 | |
| 7587 | if (kn->kn_status & KN_SUPPRESSED) { |
| 7588 | /* |
| 7589 | * it is possible for userland to have knotes registered for a given |
| 7590 | * workloop `wl_orig` but really handled on another workloop `wl_new`. |
| 7591 | * |
| 7592 | * In that case, rearming will happen from the servicer thread of |
| 7593 | * `wl_new` which if `wl_orig` is no longer being serviced, would cause |
| 7594 | * this knote to stay suppressed forever if we only relied on |
| 7595 | * kqworkloop_acknowledge_events to be called by `wl_orig`. |
| 7596 | * |
| 7597 | * However if we see the KQ_PROCESSING bit on `wl_orig` set, we can't |
| 7598 | * unsuppress because that would mess with the processing phase of |
| 7599 | * `wl_orig`, however it also means kqworkloop_acknowledge_events() |
| 7600 | * will be called. |
| 7601 | */ |
| 7602 | struct kqueue *kq = knote_get_kq(kn); |
| 7603 | if ((kq->kq_state & KQ_PROCESSING) == 0) { |
| 7604 | knote_unsuppress(kn); |
| 7605 | } |
| 7606 | } else if (knote_enqueue(kn)) { |
| 7607 | knote_wakeup(kn); |
| 7608 | } |
| 7609 | } |
| 7610 | |
| 7611 | /* called with kqueue lock held */ |
| 7612 | static void |
| 7613 | knote_disable(struct knote *kn) |
| 7614 | { |
| 7615 | if (kn->kn_status & KN_DISABLED) |
| 7616 | return; |
| 7617 | |
| 7618 | kn->kn_status |= KN_DISABLED; |
| 7619 | knote_dequeue(kn); |
| 7620 | } |
| 7621 | |
| 7622 | /* called with kqueue lock held */ |
| 7623 | static void |
| 7624 | knote_suppress(struct knote *kn) |
| 7625 | { |
| 7626 | struct kqtailq *suppressq; |
| 7627 | struct kqueue *kq = knote_get_kq(kn); |
| 7628 | |
| 7629 | kqlock_held(kq); |
| 7630 | |
| 7631 | if (kn->kn_status & KN_SUPPRESSED) |
| 7632 | return; |
| 7633 | |
| 7634 | knote_dequeue(kn); |
| 7635 | kn->kn_status |= KN_SUPPRESSED; |
| 7636 | suppressq = kqueue_get_suppressed_queue(kq, kn); |
| 7637 | TAILQ_INSERT_TAIL(suppressq, kn, kn_tqe); |
| 7638 | } |
| 7639 | |
| 7640 | /* called with kqueue lock held */ |
| 7641 | static void |
| 7642 | knote_unsuppress(struct knote *kn) |
| 7643 | { |
| 7644 | struct kqtailq *suppressq; |
| 7645 | struct kqueue *kq = knote_get_kq(kn); |
| 7646 | |
| 7647 | kqlock_held(kq); |
| 7648 | |
| 7649 | if ((kn->kn_status & KN_SUPPRESSED) == 0) |
| 7650 | return; |
| 7651 | |
| 7652 | kn->kn_status &= ~KN_SUPPRESSED; |
| 7653 | suppressq = kqueue_get_suppressed_queue(kq, kn); |
| 7654 | TAILQ_REMOVE(suppressq, kn, kn_tqe); |
| 7655 | |
| 7656 | /* |
| 7657 | * If the knote is no longer active, reset its push, |
| 7658 | * and resynchronize kn_qos_index with kn_qos_override |
| 7659 | */ |
| 7660 | if ((kn->kn_status & KN_ACTIVE) == 0) { |
| 7661 | kn->kn_qos_override = kn->kn_req_index; |
| 7662 | } |
| 7663 | kn->kn_qos_index = kn->kn_qos_override; |
| 7664 | |
| 7665 | /* don't wakeup if unsuppressing just a stay-active knote */ |
| 7666 | if (knote_enqueue(kn) && (kn->kn_status & KN_ACTIVE)) { |
| 7667 | knote_wakeup(kn); |
| 7668 | } |
| 7669 | |
| 7670 | if ((kq->kq_state & KQ_WORKLOOP) && TAILQ_EMPTY(suppressq)) { |
| 7671 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 7672 | |
| 7673 | if (kqworkloop_is_processing_on_current_thread(kqwl)) { |
| 7674 | /* |
| 7675 | * kqworkloop_end_processing() or kqworkloop_begin_processing() |
| 7676 | * will perform the required QoS computations when it unsets the |
| 7677 | * processing mode. |
| 7678 | */ |
| 7679 | } else { |
| 7680 | kq_req_lock(kqwl); |
| 7681 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_RESET_WAKEUP_OVERRIDE, 0); |
| 7682 | kq_req_unlock(kqwl); |
| 7683 | } |
| 7684 | } |
| 7685 | } |
| 7686 | |
| 7687 | /* called with kqueue lock held */ |
| 7688 | static int |
| 7689 | knote_enqueue(struct knote *kn) |
| 7690 | { |
| 7691 | if ((kn->kn_status & (KN_ACTIVE | KN_STAYACTIVE)) == 0 || |
| 7692 | (kn->kn_status & (KN_DISABLED | KN_SUPPRESSED | KN_DROPPING))) |
| 7693 | return 0; |
| 7694 | |
| 7695 | if ((kn->kn_status & KN_QUEUED) == 0) { |
| 7696 | struct kqtailq *queue = knote_get_queue(kn); |
| 7697 | struct kqueue *kq = knote_get_kq(kn); |
| 7698 | |
| 7699 | kqlock_held(kq); |
| 7700 | TAILQ_INSERT_TAIL(queue, kn, kn_tqe); |
| 7701 | kn->kn_status |= KN_QUEUED; |
| 7702 | kq->kq_count++; |
| 7703 | return 1; |
| 7704 | } |
| 7705 | return ((kn->kn_status & KN_STAYACTIVE) != 0); |
| 7706 | } |
| 7707 | |
| 7708 | |
| 7709 | /* called with kqueue lock held */ |
| 7710 | static void |
| 7711 | knote_dequeue(struct knote *kn) |
| 7712 | { |
| 7713 | struct kqueue *kq = knote_get_kq(kn); |
| 7714 | struct kqtailq *queue; |
| 7715 | |
| 7716 | kqlock_held(kq); |
| 7717 | |
| 7718 | if ((kn->kn_status & KN_QUEUED) == 0) |
| 7719 | return; |
| 7720 | |
| 7721 | queue = knote_get_queue(kn); |
| 7722 | TAILQ_REMOVE(queue, kn, kn_tqe); |
| 7723 | kn->kn_status &= ~KN_QUEUED; |
| 7724 | kq->kq_count--; |
| 7725 | } |
| 7726 | |
| 7727 | void |
| 7728 | knote_init(void) |
| 7729 | { |
| 7730 | knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), |
| 7731 | 8192, "knote zone" ); |
| 7732 | |
| 7733 | kqfile_zone = zinit(sizeof(struct kqfile), 8192*sizeof(struct kqfile), |
| 7734 | 8192, "kqueue file zone" ); |
| 7735 | |
| 7736 | kqworkq_zone = zinit(sizeof(struct kqworkq), 8192*sizeof(struct kqworkq), |
| 7737 | 8192, "kqueue workq zone" ); |
| 7738 | |
| 7739 | kqworkloop_zone = zinit(sizeof(struct kqworkloop), 8192*sizeof(struct kqworkloop), |
| 7740 | 8192, "kqueue workloop zone" ); |
| 7741 | |
| 7742 | /* allocate kq lock group attribute and group */ |
| 7743 | kq_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 7744 | |
| 7745 | kq_lck_grp = lck_grp_alloc_init("kqueue" , kq_lck_grp_attr); |
| 7746 | |
| 7747 | /* Allocate kq lock attribute */ |
| 7748 | kq_lck_attr = lck_attr_alloc_init(); |
| 7749 | |
| 7750 | #if CONFIG_MEMORYSTATUS |
| 7751 | /* Initialize the memorystatus list lock */ |
| 7752 | memorystatus_kevent_init(kq_lck_grp, kq_lck_attr); |
| 7753 | #endif |
| 7754 | } |
| 7755 | SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) |
| 7756 | |
| 7757 | const struct filterops * |
| 7758 | knote_fops(struct knote *kn) |
| 7759 | { |
| 7760 | return sysfilt_ops[kn->kn_filtid]; |
| 7761 | } |
| 7762 | |
| 7763 | static struct knote * |
| 7764 | knote_alloc(void) |
| 7765 | { |
| 7766 | struct knote *kn = ((struct knote *)zalloc(knote_zone)); |
| 7767 | bzero(kn, sizeof(struct knote)); |
| 7768 | return kn; |
| 7769 | } |
| 7770 | |
| 7771 | static void |
| 7772 | knote_free(struct knote *kn) |
| 7773 | { |
| 7774 | assert(kn->kn_inuse == 0); |
| 7775 | assert((kn->kn_status & KN_LOCKED) == 0); |
| 7776 | zfree(knote_zone, kn); |
| 7777 | } |
| 7778 | |
| 7779 | #if SOCKETS |
| 7780 | #include <sys/param.h> |
| 7781 | #include <sys/socket.h> |
| 7782 | #include <sys/protosw.h> |
| 7783 | #include <sys/domain.h> |
| 7784 | #include <sys/mbuf.h> |
| 7785 | #include <sys/kern_event.h> |
| 7786 | #include <sys/malloc.h> |
| 7787 | #include <sys/sys_domain.h> |
| 7788 | #include <sys/syslog.h> |
| 7789 | |
| 7790 | #ifndef ROUNDUP64 |
| 7791 | #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) |
| 7792 | #endif |
| 7793 | |
| 7794 | #ifndef ADVANCE64 |
| 7795 | #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) |
| 7796 | #endif |
| 7797 | |
| 7798 | static lck_grp_attr_t *kev_lck_grp_attr; |
| 7799 | static lck_attr_t *kev_lck_attr; |
| 7800 | static lck_grp_t *kev_lck_grp; |
| 7801 | static decl_lck_rw_data(,kev_lck_data); |
| 7802 | static lck_rw_t *kev_rwlock = &kev_lck_data; |
| 7803 | |
| 7804 | static int kev_attach(struct socket *so, int proto, struct proc *p); |
| 7805 | static int kev_detach(struct socket *so); |
| 7806 | static int kev_control(struct socket *so, u_long cmd, caddr_t data, |
| 7807 | struct ifnet *ifp, struct proc *p); |
| 7808 | static lck_mtx_t * event_getlock(struct socket *, int); |
| 7809 | static int event_lock(struct socket *, int, void *); |
| 7810 | static int event_unlock(struct socket *, int, void *); |
| 7811 | |
| 7812 | static int event_sofreelastref(struct socket *); |
| 7813 | static void kev_delete(struct kern_event_pcb *); |
| 7814 | |
| 7815 | static struct pr_usrreqs event_usrreqs = { |
| 7816 | .pru_attach = kev_attach, |
| 7817 | .pru_control = kev_control, |
| 7818 | .pru_detach = kev_detach, |
| 7819 | .pru_soreceive = soreceive, |
| 7820 | }; |
| 7821 | |
| 7822 | static struct protosw eventsw[] = { |
| 7823 | { |
| 7824 | .pr_type = SOCK_RAW, |
| 7825 | .pr_protocol = SYSPROTO_EVENT, |
| 7826 | .pr_flags = PR_ATOMIC, |
| 7827 | .pr_usrreqs = &event_usrreqs, |
| 7828 | .pr_lock = event_lock, |
| 7829 | .pr_unlock = event_unlock, |
| 7830 | .pr_getlock = event_getlock, |
| 7831 | } |
| 7832 | }; |
| 7833 | |
| 7834 | __private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS; |
| 7835 | __private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS; |
| 7836 | |
| 7837 | SYSCTL_NODE(_net_systm, OID_AUTO, kevt, |
| 7838 | CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel event family" ); |
| 7839 | |
| 7840 | struct kevtstat kevtstat; |
| 7841 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats, |
| 7842 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 7843 | kevt_getstat, "S,kevtstat" , "" ); |
| 7844 | |
| 7845 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist, |
| 7846 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 7847 | kevt_pcblist, "S,xkevtpcb" , "" ); |
| 7848 | |
| 7849 | static lck_mtx_t * |
| 7850 | event_getlock(struct socket *so, int flags) |
| 7851 | { |
| 7852 | #pragma unused(flags) |
| 7853 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; |
| 7854 | |
| 7855 | if (so->so_pcb != NULL) { |
| 7856 | if (so->so_usecount < 0) |
| 7857 | panic("%s: so=%p usecount=%d lrh= %s\n" , __func__, |
| 7858 | so, so->so_usecount, solockhistory_nr(so)); |
| 7859 | /* NOTREACHED */ |
| 7860 | } else { |
| 7861 | panic("%s: so=%p NULL NO so_pcb %s\n" , __func__, |
| 7862 | so, solockhistory_nr(so)); |
| 7863 | /* NOTREACHED */ |
| 7864 | } |
| 7865 | return (&ev_pcb->evp_mtx); |
| 7866 | } |
| 7867 | |
| 7868 | static int |
| 7869 | event_lock(struct socket *so, int refcount, void *lr) |
| 7870 | { |
| 7871 | void *lr_saved; |
| 7872 | |
| 7873 | if (lr == NULL) |
| 7874 | lr_saved = __builtin_return_address(0); |
| 7875 | else |
| 7876 | lr_saved = lr; |
| 7877 | |
| 7878 | if (so->so_pcb != NULL) { |
| 7879 | lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); |
| 7880 | } else { |
| 7881 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n" , __func__, |
| 7882 | so, lr_saved, solockhistory_nr(so)); |
| 7883 | /* NOTREACHED */ |
| 7884 | } |
| 7885 | |
| 7886 | if (so->so_usecount < 0) { |
| 7887 | panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n" , __func__, |
| 7888 | so, so->so_pcb, lr_saved, so->so_usecount, |
| 7889 | solockhistory_nr(so)); |
| 7890 | /* NOTREACHED */ |
| 7891 | } |
| 7892 | |
| 7893 | if (refcount) |
| 7894 | so->so_usecount++; |
| 7895 | |
| 7896 | so->lock_lr[so->next_lock_lr] = lr_saved; |
| 7897 | so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; |
| 7898 | return (0); |
| 7899 | } |
| 7900 | |
| 7901 | static int |
| 7902 | event_unlock(struct socket *so, int refcount, void *lr) |
| 7903 | { |
| 7904 | void *lr_saved; |
| 7905 | lck_mtx_t *mutex_held; |
| 7906 | |
| 7907 | if (lr == NULL) |
| 7908 | lr_saved = __builtin_return_address(0); |
| 7909 | else |
| 7910 | lr_saved = lr; |
| 7911 | |
| 7912 | if (refcount) { |
| 7913 | so->so_usecount--; |
| 7914 | } |
| 7915 | if (so->so_usecount < 0) { |
| 7916 | panic("%s: so=%p usecount=%d lrh= %s\n" , __func__, |
| 7917 | so, so->so_usecount, solockhistory_nr(so)); |
| 7918 | /* NOTREACHED */ |
| 7919 | } |
| 7920 | if (so->so_pcb == NULL) { |
| 7921 | panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n" , __func__, |
| 7922 | so, so->so_usecount, (void *)lr_saved, |
| 7923 | solockhistory_nr(so)); |
| 7924 | /* NOTREACHED */ |
| 7925 | } |
| 7926 | mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); |
| 7927 | |
| 7928 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 7929 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
| 7930 | so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; |
| 7931 | |
| 7932 | if (so->so_usecount == 0) { |
| 7933 | VERIFY(so->so_flags & SOF_PCBCLEARING); |
| 7934 | event_sofreelastref(so); |
| 7935 | } else { |
| 7936 | lck_mtx_unlock(mutex_held); |
| 7937 | } |
| 7938 | |
| 7939 | return (0); |
| 7940 | } |
| 7941 | |
| 7942 | static int |
| 7943 | event_sofreelastref(struct socket *so) |
| 7944 | { |
| 7945 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; |
| 7946 | |
| 7947 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED); |
| 7948 | |
| 7949 | so->so_pcb = NULL; |
| 7950 | |
| 7951 | /* |
| 7952 | * Disable upcall in the event another thread is in kev_post_msg() |
| 7953 | * appending record to the receive socket buffer, since sbwakeup() |
| 7954 | * may release the socket lock otherwise. |
| 7955 | */ |
| 7956 | so->so_rcv.sb_flags &= ~SB_UPCALL; |
| 7957 | so->so_snd.sb_flags &= ~SB_UPCALL; |
| 7958 | so->so_event = sonullevent; |
| 7959 | lck_mtx_unlock(&(ev_pcb->evp_mtx)); |
| 7960 | |
| 7961 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED); |
| 7962 | lck_rw_lock_exclusive(kev_rwlock); |
| 7963 | LIST_REMOVE(ev_pcb, evp_link); |
| 7964 | kevtstat.kes_pcbcount--; |
| 7965 | kevtstat.kes_gencnt++; |
| 7966 | lck_rw_done(kev_rwlock); |
| 7967 | kev_delete(ev_pcb); |
| 7968 | |
| 7969 | sofreelastref(so, 1); |
| 7970 | return (0); |
| 7971 | } |
| 7972 | |
| 7973 | static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw)); |
| 7974 | |
| 7975 | static |
| 7976 | struct kern_event_head kern_event_head; |
| 7977 | |
| 7978 | static u_int32_t static_event_id = 0; |
| 7979 | |
| 7980 | #define EVPCB_ZONE_MAX 65536 |
| 7981 | #define EVPCB_ZONE_NAME "kerneventpcb" |
| 7982 | static struct zone *ev_pcb_zone; |
| 7983 | |
| 7984 | /* |
| 7985 | * Install the protosw's for the NKE manager. Invoked at extension load time |
| 7986 | */ |
| 7987 | void |
| 7988 | kern_event_init(struct domain *dp) |
| 7989 | { |
| 7990 | struct protosw *pr; |
| 7991 | int i; |
| 7992 | |
| 7993 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); |
| 7994 | VERIFY(dp == systemdomain); |
| 7995 | |
| 7996 | kev_lck_grp_attr = lck_grp_attr_alloc_init(); |
| 7997 | if (kev_lck_grp_attr == NULL) { |
| 7998 | panic("%s: lck_grp_attr_alloc_init failed\n" , __func__); |
| 7999 | /* NOTREACHED */ |
| 8000 | } |
| 8001 | |
| 8002 | kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol" , |
| 8003 | kev_lck_grp_attr); |
| 8004 | if (kev_lck_grp == NULL) { |
| 8005 | panic("%s: lck_grp_alloc_init failed\n" , __func__); |
| 8006 | /* NOTREACHED */ |
| 8007 | } |
| 8008 | |
| 8009 | kev_lck_attr = lck_attr_alloc_init(); |
| 8010 | if (kev_lck_attr == NULL) { |
| 8011 | panic("%s: lck_attr_alloc_init failed\n" , __func__); |
| 8012 | /* NOTREACHED */ |
| 8013 | } |
| 8014 | |
| 8015 | lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr); |
| 8016 | if (kev_rwlock == NULL) { |
| 8017 | panic("%s: lck_mtx_alloc_init failed\n" , __func__); |
| 8018 | /* NOTREACHED */ |
| 8019 | } |
| 8020 | |
| 8021 | for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++) |
| 8022 | net_add_proto(pr, dp, 1); |
| 8023 | |
| 8024 | ev_pcb_zone = zinit(sizeof(struct kern_event_pcb), |
| 8025 | EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME); |
| 8026 | if (ev_pcb_zone == NULL) { |
| 8027 | panic("%s: failed allocating ev_pcb_zone" , __func__); |
| 8028 | /* NOTREACHED */ |
| 8029 | } |
| 8030 | zone_change(ev_pcb_zone, Z_EXPAND, TRUE); |
| 8031 | zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE); |
| 8032 | } |
| 8033 | |
| 8034 | static int |
| 8035 | kev_attach(struct socket *so, __unused int proto, __unused struct proc *p) |
| 8036 | { |
| 8037 | int error = 0; |
| 8038 | struct kern_event_pcb *ev_pcb; |
| 8039 | |
| 8040 | error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); |
| 8041 | if (error != 0) |
| 8042 | return (error); |
| 8043 | |
| 8044 | if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) { |
| 8045 | return (ENOBUFS); |
| 8046 | } |
| 8047 | bzero(ev_pcb, sizeof(struct kern_event_pcb)); |
| 8048 | lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr); |
| 8049 | |
| 8050 | ev_pcb->evp_socket = so; |
| 8051 | ev_pcb->evp_vendor_code_filter = 0xffffffff; |
| 8052 | |
| 8053 | so->so_pcb = (caddr_t) ev_pcb; |
| 8054 | lck_rw_lock_exclusive(kev_rwlock); |
| 8055 | LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link); |
| 8056 | kevtstat.kes_pcbcount++; |
| 8057 | kevtstat.kes_gencnt++; |
| 8058 | lck_rw_done(kev_rwlock); |
| 8059 | |
| 8060 | return (error); |
| 8061 | } |
| 8062 | |
| 8063 | static void |
| 8064 | kev_delete(struct kern_event_pcb *ev_pcb) |
| 8065 | { |
| 8066 | VERIFY(ev_pcb != NULL); |
| 8067 | lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp); |
| 8068 | zfree(ev_pcb_zone, ev_pcb); |
| 8069 | } |
| 8070 | |
| 8071 | static int |
| 8072 | kev_detach(struct socket *so) |
| 8073 | { |
| 8074 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
| 8075 | |
| 8076 | if (ev_pcb != NULL) { |
| 8077 | soisdisconnected(so); |
| 8078 | so->so_flags |= SOF_PCBCLEARING; |
| 8079 | } |
| 8080 | |
| 8081 | return (0); |
| 8082 | } |
| 8083 | |
| 8084 | /* |
| 8085 | * For now, kev_vendor_code and mbuf_tags use the same |
| 8086 | * mechanism. |
| 8087 | */ |
| 8088 | errno_t kev_vendor_code_find( |
| 8089 | const char *string, |
| 8090 | u_int32_t *out_vendor_code) |
| 8091 | { |
| 8092 | if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) { |
| 8093 | return (EINVAL); |
| 8094 | } |
| 8095 | return (net_str_id_find_internal(string, out_vendor_code, |
| 8096 | NSI_VENDOR_CODE, 1)); |
| 8097 | } |
| 8098 | |
| 8099 | errno_t |
| 8100 | kev_msg_post(struct kev_msg *event_msg) |
| 8101 | { |
| 8102 | mbuf_tag_id_t min_vendor, max_vendor; |
| 8103 | |
| 8104 | net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE); |
| 8105 | |
| 8106 | if (event_msg == NULL) |
| 8107 | return (EINVAL); |
| 8108 | |
| 8109 | /* |
| 8110 | * Limit third parties to posting events for registered vendor codes |
| 8111 | * only |
| 8112 | */ |
| 8113 | if (event_msg->vendor_code < min_vendor || |
| 8114 | event_msg->vendor_code > max_vendor) { |
| 8115 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_badvendor); |
| 8116 | return (EINVAL); |
| 8117 | } |
| 8118 | return (kev_post_msg(event_msg)); |
| 8119 | } |
| 8120 | |
| 8121 | int |
| 8122 | kev_post_msg(struct kev_msg *event_msg) |
| 8123 | { |
| 8124 | struct mbuf *m, *m2; |
| 8125 | struct kern_event_pcb *ev_pcb; |
| 8126 | struct kern_event_msg *ev; |
| 8127 | char *tmp; |
| 8128 | u_int32_t total_size; |
| 8129 | int i; |
| 8130 | |
| 8131 | /* Verify the message is small enough to fit in one mbuf w/o cluster */ |
| 8132 | total_size = KEV_MSG_HEADER_SIZE; |
| 8133 | |
| 8134 | for (i = 0; i < 5; i++) { |
| 8135 | if (event_msg->dv[i].data_length == 0) |
| 8136 | break; |
| 8137 | total_size += event_msg->dv[i].data_length; |
| 8138 | } |
| 8139 | |
| 8140 | if (total_size > MLEN) { |
| 8141 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_toobig); |
| 8142 | return (EMSGSIZE); |
| 8143 | } |
| 8144 | |
| 8145 | m = m_get(M_WAIT, MT_DATA); |
| 8146 | if (m == 0) { |
| 8147 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); |
| 8148 | return (ENOMEM); |
| 8149 | } |
| 8150 | ev = mtod(m, struct kern_event_msg *); |
| 8151 | total_size = KEV_MSG_HEADER_SIZE; |
| 8152 | |
| 8153 | tmp = (char *) &ev->event_data[0]; |
| 8154 | for (i = 0; i < 5; i++) { |
| 8155 | if (event_msg->dv[i].data_length == 0) |
| 8156 | break; |
| 8157 | |
| 8158 | total_size += event_msg->dv[i].data_length; |
| 8159 | bcopy(event_msg->dv[i].data_ptr, tmp, |
| 8160 | event_msg->dv[i].data_length); |
| 8161 | tmp += event_msg->dv[i].data_length; |
| 8162 | } |
| 8163 | |
| 8164 | ev->id = ++static_event_id; |
| 8165 | ev->total_size = total_size; |
| 8166 | ev->vendor_code = event_msg->vendor_code; |
| 8167 | ev->kev_class = event_msg->kev_class; |
| 8168 | ev->kev_subclass = event_msg->kev_subclass; |
| 8169 | ev->event_code = event_msg->event_code; |
| 8170 | |
| 8171 | m->m_len = total_size; |
| 8172 | lck_rw_lock_shared(kev_rwlock); |
| 8173 | for (ev_pcb = LIST_FIRST(&kern_event_head); |
| 8174 | ev_pcb; |
| 8175 | ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { |
| 8176 | lck_mtx_lock(&ev_pcb->evp_mtx); |
| 8177 | if (ev_pcb->evp_socket->so_pcb == NULL) { |
| 8178 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
| 8179 | continue; |
| 8180 | } |
| 8181 | if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) { |
| 8182 | if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) { |
| 8183 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
| 8184 | continue; |
| 8185 | } |
| 8186 | |
| 8187 | if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) { |
| 8188 | if (ev_pcb->evp_class_filter != ev->kev_class) { |
| 8189 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
| 8190 | continue; |
| 8191 | } |
| 8192 | |
| 8193 | if ((ev_pcb->evp_subclass_filter != |
| 8194 | KEV_ANY_SUBCLASS) && |
| 8195 | (ev_pcb->evp_subclass_filter != |
| 8196 | ev->kev_subclass)) { |
| 8197 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
| 8198 | continue; |
| 8199 | } |
| 8200 | } |
| 8201 | } |
| 8202 | |
| 8203 | m2 = m_copym(m, 0, m->m_len, M_WAIT); |
| 8204 | if (m2 == 0) { |
| 8205 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); |
| 8206 | m_free(m); |
| 8207 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
| 8208 | lck_rw_done(kev_rwlock); |
| 8209 | return (ENOMEM); |
| 8210 | } |
| 8211 | if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) { |
| 8212 | /* |
| 8213 | * We use "m" for the socket stats as it would be |
| 8214 | * unsafe to use "m2" |
| 8215 | */ |
| 8216 | so_inc_recv_data_stat(ev_pcb->evp_socket, |
| 8217 | 1, m->m_len, MBUF_TC_BE); |
| 8218 | |
| 8219 | sorwakeup(ev_pcb->evp_socket); |
| 8220 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_posted); |
| 8221 | } else { |
| 8222 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_fullsock); |
| 8223 | } |
| 8224 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
| 8225 | } |
| 8226 | m_free(m); |
| 8227 | lck_rw_done(kev_rwlock); |
| 8228 | |
| 8229 | return (0); |
| 8230 | } |
| 8231 | |
| 8232 | static int |
| 8233 | kev_control(struct socket *so, |
| 8234 | u_long cmd, |
| 8235 | caddr_t data, |
| 8236 | __unused struct ifnet *ifp, |
| 8237 | __unused struct proc *p) |
| 8238 | { |
| 8239 | struct kev_request *kev_req = (struct kev_request *) data; |
| 8240 | struct kern_event_pcb *ev_pcb; |
| 8241 | struct kev_vendor_code *kev_vendor; |
| 8242 | u_int32_t *id_value = (u_int32_t *) data; |
| 8243 | |
| 8244 | switch (cmd) { |
| 8245 | case SIOCGKEVID: |
| 8246 | *id_value = static_event_id; |
| 8247 | break; |
| 8248 | case SIOCSKEVFILT: |
| 8249 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
| 8250 | ev_pcb->evp_vendor_code_filter = kev_req->vendor_code; |
| 8251 | ev_pcb->evp_class_filter = kev_req->kev_class; |
| 8252 | ev_pcb->evp_subclass_filter = kev_req->kev_subclass; |
| 8253 | break; |
| 8254 | case SIOCGKEVFILT: |
| 8255 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
| 8256 | kev_req->vendor_code = ev_pcb->evp_vendor_code_filter; |
| 8257 | kev_req->kev_class = ev_pcb->evp_class_filter; |
| 8258 | kev_req->kev_subclass = ev_pcb->evp_subclass_filter; |
| 8259 | break; |
| 8260 | case SIOCGKEVVENDOR: |
| 8261 | kev_vendor = (struct kev_vendor_code *)data; |
| 8262 | /* Make sure string is NULL terminated */ |
| 8263 | kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0; |
| 8264 | return (net_str_id_find_internal(kev_vendor->vendor_string, |
| 8265 | &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0)); |
| 8266 | default: |
| 8267 | return (ENOTSUP); |
| 8268 | } |
| 8269 | |
| 8270 | return (0); |
| 8271 | } |
| 8272 | |
| 8273 | int |
| 8274 | kevt_getstat SYSCTL_HANDLER_ARGS |
| 8275 | { |
| 8276 | #pragma unused(oidp, arg1, arg2) |
| 8277 | int error = 0; |
| 8278 | |
| 8279 | lck_rw_lock_shared(kev_rwlock); |
| 8280 | |
| 8281 | if (req->newptr != USER_ADDR_NULL) { |
| 8282 | error = EPERM; |
| 8283 | goto done; |
| 8284 | } |
| 8285 | if (req->oldptr == USER_ADDR_NULL) { |
| 8286 | req->oldidx = sizeof(struct kevtstat); |
| 8287 | goto done; |
| 8288 | } |
| 8289 | |
| 8290 | error = SYSCTL_OUT(req, &kevtstat, |
| 8291 | MIN(sizeof(struct kevtstat), req->oldlen)); |
| 8292 | done: |
| 8293 | lck_rw_done(kev_rwlock); |
| 8294 | |
| 8295 | return (error); |
| 8296 | } |
| 8297 | |
| 8298 | __private_extern__ int |
| 8299 | kevt_pcblist SYSCTL_HANDLER_ARGS |
| 8300 | { |
| 8301 | #pragma unused(oidp, arg1, arg2) |
| 8302 | int error = 0; |
| 8303 | int n, i; |
| 8304 | struct xsystmgen xsg; |
| 8305 | void *buf = NULL; |
| 8306 | size_t item_size = ROUNDUP64(sizeof (struct xkevtpcb)) + |
| 8307 | ROUNDUP64(sizeof (struct xsocket_n)) + |
| 8308 | 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) + |
| 8309 | ROUNDUP64(sizeof (struct xsockstat_n)); |
| 8310 | struct kern_event_pcb *ev_pcb; |
| 8311 | |
| 8312 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); |
| 8313 | if (buf == NULL) |
| 8314 | return (ENOMEM); |
| 8315 | |
| 8316 | lck_rw_lock_shared(kev_rwlock); |
| 8317 | |
| 8318 | n = kevtstat.kes_pcbcount; |
| 8319 | |
| 8320 | if (req->oldptr == USER_ADDR_NULL) { |
| 8321 | req->oldidx = (n + n/8) * item_size; |
| 8322 | goto done; |
| 8323 | } |
| 8324 | if (req->newptr != USER_ADDR_NULL) { |
| 8325 | error = EPERM; |
| 8326 | goto done; |
| 8327 | } |
| 8328 | bzero(&xsg, sizeof (xsg)); |
| 8329 | xsg.xg_len = sizeof (xsg); |
| 8330 | xsg.xg_count = n; |
| 8331 | xsg.xg_gen = kevtstat.kes_gencnt; |
| 8332 | xsg.xg_sogen = so_gencnt; |
| 8333 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); |
| 8334 | if (error) { |
| 8335 | goto done; |
| 8336 | } |
| 8337 | /* |
| 8338 | * We are done if there is no pcb |
| 8339 | */ |
| 8340 | if (n == 0) { |
| 8341 | goto done; |
| 8342 | } |
| 8343 | |
| 8344 | i = 0; |
| 8345 | for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head); |
| 8346 | i < n && ev_pcb != NULL; |
| 8347 | i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { |
| 8348 | struct xkevtpcb *xk = (struct xkevtpcb *)buf; |
| 8349 | struct xsocket_n *xso = (struct xsocket_n *) |
| 8350 | ADVANCE64(xk, sizeof (*xk)); |
| 8351 | struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) |
| 8352 | ADVANCE64(xso, sizeof (*xso)); |
| 8353 | struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) |
| 8354 | ADVANCE64(xsbrcv, sizeof (*xsbrcv)); |
| 8355 | struct xsockstat_n *xsostats = (struct xsockstat_n *) |
| 8356 | ADVANCE64(xsbsnd, sizeof (*xsbsnd)); |
| 8357 | |
| 8358 | bzero(buf, item_size); |
| 8359 | |
| 8360 | lck_mtx_lock(&ev_pcb->evp_mtx); |
| 8361 | |
| 8362 | xk->kep_len = sizeof(struct xkevtpcb); |
| 8363 | xk->kep_kind = XSO_EVT; |
| 8364 | xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb); |
| 8365 | xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter; |
| 8366 | xk->kep_class_filter = ev_pcb->evp_class_filter; |
| 8367 | xk->kep_subclass_filter = ev_pcb->evp_subclass_filter; |
| 8368 | |
| 8369 | sotoxsocket_n(ev_pcb->evp_socket, xso); |
| 8370 | sbtoxsockbuf_n(ev_pcb->evp_socket ? |
| 8371 | &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv); |
| 8372 | sbtoxsockbuf_n(ev_pcb->evp_socket ? |
| 8373 | &ev_pcb->evp_socket->so_snd : NULL, xsbsnd); |
| 8374 | sbtoxsockstat_n(ev_pcb->evp_socket, xsostats); |
| 8375 | |
| 8376 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
| 8377 | |
| 8378 | error = SYSCTL_OUT(req, buf, item_size); |
| 8379 | } |
| 8380 | |
| 8381 | if (error == 0) { |
| 8382 | /* |
| 8383 | * Give the user an updated idea of our state. |
| 8384 | * If the generation differs from what we told |
| 8385 | * her before, she knows that something happened |
| 8386 | * while we were processing this request, and it |
| 8387 | * might be necessary to retry. |
| 8388 | */ |
| 8389 | bzero(&xsg, sizeof (xsg)); |
| 8390 | xsg.xg_len = sizeof (xsg); |
| 8391 | xsg.xg_count = n; |
| 8392 | xsg.xg_gen = kevtstat.kes_gencnt; |
| 8393 | xsg.xg_sogen = so_gencnt; |
| 8394 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); |
| 8395 | if (error) { |
| 8396 | goto done; |
| 8397 | } |
| 8398 | } |
| 8399 | |
| 8400 | done: |
| 8401 | lck_rw_done(kev_rwlock); |
| 8402 | |
| 8403 | return (error); |
| 8404 | } |
| 8405 | |
| 8406 | #endif /* SOCKETS */ |
| 8407 | |
| 8408 | |
| 8409 | int |
| 8410 | fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo) |
| 8411 | { |
| 8412 | struct vinfo_stat * st; |
| 8413 | |
| 8414 | st = &kinfo->kq_stat; |
| 8415 | |
| 8416 | st->vst_size = kq->kq_count; |
| 8417 | if (kq->kq_state & KQ_KEV_QOS) |
| 8418 | st->vst_blksize = sizeof(struct kevent_qos_s); |
| 8419 | else if (kq->kq_state & KQ_KEV64) |
| 8420 | st->vst_blksize = sizeof(struct kevent64_s); |
| 8421 | else |
| 8422 | st->vst_blksize = sizeof(struct kevent); |
| 8423 | st->vst_mode = S_IFIFO; |
| 8424 | st->vst_ino = (kq->kq_state & KQ_DYNAMIC) ? |
| 8425 | ((struct kqworkloop *)kq)->kqwl_dynamicid : 0; |
| 8426 | |
| 8427 | /* flags exported to libproc as PROC_KQUEUE_* (sys/proc_info.h) */ |
| 8428 | #define PROC_KQUEUE_MASK (KQ_SEL|KQ_SLEEP|KQ_KEV32|KQ_KEV64|KQ_KEV_QOS|KQ_WORKQ|KQ_WORKLOOP) |
| 8429 | kinfo->kq_state = kq->kq_state & PROC_KQUEUE_MASK; |
| 8430 | |
| 8431 | return (0); |
| 8432 | } |
| 8433 | |
| 8434 | static int |
| 8435 | fill_kqueue_dyninfo(struct kqueue *kq, struct kqueue_dyninfo *kqdi) |
| 8436 | { |
| 8437 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 8438 | struct kqrequest *kqr = &kqwl->kqwl_request; |
| 8439 | workq_threadreq_param_t trp = {}; |
| 8440 | int err; |
| 8441 | |
| 8442 | if ((kq->kq_state & KQ_WORKLOOP) == 0) { |
| 8443 | return EINVAL; |
| 8444 | } |
| 8445 | |
| 8446 | if ((err = fill_kqueueinfo(kq, &kqdi->kqdi_info))) { |
| 8447 | return err; |
| 8448 | } |
| 8449 | |
| 8450 | kq_req_lock(kqwl); |
| 8451 | |
| 8452 | kqdi->kqdi_servicer = thread_tid(kqr->kqr_thread); |
| 8453 | kqdi->kqdi_owner = thread_tid(kqwl->kqwl_owner); |
| 8454 | kqdi->kqdi_request_state = kqr->kqr_state; |
| 8455 | kqdi->kqdi_async_qos = kqr->kqr_qos_index; |
| 8456 | kqdi->kqdi_events_qos = kqr->kqr_override_index; |
| 8457 | kqdi->kqdi_sync_waiters = kqr->kqr_dsync_waiters; |
| 8458 | kqdi->kqdi_sync_waiter_qos = 0; |
| 8459 | |
| 8460 | trp.trp_value = kqwl->kqwl_params; |
| 8461 | if (trp.trp_flags & TRP_PRIORITY) |
| 8462 | kqdi->kqdi_pri = trp.trp_pri; |
| 8463 | else |
| 8464 | kqdi->kqdi_pri = 0; |
| 8465 | |
| 8466 | if (trp.trp_flags & TRP_POLICY) |
| 8467 | kqdi->kqdi_pol = trp.trp_pol; |
| 8468 | else |
| 8469 | kqdi->kqdi_pol = 0; |
| 8470 | |
| 8471 | if (trp.trp_flags & TRP_CPUPERCENT) |
| 8472 | kqdi->kqdi_cpupercent = trp.trp_cpupercent; |
| 8473 | else |
| 8474 | kqdi->kqdi_cpupercent = 0; |
| 8475 | |
| 8476 | kq_req_unlock(kqwl); |
| 8477 | |
| 8478 | return 0; |
| 8479 | } |
| 8480 | |
| 8481 | |
| 8482 | void |
| 8483 | knote_markstayactive(struct knote *kn) |
| 8484 | { |
| 8485 | struct kqueue *kq = knote_get_kq(kn); |
| 8486 | kq_index_t qos; |
| 8487 | |
| 8488 | kqlock(kq); |
| 8489 | kn->kn_status |= KN_STAYACTIVE; |
| 8490 | |
| 8491 | /* |
| 8492 | * Making a knote stay active is a property of the knote that must be |
| 8493 | * established before it is fully attached. |
| 8494 | */ |
| 8495 | assert(kn->kn_status & KN_ATTACHING); |
| 8496 | assert((kn->kn_status & (KN_QUEUED | KN_SUPPRESSED)) == 0); |
| 8497 | |
| 8498 | /* handle all stayactive knotes on the (appropriate) manager */ |
| 8499 | if (kq->kq_state & KQ_WORKQ) { |
| 8500 | qos = KQWQ_QOS_MANAGER; |
| 8501 | } else if (kq->kq_state & KQ_WORKLOOP) { |
| 8502 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 8503 | |
| 8504 | qos = _pthread_priority_thread_qos(kn->kn_qos); |
| 8505 | assert(qos && qos < THREAD_QOS_LAST); |
| 8506 | kq_req_lock(kq); |
| 8507 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_STAYACTIVE_QOS, qos); |
| 8508 | kq_req_unlock(kq); |
| 8509 | qos = KQWL_BUCKET_STAYACTIVE; |
| 8510 | } else { |
| 8511 | qos = THREAD_QOS_UNSPECIFIED; |
| 8512 | } |
| 8513 | |
| 8514 | kn->kn_req_index = qos; |
| 8515 | kn->kn_qos_override = qos; |
| 8516 | kn->kn_qos_index = qos; |
| 8517 | |
| 8518 | knote_activate(kn); |
| 8519 | kqunlock(kq); |
| 8520 | } |
| 8521 | |
| 8522 | void |
| 8523 | knote_clearstayactive(struct knote *kn) |
| 8524 | { |
| 8525 | kqlock(knote_get_kq(kn)); |
| 8526 | kn->kn_status &= ~KN_STAYACTIVE; |
| 8527 | knote_deactivate(kn); |
| 8528 | kqunlock(knote_get_kq(kn)); |
| 8529 | } |
| 8530 | |
| 8531 | static unsigned long |
| 8532 | kevent_extinfo_emit(struct kqueue *kq, struct knote *kn, struct kevent_extinfo *buf, |
| 8533 | unsigned long buflen, unsigned long nknotes) |
| 8534 | { |
| 8535 | for (; kn; kn = SLIST_NEXT(kn, kn_link)) { |
| 8536 | if (kq == knote_get_kq(kn)) { |
| 8537 | if (nknotes < buflen) { |
| 8538 | struct kevent_extinfo *info = &buf[nknotes]; |
| 8539 | struct kevent_internal_s *kevp = &kn->kn_kevent; |
| 8540 | |
| 8541 | kqlock(kq); |
| 8542 | |
| 8543 | info->kqext_kev = (struct kevent_qos_s){ |
| 8544 | .ident = kevp->ident, |
| 8545 | .filter = kevp->filter, |
| 8546 | .flags = kevp->flags, |
| 8547 | .fflags = kevp->fflags, |
| 8548 | .data = (int64_t)kevp->data, |
| 8549 | .udata = kevp->udata, |
| 8550 | .ext[0] = kevp->ext[0], |
| 8551 | .ext[1] = kevp->ext[1], |
| 8552 | .ext[2] = kevp->ext[2], |
| 8553 | .ext[3] = kevp->ext[3], |
| 8554 | .qos = kn->kn_req_index, |
| 8555 | }; |
| 8556 | info->kqext_sdata = kn->kn_sdata; |
| 8557 | info->kqext_status = kn->kn_status; |
| 8558 | info->kqext_sfflags = kn->kn_sfflags; |
| 8559 | |
| 8560 | kqunlock(kq); |
| 8561 | } |
| 8562 | |
| 8563 | /* we return total number of knotes, which may be more than requested */ |
| 8564 | nknotes++; |
| 8565 | } |
| 8566 | } |
| 8567 | |
| 8568 | return nknotes; |
| 8569 | } |
| 8570 | |
| 8571 | int |
| 8572 | kevent_copyout_proc_dynkqids(void *proc, user_addr_t ubuf, uint32_t ubufsize, |
| 8573 | int32_t *nkqueues_out) |
| 8574 | { |
| 8575 | proc_t p = (proc_t)proc; |
| 8576 | struct filedesc *fdp = p->p_fd; |
| 8577 | unsigned int nkqueues = 0; |
| 8578 | unsigned long ubuflen = ubufsize / sizeof(kqueue_id_t); |
| 8579 | size_t buflen, bufsize; |
| 8580 | kqueue_id_t *kq_ids = NULL; |
| 8581 | int err = 0; |
| 8582 | |
| 8583 | assert(p != NULL); |
| 8584 | |
| 8585 | if (ubuf == USER_ADDR_NULL && ubufsize != 0) { |
| 8586 | err = EINVAL; |
| 8587 | goto out; |
| 8588 | } |
| 8589 | |
| 8590 | buflen = min(ubuflen, PROC_PIDDYNKQUEUES_MAX); |
| 8591 | |
| 8592 | if (ubuflen != 0) { |
| 8593 | if (os_mul_overflow(sizeof(kqueue_id_t), buflen, &bufsize)) { |
| 8594 | err = ERANGE; |
| 8595 | goto out; |
| 8596 | } |
| 8597 | kq_ids = kalloc(bufsize); |
| 8598 | assert(kq_ids != NULL); |
| 8599 | } |
| 8600 | |
| 8601 | kqhash_lock(p); |
| 8602 | |
| 8603 | if (fdp->fd_kqhashmask > 0) { |
| 8604 | for (uint32_t i = 0; i < fdp->fd_kqhashmask + 1; i++) { |
| 8605 | struct kqworkloop *kqwl; |
| 8606 | |
| 8607 | SLIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { |
| 8608 | /* report the number of kqueues, even if they don't all fit */ |
| 8609 | if (nkqueues < buflen) { |
| 8610 | kq_ids[nkqueues] = kqwl->kqwl_dynamicid; |
| 8611 | } |
| 8612 | nkqueues++; |
| 8613 | } |
| 8614 | } |
| 8615 | } |
| 8616 | |
| 8617 | kqhash_unlock(p); |
| 8618 | |
| 8619 | if (kq_ids) { |
| 8620 | size_t copysize; |
| 8621 | if (os_mul_overflow(sizeof(kqueue_id_t), min(ubuflen, nkqueues), ©size)) { |
| 8622 | err = ERANGE; |
| 8623 | goto out; |
| 8624 | } |
| 8625 | |
| 8626 | assert(ubufsize >= copysize); |
| 8627 | err = copyout(kq_ids, ubuf, copysize); |
| 8628 | } |
| 8629 | |
| 8630 | out: |
| 8631 | if (kq_ids) { |
| 8632 | kfree(kq_ids, bufsize); |
| 8633 | } |
| 8634 | |
| 8635 | if (!err) { |
| 8636 | *nkqueues_out = (int)min(nkqueues, PROC_PIDDYNKQUEUES_MAX); |
| 8637 | } |
| 8638 | return err; |
| 8639 | } |
| 8640 | |
| 8641 | int |
| 8642 | kevent_copyout_dynkqinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, |
| 8643 | uint32_t ubufsize, int32_t *size_out) |
| 8644 | { |
| 8645 | proc_t p = (proc_t)proc; |
| 8646 | struct kqueue *kq; |
| 8647 | int err = 0; |
| 8648 | struct kqueue_dyninfo kqdi = { }; |
| 8649 | |
| 8650 | assert(p != NULL); |
| 8651 | |
| 8652 | if (ubufsize < sizeof(struct kqueue_info)) { |
| 8653 | return ENOBUFS; |
| 8654 | } |
| 8655 | |
| 8656 | kqhash_lock(p); |
| 8657 | kq = kqueue_hash_lookup(p, kq_id); |
| 8658 | if (!kq) { |
| 8659 | kqhash_unlock(p); |
| 8660 | return ESRCH; |
| 8661 | } |
| 8662 | kqueue_retain(kq); |
| 8663 | kqhash_unlock(p); |
| 8664 | |
| 8665 | /* |
| 8666 | * backward compatibility: allow the argument to this call to only be |
| 8667 | * a struct kqueue_info |
| 8668 | */ |
| 8669 | if (ubufsize >= sizeof(struct kqueue_dyninfo)) { |
| 8670 | ubufsize = sizeof(struct kqueue_dyninfo); |
| 8671 | err = fill_kqueue_dyninfo(kq, &kqdi); |
| 8672 | } else { |
| 8673 | ubufsize = sizeof(struct kqueue_info); |
| 8674 | err = fill_kqueueinfo(kq, &kqdi.kqdi_info); |
| 8675 | } |
| 8676 | if (err == 0 && (err = copyout(&kqdi, ubuf, ubufsize)) == 0) { |
| 8677 | *size_out = ubufsize; |
| 8678 | } |
| 8679 | kqueue_release_last(p, kq); |
| 8680 | return err; |
| 8681 | } |
| 8682 | |
| 8683 | int |
| 8684 | kevent_copyout_dynkqextinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, |
| 8685 | uint32_t ubufsize, int32_t *nknotes_out) |
| 8686 | { |
| 8687 | proc_t p = (proc_t)proc; |
| 8688 | struct kqueue *kq; |
| 8689 | int err; |
| 8690 | |
| 8691 | assert(p != NULL); |
| 8692 | |
| 8693 | kqhash_lock(p); |
| 8694 | kq = kqueue_hash_lookup(p, kq_id); |
| 8695 | if (!kq) { |
| 8696 | kqhash_unlock(p); |
| 8697 | return ESRCH; |
| 8698 | } |
| 8699 | kqueue_retain(kq); |
| 8700 | kqhash_unlock(p); |
| 8701 | |
| 8702 | err = pid_kqueue_extinfo(p, kq, ubuf, ubufsize, nknotes_out); |
| 8703 | kqueue_release_last(p, kq); |
| 8704 | return err; |
| 8705 | } |
| 8706 | |
| 8707 | int |
| 8708 | pid_kqueue_extinfo(proc_t p, struct kqueue *kq, user_addr_t ubuf, |
| 8709 | uint32_t bufsize, int32_t *retval) |
| 8710 | { |
| 8711 | struct knote *kn; |
| 8712 | int i; |
| 8713 | int err = 0; |
| 8714 | struct filedesc *fdp = p->p_fd; |
| 8715 | unsigned long nknotes = 0; |
| 8716 | unsigned long buflen = bufsize / sizeof(struct kevent_extinfo); |
| 8717 | struct kevent_extinfo *kqext = NULL; |
| 8718 | |
| 8719 | /* arbitrary upper limit to cap kernel memory usage, copyout size, etc. */ |
| 8720 | buflen = min(buflen, PROC_PIDFDKQUEUE_KNOTES_MAX); |
| 8721 | |
| 8722 | kqext = kalloc(buflen * sizeof(struct kevent_extinfo)); |
| 8723 | if (kqext == NULL) { |
| 8724 | err = ENOMEM; |
| 8725 | goto out; |
| 8726 | } |
| 8727 | bzero(kqext, buflen * sizeof(struct kevent_extinfo)); |
| 8728 | |
| 8729 | proc_fdlock(p); |
| 8730 | for (i = 0; i < fdp->fd_knlistsize; i++) { |
| 8731 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); |
| 8732 | nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes); |
| 8733 | } |
| 8734 | proc_fdunlock(p); |
| 8735 | |
| 8736 | if (fdp->fd_knhashmask != 0) { |
| 8737 | for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { |
| 8738 | kqhash_lock(p); |
| 8739 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); |
| 8740 | nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes); |
| 8741 | kqhash_unlock(p); |
| 8742 | } |
| 8743 | } |
| 8744 | |
| 8745 | assert(bufsize >= sizeof(struct kevent_extinfo) * min(buflen, nknotes)); |
| 8746 | err = copyout(kqext, ubuf, sizeof(struct kevent_extinfo) * min(buflen, nknotes)); |
| 8747 | |
| 8748 | out: |
| 8749 | if (kqext) { |
| 8750 | kfree(kqext, buflen * sizeof(struct kevent_extinfo)); |
| 8751 | kqext = NULL; |
| 8752 | } |
| 8753 | |
| 8754 | if (!err) { |
| 8755 | *retval = min(nknotes, PROC_PIDFDKQUEUE_KNOTES_MAX); |
| 8756 | } |
| 8757 | return err; |
| 8758 | } |
| 8759 | |
| 8760 | static unsigned int |
| 8761 | klist_copy_udata(struct klist *list, uint64_t *buf, |
| 8762 | unsigned int buflen, unsigned int nknotes) |
| 8763 | { |
| 8764 | struct kevent_internal_s *kev; |
| 8765 | struct knote *kn; |
| 8766 | SLIST_FOREACH(kn, list, kn_link) { |
| 8767 | if (nknotes < buflen) { |
| 8768 | struct kqueue *kq = knote_get_kq(kn); |
| 8769 | kqlock(kq); |
| 8770 | kev = &(kn->kn_kevent); |
| 8771 | buf[nknotes] = kev->udata; |
| 8772 | kqunlock(kq); |
| 8773 | } |
| 8774 | /* we return total number of knotes, which may be more than requested */ |
| 8775 | nknotes++; |
| 8776 | } |
| 8777 | |
| 8778 | return nknotes; |
| 8779 | } |
| 8780 | |
| 8781 | static unsigned int |
| 8782 | kqlist_copy_dynamicids(__assert_only proc_t p, struct kqlist *list, |
| 8783 | uint64_t *buf, unsigned int buflen, unsigned int nids) |
| 8784 | { |
| 8785 | kqhash_lock_held(p); |
| 8786 | struct kqworkloop *kqwl; |
| 8787 | SLIST_FOREACH(kqwl, list, kqwl_hashlink) { |
| 8788 | if (nids < buflen) { |
| 8789 | buf[nids] = kqwl->kqwl_dynamicid; |
| 8790 | } |
| 8791 | nids++; |
| 8792 | } |
| 8793 | return nids; |
| 8794 | } |
| 8795 | |
| 8796 | int |
| 8797 | kevent_proc_copy_uptrs(void *proc, uint64_t *buf, int bufsize) |
| 8798 | { |
| 8799 | proc_t p = (proc_t)proc; |
| 8800 | struct filedesc *fdp = p->p_fd; |
| 8801 | unsigned int nuptrs = 0; |
| 8802 | unsigned long buflen = bufsize / sizeof(uint64_t); |
| 8803 | |
| 8804 | if (buflen > 0) { |
| 8805 | assert(buf != NULL); |
| 8806 | } |
| 8807 | |
| 8808 | proc_fdlock(p); |
| 8809 | for (int i = 0; i < fdp->fd_knlistsize; i++) { |
| 8810 | nuptrs = klist_copy_udata(&fdp->fd_knlist[i], buf, buflen, nuptrs); |
| 8811 | } |
| 8812 | knhash_lock(p); |
| 8813 | proc_fdunlock(p); |
| 8814 | if (fdp->fd_knhashmask != 0) { |
| 8815 | for (int i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { |
| 8816 | nuptrs = klist_copy_udata(&fdp->fd_knhash[i], buf, buflen, nuptrs); |
| 8817 | } |
| 8818 | } |
| 8819 | knhash_unlock(p); |
| 8820 | |
| 8821 | kqhash_lock(p); |
| 8822 | if (fdp->fd_kqhashmask != 0) { |
| 8823 | for (int i = 0; i < (int)fdp->fd_kqhashmask + 1; i++) { |
| 8824 | nuptrs = kqlist_copy_dynamicids(p, &fdp->fd_kqhash[i], buf, buflen, |
| 8825 | nuptrs); |
| 8826 | } |
| 8827 | } |
| 8828 | kqhash_unlock(p); |
| 8829 | |
| 8830 | return (int)nuptrs; |
| 8831 | } |
| 8832 | |
| 8833 | static void |
| 8834 | kevent_set_return_to_kernel_user_tsd(proc_t p, thread_t thread) |
| 8835 | { |
| 8836 | uint64_t ast_addr; |
| 8837 | bool proc_is_64bit = !!(p->p_flag & P_LP64); |
| 8838 | size_t user_addr_size = proc_is_64bit ? 8 : 4; |
| 8839 | uint32_t ast_flags32 = 0; |
| 8840 | uint64_t ast_flags64 = 0; |
| 8841 | struct uthread *ut = get_bsdthread_info(thread); |
| 8842 | |
| 8843 | if (ut->uu_kqr_bound != NULL) { |
| 8844 | ast_flags64 |= R2K_WORKLOOP_PENDING_EVENTS; |
| 8845 | } |
| 8846 | |
| 8847 | if (ast_flags64 == 0) { |
| 8848 | return; |
| 8849 | } |
| 8850 | |
| 8851 | if (!(p->p_flag & P_LP64)) { |
| 8852 | ast_flags32 = (uint32_t)ast_flags64; |
| 8853 | assert(ast_flags64 < 0x100000000ull); |
| 8854 | } |
| 8855 | |
| 8856 | ast_addr = thread_rettokern_addr(thread); |
| 8857 | if (ast_addr == 0) { |
| 8858 | return; |
| 8859 | } |
| 8860 | |
| 8861 | if (copyout((proc_is_64bit ? (void *)&ast_flags64 : (void *)&ast_flags32), |
| 8862 | (user_addr_t)ast_addr, |
| 8863 | user_addr_size) != 0) { |
| 8864 | printf("pid %d (tid:%llu): copyout of return_to_kernel ast flags failed with " |
| 8865 | "ast_addr = %llu\n" , p->p_pid, thread_tid(current_thread()), ast_addr); |
| 8866 | } |
| 8867 | } |
| 8868 | |
| 8869 | void |
| 8870 | kevent_ast(thread_t thread, uint16_t bits) |
| 8871 | { |
| 8872 | proc_t p = current_proc(); |
| 8873 | |
| 8874 | if (bits & AST_KEVENT_REDRIVE_THREADREQ) { |
| 8875 | workq_kern_threadreq_redrive(p, WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 8876 | } |
| 8877 | if (bits & AST_KEVENT_RETURN_TO_KERNEL) { |
| 8878 | kevent_set_return_to_kernel_user_tsd(p, thread); |
| 8879 | } |
| 8880 | } |
| 8881 | |
| 8882 | #if DEVELOPMENT || DEBUG |
| 8883 | |
| 8884 | #define KEVENT_SYSCTL_BOUND_ID 1 |
| 8885 | |
| 8886 | static int |
| 8887 | kevent_sysctl SYSCTL_HANDLER_ARGS |
| 8888 | { |
| 8889 | #pragma unused(oidp, arg2) |
| 8890 | uintptr_t type = (uintptr_t)arg1; |
| 8891 | uint64_t bound_id = 0; |
| 8892 | |
| 8893 | if (type != KEVENT_SYSCTL_BOUND_ID) { |
| 8894 | return EINVAL; |
| 8895 | } |
| 8896 | |
| 8897 | if (req->newptr) { |
| 8898 | return EINVAL; |
| 8899 | } |
| 8900 | |
| 8901 | struct uthread *ut = get_bsdthread_info(current_thread()); |
| 8902 | if (!ut) { |
| 8903 | return EFAULT; |
| 8904 | } |
| 8905 | |
| 8906 | struct kqrequest *kqr = ut->uu_kqr_bound; |
| 8907 | if (kqr) { |
| 8908 | if (kqr->kqr_state & KQR_WORKLOOP) { |
| 8909 | bound_id = kqr_kqworkloop(kqr)->kqwl_dynamicid; |
| 8910 | } else { |
| 8911 | bound_id = -1; |
| 8912 | } |
| 8913 | } |
| 8914 | |
| 8915 | return sysctl_io_number(req, bound_id, sizeof(bound_id), NULL, NULL); |
| 8916 | } |
| 8917 | |
| 8918 | SYSCTL_NODE(_kern, OID_AUTO, kevent, CTLFLAG_RW | CTLFLAG_LOCKED, 0, |
| 8919 | "kevent information" ); |
| 8920 | |
| 8921 | SYSCTL_PROC(_kern_kevent, OID_AUTO, bound_id, |
| 8922 | CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, |
| 8923 | (void *)KEVENT_SYSCTL_BOUND_ID, |
| 8924 | sizeof(kqueue_id_t), kevent_sysctl, "Q" , |
| 8925 | "get the ID of the bound kqueue" ); |
| 8926 | |
| 8927 | #endif /* DEVELOPMENT || DEBUG */ |
| 8928 | |