1 | /* |
2 | * CDDL HEADER START |
3 | * |
4 | * The contents of this file are subject to the terms of the |
5 | * Common Development and Distribution License, Version 1.0 only |
6 | * (the "License"). You may not use this file except in compliance |
7 | * with the License. |
8 | * |
9 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
10 | * or http://www.opensolaris.org/os/licensing. |
11 | * See the License for the specific language governing permissions |
12 | * and limitations under the License. |
13 | * |
14 | * When distributing Covered Code, include this CDDL HEADER in each |
15 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
16 | * If applicable, add the following below this CDDL HEADER, with the |
17 | * fields enclosed by brackets "[]" replaced with your own identifying |
18 | * information: Portions Copyright [yyyy] [name of copyright owner] |
19 | * |
20 | * CDDL HEADER END |
21 | */ |
22 | /* |
23 | * Copyright 2005 Sun Microsystems, Inc. All rights reserved. |
24 | * Use is subject to license terms. |
25 | */ |
26 | |
27 | /* #pragma ident "@(#)fbt.c 1.15 05/09/19 SMI" */ |
28 | |
29 | #ifdef KERNEL |
30 | #ifndef _KERNEL |
31 | #define _KERNEL /* Solaris vs. Darwin */ |
32 | #endif |
33 | #endif |
34 | |
35 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ |
36 | #include <kern/thread.h> |
37 | #include <mach/thread_status.h> |
38 | #include <mach/vm_param.h> |
39 | #include <mach-o/loader.h> |
40 | #include <mach-o/nlist.h> |
41 | #include <libkern/kernel_mach_header.h> |
42 | #include <libkern/OSAtomic.h> |
43 | |
44 | #include <sys/param.h> |
45 | #include <sys/systm.h> |
46 | #include <sys/errno.h> |
47 | #include <sys/stat.h> |
48 | #include <sys/ioctl.h> |
49 | #include <sys/conf.h> |
50 | #include <sys/fcntl.h> |
51 | #include <miscfs/devfs/devfs.h> |
52 | |
53 | #include <sys/dtrace.h> |
54 | #include <sys/dtrace_impl.h> |
55 | #include <sys/fbt.h> |
56 | |
57 | #include <sys/dtrace_glue.h> |
58 | |
59 | #include <san/kasan.h> |
60 | |
61 | #define DTRACE_INVOP_NOP_SKIP 1 |
62 | #define DTRACE_INVOP_MOVL_ESP_EBP 10 |
63 | #define DTRACE_INVOP_MOVL_ESP_EBP_SKIP 2 |
64 | #define DTRACE_INVOP_MOV_RSP_RBP 11 |
65 | #define DTRACE_INVOP_MOV_RSP_RBP_SKIP 3 |
66 | #define DTRACE_INVOP_POP_RBP 12 |
67 | #define DTRACE_INVOP_POP_RBP_SKIP 1 |
68 | #define DTRACE_INVOP_LEAVE_SKIP 1 |
69 | |
70 | #define FBT_PUSHL_EBP 0x55 |
71 | #define FBT_MOVL_ESP_EBP0_V0 0x8b |
72 | #define FBT_MOVL_ESP_EBP1_V0 0xec |
73 | #define FBT_MOVL_ESP_EBP0_V1 0x89 |
74 | #define FBT_MOVL_ESP_EBP1_V1 0xe5 |
75 | |
76 | #define FBT_PUSH_RBP 0x55 |
77 | #define FBT_REX_RSP_RBP 0x48 |
78 | #define FBT_MOV_RSP_RBP0 0x89 |
79 | #define FBT_MOV_RSP_RBP1 0xe5 |
80 | #define FBT_POP_RBP 0x5d |
81 | |
82 | #define FBT_POPL_EBP 0x5d |
83 | #define FBT_RET 0xc3 |
84 | #define FBT_RET_IMM16 0xc2 |
85 | #define FBT_LEAVE 0xc9 |
86 | #define FBT_JMP_SHORT_REL 0xeb /* Jump short, relative, displacement relative to next instr. */ |
87 | #define FBT_JMP_NEAR_REL 0xe9 /* Jump near, relative, displacement relative to next instr. */ |
88 | #define FBT_JMP_FAR_ABS 0xea /* Jump far, absolute, address given in operand */ |
89 | #define FBT_RET_LEN 1 |
90 | #define FBT_RET_IMM16_LEN 3 |
91 | #define FBT_JMP_SHORT_REL_LEN 2 |
92 | #define FBT_JMP_NEAR_REL_LEN 5 |
93 | #define FBT_JMP_FAR_ABS_LEN 5 |
94 | |
95 | #define FBT_PATCHVAL 0xf0 |
96 | #define FBT_AFRAMES_ENTRY 7 |
97 | #define FBT_AFRAMES_RETURN 6 |
98 | |
99 | #define FBT_ENTRY "entry" |
100 | #define FBT_RETURN "return" |
101 | #define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask) |
102 | |
103 | extern dtrace_provider_id_t fbt_id; |
104 | extern fbt_probe_t **fbt_probetab; |
105 | extern int fbt_probetab_mask; |
106 | |
107 | kern_return_t fbt_perfCallback(int, x86_saved_state_t *, uintptr_t *, __unused int); |
108 | |
109 | int |
110 | fbt_invop(uintptr_t addr, uintptr_t *state, uintptr_t rval) |
111 | { |
112 | fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)]; |
113 | |
114 | for (; fbt != NULL; fbt = fbt->fbtp_hashnext) { |
115 | if ((uintptr_t)fbt->fbtp_patchpoint == addr) { |
116 | |
117 | if (fbt->fbtp_roffset == 0) { |
118 | x86_saved_state64_t *regs = (x86_saved_state64_t *)state; |
119 | |
120 | CPU->cpu_dtrace_caller = *(uintptr_t *)(((uintptr_t)(regs->isf.rsp))+sizeof(uint64_t)); // 8(%rsp) |
121 | /* 64-bit ABI, arguments passed in registers. */ |
122 | dtrace_probe(fbt->fbtp_id, regs->rdi, regs->rsi, regs->rdx, regs->rcx, regs->r8); |
123 | CPU->cpu_dtrace_caller = 0; |
124 | } else { |
125 | |
126 | dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, rval, 0, 0, 0); |
127 | CPU->cpu_dtrace_caller = 0; |
128 | } |
129 | |
130 | return (fbt->fbtp_rval); |
131 | } |
132 | } |
133 | |
134 | return (0); |
135 | } |
136 | |
137 | #define IS_USER_TRAP(regs) (regs && (((regs)->isf.cs & 3) != 0)) |
138 | #define T_INVALID_OPCODE 6 |
139 | #define FBT_EXCEPTION_CODE T_INVALID_OPCODE |
140 | #define T_PREEMPT 255 |
141 | |
142 | kern_return_t |
143 | fbt_perfCallback( |
144 | int trapno, |
145 | x86_saved_state_t *tagged_regs, |
146 | uintptr_t *lo_spp, |
147 | __unused int unused2) |
148 | { |
149 | kern_return_t retval = KERN_FAILURE; |
150 | x86_saved_state64_t *saved_state = saved_state64(tagged_regs); |
151 | |
152 | if (FBT_EXCEPTION_CODE == trapno && !IS_USER_TRAP(saved_state)) { |
153 | boolean_t oldlevel; |
154 | uint64_t rsp_probe, fp, delta = 0; |
155 | uintptr_t old_sp; |
156 | uint32_t *pDst; |
157 | int emul; |
158 | |
159 | |
160 | oldlevel = ml_set_interrupts_enabled(FALSE); |
161 | |
162 | /* Calculate where the stack pointer was when the probe instruction "fired." */ |
163 | rsp_probe = saved_state->isf.rsp; /* Easy, x86_64 establishes this value in idt64.s */ |
164 | |
165 | __asm__ volatile( |
166 | "Ldtrace_invop_callsite_pre_label:\n" |
167 | ".data\n" |
168 | ".private_extern _dtrace_invop_callsite_pre\n" |
169 | "_dtrace_invop_callsite_pre:\n" |
170 | " .quad Ldtrace_invop_callsite_pre_label\n" |
171 | ".text\n" |
172 | ); |
173 | |
174 | emul = dtrace_invop( saved_state->isf.rip, (uintptr_t *)saved_state, saved_state->rax ); |
175 | |
176 | __asm__ volatile( |
177 | "Ldtrace_invop_callsite_post_label:\n" |
178 | ".data\n" |
179 | ".private_extern _dtrace_invop_callsite_post\n" |
180 | "_dtrace_invop_callsite_post:\n" |
181 | " .quad Ldtrace_invop_callsite_post_label\n" |
182 | ".text\n" |
183 | ); |
184 | |
185 | switch (emul) { |
186 | case DTRACE_INVOP_NOP: |
187 | saved_state->isf.rip += DTRACE_INVOP_NOP_SKIP; /* Skip over the patched NOP (planted by sdt). */ |
188 | retval = KERN_SUCCESS; |
189 | break; |
190 | |
191 | case DTRACE_INVOP_MOV_RSP_RBP: |
192 | saved_state->rbp = rsp_probe; /* Emulate patched mov %rsp,%rbp */ |
193 | saved_state->isf.rip += DTRACE_INVOP_MOV_RSP_RBP_SKIP; /* Skip over the bytes of the patched mov %rsp,%rbp */ |
194 | retval = KERN_SUCCESS; |
195 | break; |
196 | |
197 | case DTRACE_INVOP_POP_RBP: |
198 | case DTRACE_INVOP_LEAVE: |
199 | /* |
200 | * Emulate first micro-op of patched leave: mov %rbp,%rsp |
201 | * fp points just below the return address slot for target's ret |
202 | * and at the slot holding the frame pointer saved by the target's prologue. |
203 | */ |
204 | fp = saved_state->rbp; |
205 | /* Emulate second micro-op of patched leave: patched pop %rbp |
206 | * savearea rbp is set for the frame of the caller to target |
207 | * The *live* %rsp will be adjusted below for pop increment(s) |
208 | */ |
209 | saved_state->rbp = *(uint64_t *)fp; |
210 | /* Skip over the patched leave */ |
211 | saved_state->isf.rip += DTRACE_INVOP_LEAVE_SKIP; |
212 | /* |
213 | * Lift the stack to account for the emulated leave |
214 | * Account for words local in this frame |
215 | * (in "case DTRACE_INVOP_POPL_EBP:" this is zero.) |
216 | */ |
217 | delta = ((uint32_t *)fp) - ((uint32_t *)rsp_probe); /* delta is a *word* increment */ |
218 | /* Account for popping off the rbp (just accomplished by the emulation |
219 | * above...) |
220 | */ |
221 | delta += 2; |
222 | saved_state->isf.rsp += (delta << 2); |
223 | /* Obtain the stack pointer recorded by the trampolines */ |
224 | old_sp = *lo_spp; |
225 | /* Shift contents of stack */ |
226 | for (pDst = (uint32_t *)fp; |
227 | pDst > (((uint32_t *)old_sp)); |
228 | pDst--) |
229 | *pDst = pDst[-delta]; |
230 | |
231 | #if KASAN |
232 | /* |
233 | * The above has moved stack objects so they are no longer in sync |
234 | * with the shadow. |
235 | */ |
236 | uintptr_t base = (uintptr_t)((uint32_t *)old_sp - delta); |
237 | uintptr_t size = (uintptr_t)fp - base; |
238 | if (base >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
239 | kasan_unpoison_stack(base, size); |
240 | } |
241 | #endif |
242 | |
243 | /* Track the stack lift in "saved_state". */ |
244 | saved_state = (x86_saved_state64_t *) (((uintptr_t)saved_state) + (delta << 2)); |
245 | /* Adjust the stack pointer utilized by the trampolines */ |
246 | *lo_spp = old_sp + (delta << 2); |
247 | |
248 | retval = KERN_SUCCESS; |
249 | break; |
250 | |
251 | default: |
252 | retval = KERN_FAILURE; |
253 | break; |
254 | } |
255 | |
256 | /* Trick trap_from_kernel into not attempting to handle pending AST_URGENT */ |
257 | saved_state->isf.trapno = T_PREEMPT; |
258 | |
259 | ml_set_interrupts_enabled(oldlevel); |
260 | } |
261 | |
262 | return retval; |
263 | } |
264 | |
265 | void |
266 | fbt_provide_probe(struct modctl *ctl, const char *modname, const char* symbolName, machine_inst_t* symbolStart, machine_inst_t* instrHigh) |
267 | { |
268 | unsigned int j; |
269 | unsigned int doenable = 0; |
270 | dtrace_id_t thisid; |
271 | |
272 | fbt_probe_t *newfbt, *retfbt, *entryfbt; |
273 | machine_inst_t *instr, *limit, theInstr, i1, i2, i3; |
274 | int size; |
275 | |
276 | /* |
277 | * Guard against null symbols |
278 | */ |
279 | if (!symbolStart || !instrHigh || instrHigh < symbolStart) { |
280 | kprintf("dtrace: %s has an invalid address\n" , symbolName); |
281 | return; |
282 | } |
283 | |
284 | for (j = 0, instr = symbolStart, theInstr = 0; |
285 | (j < 4) && (instrHigh > (instr + 2)); j++) { |
286 | theInstr = instr[0]; |
287 | if (theInstr == FBT_PUSH_RBP || theInstr == FBT_RET || theInstr == FBT_RET_IMM16) |
288 | break; |
289 | |
290 | if ((size = dtrace_instr_size(instr)) <= 0) |
291 | break; |
292 | |
293 | instr += size; |
294 | } |
295 | |
296 | if (theInstr != FBT_PUSH_RBP) |
297 | return; |
298 | |
299 | i1 = instr[1]; |
300 | i2 = instr[2]; |
301 | i3 = instr[3]; |
302 | |
303 | limit = (machine_inst_t *)instrHigh; |
304 | |
305 | if (i1 == FBT_REX_RSP_RBP && i2 == FBT_MOV_RSP_RBP0 && i3 == FBT_MOV_RSP_RBP1) { |
306 | instr += 1; /* Advance to the mov %rsp,%rbp */ |
307 | theInstr = i1; |
308 | } else { |
309 | return; |
310 | } |
311 | #if 0 |
312 | else { |
313 | /* |
314 | * Sometimes, the compiler will schedule an intervening instruction |
315 | * in the function prologue. Example: |
316 | * |
317 | * _mach_vm_read: |
318 | * 000006d8 pushl %ebp |
319 | * 000006d9 movl $0x00000004,%edx |
320 | * 000006de movl %esp,%ebp |
321 | * |
322 | * Try the next instruction, to see if it is a movl %esp,%ebp |
323 | */ |
324 | |
325 | instr += 1; /* Advance past the pushl %ebp */ |
326 | if ((size = dtrace_instr_size(instr)) <= 0) |
327 | return; |
328 | |
329 | instr += size; |
330 | |
331 | if ((instr + 1) >= limit) |
332 | return; |
333 | |
334 | i1 = instr[0]; |
335 | i2 = instr[1]; |
336 | |
337 | if (!(i1 == FBT_MOVL_ESP_EBP0_V0 && i2 == FBT_MOVL_ESP_EBP1_V0) && |
338 | !(i1 == FBT_MOVL_ESP_EBP0_V1 && i2 == FBT_MOVL_ESP_EBP1_V1)) |
339 | return; |
340 | |
341 | /* instr already points at the movl %esp,%ebp */ |
342 | theInstr = i1; |
343 | } |
344 | #endif |
345 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_ENTRY); |
346 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); |
347 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); |
348 | |
349 | if (thisid != 0) { |
350 | /* |
351 | * The dtrace_probe previously existed, so we have to hook |
352 | * the newfbt entry onto the end of the existing fbt's chain. |
353 | * If we find an fbt entry that was previously patched to |
354 | * fire, (as indicated by the current patched value), then |
355 | * we want to enable this newfbt on the spot. |
356 | */ |
357 | entryfbt = dtrace_probe_arg (fbt_id, thisid); |
358 | ASSERT (entryfbt != NULL); |
359 | for(; entryfbt != NULL; entryfbt = entryfbt->fbtp_next) { |
360 | if (entryfbt->fbtp_currentval == entryfbt->fbtp_patchval) |
361 | doenable++; |
362 | |
363 | if (entryfbt->fbtp_next == NULL) { |
364 | entryfbt->fbtp_next = newfbt; |
365 | newfbt->fbtp_id = entryfbt->fbtp_id; |
366 | break; |
367 | } |
368 | } |
369 | } |
370 | else { |
371 | /* |
372 | * The dtrace_probe did not previously exist, so we |
373 | * create it and hook in the newfbt. Since the probe is |
374 | * new, we obviously do not need to enable it on the spot. |
375 | */ |
376 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, symbolName, FBT_ENTRY, FBT_AFRAMES_ENTRY, newfbt); |
377 | doenable = 0; |
378 | } |
379 | |
380 | newfbt->fbtp_patchpoint = instr; |
381 | newfbt->fbtp_ctl = ctl; |
382 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; |
383 | newfbt->fbtp_rval = DTRACE_INVOP_MOV_RSP_RBP; |
384 | newfbt->fbtp_savedval = theInstr; |
385 | newfbt->fbtp_patchval = FBT_PATCHVAL; |
386 | newfbt->fbtp_currentval = 0; |
387 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; |
388 | fbt_probetab[FBT_ADDR2NDX(instr)] = newfbt; |
389 | |
390 | if (doenable) |
391 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); |
392 | |
393 | /* |
394 | * The fbt entry chain is in place, one entry point per symbol. |
395 | * The fbt return chain can have multiple return points per symbol. |
396 | * Here we find the end of the fbt return chain. |
397 | */ |
398 | |
399 | doenable=0; |
400 | |
401 | thisid = dtrace_probe_lookup(fbt_id, modname, symbolName, FBT_RETURN); |
402 | if (thisid != 0) { |
403 | /* The dtrace_probe previously existed, so we have to |
404 | * find the end of the existing fbt chain. If we find |
405 | * an fbt return that was previously patched to fire, |
406 | * (as indicated by the currrent patched value), then |
407 | * we want to enable any new fbts on the spot. |
408 | */ |
409 | retfbt = dtrace_probe_arg (fbt_id, thisid); |
410 | ASSERT(retfbt != NULL); |
411 | for (; retfbt != NULL; retfbt = retfbt->fbtp_next) { |
412 | if (retfbt->fbtp_currentval == retfbt->fbtp_patchval) |
413 | doenable++; |
414 | if(retfbt->fbtp_next == NULL) |
415 | break; |
416 | } |
417 | } |
418 | else { |
419 | doenable = 0; |
420 | retfbt = NULL; |
421 | } |
422 | |
423 | again: |
424 | if (instr >= limit) |
425 | return; |
426 | |
427 | /* |
428 | * If this disassembly fails, then we've likely walked off into |
429 | * a jump table or some other unsuitable area. Bail out of the |
430 | * disassembly now. |
431 | */ |
432 | if ((size = dtrace_instr_size(instr)) <= 0) |
433 | return; |
434 | |
435 | /* |
436 | * We (desperately) want to avoid erroneously instrumenting a |
437 | * jump table, especially given that our markers are pretty |
438 | * short: two bytes on x86, and just one byte on amd64. To |
439 | * determine if we're looking at a true instruction sequence |
440 | * or an inline jump table that happens to contain the same |
441 | * byte sequences, we resort to some heuristic sleeze: we |
442 | * treat this instruction as being contained within a pointer, |
443 | * and see if that pointer points to within the body of the |
444 | * function. If it does, we refuse to instrument it. |
445 | */ |
446 | for (j = 0; j < sizeof (uintptr_t); j++) { |
447 | uintptr_t check = (uintptr_t)instr - j; |
448 | uint8_t *ptr; |
449 | |
450 | if (check < (uintptr_t)symbolStart) |
451 | break; |
452 | |
453 | if (check + sizeof (uintptr_t) > (uintptr_t)limit) |
454 | continue; |
455 | |
456 | ptr = *(uint8_t **)check; |
457 | |
458 | if (ptr >= (uint8_t *)symbolStart && ptr < limit) { |
459 | instr += size; |
460 | goto again; |
461 | } |
462 | } |
463 | |
464 | /* |
465 | * OK, it's an instruction. |
466 | */ |
467 | theInstr = instr[0]; |
468 | |
469 | /* Walked onto the start of the next routine? If so, bail out of this function. */ |
470 | if (theInstr == FBT_PUSH_RBP) |
471 | return; |
472 | |
473 | if (!(size == 1 && (theInstr == FBT_POP_RBP || theInstr == FBT_LEAVE))) { |
474 | instr += size; |
475 | goto again; |
476 | } |
477 | |
478 | /* |
479 | * Found the pop %rbp; or leave. |
480 | */ |
481 | machine_inst_t *patch_instr = instr; |
482 | |
483 | /* |
484 | * Scan forward for a "ret", or "jmp". |
485 | */ |
486 | instr += size; |
487 | if (instr >= limit) |
488 | return; |
489 | |
490 | size = dtrace_instr_size(instr); |
491 | if (size <= 0) /* Failed instruction decode? */ |
492 | return; |
493 | |
494 | theInstr = instr[0]; |
495 | |
496 | if (!(size == FBT_RET_LEN && (theInstr == FBT_RET)) && |
497 | !(size == FBT_RET_IMM16_LEN && (theInstr == FBT_RET_IMM16)) && |
498 | !(size == FBT_JMP_SHORT_REL_LEN && (theInstr == FBT_JMP_SHORT_REL)) && |
499 | !(size == FBT_JMP_NEAR_REL_LEN && (theInstr == FBT_JMP_NEAR_REL)) && |
500 | !(size == FBT_JMP_FAR_ABS_LEN && (theInstr == FBT_JMP_FAR_ABS))) |
501 | return; |
502 | |
503 | /* |
504 | * pop %rbp; ret; or leave; ret; or leave; jmp tailCalledFun; -- We have a winner! |
505 | */ |
506 | newfbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); |
507 | strlcpy( (char *)&(newfbt->fbtp_name), symbolName, MAX_FBTP_NAME_CHARS ); |
508 | |
509 | if (retfbt == NULL) { |
510 | newfbt->fbtp_id = dtrace_probe_create(fbt_id, modname, |
511 | symbolName, FBT_RETURN, FBT_AFRAMES_RETURN, newfbt); |
512 | } else { |
513 | retfbt->fbtp_next = newfbt; |
514 | newfbt->fbtp_id = retfbt->fbtp_id; |
515 | } |
516 | |
517 | retfbt = newfbt; |
518 | newfbt->fbtp_patchpoint = patch_instr; |
519 | newfbt->fbtp_ctl = ctl; |
520 | newfbt->fbtp_loadcnt = ctl->mod_loadcnt; |
521 | |
522 | if (*patch_instr == FBT_POP_RBP) { |
523 | newfbt->fbtp_rval = DTRACE_INVOP_POP_RBP; |
524 | } else { |
525 | ASSERT(*patch_instr == FBT_LEAVE); |
526 | newfbt->fbtp_rval = DTRACE_INVOP_LEAVE; |
527 | } |
528 | newfbt->fbtp_roffset = |
529 | (uintptr_t)(patch_instr - (uint8_t *)symbolStart); |
530 | |
531 | newfbt->fbtp_savedval = *patch_instr; |
532 | newfbt->fbtp_patchval = FBT_PATCHVAL; |
533 | newfbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(patch_instr)]; |
534 | fbt_probetab[FBT_ADDR2NDX(patch_instr)] = newfbt; |
535 | |
536 | if (doenable) |
537 | fbt_enable(NULL, newfbt->fbtp_id, newfbt); |
538 | |
539 | instr += size; |
540 | goto again; |
541 | } |
542 | |
543 | |