| 1 | /* Convert a 'struct tm' to a time_t value. |
| 2 | Copyright (C) 1993-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Paul Eggert <eggert@twinsun.com>. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | /* The following macros influence what gets defined when this file is compiled: |
| 21 | |
| 22 | Macro/expression Which gnulib module This compilation unit |
| 23 | should define |
| 24 | |
| 25 | _LIBC (glibc proper) mktime |
| 26 | |
| 27 | NEED_MKTIME_WORKING mktime rpl_mktime |
| 28 | || NEED_MKTIME_WINDOWS |
| 29 | |
| 30 | NEED_MKTIME_INTERNAL mktime-internal mktime_internal |
| 31 | */ |
| 32 | |
| 33 | #ifndef _LIBC |
| 34 | # include <libc-config.h> |
| 35 | #endif |
| 36 | |
| 37 | /* Assume that leap seconds are possible, unless told otherwise. |
| 38 | If the host has a 'zic' command with a '-L leapsecondfilename' option, |
| 39 | then it supports leap seconds; otherwise it probably doesn't. */ |
| 40 | #ifndef LEAP_SECONDS_POSSIBLE |
| 41 | # define LEAP_SECONDS_POSSIBLE 1 |
| 42 | #endif |
| 43 | |
| 44 | #include <time.h> |
| 45 | |
| 46 | #include <errno.h> |
| 47 | #include <limits.h> |
| 48 | #include <stdbool.h> |
| 49 | #include <stdlib.h> |
| 50 | #include <string.h> |
| 51 | |
| 52 | #include <intprops.h> |
| 53 | #include <verify.h> |
| 54 | |
| 55 | #ifndef NEED_MKTIME_INTERNAL |
| 56 | # define NEED_MKTIME_INTERNAL 0 |
| 57 | #endif |
| 58 | #ifndef NEED_MKTIME_WINDOWS |
| 59 | # define NEED_MKTIME_WINDOWS 0 |
| 60 | #endif |
| 61 | #ifndef NEED_MKTIME_WORKING |
| 62 | # define NEED_MKTIME_WORKING 0 |
| 63 | #endif |
| 64 | |
| 65 | #include "mktime-internal.h" |
| 66 | |
| 67 | #if !defined _LIBC && (NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS) |
| 68 | static void |
| 69 | my_tzset (void) |
| 70 | { |
| 71 | # if NEED_MKTIME_WINDOWS |
| 72 | /* Rectify the value of the environment variable TZ. |
| 73 | There are four possible kinds of such values: |
| 74 | - Traditional US time zone names, e.g. "PST8PDT". Syntax: see |
| 75 | <https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/tzset> |
| 76 | - Time zone names based on geography, that contain one or more |
| 77 | slashes, e.g. "Europe/Moscow". |
| 78 | - Time zone names based on geography, without slashes, e.g. |
| 79 | "Singapore". |
| 80 | - Time zone names that contain explicit DST rules. Syntax: see |
| 81 | <https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03> |
| 82 | The Microsoft CRT understands only the first kind. It produces incorrect |
| 83 | results if the value of TZ is of the other kinds. |
| 84 | But in a Cygwin environment, /etc/profile.d/tzset.sh sets TZ to a value |
| 85 | of the second kind for most geographies, or of the first kind in a few |
| 86 | other geographies. If it is of the second kind, neutralize it. For the |
| 87 | Microsoft CRT, an absent or empty TZ means the time zone that the user |
| 88 | has set in the Windows Control Panel. |
| 89 | If the value of TZ is of the third or fourth kind -- Cygwin programs |
| 90 | understand these syntaxes as well --, it does not matter whether we |
| 91 | neutralize it or not, since these values occur only when a Cygwin user |
| 92 | has set TZ explicitly; this case is 1. rare and 2. under the user's |
| 93 | responsibility. */ |
| 94 | const char *tz = getenv ("TZ" ); |
| 95 | if (tz != NULL && strchr (tz, '/') != NULL) |
| 96 | _putenv ("TZ=" ); |
| 97 | # else |
| 98 | tzset (); |
| 99 | # endif |
| 100 | } |
| 101 | # undef __tzset |
| 102 | # define __tzset() my_tzset () |
| 103 | #endif |
| 104 | |
| 105 | #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL |
| 106 | |
| 107 | /* A signed type that can represent an integer number of years |
| 108 | multiplied by four times the number of seconds in a year. It is |
| 109 | needed when converting a tm_year value times the number of seconds |
| 110 | in a year. The factor of four comes because these products need |
| 111 | to be subtracted from each other, and sometimes with an offset |
| 112 | added to them, and then with another timestamp added, without |
| 113 | worrying about overflow. |
| 114 | |
| 115 | Much of the code uses long_int to represent __time64_t values, to |
| 116 | lessen the hassle of dealing with platforms where __time64_t is |
| 117 | unsigned, and because long_int should suffice to represent all |
| 118 | __time64_t values that mktime can generate even on platforms where |
| 119 | __time64_t is wider than the int components of struct tm. */ |
| 120 | |
| 121 | #if INT_MAX <= LONG_MAX / 4 / 366 / 24 / 60 / 60 |
| 122 | typedef long int long_int; |
| 123 | #else |
| 124 | typedef long long int long_int; |
| 125 | #endif |
| 126 | verify (INT_MAX <= TYPE_MAXIMUM (long_int) / 4 / 366 / 24 / 60 / 60); |
| 127 | |
| 128 | /* Shift A right by B bits portably, by dividing A by 2**B and |
| 129 | truncating towards minus infinity. B should be in the range 0 <= B |
| 130 | <= LONG_INT_BITS - 2, where LONG_INT_BITS is the number of useful |
| 131 | bits in a long_int. LONG_INT_BITS is at least 32. |
| 132 | |
| 133 | ISO C99 says that A >> B is implementation-defined if A < 0. Some |
| 134 | implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift |
| 135 | right in the usual way when A < 0, so SHR falls back on division if |
| 136 | ordinary A >> B doesn't seem to be the usual signed shift. */ |
| 137 | |
| 138 | static long_int |
| 139 | shr (long_int a, int b) |
| 140 | { |
| 141 | long_int one = 1; |
| 142 | return (-one >> 1 == -1 |
| 143 | ? a >> b |
| 144 | : (a + (a < 0)) / (one << b) - (a < 0)); |
| 145 | } |
| 146 | |
| 147 | /* Bounds for the intersection of __time64_t and long_int. */ |
| 148 | |
| 149 | static long_int const mktime_min |
| 150 | = ((TYPE_SIGNED (__time64_t) |
| 151 | && TYPE_MINIMUM (__time64_t) < TYPE_MINIMUM (long_int)) |
| 152 | ? TYPE_MINIMUM (long_int) : TYPE_MINIMUM (__time64_t)); |
| 153 | static long_int const mktime_max |
| 154 | = (TYPE_MAXIMUM (long_int) < TYPE_MAXIMUM (__time64_t) |
| 155 | ? TYPE_MAXIMUM (long_int) : TYPE_MAXIMUM (__time64_t)); |
| 156 | |
| 157 | #define EPOCH_YEAR 1970 |
| 158 | #define TM_YEAR_BASE 1900 |
| 159 | verify (TM_YEAR_BASE % 100 == 0); |
| 160 | |
| 161 | /* Is YEAR + TM_YEAR_BASE a leap year? */ |
| 162 | static bool |
| 163 | leapyear (long_int year) |
| 164 | { |
| 165 | /* Don't add YEAR to TM_YEAR_BASE, as that might overflow. |
| 166 | Also, work even if YEAR is negative. */ |
| 167 | return |
| 168 | ((year & 3) == 0 |
| 169 | && (year % 100 != 0 |
| 170 | || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3))); |
| 171 | } |
| 172 | |
| 173 | /* How many days come before each month (0-12). */ |
| 174 | #ifndef _LIBC |
| 175 | static |
| 176 | #endif |
| 177 | const unsigned short int __mon_yday[2][13] = |
| 178 | { |
| 179 | /* Normal years. */ |
| 180 | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, |
| 181 | /* Leap years. */ |
| 182 | { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } |
| 183 | }; |
| 184 | |
| 185 | |
| 186 | /* Do the values A and B differ according to the rules for tm_isdst? |
| 187 | A and B differ if one is zero and the other positive. */ |
| 188 | static bool |
| 189 | isdst_differ (int a, int b) |
| 190 | { |
| 191 | return (!a != !b) && (0 <= a) && (0 <= b); |
| 192 | } |
| 193 | |
| 194 | /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) - |
| 195 | (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks |
| 196 | were not adjusted between the timestamps. |
| 197 | |
| 198 | The YEAR values uses the same numbering as TP->tm_year. Values |
| 199 | need not be in the usual range. However, YEAR1 - YEAR0 must not |
| 200 | overflow even when multiplied by three times the number of seconds |
| 201 | in a year, and likewise for YDAY1 - YDAY0 and three times the |
| 202 | number of seconds in a day. */ |
| 203 | |
| 204 | static long_int |
| 205 | ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1, |
| 206 | int year0, int yday0, int hour0, int min0, int sec0) |
| 207 | { |
| 208 | verify (-1 / 2 == 0); |
| 209 | |
| 210 | /* Compute intervening leap days correctly even if year is negative. |
| 211 | Take care to avoid integer overflow here. */ |
| 212 | int a4 = shr (year1, 2) + shr (TM_YEAR_BASE, 2) - ! (year1 & 3); |
| 213 | int b4 = shr (year0, 2) + shr (TM_YEAR_BASE, 2) - ! (year0 & 3); |
| 214 | int a100 = (a4 + (a4 < 0)) / 25 - (a4 < 0); |
| 215 | int b100 = (b4 + (b4 < 0)) / 25 - (b4 < 0); |
| 216 | int a400 = shr (a100, 2); |
| 217 | int b400 = shr (b100, 2); |
| 218 | int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); |
| 219 | |
| 220 | /* Compute the desired time without overflowing. */ |
| 221 | long_int years = year1 - year0; |
| 222 | long_int days = 365 * years + yday1 - yday0 + intervening_leap_days; |
| 223 | long_int hours = 24 * days + hour1 - hour0; |
| 224 | long_int minutes = 60 * hours + min1 - min0; |
| 225 | long_int seconds = 60 * minutes + sec1 - sec0; |
| 226 | return seconds; |
| 227 | } |
| 228 | |
| 229 | /* Return the average of A and B, even if A + B would overflow. |
| 230 | Round toward positive infinity. */ |
| 231 | static long_int |
| 232 | long_int_avg (long_int a, long_int b) |
| 233 | { |
| 234 | return shr (a, 1) + shr (b, 1) + ((a | b) & 1); |
| 235 | } |
| 236 | |
| 237 | /* Return a long_int value corresponding to (YEAR-YDAY HOUR:MIN:SEC) |
| 238 | minus *TP seconds, assuming no clock adjustments occurred between |
| 239 | the two timestamps. |
| 240 | |
| 241 | YEAR and YDAY must not be so large that multiplying them by three times the |
| 242 | number of seconds in a year (or day, respectively) would overflow long_int. |
| 243 | *TP should be in the usual range. */ |
| 244 | static long_int |
| 245 | tm_diff (long_int year, long_int yday, int hour, int min, int sec, |
| 246 | struct tm const *tp) |
| 247 | { |
| 248 | return ydhms_diff (year, yday, hour, min, sec, |
| 249 | tp->tm_year, tp->tm_yday, |
| 250 | tp->tm_hour, tp->tm_min, tp->tm_sec); |
| 251 | } |
| 252 | |
| 253 | /* Use CONVERT to convert T to a struct tm value in *TM. T must be in |
| 254 | range for __time64_t. Return TM if successful, NULL (setting errno) on |
| 255 | failure. */ |
| 256 | static struct tm * |
| 257 | convert_time (struct tm *(*convert) (const __time64_t *, struct tm *), |
| 258 | long_int t, struct tm *tm) |
| 259 | { |
| 260 | __time64_t x = t; |
| 261 | return convert (&x, tm); |
| 262 | } |
| 263 | |
| 264 | /* Use CONVERT to convert *T to a broken down time in *TP. |
| 265 | If *T is out of range for conversion, adjust it so that |
| 266 | it is the nearest in-range value and then convert that. |
| 267 | A value is in range if it fits in both __time64_t and long_int. |
| 268 | Return TP on success, NULL (setting errno) on failure. */ |
| 269 | static struct tm * |
| 270 | ranged_convert (struct tm *(*convert) (const __time64_t *, struct tm *), |
| 271 | long_int *t, struct tm *tp) |
| 272 | { |
| 273 | long_int t1 = (*t < mktime_min ? mktime_min |
| 274 | : *t <= mktime_max ? *t : mktime_max); |
| 275 | struct tm *r = convert_time (convert, t1, tp); |
| 276 | if (r) |
| 277 | { |
| 278 | *t = t1; |
| 279 | return r; |
| 280 | } |
| 281 | if (errno != EOVERFLOW) |
| 282 | return NULL; |
| 283 | |
| 284 | long_int bad = t1; |
| 285 | long_int ok = 0; |
| 286 | struct tm oktm; oktm.tm_sec = -1; |
| 287 | |
| 288 | /* BAD is a known out-of-range value, and OK is a known in-range one. |
| 289 | Use binary search to narrow the range between BAD and OK until |
| 290 | they differ by 1. */ |
| 291 | while (true) |
| 292 | { |
| 293 | long_int mid = long_int_avg (ok, bad); |
| 294 | if (mid == ok || mid == bad) |
| 295 | break; |
| 296 | if (convert_time (convert, mid, tp)) |
| 297 | ok = mid, oktm = *tp; |
| 298 | else if (errno != EOVERFLOW) |
| 299 | return NULL; |
| 300 | else |
| 301 | bad = mid; |
| 302 | } |
| 303 | |
| 304 | if (oktm.tm_sec < 0) |
| 305 | return NULL; |
| 306 | *t = ok; |
| 307 | *tp = oktm; |
| 308 | return tp; |
| 309 | } |
| 310 | |
| 311 | |
| 312 | /* Convert *TP to a __time64_t value, inverting |
| 313 | the monotonic and mostly-unit-linear conversion function CONVERT. |
| 314 | Use *OFFSET to keep track of a guess at the offset of the result, |
| 315 | compared to what the result would be for UTC without leap seconds. |
| 316 | If *OFFSET's guess is correct, only one CONVERT call is needed. |
| 317 | If successful, set *TP to the canonicalized struct tm; |
| 318 | otherwise leave *TP alone, return ((time_t) -1) and set errno. |
| 319 | This function is external because it is used also by timegm.c. */ |
| 320 | __time64_t |
| 321 | __mktime_internal (struct tm *tp, |
| 322 | struct tm *(*convert) (const __time64_t *, struct tm *), |
| 323 | mktime_offset_t *offset) |
| 324 | { |
| 325 | struct tm tm; |
| 326 | |
| 327 | /* The maximum number of probes (calls to CONVERT) should be enough |
| 328 | to handle any combinations of time zone rule changes, solar time, |
| 329 | leap seconds, and oscillations around a spring-forward gap. |
| 330 | POSIX.1 prohibits leap seconds, but some hosts have them anyway. */ |
| 331 | int remaining_probes = 6; |
| 332 | |
| 333 | /* Time requested. Copy it in case CONVERT modifies *TP; this can |
| 334 | occur if TP is localtime's returned value and CONVERT is localtime. */ |
| 335 | int sec = tp->tm_sec; |
| 336 | int min = tp->tm_min; |
| 337 | int hour = tp->tm_hour; |
| 338 | int mday = tp->tm_mday; |
| 339 | int mon = tp->tm_mon; |
| 340 | int year_requested = tp->tm_year; |
| 341 | int isdst = tp->tm_isdst; |
| 342 | |
| 343 | /* 1 if the previous probe was DST. */ |
| 344 | int dst2 = 0; |
| 345 | |
| 346 | /* Ensure that mon is in range, and set year accordingly. */ |
| 347 | int mon_remainder = mon % 12; |
| 348 | int negative_mon_remainder = mon_remainder < 0; |
| 349 | int mon_years = mon / 12 - negative_mon_remainder; |
| 350 | long_int lyear_requested = year_requested; |
| 351 | long_int year = lyear_requested + mon_years; |
| 352 | |
| 353 | /* The other values need not be in range: |
| 354 | the remaining code handles overflows correctly. */ |
| 355 | |
| 356 | /* Calculate day of year from year, month, and day of month. |
| 357 | The result need not be in range. */ |
| 358 | int mon_yday = ((__mon_yday[leapyear (year)] |
| 359 | [mon_remainder + 12 * negative_mon_remainder]) |
| 360 | - 1); |
| 361 | long_int lmday = mday; |
| 362 | long_int yday = mon_yday + lmday; |
| 363 | |
| 364 | mktime_offset_t off = *offset; |
| 365 | int negative_offset_guess; |
| 366 | |
| 367 | int sec_requested = sec; |
| 368 | |
| 369 | if (LEAP_SECONDS_POSSIBLE) |
| 370 | { |
| 371 | /* Handle out-of-range seconds specially, |
| 372 | since ydhms_diff assumes every minute has 60 seconds. */ |
| 373 | if (sec < 0) |
| 374 | sec = 0; |
| 375 | if (59 < sec) |
| 376 | sec = 59; |
| 377 | } |
| 378 | |
| 379 | /* Invert CONVERT by probing. First assume the same offset as last |
| 380 | time. */ |
| 381 | |
| 382 | INT_SUBTRACT_WRAPV (0, off, &negative_offset_guess); |
| 383 | long_int t0 = ydhms_diff (year, yday, hour, min, sec, |
| 384 | EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, |
| 385 | negative_offset_guess); |
| 386 | long_int t = t0, t1 = t0, t2 = t0; |
| 387 | |
| 388 | /* Repeatedly use the error to improve the guess. */ |
| 389 | |
| 390 | while (true) |
| 391 | { |
| 392 | if (! ranged_convert (convert, &t, &tm)) |
| 393 | return -1; |
| 394 | long_int dt = tm_diff (year, yday, hour, min, sec, &tm); |
| 395 | if (dt == 0) |
| 396 | break; |
| 397 | |
| 398 | if (t == t1 && t != t2 |
| 399 | && (tm.tm_isdst < 0 |
| 400 | || (isdst < 0 |
| 401 | ? dst2 <= (tm.tm_isdst != 0) |
| 402 | : (isdst != 0) != (tm.tm_isdst != 0)))) |
| 403 | /* We can't possibly find a match, as we are oscillating |
| 404 | between two values. The requested time probably falls |
| 405 | within a spring-forward gap of size DT. Follow the common |
| 406 | practice in this case, which is to return a time that is DT |
| 407 | away from the requested time, preferring a time whose |
| 408 | tm_isdst differs from the requested value. (If no tm_isdst |
| 409 | was requested and only one of the two values has a nonzero |
| 410 | tm_isdst, prefer that value.) In practice, this is more |
| 411 | useful than returning -1. */ |
| 412 | goto offset_found; |
| 413 | |
| 414 | remaining_probes--; |
| 415 | if (remaining_probes == 0) |
| 416 | { |
| 417 | __set_errno (EOVERFLOW); |
| 418 | return -1; |
| 419 | } |
| 420 | |
| 421 | t1 = t2, t2 = t, t += dt, dst2 = tm.tm_isdst != 0; |
| 422 | } |
| 423 | |
| 424 | /* We have a match. Check whether tm.tm_isdst has the requested |
| 425 | value, if any. */ |
| 426 | if (isdst_differ (isdst, tm.tm_isdst)) |
| 427 | { |
| 428 | /* tm.tm_isdst has the wrong value. Look for a neighboring |
| 429 | time with the right value, and use its UTC offset. |
| 430 | |
| 431 | Heuristic: probe the adjacent timestamps in both directions, |
| 432 | looking for the desired isdst. If none is found within a |
| 433 | reasonable duration bound, assume a one-hour DST difference. |
| 434 | This should work for all real time zone histories in the tz |
| 435 | database. */ |
| 436 | |
| 437 | /* +1 if we wanted standard time but got DST, -1 if the reverse. */ |
| 438 | int dst_difference = (isdst == 0) - (tm.tm_isdst == 0); |
| 439 | |
| 440 | /* Distance between probes when looking for a DST boundary. In |
| 441 | tzdata2003a, the shortest period of DST is 601200 seconds |
| 442 | (e.g., America/Recife starting 2000-10-08 01:00), and the |
| 443 | shortest period of non-DST surrounded by DST is 694800 |
| 444 | seconds (Africa/Tunis starting 1943-04-17 01:00). Use the |
| 445 | minimum of these two values, so we don't miss these short |
| 446 | periods when probing. */ |
| 447 | int stride = 601200; |
| 448 | |
| 449 | /* In TZDB 2021e, the longest period of DST (or of non-DST), in |
| 450 | which the DST (or adjacent DST) difference is not one hour, |
| 451 | is 457243209 seconds: e.g., America/Cambridge_Bay with leap |
| 452 | seconds, starting 1965-10-31 00:00 in a switch from |
| 453 | double-daylight time (-05) to standard time (-07), and |
| 454 | continuing to 1980-04-27 02:00 in a switch from standard time |
| 455 | (-07) to daylight time (-06). */ |
| 456 | int duration_max = 457243209; |
| 457 | |
| 458 | /* Search in both directions, so the maximum distance is half |
| 459 | the duration; add the stride to avoid off-by-1 problems. */ |
| 460 | int delta_bound = duration_max / 2 + stride; |
| 461 | |
| 462 | int delta, direction; |
| 463 | |
| 464 | for (delta = stride; delta < delta_bound; delta += stride) |
| 465 | for (direction = -1; direction <= 1; direction += 2) |
| 466 | { |
| 467 | long_int ot; |
| 468 | if (! INT_ADD_WRAPV (t, delta * direction, &ot)) |
| 469 | { |
| 470 | struct tm otm; |
| 471 | if (! ranged_convert (convert, &ot, &otm)) |
| 472 | return -1; |
| 473 | if (! isdst_differ (isdst, otm.tm_isdst)) |
| 474 | { |
| 475 | /* We found the desired tm_isdst. |
| 476 | Extrapolate back to the desired time. */ |
| 477 | long_int gt = ot + tm_diff (year, yday, hour, min, sec, |
| 478 | &otm); |
| 479 | if (mktime_min <= gt && gt <= mktime_max) |
| 480 | { |
| 481 | if (convert_time (convert, gt, &tm)) |
| 482 | { |
| 483 | t = gt; |
| 484 | goto offset_found; |
| 485 | } |
| 486 | if (errno != EOVERFLOW) |
| 487 | return -1; |
| 488 | } |
| 489 | } |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | /* No unusual DST offset was found nearby. Assume one-hour DST. */ |
| 494 | t += 60 * 60 * dst_difference; |
| 495 | if (mktime_min <= t && t <= mktime_max && convert_time (convert, t, &tm)) |
| 496 | goto offset_found; |
| 497 | |
| 498 | __set_errno (EOVERFLOW); |
| 499 | return -1; |
| 500 | } |
| 501 | |
| 502 | offset_found: |
| 503 | /* Set *OFFSET to the low-order bits of T - T0 - NEGATIVE_OFFSET_GUESS. |
| 504 | This is just a heuristic to speed up the next mktime call, and |
| 505 | correctness is unaffected if integer overflow occurs here. */ |
| 506 | INT_SUBTRACT_WRAPV (t, t0, offset); |
| 507 | INT_SUBTRACT_WRAPV (*offset, negative_offset_guess, offset); |
| 508 | |
| 509 | if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec) |
| 510 | { |
| 511 | /* Adjust time to reflect the tm_sec requested, not the normalized value. |
| 512 | Also, repair any damage from a false match due to a leap second. */ |
| 513 | long_int sec_adjustment = sec == 0 && tm.tm_sec == 60; |
| 514 | sec_adjustment -= sec; |
| 515 | sec_adjustment += sec_requested; |
| 516 | if (INT_ADD_WRAPV (t, sec_adjustment, &t) |
| 517 | || ! (mktime_min <= t && t <= mktime_max)) |
| 518 | { |
| 519 | __set_errno (EOVERFLOW); |
| 520 | return -1; |
| 521 | } |
| 522 | if (! convert_time (convert, t, &tm)) |
| 523 | return -1; |
| 524 | } |
| 525 | |
| 526 | *tp = tm; |
| 527 | return t; |
| 528 | } |
| 529 | |
| 530 | #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL */ |
| 531 | |
| 532 | #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS |
| 533 | |
| 534 | /* Convert *TP to a __time64_t value. */ |
| 535 | __time64_t |
| 536 | __mktime64 (struct tm *tp) |
| 537 | { |
| 538 | /* POSIX.1 8.1.1 requires that whenever mktime() is called, the |
| 539 | time zone abbreviations contained in the external variable 'tzname' shall |
| 540 | be set as if the tzset() function had been called. */ |
| 541 | __tzset (); |
| 542 | |
| 543 | # if defined _LIBC || NEED_MKTIME_WORKING |
| 544 | static mktime_offset_t localtime_offset; |
| 545 | return __mktime_internal (tp, __localtime64_r, &localtime_offset); |
| 546 | # else |
| 547 | # undef mktime |
| 548 | return mktime (tp); |
| 549 | # endif |
| 550 | } |
| 551 | #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS */ |
| 552 | |
| 553 | #if defined _LIBC && __TIMESIZE != 64 |
| 554 | |
| 555 | libc_hidden_def (__mktime64) |
| 556 | |
| 557 | time_t |
| 558 | mktime (struct tm *tp) |
| 559 | { |
| 560 | struct tm tm = *tp; |
| 561 | __time64_t t = __mktime64 (&tm); |
| 562 | if (in_time_t_range (t)) |
| 563 | { |
| 564 | *tp = tm; |
| 565 | return t; |
| 566 | } |
| 567 | else |
| 568 | { |
| 569 | __set_errno (EOVERFLOW); |
| 570 | return -1; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | #endif |
| 575 | |
| 576 | weak_alias (mktime, timelocal) |
| 577 | libc_hidden_def (mktime) |
| 578 | libc_hidden_weak (timelocal) |
| 579 | |