1 | /* strcmp/wcscmp/strncmp/wcsncmp optimized with 256-bit EVEX instructions. |
2 | Copyright (C) 2021-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <isa-level.h> |
20 | |
21 | #if ISA_SHOULD_BUILD (4) |
22 | |
23 | # ifndef VEC_SIZE |
24 | # include "x86-evex256-vecs.h" |
25 | # endif |
26 | |
27 | # define STRCMP_ISA _evex |
28 | # include "strcmp-naming.h" |
29 | |
30 | # include <sysdep.h> |
31 | # if defined USE_AS_STRCASECMP_L |
32 | # include "locale-defines.h" |
33 | # endif |
34 | |
35 | # ifndef STRCMP |
36 | # define STRCMP __strcmp_evex |
37 | # endif |
38 | |
39 | # define PAGE_SIZE 4096 |
40 | |
41 | /* VEC_SIZE = Number of bytes in a ymm register. */ |
42 | # define CHAR_PER_VEC (VEC_SIZE / SIZE_OF_CHAR) |
43 | |
44 | # ifdef USE_AS_WCSCMP |
45 | /* Compare packed dwords. */ |
46 | # define VPCMP vpcmpd |
47 | # define VPCMPEQ vpcmpeqd |
48 | # define VPMINU vpminud |
49 | # define VPTESTM vptestmd |
50 | # define VPTESTNM vptestnmd |
51 | /* 1 dword char == 4 bytes. */ |
52 | # define SIZE_OF_CHAR 4 |
53 | |
54 | # define TESTEQ sub $((1 << CHAR_PER_VEC) - 1), |
55 | |
56 | # define USE_WIDE_CHAR |
57 | # else |
58 | /* Compare packed bytes. */ |
59 | # define VPCMP vpcmpb |
60 | # define VPCMPEQ vpcmpeqb |
61 | # define VPMINU vpminub |
62 | # define VPTESTM vptestmb |
63 | # define VPTESTNM vptestnmb |
64 | /* 1 byte char == 1 byte. */ |
65 | # define SIZE_OF_CHAR 1 |
66 | |
67 | # define TESTEQ inc |
68 | # endif |
69 | |
70 | # include "reg-macros.h" |
71 | |
72 | # if VEC_SIZE == 64 |
73 | # define RODATA_SECTION rodata.cst64 |
74 | # else |
75 | # define RODATA_SECTION rodata.cst32 |
76 | # endif |
77 | |
78 | # if CHAR_PER_VEC == 64 |
79 | # define FALLTHROUGH_RETURN_OFFSET (VEC_SIZE * 3) |
80 | # else |
81 | # define FALLTHROUGH_RETURN_OFFSET (VEC_SIZE * 2) |
82 | # endif |
83 | |
84 | # ifdef USE_AS_STRNCMP |
85 | # define LOOP_REG VR9 |
86 | # define LOOP_REG64 r9 |
87 | |
88 | # define OFFSET_REG8 r9b |
89 | # define OFFSET_REG r9d |
90 | # define OFFSET_REG64 r9 |
91 | # else |
92 | # define LOOP_REG VRDX |
93 | # define LOOP_REG64 rdx |
94 | |
95 | # define OFFSET_REG8 dl |
96 | # define OFFSET_REG edx |
97 | # define OFFSET_REG64 rdx |
98 | # endif |
99 | |
100 | # if defined USE_AS_STRNCMP || defined USE_AS_WCSCMP |
101 | # define VEC_OFFSET 0 |
102 | # else |
103 | # define VEC_OFFSET (-VEC_SIZE) |
104 | # endif |
105 | |
106 | # ifdef USE_AS_STRCASECMP_L |
107 | # define BYTE_LOOP_REG OFFSET_REG |
108 | # else |
109 | # define BYTE_LOOP_REG ecx |
110 | # endif |
111 | |
112 | # ifdef USE_AS_STRCASECMP_L |
113 | # ifdef USE_AS_STRNCMP |
114 | # define LOCALE_REG rcx |
115 | # define LOCALE_REG_LP RCX_LP |
116 | # else |
117 | # define LOCALE_REG rdx |
118 | # define LOCALE_REG_LP RDX_LP |
119 | # endif |
120 | # endif |
121 | |
122 | # define LCASE_MIN_V VMM(12) |
123 | # define LCASE_MAX_V VMM(13) |
124 | # define CASE_ADD_V VMM(14) |
125 | |
126 | # if VEC_SIZE == 64 |
127 | # define LCASE_MIN_YMM VMM_256(12) |
128 | # define LCASE_MAX_YMM VMM_256(13) |
129 | # define CASE_ADD_YMM VMM_256(14) |
130 | # endif |
131 | |
132 | # define LCASE_MIN_XMM VMM_128(12) |
133 | # define LCASE_MAX_XMM VMM_128(13) |
134 | # define CASE_ADD_XMM VMM_128(14) |
135 | |
136 | /* NB: wcsncmp uses r11 but strcasecmp is never used in |
137 | conjunction with wcscmp. */ |
138 | # define TOLOWER_BASE %r11 |
139 | |
140 | # ifdef USE_AS_STRCASECMP_L |
141 | # define _REG(x, y) x ## y |
142 | # define REG(x, y) _REG(x, y) |
143 | # define TOLOWER(reg1, reg2, ext, vec_macro) \ |
144 | vpsubb %REG(LCASE_MIN_, ext), reg1, %vec_macro(10); \ |
145 | vpsubb %REG(LCASE_MIN_, ext), reg2, %vec_macro(11); \ |
146 | vpcmpub $1, %REG(LCASE_MAX_, ext), %vec_macro(10), %k5; \ |
147 | vpcmpub $1, %REG(LCASE_MAX_, ext), %vec_macro(11), %k6; \ |
148 | vpaddb reg1, %REG(CASE_ADD_, ext), reg1{%k5}; \ |
149 | vpaddb reg2, %REG(CASE_ADD_, ext), reg2{%k6} |
150 | |
151 | # define TOLOWER_gpr(src, dst) movl (TOLOWER_BASE, src, 4), dst |
152 | # define TOLOWER_VMM(...) TOLOWER(__VA_ARGS__, V, VMM) |
153 | # define TOLOWER_YMM(...) TOLOWER(__VA_ARGS__, YMM, VMM_256) |
154 | # define TOLOWER_XMM(...) TOLOWER(__VA_ARGS__, XMM, VMM_128) |
155 | |
156 | # define CMP_R1_R2(s1_reg, s2_reg, reg_out, ext, vec_macro) \ |
157 | TOLOWER (s1_reg, s2_reg, ext, vec_macro); \ |
158 | VPCMPEQ s1_reg, s2_reg, reg_out |
159 | |
160 | # define CMP_R1_S2(s1_reg, s2_mem, s2_reg, reg_out, ext, vec_macro) \ |
161 | VMOVU s2_mem, s2_reg; \ |
162 | CMP_R1_R2 (s1_reg, s2_reg, reg_out, ext, vec_macro) |
163 | |
164 | # define CMP_R1_R2_VMM(...) CMP_R1_R2(__VA_ARGS__, V, VMM) |
165 | # define CMP_R1_R2_YMM(...) CMP_R1_R2(__VA_ARGS__, YMM, VMM_256) |
166 | # define CMP_R1_R2_XMM(...) CMP_R1_R2(__VA_ARGS__, XMM, VMM_128) |
167 | |
168 | # define CMP_R1_S2_VMM(...) CMP_R1_S2(__VA_ARGS__, V, VMM) |
169 | # define CMP_R1_S2_YMM(...) CMP_R1_S2(__VA_ARGS__, YMM, VMM_256) |
170 | # define CMP_R1_S2_XMM(...) CMP_R1_S2(__VA_ARGS__, XMM, VMM_128) |
171 | |
172 | # else |
173 | # define TOLOWER_gpr(...) |
174 | # define TOLOWER_VMM(...) |
175 | # define TOLOWER_YMM(...) |
176 | # define TOLOWER_XMM(...) |
177 | |
178 | # define CMP_R1_R2_VMM(s1_reg, s2_reg, reg_out) \ |
179 | VPCMPEQ s2_reg, s1_reg, reg_out |
180 | |
181 | # define CMP_R1_R2_YMM(...) CMP_R1_R2_VMM(__VA_ARGS__) |
182 | # define CMP_R1_R2_XMM(...) CMP_R1_R2_VMM(__VA_ARGS__) |
183 | |
184 | # define CMP_R1_S2_VMM(s1_reg, s2_mem, unused, reg_out) \ |
185 | VPCMPEQ s2_mem, s1_reg, reg_out |
186 | # define CMP_R1_S2_YMM(...) CMP_R1_S2_VMM(__VA_ARGS__) |
187 | # define CMP_R1_S2_XMM(...) CMP_R1_S2_VMM(__VA_ARGS__) |
188 | # endif |
189 | |
190 | /* Warning! |
191 | wcscmp/wcsncmp have to use SIGNED comparison for elements. |
192 | strcmp/strncmp have to use UNSIGNED comparison for elements. |
193 | */ |
194 | |
195 | /* The main idea of the string comparison (byte or dword) using 256-bit |
196 | EVEX instructions consists of comparing (VPCMP) two ymm vectors. The |
197 | latter can be on either packed bytes or dwords depending on |
198 | USE_AS_WCSCMP. In order to check the null CHAR, algorithm keeps the |
199 | matched bytes/dwords, requiring 5 EVEX instructions (3 VPCMP and 2 |
200 | KORD). In general, the costs of comparing VEC_SIZE bytes (32-bytes) |
201 | are 3 VPCMP and 2 KORD instructions, together with VMOVU and ktestd |
202 | instructions. Main loop (away from from page boundary) compares 4 |
203 | vectors are a time, effectively comparing 4 x VEC_SIZE bytes (128 |
204 | bytes) on each loop. |
205 | |
206 | The routine strncmp/wcsncmp (enabled by defining USE_AS_STRNCMP) logic |
207 | is the same as strcmp, except that an a maximum offset is tracked. If |
208 | the maximum offset is reached before a difference is found, zero is |
209 | returned. */ |
210 | |
211 | .section SECTION(.text), "ax" , @progbits |
212 | .align 16 |
213 | .type STRCMP, @function |
214 | .globl STRCMP |
215 | # ifdef USE_AS_STRCASECMP_L |
216 | ENTRY (STRCASECMP) |
217 | movq __libc_tsd_LOCALE@gottpoff(%rip), %rax |
218 | mov %fs:(%rax), %LOCALE_REG_LP |
219 | |
220 | /* Either 1 or 5 bytes (depending if CET is enabled). */ |
221 | .p2align 4 |
222 | END (STRCASECMP) |
223 | /* FALLTHROUGH to strcasecmp/strncasecmp_l. */ |
224 | # endif |
225 | |
226 | .p2align 4 |
227 | STRCMP: |
228 | cfi_startproc |
229 | _CET_ENDBR |
230 | CALL_MCOUNT |
231 | |
232 | # if defined USE_AS_STRCASECMP_L |
233 | /* We have to fall back on the C implementation for locales with |
234 | encodings not matching ASCII for single bytes. */ |
235 | # if LOCALE_T___LOCALES != 0 || LC_CTYPE != 0 |
236 | mov LOCALE_T___LOCALES + LC_CTYPE * LP_SIZE(%LOCALE_REG), %RAX_LP |
237 | # else |
238 | mov (%LOCALE_REG), %RAX_LP |
239 | # endif |
240 | testb $1, LOCALE_DATA_VALUES + _NL_CTYPE_NONASCII_CASE * SIZEOF_VALUES(%rax) |
241 | jne STRCASECMP_L_NONASCII |
242 | leaq _nl_C_LC_CTYPE_tolower + 128 * 4(%rip), TOLOWER_BASE |
243 | # endif |
244 | |
245 | # ifdef USE_AS_STRNCMP |
246 | /* Don't overwrite LOCALE_REG (rcx) until we have pass |
247 | L(one_or_less). Otherwise we might use the wrong locale in |
248 | the OVERFLOW_STRCMP (strcasecmp_l). */ |
249 | # ifdef __ILP32__ |
250 | /* Clear the upper 32 bits. */ |
251 | movl %edx, %edx |
252 | # endif |
253 | cmp $1, %RDX_LP |
254 | /* Signed comparison intentional. We use this branch to also |
255 | test cases where length >= 2^63. These very large sizes can be |
256 | handled with strcmp as there is no way for that length to |
257 | actually bound the buffer. */ |
258 | jle L(one_or_less) |
259 | # endif |
260 | |
261 | # if defined USE_AS_STRCASECMP_L |
262 | .section RODATA_SECTION, "aM" , @progbits, VEC_SIZE |
263 | .align VEC_SIZE |
264 | L(lcase_min): |
265 | .quad 0x4141414141414141 |
266 | .quad 0x4141414141414141 |
267 | .quad 0x4141414141414141 |
268 | .quad 0x4141414141414141 |
269 | # if VEC_SIZE == 64 |
270 | .quad 0x4141414141414141 |
271 | .quad 0x4141414141414141 |
272 | .quad 0x4141414141414141 |
273 | .quad 0x4141414141414141 |
274 | # endif |
275 | L(lcase_max): |
276 | .quad 0x1a1a1a1a1a1a1a1a |
277 | .quad 0x1a1a1a1a1a1a1a1a |
278 | .quad 0x1a1a1a1a1a1a1a1a |
279 | .quad 0x1a1a1a1a1a1a1a1a |
280 | # if VEC_SIZE == 64 |
281 | .quad 0x1a1a1a1a1a1a1a1a |
282 | .quad 0x1a1a1a1a1a1a1a1a |
283 | .quad 0x1a1a1a1a1a1a1a1a |
284 | .quad 0x1a1a1a1a1a1a1a1a |
285 | # endif |
286 | L(case_add): |
287 | .quad 0x2020202020202020 |
288 | .quad 0x2020202020202020 |
289 | .quad 0x2020202020202020 |
290 | .quad 0x2020202020202020 |
291 | # if VEC_SIZE == 64 |
292 | .quad 0x2020202020202020 |
293 | .quad 0x2020202020202020 |
294 | .quad 0x2020202020202020 |
295 | .quad 0x2020202020202020 |
296 | # endif |
297 | .previous |
298 | |
299 | VMOVA L(lcase_min)(%rip), %LCASE_MIN_V |
300 | VMOVA L(lcase_max)(%rip), %LCASE_MAX_V |
301 | VMOVA L(case_add)(%rip), %CASE_ADD_V |
302 | # endif |
303 | |
304 | movl %edi, %eax |
305 | orl %esi, %eax |
306 | /* Shift out the bits irrelivant to page boundary ([63:12]). */ |
307 | sall $20, %eax |
308 | /* Check if s1 or s2 may cross a page in next 4x VEC loads. */ |
309 | cmpl $((PAGE_SIZE -(VEC_SIZE * 4)) << 20), %eax |
310 | ja L(page_cross) |
311 | |
312 | L(no_page_cross): |
313 | /* Safe to compare 4x vectors. */ |
314 | VMOVU (%rdi), %VMM(0) |
315 | VPTESTM %VMM(0), %VMM(0), %k2 |
316 | /* Each bit cleared in K1 represents a mismatch or a null CHAR |
317 | in YMM0 and 32 bytes at (%rsi). */ |
318 | CMP_R1_S2_VMM (%VMM(0), (%rsi), %VMM(1), %k1){%k2} |
319 | KMOV %k1, %VRCX |
320 | # ifdef USE_AS_STRNCMP |
321 | cmpq $CHAR_PER_VEC, %rdx |
322 | jbe L(vec_0_test_len) |
323 | # endif |
324 | |
325 | /* TESTEQ is `incl` for strcmp/strncmp and `subl $0xff` for |
326 | wcscmp/wcsncmp. */ |
327 | |
328 | /* All 1s represents all equals. TESTEQ will overflow to zero in |
329 | all equals case. Otherwise 1s will carry until position of |
330 | first mismatch. */ |
331 | TESTEQ %VRCX |
332 | jz L(more_3x_vec) |
333 | |
334 | .p2align 4,, 4 |
335 | L(return_vec_0): |
336 | bsf %VRCX, %VRCX |
337 | # ifdef USE_AS_WCSCMP |
338 | movl (%rdi, %rcx, SIZE_OF_CHAR), %edx |
339 | xorl %eax, %eax |
340 | cmpl (%rsi, %rcx, SIZE_OF_CHAR), %edx |
341 | je L(ret0) |
342 | setl %al |
343 | negl %eax |
344 | orl $1, %eax |
345 | # else |
346 | movzbl (%rdi, %rcx), %eax |
347 | /* For VEC_SIZE == 64 use movb instead of movzbl to save a byte |
348 | and keep logic for len <= VEC_SIZE (common) in just the |
349 | first cache line. NB: No evex512 processor has partial- |
350 | register stalls. If that changes this ifdef can be disabled |
351 | without affecting correctness. */ |
352 | # if !defined USE_AS_STRNCMP && !defined USE_AS_STRCASECMP_L && VEC_SIZE == 64 |
353 | movb (%rsi, %rcx), %cl |
354 | # else |
355 | movzbl (%rsi, %rcx), %ecx |
356 | # endif |
357 | TOLOWER_gpr (%rax, %eax) |
358 | TOLOWER_gpr (%rcx, %ecx) |
359 | subl %ecx, %eax |
360 | # endif |
361 | L(ret0): |
362 | ret |
363 | |
364 | # ifdef USE_AS_STRNCMP |
365 | .p2align 4,, 4 |
366 | L(vec_0_test_len): |
367 | not %VRCX |
368 | bzhi %VRDX, %VRCX, %VRAX |
369 | jnz L(return_vec_0) |
370 | /* Align if will cross fetch block. */ |
371 | .p2align 4,, 2 |
372 | L(ret_zero): |
373 | xorl %eax, %eax |
374 | ret |
375 | |
376 | .p2align 4,, 5 |
377 | L(one_or_less): |
378 | # ifdef USE_AS_STRCASECMP_L |
379 | /* Set locale argument for strcasecmp. */ |
380 | movq %LOCALE_REG, %rdx |
381 | # endif |
382 | jb L(ret_zero) |
383 | /* 'nbe' covers the case where length is negative (large |
384 | unsigned). */ |
385 | jnbe OVERFLOW_STRCMP |
386 | # ifdef USE_AS_WCSCMP |
387 | movl (%rdi), %edx |
388 | xorl %eax, %eax |
389 | cmpl (%rsi), %edx |
390 | je L(ret1) |
391 | setl %al |
392 | negl %eax |
393 | orl $1, %eax |
394 | # else |
395 | movzbl (%rdi), %eax |
396 | movzbl (%rsi), %ecx |
397 | TOLOWER_gpr (%rax, %eax) |
398 | TOLOWER_gpr (%rcx, %ecx) |
399 | subl %ecx, %eax |
400 | # endif |
401 | L(ret1): |
402 | ret |
403 | # endif |
404 | |
405 | .p2align 4,, 10 |
406 | L(return_vec_1): |
407 | bsf %VRCX, %VRCX |
408 | # ifdef USE_AS_STRNCMP |
409 | /* rdx must be > CHAR_PER_VEC so its safe to subtract without |
410 | worrying about underflow. */ |
411 | addq $-CHAR_PER_VEC, %rdx |
412 | cmpq %rcx, %rdx |
413 | jbe L(ret_zero) |
414 | # endif |
415 | # ifdef USE_AS_WCSCMP |
416 | movl VEC_SIZE(%rdi, %rcx, SIZE_OF_CHAR), %edx |
417 | xorl %eax, %eax |
418 | cmpl VEC_SIZE(%rsi, %rcx, SIZE_OF_CHAR), %edx |
419 | je L(ret2) |
420 | setl %al |
421 | negl %eax |
422 | orl $1, %eax |
423 | # else |
424 | movzbl VEC_SIZE(%rdi, %rcx), %eax |
425 | movzbl VEC_SIZE(%rsi, %rcx), %ecx |
426 | TOLOWER_gpr (%rax, %eax) |
427 | TOLOWER_gpr (%rcx, %ecx) |
428 | subl %ecx, %eax |
429 | # endif |
430 | L(ret2): |
431 | ret |
432 | |
433 | .p2align 4,, 10 |
434 | # ifdef USE_AS_STRNCMP |
435 | L(return_vec_3): |
436 | # if CHAR_PER_VEC <= 32 |
437 | /* If CHAR_PER_VEC <= 32 reuse code from L(return_vec_3) without |
438 | additional branches by adjusting the bit positions from |
439 | VEC3. We can't do this for CHAR_PER_VEC == 64. */ |
440 | # if CHAR_PER_VEC <= 16 |
441 | sall $CHAR_PER_VEC, %ecx |
442 | # else |
443 | salq $CHAR_PER_VEC, %rcx |
444 | # endif |
445 | # else |
446 | /* If CHAR_PER_VEC == 64 we can't shift the return GPR so just |
447 | check it. */ |
448 | bsf %VRCX, %VRCX |
449 | addl $(CHAR_PER_VEC), %ecx |
450 | cmpq %rcx, %rdx |
451 | ja L(ret_vec_3_finish) |
452 | xorl %eax, %eax |
453 | ret |
454 | # endif |
455 | # endif |
456 | |
457 | /* If CHAR_PER_VEC == 64 we can't combine matches from the last |
458 | 2x VEC so need separate return label. */ |
459 | L(return_vec_2): |
460 | # if (CHAR_PER_VEC <= 16) || !(defined USE_AS_STRNCMP) |
461 | bsf %VRCX, %VRCX |
462 | # else |
463 | bsfq %rcx, %rcx |
464 | # endif |
465 | # ifdef USE_AS_STRNCMP |
466 | cmpq %rcx, %rdx |
467 | jbe L(ret_zero) |
468 | # endif |
469 | |
470 | L(ret_vec_3_finish): |
471 | # ifdef USE_AS_WCSCMP |
472 | movl (VEC_SIZE * 2)(%rdi, %rcx, SIZE_OF_CHAR), %edx |
473 | xorl %eax, %eax |
474 | cmpl (VEC_SIZE * 2)(%rsi, %rcx, SIZE_OF_CHAR), %edx |
475 | je L(ret3) |
476 | setl %al |
477 | negl %eax |
478 | orl $1, %eax |
479 | # else |
480 | movzbl (VEC_SIZE * 2)(%rdi, %rcx), %eax |
481 | movzbl (VEC_SIZE * 2)(%rsi, %rcx), %ecx |
482 | TOLOWER_gpr (%rax, %eax) |
483 | TOLOWER_gpr (%rcx, %ecx) |
484 | subl %ecx, %eax |
485 | # endif |
486 | L(ret3): |
487 | ret |
488 | |
489 | # ifndef USE_AS_STRNCMP |
490 | .p2align 4,, 10 |
491 | L(return_vec_3): |
492 | bsf %VRCX, %VRCX |
493 | # ifdef USE_AS_WCSCMP |
494 | movl (VEC_SIZE * 3)(%rdi, %rcx, SIZE_OF_CHAR), %edx |
495 | xorl %eax, %eax |
496 | cmpl (VEC_SIZE * 3)(%rsi, %rcx, SIZE_OF_CHAR), %edx |
497 | je L(ret4) |
498 | setl %al |
499 | negl %eax |
500 | orl $1, %eax |
501 | # else |
502 | movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax |
503 | movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx |
504 | TOLOWER_gpr (%rax, %eax) |
505 | TOLOWER_gpr (%rcx, %ecx) |
506 | subl %ecx, %eax |
507 | # endif |
508 | L(ret4): |
509 | ret |
510 | # endif |
511 | |
512 | /* 32 byte align here ensures the main loop is ideally aligned |
513 | for DSB. */ |
514 | .p2align 5 |
515 | L(more_3x_vec): |
516 | /* Safe to compare 4x vectors. */ |
517 | VMOVU (VEC_SIZE)(%rdi), %VMM(0) |
518 | VPTESTM %VMM(0), %VMM(0), %k2 |
519 | CMP_R1_S2_VMM (%VMM(0), VEC_SIZE(%rsi), %VMM(1), %k1){%k2} |
520 | KMOV %k1, %VRCX |
521 | TESTEQ %VRCX |
522 | jnz L(return_vec_1) |
523 | |
524 | # ifdef USE_AS_STRNCMP |
525 | subq $(CHAR_PER_VEC * 2), %rdx |
526 | jbe L(ret_zero) |
527 | # endif |
528 | |
529 | VMOVU (VEC_SIZE * 2)(%rdi), %VMM(0) |
530 | VPTESTM %VMM(0), %VMM(0), %k2 |
531 | CMP_R1_S2_VMM (%VMM(0), (VEC_SIZE * 2)(%rsi), %VMM(1), %k1){%k2} |
532 | KMOV %k1, %VRCX |
533 | TESTEQ %VRCX |
534 | jnz L(return_vec_2) |
535 | |
536 | VMOVU (VEC_SIZE * 3)(%rdi), %VMM(0) |
537 | VPTESTM %VMM(0), %VMM(0), %k2 |
538 | CMP_R1_S2_VMM (%VMM(0), (VEC_SIZE * 3)(%rsi), %VMM(1), %k1){%k2} |
539 | KMOV %k1, %VRCX |
540 | TESTEQ %VRCX |
541 | jnz L(return_vec_3) |
542 | |
543 | # ifdef USE_AS_STRNCMP |
544 | cmpq $(CHAR_PER_VEC * 2), %rdx |
545 | jbe L(ret_zero) |
546 | # endif |
547 | |
548 | |
549 | # ifdef USE_AS_WCSCMP |
550 | /* any non-zero positive value that doesn't inference with 0x1. |
551 | */ |
552 | movl $2, %r8d |
553 | |
554 | # else |
555 | xorl %r8d, %r8d |
556 | # endif |
557 | |
558 | /* The prepare labels are various entry points from the page |
559 | cross logic. */ |
560 | L(prepare_loop): |
561 | |
562 | # ifdef USE_AS_STRNCMP |
563 | # ifdef USE_AS_WCSCMP |
564 | L(prepare_loop_no_len): |
565 | movl %edi, %ecx |
566 | andl $(VEC_SIZE * 4 - 1), %ecx |
567 | shrl $2, %ecx |
568 | leaq (CHAR_PER_VEC * 2)(%rdx, %rcx), %rdx |
569 | # else |
570 | /* Store N + (VEC_SIZE * 4) and place check at the beginning of |
571 | the loop. */ |
572 | leaq (VEC_SIZE * 2)(%rdi, %rdx), %rdx |
573 | L(prepare_loop_no_len): |
574 | # endif |
575 | # else |
576 | L(prepare_loop_no_len): |
577 | # endif |
578 | |
579 | /* Align s1 and adjust s2 accordingly. */ |
580 | subq %rdi, %rsi |
581 | andq $-(VEC_SIZE * 4), %rdi |
582 | L(prepare_loop_readj): |
583 | addq %rdi, %rsi |
584 | # if (defined USE_AS_STRNCMP) && !(defined USE_AS_WCSCMP) |
585 | subq %rdi, %rdx |
586 | # endif |
587 | |
588 | L(prepare_loop_aligned): |
589 | /* eax stores distance from rsi to next page cross. These cases |
590 | need to be handled specially as the 4x loop could potentially |
591 | read memory past the length of s1 or s2 and across a page |
592 | boundary. */ |
593 | movl $-(VEC_SIZE * 4), %eax |
594 | subl %esi, %eax |
595 | andl $(PAGE_SIZE - 1), %eax |
596 | |
597 | |
598 | /* Loop 4x comparisons at a time. */ |
599 | .p2align 4 |
600 | L(loop): |
601 | |
602 | /* End condition for strncmp. */ |
603 | # ifdef USE_AS_STRNCMP |
604 | subq $(CHAR_PER_VEC * 4), %rdx |
605 | jbe L(ret_zero) |
606 | # endif |
607 | |
608 | subq $-(VEC_SIZE * 4), %rdi |
609 | subq $-(VEC_SIZE * 4), %rsi |
610 | |
611 | /* Check if rsi loads will cross a page boundary. */ |
612 | addl $-(VEC_SIZE * 4), %eax |
613 | jnb L(page_cross_during_loop) |
614 | |
615 | /* Loop entry after handling page cross during loop. */ |
616 | L(loop_skip_page_cross_check): |
617 | VMOVA (VEC_SIZE * 0)(%rdi), %VMM(0) |
618 | VMOVA (VEC_SIZE * 1)(%rdi), %VMM(2) |
619 | VMOVA (VEC_SIZE * 2)(%rdi), %VMM(4) |
620 | VMOVA (VEC_SIZE * 3)(%rdi), %VMM(6) |
621 | |
622 | VPMINU %VMM(0), %VMM(2), %VMM(8) |
623 | VPMINU %VMM(4), %VMM(6), %VMM(9) |
624 | |
625 | /* A zero CHAR in YMM9 means that there is a null CHAR. */ |
626 | VPMINU %VMM(8), %VMM(9), %VMM(9) |
627 | |
628 | /* Each bit set in K1 represents a non-null CHAR in YMM9. */ |
629 | VPTESTM %VMM(9), %VMM(9), %k1 |
630 | # ifndef USE_AS_STRCASECMP_L |
631 | vpxorq (VEC_SIZE * 0)(%rsi), %VMM(0), %VMM(1) |
632 | vpxorq (VEC_SIZE * 1)(%rsi), %VMM(2), %VMM(3) |
633 | vpxorq (VEC_SIZE * 2)(%rsi), %VMM(4), %VMM(5) |
634 | /* Ternary logic to xor (VEC_SIZE * 3)(%rsi) with YMM6 while |
635 | oring with YMM1. Result is stored in YMM6. */ |
636 | vpternlogd $0xde, (VEC_SIZE * 3)(%rsi), %VMM(1), %VMM(6) |
637 | # else |
638 | VMOVU (VEC_SIZE * 0)(%rsi), %VMM(1) |
639 | TOLOWER_VMM (%VMM(0), %VMM(1)) |
640 | VMOVU (VEC_SIZE * 1)(%rsi), %VMM(3) |
641 | TOLOWER_VMM (%VMM(2), %VMM(3)) |
642 | VMOVU (VEC_SIZE * 2)(%rsi), %VMM(5) |
643 | TOLOWER_VMM (%VMM(4), %VMM(5)) |
644 | VMOVU (VEC_SIZE * 3)(%rsi), %VMM(7) |
645 | TOLOWER_VMM (%VMM(6), %VMM(7)) |
646 | vpxorq %VMM(0), %VMM(1), %VMM(1) |
647 | vpxorq %VMM(2), %VMM(3), %VMM(3) |
648 | vpxorq %VMM(4), %VMM(5), %VMM(5) |
649 | vpternlogd $0xde, %VMM(7), %VMM(1), %VMM(6) |
650 | # endif |
651 | /* Or together YMM3, YMM5, and YMM6. */ |
652 | vpternlogd $0xfe, %VMM(3), %VMM(5), %VMM(6) |
653 | |
654 | |
655 | /* A non-zero CHAR in YMM6 represents a mismatch. */ |
656 | VPTESTNM %VMM(6), %VMM(6), %k0{%k1} |
657 | KMOV %k0, %LOOP_REG |
658 | |
659 | TESTEQ %LOOP_REG |
660 | jz L(loop) |
661 | |
662 | |
663 | /* Find which VEC has the mismatch of end of string. */ |
664 | VPTESTM %VMM(0), %VMM(0), %k1 |
665 | VPTESTNM %VMM(1), %VMM(1), %k0{%k1} |
666 | KMOV %k0, %VRCX |
667 | TESTEQ %VRCX |
668 | jnz L(return_vec_0_end) |
669 | |
670 | VPTESTM %VMM(2), %VMM(2), %k1 |
671 | VPTESTNM %VMM(3), %VMM(3), %k0{%k1} |
672 | KMOV %k0, %VRCX |
673 | TESTEQ %VRCX |
674 | jnz L(return_vec_1_end) |
675 | |
676 | |
677 | /* Handle VEC 2 and 3 without branches if CHAR_PER_VEC <= 32. |
678 | */ |
679 | L(return_vec_2_3_end): |
680 | # ifdef USE_AS_STRNCMP |
681 | subq $(CHAR_PER_VEC * 2), %rdx |
682 | jbe L(ret_zero_end) |
683 | # endif |
684 | |
685 | VPTESTM %VMM(4), %VMM(4), %k1 |
686 | VPTESTNM %VMM(5), %VMM(5), %k0{%k1} |
687 | KMOV %k0, %VRCX |
688 | TESTEQ %VRCX |
689 | # if CHAR_PER_VEC <= 16 |
690 | sall $CHAR_PER_VEC, %LOOP_REG |
691 | orl %ecx, %LOOP_REG |
692 | # elif CHAR_PER_VEC <= 32 |
693 | salq $CHAR_PER_VEC, %LOOP_REG64 |
694 | orq %rcx, %LOOP_REG64 |
695 | # else |
696 | /* We aren't combining last 2x VEC so branch on second the last. |
697 | */ |
698 | jnz L(return_vec_2_end) |
699 | # endif |
700 | |
701 | /* LOOP_REG contains matches for null/mismatch from the loop. If |
702 | VEC 0,1,and 2 all have no null and no mismatches then |
703 | mismatch must entirely be from VEC 3 which is fully |
704 | represented by LOOP_REG. */ |
705 | # if CHAR_PER_VEC <= 16 |
706 | bsf %LOOP_REG, %LOOP_REG |
707 | # else |
708 | bsfq %LOOP_REG64, %LOOP_REG64 |
709 | # endif |
710 | # ifdef USE_AS_STRNCMP |
711 | |
712 | /* If CHAR_PER_VEC == 64 we can't combine last 2x VEC so need to |
713 | adj length before last comparison. */ |
714 | # if CHAR_PER_VEC == 64 |
715 | subq $CHAR_PER_VEC, %rdx |
716 | jbe L(ret_zero_end) |
717 | # endif |
718 | |
719 | cmpq %LOOP_REG64, %rdx |
720 | jbe L(ret_zero_end) |
721 | # endif |
722 | |
723 | # ifdef USE_AS_WCSCMP |
724 | movl (FALLTHROUGH_RETURN_OFFSET)(%rdi, %LOOP_REG64, SIZE_OF_CHAR), %ecx |
725 | xorl %eax, %eax |
726 | cmpl (FALLTHROUGH_RETURN_OFFSET)(%rsi, %LOOP_REG64, SIZE_OF_CHAR), %ecx |
727 | je L(ret5) |
728 | setl %al |
729 | negl %eax |
730 | xorl %r8d, %eax |
731 | # else |
732 | movzbl (FALLTHROUGH_RETURN_OFFSET)(%rdi, %LOOP_REG64), %eax |
733 | movzbl (FALLTHROUGH_RETURN_OFFSET)(%rsi, %LOOP_REG64), %ecx |
734 | TOLOWER_gpr (%rax, %eax) |
735 | TOLOWER_gpr (%rcx, %ecx) |
736 | subl %ecx, %eax |
737 | xorl %r8d, %eax |
738 | subl %r8d, %eax |
739 | # endif |
740 | L(ret5): |
741 | ret |
742 | |
743 | # ifdef USE_AS_STRNCMP |
744 | .p2align 4,, 2 |
745 | L(ret_zero_end): |
746 | xorl %eax, %eax |
747 | ret |
748 | # endif |
749 | |
750 | |
751 | |
752 | /* The L(return_vec_N_end) differ from L(return_vec_N) in that |
753 | they use the value of `r8` to negate the return value. This |
754 | is because the page cross logic can swap `rdi` and `rsi`. |
755 | */ |
756 | .p2align 4,, 10 |
757 | # ifdef USE_AS_STRNCMP |
758 | L(return_vec_1_end): |
759 | # if CHAR_PER_VEC <= 32 |
760 | /* If CHAR_PER_VEC <= 32 reuse code from L(return_vec_0_end) |
761 | without additional branches by adjusting the bit positions |
762 | from VEC1. We can't do this for CHAR_PER_VEC == 64. */ |
763 | # if CHAR_PER_VEC <= 16 |
764 | sall $CHAR_PER_VEC, %ecx |
765 | # else |
766 | salq $CHAR_PER_VEC, %rcx |
767 | # endif |
768 | # else |
769 | /* If CHAR_PER_VEC == 64 we can't shift the return GPR so just |
770 | check it. */ |
771 | bsf %VRCX, %VRCX |
772 | addl $(CHAR_PER_VEC), %ecx |
773 | cmpq %rcx, %rdx |
774 | ja L(ret_vec_0_end_finish) |
775 | xorl %eax, %eax |
776 | ret |
777 | # endif |
778 | # endif |
779 | L(return_vec_0_end): |
780 | # if (CHAR_PER_VEC <= 16) || !(defined USE_AS_STRNCMP) |
781 | bsf %VRCX, %VRCX |
782 | # else |
783 | bsfq %rcx, %rcx |
784 | # endif |
785 | |
786 | # ifdef USE_AS_STRNCMP |
787 | cmpq %rcx, %rdx |
788 | jbe L(ret_zero_end) |
789 | # endif |
790 | |
791 | L(ret_vec_0_end_finish): |
792 | # ifdef USE_AS_WCSCMP |
793 | movl (%rdi, %rcx, SIZE_OF_CHAR), %edx |
794 | xorl %eax, %eax |
795 | cmpl (%rsi, %rcx, SIZE_OF_CHAR), %edx |
796 | je L(ret6) |
797 | setl %al |
798 | negl %eax |
799 | /* This is the non-zero case for `eax` so just xorl with `r8d` |
800 | flip is `rdi` and `rsi` where swapped. */ |
801 | xorl %r8d, %eax |
802 | # else |
803 | movzbl (%rdi, %rcx), %eax |
804 | movzbl (%rsi, %rcx), %ecx |
805 | TOLOWER_gpr (%rax, %eax) |
806 | TOLOWER_gpr (%rcx, %ecx) |
807 | subl %ecx, %eax |
808 | /* Flip `eax` if `rdi` and `rsi` where swapped in page cross |
809 | logic. Subtract `r8d` after xor for zero case. */ |
810 | xorl %r8d, %eax |
811 | subl %r8d, %eax |
812 | # endif |
813 | L(ret6): |
814 | ret |
815 | |
816 | # ifndef USE_AS_STRNCMP |
817 | .p2align 4,, 10 |
818 | L(return_vec_1_end): |
819 | bsf %VRCX, %VRCX |
820 | # ifdef USE_AS_WCSCMP |
821 | movl VEC_SIZE(%rdi, %rcx, SIZE_OF_CHAR), %edx |
822 | xorl %eax, %eax |
823 | cmpl VEC_SIZE(%rsi, %rcx, SIZE_OF_CHAR), %edx |
824 | je L(ret7) |
825 | setl %al |
826 | negl %eax |
827 | xorl %r8d, %eax |
828 | # else |
829 | movzbl VEC_SIZE(%rdi, %rcx), %eax |
830 | movzbl VEC_SIZE(%rsi, %rcx), %ecx |
831 | TOLOWER_gpr (%rax, %eax) |
832 | TOLOWER_gpr (%rcx, %ecx) |
833 | subl %ecx, %eax |
834 | xorl %r8d, %eax |
835 | subl %r8d, %eax |
836 | # endif |
837 | L(ret7): |
838 | ret |
839 | # endif |
840 | |
841 | |
842 | /* If CHAR_PER_VEC == 64 we can't combine matches from the last |
843 | 2x VEC so need separate return label. */ |
844 | # if CHAR_PER_VEC == 64 |
845 | L(return_vec_2_end): |
846 | bsf %VRCX, %VRCX |
847 | # ifdef USE_AS_STRNCMP |
848 | cmpq %rcx, %rdx |
849 | jbe L(ret_zero_end) |
850 | # endif |
851 | # ifdef USE_AS_WCSCMP |
852 | movl (VEC_SIZE * 2)(%rdi, %rcx, SIZE_OF_CHAR), %edx |
853 | xorl %eax, %eax |
854 | cmpl (VEC_SIZE * 2)(%rsi, %rcx, SIZE_OF_CHAR), %edx |
855 | je L(ret31) |
856 | setl %al |
857 | negl %eax |
858 | /* This is the non-zero case for `eax` so just xorl with `r8d` |
859 | flip is `rdi` and `rsi` where swapped. */ |
860 | xorl %r8d, %eax |
861 | # else |
862 | movzbl (VEC_SIZE * 2)(%rdi, %rcx), %eax |
863 | movzbl (VEC_SIZE * 2)(%rsi, %rcx), %ecx |
864 | TOLOWER_gpr (%rax, %eax) |
865 | TOLOWER_gpr (%rcx, %ecx) |
866 | subl %ecx, %eax |
867 | /* Flip `eax` if `rdi` and `rsi` where swapped in page cross |
868 | logic. Subtract `r8d` after xor for zero case. */ |
869 | xorl %r8d, %eax |
870 | subl %r8d, %eax |
871 | # endif |
872 | L(ret13): |
873 | ret |
874 | # endif |
875 | |
876 | |
877 | /* Page cross in rsi in next 4x VEC. */ |
878 | |
879 | /* TODO: Improve logic here. */ |
880 | .p2align 4,, 10 |
881 | L(page_cross_during_loop): |
882 | /* eax contains [distance_from_page - (VEC_SIZE * 4)]. */ |
883 | |
884 | /* Optimistically rsi and rdi and both aligned in which case we |
885 | don't need any logic here. */ |
886 | cmpl $-(VEC_SIZE * 4), %eax |
887 | /* Don't adjust eax before jumping back to loop and we will |
888 | never hit page cross case again. */ |
889 | je L(loop_skip_page_cross_check) |
890 | |
891 | /* Check if we can safely load a VEC. */ |
892 | cmpl $-(VEC_SIZE * 3), %eax |
893 | jle L(less_1x_vec_till_page_cross) |
894 | |
895 | VMOVA (%rdi), %VMM(0) |
896 | VPTESTM %VMM(0), %VMM(0), %k2 |
897 | CMP_R1_S2_VMM (%VMM(0), (%rsi), %VMM(1), %k1){%k2} |
898 | KMOV %k1, %VRCX |
899 | TESTEQ %VRCX |
900 | jnz L(return_vec_0_end) |
901 | |
902 | /* if distance >= 2x VEC then eax > -(VEC_SIZE * 2). */ |
903 | cmpl $-(VEC_SIZE * 2), %eax |
904 | jg L(more_2x_vec_till_page_cross) |
905 | |
906 | .p2align 4,, 4 |
907 | L(less_1x_vec_till_page_cross): |
908 | subl $-(VEC_SIZE * 4), %eax |
909 | /* Guaranteed safe to read from rdi - VEC_SIZE here. The only |
910 | concerning case is first iteration if incoming s1 was near start |
911 | of a page and s2 near end. If s1 was near the start of the page |
912 | we already aligned up to nearest VEC_SIZE * 4 so gurnateed safe |
913 | to read back -VEC_SIZE. If rdi is truly at the start of a page |
914 | here, it means the previous page (rdi - VEC_SIZE) has already |
915 | been loaded earlier so must be valid. */ |
916 | VMOVU -VEC_SIZE(%rdi, %rax), %VMM(0) |
917 | VPTESTM %VMM(0), %VMM(0), %k2 |
918 | CMP_R1_S2_VMM (%VMM(0), -VEC_SIZE(%rsi, %rax), %VMM(1), %k1){%k2} |
919 | /* Mask of potentially valid bits. The lower bits can be out of |
920 | range comparisons (but safe regarding page crosses). */ |
921 | |
922 | # ifdef USE_AS_WCSCMP |
923 | movl $-1, %r10d |
924 | movl %esi, %ecx |
925 | andl $(VEC_SIZE - 1), %ecx |
926 | shrl $2, %ecx |
927 | shlxl %ecx, %r10d, %ecx |
928 | /* Depending on CHAR_PER_VEC extract mask for possible in-bound |
929 | matches. */ |
930 | # if CHAR_PER_VEC == 16 |
931 | movzwl %cx, %r10d |
932 | # elif CHAR_PER_VEC == 8 |
933 | movzbl %cl, %r10d |
934 | # else |
935 | # error "Invalid CHAR_SIZE or VEC_SIZE" |
936 | # endif |
937 | # else |
938 | mov $-1, %VRCX |
939 | shlx %VRSI, %VRCX, %VR10 |
940 | # endif |
941 | |
942 | KMOV %k1, %VRCX |
943 | not %VRCX |
944 | |
945 | |
946 | # ifdef USE_AS_STRNCMP |
947 | # ifdef USE_AS_WCSCMP |
948 | /* NB: strcasecmp not used with WCSCMP so this access to r11 is |
949 | safe. */ |
950 | movl %eax, %r11d |
951 | shrl $2, %r11d |
952 | cmpq %r11, %rdx |
953 | # else |
954 | cmpq %rax, %rdx |
955 | # endif |
956 | jbe L(return_page_cross_end_check) |
957 | # endif |
958 | movl %eax, %OFFSET_REG |
959 | |
960 | /* Readjust eax before potentially returning to the loop. */ |
961 | addl $(PAGE_SIZE - VEC_SIZE * 4), %eax |
962 | |
963 | and %VR10, %VRCX |
964 | jz L(loop_skip_page_cross_check) |
965 | |
966 | bsf %VRCX, %VRCX |
967 | |
968 | # if (defined USE_AS_STRNCMP) || (defined USE_AS_WCSCMP) |
969 | leal -VEC_SIZE(%OFFSET_REG64, %rcx, SIZE_OF_CHAR), %ecx |
970 | L(return_page_cross_cmp_mem): |
971 | # else |
972 | addl %OFFSET_REG, %ecx |
973 | # endif |
974 | # ifdef USE_AS_WCSCMP |
975 | movl VEC_OFFSET(%rdi, %rcx), %edx |
976 | xorl %eax, %eax |
977 | cmpl VEC_OFFSET(%rsi, %rcx), %edx |
978 | je L(ret8) |
979 | setl %al |
980 | negl %eax |
981 | xorl %r8d, %eax |
982 | # else |
983 | movzbl VEC_OFFSET(%rdi, %rcx), %eax |
984 | movzbl VEC_OFFSET(%rsi, %rcx), %ecx |
985 | TOLOWER_gpr (%rax, %eax) |
986 | TOLOWER_gpr (%rcx, %ecx) |
987 | subl %ecx, %eax |
988 | xorl %r8d, %eax |
989 | subl %r8d, %eax |
990 | # endif |
991 | L(ret8): |
992 | ret |
993 | |
994 | # ifdef USE_AS_STRNCMP |
995 | .p2align 4,, 10 |
996 | L(return_page_cross_end_check): |
997 | and %VR10, %VRCX |
998 | /* Need to use tzcnt here as VRCX may be zero. If VRCX is zero |
999 | tzcnt(VRCX) will be CHAR_PER and remaining length (edx) is |
1000 | guaranteed to be <= CHAR_PER_VEC so we will only use the return |
1001 | idx if VRCX was non-zero. */ |
1002 | tzcnt %VRCX, %VRCX |
1003 | leal -VEC_SIZE(%rax, %rcx, SIZE_OF_CHAR), %ecx |
1004 | # ifdef USE_AS_WCSCMP |
1005 | sall $2, %edx |
1006 | # endif |
1007 | cmpl %ecx, %edx |
1008 | ja L(return_page_cross_cmp_mem) |
1009 | xorl %eax, %eax |
1010 | ret |
1011 | # endif |
1012 | |
1013 | |
1014 | .p2align 4,, 10 |
1015 | L(more_2x_vec_till_page_cross): |
1016 | /* If more 2x vec till cross we will complete a full loop |
1017 | iteration here. */ |
1018 | |
1019 | VMOVA VEC_SIZE(%rdi), %VMM(0) |
1020 | VPTESTM %VMM(0), %VMM(0), %k2 |
1021 | CMP_R1_S2_VMM (%VMM(0), VEC_SIZE(%rsi), %VMM(1), %k1){%k2} |
1022 | KMOV %k1, %VRCX |
1023 | TESTEQ %VRCX |
1024 | jnz L(return_vec_1_end) |
1025 | |
1026 | # ifdef USE_AS_STRNCMP |
1027 | cmpq $(CHAR_PER_VEC * 2), %rdx |
1028 | jbe L(ret_zero_in_loop_page_cross) |
1029 | # endif |
1030 | |
1031 | subl $-(VEC_SIZE * 4), %eax |
1032 | |
1033 | /* Safe to include comparisons from lower bytes. */ |
1034 | VMOVU -(VEC_SIZE * 2)(%rdi, %rax), %VMM(0) |
1035 | VPTESTM %VMM(0), %VMM(0), %k2 |
1036 | CMP_R1_S2_VMM (%VMM(0), -(VEC_SIZE * 2)(%rsi, %rax), %VMM(1), %k1){%k2} |
1037 | KMOV %k1, %VRCX |
1038 | TESTEQ %VRCX |
1039 | jnz L(return_vec_page_cross_0) |
1040 | |
1041 | VMOVU -(VEC_SIZE * 1)(%rdi, %rax), %VMM(0) |
1042 | VPTESTM %VMM(0), %VMM(0), %k2 |
1043 | CMP_R1_S2_VMM (%VMM(0), -(VEC_SIZE * 1)(%rsi, %rax), %VMM(1), %k1){%k2} |
1044 | KMOV %k1, %VRCX |
1045 | TESTEQ %VRCX |
1046 | jnz L(return_vec_page_cross_1) |
1047 | |
1048 | # ifdef USE_AS_STRNCMP |
1049 | /* Must check length here as length might proclude reading next |
1050 | page. */ |
1051 | # ifdef USE_AS_WCSCMP |
1052 | /* NB: strcasecmp not used with WCSCMP so this access to r11 is |
1053 | safe. */ |
1054 | movl %eax, %r11d |
1055 | shrl $2, %r11d |
1056 | cmpq %r11, %rdx |
1057 | # else |
1058 | cmpq %rax, %rdx |
1059 | # endif |
1060 | jbe L(ret_zero_in_loop_page_cross) |
1061 | # endif |
1062 | |
1063 | /* Finish the loop. */ |
1064 | VMOVA (VEC_SIZE * 2)(%rdi), %VMM(4) |
1065 | VMOVA (VEC_SIZE * 3)(%rdi), %VMM(6) |
1066 | VPMINU %VMM(4), %VMM(6), %VMM(9) |
1067 | VPTESTM %VMM(9), %VMM(9), %k1 |
1068 | # ifndef USE_AS_STRCASECMP_L |
1069 | vpxorq (VEC_SIZE * 2)(%rsi), %VMM(4), %VMM(5) |
1070 | /* YMM6 = YMM5 | ((VEC_SIZE * 3)(%rsi) ^ YMM6). */ |
1071 | vpternlogd $0xde, (VEC_SIZE * 3)(%rsi), %VMM(5), %VMM(6) |
1072 | # else |
1073 | VMOVU (VEC_SIZE * 2)(%rsi), %VMM(5) |
1074 | TOLOWER_VMM (%VMM(4), %VMM(5)) |
1075 | VMOVU (VEC_SIZE * 3)(%rsi), %VMM(7) |
1076 | TOLOWER_VMM (%VMM(6), %VMM(7)) |
1077 | vpxorq %VMM(4), %VMM(5), %VMM(5) |
1078 | vpternlogd $0xde, %VMM(7), %VMM(5), %VMM(6) |
1079 | # endif |
1080 | VPTESTNM %VMM(6), %VMM(6), %k0{%k1} |
1081 | KMOV %k0, %LOOP_REG |
1082 | TESTEQ %LOOP_REG |
1083 | jnz L(return_vec_2_3_end) |
1084 | |
1085 | /* Best for code size to include ucond-jmp here. Would be faster |
1086 | if this case is hot to duplicate the L(return_vec_2_3_end) |
1087 | code as fall-through and have jump back to loop on mismatch |
1088 | comparison. */ |
1089 | subq $-(VEC_SIZE * 4), %rdi |
1090 | subq $-(VEC_SIZE * 4), %rsi |
1091 | addl $(PAGE_SIZE - VEC_SIZE * 8), %eax |
1092 | # ifdef USE_AS_STRNCMP |
1093 | subq $(CHAR_PER_VEC * 4), %rdx |
1094 | ja L(loop_skip_page_cross_check) |
1095 | L(ret_zero_in_loop_page_cross): |
1096 | xorl %eax, %eax |
1097 | ret |
1098 | # else |
1099 | jmp L(loop_skip_page_cross_check) |
1100 | # endif |
1101 | |
1102 | |
1103 | .p2align 4,, 10 |
1104 | L(return_vec_page_cross_0): |
1105 | addl $-VEC_SIZE, %eax |
1106 | L(return_vec_page_cross_1): |
1107 | bsf %VRCX, %VRCX |
1108 | # if defined USE_AS_STRNCMP || defined USE_AS_WCSCMP |
1109 | leal -VEC_SIZE(%rax, %rcx, SIZE_OF_CHAR), %ecx |
1110 | # ifdef USE_AS_STRNCMP |
1111 | # ifdef USE_AS_WCSCMP |
1112 | /* Must divide ecx instead of multiply rdx due to overflow. */ |
1113 | movl %ecx, %eax |
1114 | shrl $2, %eax |
1115 | cmpq %rax, %rdx |
1116 | # else |
1117 | cmpq %rcx, %rdx |
1118 | # endif |
1119 | jbe L(ret_zero_in_loop_page_cross) |
1120 | # endif |
1121 | # else |
1122 | addl %eax, %ecx |
1123 | # endif |
1124 | |
1125 | # ifdef USE_AS_WCSCMP |
1126 | movl VEC_OFFSET(%rdi, %rcx), %edx |
1127 | xorl %eax, %eax |
1128 | cmpl VEC_OFFSET(%rsi, %rcx), %edx |
1129 | je L(ret9) |
1130 | setl %al |
1131 | negl %eax |
1132 | xorl %r8d, %eax |
1133 | # else |
1134 | movzbl VEC_OFFSET(%rdi, %rcx), %eax |
1135 | movzbl VEC_OFFSET(%rsi, %rcx), %ecx |
1136 | TOLOWER_gpr (%rax, %eax) |
1137 | TOLOWER_gpr (%rcx, %ecx) |
1138 | subl %ecx, %eax |
1139 | xorl %r8d, %eax |
1140 | subl %r8d, %eax |
1141 | # endif |
1142 | L(ret9): |
1143 | ret |
1144 | |
1145 | |
1146 | .p2align 4,, 10 |
1147 | L(page_cross): |
1148 | # ifndef USE_AS_STRNCMP |
1149 | /* If both are VEC aligned we don't need any special logic here. |
1150 | Only valid for strcmp where stop condition is guaranteed to |
1151 | be reachable by just reading memory. */ |
1152 | testl $((VEC_SIZE - 1) << 20), %eax |
1153 | jz L(no_page_cross) |
1154 | # endif |
1155 | |
1156 | movl %edi, %eax |
1157 | movl %esi, %ecx |
1158 | andl $(PAGE_SIZE - 1), %eax |
1159 | andl $(PAGE_SIZE - 1), %ecx |
1160 | |
1161 | xorl %OFFSET_REG, %OFFSET_REG |
1162 | |
1163 | /* Check which is closer to page cross, s1 or s2. */ |
1164 | cmpl %eax, %ecx |
1165 | jg L(page_cross_s2) |
1166 | |
1167 | /* The previous page cross check has false positives. Check for |
1168 | true positive as page cross logic is very expensive. */ |
1169 | subl $(PAGE_SIZE - VEC_SIZE * 4), %eax |
1170 | jbe L(no_page_cross) |
1171 | |
1172 | |
1173 | /* Set r8 to not interfere with normal return value (rdi and rsi |
1174 | did not swap). */ |
1175 | # ifdef USE_AS_WCSCMP |
1176 | /* any non-zero positive value that doesn't inference with 0x1. |
1177 | */ |
1178 | movl $2, %r8d |
1179 | # else |
1180 | xorl %r8d, %r8d |
1181 | # endif |
1182 | |
1183 | /* Check if less than 1x VEC till page cross. */ |
1184 | subl $(VEC_SIZE * 3), %eax |
1185 | jg L(less_1x_vec_till_page) |
1186 | |
1187 | |
1188 | /* If more than 1x VEC till page cross, loop through safely |
1189 | loadable memory until within 1x VEC of page cross. */ |
1190 | .p2align 4,, 8 |
1191 | L(page_cross_loop): |
1192 | VMOVU (%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %VMM(0) |
1193 | VPTESTM %VMM(0), %VMM(0), %k2 |
1194 | CMP_R1_S2_VMM (%VMM(0), (%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %VMM(1), %k1){%k2} |
1195 | KMOV %k1, %VRCX |
1196 | TESTEQ %VRCX |
1197 | jnz L(check_ret_vec_page_cross) |
1198 | addl $CHAR_PER_VEC, %OFFSET_REG |
1199 | # ifdef USE_AS_STRNCMP |
1200 | cmpq %OFFSET_REG64, %rdx |
1201 | jbe L(ret_zero_page_cross) |
1202 | # endif |
1203 | addl $VEC_SIZE, %eax |
1204 | jl L(page_cross_loop) |
1205 | |
1206 | # ifdef USE_AS_WCSCMP |
1207 | shrl $2, %eax |
1208 | # endif |
1209 | |
1210 | |
1211 | subl %eax, %OFFSET_REG |
1212 | /* OFFSET_REG has distance to page cross - VEC_SIZE. Guaranteed |
1213 | to not cross page so is safe to load. Since we have already |
1214 | loaded at least 1 VEC from rsi it is also guaranteed to be |
1215 | safe. */ |
1216 | VMOVU (%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %VMM(0) |
1217 | VPTESTM %VMM(0), %VMM(0), %k2 |
1218 | CMP_R1_S2_VMM (%VMM(0), (%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %VMM(1), %k1){%k2} |
1219 | |
1220 | KMOV %k1, %VRCX |
1221 | # ifdef USE_AS_STRNCMP |
1222 | leal CHAR_PER_VEC(%OFFSET_REG64), %eax |
1223 | cmpq %rax, %rdx |
1224 | jbe L(check_ret_vec_page_cross2) |
1225 | # ifdef USE_AS_WCSCMP |
1226 | addq $-(CHAR_PER_VEC * 2), %rdx |
1227 | # else |
1228 | addq %rdi, %rdx |
1229 | # endif |
1230 | # endif |
1231 | TESTEQ %VRCX |
1232 | jz L(prepare_loop_no_len) |
1233 | |
1234 | .p2align 4,, 4 |
1235 | L(ret_vec_page_cross): |
1236 | # ifndef USE_AS_STRNCMP |
1237 | L(check_ret_vec_page_cross): |
1238 | # endif |
1239 | tzcnt %VRCX, %VRCX |
1240 | addl %OFFSET_REG, %ecx |
1241 | L(ret_vec_page_cross_cont): |
1242 | # ifdef USE_AS_WCSCMP |
1243 | movl (%rdi, %rcx, SIZE_OF_CHAR), %edx |
1244 | xorl %eax, %eax |
1245 | cmpl (%rsi, %rcx, SIZE_OF_CHAR), %edx |
1246 | je L(ret12) |
1247 | setl %al |
1248 | negl %eax |
1249 | xorl %r8d, %eax |
1250 | # else |
1251 | movzbl (%rdi, %rcx, SIZE_OF_CHAR), %eax |
1252 | movzbl (%rsi, %rcx, SIZE_OF_CHAR), %ecx |
1253 | TOLOWER_gpr (%rax, %eax) |
1254 | TOLOWER_gpr (%rcx, %ecx) |
1255 | subl %ecx, %eax |
1256 | xorl %r8d, %eax |
1257 | subl %r8d, %eax |
1258 | # endif |
1259 | L(ret12): |
1260 | ret |
1261 | |
1262 | |
1263 | # ifdef USE_AS_STRNCMP |
1264 | .p2align 4,, 10 |
1265 | L(check_ret_vec_page_cross2): |
1266 | TESTEQ %VRCX |
1267 | L(check_ret_vec_page_cross): |
1268 | tzcnt %VRCX, %VRCX |
1269 | addl %OFFSET_REG, %ecx |
1270 | cmpq %rcx, %rdx |
1271 | ja L(ret_vec_page_cross_cont) |
1272 | .p2align 4,, 2 |
1273 | L(ret_zero_page_cross): |
1274 | xorl %eax, %eax |
1275 | ret |
1276 | # endif |
1277 | |
1278 | .p2align 4,, 4 |
1279 | L(page_cross_s2): |
1280 | /* Ensure this is a true page cross. */ |
1281 | subl $(PAGE_SIZE - VEC_SIZE * 4), %ecx |
1282 | jbe L(no_page_cross) |
1283 | |
1284 | |
1285 | movl %ecx, %eax |
1286 | movq %rdi, %rcx |
1287 | movq %rsi, %rdi |
1288 | movq %rcx, %rsi |
1289 | |
1290 | /* set r8 to negate return value as rdi and rsi swapped. */ |
1291 | # ifdef USE_AS_WCSCMP |
1292 | movl $-4, %r8d |
1293 | # else |
1294 | movl $-1, %r8d |
1295 | # endif |
1296 | xorl %OFFSET_REG, %OFFSET_REG |
1297 | |
1298 | /* Check if more than 1x VEC till page cross. */ |
1299 | subl $(VEC_SIZE * 3), %eax |
1300 | jle L(page_cross_loop) |
1301 | |
1302 | .p2align 4,, 6 |
1303 | L(less_1x_vec_till_page): |
1304 | # ifdef USE_AS_WCSCMP |
1305 | shrl $2, %eax |
1306 | # endif |
1307 | |
1308 | /* Find largest load size we can use. VEC_SIZE == 64 only check |
1309 | if we can do a full ymm load. */ |
1310 | # if VEC_SIZE == 64 |
1311 | |
1312 | cmpl $((VEC_SIZE - 32) / SIZE_OF_CHAR), %eax |
1313 | ja L(less_32_till_page) |
1314 | |
1315 | |
1316 | /* Use 16 byte comparison. */ |
1317 | VMOVU (%rdi), %VMM_256(0) |
1318 | VPTESTM %VMM_256(0), %VMM_256(0), %k2 |
1319 | CMP_R1_S2_YMM (%VMM_256(0), (%rsi), %VMM_256(1), %k1){%k2} |
1320 | kmovd %k1, %ecx |
1321 | # ifdef USE_AS_WCSCMP |
1322 | subl $0xff, %ecx |
1323 | # else |
1324 | incl %ecx |
1325 | # endif |
1326 | jnz L(check_ret_vec_page_cross) |
1327 | movl $((VEC_SIZE - 32) / SIZE_OF_CHAR), %OFFSET_REG |
1328 | # ifdef USE_AS_STRNCMP |
1329 | cmpq %OFFSET_REG64, %rdx |
1330 | jbe L(ret_zero_page_cross_slow_case64) |
1331 | subl %eax, %OFFSET_REG |
1332 | # else |
1333 | /* Explicit check for 32 byte alignment. */ |
1334 | subl %eax, %OFFSET_REG |
1335 | jz L(prepare_loop) |
1336 | # endif |
1337 | VMOVU (%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %VMM_256(0) |
1338 | VPTESTM %VMM_256(0), %VMM_256(0), %k2 |
1339 | CMP_R1_S2_YMM (%VMM_256(0), (%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %VMM_256(1), %k1){%k2} |
1340 | kmovd %k1, %ecx |
1341 | # ifdef USE_AS_WCSCMP |
1342 | subl $0xff, %ecx |
1343 | # else |
1344 | incl %ecx |
1345 | # endif |
1346 | jnz L(check_ret_vec_page_cross) |
1347 | # ifdef USE_AS_STRNCMP |
1348 | addl $(32 / SIZE_OF_CHAR), %OFFSET_REG |
1349 | subq %OFFSET_REG64, %rdx |
1350 | jbe L(ret_zero_page_cross_slow_case64) |
1351 | subq $-(CHAR_PER_VEC * 4), %rdx |
1352 | |
1353 | leaq -(VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1354 | leaq -(VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1355 | # else |
1356 | leaq (32 - VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1357 | leaq (32 - VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1358 | # endif |
1359 | jmp L(prepare_loop_aligned) |
1360 | |
1361 | # ifdef USE_AS_STRNCMP |
1362 | .p2align 4,, 2 |
1363 | L(ret_zero_page_cross_slow_case64): |
1364 | xorl %eax, %eax |
1365 | ret |
1366 | # endif |
1367 | L(less_32_till_page): |
1368 | # endif |
1369 | |
1370 | /* Find largest load size we can use. */ |
1371 | cmpl $((VEC_SIZE - 16) / SIZE_OF_CHAR), %eax |
1372 | ja L(less_16_till_page) |
1373 | |
1374 | /* Use 16 byte comparison. */ |
1375 | vmovdqu (%rdi), %xmm0 |
1376 | VPTESTM %xmm0, %xmm0, %k2 |
1377 | CMP_R1_S2_XMM (%xmm0, (%rsi), %xmm1, %k1){%k2} |
1378 | kmovd %k1, %ecx |
1379 | # ifdef USE_AS_WCSCMP |
1380 | subl $0xf, %ecx |
1381 | # else |
1382 | incw %cx |
1383 | # endif |
1384 | jnz L(check_ret_vec_page_cross) |
1385 | |
1386 | movl $((VEC_SIZE - 16) / SIZE_OF_CHAR), %OFFSET_REG |
1387 | # ifdef USE_AS_STRNCMP |
1388 | # if VEC_SIZE == 32 |
1389 | cmpq %OFFSET_REG64, %rdx |
1390 | # else |
1391 | cmpq $(16 / SIZE_OF_CHAR), %rdx |
1392 | # endif |
1393 | jbe L(ret_zero_page_cross_slow_case0) |
1394 | subl %eax, %OFFSET_REG |
1395 | # else |
1396 | /* Explicit check for 16 byte alignment. */ |
1397 | subl %eax, %OFFSET_REG |
1398 | jz L(prepare_loop) |
1399 | # endif |
1400 | vmovdqu (%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %xmm0 |
1401 | VPTESTM %xmm0, %xmm0, %k2 |
1402 | CMP_R1_S2_XMM (%xmm0, (%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %xmm1, %k1){%k2} |
1403 | kmovd %k1, %ecx |
1404 | # ifdef USE_AS_WCSCMP |
1405 | subl $0xf, %ecx |
1406 | # else |
1407 | incw %cx |
1408 | # endif |
1409 | jnz L(check_ret_vec_page_cross) |
1410 | # ifdef USE_AS_STRNCMP |
1411 | addl $(16 / SIZE_OF_CHAR), %OFFSET_REG |
1412 | subq %OFFSET_REG64, %rdx |
1413 | jbe L(ret_zero_page_cross_slow_case0) |
1414 | subq $-(CHAR_PER_VEC * 4), %rdx |
1415 | |
1416 | leaq -(VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1417 | leaq -(VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1418 | # else |
1419 | leaq (16 - VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1420 | leaq (16 - VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1421 | # endif |
1422 | jmp L(prepare_loop_aligned) |
1423 | |
1424 | # ifdef USE_AS_STRNCMP |
1425 | .p2align 4,, 2 |
1426 | L(ret_zero_page_cross_slow_case0): |
1427 | xorl %eax, %eax |
1428 | ret |
1429 | # endif |
1430 | |
1431 | |
1432 | .p2align 4,, 10 |
1433 | L(less_16_till_page): |
1434 | cmpl $((VEC_SIZE - 8) / SIZE_OF_CHAR), %eax |
1435 | ja L(less_8_till_page) |
1436 | |
1437 | /* Use 8 byte comparison. */ |
1438 | vmovq (%rdi), %xmm0 |
1439 | vmovq (%rsi), %xmm1 |
1440 | VPTESTM %xmm0, %xmm0, %k2 |
1441 | CMP_R1_R2_XMM (%xmm0, %xmm1, %k1){%k2} |
1442 | kmovd %k1, %ecx |
1443 | # ifdef USE_AS_WCSCMP |
1444 | subl $0x3, %ecx |
1445 | # else |
1446 | incb %cl |
1447 | # endif |
1448 | jnz L(check_ret_vec_page_cross) |
1449 | |
1450 | |
1451 | # ifdef USE_AS_STRNCMP |
1452 | cmpq $(8 / SIZE_OF_CHAR), %rdx |
1453 | jbe L(ret_zero_page_cross_slow_case0) |
1454 | # endif |
1455 | movl $((VEC_SIZE - 8) / SIZE_OF_CHAR), %OFFSET_REG |
1456 | subl %eax, %OFFSET_REG |
1457 | |
1458 | vmovq (%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %xmm0 |
1459 | vmovq (%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %xmm1 |
1460 | VPTESTM %xmm0, %xmm0, %k2 |
1461 | CMP_R1_R2_XMM (%xmm0, %xmm1, %k1){%k2} |
1462 | kmovd %k1, %ecx |
1463 | # ifdef USE_AS_WCSCMP |
1464 | subl $0x3, %ecx |
1465 | # else |
1466 | incb %cl |
1467 | # endif |
1468 | jnz L(check_ret_vec_page_cross) |
1469 | |
1470 | |
1471 | # ifdef USE_AS_STRNCMP |
1472 | addl $(8 / SIZE_OF_CHAR), %OFFSET_REG |
1473 | subq %OFFSET_REG64, %rdx |
1474 | jbe L(ret_zero_page_cross_slow_case0) |
1475 | subq $-(CHAR_PER_VEC * 4), %rdx |
1476 | |
1477 | leaq -(VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1478 | leaq -(VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1479 | # else |
1480 | leaq (8 - VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1481 | leaq (8 - VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1482 | # endif |
1483 | jmp L(prepare_loop_aligned) |
1484 | |
1485 | |
1486 | |
1487 | |
1488 | .p2align 4,, 10 |
1489 | L(less_8_till_page): |
1490 | # ifdef USE_AS_WCSCMP |
1491 | /* If using wchar then this is the only check before we reach |
1492 | the page boundary. */ |
1493 | movl (%rdi), %eax |
1494 | movl (%rsi), %ecx |
1495 | cmpl %ecx, %eax |
1496 | jnz L(ret_less_8_wcs) |
1497 | # ifdef USE_AS_STRNCMP |
1498 | addq $-(CHAR_PER_VEC * 2), %rdx |
1499 | /* We already checked for len <= 1 so cannot hit that case here. |
1500 | */ |
1501 | # endif |
1502 | testl %eax, %eax |
1503 | jnz L(prepare_loop) |
1504 | ret |
1505 | |
1506 | .p2align 4,, 8 |
1507 | L(ret_less_8_wcs): |
1508 | setl %OFFSET_REG8 |
1509 | negl %OFFSET_REG |
1510 | movl %OFFSET_REG, %eax |
1511 | xorl %r8d, %eax |
1512 | ret |
1513 | |
1514 | # else |
1515 | cmpl $(VEC_SIZE - 4), %eax |
1516 | ja L(less_4_till_page) |
1517 | |
1518 | vmovd (%rdi), %xmm0 |
1519 | vmovd (%rsi), %xmm1 |
1520 | VPTESTM %xmm0, %xmm0, %k2 |
1521 | CMP_R1_R2_XMM (%xmm0, %xmm1, %k1){%k2} |
1522 | kmovd %k1, %ecx |
1523 | subl $0xf, %ecx |
1524 | jnz L(check_ret_vec_page_cross) |
1525 | |
1526 | # ifdef USE_AS_STRNCMP |
1527 | cmpq $4, %rdx |
1528 | jbe L(ret_zero_page_cross_slow_case1) |
1529 | # endif |
1530 | movl $((VEC_SIZE - 4) / SIZE_OF_CHAR), %OFFSET_REG |
1531 | subl %eax, %OFFSET_REG |
1532 | |
1533 | vmovd (%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %xmm0 |
1534 | vmovd (%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %xmm1 |
1535 | VPTESTM %xmm0, %xmm0, %k2 |
1536 | CMP_R1_R2_XMM (%xmm0, %xmm1, %k1){%k2} |
1537 | kmovd %k1, %ecx |
1538 | subl $0xf, %ecx |
1539 | jnz L(check_ret_vec_page_cross) |
1540 | # ifdef USE_AS_STRNCMP |
1541 | addl $(4 / SIZE_OF_CHAR), %OFFSET_REG |
1542 | subq %OFFSET_REG64, %rdx |
1543 | jbe L(ret_zero_page_cross_slow_case1) |
1544 | subq $-(CHAR_PER_VEC * 4), %rdx |
1545 | |
1546 | leaq -(VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1547 | leaq -(VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1548 | # else |
1549 | leaq (4 - VEC_SIZE * 4)(%rdi, %OFFSET_REG64, SIZE_OF_CHAR), %rdi |
1550 | leaq (4 - VEC_SIZE * 4)(%rsi, %OFFSET_REG64, SIZE_OF_CHAR), %rsi |
1551 | # endif |
1552 | jmp L(prepare_loop_aligned) |
1553 | |
1554 | |
1555 | # ifdef USE_AS_STRNCMP |
1556 | .p2align 4,, 2 |
1557 | L(ret_zero_page_cross_slow_case1): |
1558 | xorl %eax, %eax |
1559 | ret |
1560 | # endif |
1561 | |
1562 | .p2align 4,, 10 |
1563 | L(less_4_till_page): |
1564 | subq %rdi, %rsi |
1565 | /* Extremely slow byte comparison loop. */ |
1566 | L(less_4_loop): |
1567 | movzbl (%rdi), %eax |
1568 | movzbl (%rsi, %rdi), %ecx |
1569 | TOLOWER_gpr (%rax, %eax) |
1570 | TOLOWER_gpr (%rcx, %BYTE_LOOP_REG) |
1571 | subl %BYTE_LOOP_REG, %eax |
1572 | jnz L(ret_less_4_loop) |
1573 | testl %ecx, %ecx |
1574 | jz L(ret_zero_4_loop) |
1575 | # ifdef USE_AS_STRNCMP |
1576 | decq %rdx |
1577 | jz L(ret_zero_4_loop) |
1578 | # endif |
1579 | incq %rdi |
1580 | /* end condition is reach page boundary (rdi is aligned). */ |
1581 | testb $(VEC_SIZE - 1), %dil |
1582 | jnz L(less_4_loop) |
1583 | leaq -(VEC_SIZE * 4)(%rdi, %rsi), %rsi |
1584 | addq $-(VEC_SIZE * 4), %rdi |
1585 | # ifdef USE_AS_STRNCMP |
1586 | subq $-(CHAR_PER_VEC * 4), %rdx |
1587 | # endif |
1588 | jmp L(prepare_loop_aligned) |
1589 | |
1590 | L(ret_zero_4_loop): |
1591 | xorl %eax, %eax |
1592 | ret |
1593 | L(ret_less_4_loop): |
1594 | xorl %r8d, %eax |
1595 | subl %r8d, %eax |
1596 | ret |
1597 | # endif |
1598 | cfi_endproc |
1599 | .size STRCMP, .-STRCMP |
1600 | #endif |
1601 | |