| 1 | /* strchr/strchrnul optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | |
| 21 | #if ISA_SHOULD_BUILD (4) |
| 22 | |
| 23 | # include <sysdep.h> |
| 24 | |
| 25 | # ifndef STRCHR |
| 26 | # define STRCHR __strchr_evex |
| 27 | # endif |
| 28 | |
| 29 | # ifndef VEC_SIZE |
| 30 | # include "x86-evex256-vecs.h" |
| 31 | # endif |
| 32 | |
| 33 | # ifdef USE_AS_WCSCHR |
| 34 | # define VPBROADCAST vpbroadcastd |
| 35 | # define VPCMP vpcmpd |
| 36 | # define VPCMPEQ vpcmpeqd |
| 37 | # define VPTESTN vptestnmd |
| 38 | # define VPTEST vptestmd |
| 39 | # define VPMINU vpminud |
| 40 | # define CHAR_REG esi |
| 41 | # define SHIFT_REG rcx |
| 42 | # define CHAR_SIZE 4 |
| 43 | |
| 44 | # define USE_WIDE_CHAR |
| 45 | # else |
| 46 | # define VPBROADCAST vpbroadcastb |
| 47 | # define VPCMP vpcmpb |
| 48 | # define VPCMPEQ vpcmpeqb |
| 49 | # define VPTESTN vptestnmb |
| 50 | # define VPTEST vptestmb |
| 51 | # define VPMINU vpminub |
| 52 | # define CHAR_REG sil |
| 53 | # define SHIFT_REG rdi |
| 54 | # define CHAR_SIZE 1 |
| 55 | # endif |
| 56 | |
| 57 | # include "reg-macros.h" |
| 58 | |
| 59 | # if VEC_SIZE == 64 |
| 60 | # define MASK_GPR rcx |
| 61 | # define LOOP_REG rax |
| 62 | |
| 63 | # define COND_MASK(k_reg) {%k_reg} |
| 64 | # else |
| 65 | # define MASK_GPR rax |
| 66 | # define LOOP_REG rdi |
| 67 | |
| 68 | # define COND_MASK(k_reg) |
| 69 | # endif |
| 70 | |
| 71 | # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) |
| 72 | |
| 73 | |
| 74 | # if CHAR_PER_VEC == 64 |
| 75 | # define LAST_VEC_OFFSET (VEC_SIZE * 3) |
| 76 | # define TESTZ(reg) incq %VGPR_SZ(reg, 64) |
| 77 | # else |
| 78 | |
| 79 | # if CHAR_PER_VEC == 32 |
| 80 | # define TESTZ(reg) incl %VGPR_SZ(reg, 32) |
| 81 | # elif CHAR_PER_VEC == 16 |
| 82 | # define TESTZ(reg) incw %VGPR_SZ(reg, 16) |
| 83 | # else |
| 84 | # define TESTZ(reg) incb %VGPR_SZ(reg, 8) |
| 85 | # endif |
| 86 | |
| 87 | # define LAST_VEC_OFFSET (VEC_SIZE * 2) |
| 88 | # endif |
| 89 | |
| 90 | # define VMATCH VMM(0) |
| 91 | |
| 92 | # define PAGE_SIZE 4096 |
| 93 | |
| 94 | .section SECTION(.text), "ax" , @progbits |
| 95 | ENTRY_P2ALIGN (STRCHR, 6) |
| 96 | /* Broadcast CHAR to VEC_0. */ |
| 97 | VPBROADCAST %esi, %VMATCH |
| 98 | movl %edi, %eax |
| 99 | andl $(PAGE_SIZE - 1), %eax |
| 100 | /* Check if we cross page boundary with one vector load. |
| 101 | Otherwise it is safe to use an unaligned load. */ |
| 102 | cmpl $(PAGE_SIZE - VEC_SIZE), %eax |
| 103 | ja L(cross_page_boundary) |
| 104 | |
| 105 | |
| 106 | /* Check the first VEC_SIZE bytes. Search for both CHAR and the |
| 107 | null bytes. */ |
| 108 | VMOVU (%rdi), %VMM(1) |
| 109 | /* Leaves only CHARS matching esi as 0. */ |
| 110 | vpxorq %VMM(1), %VMATCH, %VMM(2) |
| 111 | VPMINU %VMM(2), %VMM(1), %VMM(2) |
| 112 | /* Each bit in K0 represents a CHAR or a null byte in VEC_1. */ |
| 113 | VPTESTN %VMM(2), %VMM(2), %k0 |
| 114 | KMOV %k0, %VRAX |
| 115 | # if VEC_SIZE == 64 && defined USE_AS_STRCHRNUL |
| 116 | /* If VEC_SIZE == 64 && STRCHRNUL use bsf to test condition so |
| 117 | that all logic for match/null in first VEC first in 1x cache |
| 118 | lines. This has a slight cost to larger sizes. */ |
| 119 | bsf %VRAX, %VRAX |
| 120 | jz L(aligned_more) |
| 121 | # else |
| 122 | test %VRAX, %VRAX |
| 123 | jz L(aligned_more) |
| 124 | bsf %VRAX, %VRAX |
| 125 | # endif |
| 126 | # ifndef USE_AS_STRCHRNUL |
| 127 | /* Found CHAR or the null byte. */ |
| 128 | cmp (%rdi, %rax, CHAR_SIZE), %CHAR_REG |
| 129 | /* NB: Use a branch instead of cmovcc here. The expectation is |
| 130 | that with strchr the user will branch based on input being |
| 131 | null. Since this branch will be 100% predictive of the user |
| 132 | branch a branch miss here should save what otherwise would |
| 133 | be branch miss in the user code. Otherwise using a branch 1) |
| 134 | saves code size and 2) is faster in highly predictable |
| 135 | environments. */ |
| 136 | jne L(zero) |
| 137 | # endif |
| 138 | # ifdef USE_AS_WCSCHR |
| 139 | /* NB: Multiply wchar_t count by 4 to get the number of bytes. |
| 140 | */ |
| 141 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 142 | # else |
| 143 | addq %rdi, %rax |
| 144 | # endif |
| 145 | ret |
| 146 | |
| 147 | # ifndef USE_AS_STRCHRNUL |
| 148 | L(zero): |
| 149 | xorl %eax, %eax |
| 150 | ret |
| 151 | # endif |
| 152 | |
| 153 | .p2align 4,, 2 |
| 154 | L(first_vec_x3): |
| 155 | subq $-(VEC_SIZE * 2), %rdi |
| 156 | # if VEC_SIZE == 32 |
| 157 | /* Reuse L(first_vec_x3) for last VEC2 only for VEC_SIZE == 32. |
| 158 | For VEC_SIZE == 64 the registers don't match. */ |
| 159 | L(last_vec_x2): |
| 160 | # endif |
| 161 | L(first_vec_x1): |
| 162 | /* Use bsf here to save 1-byte keeping keeping the block in 1x |
| 163 | fetch block. eax guaranteed non-zero. */ |
| 164 | bsf %VRCX, %VRCX |
| 165 | # ifndef USE_AS_STRCHRNUL |
| 166 | /* Found CHAR or the null byte. */ |
| 167 | cmp (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %CHAR_REG |
| 168 | jne L(zero) |
| 169 | # endif |
| 170 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 171 | bytes. */ |
| 172 | leaq (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %rax |
| 173 | ret |
| 174 | |
| 175 | .p2align 4,, 2 |
| 176 | L(first_vec_x4): |
| 177 | subq $-(VEC_SIZE * 2), %rdi |
| 178 | L(first_vec_x2): |
| 179 | # ifndef USE_AS_STRCHRNUL |
| 180 | /* Check to see if first match was CHAR (k0) or null (k1). */ |
| 181 | KMOV %k0, %VRAX |
| 182 | tzcnt %VRAX, %VRAX |
| 183 | KMOV %k1, %VRCX |
| 184 | /* bzhil will not be 0 if first match was null. */ |
| 185 | bzhi %VRAX, %VRCX, %VRCX |
| 186 | jne L(zero) |
| 187 | # else |
| 188 | /* Combine CHAR and null matches. */ |
| 189 | KOR %k0, %k1, %k0 |
| 190 | KMOV %k0, %VRAX |
| 191 | bsf %VRAX, %VRAX |
| 192 | # endif |
| 193 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 194 | bytes. */ |
| 195 | leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax |
| 196 | ret |
| 197 | |
| 198 | # ifdef USE_AS_STRCHRNUL |
| 199 | /* We use this as a hook to get imm8 encoding for the jmp to |
| 200 | L(page_cross_boundary). This allows the hot case of a |
| 201 | match/null-term in first VEC to fit entirely in 1 cache |
| 202 | line. */ |
| 203 | L(cross_page_boundary): |
| 204 | jmp L(cross_page_boundary_real) |
| 205 | # endif |
| 206 | |
| 207 | .p2align 4 |
| 208 | L(aligned_more): |
| 209 | L(cross_page_continue): |
| 210 | /* Align data to VEC_SIZE. */ |
| 211 | andq $-VEC_SIZE, %rdi |
| 212 | |
| 213 | /* Check the next 4 * VEC_SIZE. Only one VEC_SIZE at a time |
| 214 | since data is only aligned to VEC_SIZE. Use two alternating |
| 215 | methods for checking VEC to balance latency and port |
| 216 | contention. */ |
| 217 | |
| 218 | /* Method(1) with 8c latency: |
| 219 | For VEC_SIZE == 32: |
| 220 | p0 * 1.83, p1 * 0.83, p5 * 1.33 |
| 221 | For VEC_SIZE == 64: |
| 222 | p0 * 2.50, p1 * 0.00, p5 * 1.50 */ |
| 223 | VMOVA (VEC_SIZE)(%rdi), %VMM(1) |
| 224 | /* Leaves only CHARS matching esi as 0. */ |
| 225 | vpxorq %VMM(1), %VMATCH, %VMM(2) |
| 226 | VPMINU %VMM(2), %VMM(1), %VMM(2) |
| 227 | /* Each bit in K0 represents a CHAR or a null byte in VEC_1. */ |
| 228 | VPTESTN %VMM(2), %VMM(2), %k0 |
| 229 | KMOV %k0, %VRCX |
| 230 | test %VRCX, %VRCX |
| 231 | jnz L(first_vec_x1) |
| 232 | |
| 233 | /* Method(2) with 6c latency: |
| 234 | For VEC_SIZE == 32: |
| 235 | p0 * 1.00, p1 * 0.00, p5 * 2.00 |
| 236 | For VEC_SIZE == 64: |
| 237 | p0 * 1.00, p1 * 0.00, p5 * 2.00 */ |
| 238 | VMOVA (VEC_SIZE * 2)(%rdi), %VMM(1) |
| 239 | /* Each bit in K0 represents a CHAR in VEC_1. */ |
| 240 | VPCMPEQ %VMM(1), %VMATCH, %k0 |
| 241 | /* Each bit in K1 represents a CHAR in VEC_1. */ |
| 242 | VPTESTN %VMM(1), %VMM(1), %k1 |
| 243 | KORTEST %k0, %k1 |
| 244 | jnz L(first_vec_x2) |
| 245 | |
| 246 | /* By swapping between Method 1/2 we get more fair port |
| 247 | distrubition and better throughput. */ |
| 248 | |
| 249 | VMOVA (VEC_SIZE * 3)(%rdi), %VMM(1) |
| 250 | /* Leaves only CHARS matching esi as 0. */ |
| 251 | vpxorq %VMM(1), %VMATCH, %VMM(2) |
| 252 | VPMINU %VMM(2), %VMM(1), %VMM(2) |
| 253 | /* Each bit in K0 represents a CHAR or a null byte in VEC_1. */ |
| 254 | VPTESTN %VMM(2), %VMM(2), %k0 |
| 255 | KMOV %k0, %VRCX |
| 256 | test %VRCX, %VRCX |
| 257 | jnz L(first_vec_x3) |
| 258 | |
| 259 | VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1) |
| 260 | /* Each bit in K0 represents a CHAR in VEC_1. */ |
| 261 | VPCMPEQ %VMM(1), %VMATCH, %k0 |
| 262 | /* Each bit in K1 represents a CHAR in VEC_1. */ |
| 263 | VPTESTN %VMM(1), %VMM(1), %k1 |
| 264 | KORTEST %k0, %k1 |
| 265 | jnz L(first_vec_x4) |
| 266 | |
| 267 | /* Align data to VEC_SIZE * 4 for the loop. */ |
| 268 | # if VEC_SIZE == 64 |
| 269 | /* Use rax for the loop reg as it allows to the loop to fit in |
| 270 | exactly 2-cache-lines. (more efficient imm32 + gpr |
| 271 | encoding). */ |
| 272 | leaq (VEC_SIZE)(%rdi), %rax |
| 273 | /* No partial register stalls on evex512 processors. */ |
| 274 | xorb %al, %al |
| 275 | # else |
| 276 | /* For VEC_SIZE == 32 continue using rdi for loop reg so we can |
| 277 | reuse more code and save space. */ |
| 278 | addq $VEC_SIZE, %rdi |
| 279 | andq $-(VEC_SIZE * 4), %rdi |
| 280 | # endif |
| 281 | .p2align 4 |
| 282 | L(loop_4x_vec): |
| 283 | /* Check 4x VEC at a time. No penalty for imm32 offset with evex |
| 284 | encoding (if offset % VEC_SIZE == 0). */ |
| 285 | VMOVA (VEC_SIZE * 4)(%LOOP_REG), %VMM(1) |
| 286 | VMOVA (VEC_SIZE * 5)(%LOOP_REG), %VMM(2) |
| 287 | VMOVA (VEC_SIZE * 6)(%LOOP_REG), %VMM(3) |
| 288 | VMOVA (VEC_SIZE * 7)(%LOOP_REG), %VMM(4) |
| 289 | |
| 290 | /* Collect bits where VEC_1 does NOT match esi. This is later |
| 291 | use to mask of results (getting not matches allows us to |
| 292 | save an instruction on combining). */ |
| 293 | VPCMP $4, %VMATCH, %VMM(1), %k1 |
| 294 | |
| 295 | /* Two methods for loop depending on VEC_SIZE. This is because |
| 296 | with zmm registers VPMINU can only run on p0 (as opposed to |
| 297 | p0/p1 for ymm) so it is less preferred. */ |
| 298 | # if VEC_SIZE == 32 |
| 299 | /* For VEC_2 and VEC_3 use xor to set the CHARs matching esi to |
| 300 | zero. */ |
| 301 | vpxorq %VMM(2), %VMATCH, %VMM(6) |
| 302 | vpxorq %VMM(3), %VMATCH, %VMM(7) |
| 303 | |
| 304 | /* Find non-matches in VEC_4 while combining with non-matches |
| 305 | from VEC_1. NB: Try and use masked predicate execution on |
| 306 | instructions that have mask result as it has no latency |
| 307 | penalty. */ |
| 308 | VPCMP $4, %VMATCH, %VMM(4), %k4{%k1} |
| 309 | |
| 310 | /* Combined zeros from VEC_1 / VEC_2 (search for null term). */ |
| 311 | VPMINU %VMM(1), %VMM(2), %VMM(2) |
| 312 | |
| 313 | /* Use min to select all zeros from either xor or end of |
| 314 | string). */ |
| 315 | VPMINU %VMM(3), %VMM(7), %VMM(3) |
| 316 | VPMINU %VMM(2), %VMM(6), %VMM(2) |
| 317 | |
| 318 | /* Combined zeros from VEC_2 / VEC_3 (search for null term). */ |
| 319 | VPMINU %VMM(3), %VMM(4), %VMM(4) |
| 320 | |
| 321 | /* Combined zeros from VEC_2 / VEC_4 (this has all null term and |
| 322 | esi matches for VEC_2 / VEC_3). */ |
| 323 | VPMINU %VMM(2), %VMM(4), %VMM(4) |
| 324 | # else |
| 325 | /* Collect non-matches for VEC_2. */ |
| 326 | VPCMP $4, %VMM(2), %VMATCH, %k2 |
| 327 | |
| 328 | /* Combined zeros from VEC_1 / VEC_2 (search for null term). */ |
| 329 | VPMINU %VMM(1), %VMM(2), %VMM(2) |
| 330 | |
| 331 | /* Find non-matches in VEC_3/VEC_4 while combining with non- |
| 332 | matches from VEC_1/VEC_2 respectively. */ |
| 333 | VPCMP $4, %VMM(3), %VMATCH, %k3{%k1} |
| 334 | VPCMP $4, %VMM(4), %VMATCH, %k4{%k2} |
| 335 | |
| 336 | /* Finish combining zeros in all VECs. */ |
| 337 | VPMINU %VMM(3), %VMM(4), %VMM(4) |
| 338 | |
| 339 | /* Combine in esi matches for VEC_3 (if there was a match with |
| 340 | esi, the corresponding bit in %k3 is zero so the |
| 341 | VPMINU_MASKZ will have a zero in the result). NB: This make |
| 342 | the VPMINU 3c latency. The only way to avoid it is to |
| 343 | create a 12c dependency chain on all the `VPCMP $4, ...` |
| 344 | which has higher total latency. */ |
| 345 | VPMINU %VMM(2), %VMM(4), %VMM(4){%k3}{z} |
| 346 | # endif |
| 347 | VPTEST %VMM(4), %VMM(4), %k0{%k4} |
| 348 | KMOV %k0, %VRDX |
| 349 | subq $-(VEC_SIZE * 4), %LOOP_REG |
| 350 | |
| 351 | /* TESTZ is inc using the proper register width depending on |
| 352 | CHAR_PER_VEC. An esi match or null-term match leaves a zero- |
| 353 | bit in rdx so inc won't overflow and won't be zero. */ |
| 354 | TESTZ (rdx) |
| 355 | jz L(loop_4x_vec) |
| 356 | |
| 357 | VPTEST %VMM(1), %VMM(1), %k0{%k1} |
| 358 | KMOV %k0, %VGPR(MASK_GPR) |
| 359 | TESTZ (MASK_GPR) |
| 360 | # if VEC_SIZE == 32 |
| 361 | /* We can reuse the return code in page_cross logic for VEC_SIZE |
| 362 | == 32. */ |
| 363 | jnz L(last_vec_x1_vec_size32) |
| 364 | # else |
| 365 | jnz L(last_vec_x1_vec_size64) |
| 366 | # endif |
| 367 | |
| 368 | |
| 369 | /* COND_MASK integrates the esi matches for VEC_SIZE == 64. For |
| 370 | VEC_SIZE == 32 they are already integrated. */ |
| 371 | VPTEST %VMM(2), %VMM(2), %k0 COND_MASK(k2) |
| 372 | KMOV %k0, %VRCX |
| 373 | TESTZ (rcx) |
| 374 | jnz L(last_vec_x2) |
| 375 | |
| 376 | VPTEST %VMM(3), %VMM(3), %k0 COND_MASK(k3) |
| 377 | KMOV %k0, %VRCX |
| 378 | # if CHAR_PER_VEC == 64 |
| 379 | TESTZ (rcx) |
| 380 | jnz L(last_vec_x3) |
| 381 | # else |
| 382 | salq $CHAR_PER_VEC, %rdx |
| 383 | TESTZ (rcx) |
| 384 | orq %rcx, %rdx |
| 385 | # endif |
| 386 | |
| 387 | bsfq %rdx, %rdx |
| 388 | |
| 389 | # ifndef USE_AS_STRCHRNUL |
| 390 | /* Check if match was CHAR or null. */ |
| 391 | cmp (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %CHAR_REG |
| 392 | jne L(zero_end) |
| 393 | # endif |
| 394 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 395 | bytes. */ |
| 396 | leaq (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %rax |
| 397 | ret |
| 398 | |
| 399 | # ifndef USE_AS_STRCHRNUL |
| 400 | L(zero_end): |
| 401 | xorl %eax, %eax |
| 402 | ret |
| 403 | # endif |
| 404 | |
| 405 | |
| 406 | /* Separate return label for last VEC1 because for VEC_SIZE == |
| 407 | 32 we can reuse return code in L(page_cross) but VEC_SIZE == |
| 408 | 64 has mismatched registers. */ |
| 409 | # if VEC_SIZE == 64 |
| 410 | .p2align 4,, 8 |
| 411 | L(last_vec_x1_vec_size64): |
| 412 | bsf %VRCX, %VRCX |
| 413 | # ifndef USE_AS_STRCHRNUL |
| 414 | /* Check if match was null. */ |
| 415 | cmp (%rax, %rcx, CHAR_SIZE), %CHAR_REG |
| 416 | jne L(zero_end) |
| 417 | # endif |
| 418 | # ifdef USE_AS_WCSCHR |
| 419 | /* NB: Multiply wchar_t count by 4 to get the number of bytes. |
| 420 | */ |
| 421 | leaq (%rax, %rcx, CHAR_SIZE), %rax |
| 422 | # else |
| 423 | addq %rcx, %rax |
| 424 | # endif |
| 425 | ret |
| 426 | |
| 427 | /* Since we can't combine the last 2x matches for CHAR_PER_VEC |
| 428 | == 64 we need return label for last VEC3. */ |
| 429 | # if CHAR_PER_VEC == 64 |
| 430 | .p2align 4,, 8 |
| 431 | L(last_vec_x3): |
| 432 | addq $VEC_SIZE, %LOOP_REG |
| 433 | # endif |
| 434 | |
| 435 | /* Duplicate L(last_vec_x2) for VEC_SIZE == 64 because we can't |
| 436 | reuse L(first_vec_x3) due to register mismatch. */ |
| 437 | L(last_vec_x2): |
| 438 | bsf %VGPR(MASK_GPR), %VGPR(MASK_GPR) |
| 439 | # ifndef USE_AS_STRCHRNUL |
| 440 | /* Check if match was null. */ |
| 441 | cmp (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %CHAR_REG |
| 442 | jne L(zero_end) |
| 443 | # endif |
| 444 | /* NB: Multiply sizeof char type (1 or 4) to get the number of |
| 445 | bytes. */ |
| 446 | leaq (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %rax |
| 447 | ret |
| 448 | # endif |
| 449 | |
| 450 | /* Cold case for crossing page with first load. */ |
| 451 | .p2align 4,, 10 |
| 452 | # ifndef USE_AS_STRCHRNUL |
| 453 | L(cross_page_boundary): |
| 454 | # endif |
| 455 | L(cross_page_boundary_real): |
| 456 | /* Align rdi. */ |
| 457 | xorq %rdi, %rax |
| 458 | VMOVA (PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1) |
| 459 | /* Use high latency method of getting matches to save code size. |
| 460 | */ |
| 461 | |
| 462 | /* K1 has 1s where VEC(1) does NOT match esi. */ |
| 463 | VPCMP $4, %VMM(1), %VMATCH, %k1 |
| 464 | /* K0 has ones where K1 is 1 (non-match with esi), and non-zero |
| 465 | (null). */ |
| 466 | VPTEST %VMM(1), %VMM(1), %k0{%k1} |
| 467 | KMOV %k0, %VRAX |
| 468 | /* Remove the leading bits. */ |
| 469 | # ifdef USE_AS_WCSCHR |
| 470 | movl %edi, %VGPR_SZ(SHIFT_REG, 32) |
| 471 | /* NB: Divide shift count by 4 since each bit in K1 represent 4 |
| 472 | bytes. */ |
| 473 | sarl $2, %VGPR_SZ(SHIFT_REG, 32) |
| 474 | andl $(CHAR_PER_VEC - 1), %VGPR_SZ(SHIFT_REG, 32) |
| 475 | |
| 476 | /* if wcsrchr we need to reverse matches as we can't rely on |
| 477 | signed shift to bring in ones. There is not sarx for |
| 478 | gpr8/16. Also not we can't use inc here as the lower bits |
| 479 | represent matches out of range so we can't rely on overflow. |
| 480 | */ |
| 481 | xorl $((1 << CHAR_PER_VEC)- 1), %eax |
| 482 | # endif |
| 483 | /* Use arithmetic shift so that leading 1s are filled in. */ |
| 484 | sarx %VGPR(SHIFT_REG), %VRAX, %VRAX |
| 485 | /* If eax is all ones then no matches for esi or NULL. */ |
| 486 | |
| 487 | # ifdef USE_AS_WCSCHR |
| 488 | test %VRAX, %VRAX |
| 489 | # else |
| 490 | inc %VRAX |
| 491 | # endif |
| 492 | jz L(cross_page_continue) |
| 493 | |
| 494 | .p2align 4,, 10 |
| 495 | L(last_vec_x1_vec_size32): |
| 496 | bsf %VRAX, %VRAX |
| 497 | # ifdef USE_AS_WCSCHR |
| 498 | /* NB: Multiply wchar_t count by 4 to get the number of bytes. |
| 499 | */ |
| 500 | leaq (%rdi, %rax, CHAR_SIZE), %rax |
| 501 | # else |
| 502 | addq %rdi, %rax |
| 503 | # endif |
| 504 | # ifndef USE_AS_STRCHRNUL |
| 505 | /* Check to see if match was CHAR or null. */ |
| 506 | cmp (%rax), %CHAR_REG |
| 507 | jne L(zero_end_0) |
| 508 | # endif |
| 509 | ret |
| 510 | # ifndef USE_AS_STRCHRNUL |
| 511 | L(zero_end_0): |
| 512 | xorl %eax, %eax |
| 513 | ret |
| 514 | # endif |
| 515 | |
| 516 | END (STRCHR) |
| 517 | #endif |
| 518 | |