| 1 | /* memrchr optimized with 256-bit EVEX instructions. |
| 2 | Copyright (C) 2021-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <isa-level.h> |
| 20 | |
| 21 | #if ISA_SHOULD_BUILD (4) |
| 22 | |
| 23 | # include <sysdep.h> |
| 24 | |
| 25 | # ifndef VEC_SIZE |
| 26 | # include "x86-evex256-vecs.h" |
| 27 | # endif |
| 28 | |
| 29 | # include "reg-macros.h" |
| 30 | |
| 31 | # ifndef MEMRCHR |
| 32 | # define MEMRCHR __memrchr_evex |
| 33 | # endif |
| 34 | |
| 35 | # define PAGE_SIZE 4096 |
| 36 | # define VMATCH VMM(0) |
| 37 | |
| 38 | .section SECTION(.text), "ax" , @progbits |
| 39 | ENTRY_P2ALIGN(MEMRCHR, 6) |
| 40 | # ifdef __ILP32__ |
| 41 | /* Clear upper bits. */ |
| 42 | and %RDX_LP, %RDX_LP |
| 43 | # else |
| 44 | test %RDX_LP, %RDX_LP |
| 45 | # endif |
| 46 | jz L(zero_0) |
| 47 | |
| 48 | /* Get end pointer. Minus one for three reasons. 1) It is |
| 49 | necessary for a correct page cross check and 2) it correctly |
| 50 | sets up end ptr to be subtract by lzcnt aligned. 3) it is a |
| 51 | necessary step in aligning ptr. */ |
| 52 | leaq -1(%rdi, %rdx), %rax |
| 53 | vpbroadcastb %esi, %VMATCH |
| 54 | |
| 55 | /* Check if we can load 1x VEC without cross a page. */ |
| 56 | testl $(PAGE_SIZE - VEC_SIZE), %eax |
| 57 | jz L(page_cross) |
| 58 | |
| 59 | /* Don't use rax for pointer here because EVEX has better |
| 60 | encoding with offset % VEC_SIZE == 0. */ |
| 61 | vpcmpeqb (VEC_SIZE * -1)(%rdi, %rdx), %VMATCH, %k0 |
| 62 | KMOV %k0, %VRCX |
| 63 | |
| 64 | /* If rcx is zero then lzcnt -> VEC_SIZE. NB: there is a |
| 65 | already a dependency between rcx and rsi so no worries about |
| 66 | false-dep here. */ |
| 67 | lzcnt %VRCX, %VRSI |
| 68 | /* If rdx <= rsi then either 1) rcx was non-zero (there was a |
| 69 | match) but it was out of bounds or 2) rcx was zero and rdx |
| 70 | was <= VEC_SIZE so we are done scanning. */ |
| 71 | cmpq %rsi, %rdx |
| 72 | /* NB: Use branch to return zero/non-zero. Common usage will |
| 73 | branch on result of function (if return is null/non-null). |
| 74 | This branch can be used to predict the ensuing one so there |
| 75 | is no reason to extend the data-dependency with cmovcc. */ |
| 76 | jbe L(zero_0) |
| 77 | |
| 78 | /* If rcx is zero then len must be > RDX, otherwise since we |
| 79 | already tested len vs lzcnt(rcx) (in rsi) we are good to |
| 80 | return this match. */ |
| 81 | test %VRCX, %VRCX |
| 82 | jz L(more_1x_vec) |
| 83 | subq %rsi, %rax |
| 84 | ret |
| 85 | |
| 86 | /* Fits in aligning bytes of first cache line for VEC_SIZE == |
| 87 | 32. */ |
| 88 | # if VEC_SIZE == 32 |
| 89 | .p2align 4,, 2 |
| 90 | L(zero_0): |
| 91 | xorl %eax, %eax |
| 92 | ret |
| 93 | # endif |
| 94 | |
| 95 | .p2align 4,, 10 |
| 96 | L(more_1x_vec): |
| 97 | /* Align rax (pointer to string). */ |
| 98 | andq $-VEC_SIZE, %rax |
| 99 | L(page_cross_continue): |
| 100 | /* Recompute length after aligning. */ |
| 101 | subq %rdi, %rax |
| 102 | |
| 103 | cmpq $(VEC_SIZE * 2), %rax |
| 104 | ja L(more_2x_vec) |
| 105 | |
| 106 | L(last_2x_vec): |
| 107 | vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0 |
| 108 | KMOV %k0, %VRCX |
| 109 | |
| 110 | test %VRCX, %VRCX |
| 111 | jnz L(ret_vec_x0_test) |
| 112 | |
| 113 | /* If VEC_SIZE == 64 need to subtract because lzcntq won't |
| 114 | implicitly add VEC_SIZE to match position. */ |
| 115 | # if VEC_SIZE == 64 |
| 116 | subl $VEC_SIZE, %eax |
| 117 | # else |
| 118 | cmpb $VEC_SIZE, %al |
| 119 | # endif |
| 120 | jle L(zero_2) |
| 121 | |
| 122 | /* We adjusted rax (length) for VEC_SIZE == 64 so need separate |
| 123 | offsets. */ |
| 124 | # if VEC_SIZE == 64 |
| 125 | vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0 |
| 126 | # else |
| 127 | vpcmpeqb (VEC_SIZE * -2)(%rdi, %rax), %VMATCH, %k0 |
| 128 | # endif |
| 129 | KMOV %k0, %VRCX |
| 130 | /* NB: 64-bit lzcnt. This will naturally add 32 to position for |
| 131 | VEC_SIZE == 32. */ |
| 132 | lzcntq %rcx, %rcx |
| 133 | subl %ecx, %eax |
| 134 | ja L(first_vec_x1_ret) |
| 135 | /* If VEC_SIZE == 64 put L(zero_0) here as we can't fit in the |
| 136 | first cache line (this is the second cache line). */ |
| 137 | # if VEC_SIZE == 64 |
| 138 | L(zero_0): |
| 139 | # endif |
| 140 | L(zero_2): |
| 141 | xorl %eax, %eax |
| 142 | ret |
| 143 | |
| 144 | /* NB: Fits in aligning bytes before next cache line for |
| 145 | VEC_SIZE == 32. For VEC_SIZE == 64 this is attached to |
| 146 | L(first_vec_x0_test). */ |
| 147 | # if VEC_SIZE == 32 |
| 148 | L(first_vec_x1_ret): |
| 149 | leaq -1(%rdi, %rax), %rax |
| 150 | ret |
| 151 | # endif |
| 152 | |
| 153 | .p2align 4,, 6 |
| 154 | L(ret_vec_x0_test): |
| 155 | lzcnt %VRCX, %VRCX |
| 156 | subl %ecx, %eax |
| 157 | jle L(zero_2) |
| 158 | # if VEC_SIZE == 64 |
| 159 | /* Reuse code at the end of L(ret_vec_x0_test) as we can't fit |
| 160 | L(first_vec_x1_ret) in the same cache line as its jmp base |
| 161 | so we might as well save code size. */ |
| 162 | L(first_vec_x1_ret): |
| 163 | # endif |
| 164 | leaq -1(%rdi, %rax), %rax |
| 165 | ret |
| 166 | |
| 167 | .p2align 4,, 6 |
| 168 | L(loop_last_4x_vec): |
| 169 | /* Compute remaining length. */ |
| 170 | subl %edi, %eax |
| 171 | L(last_4x_vec): |
| 172 | cmpl $(VEC_SIZE * 2), %eax |
| 173 | jle L(last_2x_vec) |
| 174 | # if VEC_SIZE == 32 |
| 175 | /* Only align for VEC_SIZE == 32. For VEC_SIZE == 64 we need |
| 176 | the spare bytes to align the loop properly. */ |
| 177 | .p2align 4,, 10 |
| 178 | # endif |
| 179 | L(more_2x_vec): |
| 180 | |
| 181 | /* Length > VEC_SIZE * 2 so check the first 2x VEC for match and |
| 182 | return if either hit. */ |
| 183 | vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0 |
| 184 | KMOV %k0, %VRCX |
| 185 | |
| 186 | test %VRCX, %VRCX |
| 187 | jnz L(first_vec_x0) |
| 188 | |
| 189 | vpcmpeqb (VEC_SIZE * -2)(%rdi, %rax), %VMATCH, %k0 |
| 190 | KMOV %k0, %VRCX |
| 191 | test %VRCX, %VRCX |
| 192 | jnz L(first_vec_x1) |
| 193 | |
| 194 | /* Need no matter what. */ |
| 195 | vpcmpeqb (VEC_SIZE * -3)(%rdi, %rax), %VMATCH, %k0 |
| 196 | KMOV %k0, %VRCX |
| 197 | |
| 198 | /* Check if we are near the end. */ |
| 199 | subq $(VEC_SIZE * 4), %rax |
| 200 | ja L(more_4x_vec) |
| 201 | |
| 202 | test %VRCX, %VRCX |
| 203 | jnz L(first_vec_x2_test) |
| 204 | |
| 205 | /* Adjust length for final check and check if we are at the end. |
| 206 | */ |
| 207 | addl $(VEC_SIZE * 1), %eax |
| 208 | jle L(zero_1) |
| 209 | |
| 210 | vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0 |
| 211 | KMOV %k0, %VRCX |
| 212 | |
| 213 | lzcnt %VRCX, %VRCX |
| 214 | subl %ecx, %eax |
| 215 | ja L(first_vec_x3_ret) |
| 216 | L(zero_1): |
| 217 | xorl %eax, %eax |
| 218 | ret |
| 219 | L(first_vec_x3_ret): |
| 220 | leaq -1(%rdi, %rax), %rax |
| 221 | ret |
| 222 | |
| 223 | .p2align 4,, 6 |
| 224 | L(first_vec_x2_test): |
| 225 | /* Must adjust length before check. */ |
| 226 | subl $-(VEC_SIZE * 2 - 1), %eax |
| 227 | lzcnt %VRCX, %VRCX |
| 228 | subl %ecx, %eax |
| 229 | jl L(zero_4) |
| 230 | addq %rdi, %rax |
| 231 | ret |
| 232 | |
| 233 | |
| 234 | .p2align 4,, 10 |
| 235 | L(first_vec_x0): |
| 236 | bsr %VRCX, %VRCX |
| 237 | leaq (VEC_SIZE * -1)(%rdi, %rax), %rax |
| 238 | addq %rcx, %rax |
| 239 | ret |
| 240 | |
| 241 | /* Fits unobtrusively here. */ |
| 242 | L(zero_4): |
| 243 | xorl %eax, %eax |
| 244 | ret |
| 245 | |
| 246 | .p2align 4,, 10 |
| 247 | L(first_vec_x1): |
| 248 | bsr %VRCX, %VRCX |
| 249 | leaq (VEC_SIZE * -2)(%rdi, %rax), %rax |
| 250 | addq %rcx, %rax |
| 251 | ret |
| 252 | |
| 253 | .p2align 4,, 8 |
| 254 | L(first_vec_x3): |
| 255 | bsr %VRCX, %VRCX |
| 256 | addq %rdi, %rax |
| 257 | addq %rcx, %rax |
| 258 | ret |
| 259 | |
| 260 | .p2align 4,, 6 |
| 261 | L(first_vec_x2): |
| 262 | bsr %VRCX, %VRCX |
| 263 | leaq (VEC_SIZE * 1)(%rdi, %rax), %rax |
| 264 | addq %rcx, %rax |
| 265 | ret |
| 266 | |
| 267 | .p2align 4,, 2 |
| 268 | L(more_4x_vec): |
| 269 | test %VRCX, %VRCX |
| 270 | jnz L(first_vec_x2) |
| 271 | |
| 272 | vpcmpeqb (%rdi, %rax), %VMATCH, %k0 |
| 273 | KMOV %k0, %VRCX |
| 274 | |
| 275 | test %VRCX, %VRCX |
| 276 | jnz L(first_vec_x3) |
| 277 | |
| 278 | /* Check if near end before re-aligning (otherwise might do an |
| 279 | unnecessary loop iteration). */ |
| 280 | cmpq $(VEC_SIZE * 4), %rax |
| 281 | jbe L(last_4x_vec) |
| 282 | |
| 283 | |
| 284 | /* NB: We setup the loop to NOT use index-address-mode for the |
| 285 | buffer. This costs some instructions & code size but avoids |
| 286 | stalls due to unlaminated micro-fused instructions (as used |
| 287 | in the loop) from being forced to issue in the same group |
| 288 | (essentially narrowing the backend width). */ |
| 289 | |
| 290 | /* Get endptr for loop in rdx. NB: Can't just do while rax > rdi |
| 291 | because lengths that overflow can be valid and break the |
| 292 | comparison. */ |
| 293 | # if VEC_SIZE == 64 |
| 294 | /* Use rdx as intermediate to compute rax, this gets us imm8 |
| 295 | encoding which just allows the L(more_4x_vec) block to fit |
| 296 | in 1 cache-line. */ |
| 297 | leaq (VEC_SIZE * 4)(%rdi), %rdx |
| 298 | leaq (VEC_SIZE * -1)(%rdx, %rax), %rax |
| 299 | |
| 300 | /* No evex machine has partial register stalls. This can be |
| 301 | replaced with: `andq $(VEC_SIZE * -4), %rax/%rdx` if that |
| 302 | changes. */ |
| 303 | xorb %al, %al |
| 304 | xorb %dl, %dl |
| 305 | # else |
| 306 | leaq (VEC_SIZE * 3)(%rdi, %rax), %rax |
| 307 | andq $(VEC_SIZE * -4), %rax |
| 308 | leaq (VEC_SIZE * 4)(%rdi), %rdx |
| 309 | andq $(VEC_SIZE * -4), %rdx |
| 310 | # endif |
| 311 | |
| 312 | |
| 313 | .p2align 4 |
| 314 | L(loop_4x_vec): |
| 315 | /* NB: We could do the same optimization here as we do for |
| 316 | memchr/rawmemchr by using VEX encoding in the loop for access |
| 317 | to VEX vpcmpeqb + vpternlogd. Since memrchr is not as hot as |
| 318 | memchr it may not be worth the extra code size, but if the |
| 319 | need arises it an easy ~15% perf improvement to the loop. */ |
| 320 | |
| 321 | cmpq %rdx, %rax |
| 322 | je L(loop_last_4x_vec) |
| 323 | /* Store 1 were not-equals and 0 where equals in k1 (used to |
| 324 | mask later on). */ |
| 325 | vpcmpb $4, (VEC_SIZE * -1)(%rax), %VMATCH, %k1 |
| 326 | |
| 327 | /* VEC(2/3) will have zero-byte where we found a CHAR. */ |
| 328 | vpxorq (VEC_SIZE * -2)(%rax), %VMATCH, %VMM(2) |
| 329 | vpxorq (VEC_SIZE * -3)(%rax), %VMATCH, %VMM(3) |
| 330 | vpcmpeqb (VEC_SIZE * -4)(%rax), %VMATCH, %k4 |
| 331 | |
| 332 | /* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit |
| 333 | where CHAR is found and VEC(2/3) have zero-byte where CHAR |
| 334 | is found. */ |
| 335 | vpminub %VMM(2), %VMM(3), %VMM(3){%k1}{z} |
| 336 | vptestnmb %VMM(3), %VMM(3), %k2 |
| 337 | |
| 338 | addq $-(VEC_SIZE * 4), %rax |
| 339 | |
| 340 | /* Any 1s and we found CHAR. */ |
| 341 | KORTEST %k2, %k4 |
| 342 | jz L(loop_4x_vec) |
| 343 | |
| 344 | |
| 345 | /* K1 has non-matches for first VEC. inc; jz will overflow rcx |
| 346 | iff all bytes where non-matches. */ |
| 347 | KMOV %k1, %VRCX |
| 348 | inc %VRCX |
| 349 | jnz L(first_vec_x0_end) |
| 350 | |
| 351 | vptestnmb %VMM(2), %VMM(2), %k0 |
| 352 | KMOV %k0, %VRCX |
| 353 | test %VRCX, %VRCX |
| 354 | jnz L(first_vec_x1_end) |
| 355 | KMOV %k2, %VRCX |
| 356 | |
| 357 | /* Separate logic for VEC_SIZE == 64 and VEC_SIZE == 32 for |
| 358 | returning last 2x VEC. For VEC_SIZE == 64 we test each VEC |
| 359 | individually, for VEC_SIZE == 32 we combine them in a single |
| 360 | 64-bit GPR. */ |
| 361 | # if VEC_SIZE == 64 |
| 362 | test %VRCX, %VRCX |
| 363 | jnz L(first_vec_x2_end) |
| 364 | KMOV %k4, %VRCX |
| 365 | # else |
| 366 | /* Combine last 2 VEC matches for VEC_SIZE == 32. If rcx (from |
| 367 | VEC(3)) is zero (no CHAR in VEC(3)) then it won't affect the |
| 368 | result in rsi (from VEC(4)). If rcx is non-zero then CHAR in |
| 369 | VEC(3) and bsrq will use that position. */ |
| 370 | KMOV %k4, %VRSI |
| 371 | salq $32, %rcx |
| 372 | orq %rsi, %rcx |
| 373 | # endif |
| 374 | bsrq %rcx, %rcx |
| 375 | addq %rcx, %rax |
| 376 | ret |
| 377 | |
| 378 | .p2align 4,, 4 |
| 379 | L(first_vec_x0_end): |
| 380 | /* rcx has 1s at non-matches so we need to `not` it. We used |
| 381 | `inc` to test if zero so use `neg` to complete the `not` so |
| 382 | the last 1 bit represent a match. NB: (-x + 1 == ~x). */ |
| 383 | neg %VRCX |
| 384 | bsr %VRCX, %VRCX |
| 385 | leaq (VEC_SIZE * 3)(%rcx, %rax), %rax |
| 386 | ret |
| 387 | |
| 388 | .p2align 4,, 10 |
| 389 | L(first_vec_x1_end): |
| 390 | bsr %VRCX, %VRCX |
| 391 | leaq (VEC_SIZE * 2)(%rcx, %rax), %rax |
| 392 | ret |
| 393 | |
| 394 | # if VEC_SIZE == 64 |
| 395 | /* Since we can't combine the last 2x VEC for VEC_SIZE == 64 |
| 396 | need return label for it. */ |
| 397 | .p2align 4,, 4 |
| 398 | L(first_vec_x2_end): |
| 399 | bsr %VRCX, %VRCX |
| 400 | leaq (VEC_SIZE * 1)(%rcx, %rax), %rax |
| 401 | ret |
| 402 | # endif |
| 403 | |
| 404 | |
| 405 | .p2align 4,, 4 |
| 406 | L(page_cross): |
| 407 | /* only lower bits of eax[log2(VEC_SIZE):0] are set so we can |
| 408 | use movzbl to get the amount of bytes we are checking here. |
| 409 | */ |
| 410 | movzbl %al, %ecx |
| 411 | andq $-VEC_SIZE, %rax |
| 412 | vpcmpeqb (%rax), %VMATCH, %k0 |
| 413 | KMOV %k0, %VRSI |
| 414 | |
| 415 | /* eax was comptued as %rdi + %rdx - 1 so need to add back 1 |
| 416 | here. */ |
| 417 | leal 1(%rcx), %r8d |
| 418 | |
| 419 | /* Invert ecx to get shift count for byte matches out of range. |
| 420 | */ |
| 421 | notl %ecx |
| 422 | shlx %VRCX, %VRSI, %VRSI |
| 423 | |
| 424 | /* if r8 < rdx then the entire [buf, buf + len] is handled in |
| 425 | the page cross case. NB: we can't use the trick here we use |
| 426 | in the non page-cross case because we aren't checking full |
| 427 | VEC_SIZE. */ |
| 428 | cmpq %r8, %rdx |
| 429 | ja L(page_cross_check) |
| 430 | lzcnt %VRSI, %VRSI |
| 431 | subl %esi, %edx |
| 432 | ja L(page_cross_ret) |
| 433 | xorl %eax, %eax |
| 434 | ret |
| 435 | |
| 436 | L(page_cross_check): |
| 437 | test %VRSI, %VRSI |
| 438 | jz L(page_cross_continue) |
| 439 | |
| 440 | lzcnt %VRSI, %VRSI |
| 441 | subl %esi, %edx |
| 442 | L(page_cross_ret): |
| 443 | leaq -1(%rdi, %rdx), %rax |
| 444 | ret |
| 445 | END(MEMRCHR) |
| 446 | #endif |
| 447 | |