1 | /* |
2 | * ==================================================== |
3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
4 | * |
5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | /* |
13 | Long double expansions are |
14 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
15 | and are incorporated herein by permission of the author. The author |
16 | reserves the right to distribute this material elsewhere under different |
17 | copying permissions. These modifications are distributed here under |
18 | the following terms: |
19 | |
20 | This library is free software; you can redistribute it and/or |
21 | modify it under the terms of the GNU Lesser General Public |
22 | License as published by the Free Software Foundation; either |
23 | version 2.1 of the License, or (at your option) any later version. |
24 | |
25 | This library is distributed in the hope that it will be useful, |
26 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
27 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
28 | Lesser General Public License for more details. |
29 | |
30 | You should have received a copy of the GNU Lesser General Public |
31 | License along with this library; if not, see |
32 | <https://www.gnu.org/licenses/>. */ |
33 | |
34 | /* __ieee754_asin(x) |
35 | * Method : |
36 | * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
37 | * we approximate asin(x) on [0,0.5] by |
38 | * asin(x) = x + x*x^2*R(x^2) |
39 | * |
40 | * For x in [0.5,1] |
41 | * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
42 | * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
43 | * then for x>0.98 |
44 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
45 | * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
46 | * For x<=0.98, let pio4_hi = pio2_hi/2, then |
47 | * f = hi part of s; |
48 | * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
49 | * and |
50 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
51 | * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
52 | * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
53 | * |
54 | * Special cases: |
55 | * if x is NaN, return x itself; |
56 | * if |x|>1, return NaN with invalid signal. |
57 | * |
58 | */ |
59 | |
60 | |
61 | #include <float.h> |
62 | #include <math.h> |
63 | #include <math_private.h> |
64 | #include <math-underflow.h> |
65 | #include <libm-alias-finite.h> |
66 | |
67 | static const long double |
68 | one = 1.0L, |
69 | huge = 1.0e+4932L, |
70 | pio2_hi = 0x1.921fb54442d1846ap+0L, /* pi/2 rounded to nearest to 64 |
71 | bits. */ |
72 | pio2_lo = -0x7.6733ae8fe47c65d8p-68L, /* pi/2 - pio2_hi rounded to |
73 | nearest to 64 bits. */ |
74 | pio4_hi = 0xc.90fdaa22168c235p-4L, /* pi/4 rounded to nearest to 64 |
75 | bits. */ |
76 | |
77 | /* coefficient for R(x^2) */ |
78 | |
79 | /* asin(x) = x + x^3 pS(x^2) / qS(x^2) |
80 | 0 <= x <= 0.5 |
81 | peak relative error 1.9e-21 */ |
82 | pS0 = -1.008714657938491626019651170502036851607E1L, |
83 | pS1 = 2.331460313214179572063441834101394865259E1L, |
84 | pS2 = -1.863169762159016144159202387315381830227E1L, |
85 | pS3 = 5.930399351579141771077475766877674661747E0L, |
86 | pS4 = -6.121291917696920296944056882932695185001E-1L, |
87 | pS5 = 3.776934006243367487161248678019350338383E-3L, |
88 | |
89 | qS0 = -6.052287947630949712886794360635592886517E1L, |
90 | qS1 = 1.671229145571899593737596543114258558503E2L, |
91 | qS2 = -1.707840117062586426144397688315411324388E2L, |
92 | qS3 = 7.870295154902110425886636075950077640623E1L, |
93 | qS4 = -1.568433562487314651121702982333303458814E1L; |
94 | /* 1.000000000000000000000000000000000000000E0 */ |
95 | |
96 | long double |
97 | __ieee754_asinl (long double x) |
98 | { |
99 | long double t, w, p, q, c, r, s; |
100 | int32_t ix; |
101 | uint32_t se, i0, i1, k; |
102 | |
103 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
104 | ix = se & 0x7fff; |
105 | ix = (ix << 16) | (i0 >> 16); |
106 | if (ix >= 0x3fff8000) |
107 | { /* |x|>= 1 */ |
108 | if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0) |
109 | /* asin(1)=+-pi/2 with inexact */ |
110 | return x * pio2_hi + x * pio2_lo; |
111 | return (x - x) / (x - x); /* asin(|x|>1) is NaN */ |
112 | } |
113 | else if (ix < 0x3ffe8000) |
114 | { /* |x|<0.5 */ |
115 | if (ix < 0x3fde8000) |
116 | { /* if |x| < 2**-33 */ |
117 | math_check_force_underflow (x); |
118 | if (huge + x > one) |
119 | return x; /* return x with inexact if x!=0 */ |
120 | } |
121 | else |
122 | { |
123 | t = x * x; |
124 | p = |
125 | t * (pS0 + |
126 | t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
127 | q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t)))); |
128 | w = p / q; |
129 | return x + x * w; |
130 | } |
131 | } |
132 | /* 1> |x|>= 0.5 */ |
133 | w = one - fabsl (x); |
134 | t = w * 0.5; |
135 | p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); |
136 | q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t)))); |
137 | s = sqrtl (t); |
138 | if (ix >= 0x3ffef999) |
139 | { /* if |x| > 0.975 */ |
140 | w = p / q; |
141 | t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); |
142 | } |
143 | else |
144 | { |
145 | GET_LDOUBLE_WORDS (k, i0, i1, s); |
146 | i1 = 0; |
147 | SET_LDOUBLE_WORDS (w,k,i0,i1); |
148 | c = (t - w * w) / (s + w); |
149 | r = p / q; |
150 | p = 2.0 * s * r - (pio2_lo - 2.0 * c); |
151 | q = pio4_hi - 2.0 * w; |
152 | t = pio4_hi - (p - q); |
153 | } |
154 | if ((se & 0x8000) == 0) |
155 | return t; |
156 | else |
157 | return -t; |
158 | } |
159 | libm_alias_finite (__ieee754_asinl, __asinl) |
160 | |