1 | /* Compute x * y + z as ternary operation. |
2 | Copyright (C) 2010-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #define NO_MATH_REDIRECT |
20 | #include <float.h> |
21 | #define f64xfmaf128 __hide_f64xfmaf128 |
22 | #include <math.h> |
23 | #undef f64xfmaf128 |
24 | #include <fenv.h> |
25 | #include <ieee754.h> |
26 | #include <math-barriers.h> |
27 | #include <math_private.h> |
28 | #include <libm-alias-ldouble.h> |
29 | #include <math-narrow-alias.h> |
30 | #include <tininess.h> |
31 | #include <math-use-builtins.h> |
32 | |
33 | /* This implementation uses rounding to odd to avoid problems with |
34 | double rounding. See a paper by Boldo and Melquiond: |
35 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
36 | |
37 | _Float128 |
38 | __fmal (_Float128 x, _Float128 y, _Float128 z) |
39 | { |
40 | #if USE_FMAL_BUILTIN |
41 | return __builtin_fmal (x, y, z); |
42 | #else |
43 | union ieee854_long_double u, v, w; |
44 | int adjust = 0; |
45 | u.d = x; |
46 | v.d = y; |
47 | w.d = z; |
48 | if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
49 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS |
50 | - LDBL_MANT_DIG, 0) |
51 | || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
52 | || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
53 | || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) |
54 | || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
55 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0)) |
56 | { |
57 | /* If z is Inf, but x and y are finite, the result should be |
58 | z rather than NaN. */ |
59 | if (w.ieee.exponent == 0x7fff |
60 | && u.ieee.exponent != 0x7fff |
61 | && v.ieee.exponent != 0x7fff) |
62 | return (z + x) + y; |
63 | /* If z is zero and x are y are nonzero, compute the result |
64 | as x * y to avoid the wrong sign of a zero result if x * y |
65 | underflows to 0. */ |
66 | if (z == 0 && x != 0 && y != 0) |
67 | return x * y; |
68 | /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
69 | x * y + z. */ |
70 | if (u.ieee.exponent == 0x7fff |
71 | || v.ieee.exponent == 0x7fff |
72 | || w.ieee.exponent == 0x7fff |
73 | || x == 0 |
74 | || y == 0) |
75 | return x * y + z; |
76 | /* If fma will certainly overflow, compute as x * y. */ |
77 | if (u.ieee.exponent + v.ieee.exponent |
78 | > 0x7fff + IEEE854_LONG_DOUBLE_BIAS) |
79 | return x * y; |
80 | /* If x * y is less than 1/4 of LDBL_TRUE_MIN, neither the |
81 | result nor whether there is underflow depends on its exact |
82 | value, only on its sign. */ |
83 | if (u.ieee.exponent + v.ieee.exponent |
84 | < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2) |
85 | { |
86 | int neg = u.ieee.negative ^ v.ieee.negative; |
87 | _Float128 tiny = neg ? L(-0x1p-16494) : L(0x1p-16494); |
88 | if (w.ieee.exponent >= 3) |
89 | return tiny + z; |
90 | /* Scaling up, adding TINY and scaling down produces the |
91 | correct result, because in round-to-nearest mode adding |
92 | TINY has no effect and in other modes double rounding is |
93 | harmless. But it may not produce required underflow |
94 | exceptions. */ |
95 | v.d = z * L(0x1p114) + tiny; |
96 | if (TININESS_AFTER_ROUNDING |
97 | ? v.ieee.exponent < 115 |
98 | : (w.ieee.exponent == 0 |
99 | || (w.ieee.exponent == 1 |
100 | && w.ieee.negative != neg |
101 | && w.ieee.mantissa3 == 0 |
102 | && w.ieee.mantissa2 == 0 |
103 | && w.ieee.mantissa1 == 0 |
104 | && w.ieee.mantissa0 == 0))) |
105 | { |
106 | _Float128 force_underflow = x * y; |
107 | math_force_eval (force_underflow); |
108 | } |
109 | return v.d * L(0x1p-114); |
110 | } |
111 | if (u.ieee.exponent + v.ieee.exponent |
112 | >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG) |
113 | { |
114 | /* Compute 1p-113 times smaller result and multiply |
115 | at the end. */ |
116 | if (u.ieee.exponent > v.ieee.exponent) |
117 | u.ieee.exponent -= LDBL_MANT_DIG; |
118 | else |
119 | v.ieee.exponent -= LDBL_MANT_DIG; |
120 | /* If x + y exponent is very large and z exponent is very small, |
121 | it doesn't matter if we don't adjust it. */ |
122 | if (w.ieee.exponent > LDBL_MANT_DIG) |
123 | w.ieee.exponent -= LDBL_MANT_DIG; |
124 | adjust = 1; |
125 | } |
126 | else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
127 | { |
128 | /* Similarly. |
129 | If z exponent is very large and x and y exponents are |
130 | very small, adjust them up to avoid spurious underflows, |
131 | rather than down. */ |
132 | if (u.ieee.exponent + v.ieee.exponent |
133 | <= IEEE854_LONG_DOUBLE_BIAS + 2 * LDBL_MANT_DIG) |
134 | { |
135 | if (u.ieee.exponent > v.ieee.exponent) |
136 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
137 | else |
138 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
139 | } |
140 | else if (u.ieee.exponent > v.ieee.exponent) |
141 | { |
142 | if (u.ieee.exponent > LDBL_MANT_DIG) |
143 | u.ieee.exponent -= LDBL_MANT_DIG; |
144 | } |
145 | else if (v.ieee.exponent > LDBL_MANT_DIG) |
146 | v.ieee.exponent -= LDBL_MANT_DIG; |
147 | w.ieee.exponent -= LDBL_MANT_DIG; |
148 | adjust = 1; |
149 | } |
150 | else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
151 | { |
152 | u.ieee.exponent -= LDBL_MANT_DIG; |
153 | if (v.ieee.exponent) |
154 | v.ieee.exponent += LDBL_MANT_DIG; |
155 | else |
156 | v.d *= L(0x1p113); |
157 | } |
158 | else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) |
159 | { |
160 | v.ieee.exponent -= LDBL_MANT_DIG; |
161 | if (u.ieee.exponent) |
162 | u.ieee.exponent += LDBL_MANT_DIG; |
163 | else |
164 | u.d *= L(0x1p113); |
165 | } |
166 | else /* if (u.ieee.exponent + v.ieee.exponent |
167 | <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */ |
168 | { |
169 | if (u.ieee.exponent > v.ieee.exponent) |
170 | u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
171 | else |
172 | v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
173 | if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6) |
174 | { |
175 | if (w.ieee.exponent) |
176 | w.ieee.exponent += 2 * LDBL_MANT_DIG + 2; |
177 | else |
178 | w.d *= L(0x1p228); |
179 | adjust = -1; |
180 | } |
181 | /* Otherwise x * y should just affect inexact |
182 | and nothing else. */ |
183 | } |
184 | x = u.d; |
185 | y = v.d; |
186 | z = w.d; |
187 | } |
188 | |
189 | /* Ensure correct sign of exact 0 + 0. */ |
190 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
191 | { |
192 | x = math_opt_barrier (x); |
193 | return x * y + z; |
194 | } |
195 | |
196 | fenv_t env; |
197 | feholdexcept (&env); |
198 | fesetround (FE_TONEAREST); |
199 | |
200 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
201 | #define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) |
202 | _Float128 x1 = x * C; |
203 | _Float128 y1 = y * C; |
204 | _Float128 m1 = x * y; |
205 | x1 = (x - x1) + x1; |
206 | y1 = (y - y1) + y1; |
207 | _Float128 x2 = x - x1; |
208 | _Float128 y2 = y - y1; |
209 | _Float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
210 | |
211 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
212 | _Float128 a1 = z + m1; |
213 | _Float128 t1 = a1 - z; |
214 | _Float128 t2 = a1 - t1; |
215 | t1 = m1 - t1; |
216 | t2 = z - t2; |
217 | _Float128 a2 = t1 + t2; |
218 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
219 | math_force_eval (m2); |
220 | math_force_eval (a2); |
221 | feclearexcept (FE_INEXACT); |
222 | |
223 | /* If the result is an exact zero, ensure it has the correct sign. */ |
224 | if (a1 == 0 && m2 == 0) |
225 | { |
226 | feupdateenv (&env); |
227 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
228 | z = math_opt_barrier (z); |
229 | return z + m1; |
230 | } |
231 | |
232 | fesetround (FE_TOWARDZERO); |
233 | /* Perform m2 + a2 addition with round to odd. */ |
234 | u.d = a2 + m2; |
235 | |
236 | if (__glibc_likely (adjust == 0)) |
237 | { |
238 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
239 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
240 | feupdateenv (&env); |
241 | /* Result is a1 + u.d. */ |
242 | return a1 + u.d; |
243 | } |
244 | else if (__glibc_likely (adjust > 0)) |
245 | { |
246 | if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) |
247 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
248 | feupdateenv (&env); |
249 | /* Result is a1 + u.d, scaled up. */ |
250 | return (a1 + u.d) * L(0x1p113); |
251 | } |
252 | else |
253 | { |
254 | if ((u.ieee.mantissa3 & 1) == 0) |
255 | u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; |
256 | v.d = a1 + u.d; |
257 | /* Ensure the addition is not scheduled after fetestexcept call. */ |
258 | math_force_eval (v.d); |
259 | int j = fetestexcept (FE_INEXACT) != 0; |
260 | feupdateenv (&env); |
261 | /* Ensure the following computations are performed in default rounding |
262 | mode instead of just reusing the round to zero computation. */ |
263 | asm volatile ("" : "=m" (u) : "m" (u)); |
264 | /* If a1 + u.d is exact, the only rounding happens during |
265 | scaling down. */ |
266 | if (j == 0) |
267 | return v.d * L(0x1p-228); |
268 | /* If result rounded to zero is not subnormal, no double |
269 | rounding will occur. */ |
270 | if (v.ieee.exponent > 228) |
271 | return (a1 + u.d) * L(0x1p-228); |
272 | /* If v.d * 0x1p-228L with round to zero is a subnormal above |
273 | or equal to LDBL_MIN / 2, then v.d * 0x1p-228L shifts mantissa |
274 | down just by 1 bit, which means v.ieee.mantissa3 |= j would |
275 | change the round bit, not sticky or guard bit. |
276 | v.d * 0x1p-228L never normalizes by shifting up, |
277 | so round bit plus sticky bit should be already enough |
278 | for proper rounding. */ |
279 | if (v.ieee.exponent == 228) |
280 | { |
281 | /* If the exponent would be in the normal range when |
282 | rounding to normal precision with unbounded exponent |
283 | range, the exact result is known and spurious underflows |
284 | must be avoided on systems detecting tininess after |
285 | rounding. */ |
286 | if (TININESS_AFTER_ROUNDING) |
287 | { |
288 | w.d = a1 + u.d; |
289 | if (w.ieee.exponent == 229) |
290 | return w.d * L(0x1p-228); |
291 | } |
292 | /* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding, |
293 | v.ieee.mantissa3 & 1 is the round bit and j is our sticky |
294 | bit. */ |
295 | w.d = 0; |
296 | w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j; |
297 | w.ieee.negative = v.ieee.negative; |
298 | v.ieee.mantissa3 &= ~3U; |
299 | v.d *= L(0x1p-228); |
300 | w.d *= L(0x1p-2); |
301 | return v.d + w.d; |
302 | } |
303 | v.ieee.mantissa3 |= j; |
304 | return v.d * L(0x1p-228); |
305 | } |
306 | #endif /* ! USE_FMAL_BUILTIN */ |
307 | } |
308 | libm_alias_ldouble (__fma, fma) |
309 | libm_alias_ldouble_narrow (__fma, fma) |
310 | |