1 | /* Single-precision 2^x function. |
2 | Copyright (C) 2017-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #include <math.h> |
20 | #include <math-narrow-eval.h> |
21 | #include <stdint.h> |
22 | #include <libm-alias-finite.h> |
23 | #include <libm-alias-float.h> |
24 | #include "math_config.h" |
25 | |
26 | /* |
27 | EXP2F_TABLE_BITS = 5 |
28 | EXP2F_POLY_ORDER = 3 |
29 | |
30 | ULP error: 0.502 (nearest rounding.) |
31 | Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.) |
32 | Wrong count: 168353 (all nearest rounding wrong results with fma.) |
33 | Non-nearest ULP error: 1 (rounded ULP error) |
34 | */ |
35 | |
36 | #define N (1 << EXP2F_TABLE_BITS) |
37 | #define T __exp2f_data.tab |
38 | #define C __exp2f_data.poly |
39 | #define SHIFT __exp2f_data.shift_scaled |
40 | |
41 | static inline uint32_t |
42 | top12 (float x) |
43 | { |
44 | return asuint (x) >> 20; |
45 | } |
46 | |
47 | float |
48 | __exp2f (float x) |
49 | { |
50 | uint32_t abstop; |
51 | uint64_t ki, t; |
52 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
53 | double_t kd, xd, z, r, r2, y, s; |
54 | |
55 | xd = (double_t) x; |
56 | abstop = top12 (x) & 0x7ff; |
57 | if (__glibc_unlikely (abstop >= top12 (128.0f))) |
58 | { |
59 | /* |x| >= 128 or x is nan. */ |
60 | if (asuint (x) == asuint (-INFINITY)) |
61 | return 0.0f; |
62 | if (abstop >= top12 (INFINITY)) |
63 | return x + x; |
64 | if (x > 0.0f) |
65 | return __math_oflowf (0); |
66 | if (x <= -150.0f) |
67 | return __math_uflowf (0); |
68 | #if WANT_ERRNO_UFLOW |
69 | if (x < -149.0f) |
70 | return __math_may_uflowf (0); |
71 | #endif |
72 | } |
73 | |
74 | /* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */ |
75 | kd = math_narrow_eval ((double) (xd + SHIFT)); /* Needs to be double. */ |
76 | ki = asuint64 (kd); |
77 | kd -= SHIFT; /* k/N for int k. */ |
78 | r = xd - kd; |
79 | |
80 | /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */ |
81 | t = T[ki % N]; |
82 | t += ki << (52 - EXP2F_TABLE_BITS); |
83 | s = asdouble (t); |
84 | z = C[0] * r + C[1]; |
85 | r2 = r * r; |
86 | y = C[2] * r + 1; |
87 | y = z * r2 + y; |
88 | y = y * s; |
89 | return (float) y; |
90 | } |
91 | #ifndef __exp2f |
92 | strong_alias (__exp2f, __ieee754_exp2f) |
93 | libm_alias_finite (__ieee754_exp2f, __exp2f) |
94 | versioned_symbol (libm, __exp2f, exp2f, GLIBC_2_27); |
95 | libm_alias_float_other (__exp2, exp2) |
96 | #endif |
97 | |