1 | /* |
2 | * IBM Accurate Mathematical Library |
3 | * written by International Business Machines Corp. |
4 | * Copyright (C) 2001-2023 Free Software Foundation, Inc. |
5 | * |
6 | * This program is free software; you can redistribute it and/or modify |
7 | * it under the terms of the GNU Lesser General Public License as published by |
8 | * the Free Software Foundation; either version 2.1 of the License, or |
9 | * (at your option) any later version. |
10 | * |
11 | * This program is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | * GNU Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public License |
17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
18 | */ |
19 | /*********************************************************************/ |
20 | /* MODULE_NAME: utan.c */ |
21 | /* */ |
22 | /* FUNCTIONS: utan */ |
23 | /* */ |
24 | /* FILES NEEDED:dla.h endian.h mydefs.h utan.h */ |
25 | /* branred.c */ |
26 | /* utan.tbl */ |
27 | /* */ |
28 | /*********************************************************************/ |
29 | |
30 | #include <errno.h> |
31 | #include <float.h> |
32 | #include "endian.h" |
33 | #include <dla.h> |
34 | #include "mydefs.h" |
35 | #include <math.h> |
36 | #include <math_private.h> |
37 | #include <fenv_private.h> |
38 | #include <math-underflow.h> |
39 | #include <libm-alias-double.h> |
40 | #include <fenv.h> |
41 | |
42 | #ifndef SECTION |
43 | # define SECTION |
44 | #endif |
45 | |
46 | /* tan with max ULP of ~0.619 based on random sampling. */ |
47 | double |
48 | SECTION |
49 | __tan (double x) |
50 | { |
51 | #include "utan.h" |
52 | #include "utan.tbl" |
53 | |
54 | int ux, i, n; |
55 | double a, da, a2, b, db, c, dc, fi, gi, pz, |
56 | s, sy, t, t1, t2, t3, t4, w, x2, xn, y, ya, |
57 | yya, z0, z, z2; |
58 | mynumber num, v; |
59 | |
60 | double retval; |
61 | |
62 | int __branred (double, double *, double *); |
63 | |
64 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
65 | |
66 | /* x=+-INF, x=NaN */ |
67 | num.d = x; |
68 | ux = num.i[HIGH_HALF]; |
69 | if ((ux & 0x7ff00000) == 0x7ff00000) |
70 | { |
71 | if ((ux & 0x7fffffff) == 0x7ff00000) |
72 | __set_errno (EDOM); |
73 | retval = x - x; |
74 | goto ret; |
75 | } |
76 | |
77 | w = (x < 0.0) ? -x : x; |
78 | |
79 | /* (I) The case abs(x) <= 1.259e-8 */ |
80 | if (w <= g1.d) |
81 | { |
82 | math_check_force_underflow_nonneg (w); |
83 | retval = x; |
84 | goto ret; |
85 | } |
86 | |
87 | /* (II) The case 1.259e-8 < abs(x) <= 0.0608 */ |
88 | if (w <= g2.d) |
89 | { |
90 | x2 = x * x; |
91 | |
92 | t2 = d9.d + x2 * d11.d; |
93 | t2 = d7.d + x2 * t2; |
94 | t2 = d5.d + x2 * t2; |
95 | t2 = d3.d + x2 * t2; |
96 | t2 *= x * x2; |
97 | |
98 | y = x + t2; |
99 | retval = y; |
100 | /* Max ULP is 0.504. */ |
101 | goto ret; |
102 | } |
103 | |
104 | /* (III) The case 0.0608 < abs(x) <= 0.787 */ |
105 | if (w <= g3.d) |
106 | { |
107 | i = ((int) (mfftnhf.d + 256 * w)); |
108 | z = w - xfg[i][0].d; |
109 | z2 = z * z; |
110 | s = (x < 0.0) ? -1 : 1; |
111 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
112 | fi = xfg[i][1].d; |
113 | gi = xfg[i][2].d; |
114 | t2 = pz * (gi + fi) / (gi - pz); |
115 | y = fi + t2; |
116 | retval = (s * y); |
117 | /* Max ULP is 0.60. */ |
118 | goto ret; |
119 | } |
120 | |
121 | /* (---) The case 0.787 < abs(x) <= 25 */ |
122 | if (w <= g4.d) |
123 | { |
124 | /* Range reduction by algorithm i */ |
125 | t = (x * hpinv.d + toint.d); |
126 | xn = t - toint.d; |
127 | v.d = t; |
128 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
129 | n = v.i[LOW_HALF] & 0x00000001; |
130 | da = xn * mp3.d; |
131 | a = t1 - da; |
132 | da = (t1 - a) - da; |
133 | if (a < 0.0) |
134 | { |
135 | ya = -a; |
136 | yya = -da; |
137 | sy = -1; |
138 | } |
139 | else |
140 | { |
141 | ya = a; |
142 | yya = da; |
143 | sy = 1; |
144 | } |
145 | |
146 | /* (VI) The case 0.787 < abs(x) <= 25, 0 < abs(y) <= 0.0608 */ |
147 | if (ya <= gy2.d) |
148 | { |
149 | a2 = a * a; |
150 | t2 = d9.d + a2 * d11.d; |
151 | t2 = d7.d + a2 * t2; |
152 | t2 = d5.d + a2 * t2; |
153 | t2 = d3.d + a2 * t2; |
154 | t2 = da + a * a2 * t2; |
155 | |
156 | if (n) |
157 | { |
158 | /* -cot */ |
159 | EADD (a, t2, b, db); |
160 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
161 | y = c + dc; |
162 | retval = (-y); |
163 | /* Max ULP is 0.506. */ |
164 | goto ret; |
165 | } |
166 | else |
167 | { |
168 | /* tan */ |
169 | y = a + t2; |
170 | retval = y; |
171 | /* Max ULP is 0.506. */ |
172 | goto ret; |
173 | } |
174 | } |
175 | |
176 | /* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */ |
177 | |
178 | i = ((int) (mfftnhf.d + 256 * ya)); |
179 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
180 | z2 = z * z; |
181 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
182 | fi = xfg[i][1].d; |
183 | gi = xfg[i][2].d; |
184 | |
185 | if (n) |
186 | { |
187 | /* -cot */ |
188 | t2 = pz * (fi + gi) / (fi + pz); |
189 | y = gi - t2; |
190 | retval = (-sy * y); |
191 | /* Max ULP is 0.62. */ |
192 | goto ret; |
193 | } |
194 | else |
195 | { |
196 | /* tan */ |
197 | t2 = pz * (gi + fi) / (gi - pz); |
198 | y = fi + t2; |
199 | retval = (sy * y); |
200 | /* Max ULP is 0.62. */ |
201 | goto ret; |
202 | } |
203 | } |
204 | |
205 | /* (---) The case 25 < abs(x) <= 1e8 */ |
206 | if (w <= g5.d) |
207 | { |
208 | /* Range reduction by algorithm ii */ |
209 | t = (x * hpinv.d + toint.d); |
210 | xn = t - toint.d; |
211 | v.d = t; |
212 | t1 = (x - xn * mp1.d) - xn * mp2.d; |
213 | n = v.i[LOW_HALF] & 0x00000001; |
214 | da = xn * pp3.d; |
215 | t = t1 - da; |
216 | da = (t1 - t) - da; |
217 | t1 = xn * pp4.d; |
218 | a = t - t1; |
219 | da = ((t - a) - t1) + da; |
220 | EADD (a, da, t1, t2); |
221 | a = t1; |
222 | da = t2; |
223 | if (a < 0.0) |
224 | { |
225 | ya = -a; |
226 | yya = -da; |
227 | sy = -1; |
228 | } |
229 | else |
230 | { |
231 | ya = a; |
232 | yya = da; |
233 | sy = 1; |
234 | } |
235 | |
236 | /* (VIII) The case 25 < abs(x) <= 1e8, 0 < abs(y) <= 0.0608 */ |
237 | if (ya <= gy2.d) |
238 | { |
239 | a2 = a * a; |
240 | t2 = d9.d + a2 * d11.d; |
241 | t2 = d7.d + a2 * t2; |
242 | t2 = d5.d + a2 * t2; |
243 | t2 = d3.d + a2 * t2; |
244 | t2 = da + a * a2 * t2; |
245 | |
246 | if (n) |
247 | { |
248 | /* -cot */ |
249 | EADD (a, t2, b, db); |
250 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
251 | y = c + dc; |
252 | retval = (-y); |
253 | /* Max ULP is 0.506. */ |
254 | goto ret; |
255 | } |
256 | else |
257 | { |
258 | /* tan */ |
259 | y = a + t2; |
260 | retval = y; |
261 | /* Max ULP is 0.506. */ |
262 | goto ret; |
263 | } |
264 | } |
265 | |
266 | /* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */ |
267 | i = ((int) (mfftnhf.d + 256 * ya)); |
268 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
269 | z2 = z * z; |
270 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
271 | fi = xfg[i][1].d; |
272 | gi = xfg[i][2].d; |
273 | |
274 | if (n) |
275 | { |
276 | /* -cot */ |
277 | t2 = pz * (fi + gi) / (fi + pz); |
278 | y = gi - t2; |
279 | retval = (-sy * y); |
280 | /* Max ULP is 0.62. */ |
281 | goto ret; |
282 | } |
283 | else |
284 | { |
285 | /* tan */ |
286 | t2 = pz * (gi + fi) / (gi - pz); |
287 | y = fi + t2; |
288 | retval = (sy * y); |
289 | /* Max ULP is 0.62. */ |
290 | goto ret; |
291 | } |
292 | } |
293 | |
294 | /* (---) The case 1e8 < abs(x) < 2**1024 */ |
295 | /* Range reduction by algorithm iii */ |
296 | n = (__branred (x, &a, &da)) & 0x00000001; |
297 | EADD (a, da, t1, t2); |
298 | a = t1; |
299 | da = t2; |
300 | if (a < 0.0) |
301 | { |
302 | ya = -a; |
303 | yya = -da; |
304 | sy = -1; |
305 | } |
306 | else |
307 | { |
308 | ya = a; |
309 | yya = da; |
310 | sy = 1; |
311 | } |
312 | |
313 | /* (X) The case 1e8 < abs(x) < 2**1024, 0 < abs(y) <= 0.0608 */ |
314 | if (ya <= gy2.d) |
315 | { |
316 | a2 = a * a; |
317 | t2 = d9.d + a2 * d11.d; |
318 | t2 = d7.d + a2 * t2; |
319 | t2 = d5.d + a2 * t2; |
320 | t2 = d3.d + a2 * t2; |
321 | t2 = da + a * a2 * t2; |
322 | if (n) |
323 | { |
324 | /* -cot */ |
325 | EADD (a, t2, b, db); |
326 | DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4); |
327 | y = c + dc; |
328 | retval = (-y); |
329 | /* Max ULP is 0.506. */ |
330 | goto ret; |
331 | } |
332 | else |
333 | { |
334 | /* tan */ |
335 | y = a + t2; |
336 | retval = y; |
337 | /* Max ULP is 0.507. */ |
338 | goto ret; |
339 | } |
340 | } |
341 | |
342 | /* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */ |
343 | i = ((int) (mfftnhf.d + 256 * ya)); |
344 | z = (z0 = (ya - xfg[i][0].d)) + yya; |
345 | z2 = z * z; |
346 | pz = z + z * z2 * (e0.d + z2 * e1.d); |
347 | fi = xfg[i][1].d; |
348 | gi = xfg[i][2].d; |
349 | |
350 | if (n) |
351 | { |
352 | /* -cot */ |
353 | t2 = pz * (fi + gi) / (fi + pz); |
354 | y = gi - t2; |
355 | retval = (-sy * y); |
356 | /* Max ULP is 0.62. */ |
357 | goto ret; |
358 | } |
359 | else |
360 | { |
361 | /* tan */ |
362 | t2 = pz * (gi + fi) / (gi - pz); |
363 | y = fi + t2; |
364 | retval = (sy * y); |
365 | /* Max ULP is 0.62. */ |
366 | goto ret; |
367 | } |
368 | |
369 | ret: |
370 | return retval; |
371 | } |
372 | |
373 | #ifndef __tan |
374 | libm_alias_double (__tan, tan) |
375 | #endif |
376 | |