1 | /* Compute x * y + z as ternary operation. |
2 | Copyright (C) 2010-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | |
5 | The GNU C Library is free software; you can redistribute it and/or |
6 | modify it under the terms of the GNU Lesser General Public |
7 | License as published by the Free Software Foundation; either |
8 | version 2.1 of the License, or (at your option) any later version. |
9 | |
10 | The GNU C Library is distributed in the hope that it will be useful, |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | Lesser General Public License for more details. |
14 | |
15 | You should have received a copy of the GNU Lesser General Public |
16 | License along with the GNU C Library; if not, see |
17 | <https://www.gnu.org/licenses/>. */ |
18 | |
19 | #define NO_MATH_REDIRECT |
20 | #include <float.h> |
21 | #define dfmal __hide_dfmal |
22 | #define f32xfmaf64 __hide_f32xfmaf64 |
23 | #include <math.h> |
24 | #undef dfmal |
25 | #undef f32xfmaf64 |
26 | #include <fenv.h> |
27 | #include <ieee754.h> |
28 | #include <math-barriers.h> |
29 | #include <fenv_private.h> |
30 | #include <libm-alias-double.h> |
31 | #include <math-narrow-alias.h> |
32 | #include <tininess.h> |
33 | #include <math-use-builtins.h> |
34 | |
35 | /* This implementation uses rounding to odd to avoid problems with |
36 | double rounding. See a paper by Boldo and Melquiond: |
37 | http://www.lri.fr/~melquion/doc/08-tc.pdf */ |
38 | |
39 | double |
40 | __fma (double x, double y, double z) |
41 | { |
42 | #if USE_FMA_BUILTIN |
43 | return __builtin_fma (x, y, z); |
44 | #else |
45 | /* Use generic implementation. */ |
46 | union ieee754_double u, v, w; |
47 | int adjust = 0; |
48 | u.d = x; |
49 | v.d = y; |
50 | w.d = z; |
51 | if (__builtin_expect (u.ieee.exponent + v.ieee.exponent |
52 | >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0) |
53 | || __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0) |
54 | || __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0) |
55 | || __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0) |
56 | || __builtin_expect (u.ieee.exponent + v.ieee.exponent |
57 | <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0)) |
58 | { |
59 | /* If z is Inf, but x and y are finite, the result should be |
60 | z rather than NaN. */ |
61 | if (w.ieee.exponent == 0x7ff |
62 | && u.ieee.exponent != 0x7ff |
63 | && v.ieee.exponent != 0x7ff) |
64 | return (z + x) + y; |
65 | /* If z is zero and x are y are nonzero, compute the result |
66 | as x * y to avoid the wrong sign of a zero result if x * y |
67 | underflows to 0. */ |
68 | if (z == 0 && x != 0 && y != 0) |
69 | return x * y; |
70 | /* If x or y or z is Inf/NaN, or if x * y is zero, compute as |
71 | x * y + z. */ |
72 | if (u.ieee.exponent == 0x7ff |
73 | || v.ieee.exponent == 0x7ff |
74 | || w.ieee.exponent == 0x7ff |
75 | || x == 0 |
76 | || y == 0) |
77 | return x * y + z; |
78 | /* If fma will certainly overflow, compute as x * y. */ |
79 | if (u.ieee.exponent + v.ieee.exponent > 0x7ff + IEEE754_DOUBLE_BIAS) |
80 | return x * y; |
81 | /* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the |
82 | result nor whether there is underflow depends on its exact |
83 | value, only on its sign. */ |
84 | if (u.ieee.exponent + v.ieee.exponent |
85 | < IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2) |
86 | { |
87 | int neg = u.ieee.negative ^ v.ieee.negative; |
88 | double tiny = neg ? -0x1p-1074 : 0x1p-1074; |
89 | if (w.ieee.exponent >= 3) |
90 | return tiny + z; |
91 | /* Scaling up, adding TINY and scaling down produces the |
92 | correct result, because in round-to-nearest mode adding |
93 | TINY has no effect and in other modes double rounding is |
94 | harmless. But it may not produce required underflow |
95 | exceptions. */ |
96 | v.d = z * 0x1p54 + tiny; |
97 | if (TININESS_AFTER_ROUNDING |
98 | ? v.ieee.exponent < 55 |
99 | : (w.ieee.exponent == 0 |
100 | || (w.ieee.exponent == 1 |
101 | && w.ieee.negative != neg |
102 | && w.ieee.mantissa1 == 0 |
103 | && w.ieee.mantissa0 == 0))) |
104 | { |
105 | double force_underflow = x * y; |
106 | math_force_eval (force_underflow); |
107 | } |
108 | return v.d * 0x1p-54; |
109 | } |
110 | if (u.ieee.exponent + v.ieee.exponent |
111 | >= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG) |
112 | { |
113 | /* Compute 1p-53 times smaller result and multiply |
114 | at the end. */ |
115 | if (u.ieee.exponent > v.ieee.exponent) |
116 | u.ieee.exponent -= DBL_MANT_DIG; |
117 | else |
118 | v.ieee.exponent -= DBL_MANT_DIG; |
119 | /* If x + y exponent is very large and z exponent is very small, |
120 | it doesn't matter if we don't adjust it. */ |
121 | if (w.ieee.exponent > DBL_MANT_DIG) |
122 | w.ieee.exponent -= DBL_MANT_DIG; |
123 | adjust = 1; |
124 | } |
125 | else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG) |
126 | { |
127 | /* Similarly. |
128 | If z exponent is very large and x and y exponents are |
129 | very small, adjust them up to avoid spurious underflows, |
130 | rather than down. */ |
131 | if (u.ieee.exponent + v.ieee.exponent |
132 | <= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG) |
133 | { |
134 | if (u.ieee.exponent > v.ieee.exponent) |
135 | u.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
136 | else |
137 | v.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
138 | } |
139 | else if (u.ieee.exponent > v.ieee.exponent) |
140 | { |
141 | if (u.ieee.exponent > DBL_MANT_DIG) |
142 | u.ieee.exponent -= DBL_MANT_DIG; |
143 | } |
144 | else if (v.ieee.exponent > DBL_MANT_DIG) |
145 | v.ieee.exponent -= DBL_MANT_DIG; |
146 | w.ieee.exponent -= DBL_MANT_DIG; |
147 | adjust = 1; |
148 | } |
149 | else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG) |
150 | { |
151 | u.ieee.exponent -= DBL_MANT_DIG; |
152 | if (v.ieee.exponent) |
153 | v.ieee.exponent += DBL_MANT_DIG; |
154 | else |
155 | v.d *= 0x1p53; |
156 | } |
157 | else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG) |
158 | { |
159 | v.ieee.exponent -= DBL_MANT_DIG; |
160 | if (u.ieee.exponent) |
161 | u.ieee.exponent += DBL_MANT_DIG; |
162 | else |
163 | u.d *= 0x1p53; |
164 | } |
165 | else /* if (u.ieee.exponent + v.ieee.exponent |
166 | <= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */ |
167 | { |
168 | if (u.ieee.exponent > v.ieee.exponent) |
169 | u.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
170 | else |
171 | v.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
172 | if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 6) |
173 | { |
174 | if (w.ieee.exponent) |
175 | w.ieee.exponent += 2 * DBL_MANT_DIG + 2; |
176 | else |
177 | w.d *= 0x1p108; |
178 | adjust = -1; |
179 | } |
180 | /* Otherwise x * y should just affect inexact |
181 | and nothing else. */ |
182 | } |
183 | x = u.d; |
184 | y = v.d; |
185 | z = w.d; |
186 | } |
187 | |
188 | /* Ensure correct sign of exact 0 + 0. */ |
189 | if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) |
190 | { |
191 | x = math_opt_barrier (x); |
192 | return x * y + z; |
193 | } |
194 | |
195 | fenv_t env; |
196 | libc_feholdexcept_setround (&env, FE_TONEAREST); |
197 | |
198 | /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ |
199 | #define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1) |
200 | double x1 = x * C; |
201 | double y1 = y * C; |
202 | double m1 = x * y; |
203 | x1 = (x - x1) + x1; |
204 | y1 = (y - y1) + y1; |
205 | double x2 = x - x1; |
206 | double y2 = y - y1; |
207 | double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; |
208 | |
209 | /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ |
210 | double a1 = z + m1; |
211 | double t1 = a1 - z; |
212 | double t2 = a1 - t1; |
213 | t1 = m1 - t1; |
214 | t2 = z - t2; |
215 | double a2 = t1 + t2; |
216 | /* Ensure the arithmetic is not scheduled after feclearexcept call. */ |
217 | math_force_eval (m2); |
218 | math_force_eval (a2); |
219 | feclearexcept (FE_INEXACT); |
220 | |
221 | /* If the result is an exact zero, ensure it has the correct sign. */ |
222 | if (a1 == 0 && m2 == 0) |
223 | { |
224 | libc_feupdateenv (&env); |
225 | /* Ensure that round-to-nearest value of z + m1 is not reused. */ |
226 | z = math_opt_barrier (z); |
227 | return z + m1; |
228 | } |
229 | |
230 | libc_fesetround (FE_TOWARDZERO); |
231 | |
232 | /* Perform m2 + a2 addition with round to odd. */ |
233 | u.d = a2 + m2; |
234 | |
235 | if (__glibc_unlikely (adjust < 0)) |
236 | { |
237 | if ((u.ieee.mantissa1 & 1) == 0) |
238 | u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0; |
239 | v.d = a1 + u.d; |
240 | /* Ensure the addition is not scheduled after fetestexcept call. */ |
241 | math_force_eval (v.d); |
242 | } |
243 | |
244 | /* Reset rounding mode and test for inexact simultaneously. */ |
245 | int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0; |
246 | |
247 | if (__glibc_likely (adjust == 0)) |
248 | { |
249 | if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff) |
250 | u.ieee.mantissa1 |= j; |
251 | /* Result is a1 + u.d. */ |
252 | return a1 + u.d; |
253 | } |
254 | else if (__glibc_likely (adjust > 0)) |
255 | { |
256 | if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff) |
257 | u.ieee.mantissa1 |= j; |
258 | /* Result is a1 + u.d, scaled up. */ |
259 | return (a1 + u.d) * 0x1p53; |
260 | } |
261 | else |
262 | { |
263 | /* If a1 + u.d is exact, the only rounding happens during |
264 | scaling down. */ |
265 | if (j == 0) |
266 | return v.d * 0x1p-108; |
267 | /* If result rounded to zero is not subnormal, no double |
268 | rounding will occur. */ |
269 | if (v.ieee.exponent > 108) |
270 | return (a1 + u.d) * 0x1p-108; |
271 | /* If v.d * 0x1p-108 with round to zero is a subnormal above |
272 | or equal to DBL_MIN / 2, then v.d * 0x1p-108 shifts mantissa |
273 | down just by 1 bit, which means v.ieee.mantissa1 |= j would |
274 | change the round bit, not sticky or guard bit. |
275 | v.d * 0x1p-108 never normalizes by shifting up, |
276 | so round bit plus sticky bit should be already enough |
277 | for proper rounding. */ |
278 | if (v.ieee.exponent == 108) |
279 | { |
280 | /* If the exponent would be in the normal range when |
281 | rounding to normal precision with unbounded exponent |
282 | range, the exact result is known and spurious underflows |
283 | must be avoided on systems detecting tininess after |
284 | rounding. */ |
285 | if (TININESS_AFTER_ROUNDING) |
286 | { |
287 | w.d = a1 + u.d; |
288 | if (w.ieee.exponent == 109) |
289 | return w.d * 0x1p-108; |
290 | } |
291 | /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding, |
292 | v.ieee.mantissa1 & 1 is the round bit and j is our sticky |
293 | bit. */ |
294 | w.d = 0.0; |
295 | w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j; |
296 | w.ieee.negative = v.ieee.negative; |
297 | v.ieee.mantissa1 &= ~3U; |
298 | v.d *= 0x1p-108; |
299 | w.d *= 0x1p-2; |
300 | return v.d + w.d; |
301 | } |
302 | v.ieee.mantissa1 |= j; |
303 | return v.d * 0x1p-108; |
304 | } |
305 | #endif /* ! USE_FMA_BUILTIN */ |
306 | } |
307 | #ifndef __fma |
308 | libm_alias_double (__fma, fma) |
309 | libm_alias_double_narrow (__fma, fma) |
310 | #endif |
311 | |