1 | /* Copyright (C) 1991-2023 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | |
4 | The GNU C Library is free software; you can redistribute it and/or |
5 | modify it under the terms of the GNU Lesser General Public |
6 | License as published by the Free Software Foundation; either |
7 | version 2.1 of the License, or (at your option) any later version. |
8 | |
9 | The GNU C Library is distributed in the hope that it will be useful, |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 | Lesser General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU Lesser General Public |
15 | License along with the GNU C Library; if not, see |
16 | <https://www.gnu.org/licenses/>. */ |
17 | |
18 | /* If you consider tuning this algorithm, you should consult first: |
19 | Engineering a sort function; Jon Bentley and M. Douglas McIlroy; |
20 | Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */ |
21 | |
22 | #include <alloca.h> |
23 | #include <limits.h> |
24 | #include <stdlib.h> |
25 | #include <string.h> |
26 | |
27 | /* Byte-wise swap two items of size SIZE. */ |
28 | #define SWAP(a, b, size) \ |
29 | do \ |
30 | { \ |
31 | size_t __size = (size); \ |
32 | char *__a = (a), *__b = (b); \ |
33 | do \ |
34 | { \ |
35 | char __tmp = *__a; \ |
36 | *__a++ = *__b; \ |
37 | *__b++ = __tmp; \ |
38 | } while (--__size > 0); \ |
39 | } while (0) |
40 | |
41 | /* Discontinue quicksort algorithm when partition gets below this size. |
42 | This particular magic number was chosen to work best on a Sun 4/260. */ |
43 | #define MAX_THRESH 4 |
44 | |
45 | /* Stack node declarations used to store unfulfilled partition obligations. */ |
46 | typedef struct |
47 | { |
48 | char *lo; |
49 | char *hi; |
50 | } stack_node; |
51 | |
52 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ |
53 | /* The stack needs log (total_elements) entries (we could even subtract |
54 | log(MAX_THRESH)). Since total_elements has type size_t, we get as |
55 | upper bound for log (total_elements): |
56 | bits per byte (CHAR_BIT) * sizeof(size_t). */ |
57 | #define STACK_SIZE (CHAR_BIT * sizeof (size_t)) |
58 | #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top)) |
59 | #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi))) |
60 | #define STACK_NOT_EMPTY (stack < top) |
61 | |
62 | |
63 | /* Order size using quicksort. This implementation incorporates |
64 | four optimizations discussed in Sedgewick: |
65 | |
66 | 1. Non-recursive, using an explicit stack of pointer that store the |
67 | next array partition to sort. To save time, this maximum amount |
68 | of space required to store an array of SIZE_MAX is allocated on the |
69 | stack. Assuming a 32-bit (64 bit) integer for size_t, this needs |
70 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). |
71 | Pretty cheap, actually. |
72 | |
73 | 2. Chose the pivot element using a median-of-three decision tree. |
74 | This reduces the probability of selecting a bad pivot value and |
75 | eliminates certain extraneous comparisons. |
76 | |
77 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving |
78 | insertion sort to order the MAX_THRESH items within each partition. |
79 | This is a big win, since insertion sort is faster for small, mostly |
80 | sorted array segments. |
81 | |
82 | 4. The larger of the two sub-partitions is always pushed onto the |
83 | stack first, with the algorithm then concentrating on the |
84 | smaller partition. This *guarantees* no more than log (total_elems) |
85 | stack size is needed (actually O(1) in this case)! */ |
86 | |
87 | void |
88 | _quicksort (void *const pbase, size_t total_elems, size_t size, |
89 | __compar_d_fn_t cmp, void *arg) |
90 | { |
91 | char *base_ptr = (char *) pbase; |
92 | |
93 | const size_t max_thresh = MAX_THRESH * size; |
94 | |
95 | if (total_elems == 0) |
96 | /* Avoid lossage with unsigned arithmetic below. */ |
97 | return; |
98 | |
99 | if (total_elems > MAX_THRESH) |
100 | { |
101 | char *lo = base_ptr; |
102 | char *hi = &lo[size * (total_elems - 1)]; |
103 | stack_node stack[STACK_SIZE]; |
104 | stack_node *top = stack; |
105 | |
106 | PUSH (NULL, NULL); |
107 | |
108 | while (STACK_NOT_EMPTY) |
109 | { |
110 | char *left_ptr; |
111 | char *right_ptr; |
112 | |
113 | /* Select median value from among LO, MID, and HI. Rearrange |
114 | LO and HI so the three values are sorted. This lowers the |
115 | probability of picking a pathological pivot value and |
116 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in |
117 | the while loops. */ |
118 | |
119 | char *mid = lo + size * ((hi - lo) / size >> 1); |
120 | |
121 | if ((*cmp) ((void *) mid, (void *) lo, arg) < 0) |
122 | SWAP (mid, lo, size); |
123 | if ((*cmp) ((void *) hi, (void *) mid, arg) < 0) |
124 | SWAP (mid, hi, size); |
125 | else |
126 | goto jump_over; |
127 | if ((*cmp) ((void *) mid, (void *) lo, arg) < 0) |
128 | SWAP (mid, lo, size); |
129 | jump_over:; |
130 | |
131 | left_ptr = lo + size; |
132 | right_ptr = hi - size; |
133 | |
134 | /* Here's the famous ``collapse the walls'' section of quicksort. |
135 | Gotta like those tight inner loops! They are the main reason |
136 | that this algorithm runs much faster than others. */ |
137 | do |
138 | { |
139 | while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0) |
140 | left_ptr += size; |
141 | |
142 | while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0) |
143 | right_ptr -= size; |
144 | |
145 | if (left_ptr < right_ptr) |
146 | { |
147 | SWAP (left_ptr, right_ptr, size); |
148 | if (mid == left_ptr) |
149 | mid = right_ptr; |
150 | else if (mid == right_ptr) |
151 | mid = left_ptr; |
152 | left_ptr += size; |
153 | right_ptr -= size; |
154 | } |
155 | else if (left_ptr == right_ptr) |
156 | { |
157 | left_ptr += size; |
158 | right_ptr -= size; |
159 | break; |
160 | } |
161 | } |
162 | while (left_ptr <= right_ptr); |
163 | |
164 | /* Set up pointers for next iteration. First determine whether |
165 | left and right partitions are below the threshold size. If so, |
166 | ignore one or both. Otherwise, push the larger partition's |
167 | bounds on the stack and continue sorting the smaller one. */ |
168 | |
169 | if ((size_t) (right_ptr - lo) <= max_thresh) |
170 | { |
171 | if ((size_t) (hi - left_ptr) <= max_thresh) |
172 | /* Ignore both small partitions. */ |
173 | POP (lo, hi); |
174 | else |
175 | /* Ignore small left partition. */ |
176 | lo = left_ptr; |
177 | } |
178 | else if ((size_t) (hi - left_ptr) <= max_thresh) |
179 | /* Ignore small right partition. */ |
180 | hi = right_ptr; |
181 | else if ((right_ptr - lo) > (hi - left_ptr)) |
182 | { |
183 | /* Push larger left partition indices. */ |
184 | PUSH (lo, right_ptr); |
185 | lo = left_ptr; |
186 | } |
187 | else |
188 | { |
189 | /* Push larger right partition indices. */ |
190 | PUSH (left_ptr, hi); |
191 | hi = right_ptr; |
192 | } |
193 | } |
194 | } |
195 | |
196 | /* Once the BASE_PTR array is partially sorted by quicksort the rest |
197 | is completely sorted using insertion sort, since this is efficient |
198 | for partitions below MAX_THRESH size. BASE_PTR points to the beginning |
199 | of the array to sort, and END_PTR points at the very last element in |
200 | the array (*not* one beyond it!). */ |
201 | |
202 | #define min(x, y) ((x) < (y) ? (x) : (y)) |
203 | |
204 | { |
205 | char *const end_ptr = &base_ptr[size * (total_elems - 1)]; |
206 | char *tmp_ptr = base_ptr; |
207 | char *thresh = min(end_ptr, base_ptr + max_thresh); |
208 | char *run_ptr; |
209 | |
210 | /* Find smallest element in first threshold and place it at the |
211 | array's beginning. This is the smallest array element, |
212 | and the operation speeds up insertion sort's inner loop. */ |
213 | |
214 | for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) |
215 | if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0) |
216 | tmp_ptr = run_ptr; |
217 | |
218 | if (tmp_ptr != base_ptr) |
219 | SWAP (tmp_ptr, base_ptr, size); |
220 | |
221 | /* Insertion sort, running from left-hand-side up to right-hand-side. */ |
222 | |
223 | run_ptr = base_ptr + size; |
224 | while ((run_ptr += size) <= end_ptr) |
225 | { |
226 | tmp_ptr = run_ptr - size; |
227 | while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0) |
228 | tmp_ptr -= size; |
229 | |
230 | tmp_ptr += size; |
231 | if (tmp_ptr != run_ptr) |
232 | { |
233 | char *trav; |
234 | |
235 | trav = run_ptr + size; |
236 | while (--trav >= run_ptr) |
237 | { |
238 | char c = *trav; |
239 | char *hi, *lo; |
240 | |
241 | for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) |
242 | *hi = *lo; |
243 | *hi = c; |
244 | } |
245 | } |
246 | } |
247 | } |
248 | } |
249 | |