1 | /* mpn_mul_n -- Multiply two natural numbers of length n. |
2 | |
3 | Copyright (C) 1991-2023 Free Software Foundation, Inc. |
4 | |
5 | This file is part of the GNU MP Library. |
6 | |
7 | The GNU MP Library is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU Lesser General Public License as published by |
9 | the Free Software Foundation; either version 2.1 of the License, or (at your |
10 | option) any later version. |
11 | |
12 | The GNU MP Library is distributed in the hope that it will be useful, but |
13 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
14 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
15 | License for more details. |
16 | |
17 | You should have received a copy of the GNU Lesser General Public License |
18 | along with the GNU MP Library; see the file COPYING.LIB. If not, see |
19 | <https://www.gnu.org/licenses/>. */ |
20 | |
21 | #include <gmp.h> |
22 | #include "gmp-impl.h" |
23 | |
24 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), |
25 | both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are |
26 | always stored. Return the most significant limb. |
27 | |
28 | Argument constraints: |
29 | 1. PRODP != UP and PRODP != VP, i.e. the destination |
30 | must be distinct from the multiplier and the multiplicand. */ |
31 | |
32 | /* If KARATSUBA_THRESHOLD is not already defined, define it to a |
33 | value which is good on most machines. */ |
34 | #ifndef KARATSUBA_THRESHOLD |
35 | #define KARATSUBA_THRESHOLD 32 |
36 | #endif |
37 | |
38 | /* The code can't handle KARATSUBA_THRESHOLD smaller than 2. */ |
39 | #if KARATSUBA_THRESHOLD < 2 |
40 | #undef KARATSUBA_THRESHOLD |
41 | #define KARATSUBA_THRESHOLD 2 |
42 | #endif |
43 | |
44 | /* Handle simple cases with traditional multiplication. |
45 | |
46 | This is the most critical code of multiplication. All multiplies rely |
47 | on this, both small and huge. Small ones arrive here immediately. Huge |
48 | ones arrive here as this is the base case for Karatsuba's recursive |
49 | algorithm below. */ |
50 | |
51 | void |
52 | impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) |
53 | { |
54 | mp_size_t i; |
55 | mp_limb_t cy_limb; |
56 | mp_limb_t v_limb; |
57 | |
58 | /* Multiply by the first limb in V separately, as the result can be |
59 | stored (not added) to PROD. We also avoid a loop for zeroing. */ |
60 | v_limb = vp[0]; |
61 | if (v_limb <= 1) |
62 | { |
63 | if (v_limb == 1) |
64 | MPN_COPY (prodp, up, size); |
65 | else |
66 | MPN_ZERO (prodp, size); |
67 | cy_limb = 0; |
68 | } |
69 | else |
70 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); |
71 | |
72 | prodp[size] = cy_limb; |
73 | prodp++; |
74 | |
75 | /* For each iteration in the outer loop, multiply one limb from |
76 | U with one limb from V, and add it to PROD. */ |
77 | for (i = 1; i < size; i++) |
78 | { |
79 | v_limb = vp[i]; |
80 | if (v_limb <= 1) |
81 | { |
82 | cy_limb = 0; |
83 | if (v_limb == 1) |
84 | cy_limb = mpn_add_n (prodp, prodp, up, size); |
85 | } |
86 | else |
87 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); |
88 | |
89 | prodp[size] = cy_limb; |
90 | prodp++; |
91 | } |
92 | } |
93 | |
94 | void |
95 | impn_mul_n (mp_ptr prodp, |
96 | mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace) |
97 | { |
98 | if ((size & 1) != 0) |
99 | { |
100 | /* The size is odd, the code code below doesn't handle that. |
101 | Multiply the least significant (size - 1) limbs with a recursive |
102 | call, and handle the most significant limb of S1 and S2 |
103 | separately. */ |
104 | /* A slightly faster way to do this would be to make the Karatsuba |
105 | code below behave as if the size were even, and let it check for |
106 | odd size in the end. I.e., in essence move this code to the end. |
107 | Doing so would save us a recursive call, and potentially make the |
108 | stack grow a lot less. */ |
109 | |
110 | mp_size_t esize = size - 1; /* even size */ |
111 | mp_limb_t cy_limb; |
112 | |
113 | MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace); |
114 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]); |
115 | prodp[esize + esize] = cy_limb; |
116 | cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]); |
117 | |
118 | prodp[esize + size] = cy_limb; |
119 | } |
120 | else |
121 | { |
122 | /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. |
123 | |
124 | Split U in two pieces, U1 and U0, such that |
125 | U = U0 + U1*(B**n), |
126 | and V in V1 and V0, such that |
127 | V = V0 + V1*(B**n). |
128 | |
129 | UV is then computed recursively using the identity |
130 | |
131 | 2n n n n |
132 | UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V |
133 | 1 1 1 0 0 1 0 0 |
134 | |
135 | Where B = 2**BITS_PER_MP_LIMB. */ |
136 | |
137 | mp_size_t hsize = size >> 1; |
138 | mp_limb_t cy; |
139 | int negflg; |
140 | |
141 | /*** Product H. ________________ ________________ |
142 | |_____U1 x V1____||____U0 x V0_____| */ |
143 | /* Put result in upper part of PROD and pass low part of TSPACE |
144 | as new TSPACE. */ |
145 | MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace); |
146 | |
147 | /*** Product M. ________________ |
148 | |_(U1-U0)(V0-V1)_| */ |
149 | if (mpn_cmp (up + hsize, up, hsize) >= 0) |
150 | { |
151 | mpn_sub_n (prodp, up + hsize, up, hsize); |
152 | negflg = 0; |
153 | } |
154 | else |
155 | { |
156 | mpn_sub_n (prodp, up, up + hsize, hsize); |
157 | negflg = 1; |
158 | } |
159 | if (mpn_cmp (vp + hsize, vp, hsize) >= 0) |
160 | { |
161 | mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize); |
162 | negflg ^= 1; |
163 | } |
164 | else |
165 | { |
166 | mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize); |
167 | /* No change of NEGFLG. */ |
168 | } |
169 | /* Read temporary operands from low part of PROD. |
170 | Put result in low part of TSPACE using upper part of TSPACE |
171 | as new TSPACE. */ |
172 | MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size); |
173 | |
174 | /*** Add/copy product H. */ |
175 | MPN_COPY (prodp + hsize, prodp + size, hsize); |
176 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); |
177 | |
178 | /*** Add product M (if NEGFLG M is a negative number). */ |
179 | if (negflg) |
180 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); |
181 | else |
182 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); |
183 | |
184 | /*** Product L. ________________ ________________ |
185 | |________________||____U0 x V0_____| */ |
186 | /* Read temporary operands from low part of PROD. |
187 | Put result in low part of TSPACE using upper part of TSPACE |
188 | as new TSPACE. */ |
189 | MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size); |
190 | |
191 | /*** Add/copy Product L (twice). */ |
192 | |
193 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); |
194 | if (cy) |
195 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); |
196 | |
197 | MPN_COPY (prodp, tspace, hsize); |
198 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); |
199 | if (cy) |
200 | mpn_add_1 (prodp + size, prodp + size, size, 1); |
201 | } |
202 | } |
203 | |
204 | void |
205 | impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size) |
206 | { |
207 | mp_size_t i; |
208 | mp_limb_t cy_limb; |
209 | mp_limb_t v_limb; |
210 | |
211 | /* Multiply by the first limb in V separately, as the result can be |
212 | stored (not added) to PROD. We also avoid a loop for zeroing. */ |
213 | v_limb = up[0]; |
214 | if (v_limb <= 1) |
215 | { |
216 | if (v_limb == 1) |
217 | MPN_COPY (prodp, up, size); |
218 | else |
219 | MPN_ZERO (prodp, size); |
220 | cy_limb = 0; |
221 | } |
222 | else |
223 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); |
224 | |
225 | prodp[size] = cy_limb; |
226 | prodp++; |
227 | |
228 | /* For each iteration in the outer loop, multiply one limb from |
229 | U with one limb from V, and add it to PROD. */ |
230 | for (i = 1; i < size; i++) |
231 | { |
232 | v_limb = up[i]; |
233 | if (v_limb <= 1) |
234 | { |
235 | cy_limb = 0; |
236 | if (v_limb == 1) |
237 | cy_limb = mpn_add_n (prodp, prodp, up, size); |
238 | } |
239 | else |
240 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); |
241 | |
242 | prodp[size] = cy_limb; |
243 | prodp++; |
244 | } |
245 | } |
246 | |
247 | void |
248 | impn_sqr_n (mp_ptr prodp, |
249 | mp_srcptr up, mp_size_t size, mp_ptr tspace) |
250 | { |
251 | if ((size & 1) != 0) |
252 | { |
253 | /* The size is odd, the code code below doesn't handle that. |
254 | Multiply the least significant (size - 1) limbs with a recursive |
255 | call, and handle the most significant limb of S1 and S2 |
256 | separately. */ |
257 | /* A slightly faster way to do this would be to make the Karatsuba |
258 | code below behave as if the size were even, and let it check for |
259 | odd size in the end. I.e., in essence move this code to the end. |
260 | Doing so would save us a recursive call, and potentially make the |
261 | stack grow a lot less. */ |
262 | |
263 | mp_size_t esize = size - 1; /* even size */ |
264 | mp_limb_t cy_limb; |
265 | |
266 | MPN_SQR_N_RECURSE (prodp, up, esize, tspace); |
267 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]); |
268 | prodp[esize + esize] = cy_limb; |
269 | cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]); |
270 | |
271 | prodp[esize + size] = cy_limb; |
272 | } |
273 | else |
274 | { |
275 | mp_size_t hsize = size >> 1; |
276 | mp_limb_t cy; |
277 | |
278 | /*** Product H. ________________ ________________ |
279 | |_____U1 x U1____||____U0 x U0_____| */ |
280 | /* Put result in upper part of PROD and pass low part of TSPACE |
281 | as new TSPACE. */ |
282 | MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace); |
283 | |
284 | /*** Product M. ________________ |
285 | |_(U1-U0)(U0-U1)_| */ |
286 | if (mpn_cmp (up + hsize, up, hsize) >= 0) |
287 | { |
288 | mpn_sub_n (prodp, up + hsize, up, hsize); |
289 | } |
290 | else |
291 | { |
292 | mpn_sub_n (prodp, up, up + hsize, hsize); |
293 | } |
294 | |
295 | /* Read temporary operands from low part of PROD. |
296 | Put result in low part of TSPACE using upper part of TSPACE |
297 | as new TSPACE. */ |
298 | MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size); |
299 | |
300 | /*** Add/copy product H. */ |
301 | MPN_COPY (prodp + hsize, prodp + size, hsize); |
302 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); |
303 | |
304 | /*** Add product M (if NEGFLG M is a negative number). */ |
305 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); |
306 | |
307 | /*** Product L. ________________ ________________ |
308 | |________________||____U0 x U0_____| */ |
309 | /* Read temporary operands from low part of PROD. |
310 | Put result in low part of TSPACE using upper part of TSPACE |
311 | as new TSPACE. */ |
312 | MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size); |
313 | |
314 | /*** Add/copy Product L (twice). */ |
315 | |
316 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); |
317 | if (cy) |
318 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); |
319 | |
320 | MPN_COPY (prodp, tspace, hsize); |
321 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); |
322 | if (cy) |
323 | mpn_add_1 (prodp + size, prodp + size, size, 1); |
324 | } |
325 | } |
326 | |
327 | /* This should be made into an inline function in gmp.h. */ |
328 | void |
329 | mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) |
330 | { |
331 | TMP_DECL (marker); |
332 | TMP_MARK (marker); |
333 | if (up == vp) |
334 | { |
335 | if (size < KARATSUBA_THRESHOLD) |
336 | { |
337 | impn_sqr_n_basecase (prodp, up, size); |
338 | } |
339 | else |
340 | { |
341 | mp_ptr tspace; |
342 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); |
343 | impn_sqr_n (prodp, up, size, tspace); |
344 | } |
345 | } |
346 | else |
347 | { |
348 | if (size < KARATSUBA_THRESHOLD) |
349 | { |
350 | impn_mul_n_basecase (prodp, up, vp, size); |
351 | } |
352 | else |
353 | { |
354 | mp_ptr tspace; |
355 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); |
356 | impn_mul_n (prodp, up, vp, size, tspace); |
357 | } |
358 | } |
359 | TMP_FREE (marker); |
360 | } |
361 | |