1 | /* Extended regular expression matching and search library. |
2 | Copyright (C) 2002-2023 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, |
21 | Idx n); |
22 | static void match_ctx_clean (re_match_context_t *mctx); |
23 | static void match_ctx_free (re_match_context_t *cache); |
24 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, |
25 | Idx str_idx, Idx from, Idx to); |
26 | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx); |
27 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, |
28 | Idx str_idx); |
29 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, |
30 | Idx node, Idx str_idx); |
31 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
32 | re_dfastate_t **limited_sts, Idx last_node, |
33 | Idx last_str_idx); |
34 | static reg_errcode_t re_search_internal (const regex_t *preg, |
35 | const char *string, Idx length, |
36 | Idx start, Idx last_start, Idx stop, |
37 | size_t nmatch, regmatch_t pmatch[], |
38 | int eflags); |
39 | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, |
40 | const char *string1, Idx length1, |
41 | const char *string2, Idx length2, |
42 | Idx start, regoff_t range, |
43 | struct re_registers *regs, |
44 | Idx stop, bool ret_len); |
45 | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, |
46 | const char *string, Idx length, Idx start, |
47 | regoff_t range, Idx stop, |
48 | struct re_registers *regs, |
49 | bool ret_len); |
50 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, |
51 | Idx nregs, int regs_allocated); |
52 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx); |
53 | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, |
54 | Idx *p_match_first); |
55 | static Idx check_halt_state_context (const re_match_context_t *mctx, |
56 | const re_dfastate_t *state, Idx idx); |
57 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
58 | regmatch_t *prev_idx_match, Idx cur_node, |
59 | Idx cur_idx, Idx nmatch); |
60 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, |
61 | Idx str_idx, Idx dest_node, Idx nregs, |
62 | regmatch_t *regs, regmatch_t *prevregs, |
63 | re_node_set *eps_via_nodes); |
64 | static reg_errcode_t set_regs (const regex_t *preg, |
65 | const re_match_context_t *mctx, |
66 | size_t nmatch, regmatch_t *pmatch, |
67 | bool fl_backtrack); |
68 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs); |
69 | |
70 | #ifdef RE_ENABLE_I18N |
71 | static int sift_states_iter_mb (const re_match_context_t *mctx, |
72 | re_sift_context_t *sctx, |
73 | Idx node_idx, Idx str_idx, Idx max_str_idx); |
74 | #endif /* RE_ENABLE_I18N */ |
75 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, |
76 | re_sift_context_t *sctx); |
77 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, |
78 | re_sift_context_t *sctx, Idx str_idx, |
79 | re_node_set *cur_dest); |
80 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, |
81 | re_sift_context_t *sctx, |
82 | Idx str_idx, |
83 | re_node_set *dest_nodes); |
84 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, |
85 | re_node_set *dest_nodes, |
86 | const re_node_set *candidates); |
87 | static bool check_dst_limits (const re_match_context_t *mctx, |
88 | const re_node_set *limits, |
89 | Idx dst_node, Idx dst_idx, Idx src_node, |
90 | Idx src_idx); |
91 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, |
92 | int boundaries, Idx subexp_idx, |
93 | Idx from_node, Idx bkref_idx); |
94 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, |
95 | Idx limit, Idx subexp_idx, |
96 | Idx node, Idx str_idx, |
97 | Idx bkref_idx); |
98 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, |
99 | re_node_set *dest_nodes, |
100 | const re_node_set *candidates, |
101 | re_node_set *limits, |
102 | struct re_backref_cache_entry *bkref_ents, |
103 | Idx str_idx); |
104 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, |
105 | re_sift_context_t *sctx, |
106 | Idx str_idx, const re_node_set *candidates); |
107 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, |
108 | re_dfastate_t **dst, |
109 | re_dfastate_t **src, Idx num); |
110 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, |
111 | re_match_context_t *mctx); |
112 | static re_dfastate_t *transit_state (reg_errcode_t *err, |
113 | re_match_context_t *mctx, |
114 | re_dfastate_t *state); |
115 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, |
116 | re_match_context_t *mctx, |
117 | re_dfastate_t *next_state); |
118 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, |
119 | re_node_set *cur_nodes, |
120 | Idx str_idx); |
121 | #if 0 |
122 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, |
123 | re_match_context_t *mctx, |
124 | re_dfastate_t *pstate); |
125 | #endif |
126 | #ifdef RE_ENABLE_I18N |
127 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, |
128 | re_dfastate_t *pstate); |
129 | #endif /* RE_ENABLE_I18N */ |
130 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, |
131 | const re_node_set *nodes); |
132 | static reg_errcode_t get_subexp (re_match_context_t *mctx, |
133 | Idx bkref_node, Idx bkref_str_idx); |
134 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, |
135 | const re_sub_match_top_t *sub_top, |
136 | re_sub_match_last_t *sub_last, |
137 | Idx bkref_node, Idx bkref_str); |
138 | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
139 | Idx subexp_idx, int type); |
140 | static reg_errcode_t check_arrival (re_match_context_t *mctx, |
141 | state_array_t *path, Idx top_node, |
142 | Idx top_str, Idx last_node, Idx last_str, |
143 | int type); |
144 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, |
145 | Idx str_idx, |
146 | re_node_set *cur_nodes, |
147 | re_node_set *next_nodes); |
148 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, |
149 | re_node_set *cur_nodes, |
150 | Idx ex_subexp, int type); |
151 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, |
152 | re_node_set *dst_nodes, |
153 | Idx target, Idx ex_subexp, |
154 | int type); |
155 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, |
156 | re_node_set *cur_nodes, Idx cur_str, |
157 | Idx subexp_num, int type); |
158 | static bool build_trtable (const re_dfa_t *dfa, re_dfastate_t *state); |
159 | #ifdef RE_ENABLE_I18N |
160 | static int check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
161 | const re_string_t *input, Idx idx); |
162 | # ifdef _LIBC |
163 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, |
164 | size_t name_len); |
165 | # endif /* _LIBC */ |
166 | #endif /* RE_ENABLE_I18N */ |
167 | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, |
168 | const re_dfastate_t *state, |
169 | re_node_set *states_node, |
170 | bitset_t *states_ch); |
171 | static bool check_node_accept (const re_match_context_t *mctx, |
172 | const re_token_t *node, Idx idx); |
173 | static reg_errcode_t extend_buffers (re_match_context_t *mctx, int min_len); |
174 | |
175 | /* Entry point for POSIX code. */ |
176 | |
177 | /* regexec searches for a given pattern, specified by PREG, in the |
178 | string STRING. |
179 | |
180 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
181 | 'regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
182 | least NMATCH elements, and we set them to the offsets of the |
183 | corresponding matched substrings. |
184 | |
185 | EFLAGS specifies "execution flags" which affect matching: if |
186 | REG_NOTBOL is set, then ^ does not match at the beginning of the |
187 | string; if REG_NOTEOL is set, then $ does not match at the end. |
188 | |
189 | Return 0 if a match is found, REG_NOMATCH if not, REG_BADPAT if |
190 | EFLAGS is invalid. */ |
191 | |
192 | int |
193 | regexec (const regex_t *__restrict preg, const char *__restrict string, |
194 | size_t nmatch, regmatch_t pmatch[_REGEX_NELTS (nmatch)], int eflags) |
195 | { |
196 | reg_errcode_t err; |
197 | Idx start, length; |
198 | re_dfa_t *dfa = preg->buffer; |
199 | |
200 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) |
201 | return REG_BADPAT; |
202 | |
203 | if (eflags & REG_STARTEND) |
204 | { |
205 | start = pmatch[0].rm_so; |
206 | length = pmatch[0].rm_eo; |
207 | } |
208 | else |
209 | { |
210 | start = 0; |
211 | length = strlen (string); |
212 | } |
213 | |
214 | lock_lock (dfa->lock); |
215 | if (preg->no_sub) |
216 | err = re_search_internal (preg, string, length, start, length, |
217 | length, 0, NULL, eflags); |
218 | else |
219 | err = re_search_internal (preg, string, length, start, length, |
220 | length, nmatch, pmatch, eflags); |
221 | lock_unlock (dfa->lock); |
222 | return err != REG_NOERROR; |
223 | } |
224 | |
225 | #ifdef _LIBC |
226 | libc_hidden_def (__regexec) |
227 | |
228 | # include <shlib-compat.h> |
229 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); |
230 | |
231 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) |
232 | __typeof__ (__regexec) __compat_regexec; |
233 | |
234 | int |
235 | attribute_compat_text_section |
236 | __compat_regexec (const regex_t *__restrict preg, |
237 | const char *__restrict string, size_t nmatch, |
238 | regmatch_t pmatch[_REGEX_NELTS (nmatch)], int eflags) |
239 | { |
240 | return regexec (preg, string, nmatch, pmatch, |
241 | eflags & (REG_NOTBOL | REG_NOTEOL)); |
242 | } |
243 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); |
244 | # endif |
245 | #endif |
246 | |
247 | /* Entry points for GNU code. */ |
248 | |
249 | /* re_match, re_search, re_match_2, re_search_2 |
250 | |
251 | The former two functions operate on STRING with length LENGTH, |
252 | while the later two operate on concatenation of STRING1 and STRING2 |
253 | with lengths LENGTH1 and LENGTH2, respectively. |
254 | |
255 | re_match() matches the compiled pattern in BUFP against the string, |
256 | starting at index START. |
257 | |
258 | re_search() first tries matching at index START, then it tries to match |
259 | starting from index START + 1, and so on. The last start position tried |
260 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same |
261 | way as re_match().) |
262 | |
263 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding |
264 | the first STOP characters of the concatenation of the strings should be |
265 | concerned. |
266 | |
267 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match |
268 | and all groups is stored in REGS. (For the "_2" variants, the offsets are |
269 | computed relative to the concatenation, not relative to the individual |
270 | strings.) |
271 | |
272 | On success, re_match* functions return the length of the match, re_search* |
273 | return the position of the start of the match. They return -1 on |
274 | match failure, -2 on error. */ |
275 | |
276 | regoff_t |
277 | re_match (struct re_pattern_buffer *bufp, const char *string, Idx length, |
278 | Idx start, struct re_registers *regs) |
279 | { |
280 | return re_search_stub (bufp, string, length, start, 0, length, regs, true); |
281 | } |
282 | #ifdef _LIBC |
283 | weak_alias (__re_match, re_match) |
284 | #endif |
285 | |
286 | regoff_t |
287 | re_search (struct re_pattern_buffer *bufp, const char *string, Idx length, |
288 | Idx start, regoff_t range, struct re_registers *regs) |
289 | { |
290 | return re_search_stub (bufp, string, length, start, range, length, regs, |
291 | false); |
292 | } |
293 | #ifdef _LIBC |
294 | weak_alias (__re_search, re_search) |
295 | #endif |
296 | |
297 | regoff_t |
298 | re_match_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
299 | const char *string2, Idx length2, Idx start, |
300 | struct re_registers *regs, Idx stop) |
301 | { |
302 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
303 | start, 0, regs, stop, true); |
304 | } |
305 | #ifdef _LIBC |
306 | weak_alias (__re_match_2, re_match_2) |
307 | #endif |
308 | |
309 | regoff_t |
310 | re_search_2 (struct re_pattern_buffer *bufp, const char *string1, Idx length1, |
311 | const char *string2, Idx length2, Idx start, regoff_t range, |
312 | struct re_registers *regs, Idx stop) |
313 | { |
314 | return re_search_2_stub (bufp, string1, length1, string2, length2, |
315 | start, range, regs, stop, false); |
316 | } |
317 | #ifdef _LIBC |
318 | weak_alias (__re_search_2, re_search_2) |
319 | #endif |
320 | |
321 | static regoff_t |
322 | re_search_2_stub (struct re_pattern_buffer *bufp, const char *string1, |
323 | Idx length1, const char *string2, Idx length2, Idx start, |
324 | regoff_t range, struct re_registers *regs, |
325 | Idx stop, bool ret_len) |
326 | { |
327 | const char *str; |
328 | regoff_t rval; |
329 | Idx len; |
330 | char *s = NULL; |
331 | |
332 | if (__glibc_unlikely ((length1 < 0 || length2 < 0 || stop < 0 |
333 | || INT_ADD_WRAPV (length1, length2, &len)))) |
334 | return -2; |
335 | |
336 | /* Concatenate the strings. */ |
337 | if (length2 > 0) |
338 | if (length1 > 0) |
339 | { |
340 | s = re_malloc (char, len); |
341 | |
342 | if (__glibc_unlikely (s == NULL)) |
343 | return -2; |
344 | #ifdef _LIBC |
345 | memcpy (__mempcpy (s, string1, length1), string2, length2); |
346 | #else |
347 | memcpy (s, string1, length1); |
348 | memcpy (s + length1, string2, length2); |
349 | #endif |
350 | str = s; |
351 | } |
352 | else |
353 | str = string2; |
354 | else |
355 | str = string1; |
356 | |
357 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, |
358 | ret_len); |
359 | re_free (s); |
360 | return rval; |
361 | } |
362 | |
363 | /* The parameters have the same meaning as those of re_search. |
364 | Additional parameters: |
365 | If RET_LEN is true the length of the match is returned (re_match style); |
366 | otherwise the position of the match is returned. */ |
367 | |
368 | static regoff_t |
369 | re_search_stub (struct re_pattern_buffer *bufp, const char *string, Idx length, |
370 | Idx start, regoff_t range, Idx stop, struct re_registers *regs, |
371 | bool ret_len) |
372 | { |
373 | reg_errcode_t result; |
374 | regmatch_t *pmatch; |
375 | Idx nregs; |
376 | regoff_t rval; |
377 | int eflags = 0; |
378 | re_dfa_t *dfa = bufp->buffer; |
379 | Idx last_start = start + range; |
380 | |
381 | /* Check for out-of-range. */ |
382 | if (__glibc_unlikely (start < 0 || start > length)) |
383 | return -1; |
384 | if (__glibc_unlikely (length < last_start |
385 | || (0 <= range && last_start < start))) |
386 | last_start = length; |
387 | else if (__glibc_unlikely (last_start < 0 |
388 | || (range < 0 && start <= last_start))) |
389 | last_start = 0; |
390 | |
391 | lock_lock (dfa->lock); |
392 | |
393 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; |
394 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; |
395 | |
396 | /* Compile fastmap if we haven't yet. */ |
397 | if (start < last_start && bufp->fastmap != NULL && !bufp->fastmap_accurate) |
398 | re_compile_fastmap (bufp); |
399 | |
400 | if (__glibc_unlikely (bufp->no_sub)) |
401 | regs = NULL; |
402 | |
403 | /* We need at least 1 register. */ |
404 | if (regs == NULL) |
405 | nregs = 1; |
406 | else if (__glibc_unlikely (bufp->regs_allocated == REGS_FIXED |
407 | && regs->num_regs <= bufp->re_nsub)) |
408 | { |
409 | nregs = regs->num_regs; |
410 | if (__glibc_unlikely (nregs < 1)) |
411 | { |
412 | /* Nothing can be copied to regs. */ |
413 | regs = NULL; |
414 | nregs = 1; |
415 | } |
416 | } |
417 | else |
418 | nregs = bufp->re_nsub + 1; |
419 | pmatch = re_malloc (regmatch_t, nregs); |
420 | if (__glibc_unlikely (pmatch == NULL)) |
421 | { |
422 | rval = -2; |
423 | goto out; |
424 | } |
425 | |
426 | result = re_search_internal (bufp, string, length, start, last_start, stop, |
427 | nregs, pmatch, eflags); |
428 | |
429 | rval = 0; |
430 | |
431 | /* I hope we needn't fill their regs with -1's when no match was found. */ |
432 | if (result != REG_NOERROR) |
433 | rval = result == REG_NOMATCH ? -1 : -2; |
434 | else if (regs != NULL) |
435 | { |
436 | /* If caller wants register contents data back, copy them. */ |
437 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, |
438 | bufp->regs_allocated); |
439 | if (__glibc_unlikely (bufp->regs_allocated == REGS_UNALLOCATED)) |
440 | rval = -2; |
441 | } |
442 | |
443 | if (__glibc_likely (rval == 0)) |
444 | { |
445 | if (ret_len) |
446 | { |
447 | DEBUG_ASSERT (pmatch[0].rm_so == start); |
448 | rval = pmatch[0].rm_eo - start; |
449 | } |
450 | else |
451 | rval = pmatch[0].rm_so; |
452 | } |
453 | re_free (pmatch); |
454 | out: |
455 | lock_unlock (dfa->lock); |
456 | return rval; |
457 | } |
458 | |
459 | static unsigned |
460 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, |
461 | int regs_allocated) |
462 | { |
463 | int rval = REGS_REALLOCATE; |
464 | Idx i; |
465 | Idx need_regs = nregs + 1; |
466 | /* We need one extra element beyond 'num_regs' for the '-1' marker GNU code |
467 | uses. */ |
468 | |
469 | /* Have the register data arrays been allocated? */ |
470 | if (regs_allocated == REGS_UNALLOCATED) |
471 | { /* No. So allocate them with malloc. */ |
472 | regs->start = re_malloc (regoff_t, need_regs); |
473 | if (__glibc_unlikely (regs->start == NULL)) |
474 | return REGS_UNALLOCATED; |
475 | regs->end = re_malloc (regoff_t, need_regs); |
476 | if (__glibc_unlikely (regs->end == NULL)) |
477 | { |
478 | re_free (regs->start); |
479 | return REGS_UNALLOCATED; |
480 | } |
481 | regs->num_regs = need_regs; |
482 | } |
483 | else if (regs_allocated == REGS_REALLOCATE) |
484 | { /* Yes. If we need more elements than were already |
485 | allocated, reallocate them. If we need fewer, just |
486 | leave it alone. */ |
487 | if (__glibc_unlikely (need_regs > regs->num_regs)) |
488 | { |
489 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); |
490 | regoff_t *new_end; |
491 | if (__glibc_unlikely (new_start == NULL)) |
492 | return REGS_UNALLOCATED; |
493 | new_end = re_realloc (regs->end, regoff_t, need_regs); |
494 | if (__glibc_unlikely (new_end == NULL)) |
495 | { |
496 | re_free (new_start); |
497 | return REGS_UNALLOCATED; |
498 | } |
499 | regs->start = new_start; |
500 | regs->end = new_end; |
501 | regs->num_regs = need_regs; |
502 | } |
503 | } |
504 | else |
505 | { |
506 | DEBUG_ASSERT (regs_allocated == REGS_FIXED); |
507 | /* This function may not be called with REGS_FIXED and nregs too big. */ |
508 | DEBUG_ASSERT (nregs <= regs->num_regs); |
509 | rval = REGS_FIXED; |
510 | } |
511 | |
512 | /* Copy the regs. */ |
513 | for (i = 0; i < nregs; ++i) |
514 | { |
515 | regs->start[i] = pmatch[i].rm_so; |
516 | regs->end[i] = pmatch[i].rm_eo; |
517 | } |
518 | for ( ; i < regs->num_regs; ++i) |
519 | regs->start[i] = regs->end[i] = -1; |
520 | |
521 | return rval; |
522 | } |
523 | |
524 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
525 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
526 | this memory for recording register information. STARTS and ENDS |
527 | must be allocated using the malloc library routine, and must each |
528 | be at least NUM_REGS * sizeof (regoff_t) bytes long. |
529 | |
530 | If NUM_REGS == 0, then subsequent matches should allocate their own |
531 | register data. |
532 | |
533 | Unless this function is called, the first search or match using |
534 | PATTERN_BUFFER will allocate its own register data, without |
535 | freeing the old data. */ |
536 | |
537 | void |
538 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, |
539 | __re_size_t num_regs, regoff_t *starts, regoff_t *ends) |
540 | { |
541 | if (num_regs) |
542 | { |
543 | bufp->regs_allocated = REGS_REALLOCATE; |
544 | regs->num_regs = num_regs; |
545 | regs->start = starts; |
546 | regs->end = ends; |
547 | } |
548 | else |
549 | { |
550 | bufp->regs_allocated = REGS_UNALLOCATED; |
551 | regs->num_regs = 0; |
552 | regs->start = regs->end = NULL; |
553 | } |
554 | } |
555 | #ifdef _LIBC |
556 | weak_alias (__re_set_registers, re_set_registers) |
557 | #endif |
558 | |
559 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
560 | them unless specifically requested. */ |
561 | |
562 | #if defined _REGEX_RE_COMP || defined _LIBC |
563 | int |
564 | # ifdef _LIBC |
565 | weak_function |
566 | # endif |
567 | re_exec (const char *s) |
568 | { |
569 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); |
570 | } |
571 | #endif /* _REGEX_RE_COMP */ |
572 | |
573 | /* Internal entry point. */ |
574 | |
575 | /* Searches for a compiled pattern PREG in the string STRING, whose |
576 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same |
577 | meaning as with regexec. LAST_START is START + RANGE, where |
578 | START and RANGE have the same meaning as with re_search. |
579 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, |
580 | otherwise return the error code. |
581 | Note: We assume front end functions already check ranges. |
582 | (0 <= LAST_START && LAST_START <= LENGTH) */ |
583 | |
584 | static reg_errcode_t |
585 | __attribute_warn_unused_result__ |
586 | re_search_internal (const regex_t *preg, const char *string, Idx length, |
587 | Idx start, Idx last_start, Idx stop, size_t nmatch, |
588 | regmatch_t pmatch[], int eflags) |
589 | { |
590 | reg_errcode_t err; |
591 | const re_dfa_t *dfa = preg->buffer; |
592 | Idx left_lim, right_lim; |
593 | int incr; |
594 | bool fl_longest_match; |
595 | int match_kind; |
596 | Idx match_first; |
597 | Idx match_last = -1; |
598 | Idx ; |
599 | bool sb; |
600 | int ch; |
601 | re_match_context_t mctx = { .dfa = dfa }; |
602 | char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate |
603 | && start != last_start && !preg->can_be_null) |
604 | ? preg->fastmap : NULL); |
605 | RE_TRANSLATE_TYPE t = preg->translate; |
606 | |
607 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; |
608 | nmatch -= extra_nmatch; |
609 | |
610 | /* Check if the DFA haven't been compiled. */ |
611 | if (__glibc_unlikely (preg->used == 0 || dfa->init_state == NULL |
612 | || dfa->init_state_word == NULL |
613 | || dfa->init_state_nl == NULL |
614 | || dfa->init_state_begbuf == NULL)) |
615 | return REG_NOMATCH; |
616 | |
617 | /* We assume front-end functions already check them. */ |
618 | DEBUG_ASSERT (0 <= last_start && last_start <= length); |
619 | |
620 | /* If initial states with non-begbuf contexts have no elements, |
621 | the regex must be anchored. If preg->newline_anchor is set, |
622 | we'll never use init_state_nl, so do not check it. */ |
623 | if (dfa->init_state->nodes.nelem == 0 |
624 | && dfa->init_state_word->nodes.nelem == 0 |
625 | && (dfa->init_state_nl->nodes.nelem == 0 |
626 | || !preg->newline_anchor)) |
627 | { |
628 | if (start != 0 && last_start != 0) |
629 | return REG_NOMATCH; |
630 | start = last_start = 0; |
631 | } |
632 | |
633 | /* We must check the longest matching, if nmatch > 0. */ |
634 | fl_longest_match = (nmatch != 0 || dfa->nbackref); |
635 | |
636 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, |
637 | preg->translate, (preg->syntax & RE_ICASE) != 0, |
638 | dfa); |
639 | if (__glibc_unlikely (err != REG_NOERROR)) |
640 | goto free_return; |
641 | mctx.input.stop = stop; |
642 | mctx.input.raw_stop = stop; |
643 | mctx.input.newline_anchor = preg->newline_anchor; |
644 | |
645 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); |
646 | if (__glibc_unlikely (err != REG_NOERROR)) |
647 | goto free_return; |
648 | |
649 | /* We will log all the DFA states through which the dfa pass, |
650 | if nmatch > 1, or this dfa has "multibyte node", which is a |
651 | back-reference or a node which can accept multibyte character or |
652 | multi character collating element. */ |
653 | if (nmatch > 1 || dfa->has_mb_node) |
654 | { |
655 | /* Avoid overflow. */ |
656 | if (__glibc_unlikely ((MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) |
657 | <= mctx.input.bufs_len))) |
658 | { |
659 | err = REG_ESPACE; |
660 | goto free_return; |
661 | } |
662 | |
663 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); |
664 | if (__glibc_unlikely (mctx.state_log == NULL)) |
665 | { |
666 | err = REG_ESPACE; |
667 | goto free_return; |
668 | } |
669 | } |
670 | |
671 | match_first = start; |
672 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
673 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; |
674 | |
675 | /* Check incrementally whether the input string matches. */ |
676 | incr = (last_start < start) ? -1 : 1; |
677 | left_lim = (last_start < start) ? last_start : start; |
678 | right_lim = (last_start < start) ? start : last_start; |
679 | sb = dfa->mb_cur_max == 1; |
680 | match_kind = |
681 | (fastmap |
682 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) |
683 | | (start <= last_start ? 2 : 0) |
684 | | (t != NULL ? 1 : 0)) |
685 | : 8); |
686 | |
687 | for (;; match_first += incr) |
688 | { |
689 | err = REG_NOMATCH; |
690 | if (match_first < left_lim || right_lim < match_first) |
691 | goto free_return; |
692 | |
693 | /* Advance as rapidly as possible through the string, until we |
694 | find a plausible place to start matching. This may be done |
695 | with varying efficiency, so there are various possibilities: |
696 | only the most common of them are specialized, in order to |
697 | save on code size. We use a switch statement for speed. */ |
698 | switch (match_kind) |
699 | { |
700 | case 8: |
701 | /* No fastmap. */ |
702 | break; |
703 | |
704 | case 7: |
705 | /* Fastmap with single-byte translation, match forward. */ |
706 | while (__glibc_likely (match_first < right_lim) |
707 | && !fastmap[t[(unsigned char) string[match_first]]]) |
708 | ++match_first; |
709 | goto forward_match_found_start_or_reached_end; |
710 | |
711 | case 6: |
712 | /* Fastmap without translation, match forward. */ |
713 | while (__glibc_likely (match_first < right_lim) |
714 | && !fastmap[(unsigned char) string[match_first]]) |
715 | ++match_first; |
716 | |
717 | forward_match_found_start_or_reached_end: |
718 | if (__glibc_unlikely (match_first == right_lim)) |
719 | { |
720 | ch = match_first >= length |
721 | ? 0 : (unsigned char) string[match_first]; |
722 | if (!fastmap[t ? t[ch] : ch]) |
723 | goto free_return; |
724 | } |
725 | break; |
726 | |
727 | case 4: |
728 | case 5: |
729 | /* Fastmap without multi-byte translation, match backwards. */ |
730 | while (match_first >= left_lim) |
731 | { |
732 | ch = match_first >= length |
733 | ? 0 : (unsigned char) string[match_first]; |
734 | if (fastmap[t ? t[ch] : ch]) |
735 | break; |
736 | --match_first; |
737 | } |
738 | if (match_first < left_lim) |
739 | goto free_return; |
740 | break; |
741 | |
742 | default: |
743 | /* In this case, we can't determine easily the current byte, |
744 | since it might be a component byte of a multibyte |
745 | character. Then we use the constructed buffer instead. */ |
746 | for (;;) |
747 | { |
748 | /* If MATCH_FIRST is out of the valid range, reconstruct the |
749 | buffers. */ |
750 | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; |
751 | if (__glibc_unlikely (offset |
752 | >= (__re_size_t) mctx.input.valid_raw_len)) |
753 | { |
754 | err = re_string_reconstruct (&mctx.input, match_first, |
755 | eflags); |
756 | if (__glibc_unlikely (err != REG_NOERROR)) |
757 | goto free_return; |
758 | |
759 | offset = match_first - mctx.input.raw_mbs_idx; |
760 | } |
761 | /* Use buffer byte if OFFSET is in buffer, otherwise '\0'. */ |
762 | ch = (offset < mctx.input.valid_len |
763 | ? re_string_byte_at (&mctx.input, offset) : 0); |
764 | if (fastmap[ch]) |
765 | break; |
766 | match_first += incr; |
767 | if (match_first < left_lim || match_first > right_lim) |
768 | { |
769 | err = REG_NOMATCH; |
770 | goto free_return; |
771 | } |
772 | } |
773 | break; |
774 | } |
775 | |
776 | /* Reconstruct the buffers so that the matcher can assume that |
777 | the matching starts from the beginning of the buffer. */ |
778 | err = re_string_reconstruct (&mctx.input, match_first, eflags); |
779 | if (__glibc_unlikely (err != REG_NOERROR)) |
780 | goto free_return; |
781 | |
782 | #ifdef RE_ENABLE_I18N |
783 | /* Don't consider this char as a possible match start if it part, |
784 | yet isn't the head, of a multibyte character. */ |
785 | if (!sb && !re_string_first_byte (&mctx.input, 0)) |
786 | continue; |
787 | #endif |
788 | |
789 | /* It seems to be appropriate one, then use the matcher. */ |
790 | /* We assume that the matching starts from 0. */ |
791 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; |
792 | match_last = check_matching (&mctx, fl_longest_match, |
793 | start <= last_start ? &match_first : NULL); |
794 | if (match_last != -1) |
795 | { |
796 | if (__glibc_unlikely (match_last == -2)) |
797 | { |
798 | err = REG_ESPACE; |
799 | goto free_return; |
800 | } |
801 | else |
802 | { |
803 | mctx.match_last = match_last; |
804 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) |
805 | { |
806 | re_dfastate_t *pstate = mctx.state_log[match_last]; |
807 | mctx.last_node = check_halt_state_context (&mctx, pstate, |
808 | match_last); |
809 | } |
810 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) |
811 | || dfa->nbackref) |
812 | { |
813 | err = prune_impossible_nodes (&mctx); |
814 | if (err == REG_NOERROR) |
815 | break; |
816 | if (__glibc_unlikely (err != REG_NOMATCH)) |
817 | goto free_return; |
818 | match_last = -1; |
819 | } |
820 | else |
821 | break; /* We found a match. */ |
822 | } |
823 | } |
824 | |
825 | match_ctx_clean (&mctx); |
826 | } |
827 | |
828 | DEBUG_ASSERT (match_last != -1); |
829 | DEBUG_ASSERT (err == REG_NOERROR); |
830 | |
831 | /* Set pmatch[] if we need. */ |
832 | if (nmatch > 0) |
833 | { |
834 | Idx reg_idx; |
835 | |
836 | /* Initialize registers. */ |
837 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) |
838 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; |
839 | |
840 | /* Set the points where matching start/end. */ |
841 | pmatch[0].rm_so = 0; |
842 | pmatch[0].rm_eo = mctx.match_last; |
843 | /* FIXME: This function should fail if mctx.match_last exceeds |
844 | the maximum possible regoff_t value. We need a new error |
845 | code REG_OVERFLOW. */ |
846 | |
847 | if (!preg->no_sub && nmatch > 1) |
848 | { |
849 | err = set_regs (preg, &mctx, nmatch, pmatch, |
850 | dfa->has_plural_match && dfa->nbackref > 0); |
851 | if (__glibc_unlikely (err != REG_NOERROR)) |
852 | goto free_return; |
853 | } |
854 | |
855 | /* At last, add the offset to each register, since we slid |
856 | the buffers so that we could assume that the matching starts |
857 | from 0. */ |
858 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
859 | if (pmatch[reg_idx].rm_so != -1) |
860 | { |
861 | #ifdef RE_ENABLE_I18N |
862 | if (__glibc_unlikely (mctx.input.offsets_needed != 0)) |
863 | { |
864 | pmatch[reg_idx].rm_so = |
865 | (pmatch[reg_idx].rm_so == mctx.input.valid_len |
866 | ? mctx.input.valid_raw_len |
867 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); |
868 | pmatch[reg_idx].rm_eo = |
869 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len |
870 | ? mctx.input.valid_raw_len |
871 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); |
872 | } |
873 | #else |
874 | DEBUG_ASSERT (mctx.input.offsets_needed == 0); |
875 | #endif |
876 | pmatch[reg_idx].rm_so += match_first; |
877 | pmatch[reg_idx].rm_eo += match_first; |
878 | } |
879 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) |
880 | { |
881 | pmatch[nmatch + reg_idx].rm_so = -1; |
882 | pmatch[nmatch + reg_idx].rm_eo = -1; |
883 | } |
884 | |
885 | if (dfa->subexp_map) |
886 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) |
887 | if (dfa->subexp_map[reg_idx] != reg_idx) |
888 | { |
889 | pmatch[reg_idx + 1].rm_so |
890 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; |
891 | pmatch[reg_idx + 1].rm_eo |
892 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; |
893 | } |
894 | } |
895 | |
896 | free_return: |
897 | re_free (mctx.state_log); |
898 | if (dfa->nbackref) |
899 | match_ctx_free (&mctx); |
900 | re_string_destruct (&mctx.input); |
901 | return err; |
902 | } |
903 | |
904 | static reg_errcode_t |
905 | __attribute_warn_unused_result__ |
906 | prune_impossible_nodes (re_match_context_t *mctx) |
907 | { |
908 | const re_dfa_t *const dfa = mctx->dfa; |
909 | Idx halt_node, match_last; |
910 | reg_errcode_t ret; |
911 | re_dfastate_t **sifted_states; |
912 | re_dfastate_t **lim_states = NULL; |
913 | re_sift_context_t sctx; |
914 | DEBUG_ASSERT (mctx->state_log != NULL); |
915 | match_last = mctx->match_last; |
916 | halt_node = mctx->last_node; |
917 | |
918 | /* Avoid overflow. */ |
919 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) |
920 | <= match_last)) |
921 | return REG_ESPACE; |
922 | |
923 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); |
924 | if (__glibc_unlikely (sifted_states == NULL)) |
925 | { |
926 | ret = REG_ESPACE; |
927 | goto free_return; |
928 | } |
929 | if (dfa->nbackref) |
930 | { |
931 | lim_states = re_malloc (re_dfastate_t *, match_last + 1); |
932 | if (__glibc_unlikely (lim_states == NULL)) |
933 | { |
934 | ret = REG_ESPACE; |
935 | goto free_return; |
936 | } |
937 | while (1) |
938 | { |
939 | memset (lim_states, '\0', |
940 | sizeof (re_dfastate_t *) * (match_last + 1)); |
941 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, |
942 | match_last); |
943 | ret = sift_states_backward (mctx, &sctx); |
944 | re_node_set_free (&sctx.limits); |
945 | if (__glibc_unlikely (ret != REG_NOERROR)) |
946 | goto free_return; |
947 | if (sifted_states[0] != NULL || lim_states[0] != NULL) |
948 | break; |
949 | do |
950 | { |
951 | --match_last; |
952 | if (match_last < 0) |
953 | { |
954 | ret = REG_NOMATCH; |
955 | goto free_return; |
956 | } |
957 | } while (mctx->state_log[match_last] == NULL |
958 | || !mctx->state_log[match_last]->halt); |
959 | halt_node = check_halt_state_context (mctx, |
960 | mctx->state_log[match_last], |
961 | match_last); |
962 | } |
963 | ret = merge_state_array (dfa, sifted_states, lim_states, |
964 | match_last + 1); |
965 | re_free (lim_states); |
966 | lim_states = NULL; |
967 | if (__glibc_unlikely (ret != REG_NOERROR)) |
968 | goto free_return; |
969 | } |
970 | else |
971 | { |
972 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); |
973 | ret = sift_states_backward (mctx, &sctx); |
974 | re_node_set_free (&sctx.limits); |
975 | if (__glibc_unlikely (ret != REG_NOERROR)) |
976 | goto free_return; |
977 | if (sifted_states[0] == NULL) |
978 | { |
979 | ret = REG_NOMATCH; |
980 | goto free_return; |
981 | } |
982 | } |
983 | re_free (mctx->state_log); |
984 | mctx->state_log = sifted_states; |
985 | sifted_states = NULL; |
986 | mctx->last_node = halt_node; |
987 | mctx->match_last = match_last; |
988 | ret = REG_NOERROR; |
989 | free_return: |
990 | re_free (sifted_states); |
991 | re_free (lim_states); |
992 | return ret; |
993 | } |
994 | |
995 | /* Acquire an initial state and return it. |
996 | We must select appropriate initial state depending on the context, |
997 | since initial states may have constraints like "\<", "^", etc.. */ |
998 | |
999 | static inline re_dfastate_t * |
1000 | __attribute__ ((always_inline)) |
1001 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, |
1002 | Idx idx) |
1003 | { |
1004 | const re_dfa_t *const dfa = mctx->dfa; |
1005 | if (dfa->init_state->has_constraint) |
1006 | { |
1007 | unsigned int context; |
1008 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); |
1009 | if (IS_WORD_CONTEXT (context)) |
1010 | return dfa->init_state_word; |
1011 | else if (IS_ORDINARY_CONTEXT (context)) |
1012 | return dfa->init_state; |
1013 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) |
1014 | return dfa->init_state_begbuf; |
1015 | else if (IS_NEWLINE_CONTEXT (context)) |
1016 | return dfa->init_state_nl; |
1017 | else if (IS_BEGBUF_CONTEXT (context)) |
1018 | { |
1019 | /* It is relatively rare case, then calculate on demand. */ |
1020 | return re_acquire_state_context (err, dfa, |
1021 | dfa->init_state->entrance_nodes, |
1022 | context); |
1023 | } |
1024 | else |
1025 | /* Must not happen? */ |
1026 | return dfa->init_state; |
1027 | } |
1028 | else |
1029 | return dfa->init_state; |
1030 | } |
1031 | |
1032 | /* Check whether the regular expression match input string INPUT or not, |
1033 | and return the index where the matching end. Return -1 if |
1034 | there is no match, and return -2 in case of an error. |
1035 | FL_LONGEST_MATCH means we want the POSIX longest matching. |
1036 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the |
1037 | next place where we may want to try matching. |
1038 | Note that the matcher assumes that the matching starts from the current |
1039 | index of the buffer. */ |
1040 | |
1041 | static Idx |
1042 | __attribute_warn_unused_result__ |
1043 | check_matching (re_match_context_t *mctx, bool fl_longest_match, |
1044 | Idx *p_match_first) |
1045 | { |
1046 | const re_dfa_t *const dfa = mctx->dfa; |
1047 | reg_errcode_t err; |
1048 | Idx match = 0; |
1049 | Idx match_last = -1; |
1050 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
1051 | re_dfastate_t *cur_state; |
1052 | bool at_init_state = p_match_first != NULL; |
1053 | Idx next_start_idx = cur_str_idx; |
1054 | |
1055 | err = REG_NOERROR; |
1056 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); |
1057 | /* An initial state must not be NULL (invalid). */ |
1058 | if (__glibc_unlikely (cur_state == NULL)) |
1059 | { |
1060 | DEBUG_ASSERT (err == REG_ESPACE); |
1061 | return -2; |
1062 | } |
1063 | |
1064 | if (mctx->state_log != NULL) |
1065 | { |
1066 | mctx->state_log[cur_str_idx] = cur_state; |
1067 | |
1068 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them |
1069 | later. E.g. Processing back references. */ |
1070 | if (__glibc_unlikely (dfa->nbackref)) |
1071 | { |
1072 | at_init_state = false; |
1073 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); |
1074 | if (__glibc_unlikely (err != REG_NOERROR)) |
1075 | return err; |
1076 | |
1077 | if (cur_state->has_backref) |
1078 | { |
1079 | err = transit_state_bkref (mctx, &cur_state->nodes); |
1080 | if (__glibc_unlikely (err != REG_NOERROR)) |
1081 | return err; |
1082 | } |
1083 | } |
1084 | } |
1085 | |
1086 | /* If the RE accepts NULL string. */ |
1087 | if (__glibc_unlikely (cur_state->halt)) |
1088 | { |
1089 | if (!cur_state->has_constraint |
1090 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) |
1091 | { |
1092 | if (!fl_longest_match) |
1093 | return cur_str_idx; |
1094 | else |
1095 | { |
1096 | match_last = cur_str_idx; |
1097 | match = 1; |
1098 | } |
1099 | } |
1100 | } |
1101 | |
1102 | while (!re_string_eoi (&mctx->input)) |
1103 | { |
1104 | re_dfastate_t *old_state = cur_state; |
1105 | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; |
1106 | |
1107 | if ((__glibc_unlikely (next_char_idx >= mctx->input.bufs_len) |
1108 | && mctx->input.bufs_len < mctx->input.len) |
1109 | || (__glibc_unlikely (next_char_idx >= mctx->input.valid_len) |
1110 | && mctx->input.valid_len < mctx->input.len)) |
1111 | { |
1112 | err = extend_buffers (mctx, next_char_idx + 1); |
1113 | if (__glibc_unlikely (err != REG_NOERROR)) |
1114 | { |
1115 | DEBUG_ASSERT (err == REG_ESPACE); |
1116 | return -2; |
1117 | } |
1118 | } |
1119 | |
1120 | cur_state = transit_state (&err, mctx, cur_state); |
1121 | if (mctx->state_log != NULL) |
1122 | cur_state = merge_state_with_log (&err, mctx, cur_state); |
1123 | |
1124 | if (cur_state == NULL) |
1125 | { |
1126 | /* Reached the invalid state or an error. Try to recover a valid |
1127 | state using the state log, if available and if we have not |
1128 | already found a valid (even if not the longest) match. */ |
1129 | if (__glibc_unlikely (err != REG_NOERROR)) |
1130 | return -2; |
1131 | |
1132 | if (mctx->state_log == NULL |
1133 | || (match && !fl_longest_match) |
1134 | || (cur_state = find_recover_state (&err, mctx)) == NULL) |
1135 | break; |
1136 | } |
1137 | |
1138 | if (__glibc_unlikely (at_init_state)) |
1139 | { |
1140 | if (old_state == cur_state) |
1141 | next_start_idx = next_char_idx; |
1142 | else |
1143 | at_init_state = false; |
1144 | } |
1145 | |
1146 | if (cur_state->halt) |
1147 | { |
1148 | /* Reached a halt state. |
1149 | Check the halt state can satisfy the current context. */ |
1150 | if (!cur_state->has_constraint |
1151 | || check_halt_state_context (mctx, cur_state, |
1152 | re_string_cur_idx (&mctx->input))) |
1153 | { |
1154 | /* We found an appropriate halt state. */ |
1155 | match_last = re_string_cur_idx (&mctx->input); |
1156 | match = 1; |
1157 | |
1158 | /* We found a match, do not modify match_first below. */ |
1159 | p_match_first = NULL; |
1160 | if (!fl_longest_match) |
1161 | break; |
1162 | } |
1163 | } |
1164 | } |
1165 | |
1166 | if (p_match_first) |
1167 | *p_match_first += next_start_idx; |
1168 | |
1169 | return match_last; |
1170 | } |
1171 | |
1172 | /* Check NODE match the current context. */ |
1173 | |
1174 | static bool |
1175 | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) |
1176 | { |
1177 | re_token_type_t type = dfa->nodes[node].type; |
1178 | unsigned int constraint = dfa->nodes[node].constraint; |
1179 | if (type != END_OF_RE) |
1180 | return false; |
1181 | if (!constraint) |
1182 | return true; |
1183 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) |
1184 | return false; |
1185 | return true; |
1186 | } |
1187 | |
1188 | /* Check the halt state STATE match the current context. |
1189 | Return 0 if not match, if the node, STATE has, is a halt node and |
1190 | match the context, return the node. */ |
1191 | |
1192 | static Idx |
1193 | check_halt_state_context (const re_match_context_t *mctx, |
1194 | const re_dfastate_t *state, Idx idx) |
1195 | { |
1196 | Idx i; |
1197 | unsigned int context; |
1198 | DEBUG_ASSERT (state->halt); |
1199 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); |
1200 | for (i = 0; i < state->nodes.nelem; ++i) |
1201 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) |
1202 | return state->nodes.elems[i]; |
1203 | return 0; |
1204 | } |
1205 | |
1206 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA |
1207 | corresponding to the DFA). |
1208 | Return the destination node, and update EPS_VIA_NODES; |
1209 | return -1 on match failure, -2 on error. */ |
1210 | |
1211 | static Idx |
1212 | proceed_next_node (const re_match_context_t *mctx, Idx nregs, regmatch_t *regs, |
1213 | regmatch_t *prevregs, |
1214 | Idx *pidx, Idx node, re_node_set *eps_via_nodes, |
1215 | struct re_fail_stack_t *fs) |
1216 | { |
1217 | const re_dfa_t *const dfa = mctx->dfa; |
1218 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) |
1219 | { |
1220 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; |
1221 | re_node_set *edests = &dfa->edests[node]; |
1222 | |
1223 | if (! re_node_set_contains (eps_via_nodes, node)) |
1224 | { |
1225 | bool ok = re_node_set_insert (eps_via_nodes, node); |
1226 | if (__glibc_unlikely (! ok)) |
1227 | return -2; |
1228 | } |
1229 | |
1230 | /* Pick a valid destination, or return -1 if none is found. */ |
1231 | Idx dest_node = -1; |
1232 | for (Idx i = 0; i < edests->nelem; i++) |
1233 | { |
1234 | Idx candidate = edests->elems[i]; |
1235 | if (!re_node_set_contains (cur_nodes, candidate)) |
1236 | continue; |
1237 | if (dest_node == -1) |
1238 | dest_node = candidate; |
1239 | |
1240 | else |
1241 | { |
1242 | /* In order to avoid infinite loop like "(a*)*", return the second |
1243 | epsilon-transition if the first was already considered. */ |
1244 | if (re_node_set_contains (eps_via_nodes, dest_node)) |
1245 | return candidate; |
1246 | |
1247 | /* Otherwise, push the second epsilon-transition on the fail stack. */ |
1248 | else if (fs != NULL |
1249 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, |
1250 | prevregs, eps_via_nodes)) |
1251 | return -2; |
1252 | |
1253 | /* We know we are going to exit. */ |
1254 | break; |
1255 | } |
1256 | } |
1257 | return dest_node; |
1258 | } |
1259 | else |
1260 | { |
1261 | Idx naccepted = 0; |
1262 | re_token_type_t type = dfa->nodes[node].type; |
1263 | |
1264 | #ifdef RE_ENABLE_I18N |
1265 | if (dfa->nodes[node].accept_mb) |
1266 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); |
1267 | else |
1268 | #endif /* RE_ENABLE_I18N */ |
1269 | if (type == OP_BACK_REF) |
1270 | { |
1271 | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; |
1272 | if (subexp_idx < nregs) |
1273 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; |
1274 | if (fs != NULL) |
1275 | { |
1276 | if (subexp_idx >= nregs |
1277 | || regs[subexp_idx].rm_so == -1 |
1278 | || regs[subexp_idx].rm_eo == -1) |
1279 | return -1; |
1280 | else if (naccepted) |
1281 | { |
1282 | char *buf = (char *) re_string_get_buffer (&mctx->input); |
1283 | if (mctx->input.valid_len - *pidx < naccepted |
1284 | || (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, |
1285 | naccepted) |
1286 | != 0)) |
1287 | return -1; |
1288 | } |
1289 | } |
1290 | |
1291 | if (naccepted == 0) |
1292 | { |
1293 | Idx dest_node; |
1294 | bool ok = re_node_set_insert (eps_via_nodes, node); |
1295 | if (__glibc_unlikely (! ok)) |
1296 | return -2; |
1297 | dest_node = dfa->edests[node].elems[0]; |
1298 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
1299 | dest_node)) |
1300 | return dest_node; |
1301 | } |
1302 | } |
1303 | |
1304 | if (naccepted != 0 |
1305 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) |
1306 | { |
1307 | Idx dest_node = dfa->nexts[node]; |
1308 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; |
1309 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL |
1310 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, |
1311 | dest_node))) |
1312 | return -1; |
1313 | re_node_set_empty (eps_via_nodes); |
1314 | return dest_node; |
1315 | } |
1316 | } |
1317 | return -1; |
1318 | } |
1319 | |
1320 | static reg_errcode_t |
1321 | __attribute_warn_unused_result__ |
1322 | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, |
1323 | Idx nregs, regmatch_t *regs, regmatch_t *prevregs, |
1324 | re_node_set *eps_via_nodes) |
1325 | { |
1326 | reg_errcode_t err; |
1327 | Idx num = fs->num++; |
1328 | if (fs->num == fs->alloc) |
1329 | { |
1330 | struct re_fail_stack_ent_t *new_array; |
1331 | new_array = re_realloc (fs->stack, struct re_fail_stack_ent_t, |
1332 | fs->alloc * 2); |
1333 | if (new_array == NULL) |
1334 | return REG_ESPACE; |
1335 | fs->alloc *= 2; |
1336 | fs->stack = new_array; |
1337 | } |
1338 | fs->stack[num].idx = str_idx; |
1339 | fs->stack[num].node = dest_node; |
1340 | fs->stack[num].regs = re_malloc (regmatch_t, 2 * nregs); |
1341 | if (fs->stack[num].regs == NULL) |
1342 | return REG_ESPACE; |
1343 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); |
1344 | memcpy (fs->stack[num].regs + nregs, prevregs, sizeof (regmatch_t) * nregs); |
1345 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); |
1346 | return err; |
1347 | } |
1348 | |
1349 | static Idx |
1350 | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, Idx nregs, |
1351 | regmatch_t *regs, regmatch_t *prevregs, |
1352 | re_node_set *eps_via_nodes) |
1353 | { |
1354 | if (fs == NULL || fs->num == 0) |
1355 | return -1; |
1356 | Idx num = --fs->num; |
1357 | *pidx = fs->stack[num].idx; |
1358 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); |
1359 | memcpy (prevregs, fs->stack[num].regs + nregs, sizeof (regmatch_t) * nregs); |
1360 | re_node_set_free (eps_via_nodes); |
1361 | re_free (fs->stack[num].regs); |
1362 | *eps_via_nodes = fs->stack[num].eps_via_nodes; |
1363 | DEBUG_ASSERT (0 <= fs->stack[num].node); |
1364 | return fs->stack[num].node; |
1365 | } |
1366 | |
1367 | |
1368 | #define DYNARRAY_STRUCT regmatch_list |
1369 | #define DYNARRAY_ELEMENT regmatch_t |
1370 | #define DYNARRAY_PREFIX regmatch_list_ |
1371 | #include <malloc/dynarray-skeleton.c> |
1372 | |
1373 | /* Set the positions where the subexpressions are starts/ends to registers |
1374 | PMATCH. |
1375 | Note: We assume that pmatch[0] is already set, and |
1376 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ |
1377 | |
1378 | static reg_errcode_t |
1379 | __attribute_warn_unused_result__ |
1380 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, |
1381 | regmatch_t *pmatch, bool fl_backtrack) |
1382 | { |
1383 | const re_dfa_t *dfa = preg->buffer; |
1384 | Idx idx, cur_node; |
1385 | re_node_set eps_via_nodes; |
1386 | struct re_fail_stack_t *fs; |
1387 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; |
1388 | struct regmatch_list prev_match; |
1389 | regmatch_list_init (&prev_match); |
1390 | |
1391 | DEBUG_ASSERT (nmatch > 1); |
1392 | DEBUG_ASSERT (mctx->state_log != NULL); |
1393 | if (fl_backtrack) |
1394 | { |
1395 | fs = &fs_body; |
1396 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); |
1397 | if (fs->stack == NULL) |
1398 | return REG_ESPACE; |
1399 | } |
1400 | else |
1401 | fs = NULL; |
1402 | |
1403 | cur_node = dfa->init_node; |
1404 | re_node_set_init_empty (&eps_via_nodes); |
1405 | |
1406 | if (!regmatch_list_resize (&prev_match, nmatch)) |
1407 | { |
1408 | regmatch_list_free (&prev_match); |
1409 | free_fail_stack_return (fs); |
1410 | return REG_ESPACE; |
1411 | } |
1412 | regmatch_t *prev_idx_match = regmatch_list_begin (&prev_match); |
1413 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
1414 | |
1415 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) |
1416 | { |
1417 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); |
1418 | |
1419 | if ((idx == pmatch[0].rm_eo && cur_node == mctx->last_node) |
1420 | || (fs && re_node_set_contains (&eps_via_nodes, cur_node))) |
1421 | { |
1422 | Idx reg_idx; |
1423 | cur_node = -1; |
1424 | if (fs) |
1425 | { |
1426 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) |
1427 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) |
1428 | { |
1429 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
1430 | prev_idx_match, &eps_via_nodes); |
1431 | break; |
1432 | } |
1433 | } |
1434 | if (cur_node < 0) |
1435 | { |
1436 | re_node_set_free (&eps_via_nodes); |
1437 | regmatch_list_free (&prev_match); |
1438 | return free_fail_stack_return (fs); |
1439 | } |
1440 | } |
1441 | |
1442 | /* Proceed to next node. */ |
1443 | cur_node = proceed_next_node (mctx, nmatch, pmatch, prev_idx_match, |
1444 | &idx, cur_node, |
1445 | &eps_via_nodes, fs); |
1446 | |
1447 | if (__glibc_unlikely (cur_node < 0)) |
1448 | { |
1449 | if (__glibc_unlikely (cur_node == -2)) |
1450 | { |
1451 | re_node_set_free (&eps_via_nodes); |
1452 | regmatch_list_free (&prev_match); |
1453 | free_fail_stack_return (fs); |
1454 | return REG_ESPACE; |
1455 | } |
1456 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, |
1457 | prev_idx_match, &eps_via_nodes); |
1458 | if (cur_node < 0) |
1459 | { |
1460 | re_node_set_free (&eps_via_nodes); |
1461 | regmatch_list_free (&prev_match); |
1462 | free_fail_stack_return (fs); |
1463 | return REG_NOMATCH; |
1464 | } |
1465 | } |
1466 | } |
1467 | re_node_set_free (&eps_via_nodes); |
1468 | regmatch_list_free (&prev_match); |
1469 | return free_fail_stack_return (fs); |
1470 | } |
1471 | |
1472 | static reg_errcode_t |
1473 | free_fail_stack_return (struct re_fail_stack_t *fs) |
1474 | { |
1475 | if (fs) |
1476 | { |
1477 | Idx fs_idx; |
1478 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) |
1479 | { |
1480 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); |
1481 | re_free (fs->stack[fs_idx].regs); |
1482 | } |
1483 | re_free (fs->stack); |
1484 | } |
1485 | return REG_NOERROR; |
1486 | } |
1487 | |
1488 | static void |
1489 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, |
1490 | regmatch_t *prev_idx_match, Idx cur_node, Idx cur_idx, Idx nmatch) |
1491 | { |
1492 | int type = dfa->nodes[cur_node].type; |
1493 | if (type == OP_OPEN_SUBEXP) |
1494 | { |
1495 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
1496 | |
1497 | /* We are at the first node of this sub expression. */ |
1498 | if (reg_num < nmatch) |
1499 | { |
1500 | pmatch[reg_num].rm_so = cur_idx; |
1501 | pmatch[reg_num].rm_eo = -1; |
1502 | } |
1503 | } |
1504 | else if (type == OP_CLOSE_SUBEXP) |
1505 | { |
1506 | /* We are at the last node of this sub expression. */ |
1507 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; |
1508 | if (reg_num < nmatch) |
1509 | { |
1510 | if (pmatch[reg_num].rm_so < cur_idx) |
1511 | { |
1512 | pmatch[reg_num].rm_eo = cur_idx; |
1513 | /* This is a non-empty match or we are not inside an optional |
1514 | subexpression. Accept this right away. */ |
1515 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); |
1516 | } |
1517 | else |
1518 | { |
1519 | if (dfa->nodes[cur_node].opt_subexp |
1520 | && prev_idx_match[reg_num].rm_so != -1) |
1521 | /* We transited through an empty match for an optional |
1522 | subexpression, like (a?)*, and this is not the subexp's |
1523 | first match. Copy back the old content of the registers |
1524 | so that matches of an inner subexpression are undone as |
1525 | well, like in ((a?))*. */ |
1526 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); |
1527 | else |
1528 | /* We completed a subexpression, but it may be part of |
1529 | an optional one, so do not update PREV_IDX_MATCH. */ |
1530 | pmatch[reg_num].rm_eo = cur_idx; |
1531 | } |
1532 | } |
1533 | } |
1534 | } |
1535 | |
1536 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 |
1537 | and sift the nodes in each states according to the following rules. |
1538 | Updated state_log will be wrote to STATE_LOG. |
1539 | |
1540 | Rules: We throw away the Node 'a' in the STATE_LOG[STR_IDX] if... |
1541 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): |
1542 | If 'a' isn't the LAST_NODE and 'a' can't epsilon transit to |
1543 | the LAST_NODE, we throw away the node 'a'. |
1544 | 2. When 0 <= STR_IDX < MATCH_LAST and 'a' accepts |
1545 | string 's' and transit to 'b': |
1546 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw |
1547 | away the node 'a'. |
1548 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is |
1549 | thrown away, we throw away the node 'a'. |
1550 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': |
1551 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the |
1552 | node 'a'. |
1553 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, |
1554 | we throw away the node 'a'. */ |
1555 | |
1556 | #define STATE_NODE_CONTAINS(state,node) \ |
1557 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) |
1558 | |
1559 | static reg_errcode_t |
1560 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) |
1561 | { |
1562 | reg_errcode_t err; |
1563 | int null_cnt = 0; |
1564 | Idx str_idx = sctx->last_str_idx; |
1565 | re_node_set cur_dest; |
1566 | |
1567 | DEBUG_ASSERT (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); |
1568 | |
1569 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon |
1570 | transit to the last_node and the last_node itself. */ |
1571 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); |
1572 | if (__glibc_unlikely (err != REG_NOERROR)) |
1573 | return err; |
1574 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
1575 | if (__glibc_unlikely (err != REG_NOERROR)) |
1576 | goto free_return; |
1577 | |
1578 | /* Then check each states in the state_log. */ |
1579 | while (str_idx > 0) |
1580 | { |
1581 | /* Update counters. */ |
1582 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; |
1583 | if (null_cnt > mctx->max_mb_elem_len) |
1584 | { |
1585 | memset (sctx->sifted_states, '\0', |
1586 | sizeof (re_dfastate_t *) * str_idx); |
1587 | re_node_set_free (&cur_dest); |
1588 | return REG_NOERROR; |
1589 | } |
1590 | re_node_set_empty (&cur_dest); |
1591 | --str_idx; |
1592 | |
1593 | if (mctx->state_log[str_idx]) |
1594 | { |
1595 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); |
1596 | if (__glibc_unlikely (err != REG_NOERROR)) |
1597 | goto free_return; |
1598 | } |
1599 | |
1600 | /* Add all the nodes which satisfy the following conditions: |
1601 | - It can epsilon transit to a node in CUR_DEST. |
1602 | - It is in CUR_SRC. |
1603 | And update state_log. */ |
1604 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); |
1605 | if (__glibc_unlikely (err != REG_NOERROR)) |
1606 | goto free_return; |
1607 | } |
1608 | err = REG_NOERROR; |
1609 | free_return: |
1610 | re_node_set_free (&cur_dest); |
1611 | return err; |
1612 | } |
1613 | |
1614 | static reg_errcode_t |
1615 | __attribute_warn_unused_result__ |
1616 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, |
1617 | Idx str_idx, re_node_set *cur_dest) |
1618 | { |
1619 | const re_dfa_t *const dfa = mctx->dfa; |
1620 | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; |
1621 | Idx i; |
1622 | |
1623 | /* Then build the next sifted state. |
1624 | We build the next sifted state on 'cur_dest', and update |
1625 | 'sifted_states[str_idx]' with 'cur_dest'. |
1626 | Note: |
1627 | 'cur_dest' is the sifted state from 'state_log[str_idx + 1]'. |
1628 | 'cur_src' points the node_set of the old 'state_log[str_idx]' |
1629 | (with the epsilon nodes pre-filtered out). */ |
1630 | for (i = 0; i < cur_src->nelem; i++) |
1631 | { |
1632 | Idx prev_node = cur_src->elems[i]; |
1633 | int naccepted = 0; |
1634 | bool ok; |
1635 | DEBUG_ASSERT (!IS_EPSILON_NODE (dfa->nodes[prev_node].type)); |
1636 | |
1637 | #ifdef RE_ENABLE_I18N |
1638 | /* If the node may accept "multi byte". */ |
1639 | if (dfa->nodes[prev_node].accept_mb) |
1640 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, |
1641 | str_idx, sctx->last_str_idx); |
1642 | #endif /* RE_ENABLE_I18N */ |
1643 | |
1644 | /* We don't check backreferences here. |
1645 | See update_cur_sifted_state(). */ |
1646 | if (!naccepted |
1647 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) |
1648 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], |
1649 | dfa->nexts[prev_node])) |
1650 | naccepted = 1; |
1651 | |
1652 | if (naccepted == 0) |
1653 | continue; |
1654 | |
1655 | if (sctx->limits.nelem) |
1656 | { |
1657 | Idx to_idx = str_idx + naccepted; |
1658 | if (check_dst_limits (mctx, &sctx->limits, |
1659 | dfa->nexts[prev_node], to_idx, |
1660 | prev_node, str_idx)) |
1661 | continue; |
1662 | } |
1663 | ok = re_node_set_insert (cur_dest, prev_node); |
1664 | if (__glibc_unlikely (! ok)) |
1665 | return REG_ESPACE; |
1666 | } |
1667 | |
1668 | return REG_NOERROR; |
1669 | } |
1670 | |
1671 | /* Helper functions. */ |
1672 | |
1673 | static reg_errcode_t |
1674 | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) |
1675 | { |
1676 | Idx top = mctx->state_log_top; |
1677 | |
1678 | if ((next_state_log_idx >= mctx->input.bufs_len |
1679 | && mctx->input.bufs_len < mctx->input.len) |
1680 | || (next_state_log_idx >= mctx->input.valid_len |
1681 | && mctx->input.valid_len < mctx->input.len)) |
1682 | { |
1683 | reg_errcode_t err; |
1684 | err = extend_buffers (mctx, next_state_log_idx + 1); |
1685 | if (__glibc_unlikely (err != REG_NOERROR)) |
1686 | return err; |
1687 | } |
1688 | |
1689 | if (top < next_state_log_idx) |
1690 | { |
1691 | memset (mctx->state_log + top + 1, '\0', |
1692 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); |
1693 | mctx->state_log_top = next_state_log_idx; |
1694 | } |
1695 | return REG_NOERROR; |
1696 | } |
1697 | |
1698 | static reg_errcode_t |
1699 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, |
1700 | re_dfastate_t **src, Idx num) |
1701 | { |
1702 | Idx st_idx; |
1703 | reg_errcode_t err; |
1704 | for (st_idx = 0; st_idx < num; ++st_idx) |
1705 | { |
1706 | if (dst[st_idx] == NULL) |
1707 | dst[st_idx] = src[st_idx]; |
1708 | else if (src[st_idx] != NULL) |
1709 | { |
1710 | re_node_set merged_set; |
1711 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, |
1712 | &src[st_idx]->nodes); |
1713 | if (__glibc_unlikely (err != REG_NOERROR)) |
1714 | return err; |
1715 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); |
1716 | re_node_set_free (&merged_set); |
1717 | if (__glibc_unlikely (err != REG_NOERROR)) |
1718 | return err; |
1719 | } |
1720 | } |
1721 | return REG_NOERROR; |
1722 | } |
1723 | |
1724 | static reg_errcode_t |
1725 | update_cur_sifted_state (const re_match_context_t *mctx, |
1726 | re_sift_context_t *sctx, Idx str_idx, |
1727 | re_node_set *dest_nodes) |
1728 | { |
1729 | const re_dfa_t *const dfa = mctx->dfa; |
1730 | reg_errcode_t err = REG_NOERROR; |
1731 | const re_node_set *candidates; |
1732 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL |
1733 | : &mctx->state_log[str_idx]->nodes); |
1734 | |
1735 | if (dest_nodes->nelem == 0) |
1736 | sctx->sifted_states[str_idx] = NULL; |
1737 | else |
1738 | { |
1739 | if (candidates) |
1740 | { |
1741 | /* At first, add the nodes which can epsilon transit to a node in |
1742 | DEST_NODE. */ |
1743 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); |
1744 | if (__glibc_unlikely (err != REG_NOERROR)) |
1745 | return err; |
1746 | |
1747 | /* Then, check the limitations in the current sift_context. */ |
1748 | if (sctx->limits.nelem) |
1749 | { |
1750 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, |
1751 | mctx->bkref_ents, str_idx); |
1752 | if (__glibc_unlikely (err != REG_NOERROR)) |
1753 | return err; |
1754 | } |
1755 | } |
1756 | |
1757 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); |
1758 | if (__glibc_unlikely (err != REG_NOERROR)) |
1759 | return err; |
1760 | } |
1761 | |
1762 | if (candidates && mctx->state_log[str_idx]->has_backref) |
1763 | { |
1764 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); |
1765 | if (__glibc_unlikely (err != REG_NOERROR)) |
1766 | return err; |
1767 | } |
1768 | return REG_NOERROR; |
1769 | } |
1770 | |
1771 | static reg_errcode_t |
1772 | __attribute_warn_unused_result__ |
1773 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, |
1774 | const re_node_set *candidates) |
1775 | { |
1776 | reg_errcode_t err = REG_NOERROR; |
1777 | Idx i; |
1778 | |
1779 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); |
1780 | if (__glibc_unlikely (err != REG_NOERROR)) |
1781 | return err; |
1782 | |
1783 | if (!state->inveclosure.alloc) |
1784 | { |
1785 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); |
1786 | if (__glibc_unlikely (err != REG_NOERROR)) |
1787 | return REG_ESPACE; |
1788 | for (i = 0; i < dest_nodes->nelem; i++) |
1789 | { |
1790 | err = re_node_set_merge (&state->inveclosure, |
1791 | dfa->inveclosures + dest_nodes->elems[i]); |
1792 | if (__glibc_unlikely (err != REG_NOERROR)) |
1793 | return REG_ESPACE; |
1794 | } |
1795 | } |
1796 | return re_node_set_add_intersect (dest_nodes, candidates, |
1797 | &state->inveclosure); |
1798 | } |
1799 | |
1800 | static reg_errcode_t |
1801 | sub_epsilon_src_nodes (const re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, |
1802 | const re_node_set *candidates) |
1803 | { |
1804 | Idx ecl_idx; |
1805 | reg_errcode_t err; |
1806 | re_node_set *inv_eclosure = dfa->inveclosures + node; |
1807 | re_node_set except_nodes; |
1808 | re_node_set_init_empty (&except_nodes); |
1809 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
1810 | { |
1811 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
1812 | if (cur_node == node) |
1813 | continue; |
1814 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) |
1815 | { |
1816 | Idx edst1 = dfa->edests[cur_node].elems[0]; |
1817 | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) |
1818 | ? dfa->edests[cur_node].elems[1] : -1); |
1819 | if ((!re_node_set_contains (inv_eclosure, edst1) |
1820 | && re_node_set_contains (dest_nodes, edst1)) |
1821 | || (edst2 > 0 |
1822 | && !re_node_set_contains (inv_eclosure, edst2) |
1823 | && re_node_set_contains (dest_nodes, edst2))) |
1824 | { |
1825 | err = re_node_set_add_intersect (&except_nodes, candidates, |
1826 | dfa->inveclosures + cur_node); |
1827 | if (__glibc_unlikely (err != REG_NOERROR)) |
1828 | { |
1829 | re_node_set_free (&except_nodes); |
1830 | return err; |
1831 | } |
1832 | } |
1833 | } |
1834 | } |
1835 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) |
1836 | { |
1837 | Idx cur_node = inv_eclosure->elems[ecl_idx]; |
1838 | if (!re_node_set_contains (&except_nodes, cur_node)) |
1839 | { |
1840 | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; |
1841 | re_node_set_remove_at (dest_nodes, idx); |
1842 | } |
1843 | } |
1844 | re_node_set_free (&except_nodes); |
1845 | return REG_NOERROR; |
1846 | } |
1847 | |
1848 | static bool |
1849 | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, |
1850 | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) |
1851 | { |
1852 | const re_dfa_t *const dfa = mctx->dfa; |
1853 | Idx lim_idx, src_pos, dst_pos; |
1854 | |
1855 | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); |
1856 | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); |
1857 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
1858 | { |
1859 | Idx subexp_idx; |
1860 | struct re_backref_cache_entry *ent; |
1861 | ent = mctx->bkref_ents + limits->elems[lim_idx]; |
1862 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
1863 | |
1864 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
1865 | subexp_idx, dst_node, dst_idx, |
1866 | dst_bkref_idx); |
1867 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], |
1868 | subexp_idx, src_node, src_idx, |
1869 | src_bkref_idx); |
1870 | |
1871 | /* In case of: |
1872 | <src> <dst> ( <subexp> ) |
1873 | ( <subexp> ) <src> <dst> |
1874 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ |
1875 | if (src_pos == dst_pos) |
1876 | continue; /* This is unrelated limitation. */ |
1877 | else |
1878 | return true; |
1879 | } |
1880 | return false; |
1881 | } |
1882 | |
1883 | static int |
1884 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, |
1885 | Idx subexp_idx, Idx from_node, Idx bkref_idx) |
1886 | { |
1887 | const re_dfa_t *const dfa = mctx->dfa; |
1888 | const re_node_set *eclosures = dfa->eclosures + from_node; |
1889 | Idx node_idx; |
1890 | |
1891 | /* Else, we are on the boundary: examine the nodes on the epsilon |
1892 | closure. */ |
1893 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) |
1894 | { |
1895 | Idx node = eclosures->elems[node_idx]; |
1896 | switch (dfa->nodes[node].type) |
1897 | { |
1898 | case OP_BACK_REF: |
1899 | if (bkref_idx != -1) |
1900 | { |
1901 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; |
1902 | do |
1903 | { |
1904 | Idx dst; |
1905 | int cpos; |
1906 | |
1907 | if (ent->node != node) |
1908 | continue; |
1909 | |
1910 | if (subexp_idx < BITSET_WORD_BITS |
1911 | && !(ent->eps_reachable_subexps_map |
1912 | & ((bitset_word_t) 1 << subexp_idx))) |
1913 | continue; |
1914 | |
1915 | /* Recurse trying to reach the OP_OPEN_SUBEXP and |
1916 | OP_CLOSE_SUBEXP cases below. But, if the |
1917 | destination node is the same node as the source |
1918 | node, don't recurse because it would cause an |
1919 | infinite loop: a regex that exhibits this behavior |
1920 | is ()\1*\1* */ |
1921 | dst = dfa->edests[node].elems[0]; |
1922 | if (dst == from_node) |
1923 | { |
1924 | if (boundaries & 1) |
1925 | return -1; |
1926 | else /* if (boundaries & 2) */ |
1927 | return 0; |
1928 | } |
1929 | |
1930 | cpos = |
1931 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
1932 | dst, bkref_idx); |
1933 | if (cpos == -1 /* && (boundaries & 1) */) |
1934 | return -1; |
1935 | if (cpos == 0 && (boundaries & 2)) |
1936 | return 0; |
1937 | |
1938 | if (subexp_idx < BITSET_WORD_BITS) |
1939 | ent->eps_reachable_subexps_map |
1940 | &= ~((bitset_word_t) 1 << subexp_idx); |
1941 | } |
1942 | while (ent++->more); |
1943 | } |
1944 | break; |
1945 | |
1946 | case OP_OPEN_SUBEXP: |
1947 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) |
1948 | return -1; |
1949 | break; |
1950 | |
1951 | case OP_CLOSE_SUBEXP: |
1952 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) |
1953 | return 0; |
1954 | break; |
1955 | |
1956 | default: |
1957 | break; |
1958 | } |
1959 | } |
1960 | |
1961 | return (boundaries & 2) ? 1 : 0; |
1962 | } |
1963 | |
1964 | static int |
1965 | check_dst_limits_calc_pos (const re_match_context_t *mctx, Idx limit, |
1966 | Idx subexp_idx, Idx from_node, Idx str_idx, |
1967 | Idx bkref_idx) |
1968 | { |
1969 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; |
1970 | int boundaries; |
1971 | |
1972 | /* If we are outside the range of the subexpression, return -1 or 1. */ |
1973 | if (str_idx < lim->subexp_from) |
1974 | return -1; |
1975 | |
1976 | if (lim->subexp_to < str_idx) |
1977 | return 1; |
1978 | |
1979 | /* If we are within the subexpression, return 0. */ |
1980 | boundaries = (str_idx == lim->subexp_from); |
1981 | boundaries |= (str_idx == lim->subexp_to) << 1; |
1982 | if (boundaries == 0) |
1983 | return 0; |
1984 | |
1985 | /* Else, examine epsilon closure. */ |
1986 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, |
1987 | from_node, bkref_idx); |
1988 | } |
1989 | |
1990 | /* Check the limitations of sub expressions LIMITS, and remove the nodes |
1991 | which are against limitations from DEST_NODES. */ |
1992 | |
1993 | static reg_errcode_t |
1994 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, |
1995 | const re_node_set *candidates, re_node_set *limits, |
1996 | struct re_backref_cache_entry *bkref_ents, Idx str_idx) |
1997 | { |
1998 | reg_errcode_t err; |
1999 | Idx node_idx, lim_idx; |
2000 | |
2001 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) |
2002 | { |
2003 | Idx subexp_idx; |
2004 | struct re_backref_cache_entry *ent; |
2005 | ent = bkref_ents + limits->elems[lim_idx]; |
2006 | |
2007 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) |
2008 | continue; /* This is unrelated limitation. */ |
2009 | |
2010 | subexp_idx = dfa->nodes[ent->node].opr.idx; |
2011 | if (ent->subexp_to == str_idx) |
2012 | { |
2013 | Idx ops_node = -1; |
2014 | Idx cls_node = -1; |
2015 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2016 | { |
2017 | Idx node = dest_nodes->elems[node_idx]; |
2018 | re_token_type_t type = dfa->nodes[node].type; |
2019 | if (type == OP_OPEN_SUBEXP |
2020 | && subexp_idx == dfa->nodes[node].opr.idx) |
2021 | ops_node = node; |
2022 | else if (type == OP_CLOSE_SUBEXP |
2023 | && subexp_idx == dfa->nodes[node].opr.idx) |
2024 | cls_node = node; |
2025 | } |
2026 | |
2027 | /* Check the limitation of the open subexpression. */ |
2028 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ |
2029 | if (ops_node >= 0) |
2030 | { |
2031 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, |
2032 | candidates); |
2033 | if (__glibc_unlikely (err != REG_NOERROR)) |
2034 | return err; |
2035 | } |
2036 | |
2037 | /* Check the limitation of the close subexpression. */ |
2038 | if (cls_node >= 0) |
2039 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2040 | { |
2041 | Idx node = dest_nodes->elems[node_idx]; |
2042 | if (!re_node_set_contains (dfa->inveclosures + node, |
2043 | cls_node) |
2044 | && !re_node_set_contains (dfa->eclosures + node, |
2045 | cls_node)) |
2046 | { |
2047 | /* It is against this limitation. |
2048 | Remove it form the current sifted state. */ |
2049 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
2050 | candidates); |
2051 | if (__glibc_unlikely (err != REG_NOERROR)) |
2052 | return err; |
2053 | --node_idx; |
2054 | } |
2055 | } |
2056 | } |
2057 | else /* (ent->subexp_to != str_idx) */ |
2058 | { |
2059 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) |
2060 | { |
2061 | Idx node = dest_nodes->elems[node_idx]; |
2062 | re_token_type_t type = dfa->nodes[node].type; |
2063 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) |
2064 | { |
2065 | if (subexp_idx != dfa->nodes[node].opr.idx) |
2066 | continue; |
2067 | /* It is against this limitation. |
2068 | Remove it form the current sifted state. */ |
2069 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, |
2070 | candidates); |
2071 | if (__glibc_unlikely (err != REG_NOERROR)) |
2072 | return err; |
2073 | } |
2074 | } |
2075 | } |
2076 | } |
2077 | return REG_NOERROR; |
2078 | } |
2079 | |
2080 | static reg_errcode_t |
2081 | __attribute_warn_unused_result__ |
2082 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, |
2083 | Idx str_idx, const re_node_set *candidates) |
2084 | { |
2085 | const re_dfa_t *const dfa = mctx->dfa; |
2086 | reg_errcode_t err; |
2087 | Idx node_idx, node; |
2088 | re_sift_context_t local_sctx; |
2089 | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); |
2090 | |
2091 | if (first_idx == -1) |
2092 | return REG_NOERROR; |
2093 | |
2094 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ |
2095 | |
2096 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) |
2097 | { |
2098 | Idx enabled_idx; |
2099 | re_token_type_t type; |
2100 | struct re_backref_cache_entry *entry; |
2101 | node = candidates->elems[node_idx]; |
2102 | type = dfa->nodes[node].type; |
2103 | /* Avoid infinite loop for the REs like "()\1+". */ |
2104 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) |
2105 | continue; |
2106 | if (type != OP_BACK_REF) |
2107 | continue; |
2108 | |
2109 | entry = mctx->bkref_ents + first_idx; |
2110 | enabled_idx = first_idx; |
2111 | do |
2112 | { |
2113 | Idx subexp_len; |
2114 | Idx to_idx; |
2115 | Idx dst_node; |
2116 | bool ok; |
2117 | re_dfastate_t *cur_state; |
2118 | |
2119 | if (entry->node != node) |
2120 | continue; |
2121 | subexp_len = entry->subexp_to - entry->subexp_from; |
2122 | to_idx = str_idx + subexp_len; |
2123 | dst_node = (subexp_len ? dfa->nexts[node] |
2124 | : dfa->edests[node].elems[0]); |
2125 | |
2126 | if (to_idx > sctx->last_str_idx |
2127 | || sctx->sifted_states[to_idx] == NULL |
2128 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) |
2129 | || check_dst_limits (mctx, &sctx->limits, node, |
2130 | str_idx, dst_node, to_idx)) |
2131 | continue; |
2132 | |
2133 | if (local_sctx.sifted_states == NULL) |
2134 | { |
2135 | local_sctx = *sctx; |
2136 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); |
2137 | if (__glibc_unlikely (err != REG_NOERROR)) |
2138 | goto free_return; |
2139 | } |
2140 | local_sctx.last_node = node; |
2141 | local_sctx.last_str_idx = str_idx; |
2142 | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); |
2143 | if (__glibc_unlikely (! ok)) |
2144 | { |
2145 | err = REG_ESPACE; |
2146 | goto free_return; |
2147 | } |
2148 | cur_state = local_sctx.sifted_states[str_idx]; |
2149 | err = sift_states_backward (mctx, &local_sctx); |
2150 | if (__glibc_unlikely (err != REG_NOERROR)) |
2151 | goto free_return; |
2152 | if (sctx->limited_states != NULL) |
2153 | { |
2154 | err = merge_state_array (dfa, sctx->limited_states, |
2155 | local_sctx.sifted_states, |
2156 | str_idx + 1); |
2157 | if (__glibc_unlikely (err != REG_NOERROR)) |
2158 | goto free_return; |
2159 | } |
2160 | local_sctx.sifted_states[str_idx] = cur_state; |
2161 | re_node_set_remove (&local_sctx.limits, enabled_idx); |
2162 | |
2163 | /* mctx->bkref_ents may have changed, reload the pointer. */ |
2164 | entry = mctx->bkref_ents + enabled_idx; |
2165 | } |
2166 | while (enabled_idx++, entry++->more); |
2167 | } |
2168 | err = REG_NOERROR; |
2169 | free_return: |
2170 | if (local_sctx.sifted_states != NULL) |
2171 | { |
2172 | re_node_set_free (&local_sctx.limits); |
2173 | } |
2174 | |
2175 | return err; |
2176 | } |
2177 | |
2178 | |
2179 | #ifdef RE_ENABLE_I18N |
2180 | static int |
2181 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, |
2182 | Idx node_idx, Idx str_idx, Idx max_str_idx) |
2183 | { |
2184 | const re_dfa_t *const dfa = mctx->dfa; |
2185 | int naccepted; |
2186 | /* Check the node can accept "multi byte". */ |
2187 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); |
2188 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx |
2189 | && !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], |
2190 | dfa->nexts[node_idx])) |
2191 | /* The node can't accept the "multi byte", or the |
2192 | destination was already thrown away, then the node |
2193 | couldn't accept the current input "multi byte". */ |
2194 | naccepted = 0; |
2195 | /* Otherwise, it is sure that the node could accept |
2196 | 'naccepted' bytes input. */ |
2197 | return naccepted; |
2198 | } |
2199 | #endif /* RE_ENABLE_I18N */ |
2200 | |
2201 | |
2202 | /* Functions for state transition. */ |
2203 | |
2204 | /* Return the next state to which the current state STATE will transit by |
2205 | accepting the current input byte, and update STATE_LOG if necessary. |
2206 | Return NULL on failure. |
2207 | If STATE can accept a multibyte char/collating element/back reference |
2208 | update the destination of STATE_LOG. */ |
2209 | |
2210 | static re_dfastate_t * |
2211 | __attribute_warn_unused_result__ |
2212 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, |
2213 | re_dfastate_t *state) |
2214 | { |
2215 | re_dfastate_t **trtable; |
2216 | unsigned char ch; |
2217 | |
2218 | #ifdef RE_ENABLE_I18N |
2219 | /* If the current state can accept multibyte. */ |
2220 | if (__glibc_unlikely (state->accept_mb)) |
2221 | { |
2222 | *err = transit_state_mb (mctx, state); |
2223 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2224 | return NULL; |
2225 | } |
2226 | #endif /* RE_ENABLE_I18N */ |
2227 | |
2228 | /* Then decide the next state with the single byte. */ |
2229 | #if 0 |
2230 | if (0) |
2231 | /* don't use transition table */ |
2232 | return transit_state_sb (err, mctx, state); |
2233 | #endif |
2234 | |
2235 | /* Use transition table */ |
2236 | ch = re_string_fetch_byte (&mctx->input); |
2237 | for (;;) |
2238 | { |
2239 | trtable = state->trtable; |
2240 | if (__glibc_likely (trtable != NULL)) |
2241 | return trtable[ch]; |
2242 | |
2243 | trtable = state->word_trtable; |
2244 | if (__glibc_likely (trtable != NULL)) |
2245 | { |
2246 | unsigned int context; |
2247 | context |
2248 | = re_string_context_at (&mctx->input, |
2249 | re_string_cur_idx (&mctx->input) - 1, |
2250 | mctx->eflags); |
2251 | if (IS_WORD_CONTEXT (context)) |
2252 | return trtable[ch + SBC_MAX]; |
2253 | else |
2254 | return trtable[ch]; |
2255 | } |
2256 | |
2257 | if (!build_trtable (mctx->dfa, state)) |
2258 | { |
2259 | *err = REG_ESPACE; |
2260 | return NULL; |
2261 | } |
2262 | |
2263 | /* Retry, we now have a transition table. */ |
2264 | } |
2265 | } |
2266 | |
2267 | /* Update the state_log if we need */ |
2268 | static re_dfastate_t * |
2269 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, |
2270 | re_dfastate_t *next_state) |
2271 | { |
2272 | const re_dfa_t *const dfa = mctx->dfa; |
2273 | Idx cur_idx = re_string_cur_idx (&mctx->input); |
2274 | |
2275 | if (cur_idx > mctx->state_log_top) |
2276 | { |
2277 | mctx->state_log[cur_idx] = next_state; |
2278 | mctx->state_log_top = cur_idx; |
2279 | } |
2280 | else if (mctx->state_log[cur_idx] == 0) |
2281 | { |
2282 | mctx->state_log[cur_idx] = next_state; |
2283 | } |
2284 | else |
2285 | { |
2286 | re_dfastate_t *pstate; |
2287 | unsigned int context; |
2288 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; |
2289 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is |
2290 | the destination of a multibyte char/collating element/ |
2291 | back reference. Then the next state is the union set of |
2292 | these destinations and the results of the transition table. */ |
2293 | pstate = mctx->state_log[cur_idx]; |
2294 | log_nodes = pstate->entrance_nodes; |
2295 | if (next_state != NULL) |
2296 | { |
2297 | table_nodes = next_state->entrance_nodes; |
2298 | *err = re_node_set_init_union (&next_nodes, table_nodes, |
2299 | log_nodes); |
2300 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2301 | return NULL; |
2302 | } |
2303 | else |
2304 | next_nodes = *log_nodes; |
2305 | /* Note: We already add the nodes of the initial state, |
2306 | then we don't need to add them here. */ |
2307 | |
2308 | context = re_string_context_at (&mctx->input, |
2309 | re_string_cur_idx (&mctx->input) - 1, |
2310 | mctx->eflags); |
2311 | next_state = mctx->state_log[cur_idx] |
2312 | = re_acquire_state_context (err, dfa, &next_nodes, context); |
2313 | /* We don't need to check errors here, since the return value of |
2314 | this function is next_state and ERR is already set. */ |
2315 | |
2316 | if (table_nodes != NULL) |
2317 | re_node_set_free (&next_nodes); |
2318 | } |
2319 | |
2320 | if (__glibc_unlikely (dfa->nbackref) && next_state != NULL) |
2321 | { |
2322 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them |
2323 | later. We must check them here, since the back references in the |
2324 | next state might use them. */ |
2325 | *err = check_subexp_matching_top (mctx, &next_state->nodes, |
2326 | cur_idx); |
2327 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2328 | return NULL; |
2329 | |
2330 | /* If the next state has back references. */ |
2331 | if (next_state->has_backref) |
2332 | { |
2333 | *err = transit_state_bkref (mctx, &next_state->nodes); |
2334 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2335 | return NULL; |
2336 | next_state = mctx->state_log[cur_idx]; |
2337 | } |
2338 | } |
2339 | |
2340 | return next_state; |
2341 | } |
2342 | |
2343 | /* Skip bytes in the input that correspond to part of a |
2344 | multi-byte match, then look in the log for a state |
2345 | from which to restart matching. */ |
2346 | static re_dfastate_t * |
2347 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) |
2348 | { |
2349 | re_dfastate_t *cur_state; |
2350 | do |
2351 | { |
2352 | Idx max = mctx->state_log_top; |
2353 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
2354 | |
2355 | do |
2356 | { |
2357 | if (++cur_str_idx > max) |
2358 | return NULL; |
2359 | re_string_skip_bytes (&mctx->input, 1); |
2360 | } |
2361 | while (mctx->state_log[cur_str_idx] == NULL); |
2362 | |
2363 | cur_state = merge_state_with_log (err, mctx, NULL); |
2364 | } |
2365 | while (*err == REG_NOERROR && cur_state == NULL); |
2366 | return cur_state; |
2367 | } |
2368 | |
2369 | /* Helper functions for transit_state. */ |
2370 | |
2371 | /* From the node set CUR_NODES, pick up the nodes whose types are |
2372 | OP_OPEN_SUBEXP and which have corresponding back references in the regular |
2373 | expression. And register them to use them later for evaluating the |
2374 | corresponding back references. */ |
2375 | |
2376 | static reg_errcode_t |
2377 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, |
2378 | Idx str_idx) |
2379 | { |
2380 | const re_dfa_t *const dfa = mctx->dfa; |
2381 | Idx node_idx; |
2382 | reg_errcode_t err; |
2383 | |
2384 | /* TODO: This isn't efficient. |
2385 | Because there might be more than one nodes whose types are |
2386 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
2387 | nodes. |
2388 | E.g. RE: (a){2} */ |
2389 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) |
2390 | { |
2391 | Idx node = cur_nodes->elems[node_idx]; |
2392 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP |
2393 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS |
2394 | && (dfa->used_bkref_map |
2395 | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) |
2396 | { |
2397 | err = match_ctx_add_subtop (mctx, node, str_idx); |
2398 | if (__glibc_unlikely (err != REG_NOERROR)) |
2399 | return err; |
2400 | } |
2401 | } |
2402 | return REG_NOERROR; |
2403 | } |
2404 | |
2405 | #if 0 |
2406 | /* Return the next state to which the current state STATE will transit by |
2407 | accepting the current input byte. Return NULL on failure. */ |
2408 | |
2409 | static re_dfastate_t * |
2410 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, |
2411 | re_dfastate_t *state) |
2412 | { |
2413 | const re_dfa_t *const dfa = mctx->dfa; |
2414 | re_node_set next_nodes; |
2415 | re_dfastate_t *next_state; |
2416 | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); |
2417 | unsigned int context; |
2418 | |
2419 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); |
2420 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2421 | return NULL; |
2422 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) |
2423 | { |
2424 | Idx cur_node = state->nodes.elems[node_cnt]; |
2425 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) |
2426 | { |
2427 | *err = re_node_set_merge (&next_nodes, |
2428 | dfa->eclosures + dfa->nexts[cur_node]); |
2429 | if (__glibc_unlikely (*err != REG_NOERROR)) |
2430 | { |
2431 | re_node_set_free (&next_nodes); |
2432 | return NULL; |
2433 | } |
2434 | } |
2435 | } |
2436 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); |
2437 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); |
2438 | /* We don't need to check errors here, since the return value of |
2439 | this function is next_state and ERR is already set. */ |
2440 | |
2441 | re_node_set_free (&next_nodes); |
2442 | re_string_skip_bytes (&mctx->input, 1); |
2443 | return next_state; |
2444 | } |
2445 | #endif |
2446 | |
2447 | #ifdef RE_ENABLE_I18N |
2448 | static reg_errcode_t |
2449 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) |
2450 | { |
2451 | const re_dfa_t *const dfa = mctx->dfa; |
2452 | reg_errcode_t err; |
2453 | Idx i; |
2454 | |
2455 | for (i = 0; i < pstate->nodes.nelem; ++i) |
2456 | { |
2457 | re_node_set dest_nodes, *new_nodes; |
2458 | Idx cur_node_idx = pstate->nodes.elems[i]; |
2459 | int naccepted; |
2460 | Idx dest_idx; |
2461 | unsigned int context; |
2462 | re_dfastate_t *dest_state; |
2463 | |
2464 | if (!dfa->nodes[cur_node_idx].accept_mb) |
2465 | continue; |
2466 | |
2467 | if (dfa->nodes[cur_node_idx].constraint) |
2468 | { |
2469 | context = re_string_context_at (&mctx->input, |
2470 | re_string_cur_idx (&mctx->input), |
2471 | mctx->eflags); |
2472 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, |
2473 | context)) |
2474 | continue; |
2475 | } |
2476 | |
2477 | /* How many bytes the node can accept? */ |
2478 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, |
2479 | re_string_cur_idx (&mctx->input)); |
2480 | if (naccepted == 0) |
2481 | continue; |
2482 | |
2483 | /* The node can accepts 'naccepted' bytes. */ |
2484 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; |
2485 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted |
2486 | : mctx->max_mb_elem_len); |
2487 | err = clean_state_log_if_needed (mctx, dest_idx); |
2488 | if (__glibc_unlikely (err != REG_NOERROR)) |
2489 | return err; |
2490 | DEBUG_ASSERT (dfa->nexts[cur_node_idx] != -1); |
2491 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; |
2492 | |
2493 | dest_state = mctx->state_log[dest_idx]; |
2494 | if (dest_state == NULL) |
2495 | dest_nodes = *new_nodes; |
2496 | else |
2497 | { |
2498 | err = re_node_set_init_union (&dest_nodes, |
2499 | dest_state->entrance_nodes, new_nodes); |
2500 | if (__glibc_unlikely (err != REG_NOERROR)) |
2501 | return err; |
2502 | } |
2503 | context = re_string_context_at (&mctx->input, dest_idx - 1, |
2504 | mctx->eflags); |
2505 | mctx->state_log[dest_idx] |
2506 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
2507 | if (dest_state != NULL) |
2508 | re_node_set_free (&dest_nodes); |
2509 | if (__glibc_unlikely (mctx->state_log[dest_idx] == NULL |
2510 | && err != REG_NOERROR)) |
2511 | return err; |
2512 | } |
2513 | return REG_NOERROR; |
2514 | } |
2515 | #endif /* RE_ENABLE_I18N */ |
2516 | |
2517 | static reg_errcode_t |
2518 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) |
2519 | { |
2520 | const re_dfa_t *const dfa = mctx->dfa; |
2521 | reg_errcode_t err; |
2522 | Idx i; |
2523 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); |
2524 | |
2525 | for (i = 0; i < nodes->nelem; ++i) |
2526 | { |
2527 | Idx dest_str_idx, prev_nelem, bkc_idx; |
2528 | Idx node_idx = nodes->elems[i]; |
2529 | unsigned int context; |
2530 | const re_token_t *node = dfa->nodes + node_idx; |
2531 | re_node_set *new_dest_nodes; |
2532 | |
2533 | /* Check whether 'node' is a backreference or not. */ |
2534 | if (node->type != OP_BACK_REF) |
2535 | continue; |
2536 | |
2537 | if (node->constraint) |
2538 | { |
2539 | context = re_string_context_at (&mctx->input, cur_str_idx, |
2540 | mctx->eflags); |
2541 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
2542 | continue; |
2543 | } |
2544 | |
2545 | /* 'node' is a backreference. |
2546 | Check the substring which the substring matched. */ |
2547 | bkc_idx = mctx->nbkref_ents; |
2548 | err = get_subexp (mctx, node_idx, cur_str_idx); |
2549 | if (__glibc_unlikely (err != REG_NOERROR)) |
2550 | goto free_return; |
2551 | |
2552 | /* And add the epsilon closures (which is 'new_dest_nodes') of |
2553 | the backreference to appropriate state_log. */ |
2554 | DEBUG_ASSERT (dfa->nexts[node_idx] != -1); |
2555 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) |
2556 | { |
2557 | Idx subexp_len; |
2558 | re_dfastate_t *dest_state; |
2559 | struct re_backref_cache_entry *bkref_ent; |
2560 | bkref_ent = mctx->bkref_ents + bkc_idx; |
2561 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) |
2562 | continue; |
2563 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; |
2564 | new_dest_nodes = (subexp_len == 0 |
2565 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] |
2566 | : dfa->eclosures + dfa->nexts[node_idx]); |
2567 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to |
2568 | - bkref_ent->subexp_from); |
2569 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, |
2570 | mctx->eflags); |
2571 | dest_state = mctx->state_log[dest_str_idx]; |
2572 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 |
2573 | : mctx->state_log[cur_str_idx]->nodes.nelem); |
2574 | /* Add 'new_dest_node' to state_log. */ |
2575 | if (dest_state == NULL) |
2576 | { |
2577 | mctx->state_log[dest_str_idx] |
2578 | = re_acquire_state_context (&err, dfa, new_dest_nodes, |
2579 | context); |
2580 | if (__glibc_unlikely (mctx->state_log[dest_str_idx] == NULL |
2581 | && err != REG_NOERROR)) |
2582 | goto free_return; |
2583 | } |
2584 | else |
2585 | { |
2586 | re_node_set dest_nodes; |
2587 | err = re_node_set_init_union (&dest_nodes, |
2588 | dest_state->entrance_nodes, |
2589 | new_dest_nodes); |
2590 | if (__glibc_unlikely (err != REG_NOERROR)) |
2591 | { |
2592 | re_node_set_free (&dest_nodes); |
2593 | goto free_return; |
2594 | } |
2595 | mctx->state_log[dest_str_idx] |
2596 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); |
2597 | re_node_set_free (&dest_nodes); |
2598 | if (__glibc_unlikely (mctx->state_log[dest_str_idx] == NULL |
2599 | && err != REG_NOERROR)) |
2600 | goto free_return; |
2601 | } |
2602 | /* We need to check recursively if the backreference can epsilon |
2603 | transit. */ |
2604 | if (subexp_len == 0 |
2605 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) |
2606 | { |
2607 | err = check_subexp_matching_top (mctx, new_dest_nodes, |
2608 | cur_str_idx); |
2609 | if (__glibc_unlikely (err != REG_NOERROR)) |
2610 | goto free_return; |
2611 | err = transit_state_bkref (mctx, new_dest_nodes); |
2612 | if (__glibc_unlikely (err != REG_NOERROR)) |
2613 | goto free_return; |
2614 | } |
2615 | } |
2616 | } |
2617 | err = REG_NOERROR; |
2618 | free_return: |
2619 | return err; |
2620 | } |
2621 | |
2622 | /* Enumerate all the candidates which the backreference BKREF_NODE can match |
2623 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). |
2624 | Note that we might collect inappropriate candidates here. |
2625 | However, the cost of checking them strictly here is too high, then we |
2626 | delay these checking for prune_impossible_nodes(). */ |
2627 | |
2628 | static reg_errcode_t |
2629 | __attribute_warn_unused_result__ |
2630 | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) |
2631 | { |
2632 | const re_dfa_t *const dfa = mctx->dfa; |
2633 | Idx subexp_num, sub_top_idx; |
2634 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); |
2635 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ |
2636 | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); |
2637 | if (cache_idx != -1) |
2638 | { |
2639 | const struct re_backref_cache_entry *entry |
2640 | = mctx->bkref_ents + cache_idx; |
2641 | do |
2642 | if (entry->node == bkref_node) |
2643 | return REG_NOERROR; /* We already checked it. */ |
2644 | while (entry++->more); |
2645 | } |
2646 | |
2647 | subexp_num = dfa->nodes[bkref_node].opr.idx; |
2648 | |
2649 | /* For each sub expression */ |
2650 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) |
2651 | { |
2652 | reg_errcode_t err; |
2653 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; |
2654 | re_sub_match_last_t *sub_last; |
2655 | Idx sub_last_idx, sl_str, bkref_str_off; |
2656 | |
2657 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) |
2658 | continue; /* It isn't related. */ |
2659 | |
2660 | sl_str = sub_top->str_idx; |
2661 | bkref_str_off = bkref_str_idx; |
2662 | /* At first, check the last node of sub expressions we already |
2663 | evaluated. */ |
2664 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) |
2665 | { |
2666 | regoff_t sl_str_diff; |
2667 | sub_last = sub_top->lasts[sub_last_idx]; |
2668 | sl_str_diff = sub_last->str_idx - sl_str; |
2669 | /* The matched string by the sub expression match with the substring |
2670 | at the back reference? */ |
2671 | if (sl_str_diff > 0) |
2672 | { |
2673 | if (__glibc_unlikely (bkref_str_off + sl_str_diff |
2674 | > mctx->input.valid_len)) |
2675 | { |
2676 | /* Not enough chars for a successful match. */ |
2677 | if (bkref_str_off + sl_str_diff > mctx->input.len) |
2678 | break; |
2679 | |
2680 | err = clean_state_log_if_needed (mctx, |
2681 | bkref_str_off |
2682 | + sl_str_diff); |
2683 | if (__glibc_unlikely (err != REG_NOERROR)) |
2684 | return err; |
2685 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2686 | } |
2687 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) |
2688 | /* We don't need to search this sub expression any more. */ |
2689 | break; |
2690 | } |
2691 | bkref_str_off += sl_str_diff; |
2692 | sl_str += sl_str_diff; |
2693 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
2694 | bkref_str_idx); |
2695 | |
2696 | /* Reload buf, since the preceding call might have reallocated |
2697 | the buffer. */ |
2698 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2699 | |
2700 | if (err == REG_NOMATCH) |
2701 | continue; |
2702 | if (__glibc_unlikely (err != REG_NOERROR)) |
2703 | return err; |
2704 | } |
2705 | |
2706 | if (sub_last_idx < sub_top->nlasts) |
2707 | continue; |
2708 | if (sub_last_idx > 0) |
2709 | ++sl_str; |
2710 | /* Then, search for the other last nodes of the sub expression. */ |
2711 | for (; sl_str <= bkref_str_idx; ++sl_str) |
2712 | { |
2713 | Idx cls_node; |
2714 | regoff_t sl_str_off; |
2715 | const re_node_set *nodes; |
2716 | sl_str_off = sl_str - sub_top->str_idx; |
2717 | /* The matched string by the sub expression match with the substring |
2718 | at the back reference? */ |
2719 | if (sl_str_off > 0) |
2720 | { |
2721 | if (__glibc_unlikely (bkref_str_off >= mctx->input.valid_len)) |
2722 | { |
2723 | /* If we are at the end of the input, we cannot match. */ |
2724 | if (bkref_str_off >= mctx->input.len) |
2725 | break; |
2726 | |
2727 | err = extend_buffers (mctx, bkref_str_off + 1); |
2728 | if (__glibc_unlikely (err != REG_NOERROR)) |
2729 | return err; |
2730 | |
2731 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2732 | } |
2733 | if (buf [bkref_str_off++] != buf[sl_str - 1]) |
2734 | break; /* We don't need to search this sub expression |
2735 | any more. */ |
2736 | } |
2737 | if (mctx->state_log[sl_str] == NULL) |
2738 | continue; |
2739 | /* Does this state have a ')' of the sub expression? */ |
2740 | nodes = &mctx->state_log[sl_str]->nodes; |
2741 | cls_node = find_subexp_node (dfa, nodes, subexp_num, |
2742 | OP_CLOSE_SUBEXP); |
2743 | if (cls_node == -1) |
2744 | continue; /* No. */ |
2745 | if (sub_top->path == NULL) |
2746 | { |
2747 | sub_top->path = calloc (sizeof (state_array_t), |
2748 | sl_str - sub_top->str_idx + 1); |
2749 | if (sub_top->path == NULL) |
2750 | return REG_ESPACE; |
2751 | } |
2752 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node |
2753 | in the current context? */ |
2754 | err = check_arrival (mctx, sub_top->path, sub_top->node, |
2755 | sub_top->str_idx, cls_node, sl_str, |
2756 | OP_CLOSE_SUBEXP); |
2757 | if (err == REG_NOMATCH) |
2758 | continue; |
2759 | if (__glibc_unlikely (err != REG_NOERROR)) |
2760 | return err; |
2761 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); |
2762 | if (__glibc_unlikely (sub_last == NULL)) |
2763 | return REG_ESPACE; |
2764 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, |
2765 | bkref_str_idx); |
2766 | buf = (const char *) re_string_get_buffer (&mctx->input); |
2767 | if (err == REG_NOMATCH) |
2768 | continue; |
2769 | if (__glibc_unlikely (err != REG_NOERROR)) |
2770 | return err; |
2771 | } |
2772 | } |
2773 | return REG_NOERROR; |
2774 | } |
2775 | |
2776 | /* Helper functions for get_subexp(). */ |
2777 | |
2778 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. |
2779 | If it can arrive, register the sub expression expressed with SUB_TOP |
2780 | and SUB_LAST. */ |
2781 | |
2782 | static reg_errcode_t |
2783 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, |
2784 | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) |
2785 | { |
2786 | reg_errcode_t err; |
2787 | Idx to_idx; |
2788 | /* Can the subexpression arrive the back reference? */ |
2789 | err = check_arrival (mctx, &sub_last->path, sub_last->node, |
2790 | sub_last->str_idx, bkref_node, bkref_str, |
2791 | OP_OPEN_SUBEXP); |
2792 | if (err != REG_NOERROR) |
2793 | return err; |
2794 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, |
2795 | sub_last->str_idx); |
2796 | if (__glibc_unlikely (err != REG_NOERROR)) |
2797 | return err; |
2798 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; |
2799 | return clean_state_log_if_needed (mctx, to_idx); |
2800 | } |
2801 | |
2802 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. |
2803 | Search '(' if FL_OPEN, or search ')' otherwise. |
2804 | TODO: This function isn't efficient... |
2805 | Because there might be more than one nodes whose types are |
2806 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all |
2807 | nodes. |
2808 | E.g. RE: (a){2} */ |
2809 | |
2810 | static Idx |
2811 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, |
2812 | Idx subexp_idx, int type) |
2813 | { |
2814 | Idx cls_idx; |
2815 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) |
2816 | { |
2817 | Idx cls_node = nodes->elems[cls_idx]; |
2818 | const re_token_t *node = dfa->nodes + cls_node; |
2819 | if (node->type == type |
2820 | && node->opr.idx == subexp_idx) |
2821 | return cls_node; |
2822 | } |
2823 | return -1; |
2824 | } |
2825 | |
2826 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node |
2827 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be |
2828 | heavily reused. |
2829 | Return REG_NOERROR if it can arrive, REG_NOMATCH if it cannot, |
2830 | REG_ESPACE if memory is exhausted. */ |
2831 | |
2832 | static reg_errcode_t |
2833 | __attribute_warn_unused_result__ |
2834 | check_arrival (re_match_context_t *mctx, state_array_t *path, Idx top_node, |
2835 | Idx top_str, Idx last_node, Idx last_str, int type) |
2836 | { |
2837 | const re_dfa_t *const dfa = mctx->dfa; |
2838 | reg_errcode_t err = REG_NOERROR; |
2839 | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; |
2840 | re_dfastate_t *cur_state = NULL; |
2841 | re_node_set *cur_nodes, next_nodes; |
2842 | re_dfastate_t **backup_state_log; |
2843 | unsigned int context; |
2844 | |
2845 | subexp_num = dfa->nodes[top_node].opr.idx; |
2846 | /* Extend the buffer if we need. */ |
2847 | if (__glibc_unlikely (path->alloc < last_str + mctx->max_mb_elem_len + 1)) |
2848 | { |
2849 | re_dfastate_t **new_array; |
2850 | Idx old_alloc = path->alloc; |
2851 | Idx incr_alloc = last_str + mctx->max_mb_elem_len + 1; |
2852 | Idx new_alloc; |
2853 | if (__glibc_unlikely (IDX_MAX - old_alloc < incr_alloc)) |
2854 | return REG_ESPACE; |
2855 | new_alloc = old_alloc + incr_alloc; |
2856 | if (__glibc_unlikely (SIZE_MAX / sizeof (re_dfastate_t *) < new_alloc)) |
2857 | return REG_ESPACE; |
2858 | new_array = re_realloc (path->array, re_dfastate_t *, new_alloc); |
2859 | if (__glibc_unlikely (new_array == NULL)) |
2860 | return REG_ESPACE; |
2861 | path->array = new_array; |
2862 | path->alloc = new_alloc; |
2863 | memset (new_array + old_alloc, '\0', |
2864 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); |
2865 | } |
2866 | |
2867 | str_idx = path->next_idx ? path->next_idx : top_str; |
2868 | |
2869 | /* Temporary modify MCTX. */ |
2870 | backup_state_log = mctx->state_log; |
2871 | backup_cur_idx = mctx->input.cur_idx; |
2872 | mctx->state_log = path->array; |
2873 | mctx->input.cur_idx = str_idx; |
2874 | |
2875 | /* Setup initial node set. */ |
2876 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
2877 | if (str_idx == top_str) |
2878 | { |
2879 | err = re_node_set_init_1 (&next_nodes, top_node); |
2880 | if (__glibc_unlikely (err != REG_NOERROR)) |
2881 | return err; |
2882 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
2883 | if (__glibc_unlikely (err != REG_NOERROR)) |
2884 | { |
2885 | re_node_set_free (&next_nodes); |
2886 | return err; |
2887 | } |
2888 | } |
2889 | else |
2890 | { |
2891 | cur_state = mctx->state_log[str_idx]; |
2892 | if (cur_state && cur_state->has_backref) |
2893 | { |
2894 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); |
2895 | if (__glibc_unlikely (err != REG_NOERROR)) |
2896 | return err; |
2897 | } |
2898 | else |
2899 | re_node_set_init_empty (&next_nodes); |
2900 | } |
2901 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) |
2902 | { |
2903 | if (next_nodes.nelem) |
2904 | { |
2905 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
2906 | subexp_num, type); |
2907 | if (__glibc_unlikely (err != REG_NOERROR)) |
2908 | { |
2909 | re_node_set_free (&next_nodes); |
2910 | return err; |
2911 | } |
2912 | } |
2913 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
2914 | if (__glibc_unlikely (cur_state == NULL && err != REG_NOERROR)) |
2915 | { |
2916 | re_node_set_free (&next_nodes); |
2917 | return err; |
2918 | } |
2919 | mctx->state_log[str_idx] = cur_state; |
2920 | } |
2921 | |
2922 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) |
2923 | { |
2924 | re_node_set_empty (&next_nodes); |
2925 | if (mctx->state_log[str_idx + 1]) |
2926 | { |
2927 | err = re_node_set_merge (&next_nodes, |
2928 | &mctx->state_log[str_idx + 1]->nodes); |
2929 | if (__glibc_unlikely (err != REG_NOERROR)) |
2930 | { |
2931 | re_node_set_free (&next_nodes); |
2932 | return err; |
2933 | } |
2934 | } |
2935 | if (cur_state) |
2936 | { |
2937 | err = check_arrival_add_next_nodes (mctx, str_idx, |
2938 | &cur_state->non_eps_nodes, |
2939 | &next_nodes); |
2940 | if (__glibc_unlikely (err != REG_NOERROR)) |
2941 | { |
2942 | re_node_set_free (&next_nodes); |
2943 | return err; |
2944 | } |
2945 | } |
2946 | ++str_idx; |
2947 | if (next_nodes.nelem) |
2948 | { |
2949 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); |
2950 | if (__glibc_unlikely (err != REG_NOERROR)) |
2951 | { |
2952 | re_node_set_free (&next_nodes); |
2953 | return err; |
2954 | } |
2955 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, |
2956 | subexp_num, type); |
2957 | if (__glibc_unlikely (err != REG_NOERROR)) |
2958 | { |
2959 | re_node_set_free (&next_nodes); |
2960 | return err; |
2961 | } |
2962 | } |
2963 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); |
2964 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); |
2965 | if (__glibc_unlikely (cur_state == NULL && err != REG_NOERROR)) |
2966 | { |
2967 | re_node_set_free (&next_nodes); |
2968 | return err; |
2969 | } |
2970 | mctx->state_log[str_idx] = cur_state; |
2971 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; |
2972 | } |
2973 | re_node_set_free (&next_nodes); |
2974 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL |
2975 | : &mctx->state_log[last_str]->nodes); |
2976 | path->next_idx = str_idx; |
2977 | |
2978 | /* Fix MCTX. */ |
2979 | mctx->state_log = backup_state_log; |
2980 | mctx->input.cur_idx = backup_cur_idx; |
2981 | |
2982 | /* Then check the current node set has the node LAST_NODE. */ |
2983 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) |
2984 | return REG_NOERROR; |
2985 | |
2986 | return REG_NOMATCH; |
2987 | } |
2988 | |
2989 | /* Helper functions for check_arrival. */ |
2990 | |
2991 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them |
2992 | to NEXT_NODES. |
2993 | TODO: This function is similar to the functions transit_state*(), |
2994 | however this function has many additional works. |
2995 | Can't we unify them? */ |
2996 | |
2997 | static reg_errcode_t |
2998 | __attribute_warn_unused_result__ |
2999 | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, |
3000 | re_node_set *cur_nodes, re_node_set *next_nodes) |
3001 | { |
3002 | const re_dfa_t *const dfa = mctx->dfa; |
3003 | bool ok; |
3004 | Idx cur_idx; |
3005 | #ifdef RE_ENABLE_I18N |
3006 | reg_errcode_t err = REG_NOERROR; |
3007 | #endif |
3008 | re_node_set union_set; |
3009 | re_node_set_init_empty (&union_set); |
3010 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) |
3011 | { |
3012 | int naccepted = 0; |
3013 | Idx cur_node = cur_nodes->elems[cur_idx]; |
3014 | DEBUG_ASSERT (!IS_EPSILON_NODE (dfa->nodes[cur_node].type)); |
3015 | |
3016 | #ifdef RE_ENABLE_I18N |
3017 | /* If the node may accept "multi byte". */ |
3018 | if (dfa->nodes[cur_node].accept_mb) |
3019 | { |
3020 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, |
3021 | str_idx); |
3022 | if (naccepted > 1) |
3023 | { |
3024 | re_dfastate_t *dest_state; |
3025 | Idx next_node = dfa->nexts[cur_node]; |
3026 | Idx next_idx = str_idx + naccepted; |
3027 | dest_state = mctx->state_log[next_idx]; |
3028 | re_node_set_empty (&union_set); |
3029 | if (dest_state) |
3030 | { |
3031 | err = re_node_set_merge (&union_set, &dest_state->nodes); |
3032 | if (__glibc_unlikely (err != REG_NOERROR)) |
3033 | { |
3034 | re_node_set_free (&union_set); |
3035 | return err; |
3036 | } |
3037 | } |
3038 | ok = re_node_set_insert (&union_set, next_node); |
3039 | if (__glibc_unlikely (! ok)) |
3040 | { |
3041 | re_node_set_free (&union_set); |
3042 | return REG_ESPACE; |
3043 | } |
3044 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, |
3045 | &union_set); |
3046 | if (__glibc_unlikely (mctx->state_log[next_idx] == NULL |
3047 | && err != REG_NOERROR)) |
3048 | { |
3049 | re_node_set_free (&union_set); |
3050 | return err; |
3051 | } |
3052 | } |
3053 | } |
3054 | #endif /* RE_ENABLE_I18N */ |
3055 | if (naccepted |
3056 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) |
3057 | { |
3058 | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); |
3059 | if (__glibc_unlikely (! ok)) |
3060 | { |
3061 | re_node_set_free (&union_set); |
3062 | return REG_ESPACE; |
3063 | } |
3064 | } |
3065 | } |
3066 | re_node_set_free (&union_set); |
3067 | return REG_NOERROR; |
3068 | } |
3069 | |
3070 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to |
3071 | CUR_NODES, however exclude the nodes which are: |
3072 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. |
3073 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. |
3074 | */ |
3075 | |
3076 | static reg_errcode_t |
3077 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, |
3078 | Idx ex_subexp, int type) |
3079 | { |
3080 | reg_errcode_t err; |
3081 | Idx idx, outside_node; |
3082 | re_node_set new_nodes; |
3083 | DEBUG_ASSERT (cur_nodes->nelem); |
3084 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); |
3085 | if (__glibc_unlikely (err != REG_NOERROR)) |
3086 | return err; |
3087 | /* Create a new node set NEW_NODES with the nodes which are epsilon |
3088 | closures of the node in CUR_NODES. */ |
3089 | |
3090 | for (idx = 0; idx < cur_nodes->nelem; ++idx) |
3091 | { |
3092 | Idx cur_node = cur_nodes->elems[idx]; |
3093 | const re_node_set *eclosure = dfa->eclosures + cur_node; |
3094 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); |
3095 | if (outside_node == -1) |
3096 | { |
3097 | /* There are no problematic nodes, just merge them. */ |
3098 | err = re_node_set_merge (&new_nodes, eclosure); |
3099 | if (__glibc_unlikely (err != REG_NOERROR)) |
3100 | { |
3101 | re_node_set_free (&new_nodes); |
3102 | return err; |
3103 | } |
3104 | } |
3105 | else |
3106 | { |
3107 | /* There are problematic nodes, re-calculate incrementally. */ |
3108 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, |
3109 | ex_subexp, type); |
3110 | if (__glibc_unlikely (err != REG_NOERROR)) |
3111 | { |
3112 | re_node_set_free (&new_nodes); |
3113 | return err; |
3114 | } |
3115 | } |
3116 | } |
3117 | re_node_set_free (cur_nodes); |
3118 | *cur_nodes = new_nodes; |
3119 | return REG_NOERROR; |
3120 | } |
3121 | |
3122 | /* Helper function for check_arrival_expand_ecl. |
3123 | Check incrementally the epsilon closure of TARGET, and if it isn't |
3124 | problematic append it to DST_NODES. */ |
3125 | |
3126 | static reg_errcode_t |
3127 | __attribute_warn_unused_result__ |
3128 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, |
3129 | Idx target, Idx ex_subexp, int type) |
3130 | { |
3131 | Idx cur_node; |
3132 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) |
3133 | { |
3134 | bool ok; |
3135 | |
3136 | if (dfa->nodes[cur_node].type == type |
3137 | && dfa->nodes[cur_node].opr.idx == ex_subexp) |
3138 | { |
3139 | if (type == OP_CLOSE_SUBEXP) |
3140 | { |
3141 | ok = re_node_set_insert (dst_nodes, cur_node); |
3142 | if (__glibc_unlikely (! ok)) |
3143 | return REG_ESPACE; |
3144 | } |
3145 | break; |
3146 | } |
3147 | ok = re_node_set_insert (dst_nodes, cur_node); |
3148 | if (__glibc_unlikely (! ok)) |
3149 | return REG_ESPACE; |
3150 | if (dfa->edests[cur_node].nelem == 0) |
3151 | break; |
3152 | if (dfa->edests[cur_node].nelem == 2) |
3153 | { |
3154 | reg_errcode_t err; |
3155 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, |
3156 | dfa->edests[cur_node].elems[1], |
3157 | ex_subexp, type); |
3158 | if (__glibc_unlikely (err != REG_NOERROR)) |
3159 | return err; |
3160 | } |
3161 | cur_node = dfa->edests[cur_node].elems[0]; |
3162 | } |
3163 | return REG_NOERROR; |
3164 | } |
3165 | |
3166 | |
3167 | /* For all the back references in the current state, calculate the |
3168 | destination of the back references by the appropriate entry |
3169 | in MCTX->BKREF_ENTS. */ |
3170 | |
3171 | static reg_errcode_t |
3172 | __attribute_warn_unused_result__ |
3173 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, |
3174 | Idx cur_str, Idx subexp_num, int type) |
3175 | { |
3176 | const re_dfa_t *const dfa = mctx->dfa; |
3177 | reg_errcode_t err; |
3178 | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); |
3179 | struct re_backref_cache_entry *ent; |
3180 | |
3181 | if (cache_idx_start == -1) |
3182 | return REG_NOERROR; |
3183 | |
3184 | restart: |
3185 | ent = mctx->bkref_ents + cache_idx_start; |
3186 | do |
3187 | { |
3188 | Idx to_idx, next_node; |
3189 | |
3190 | /* Is this entry ENT is appropriate? */ |
3191 | if (!re_node_set_contains (cur_nodes, ent->node)) |
3192 | continue; /* No. */ |
3193 | |
3194 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; |
3195 | /* Calculate the destination of the back reference, and append it |
3196 | to MCTX->STATE_LOG. */ |
3197 | if (to_idx == cur_str) |
3198 | { |
3199 | /* The backreference did epsilon transit, we must re-check all the |
3200 | node in the current state. */ |
3201 | re_node_set new_dests; |
3202 | reg_errcode_t err2, err3; |
3203 | next_node = dfa->edests[ent->node].elems[0]; |
3204 | if (re_node_set_contains (cur_nodes, next_node)) |
3205 | continue; |
3206 | err = re_node_set_init_1 (&new_dests, next_node); |
3207 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); |
3208 | err3 = re_node_set_merge (cur_nodes, &new_dests); |
3209 | re_node_set_free (&new_dests); |
3210 | if (__glibc_unlikely (err != REG_NOERROR || err2 != REG_NOERROR |
3211 | || err3 != REG_NOERROR)) |
3212 | { |
3213 | err = (err != REG_NOERROR ? err |
3214 | : (err2 != REG_NOERROR ? err2 : err3)); |
3215 | return err; |
3216 | } |
3217 | /* TODO: It is still inefficient... */ |
3218 | goto restart; |
3219 | } |
3220 | else |
3221 | { |
3222 | re_node_set union_set; |
3223 | next_node = dfa->nexts[ent->node]; |
3224 | if (mctx->state_log[to_idx]) |
3225 | { |
3226 | bool ok; |
3227 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, |
3228 | next_node)) |
3229 | continue; |
3230 | err = re_node_set_init_copy (&union_set, |
3231 | &mctx->state_log[to_idx]->nodes); |
3232 | ok = re_node_set_insert (&union_set, next_node); |
3233 | if (__glibc_unlikely (err != REG_NOERROR || ! ok)) |
3234 | { |
3235 | re_node_set_free (&union_set); |
3236 | err = err != REG_NOERROR ? err : REG_ESPACE; |
3237 | return err; |
3238 | } |
3239 | } |
3240 | else |
3241 | { |
3242 | err = re_node_set_init_1 (&union_set, next_node); |
3243 | if (__glibc_unlikely (err != REG_NOERROR)) |
3244 | return err; |
3245 | } |
3246 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); |
3247 | re_node_set_free (&union_set); |
3248 | if (__glibc_unlikely (mctx->state_log[to_idx] == NULL |
3249 | && err != REG_NOERROR)) |
3250 | return err; |
3251 | } |
3252 | } |
3253 | while (ent++->more); |
3254 | return REG_NOERROR; |
3255 | } |
3256 | |
3257 | /* Build transition table for the state. |
3258 | Return true if successful. */ |
3259 | |
3260 | static bool __attribute_noinline__ |
3261 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) |
3262 | { |
3263 | reg_errcode_t err; |
3264 | Idx i, j; |
3265 | int ch; |
3266 | bool need_word_trtable = false; |
3267 | bitset_word_t elem, mask; |
3268 | Idx ndests; /* Number of the destination states from 'state'. */ |
3269 | re_dfastate_t **trtable; |
3270 | re_dfastate_t *dest_states[SBC_MAX]; |
3271 | re_dfastate_t *dest_states_word[SBC_MAX]; |
3272 | re_dfastate_t *dest_states_nl[SBC_MAX]; |
3273 | re_node_set follows; |
3274 | bitset_t acceptable; |
3275 | |
3276 | /* We build DFA states which corresponds to the destination nodes |
3277 | from 'state'. 'dests_node[i]' represents the nodes which i-th |
3278 | destination state contains, and 'dests_ch[i]' represents the |
3279 | characters which i-th destination state accepts. */ |
3280 | re_node_set dests_node[SBC_MAX]; |
3281 | bitset_t dests_ch[SBC_MAX]; |
3282 | |
3283 | /* Initialize transition table. */ |
3284 | state->word_trtable = state->trtable = NULL; |
3285 | |
3286 | /* At first, group all nodes belonging to 'state' into several |
3287 | destinations. */ |
3288 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); |
3289 | if (__glibc_unlikely (ndests <= 0)) |
3290 | { |
3291 | /* Return false in case of an error, true otherwise. */ |
3292 | if (ndests == 0) |
3293 | { |
3294 | state->trtable = (re_dfastate_t **) |
3295 | calloc (sizeof (re_dfastate_t *), SBC_MAX); |
3296 | if (__glibc_unlikely (state->trtable == NULL)) |
3297 | return false; |
3298 | return true; |
3299 | } |
3300 | return false; |
3301 | } |
3302 | |
3303 | err = re_node_set_alloc (&follows, ndests + 1); |
3304 | if (__glibc_unlikely (err != REG_NOERROR)) |
3305 | { |
3306 | out_free: |
3307 | re_node_set_free (&follows); |
3308 | for (i = 0; i < ndests; ++i) |
3309 | re_node_set_free (dests_node + i); |
3310 | return false; |
3311 | } |
3312 | |
3313 | bitset_empty (acceptable); |
3314 | |
3315 | /* Then build the states for all destinations. */ |
3316 | for (i = 0; i < ndests; ++i) |
3317 | { |
3318 | Idx next_node; |
3319 | re_node_set_empty (&follows); |
3320 | /* Merge the follows of this destination states. */ |
3321 | for (j = 0; j < dests_node[i].nelem; ++j) |
3322 | { |
3323 | next_node = dfa->nexts[dests_node[i].elems[j]]; |
3324 | if (next_node != -1) |
3325 | { |
3326 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); |
3327 | if (__glibc_unlikely (err != REG_NOERROR)) |
3328 | goto out_free; |
3329 | } |
3330 | } |
3331 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); |
3332 | if (__glibc_unlikely (dest_states[i] == NULL && err != REG_NOERROR)) |
3333 | goto out_free; |
3334 | /* If the new state has context constraint, |
3335 | build appropriate states for these contexts. */ |
3336 | if (dest_states[i]->has_constraint) |
3337 | { |
3338 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, |
3339 | CONTEXT_WORD); |
3340 | if (__glibc_unlikely (dest_states_word[i] == NULL |
3341 | && err != REG_NOERROR)) |
3342 | goto out_free; |
3343 | |
3344 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) |
3345 | need_word_trtable = true; |
3346 | |
3347 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, |
3348 | CONTEXT_NEWLINE); |
3349 | if (__glibc_unlikely (dest_states_nl[i] == NULL && err != REG_NOERROR)) |
3350 | goto out_free; |
3351 | } |
3352 | else |
3353 | { |
3354 | dest_states_word[i] = dest_states[i]; |
3355 | dest_states_nl[i] = dest_states[i]; |
3356 | } |
3357 | bitset_merge (acceptable, dests_ch[i]); |
3358 | } |
3359 | |
3360 | if (!__glibc_unlikely (need_word_trtable)) |
3361 | { |
3362 | /* We don't care about whether the following character is a word |
3363 | character, or we are in a single-byte character set so we can |
3364 | discern by looking at the character code: allocate a |
3365 | 256-entry transition table. */ |
3366 | trtable = state->trtable = |
3367 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); |
3368 | if (__glibc_unlikely (trtable == NULL)) |
3369 | goto out_free; |
3370 | |
3371 | /* For all characters ch...: */ |
3372 | for (i = 0; i < BITSET_WORDS; ++i) |
3373 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
3374 | elem; |
3375 | mask <<= 1, elem >>= 1, ++ch) |
3376 | if (__glibc_unlikely (elem & 1)) |
3377 | { |
3378 | /* There must be exactly one destination which accepts |
3379 | character ch. See group_nodes_into_DFAstates. */ |
3380 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
3381 | ; |
3382 | |
3383 | /* j-th destination accepts the word character ch. */ |
3384 | if (dfa->word_char[i] & mask) |
3385 | trtable[ch] = dest_states_word[j]; |
3386 | else |
3387 | trtable[ch] = dest_states[j]; |
3388 | } |
3389 | } |
3390 | else |
3391 | { |
3392 | /* We care about whether the following character is a word |
3393 | character, and we are in a multi-byte character set: discern |
3394 | by looking at the character code: build two 256-entry |
3395 | transition tables, one starting at trtable[0] and one |
3396 | starting at trtable[SBC_MAX]. */ |
3397 | trtable = state->word_trtable = |
3398 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); |
3399 | if (__glibc_unlikely (trtable == NULL)) |
3400 | goto out_free; |
3401 | |
3402 | /* For all characters ch...: */ |
3403 | for (i = 0; i < BITSET_WORDS; ++i) |
3404 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; |
3405 | elem; |
3406 | mask <<= 1, elem >>= 1, ++ch) |
3407 | if (__glibc_unlikely (elem & 1)) |
3408 | { |
3409 | /* There must be exactly one destination which accepts |
3410 | character ch. See group_nodes_into_DFAstates. */ |
3411 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) |
3412 | ; |
3413 | |
3414 | /* j-th destination accepts the word character ch. */ |
3415 | trtable[ch] = dest_states[j]; |
3416 | trtable[ch + SBC_MAX] = dest_states_word[j]; |
3417 | } |
3418 | } |
3419 | |
3420 | /* new line */ |
3421 | if (bitset_contain (acceptable, NEWLINE_CHAR)) |
3422 | { |
3423 | /* The current state accepts newline character. */ |
3424 | for (j = 0; j < ndests; ++j) |
3425 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) |
3426 | { |
3427 | /* k-th destination accepts newline character. */ |
3428 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; |
3429 | if (need_word_trtable) |
3430 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; |
3431 | /* There must be only one destination which accepts |
3432 | newline. See group_nodes_into_DFAstates. */ |
3433 | break; |
3434 | } |
3435 | } |
3436 | |
3437 | re_node_set_free (&follows); |
3438 | for (i = 0; i < ndests; ++i) |
3439 | re_node_set_free (dests_node + i); |
3440 | return true; |
3441 | } |
3442 | |
3443 | /* Group all nodes belonging to STATE into several destinations. |
3444 | Then for all destinations, set the nodes belonging to the destination |
3445 | to DESTS_NODE[i] and set the characters accepted by the destination |
3446 | to DEST_CH[i]. Return the number of destinations if successful, |
3447 | -1 on internal error. */ |
3448 | |
3449 | static Idx |
3450 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, |
3451 | re_node_set *dests_node, bitset_t *dests_ch) |
3452 | { |
3453 | reg_errcode_t err; |
3454 | bool ok; |
3455 | Idx i, j, k; |
3456 | Idx ndests; /* Number of the destinations from 'state'. */ |
3457 | bitset_t accepts; /* Characters a node can accept. */ |
3458 | const re_node_set *cur_nodes = &state->nodes; |
3459 | bitset_empty (accepts); |
3460 | ndests = 0; |
3461 | |
3462 | /* For all the nodes belonging to 'state', */ |
3463 | for (i = 0; i < cur_nodes->nelem; ++i) |
3464 | { |
3465 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; |
3466 | re_token_type_t type = node->type; |
3467 | unsigned int constraint = node->constraint; |
3468 | |
3469 | /* Enumerate all single byte character this node can accept. */ |
3470 | if (type == CHARACTER) |
3471 | bitset_set (accepts, node->opr.c); |
3472 | else if (type == SIMPLE_BRACKET) |
3473 | { |
3474 | bitset_merge (accepts, node->opr.sbcset); |
3475 | } |
3476 | else if (type == OP_PERIOD) |
3477 | { |
3478 | #ifdef RE_ENABLE_I18N |
3479 | if (dfa->mb_cur_max > 1) |
3480 | bitset_merge (accepts, dfa->sb_char); |
3481 | else |
3482 | #endif |
3483 | bitset_set_all (accepts); |
3484 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
3485 | bitset_clear (accepts, '\n'); |
3486 | if (dfa->syntax & RE_DOT_NOT_NULL) |
3487 | bitset_clear (accepts, '\0'); |
3488 | } |
3489 | #ifdef RE_ENABLE_I18N |
3490 | else if (type == OP_UTF8_PERIOD) |
3491 | { |
3492 | if (ASCII_CHARS % BITSET_WORD_BITS == 0) |
3493 | memset (accepts, -1, ASCII_CHARS / CHAR_BIT); |
3494 | else |
3495 | bitset_merge (accepts, utf8_sb_map); |
3496 | if (!(dfa->syntax & RE_DOT_NEWLINE)) |
3497 | bitset_clear (accepts, '\n'); |
3498 | if (dfa->syntax & RE_DOT_NOT_NULL) |
3499 | bitset_clear (accepts, '\0'); |
3500 | } |
3501 | #endif |
3502 | else |
3503 | continue; |
3504 | |
3505 | /* Check the 'accepts' and sift the characters which are not |
3506 | match it the context. */ |
3507 | if (constraint) |
3508 | { |
3509 | if (constraint & NEXT_NEWLINE_CONSTRAINT) |
3510 | { |
3511 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); |
3512 | bitset_empty (accepts); |
3513 | if (accepts_newline) |
3514 | bitset_set (accepts, NEWLINE_CHAR); |
3515 | else |
3516 | continue; |
3517 | } |
3518 | if (constraint & NEXT_ENDBUF_CONSTRAINT) |
3519 | { |
3520 | bitset_empty (accepts); |
3521 | continue; |
3522 | } |
3523 | |
3524 | if (constraint & NEXT_WORD_CONSTRAINT) |
3525 | { |
3526 | bitset_word_t any_set = 0; |
3527 | if (type == CHARACTER && !node->word_char) |
3528 | { |
3529 | bitset_empty (accepts); |
3530 | continue; |
3531 | } |
3532 | #ifdef RE_ENABLE_I18N |
3533 | if (dfa->mb_cur_max > 1) |
3534 | for (j = 0; j < BITSET_WORDS; ++j) |
3535 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); |
3536 | else |
3537 | #endif |
3538 | for (j = 0; j < BITSET_WORDS; ++j) |
3539 | any_set |= (accepts[j] &= dfa->word_char[j]); |
3540 | if (!any_set) |
3541 | continue; |
3542 | } |
3543 | if (constraint & NEXT_NOTWORD_CONSTRAINT) |
3544 | { |
3545 | bitset_word_t any_set = 0; |
3546 | if (type == CHARACTER && node->word_char) |
3547 | { |
3548 | bitset_empty (accepts); |
3549 | continue; |
3550 | } |
3551 | #ifdef RE_ENABLE_I18N |
3552 | if (dfa->mb_cur_max > 1) |
3553 | for (j = 0; j < BITSET_WORDS; ++j) |
3554 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); |
3555 | else |
3556 | #endif |
3557 | for (j = 0; j < BITSET_WORDS; ++j) |
3558 | any_set |= (accepts[j] &= ~dfa->word_char[j]); |
3559 | if (!any_set) |
3560 | continue; |
3561 | } |
3562 | } |
3563 | |
3564 | /* Then divide 'accepts' into DFA states, or create a new |
3565 | state. Above, we make sure that accepts is not empty. */ |
3566 | for (j = 0; j < ndests; ++j) |
3567 | { |
3568 | bitset_t intersec; /* Intersection sets, see below. */ |
3569 | bitset_t remains; |
3570 | /* Flags, see below. */ |
3571 | bitset_word_t has_intersec, not_subset, not_consumed; |
3572 | |
3573 | /* Optimization, skip if this state doesn't accept the character. */ |
3574 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) |
3575 | continue; |
3576 | |
3577 | /* Enumerate the intersection set of this state and 'accepts'. */ |
3578 | has_intersec = 0; |
3579 | for (k = 0; k < BITSET_WORDS; ++k) |
3580 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; |
3581 | /* And skip if the intersection set is empty. */ |
3582 | if (!has_intersec) |
3583 | continue; |
3584 | |
3585 | /* Then check if this state is a subset of 'accepts'. */ |
3586 | not_subset = not_consumed = 0; |
3587 | for (k = 0; k < BITSET_WORDS; ++k) |
3588 | { |
3589 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; |
3590 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; |
3591 | } |
3592 | |
3593 | /* If this state isn't a subset of 'accepts', create a |
3594 | new group state, which has the 'remains'. */ |
3595 | if (not_subset) |
3596 | { |
3597 | bitset_copy (dests_ch[ndests], remains); |
3598 | bitset_copy (dests_ch[j], intersec); |
3599 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); |
3600 | if (__glibc_unlikely (err != REG_NOERROR)) |
3601 | goto error_return; |
3602 | ++ndests; |
3603 | } |
3604 | |
3605 | /* Put the position in the current group. */ |
3606 | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); |
3607 | if (__glibc_unlikely (! ok)) |
3608 | goto error_return; |
3609 | |
3610 | /* If all characters are consumed, go to next node. */ |
3611 | if (!not_consumed) |
3612 | break; |
3613 | } |
3614 | /* Some characters remain, create a new group. */ |
3615 | if (j == ndests) |
3616 | { |
3617 | bitset_copy (dests_ch[ndests], accepts); |
3618 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); |
3619 | if (__glibc_unlikely (err != REG_NOERROR)) |
3620 | goto error_return; |
3621 | ++ndests; |
3622 | bitset_empty (accepts); |
3623 | } |
3624 | } |
3625 | assume (ndests <= SBC_MAX); |
3626 | return ndests; |
3627 | error_return: |
3628 | for (j = 0; j < ndests; ++j) |
3629 | re_node_set_free (dests_node + j); |
3630 | return -1; |
3631 | } |
3632 | |
3633 | #ifdef RE_ENABLE_I18N |
3634 | /* Check how many bytes the node 'dfa->nodes[node_idx]' accepts. |
3635 | Return the number of the bytes the node accepts. |
3636 | STR_IDX is the current index of the input string. |
3637 | |
3638 | This function handles the nodes which can accept one character, or |
3639 | one collating element like '.', '[a-z]', opposite to the other nodes |
3640 | can only accept one byte. */ |
3641 | |
3642 | # ifdef _LIBC |
3643 | # include <locale/weight.h> |
3644 | # endif |
3645 | |
3646 | static int |
3647 | check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, |
3648 | const re_string_t *input, Idx str_idx) |
3649 | { |
3650 | const re_token_t *node = dfa->nodes + node_idx; |
3651 | int char_len, elem_len; |
3652 | Idx i; |
3653 | |
3654 | if (__glibc_unlikely (node->type == OP_UTF8_PERIOD)) |
3655 | { |
3656 | unsigned char c = re_string_byte_at (input, str_idx), d; |
3657 | if (__glibc_likely (c < 0xc2)) |
3658 | return 0; |
3659 | |
3660 | if (str_idx + 2 > input->len) |
3661 | return 0; |
3662 | |
3663 | d = re_string_byte_at (input, str_idx + 1); |
3664 | if (c < 0xe0) |
3665 | return (d < 0x80 || d > 0xbf) ? 0 : 2; |
3666 | else if (c < 0xf0) |
3667 | { |
3668 | char_len = 3; |
3669 | if (c == 0xe0 && d < 0xa0) |
3670 | return 0; |
3671 | } |
3672 | else if (c < 0xf8) |
3673 | { |
3674 | char_len = 4; |
3675 | if (c == 0xf0 && d < 0x90) |
3676 | return 0; |
3677 | } |
3678 | else if (c < 0xfc) |
3679 | { |
3680 | char_len = 5; |
3681 | if (c == 0xf8 && d < 0x88) |
3682 | return 0; |
3683 | } |
3684 | else if (c < 0xfe) |
3685 | { |
3686 | char_len = 6; |
3687 | if (c == 0xfc && d < 0x84) |
3688 | return 0; |
3689 | } |
3690 | else |
3691 | return 0; |
3692 | |
3693 | if (str_idx + char_len > input->len) |
3694 | return 0; |
3695 | |
3696 | for (i = 1; i < char_len; ++i) |
3697 | { |
3698 | d = re_string_byte_at (input, str_idx + i); |
3699 | if (d < 0x80 || d > 0xbf) |
3700 | return 0; |
3701 | } |
3702 | return char_len; |
3703 | } |
3704 | |
3705 | char_len = re_string_char_size_at (input, str_idx); |
3706 | if (node->type == OP_PERIOD) |
3707 | { |
3708 | if (char_len <= 1) |
3709 | return 0; |
3710 | /* FIXME: I don't think this if is needed, as both '\n' |
3711 | and '\0' are char_len == 1. */ |
3712 | /* '.' accepts any one character except the following two cases. */ |
3713 | if ((!(dfa->syntax & RE_DOT_NEWLINE) |
3714 | && re_string_byte_at (input, str_idx) == '\n') |
3715 | || ((dfa->syntax & RE_DOT_NOT_NULL) |
3716 | && re_string_byte_at (input, str_idx) == '\0')) |
3717 | return 0; |
3718 | return char_len; |
3719 | } |
3720 | |
3721 | elem_len = re_string_elem_size_at (input, str_idx); |
3722 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) |
3723 | return 0; |
3724 | |
3725 | if (node->type == COMPLEX_BRACKET) |
3726 | { |
3727 | const re_charset_t *cset = node->opr.mbcset; |
3728 | # ifdef _LIBC |
3729 | const unsigned char *pin |
3730 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); |
3731 | Idx j; |
3732 | uint32_t nrules; |
3733 | # endif /* _LIBC */ |
3734 | int match_len = 0; |
3735 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) |
3736 | ? re_string_wchar_at (input, str_idx) : 0); |
3737 | |
3738 | /* match with multibyte character? */ |
3739 | for (i = 0; i < cset->nmbchars; ++i) |
3740 | if (wc == cset->mbchars[i]) |
3741 | { |
3742 | match_len = char_len; |
3743 | goto check_node_accept_bytes_match; |
3744 | } |
3745 | /* match with character_class? */ |
3746 | for (i = 0; i < cset->nchar_classes; ++i) |
3747 | { |
3748 | wctype_t wt = cset->char_classes[i]; |
3749 | if (__iswctype (wc, wt)) |
3750 | { |
3751 | match_len = char_len; |
3752 | goto check_node_accept_bytes_match; |
3753 | } |
3754 | } |
3755 | |
3756 | # ifdef _LIBC |
3757 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3758 | if (nrules != 0) |
3759 | { |
3760 | unsigned int in_collseq = 0; |
3761 | const int32_t *table, *indirect; |
3762 | const unsigned char *weights, *; |
3763 | const char *collseqwc; |
3764 | |
3765 | /* match with collating_symbol? */ |
3766 | if (cset->ncoll_syms) |
3767 | extra = (const unsigned char *) |
3768 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
3769 | for (i = 0; i < cset->ncoll_syms; ++i) |
3770 | { |
3771 | /* The compiler might warn that extra may be used uninitialized, |
3772 | however the loop will be executed iff ncoll_syms is larger |
3773 | than 0,which means extra will be already initialized. */ |
3774 | DIAG_PUSH_NEEDS_COMMENT; |
3775 | DIAG_IGNORE_Os_NEEDS_COMMENT (8, "-Wmaybe-uninitialized" ); |
3776 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; |
3777 | DIAG_POP_NEEDS_COMMENT; |
3778 | /* Compare the length of input collating element and |
3779 | the length of current collating element. */ |
3780 | if (*coll_sym != elem_len) |
3781 | continue; |
3782 | /* Compare each bytes. */ |
3783 | for (j = 0; j < *coll_sym; j++) |
3784 | if (pin[j] != coll_sym[1 + j]) |
3785 | break; |
3786 | if (j == *coll_sym) |
3787 | { |
3788 | /* Match if every bytes is equal. */ |
3789 | match_len = j; |
3790 | goto check_node_accept_bytes_match; |
3791 | } |
3792 | } |
3793 | |
3794 | if (cset->nranges) |
3795 | { |
3796 | if (elem_len <= char_len) |
3797 | { |
3798 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); |
3799 | in_collseq = __collseq_table_lookup (collseqwc, wc); |
3800 | } |
3801 | else |
3802 | in_collseq = find_collation_sequence_value (pin, elem_len); |
3803 | } |
3804 | /* match with range expression? */ |
3805 | /* FIXME: Implement rational ranges here, too. */ |
3806 | for (i = 0; i < cset->nranges; ++i) |
3807 | if (cset->range_starts[i] <= in_collseq |
3808 | && in_collseq <= cset->range_ends[i]) |
3809 | { |
3810 | match_len = elem_len; |
3811 | goto check_node_accept_bytes_match; |
3812 | } |
3813 | |
3814 | /* match with equivalence_class? */ |
3815 | if (cset->nequiv_classes) |
3816 | { |
3817 | const unsigned char *cp = pin; |
3818 | table = (const int32_t *) |
3819 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); |
3820 | weights = (const unsigned char *) |
3821 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); |
3822 | extra = (const unsigned char *) |
3823 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); |
3824 | indirect = (const int32_t *) |
3825 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); |
3826 | int32_t idx = findidx (table, indirect, extra, &cp, elem_len); |
3827 | int32_t rule = idx >> 24; |
3828 | idx &= 0xffffff; |
3829 | if (idx > 0) |
3830 | { |
3831 | size_t weight_len = weights[idx]; |
3832 | for (i = 0; i < cset->nequiv_classes; ++i) |
3833 | { |
3834 | int32_t equiv_class_idx = cset->equiv_classes[i]; |
3835 | int32_t equiv_class_rule = equiv_class_idx >> 24; |
3836 | equiv_class_idx &= 0xffffff; |
3837 | if (weights[equiv_class_idx] == weight_len |
3838 | && equiv_class_rule == rule |
3839 | && memcmp (weights + idx + 1, |
3840 | weights + equiv_class_idx + 1, |
3841 | weight_len) == 0) |
3842 | { |
3843 | match_len = elem_len; |
3844 | goto check_node_accept_bytes_match; |
3845 | } |
3846 | } |
3847 | } |
3848 | } |
3849 | } |
3850 | else |
3851 | # endif /* _LIBC */ |
3852 | { |
3853 | /* match with range expression? */ |
3854 | for (i = 0; i < cset->nranges; ++i) |
3855 | { |
3856 | if (cset->range_starts[i] <= wc && wc <= cset->range_ends[i]) |
3857 | { |
3858 | match_len = char_len; |
3859 | goto check_node_accept_bytes_match; |
3860 | } |
3861 | } |
3862 | } |
3863 | check_node_accept_bytes_match: |
3864 | if (!cset->non_match) |
3865 | return match_len; |
3866 | else |
3867 | { |
3868 | if (match_len > 0) |
3869 | return 0; |
3870 | else |
3871 | return (elem_len > char_len) ? elem_len : char_len; |
3872 | } |
3873 | } |
3874 | return 0; |
3875 | } |
3876 | |
3877 | # ifdef _LIBC |
3878 | static unsigned int |
3879 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) |
3880 | { |
3881 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); |
3882 | if (nrules == 0) |
3883 | { |
3884 | if (mbs_len == 1) |
3885 | { |
3886 | /* No valid character. Match it as a single byte character. */ |
3887 | const unsigned char *collseq = (const unsigned char *) |
3888 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); |
3889 | return collseq[mbs[0]]; |
3890 | } |
3891 | return UINT_MAX; |
3892 | } |
3893 | else |
3894 | { |
3895 | int32_t idx; |
3896 | const unsigned char * = (const unsigned char *) |
3897 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); |
3898 | int32_t = (const unsigned char *) |
3899 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; |
3900 | |
3901 | for (idx = 0; idx < extrasize;) |
3902 | { |
3903 | int mbs_cnt; |
3904 | bool found = false; |
3905 | int32_t elem_mbs_len; |
3906 | /* Skip the name of collating element name. */ |
3907 | idx = idx + extra[idx] + 1; |
3908 | elem_mbs_len = extra[idx++]; |
3909 | if (mbs_len == elem_mbs_len) |
3910 | { |
3911 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) |
3912 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) |
3913 | break; |
3914 | if (mbs_cnt == elem_mbs_len) |
3915 | /* Found the entry. */ |
3916 | found = true; |
3917 | } |
3918 | /* Skip the byte sequence of the collating element. */ |
3919 | idx += elem_mbs_len; |
3920 | /* Adjust for the alignment. */ |
3921 | idx = (idx + 3) & ~3; |
3922 | /* Skip the collation sequence value. */ |
3923 | idx += sizeof (uint32_t); |
3924 | /* Skip the wide char sequence of the collating element. */ |
3925 | idx = idx + sizeof (uint32_t) * (*(int32_t *) (extra + idx) + 1); |
3926 | /* If we found the entry, return the sequence value. */ |
3927 | if (found) |
3928 | return *(uint32_t *) (extra + idx); |
3929 | /* Skip the collation sequence value. */ |
3930 | idx += sizeof (uint32_t); |
3931 | } |
3932 | return UINT_MAX; |
3933 | } |
3934 | } |
3935 | # endif /* _LIBC */ |
3936 | #endif /* RE_ENABLE_I18N */ |
3937 | |
3938 | /* Check whether the node accepts the byte which is IDX-th |
3939 | byte of the INPUT. */ |
3940 | |
3941 | static bool |
3942 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, |
3943 | Idx idx) |
3944 | { |
3945 | unsigned char ch; |
3946 | ch = re_string_byte_at (&mctx->input, idx); |
3947 | switch (node->type) |
3948 | { |
3949 | case CHARACTER: |
3950 | if (node->opr.c != ch) |
3951 | return false; |
3952 | break; |
3953 | |
3954 | case SIMPLE_BRACKET: |
3955 | if (!bitset_contain (node->opr.sbcset, ch)) |
3956 | return false; |
3957 | break; |
3958 | |
3959 | #ifdef RE_ENABLE_I18N |
3960 | case OP_UTF8_PERIOD: |
3961 | if (ch >= ASCII_CHARS) |
3962 | return false; |
3963 | FALLTHROUGH; |
3964 | #endif |
3965 | case OP_PERIOD: |
3966 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) |
3967 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) |
3968 | return false; |
3969 | break; |
3970 | |
3971 | default: |
3972 | return false; |
3973 | } |
3974 | |
3975 | if (node->constraint) |
3976 | { |
3977 | /* The node has constraints. Check whether the current context |
3978 | satisfies the constraints. */ |
3979 | unsigned int context = re_string_context_at (&mctx->input, idx, |
3980 | mctx->eflags); |
3981 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) |
3982 | return false; |
3983 | } |
3984 | |
3985 | return true; |
3986 | } |
3987 | |
3988 | /* Extend the buffers, if the buffers have run out. */ |
3989 | |
3990 | static reg_errcode_t |
3991 | __attribute_warn_unused_result__ |
3992 | extend_buffers (re_match_context_t *mctx, int min_len) |
3993 | { |
3994 | reg_errcode_t ret; |
3995 | re_string_t *pstr = &mctx->input; |
3996 | |
3997 | /* Avoid overflow. */ |
3998 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / sizeof (re_dfastate_t *)) / 2 |
3999 | <= pstr->bufs_len)) |
4000 | return REG_ESPACE; |
4001 | |
4002 | /* Double the lengths of the buffers, but allocate at least MIN_LEN. */ |
4003 | ret = re_string_realloc_buffers (pstr, |
4004 | MAX (min_len, |
4005 | MIN (pstr->len, pstr->bufs_len * 2))); |
4006 | if (__glibc_unlikely (ret != REG_NOERROR)) |
4007 | return ret; |
4008 | |
4009 | if (mctx->state_log != NULL) |
4010 | { |
4011 | /* And double the length of state_log. */ |
4012 | /* XXX We have no indication of the size of this buffer. If this |
4013 | allocation fail we have no indication that the state_log array |
4014 | does not have the right size. */ |
4015 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, |
4016 | pstr->bufs_len + 1); |
4017 | if (__glibc_unlikely (new_array == NULL)) |
4018 | return REG_ESPACE; |
4019 | mctx->state_log = new_array; |
4020 | } |
4021 | |
4022 | /* Then reconstruct the buffers. */ |
4023 | if (pstr->icase) |
4024 | { |
4025 | #ifdef RE_ENABLE_I18N |
4026 | if (pstr->mb_cur_max > 1) |
4027 | { |
4028 | ret = build_wcs_upper_buffer (pstr); |
4029 | if (__glibc_unlikely (ret != REG_NOERROR)) |
4030 | return ret; |
4031 | } |
4032 | else |
4033 | #endif /* RE_ENABLE_I18N */ |
4034 | build_upper_buffer (pstr); |
4035 | } |
4036 | else |
4037 | { |
4038 | #ifdef RE_ENABLE_I18N |
4039 | if (pstr->mb_cur_max > 1) |
4040 | build_wcs_buffer (pstr); |
4041 | else |
4042 | #endif /* RE_ENABLE_I18N */ |
4043 | { |
4044 | if (pstr->trans != NULL) |
4045 | re_string_translate_buffer (pstr); |
4046 | } |
4047 | } |
4048 | return REG_NOERROR; |
4049 | } |
4050 | |
4051 | |
4052 | /* Functions for matching context. */ |
4053 | |
4054 | /* Initialize MCTX. */ |
4055 | |
4056 | static reg_errcode_t |
4057 | __attribute_warn_unused_result__ |
4058 | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) |
4059 | { |
4060 | mctx->eflags = eflags; |
4061 | mctx->match_last = -1; |
4062 | if (n > 0) |
4063 | { |
4064 | /* Avoid overflow. */ |
4065 | size_t max_object_size = |
4066 | MAX (sizeof (struct re_backref_cache_entry), |
4067 | sizeof (re_sub_match_top_t *)); |
4068 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) < n)) |
4069 | return REG_ESPACE; |
4070 | |
4071 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); |
4072 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); |
4073 | if (__glibc_unlikely (mctx->bkref_ents == NULL || mctx->sub_tops == NULL)) |
4074 | return REG_ESPACE; |
4075 | } |
4076 | /* Already zero-ed by the caller. |
4077 | else |
4078 | mctx->bkref_ents = NULL; |
4079 | mctx->nbkref_ents = 0; |
4080 | mctx->nsub_tops = 0; */ |
4081 | mctx->abkref_ents = n; |
4082 | mctx->max_mb_elem_len = 1; |
4083 | mctx->asub_tops = n; |
4084 | return REG_NOERROR; |
4085 | } |
4086 | |
4087 | /* Clean the entries which depend on the current input in MCTX. |
4088 | This function must be invoked when the matcher changes the start index |
4089 | of the input, or changes the input string. */ |
4090 | |
4091 | static void |
4092 | match_ctx_clean (re_match_context_t *mctx) |
4093 | { |
4094 | Idx st_idx; |
4095 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) |
4096 | { |
4097 | Idx sl_idx; |
4098 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; |
4099 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) |
4100 | { |
4101 | re_sub_match_last_t *last = top->lasts[sl_idx]; |
4102 | re_free (last->path.array); |
4103 | re_free (last); |
4104 | } |
4105 | re_free (top->lasts); |
4106 | if (top->path) |
4107 | { |
4108 | re_free (top->path->array); |
4109 | re_free (top->path); |
4110 | } |
4111 | re_free (top); |
4112 | } |
4113 | |
4114 | mctx->nsub_tops = 0; |
4115 | mctx->nbkref_ents = 0; |
4116 | } |
4117 | |
4118 | /* Free all the memory associated with MCTX. */ |
4119 | |
4120 | static void |
4121 | match_ctx_free (re_match_context_t *mctx) |
4122 | { |
4123 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ |
4124 | match_ctx_clean (mctx); |
4125 | re_free (mctx->sub_tops); |
4126 | re_free (mctx->bkref_ents); |
4127 | } |
4128 | |
4129 | /* Add a new backreference entry to MCTX. |
4130 | Note that we assume that caller never call this function with duplicate |
4131 | entry, and call with STR_IDX which isn't smaller than any existing entry. |
4132 | */ |
4133 | |
4134 | static reg_errcode_t |
4135 | __attribute_warn_unused_result__ |
4136 | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, Idx from, |
4137 | Idx to) |
4138 | { |
4139 | if (mctx->nbkref_ents >= mctx->abkref_ents) |
4140 | { |
4141 | struct re_backref_cache_entry* new_entry; |
4142 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, |
4143 | mctx->abkref_ents * 2); |
4144 | if (__glibc_unlikely (new_entry == NULL)) |
4145 | { |
4146 | re_free (mctx->bkref_ents); |
4147 | return REG_ESPACE; |
4148 | } |
4149 | mctx->bkref_ents = new_entry; |
4150 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', |
4151 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); |
4152 | mctx->abkref_ents *= 2; |
4153 | } |
4154 | if (mctx->nbkref_ents > 0 |
4155 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) |
4156 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; |
4157 | |
4158 | mctx->bkref_ents[mctx->nbkref_ents].node = node; |
4159 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; |
4160 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; |
4161 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; |
4162 | |
4163 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. |
4164 | If bit N is clear, means that this entry won't epsilon-transition to |
4165 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If |
4166 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one |
4167 | such node. |
4168 | |
4169 | A backreference does not epsilon-transition unless it is empty, so set |
4170 | to all zeros if FROM != TO. */ |
4171 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map |
4172 | = (from == to ? -1 : 0); |
4173 | |
4174 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; |
4175 | if (mctx->max_mb_elem_len < to - from) |
4176 | mctx->max_mb_elem_len = to - from; |
4177 | return REG_NOERROR; |
4178 | } |
4179 | |
4180 | /* Return the first entry with the same str_idx, or -1 if none is |
4181 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ |
4182 | |
4183 | static Idx |
4184 | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) |
4185 | { |
4186 | Idx left, right, mid, last; |
4187 | last = right = mctx->nbkref_ents; |
4188 | for (left = 0; left < right;) |
4189 | { |
4190 | mid = (left + right) / 2; |
4191 | if (mctx->bkref_ents[mid].str_idx < str_idx) |
4192 | left = mid + 1; |
4193 | else |
4194 | right = mid; |
4195 | } |
4196 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) |
4197 | return left; |
4198 | else |
4199 | return -1; |
4200 | } |
4201 | |
4202 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches |
4203 | at STR_IDX. */ |
4204 | |
4205 | static reg_errcode_t |
4206 | __attribute_warn_unused_result__ |
4207 | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) |
4208 | { |
4209 | DEBUG_ASSERT (mctx->sub_tops != NULL); |
4210 | DEBUG_ASSERT (mctx->asub_tops > 0); |
4211 | if (__glibc_unlikely (mctx->nsub_tops == mctx->asub_tops)) |
4212 | { |
4213 | Idx new_asub_tops = mctx->asub_tops * 2; |
4214 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, |
4215 | re_sub_match_top_t *, |
4216 | new_asub_tops); |
4217 | if (__glibc_unlikely (new_array == NULL)) |
4218 | return REG_ESPACE; |
4219 | mctx->sub_tops = new_array; |
4220 | mctx->asub_tops = new_asub_tops; |
4221 | } |
4222 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); |
4223 | if (__glibc_unlikely (mctx->sub_tops[mctx->nsub_tops] == NULL)) |
4224 | return REG_ESPACE; |
4225 | mctx->sub_tops[mctx->nsub_tops]->node = node; |
4226 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; |
4227 | return REG_NOERROR; |
4228 | } |
4229 | |
4230 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches |
4231 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. |
4232 | Return the new entry if successful, NULL if memory is exhausted. */ |
4233 | |
4234 | static re_sub_match_last_t * |
4235 | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) |
4236 | { |
4237 | re_sub_match_last_t *new_entry; |
4238 | if (__glibc_unlikely (subtop->nlasts == subtop->alasts)) |
4239 | { |
4240 | Idx new_alasts = 2 * subtop->alasts + 1; |
4241 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, |
4242 | re_sub_match_last_t *, |
4243 | new_alasts); |
4244 | if (__glibc_unlikely (new_array == NULL)) |
4245 | return NULL; |
4246 | subtop->lasts = new_array; |
4247 | subtop->alasts = new_alasts; |
4248 | } |
4249 | new_entry = calloc (1, sizeof (re_sub_match_last_t)); |
4250 | if (__glibc_likely (new_entry != NULL)) |
4251 | { |
4252 | subtop->lasts[subtop->nlasts] = new_entry; |
4253 | new_entry->node = node; |
4254 | new_entry->str_idx = str_idx; |
4255 | ++subtop->nlasts; |
4256 | } |
4257 | return new_entry; |
4258 | } |
4259 | |
4260 | static void |
4261 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, |
4262 | re_dfastate_t **limited_sts, Idx last_node, Idx last_str_idx) |
4263 | { |
4264 | sctx->sifted_states = sifted_sts; |
4265 | sctx->limited_states = limited_sts; |
4266 | sctx->last_node = last_node; |
4267 | sctx->last_str_idx = last_str_idx; |
4268 | re_node_set_init_empty (&sctx->limits); |
4269 | } |
4270 | |