| 1 | /* Cache memory handling. |
| 2 | Copyright (C) 2004-2023 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published |
| 7 | by the Free Software Foundation; version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, see <https://www.gnu.org/licenses/>. */ |
| 17 | |
| 18 | #include <assert.h> |
| 19 | #include <errno.h> |
| 20 | #include <error.h> |
| 21 | #include <fcntl.h> |
| 22 | #include <inttypes.h> |
| 23 | #include <libintl.h> |
| 24 | #include <limits.h> |
| 25 | #include <obstack.h> |
| 26 | #include <stdlib.h> |
| 27 | #include <string.h> |
| 28 | #include <unistd.h> |
| 29 | #include <sys/mman.h> |
| 30 | #include <sys/param.h> |
| 31 | |
| 32 | #include "dbg_log.h" |
| 33 | #include "nscd.h" |
| 34 | |
| 35 | |
| 36 | static int |
| 37 | sort_he (const void *p1, const void *p2) |
| 38 | { |
| 39 | struct hashentry *h1 = *(struct hashentry **) p1; |
| 40 | struct hashentry *h2 = *(struct hashentry **) p2; |
| 41 | |
| 42 | if (h1 < h2) |
| 43 | return -1; |
| 44 | if (h1 > h2) |
| 45 | return 1; |
| 46 | return 0; |
| 47 | } |
| 48 | |
| 49 | |
| 50 | static int |
| 51 | sort_he_data (const void *p1, const void *p2) |
| 52 | { |
| 53 | struct hashentry *h1 = *(struct hashentry **) p1; |
| 54 | struct hashentry *h2 = *(struct hashentry **) p2; |
| 55 | |
| 56 | if (h1->packet < h2->packet) |
| 57 | return -1; |
| 58 | if (h1->packet > h2->packet) |
| 59 | return 1; |
| 60 | return 0; |
| 61 | } |
| 62 | |
| 63 | |
| 64 | /* Basic definitions for the bitmap implementation. Only BITMAP_T |
| 65 | needs to be changed to choose a different word size. */ |
| 66 | #define BITMAP_T uint8_t |
| 67 | #define BITS (CHAR_BIT * sizeof (BITMAP_T)) |
| 68 | #define ALLBITS ((((BITMAP_T) 1) << BITS) - 1) |
| 69 | #define HIGHBIT (((BITMAP_T) 1) << (BITS - 1)) |
| 70 | |
| 71 | |
| 72 | static void |
| 73 | markrange (BITMAP_T *mark, ref_t start, size_t len) |
| 74 | { |
| 75 | /* Adjust parameters for block alignment. */ |
| 76 | assert ((start & BLOCK_ALIGN_M1) == 0); |
| 77 | start /= BLOCK_ALIGN; |
| 78 | len = (len + BLOCK_ALIGN_M1) / BLOCK_ALIGN; |
| 79 | |
| 80 | size_t elem = start / BITS; |
| 81 | |
| 82 | if (start % BITS != 0) |
| 83 | { |
| 84 | if (start % BITS + len <= BITS) |
| 85 | { |
| 86 | /* All fits in the partial byte. */ |
| 87 | mark[elem] |= (ALLBITS >> (BITS - len)) << (start % BITS); |
| 88 | return; |
| 89 | } |
| 90 | |
| 91 | mark[elem++] |= ALLBITS << (start % BITS); |
| 92 | len -= BITS - (start % BITS); |
| 93 | } |
| 94 | |
| 95 | while (len >= BITS) |
| 96 | { |
| 97 | mark[elem++] = ALLBITS; |
| 98 | len -= BITS; |
| 99 | } |
| 100 | |
| 101 | if (len > 0) |
| 102 | mark[elem] |= ALLBITS >> (BITS - len); |
| 103 | } |
| 104 | |
| 105 | |
| 106 | void |
| 107 | gc (struct database_dyn *db) |
| 108 | { |
| 109 | /* We need write access. */ |
| 110 | pthread_rwlock_wrlock (&db->lock); |
| 111 | |
| 112 | /* And the memory handling lock. */ |
| 113 | pthread_mutex_lock (&db->memlock); |
| 114 | |
| 115 | /* We need an array representing the data area. All memory |
| 116 | allocation is BLOCK_ALIGN aligned so this is the level at which |
| 117 | we have to look at the memory. We use a mark and sweep algorithm |
| 118 | where the marks are placed in this array. */ |
| 119 | assert (db->head->first_free % BLOCK_ALIGN == 0); |
| 120 | |
| 121 | BITMAP_T *mark; |
| 122 | bool mark_use_malloc; |
| 123 | /* In prune_cache we are also using a dynamically allocated array. |
| 124 | If the array in the caller is too large we have malloc'ed it. */ |
| 125 | size_t stack_used = sizeof (bool) * db->head->module; |
| 126 | if (__glibc_unlikely (stack_used > MAX_STACK_USE)) |
| 127 | stack_used = 0; |
| 128 | size_t nmark = (db->head->first_free / BLOCK_ALIGN + BITS - 1) / BITS; |
| 129 | size_t memory_needed = nmark * sizeof (BITMAP_T); |
| 130 | if (__glibc_likely (stack_used + memory_needed <= MAX_STACK_USE)) |
| 131 | { |
| 132 | mark = (BITMAP_T *) alloca_account (memory_needed, stack_used); |
| 133 | mark_use_malloc = false; |
| 134 | memset (mark, '\0', memory_needed); |
| 135 | } |
| 136 | else |
| 137 | { |
| 138 | mark = (BITMAP_T *) xcalloc (1, memory_needed); |
| 139 | mark_use_malloc = true; |
| 140 | } |
| 141 | |
| 142 | /* Create an array which can hold pointer to all the entries in hash |
| 143 | entries. */ |
| 144 | memory_needed = 2 * db->head->nentries * sizeof (struct hashentry *); |
| 145 | struct hashentry **he; |
| 146 | struct hashentry **he_data; |
| 147 | bool he_use_malloc; |
| 148 | if (__glibc_likely (stack_used + memory_needed <= MAX_STACK_USE)) |
| 149 | { |
| 150 | he = alloca_account (memory_needed, stack_used); |
| 151 | he_use_malloc = false; |
| 152 | } |
| 153 | else |
| 154 | { |
| 155 | he = xmalloc (memory_needed); |
| 156 | he_use_malloc = true; |
| 157 | } |
| 158 | he_data = &he[db->head->nentries]; |
| 159 | |
| 160 | size_t cnt = 0; |
| 161 | for (size_t idx = 0; idx < db->head->module; ++idx) |
| 162 | { |
| 163 | ref_t *prevp = &db->head->array[idx]; |
| 164 | ref_t run = *prevp; |
| 165 | |
| 166 | while (run != ENDREF) |
| 167 | { |
| 168 | assert (cnt < db->head->nentries); |
| 169 | he[cnt] = (struct hashentry *) (db->data + run); |
| 170 | |
| 171 | he[cnt]->prevp = prevp; |
| 172 | prevp = &he[cnt]->next; |
| 173 | |
| 174 | /* This is the hash entry itself. */ |
| 175 | markrange (mark, run, sizeof (struct hashentry)); |
| 176 | |
| 177 | /* Add the information for the data itself. We do this |
| 178 | only for the one special entry marked with FIRST. */ |
| 179 | if (he[cnt]->first) |
| 180 | { |
| 181 | struct datahead *dh |
| 182 | = (struct datahead *) (db->data + he[cnt]->packet); |
| 183 | markrange (mark, he[cnt]->packet, dh->allocsize); |
| 184 | } |
| 185 | |
| 186 | run = he[cnt]->next; |
| 187 | |
| 188 | ++cnt; |
| 189 | } |
| 190 | } |
| 191 | assert (cnt == db->head->nentries); |
| 192 | |
| 193 | /* Sort the entries by the addresses of the referenced data. All |
| 194 | the entries pointing to the same DATAHEAD object will have the |
| 195 | same key. Stability of the sorting is unimportant. */ |
| 196 | memcpy (he_data, he, cnt * sizeof (struct hashentry *)); |
| 197 | qsort (he_data, cnt, sizeof (struct hashentry *), sort_he_data); |
| 198 | |
| 199 | /* Sort the entries by their address. */ |
| 200 | qsort (he, cnt, sizeof (struct hashentry *), sort_he); |
| 201 | |
| 202 | #define obstack_chunk_alloc xmalloc |
| 203 | #define obstack_chunk_free free |
| 204 | struct obstack ob; |
| 205 | obstack_init (&ob); |
| 206 | |
| 207 | /* Determine the highest used address. */ |
| 208 | size_t high = nmark; |
| 209 | while (high > 0 && mark[high - 1] == 0) |
| 210 | --high; |
| 211 | |
| 212 | /* No memory used. */ |
| 213 | if (high == 0) |
| 214 | { |
| 215 | db->head->first_free = 0; |
| 216 | goto out; |
| 217 | } |
| 218 | |
| 219 | /* Determine the highest offset. */ |
| 220 | BITMAP_T mask = HIGHBIT; |
| 221 | while ((mark[high - 1] & mask) == 0) |
| 222 | mask >>= 1; |
| 223 | |
| 224 | /* Now we can iterate over the MARK array and find bits which are not |
| 225 | set. These represent memory which can be recovered. */ |
| 226 | size_t byte = 0; |
| 227 | /* Find the first gap. */ |
| 228 | while (byte < high && mark[byte] == ALLBITS) |
| 229 | ++byte; |
| 230 | |
| 231 | if (byte == high |
| 232 | || (byte == high - 1 && (mark[byte] & ~(mask | (mask - 1))) == 0)) |
| 233 | /* No gap. */ |
| 234 | goto out; |
| 235 | |
| 236 | mask = 1; |
| 237 | cnt = 0; |
| 238 | while ((mark[byte] & mask) != 0) |
| 239 | { |
| 240 | ++cnt; |
| 241 | mask <<= 1; |
| 242 | } |
| 243 | ref_t off_free = (byte * BITS + cnt) * BLOCK_ALIGN; |
| 244 | assert (off_free <= db->head->first_free); |
| 245 | |
| 246 | struct hashentry **next_hash = he; |
| 247 | struct hashentry **next_data = he_data; |
| 248 | |
| 249 | /* Skip over the hash entries in the first block which does not get |
| 250 | moved. */ |
| 251 | while (next_hash < &he[db->head->nentries] |
| 252 | && *next_hash < (struct hashentry *) (db->data + off_free)) |
| 253 | ++next_hash; |
| 254 | |
| 255 | while (next_data < &he_data[db->head->nentries] |
| 256 | && (*next_data)->packet < off_free) |
| 257 | ++next_data; |
| 258 | |
| 259 | |
| 260 | /* Now we start modifying the data. Make sure all readers of the |
| 261 | data are aware of this and temporarily don't use the data. */ |
| 262 | atomic_fetch_add_relaxed (&db->head->gc_cycle, 1); |
| 263 | assert ((db->head->gc_cycle & 1) == 1); |
| 264 | |
| 265 | |
| 266 | /* We do not perform the move operations right away since the |
| 267 | he_data array is not sorted by the address of the data. */ |
| 268 | struct moveinfo |
| 269 | { |
| 270 | void *from; |
| 271 | void *to; |
| 272 | size_t size; |
| 273 | struct moveinfo *next; |
| 274 | } *moves = NULL; |
| 275 | |
| 276 | while (byte < high) |
| 277 | { |
| 278 | /* Search for the next filled block. BYTE is the index of the |
| 279 | entry in MARK, MASK is the bit, and CNT is the bit number. |
| 280 | OFF_FILLED is the corresponding offset. */ |
| 281 | if ((mark[byte] & ~(mask - 1)) == 0) |
| 282 | { |
| 283 | /* No other bit set in the same element of MARK. Search in the |
| 284 | following memory. */ |
| 285 | do |
| 286 | ++byte; |
| 287 | while (byte < high && mark[byte] == 0); |
| 288 | |
| 289 | if (byte == high) |
| 290 | /* That was it. */ |
| 291 | break; |
| 292 | |
| 293 | mask = 1; |
| 294 | cnt = 0; |
| 295 | } |
| 296 | /* Find the exact bit. */ |
| 297 | while ((mark[byte] & mask) == 0) |
| 298 | { |
| 299 | ++cnt; |
| 300 | mask <<= 1; |
| 301 | } |
| 302 | |
| 303 | ref_t off_alloc = (byte * BITS + cnt) * BLOCK_ALIGN; |
| 304 | assert (off_alloc <= db->head->first_free); |
| 305 | |
| 306 | /* Find the end of the used area. */ |
| 307 | if ((mark[byte] & ~(mask - 1)) == (BITMAP_T) ~(mask - 1)) |
| 308 | { |
| 309 | /* All other bits set. Search the next bytes in MARK. */ |
| 310 | do |
| 311 | ++byte; |
| 312 | while (byte < high && mark[byte] == ALLBITS); |
| 313 | |
| 314 | mask = 1; |
| 315 | cnt = 0; |
| 316 | } |
| 317 | if (byte < high) |
| 318 | { |
| 319 | /* Find the exact bit. */ |
| 320 | while ((mark[byte] & mask) != 0) |
| 321 | { |
| 322 | ++cnt; |
| 323 | mask <<= 1; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | ref_t off_allocend = (byte * BITS + cnt) * BLOCK_ALIGN; |
| 328 | assert (off_allocend <= db->head->first_free); |
| 329 | /* Now we know that we can copy the area from OFF_ALLOC to |
| 330 | OFF_ALLOCEND (not included) to the memory starting at |
| 331 | OFF_FREE. First fix up all the entries for the |
| 332 | displacement. */ |
| 333 | ref_t disp = off_alloc - off_free; |
| 334 | |
| 335 | struct moveinfo *new_move; |
| 336 | if (__builtin_expect (stack_used + sizeof (*new_move) <= MAX_STACK_USE, |
| 337 | 1)) |
| 338 | new_move = alloca_account (sizeof (*new_move), stack_used); |
| 339 | else |
| 340 | new_move = obstack_alloc (&ob, sizeof (*new_move)); |
| 341 | new_move->from = db->data + off_alloc; |
| 342 | new_move->to = db->data + off_free; |
| 343 | new_move->size = off_allocend - off_alloc; |
| 344 | /* Create a circular list to be always able to append at the end. */ |
| 345 | if (moves == NULL) |
| 346 | moves = new_move->next = new_move; |
| 347 | else |
| 348 | { |
| 349 | new_move->next = moves->next; |
| 350 | moves = moves->next = new_move; |
| 351 | } |
| 352 | |
| 353 | /* The following loop will prepare to move this much data. */ |
| 354 | off_free += off_allocend - off_alloc; |
| 355 | |
| 356 | while (off_alloc < off_allocend) |
| 357 | { |
| 358 | /* Determine whether the next entry is for a hash entry or |
| 359 | the data. */ |
| 360 | if ((struct hashentry *) (db->data + off_alloc) == *next_hash) |
| 361 | { |
| 362 | /* Just correct the forward reference. */ |
| 363 | *(*next_hash++)->prevp -= disp; |
| 364 | |
| 365 | off_alloc += ((sizeof (struct hashentry) + BLOCK_ALIGN_M1) |
| 366 | & ~BLOCK_ALIGN_M1); |
| 367 | } |
| 368 | else |
| 369 | { |
| 370 | assert (next_data < &he_data[db->head->nentries]); |
| 371 | assert ((*next_data)->packet == off_alloc); |
| 372 | |
| 373 | struct datahead *dh = (struct datahead *) (db->data + off_alloc); |
| 374 | do |
| 375 | { |
| 376 | assert ((*next_data)->key >= (*next_data)->packet); |
| 377 | assert ((*next_data)->key + (*next_data)->len |
| 378 | <= (*next_data)->packet + dh->allocsize); |
| 379 | |
| 380 | (*next_data)->packet -= disp; |
| 381 | (*next_data)->key -= disp; |
| 382 | ++next_data; |
| 383 | } |
| 384 | while (next_data < &he_data[db->head->nentries] |
| 385 | && (*next_data)->packet == off_alloc); |
| 386 | |
| 387 | off_alloc += (dh->allocsize + BLOCK_ALIGN_M1) & ~BLOCK_ALIGN_M1; |
| 388 | } |
| 389 | } |
| 390 | assert (off_alloc == off_allocend); |
| 391 | |
| 392 | assert (off_alloc <= db->head->first_free); |
| 393 | if (off_alloc == db->head->first_free) |
| 394 | /* We are done, that was the last block. */ |
| 395 | break; |
| 396 | } |
| 397 | assert (next_hash == &he[db->head->nentries]); |
| 398 | assert (next_data == &he_data[db->head->nentries]); |
| 399 | |
| 400 | /* Now perform the actual moves. */ |
| 401 | if (moves != NULL) |
| 402 | { |
| 403 | struct moveinfo *runp = moves->next; |
| 404 | do |
| 405 | { |
| 406 | assert ((char *) runp->to >= db->data); |
| 407 | assert ((char *) runp->to + runp->size |
| 408 | <= db->data + db->head->first_free); |
| 409 | assert ((char *) runp->from >= db->data); |
| 410 | assert ((char *) runp->from + runp->size |
| 411 | <= db->data + db->head->first_free); |
| 412 | |
| 413 | /* The regions may overlap. */ |
| 414 | memmove (runp->to, runp->from, runp->size); |
| 415 | runp = runp->next; |
| 416 | } |
| 417 | while (runp != moves->next); |
| 418 | |
| 419 | if (__glibc_unlikely (debug_level >= 3)) |
| 420 | dbg_log (_("freed %zu bytes in %s cache" ), |
| 421 | (size_t) (db->head->first_free |
| 422 | - ((char *) moves->to + moves->size - db->data)), |
| 423 | dbnames[db - dbs]); |
| 424 | |
| 425 | /* The byte past the end of the last copied block is the next |
| 426 | available byte. */ |
| 427 | db->head->first_free = (char *) moves->to + moves->size - db->data; |
| 428 | |
| 429 | /* Consistency check. */ |
| 430 | if (__glibc_unlikely (debug_level >= 3)) |
| 431 | { |
| 432 | for (size_t idx = 0; idx < db->head->module; ++idx) |
| 433 | { |
| 434 | ref_t run = db->head->array[idx]; |
| 435 | size_t cnt = 0; |
| 436 | |
| 437 | while (run != ENDREF) |
| 438 | { |
| 439 | if (run + sizeof (struct hashentry) > db->head->first_free) |
| 440 | { |
| 441 | dbg_log ("entry %zu in hash bucket %zu out of bounds: " |
| 442 | "%" PRIu32 "+%zu > %zu\n" , |
| 443 | cnt, idx, run, sizeof (struct hashentry), |
| 444 | (size_t) db->head->first_free); |
| 445 | break; |
| 446 | } |
| 447 | |
| 448 | struct hashentry *he = (struct hashentry *) (db->data + run); |
| 449 | |
| 450 | if (he->key + he->len > db->head->first_free) |
| 451 | dbg_log ("key of entry %zu in hash bucket %zu out of " |
| 452 | "bounds: %" PRIu32 "+%zu > %zu\n" , |
| 453 | cnt, idx, he->key, (size_t) he->len, |
| 454 | (size_t) db->head->first_free); |
| 455 | |
| 456 | if (he->packet + sizeof (struct datahead) |
| 457 | > db->head->first_free) |
| 458 | dbg_log ("packet of entry %zu in hash bucket %zu out of " |
| 459 | "bounds: %" PRIu32 "+%zu > %zu\n" , |
| 460 | cnt, idx, he->packet, sizeof (struct datahead), |
| 461 | (size_t) db->head->first_free); |
| 462 | else |
| 463 | { |
| 464 | struct datahead *dh = (struct datahead *) (db->data |
| 465 | + he->packet); |
| 466 | if (he->packet + dh->allocsize |
| 467 | > db->head->first_free) |
| 468 | dbg_log ("full key of entry %zu in hash bucket %zu " |
| 469 | "out of bounds: %" PRIu32 "+%zu > %zu" , |
| 470 | cnt, idx, he->packet, (size_t) dh->allocsize, |
| 471 | (size_t) db->head->first_free); |
| 472 | } |
| 473 | |
| 474 | run = he->next; |
| 475 | ++cnt; |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | /* Make sure the data on disk is updated. */ |
| 482 | if (db->persistent) |
| 483 | msync (db->head, db->data + db->head->first_free - (char *) db->head, |
| 484 | MS_ASYNC); |
| 485 | |
| 486 | |
| 487 | /* Now we are done modifying the data. */ |
| 488 | atomic_fetch_add_relaxed (&db->head->gc_cycle, 1); |
| 489 | assert ((db->head->gc_cycle & 1) == 0); |
| 490 | |
| 491 | /* We are done. */ |
| 492 | out: |
| 493 | pthread_mutex_unlock (&db->memlock); |
| 494 | pthread_rwlock_unlock (&db->lock); |
| 495 | |
| 496 | if (he_use_malloc) |
| 497 | free (he); |
| 498 | if (mark_use_malloc) |
| 499 | free (mark); |
| 500 | |
| 501 | obstack_free (&ob, NULL); |
| 502 | } |
| 503 | |
| 504 | |
| 505 | void * |
| 506 | mempool_alloc (struct database_dyn *db, size_t len, int data_alloc) |
| 507 | { |
| 508 | /* Make sure LEN is a multiple of our maximum alignment so we can |
| 509 | keep track of used memory is multiples of this alignment value. */ |
| 510 | if ((len & BLOCK_ALIGN_M1) != 0) |
| 511 | len += BLOCK_ALIGN - (len & BLOCK_ALIGN_M1); |
| 512 | |
| 513 | if (data_alloc) |
| 514 | pthread_rwlock_rdlock (&db->lock); |
| 515 | |
| 516 | pthread_mutex_lock (&db->memlock); |
| 517 | |
| 518 | assert ((db->head->first_free & BLOCK_ALIGN_M1) == 0); |
| 519 | |
| 520 | bool tried_resize = false; |
| 521 | void *res; |
| 522 | retry: |
| 523 | res = db->data + db->head->first_free; |
| 524 | |
| 525 | if (__glibc_unlikely (db->head->first_free + len > db->head->data_size)) |
| 526 | { |
| 527 | if (! tried_resize) |
| 528 | { |
| 529 | /* Try to resize the database. Grow size of 1/8th. */ |
| 530 | size_t oldtotal = (sizeof (struct database_pers_head) |
| 531 | + roundup (db->head->module * sizeof (ref_t), |
| 532 | ALIGN) |
| 533 | + db->head->data_size); |
| 534 | size_t new_data_size = (db->head->data_size |
| 535 | + MAX (2 * len, db->head->data_size / 8)); |
| 536 | size_t newtotal = (sizeof (struct database_pers_head) |
| 537 | + roundup (db->head->module * sizeof (ref_t), ALIGN) |
| 538 | + new_data_size); |
| 539 | if (newtotal > db->max_db_size) |
| 540 | { |
| 541 | new_data_size -= newtotal - db->max_db_size; |
| 542 | newtotal = db->max_db_size; |
| 543 | } |
| 544 | |
| 545 | if (db->mmap_used && newtotal > oldtotal |
| 546 | /* We only have to adjust the file size. The new pages |
| 547 | become magically available. */ |
| 548 | && TEMP_FAILURE_RETRY_VAL (posix_fallocate (db->wr_fd, oldtotal, |
| 549 | newtotal |
| 550 | - oldtotal)) == 0) |
| 551 | { |
| 552 | db->head->data_size = new_data_size; |
| 553 | tried_resize = true; |
| 554 | goto retry; |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | if (data_alloc) |
| 559 | pthread_rwlock_unlock (&db->lock); |
| 560 | |
| 561 | if (! db->last_alloc_failed) |
| 562 | { |
| 563 | dbg_log (_("no more memory for database '%s'" ), dbnames[db - dbs]); |
| 564 | |
| 565 | db->last_alloc_failed = true; |
| 566 | } |
| 567 | |
| 568 | ++db->head->addfailed; |
| 569 | |
| 570 | /* No luck. */ |
| 571 | res = NULL; |
| 572 | } |
| 573 | else |
| 574 | { |
| 575 | db->head->first_free += len; |
| 576 | |
| 577 | db->last_alloc_failed = false; |
| 578 | |
| 579 | } |
| 580 | |
| 581 | pthread_mutex_unlock (&db->memlock); |
| 582 | |
| 583 | return res; |
| 584 | } |
| 585 | |