| 1 | /* Copyright (C) 2002-2023 Free Software Foundation, Inc. |
| 2 | This file is part of the GNU C Library. |
| 3 | |
| 4 | The GNU C Library is free software; you can redistribute it and/or |
| 5 | modify it under the terms of the GNU Lesser General Public |
| 6 | License as published by the Free Software Foundation; either |
| 7 | version 2.1 of the License, or (at your option) any later version. |
| 8 | |
| 9 | The GNU C Library is distributed in the hope that it will be useful, |
| 10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 12 | Lesser General Public License for more details. |
| 13 | |
| 14 | You should have received a copy of the GNU Lesser General Public |
| 15 | License along with the GNU C Library; if not, see |
| 16 | <https://www.gnu.org/licenses/>. */ |
| 17 | |
| 18 | #include <assert.h> |
| 19 | #include <errno.h> |
| 20 | #include <time.h> |
| 21 | #include <sys/param.h> |
| 22 | #include <sys/time.h> |
| 23 | #include "pthreadP.h" |
| 24 | #include <atomic.h> |
| 25 | #include <lowlevellock.h> |
| 26 | #include <not-cancel.h> |
| 27 | #include <futex-internal.h> |
| 28 | |
| 29 | #include <stap-probe.h> |
| 30 | |
| 31 | int |
| 32 | __pthread_mutex_clocklock_common (pthread_mutex_t *mutex, |
| 33 | clockid_t clockid, |
| 34 | const struct __timespec64 *abstime) |
| 35 | { |
| 36 | int oldval; |
| 37 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
| 38 | int result = 0; |
| 39 | |
| 40 | /* We must not check ABSTIME here. If the thread does not block |
| 41 | abstime must not be checked for a valid value. */ |
| 42 | |
| 43 | /* See concurrency notes regarding mutex type which is loaded from __kind |
| 44 | in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */ |
| 45 | switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex), |
| 46 | PTHREAD_MUTEX_TIMED_NP)) |
| 47 | { |
| 48 | /* Recursive mutex. */ |
| 49 | case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP: |
| 50 | case PTHREAD_MUTEX_RECURSIVE_NP: |
| 51 | /* Check whether we already hold the mutex. */ |
| 52 | if (mutex->__data.__owner == id) |
| 53 | { |
| 54 | /* Just bump the counter. */ |
| 55 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 56 | /* Overflow of the counter. */ |
| 57 | return EAGAIN; |
| 58 | |
| 59 | ++mutex->__data.__count; |
| 60 | |
| 61 | goto out; |
| 62 | } |
| 63 | |
| 64 | /* We have to get the mutex. */ |
| 65 | result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime, |
| 66 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 67 | |
| 68 | if (result != 0) |
| 69 | goto out; |
| 70 | |
| 71 | /* Only locked once so far. */ |
| 72 | mutex->__data.__count = 1; |
| 73 | break; |
| 74 | |
| 75 | /* Error checking mutex. */ |
| 76 | case PTHREAD_MUTEX_ERRORCHECK_NP: |
| 77 | /* Check whether we already hold the mutex. */ |
| 78 | if (__glibc_unlikely (mutex->__data.__owner == id)) |
| 79 | return EDEADLK; |
| 80 | |
| 81 | /* Don't do lock elision on an error checking mutex. */ |
| 82 | goto simple; |
| 83 | |
| 84 | case PTHREAD_MUTEX_TIMED_NP: |
| 85 | FORCE_ELISION (mutex, goto elision); |
| 86 | simple: |
| 87 | /* Normal mutex. */ |
| 88 | result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime, |
| 89 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 90 | break; |
| 91 | |
| 92 | case PTHREAD_MUTEX_TIMED_ELISION_NP: |
| 93 | elision: __attribute__((unused)) |
| 94 | /* Don't record ownership */ |
| 95 | return lll_clocklock_elision (mutex->__data.__lock, |
| 96 | mutex->__data.__spins, |
| 97 | clockid, abstime, |
| 98 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 99 | |
| 100 | |
| 101 | case PTHREAD_MUTEX_ADAPTIVE_NP: |
| 102 | if (lll_trylock (mutex->__data.__lock) != 0) |
| 103 | { |
| 104 | int cnt = 0; |
| 105 | int max_cnt = MIN (max_adaptive_count (), |
| 106 | mutex->__data.__spins * 2 + 10); |
| 107 | do |
| 108 | { |
| 109 | if (cnt++ >= max_cnt) |
| 110 | { |
| 111 | result = __futex_clocklock64 (&mutex->__data.__lock, |
| 112 | clockid, abstime, |
| 113 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 114 | break; |
| 115 | } |
| 116 | atomic_spin_nop (); |
| 117 | } |
| 118 | while (lll_trylock (mutex->__data.__lock) != 0); |
| 119 | |
| 120 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
| 121 | } |
| 122 | break; |
| 123 | |
| 124 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
| 125 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
| 126 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
| 127 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
| 128 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 129 | &mutex->__data.__list.__next); |
| 130 | /* We need to set op_pending before starting the operation. Also |
| 131 | see comments at ENQUEUE_MUTEX. */ |
| 132 | __asm ("" ::: "memory" ); |
| 133 | |
| 134 | oldval = mutex->__data.__lock; |
| 135 | /* This is set to FUTEX_WAITERS iff we might have shared the |
| 136 | FUTEX_WAITERS flag with other threads, and therefore need to keep it |
| 137 | set to avoid lost wake-ups. We have the same requirement in the |
| 138 | simple mutex algorithm. */ |
| 139 | unsigned int assume_other_futex_waiters = 0; |
| 140 | while (1) |
| 141 | { |
| 142 | /* Try to acquire the lock through a CAS from 0 (not acquired) to |
| 143 | our TID | assume_other_futex_waiters. */ |
| 144 | if (__glibc_likely (oldval == 0)) |
| 145 | { |
| 146 | oldval |
| 147 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 148 | id | assume_other_futex_waiters, 0); |
| 149 | if (__glibc_likely (oldval == 0)) |
| 150 | break; |
| 151 | } |
| 152 | |
| 153 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
| 154 | { |
| 155 | /* The previous owner died. Try locking the mutex. */ |
| 156 | int newval = id | (oldval & FUTEX_WAITERS) |
| 157 | | assume_other_futex_waiters; |
| 158 | |
| 159 | newval |
| 160 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 161 | newval, oldval); |
| 162 | if (newval != oldval) |
| 163 | { |
| 164 | oldval = newval; |
| 165 | continue; |
| 166 | } |
| 167 | |
| 168 | /* We got the mutex. */ |
| 169 | mutex->__data.__count = 1; |
| 170 | /* But it is inconsistent unless marked otherwise. */ |
| 171 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 172 | |
| 173 | /* We must not enqueue the mutex before we have acquired it. |
| 174 | Also see comments at ENQUEUE_MUTEX. */ |
| 175 | __asm ("" ::: "memory" ); |
| 176 | ENQUEUE_MUTEX (mutex); |
| 177 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 178 | __asm ("" ::: "memory" ); |
| 179 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 180 | |
| 181 | /* Note that we deliberately exit here. If we fall |
| 182 | through to the end of the function __nusers would be |
| 183 | incremented which is not correct because the old |
| 184 | owner has to be discounted. */ |
| 185 | return EOWNERDEAD; |
| 186 | } |
| 187 | |
| 188 | /* Check whether we already hold the mutex. */ |
| 189 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| 190 | { |
| 191 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
| 192 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
| 193 | { |
| 194 | /* We do not need to ensure ordering wrt another memory |
| 195 | access. Also see comments at ENQUEUE_MUTEX. */ |
| 196 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 197 | NULL); |
| 198 | return EDEADLK; |
| 199 | } |
| 200 | |
| 201 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
| 202 | { |
| 203 | /* We do not need to ensure ordering wrt another memory |
| 204 | access. */ |
| 205 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 206 | NULL); |
| 207 | |
| 208 | /* Just bump the counter. */ |
| 209 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 210 | /* Overflow of the counter. */ |
| 211 | return EAGAIN; |
| 212 | |
| 213 | ++mutex->__data.__count; |
| 214 | |
| 215 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 216 | |
| 217 | return 0; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | /* We are about to block; check whether the timeout is invalid. */ |
| 222 | if (! valid_nanoseconds (abstime->tv_nsec)) |
| 223 | return EINVAL; |
| 224 | /* Work around the fact that the kernel rejects negative timeout |
| 225 | values despite them being valid. */ |
| 226 | if (__glibc_unlikely (abstime->tv_sec < 0)) |
| 227 | return ETIMEDOUT; |
| 228 | |
| 229 | /* We cannot acquire the mutex nor has its owner died. Thus, try |
| 230 | to block using futexes. Set FUTEX_WAITERS if necessary so that |
| 231 | other threads are aware that there are potentially threads |
| 232 | blocked on the futex. Restart if oldval changed in the |
| 233 | meantime. */ |
| 234 | if ((oldval & FUTEX_WAITERS) == 0) |
| 235 | { |
| 236 | int val = atomic_compare_and_exchange_val_acq |
| 237 | (&mutex->__data.__lock, oldval | FUTEX_WAITERS, oldval); |
| 238 | if (val != oldval) |
| 239 | { |
| 240 | oldval = val; |
| 241 | continue; |
| 242 | } |
| 243 | oldval |= FUTEX_WAITERS; |
| 244 | } |
| 245 | |
| 246 | /* It is now possible that we share the FUTEX_WAITERS flag with |
| 247 | another thread; therefore, update assume_other_futex_waiters so |
| 248 | that we do not forget about this when handling other cases |
| 249 | above and thus do not cause lost wake-ups. */ |
| 250 | assume_other_futex_waiters |= FUTEX_WAITERS; |
| 251 | |
| 252 | /* Block using the futex. */ |
| 253 | int err = __futex_abstimed_wait64 ( |
| 254 | (unsigned int *) &mutex->__data.__lock, |
| 255 | oldval, clockid, abstime, |
| 256 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| 257 | /* The futex call timed out. */ |
| 258 | if (err == ETIMEDOUT || err == EOVERFLOW) |
| 259 | return err; |
| 260 | /* Reload current lock value. */ |
| 261 | oldval = mutex->__data.__lock; |
| 262 | } |
| 263 | |
| 264 | /* We have acquired the mutex; check if it is still consistent. */ |
| 265 | if (__builtin_expect (mutex->__data.__owner |
| 266 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 267 | { |
| 268 | /* This mutex is now not recoverable. */ |
| 269 | mutex->__data.__count = 0; |
| 270 | int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
| 271 | lll_unlock (mutex->__data.__lock, private); |
| 272 | /* FIXME This violates the mutex destruction requirements. See |
| 273 | __pthread_mutex_unlock_full. */ |
| 274 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 275 | return ENOTRECOVERABLE; |
| 276 | } |
| 277 | |
| 278 | mutex->__data.__count = 1; |
| 279 | /* We must not enqueue the mutex before we have acquired it. |
| 280 | Also see comments at ENQUEUE_MUTEX. */ |
| 281 | __asm ("" ::: "memory" ); |
| 282 | ENQUEUE_MUTEX (mutex); |
| 283 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 284 | __asm ("" ::: "memory" ); |
| 285 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 286 | break; |
| 287 | |
| 288 | /* The PI support requires the Linux futex system call. If that's not |
| 289 | available, pthread_mutex_init should never have allowed the type to |
| 290 | be set. So it will get the default case for an invalid type. */ |
| 291 | #ifdef __NR_futex |
| 292 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
| 293 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
| 294 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
| 295 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
| 296 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
| 297 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
| 298 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
| 299 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
| 300 | { |
| 301 | int kind, robust; |
| 302 | { |
| 303 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
| 304 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
| 305 | int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind)); |
| 306 | kind = mutex_kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| 307 | robust = mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
| 308 | } |
| 309 | |
| 310 | if (robust) |
| 311 | { |
| 312 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
| 313 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 314 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
| 315 | | 1)); |
| 316 | /* We need to set op_pending before starting the operation. Also |
| 317 | see comments at ENQUEUE_MUTEX. */ |
| 318 | __asm ("" ::: "memory" ); |
| 319 | } |
| 320 | |
| 321 | oldval = mutex->__data.__lock; |
| 322 | |
| 323 | /* Check whether we already hold the mutex. */ |
| 324 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
| 325 | { |
| 326 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 327 | { |
| 328 | /* We do not need to ensure ordering wrt another memory |
| 329 | access. */ |
| 330 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 331 | return EDEADLK; |
| 332 | } |
| 333 | |
| 334 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 335 | { |
| 336 | /* We do not need to ensure ordering wrt another memory |
| 337 | access. */ |
| 338 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 339 | |
| 340 | /* Just bump the counter. */ |
| 341 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 342 | /* Overflow of the counter. */ |
| 343 | return EAGAIN; |
| 344 | |
| 345 | ++mutex->__data.__count; |
| 346 | |
| 347 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 348 | |
| 349 | return 0; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 354 | id, 0); |
| 355 | |
| 356 | if (oldval != 0) |
| 357 | { |
| 358 | /* The mutex is locked. The kernel will now take care of |
| 359 | everything. The timeout value must be a relative value. |
| 360 | Convert it. */ |
| 361 | int private = (robust |
| 362 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
| 363 | : PTHREAD_MUTEX_PSHARED (mutex)); |
| 364 | int e = __futex_lock_pi64 (&mutex->__data.__lock, clockid, abstime, |
| 365 | private); |
| 366 | if (e == ETIMEDOUT) |
| 367 | return ETIMEDOUT; |
| 368 | else if (e == ESRCH || e == EDEADLK) |
| 369 | { |
| 370 | assert (e != EDEADLK |
| 371 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
| 372 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
| 373 | /* ESRCH can happen only for non-robust PI mutexes where |
| 374 | the owner of the lock died. */ |
| 375 | assert (e != ESRCH || !robust); |
| 376 | |
| 377 | /* Delay the thread until the timeout is reached. Then return |
| 378 | ETIMEDOUT. */ |
| 379 | do |
| 380 | e = __futex_abstimed_wait64 (&(unsigned int){0}, 0, clockid, |
| 381 | abstime, private); |
| 382 | while (e != ETIMEDOUT); |
| 383 | return ETIMEDOUT; |
| 384 | } |
| 385 | else if (e != 0) |
| 386 | return e; |
| 387 | |
| 388 | oldval = mutex->__data.__lock; |
| 389 | |
| 390 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
| 391 | } |
| 392 | |
| 393 | if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
| 394 | { |
| 395 | atomic_fetch_and_acquire (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
| 396 | |
| 397 | /* We got the mutex. */ |
| 398 | mutex->__data.__count = 1; |
| 399 | /* But it is inconsistent unless marked otherwise. */ |
| 400 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 401 | |
| 402 | /* We must not enqueue the mutex before we have acquired it. |
| 403 | Also see comments at ENQUEUE_MUTEX. */ |
| 404 | __asm ("" ::: "memory" ); |
| 405 | ENQUEUE_MUTEX_PI (mutex); |
| 406 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 407 | __asm ("" ::: "memory" ); |
| 408 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 409 | |
| 410 | /* Note that we deliberately exit here. If we fall |
| 411 | through to the end of the function __nusers would be |
| 412 | incremented which is not correct because the old owner |
| 413 | has to be discounted. */ |
| 414 | return EOWNERDEAD; |
| 415 | } |
| 416 | |
| 417 | if (robust |
| 418 | && __builtin_expect (mutex->__data.__owner |
| 419 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 420 | { |
| 421 | /* This mutex is now not recoverable. */ |
| 422 | mutex->__data.__count = 0; |
| 423 | |
| 424 | futex_unlock_pi ((unsigned int *) &mutex->__data.__lock, |
| 425 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| 426 | |
| 427 | /* To the kernel, this will be visible after the kernel has |
| 428 | acquired the mutex in the syscall. */ |
| 429 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 430 | return ENOTRECOVERABLE; |
| 431 | } |
| 432 | |
| 433 | mutex->__data.__count = 1; |
| 434 | if (robust) |
| 435 | { |
| 436 | /* We must not enqueue the mutex before we have acquired it. |
| 437 | Also see comments at ENQUEUE_MUTEX. */ |
| 438 | __asm ("" ::: "memory" ); |
| 439 | ENQUEUE_MUTEX_PI (mutex); |
| 440 | /* We need to clear op_pending after we enqueue the mutex. */ |
| 441 | __asm ("" ::: "memory" ); |
| 442 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 443 | } |
| 444 | } |
| 445 | break; |
| 446 | #endif /* __NR_futex. */ |
| 447 | |
| 448 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
| 449 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
| 450 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
| 451 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
| 452 | { |
| 453 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
| 454 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
| 455 | int kind = atomic_load_relaxed (&(mutex->__data.__kind)) |
| 456 | & PTHREAD_MUTEX_KIND_MASK_NP; |
| 457 | |
| 458 | oldval = mutex->__data.__lock; |
| 459 | |
| 460 | /* Check whether we already hold the mutex. */ |
| 461 | if (mutex->__data.__owner == id) |
| 462 | { |
| 463 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 464 | return EDEADLK; |
| 465 | |
| 466 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 467 | { |
| 468 | /* Just bump the counter. */ |
| 469 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
| 470 | /* Overflow of the counter. */ |
| 471 | return EAGAIN; |
| 472 | |
| 473 | ++mutex->__data.__count; |
| 474 | |
| 475 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 476 | |
| 477 | return 0; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | int oldprio = -1, ceilval; |
| 482 | do |
| 483 | { |
| 484 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
| 485 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 486 | |
| 487 | if (__pthread_current_priority () > ceiling) |
| 488 | { |
| 489 | result = EINVAL; |
| 490 | failpp: |
| 491 | if (oldprio != -1) |
| 492 | __pthread_tpp_change_priority (oldprio, -1); |
| 493 | return result; |
| 494 | } |
| 495 | |
| 496 | result = __pthread_tpp_change_priority (oldprio, ceiling); |
| 497 | if (result) |
| 498 | return result; |
| 499 | |
| 500 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 501 | oldprio = ceiling; |
| 502 | |
| 503 | oldval |
| 504 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 505 | ceilval | 1, ceilval); |
| 506 | |
| 507 | if (oldval == ceilval) |
| 508 | break; |
| 509 | |
| 510 | do |
| 511 | { |
| 512 | oldval |
| 513 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 514 | ceilval | 2, |
| 515 | ceilval | 1); |
| 516 | |
| 517 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
| 518 | break; |
| 519 | |
| 520 | if (oldval != ceilval) |
| 521 | { |
| 522 | /* Reject invalid timeouts. */ |
| 523 | if (! valid_nanoseconds (abstime->tv_nsec)) |
| 524 | { |
| 525 | result = EINVAL; |
| 526 | goto failpp; |
| 527 | } |
| 528 | |
| 529 | int e = __futex_abstimed_wait64 ( |
| 530 | (unsigned int *) &mutex->__data.__lock, ceilval | 2, |
| 531 | clockid, abstime, PTHREAD_MUTEX_PSHARED (mutex)); |
| 532 | if (e == ETIMEDOUT || e == EOVERFLOW) |
| 533 | return e; |
| 534 | } |
| 535 | } |
| 536 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 537 | ceilval | 2, ceilval) |
| 538 | != ceilval); |
| 539 | } |
| 540 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
| 541 | |
| 542 | assert (mutex->__data.__owner == 0); |
| 543 | mutex->__data.__count = 1; |
| 544 | } |
| 545 | break; |
| 546 | |
| 547 | default: |
| 548 | /* Correct code cannot set any other type. */ |
| 549 | return EINVAL; |
| 550 | } |
| 551 | |
| 552 | if (result == 0) |
| 553 | { |
| 554 | /* Record the ownership. */ |
| 555 | mutex->__data.__owner = id; |
| 556 | ++mutex->__data.__nusers; |
| 557 | |
| 558 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
| 559 | } |
| 560 | |
| 561 | out: |
| 562 | return result; |
| 563 | } |
| 564 | |
| 565 | int |
| 566 | ___pthread_mutex_clocklock64 (pthread_mutex_t *mutex, |
| 567 | clockid_t clockid, |
| 568 | const struct __timespec64 *abstime) |
| 569 | { |
| 570 | if (__glibc_unlikely (!futex_abstimed_supported_clockid (clockid))) |
| 571 | return EINVAL; |
| 572 | |
| 573 | LIBC_PROBE (mutex_clocklock_entry, 3, mutex, clockid, abstime); |
| 574 | return __pthread_mutex_clocklock_common (mutex, clockid, abstime); |
| 575 | } |
| 576 | |
| 577 | #if __TIMESIZE == 64 |
| 578 | strong_alias (___pthread_mutex_clocklock64, ___pthread_mutex_clocklock) |
| 579 | #else /* __TIMESPEC64 != 64 */ |
| 580 | strong_alias (___pthread_mutex_clocklock64, __pthread_mutex_clocklock64) |
| 581 | libc_hidden_def (__pthread_mutex_clocklock64) |
| 582 | |
| 583 | int |
| 584 | ___pthread_mutex_clocklock (pthread_mutex_t *mutex, |
| 585 | clockid_t clockid, |
| 586 | const struct timespec *abstime) |
| 587 | { |
| 588 | struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime); |
| 589 | |
| 590 | return ___pthread_mutex_clocklock64 (mutex, clockid, &ts64); |
| 591 | } |
| 592 | #endif /* __TIMESPEC64 != 64 */ |
| 593 | libc_hidden_ver (___pthread_mutex_clocklock, __pthread_mutex_clocklock) |
| 594 | #ifndef SHARED |
| 595 | strong_alias (___pthread_mutex_clocklock, __pthread_mutex_clocklock) |
| 596 | #endif |
| 597 | versioned_symbol (libc, ___pthread_mutex_clocklock, |
| 598 | pthread_mutex_clocklock, GLIBC_2_34); |
| 599 | #if OTHER_SHLIB_COMPAT (libpthread, GLIBC_2_30, GLIBC_2_34) |
| 600 | compat_symbol (libpthread, ___pthread_mutex_clocklock, |
| 601 | pthread_mutex_clocklock, GLIBC_2_30); |
| 602 | #endif |
| 603 | |
| 604 | int |
| 605 | ___pthread_mutex_timedlock64 (pthread_mutex_t *mutex, |
| 606 | const struct __timespec64 *abstime) |
| 607 | { |
| 608 | LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime); |
| 609 | return __pthread_mutex_clocklock_common (mutex, CLOCK_REALTIME, abstime); |
| 610 | } |
| 611 | |
| 612 | #if __TIMESIZE == 64 |
| 613 | strong_alias (___pthread_mutex_timedlock64, ___pthread_mutex_timedlock) |
| 614 | #else /* __TIMESPEC64 != 64 */ |
| 615 | strong_alias (___pthread_mutex_timedlock64, __pthread_mutex_timedlock64); |
| 616 | libc_hidden_def (__pthread_mutex_timedlock64) |
| 617 | |
| 618 | int |
| 619 | ___pthread_mutex_timedlock (pthread_mutex_t *mutex, |
| 620 | const struct timespec *abstime) |
| 621 | { |
| 622 | struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime); |
| 623 | |
| 624 | return __pthread_mutex_timedlock64 (mutex, &ts64); |
| 625 | } |
| 626 | #endif /* __TIMESPEC64 != 64 */ |
| 627 | versioned_symbol (libc, ___pthread_mutex_timedlock, |
| 628 | pthread_mutex_timedlock, GLIBC_2_34); |
| 629 | libc_hidden_ver (___pthread_mutex_timedlock, __pthread_mutex_timedlock) |
| 630 | #ifndef SHARED |
| 631 | strong_alias (___pthread_mutex_timedlock, __pthread_mutex_timedlock) |
| 632 | #endif |
| 633 | |
| 634 | #if OTHER_SHLIB_COMPAT (libpthread, GLIBC_2_2, GLIBC_2_34) |
| 635 | compat_symbol (libpthread, ___pthread_mutex_timedlock, |
| 636 | pthread_mutex_timedlock, GLIBC_2_2); |
| 637 | #endif |
| 638 | |