1 | /* Copyright (C) 2002-2023 Free Software Foundation, Inc. |
2 | This file is part of the GNU C Library. |
3 | |
4 | The GNU C Library is free software; you can redistribute it and/or |
5 | modify it under the terms of the GNU Lesser General Public |
6 | License as published by the Free Software Foundation; either |
7 | version 2.1 of the License, or (at your option) any later version. |
8 | |
9 | The GNU C Library is distributed in the hope that it will be useful, |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 | Lesser General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU Lesser General Public |
15 | License along with the GNU C Library; if not, see |
16 | <https://www.gnu.org/licenses/>. */ |
17 | |
18 | #include <assert.h> |
19 | #include <errno.h> |
20 | #include <time.h> |
21 | #include <sys/param.h> |
22 | #include <sys/time.h> |
23 | #include "pthreadP.h" |
24 | #include <atomic.h> |
25 | #include <lowlevellock.h> |
26 | #include <not-cancel.h> |
27 | #include <futex-internal.h> |
28 | |
29 | #include <stap-probe.h> |
30 | |
31 | int |
32 | __pthread_mutex_clocklock_common (pthread_mutex_t *mutex, |
33 | clockid_t clockid, |
34 | const struct __timespec64 *abstime) |
35 | { |
36 | int oldval; |
37 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
38 | int result = 0; |
39 | |
40 | /* We must not check ABSTIME here. If the thread does not block |
41 | abstime must not be checked for a valid value. */ |
42 | |
43 | /* See concurrency notes regarding mutex type which is loaded from __kind |
44 | in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */ |
45 | switch (__builtin_expect (PTHREAD_MUTEX_TYPE_ELISION (mutex), |
46 | PTHREAD_MUTEX_TIMED_NP)) |
47 | { |
48 | /* Recursive mutex. */ |
49 | case PTHREAD_MUTEX_RECURSIVE_NP|PTHREAD_MUTEX_ELISION_NP: |
50 | case PTHREAD_MUTEX_RECURSIVE_NP: |
51 | /* Check whether we already hold the mutex. */ |
52 | if (mutex->__data.__owner == id) |
53 | { |
54 | /* Just bump the counter. */ |
55 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
56 | /* Overflow of the counter. */ |
57 | return EAGAIN; |
58 | |
59 | ++mutex->__data.__count; |
60 | |
61 | goto out; |
62 | } |
63 | |
64 | /* We have to get the mutex. */ |
65 | result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime, |
66 | PTHREAD_MUTEX_PSHARED (mutex)); |
67 | |
68 | if (result != 0) |
69 | goto out; |
70 | |
71 | /* Only locked once so far. */ |
72 | mutex->__data.__count = 1; |
73 | break; |
74 | |
75 | /* Error checking mutex. */ |
76 | case PTHREAD_MUTEX_ERRORCHECK_NP: |
77 | /* Check whether we already hold the mutex. */ |
78 | if (__glibc_unlikely (mutex->__data.__owner == id)) |
79 | return EDEADLK; |
80 | |
81 | /* Don't do lock elision on an error checking mutex. */ |
82 | goto simple; |
83 | |
84 | case PTHREAD_MUTEX_TIMED_NP: |
85 | FORCE_ELISION (mutex, goto elision); |
86 | simple: |
87 | /* Normal mutex. */ |
88 | result = __futex_clocklock64 (&mutex->__data.__lock, clockid, abstime, |
89 | PTHREAD_MUTEX_PSHARED (mutex)); |
90 | break; |
91 | |
92 | case PTHREAD_MUTEX_TIMED_ELISION_NP: |
93 | elision: __attribute__((unused)) |
94 | /* Don't record ownership */ |
95 | return lll_clocklock_elision (mutex->__data.__lock, |
96 | mutex->__data.__spins, |
97 | clockid, abstime, |
98 | PTHREAD_MUTEX_PSHARED (mutex)); |
99 | |
100 | |
101 | case PTHREAD_MUTEX_ADAPTIVE_NP: |
102 | if (lll_trylock (mutex->__data.__lock) != 0) |
103 | { |
104 | int cnt = 0; |
105 | int max_cnt = MIN (max_adaptive_count (), |
106 | mutex->__data.__spins * 2 + 10); |
107 | do |
108 | { |
109 | if (cnt++ >= max_cnt) |
110 | { |
111 | result = __futex_clocklock64 (&mutex->__data.__lock, |
112 | clockid, abstime, |
113 | PTHREAD_MUTEX_PSHARED (mutex)); |
114 | break; |
115 | } |
116 | atomic_spin_nop (); |
117 | } |
118 | while (lll_trylock (mutex->__data.__lock) != 0); |
119 | |
120 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
121 | } |
122 | break; |
123 | |
124 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
125 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
126 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
127 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
128 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
129 | &mutex->__data.__list.__next); |
130 | /* We need to set op_pending before starting the operation. Also |
131 | see comments at ENQUEUE_MUTEX. */ |
132 | __asm ("" ::: "memory" ); |
133 | |
134 | oldval = mutex->__data.__lock; |
135 | /* This is set to FUTEX_WAITERS iff we might have shared the |
136 | FUTEX_WAITERS flag with other threads, and therefore need to keep it |
137 | set to avoid lost wake-ups. We have the same requirement in the |
138 | simple mutex algorithm. */ |
139 | unsigned int assume_other_futex_waiters = 0; |
140 | while (1) |
141 | { |
142 | /* Try to acquire the lock through a CAS from 0 (not acquired) to |
143 | our TID | assume_other_futex_waiters. */ |
144 | if (__glibc_likely (oldval == 0)) |
145 | { |
146 | oldval |
147 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
148 | id | assume_other_futex_waiters, 0); |
149 | if (__glibc_likely (oldval == 0)) |
150 | break; |
151 | } |
152 | |
153 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
154 | { |
155 | /* The previous owner died. Try locking the mutex. */ |
156 | int newval = id | (oldval & FUTEX_WAITERS) |
157 | | assume_other_futex_waiters; |
158 | |
159 | newval |
160 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
161 | newval, oldval); |
162 | if (newval != oldval) |
163 | { |
164 | oldval = newval; |
165 | continue; |
166 | } |
167 | |
168 | /* We got the mutex. */ |
169 | mutex->__data.__count = 1; |
170 | /* But it is inconsistent unless marked otherwise. */ |
171 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
172 | |
173 | /* We must not enqueue the mutex before we have acquired it. |
174 | Also see comments at ENQUEUE_MUTEX. */ |
175 | __asm ("" ::: "memory" ); |
176 | ENQUEUE_MUTEX (mutex); |
177 | /* We need to clear op_pending after we enqueue the mutex. */ |
178 | __asm ("" ::: "memory" ); |
179 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
180 | |
181 | /* Note that we deliberately exit here. If we fall |
182 | through to the end of the function __nusers would be |
183 | incremented which is not correct because the old |
184 | owner has to be discounted. */ |
185 | return EOWNERDEAD; |
186 | } |
187 | |
188 | /* Check whether we already hold the mutex. */ |
189 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
190 | { |
191 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
192 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
193 | { |
194 | /* We do not need to ensure ordering wrt another memory |
195 | access. Also see comments at ENQUEUE_MUTEX. */ |
196 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
197 | NULL); |
198 | return EDEADLK; |
199 | } |
200 | |
201 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
202 | { |
203 | /* We do not need to ensure ordering wrt another memory |
204 | access. */ |
205 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
206 | NULL); |
207 | |
208 | /* Just bump the counter. */ |
209 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
210 | /* Overflow of the counter. */ |
211 | return EAGAIN; |
212 | |
213 | ++mutex->__data.__count; |
214 | |
215 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
216 | |
217 | return 0; |
218 | } |
219 | } |
220 | |
221 | /* We are about to block; check whether the timeout is invalid. */ |
222 | if (! valid_nanoseconds (abstime->tv_nsec)) |
223 | return EINVAL; |
224 | /* Work around the fact that the kernel rejects negative timeout |
225 | values despite them being valid. */ |
226 | if (__glibc_unlikely (abstime->tv_sec < 0)) |
227 | return ETIMEDOUT; |
228 | |
229 | /* We cannot acquire the mutex nor has its owner died. Thus, try |
230 | to block using futexes. Set FUTEX_WAITERS if necessary so that |
231 | other threads are aware that there are potentially threads |
232 | blocked on the futex. Restart if oldval changed in the |
233 | meantime. */ |
234 | if ((oldval & FUTEX_WAITERS) == 0) |
235 | { |
236 | int val = atomic_compare_and_exchange_val_acq |
237 | (&mutex->__data.__lock, oldval | FUTEX_WAITERS, oldval); |
238 | if (val != oldval) |
239 | { |
240 | oldval = val; |
241 | continue; |
242 | } |
243 | oldval |= FUTEX_WAITERS; |
244 | } |
245 | |
246 | /* It is now possible that we share the FUTEX_WAITERS flag with |
247 | another thread; therefore, update assume_other_futex_waiters so |
248 | that we do not forget about this when handling other cases |
249 | above and thus do not cause lost wake-ups. */ |
250 | assume_other_futex_waiters |= FUTEX_WAITERS; |
251 | |
252 | /* Block using the futex. */ |
253 | int err = __futex_abstimed_wait64 ( |
254 | (unsigned int *) &mutex->__data.__lock, |
255 | oldval, clockid, abstime, |
256 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
257 | /* The futex call timed out. */ |
258 | if (err == ETIMEDOUT || err == EOVERFLOW) |
259 | return err; |
260 | /* Reload current lock value. */ |
261 | oldval = mutex->__data.__lock; |
262 | } |
263 | |
264 | /* We have acquired the mutex; check if it is still consistent. */ |
265 | if (__builtin_expect (mutex->__data.__owner |
266 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
267 | { |
268 | /* This mutex is now not recoverable. */ |
269 | mutex->__data.__count = 0; |
270 | int private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex); |
271 | lll_unlock (mutex->__data.__lock, private); |
272 | /* FIXME This violates the mutex destruction requirements. See |
273 | __pthread_mutex_unlock_full. */ |
274 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
275 | return ENOTRECOVERABLE; |
276 | } |
277 | |
278 | mutex->__data.__count = 1; |
279 | /* We must not enqueue the mutex before we have acquired it. |
280 | Also see comments at ENQUEUE_MUTEX. */ |
281 | __asm ("" ::: "memory" ); |
282 | ENQUEUE_MUTEX (mutex); |
283 | /* We need to clear op_pending after we enqueue the mutex. */ |
284 | __asm ("" ::: "memory" ); |
285 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
286 | break; |
287 | |
288 | /* The PI support requires the Linux futex system call. If that's not |
289 | available, pthread_mutex_init should never have allowed the type to |
290 | be set. So it will get the default case for an invalid type. */ |
291 | #ifdef __NR_futex |
292 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
293 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
294 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
295 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
296 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
297 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
298 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
299 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
300 | { |
301 | int kind, robust; |
302 | { |
303 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
304 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
305 | int mutex_kind = atomic_load_relaxed (&(mutex->__data.__kind)); |
306 | kind = mutex_kind & PTHREAD_MUTEX_KIND_MASK_NP; |
307 | robust = mutex_kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
308 | } |
309 | |
310 | if (robust) |
311 | { |
312 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
313 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
314 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
315 | | 1)); |
316 | /* We need to set op_pending before starting the operation. Also |
317 | see comments at ENQUEUE_MUTEX. */ |
318 | __asm ("" ::: "memory" ); |
319 | } |
320 | |
321 | oldval = mutex->__data.__lock; |
322 | |
323 | /* Check whether we already hold the mutex. */ |
324 | if (__glibc_unlikely ((oldval & FUTEX_TID_MASK) == id)) |
325 | { |
326 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
327 | { |
328 | /* We do not need to ensure ordering wrt another memory |
329 | access. */ |
330 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
331 | return EDEADLK; |
332 | } |
333 | |
334 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
335 | { |
336 | /* We do not need to ensure ordering wrt another memory |
337 | access. */ |
338 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
339 | |
340 | /* Just bump the counter. */ |
341 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
342 | /* Overflow of the counter. */ |
343 | return EAGAIN; |
344 | |
345 | ++mutex->__data.__count; |
346 | |
347 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
348 | |
349 | return 0; |
350 | } |
351 | } |
352 | |
353 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
354 | id, 0); |
355 | |
356 | if (oldval != 0) |
357 | { |
358 | /* The mutex is locked. The kernel will now take care of |
359 | everything. The timeout value must be a relative value. |
360 | Convert it. */ |
361 | int private = (robust |
362 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
363 | : PTHREAD_MUTEX_PSHARED (mutex)); |
364 | int e = __futex_lock_pi64 (&mutex->__data.__lock, clockid, abstime, |
365 | private); |
366 | if (e == ETIMEDOUT) |
367 | return ETIMEDOUT; |
368 | else if (e == ESRCH || e == EDEADLK) |
369 | { |
370 | assert (e != EDEADLK |
371 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
372 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
373 | /* ESRCH can happen only for non-robust PI mutexes where |
374 | the owner of the lock died. */ |
375 | assert (e != ESRCH || !robust); |
376 | |
377 | /* Delay the thread until the timeout is reached. Then return |
378 | ETIMEDOUT. */ |
379 | do |
380 | e = __futex_abstimed_wait64 (&(unsigned int){0}, 0, clockid, |
381 | abstime, private); |
382 | while (e != ETIMEDOUT); |
383 | return ETIMEDOUT; |
384 | } |
385 | else if (e != 0) |
386 | return e; |
387 | |
388 | oldval = mutex->__data.__lock; |
389 | |
390 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
391 | } |
392 | |
393 | if (__glibc_unlikely (oldval & FUTEX_OWNER_DIED)) |
394 | { |
395 | atomic_fetch_and_acquire (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
396 | |
397 | /* We got the mutex. */ |
398 | mutex->__data.__count = 1; |
399 | /* But it is inconsistent unless marked otherwise. */ |
400 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
401 | |
402 | /* We must not enqueue the mutex before we have acquired it. |
403 | Also see comments at ENQUEUE_MUTEX. */ |
404 | __asm ("" ::: "memory" ); |
405 | ENQUEUE_MUTEX_PI (mutex); |
406 | /* We need to clear op_pending after we enqueue the mutex. */ |
407 | __asm ("" ::: "memory" ); |
408 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
409 | |
410 | /* Note that we deliberately exit here. If we fall |
411 | through to the end of the function __nusers would be |
412 | incremented which is not correct because the old owner |
413 | has to be discounted. */ |
414 | return EOWNERDEAD; |
415 | } |
416 | |
417 | if (robust |
418 | && __builtin_expect (mutex->__data.__owner |
419 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
420 | { |
421 | /* This mutex is now not recoverable. */ |
422 | mutex->__data.__count = 0; |
423 | |
424 | futex_unlock_pi ((unsigned int *) &mutex->__data.__lock, |
425 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
426 | |
427 | /* To the kernel, this will be visible after the kernel has |
428 | acquired the mutex in the syscall. */ |
429 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
430 | return ENOTRECOVERABLE; |
431 | } |
432 | |
433 | mutex->__data.__count = 1; |
434 | if (robust) |
435 | { |
436 | /* We must not enqueue the mutex before we have acquired it. |
437 | Also see comments at ENQUEUE_MUTEX. */ |
438 | __asm ("" ::: "memory" ); |
439 | ENQUEUE_MUTEX_PI (mutex); |
440 | /* We need to clear op_pending after we enqueue the mutex. */ |
441 | __asm ("" ::: "memory" ); |
442 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
443 | } |
444 | } |
445 | break; |
446 | #endif /* __NR_futex. */ |
447 | |
448 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
449 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
450 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
451 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
452 | { |
453 | /* See concurrency notes regarding __kind in struct __pthread_mutex_s |
454 | in sysdeps/nptl/bits/thread-shared-types.h. */ |
455 | int kind = atomic_load_relaxed (&(mutex->__data.__kind)) |
456 | & PTHREAD_MUTEX_KIND_MASK_NP; |
457 | |
458 | oldval = mutex->__data.__lock; |
459 | |
460 | /* Check whether we already hold the mutex. */ |
461 | if (mutex->__data.__owner == id) |
462 | { |
463 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
464 | return EDEADLK; |
465 | |
466 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
467 | { |
468 | /* Just bump the counter. */ |
469 | if (__glibc_unlikely (mutex->__data.__count + 1 == 0)) |
470 | /* Overflow of the counter. */ |
471 | return EAGAIN; |
472 | |
473 | ++mutex->__data.__count; |
474 | |
475 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
476 | |
477 | return 0; |
478 | } |
479 | } |
480 | |
481 | int oldprio = -1, ceilval; |
482 | do |
483 | { |
484 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
485 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
486 | |
487 | if (__pthread_current_priority () > ceiling) |
488 | { |
489 | result = EINVAL; |
490 | failpp: |
491 | if (oldprio != -1) |
492 | __pthread_tpp_change_priority (oldprio, -1); |
493 | return result; |
494 | } |
495 | |
496 | result = __pthread_tpp_change_priority (oldprio, ceiling); |
497 | if (result) |
498 | return result; |
499 | |
500 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
501 | oldprio = ceiling; |
502 | |
503 | oldval |
504 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
505 | ceilval | 1, ceilval); |
506 | |
507 | if (oldval == ceilval) |
508 | break; |
509 | |
510 | do |
511 | { |
512 | oldval |
513 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
514 | ceilval | 2, |
515 | ceilval | 1); |
516 | |
517 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
518 | break; |
519 | |
520 | if (oldval != ceilval) |
521 | { |
522 | /* Reject invalid timeouts. */ |
523 | if (! valid_nanoseconds (abstime->tv_nsec)) |
524 | { |
525 | result = EINVAL; |
526 | goto failpp; |
527 | } |
528 | |
529 | int e = __futex_abstimed_wait64 ( |
530 | (unsigned int *) &mutex->__data.__lock, ceilval | 2, |
531 | clockid, abstime, PTHREAD_MUTEX_PSHARED (mutex)); |
532 | if (e == ETIMEDOUT || e == EOVERFLOW) |
533 | return e; |
534 | } |
535 | } |
536 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
537 | ceilval | 2, ceilval) |
538 | != ceilval); |
539 | } |
540 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
541 | |
542 | assert (mutex->__data.__owner == 0); |
543 | mutex->__data.__count = 1; |
544 | } |
545 | break; |
546 | |
547 | default: |
548 | /* Correct code cannot set any other type. */ |
549 | return EINVAL; |
550 | } |
551 | |
552 | if (result == 0) |
553 | { |
554 | /* Record the ownership. */ |
555 | mutex->__data.__owner = id; |
556 | ++mutex->__data.__nusers; |
557 | |
558 | LIBC_PROBE (mutex_timedlock_acquired, 1, mutex); |
559 | } |
560 | |
561 | out: |
562 | return result; |
563 | } |
564 | |
565 | int |
566 | ___pthread_mutex_clocklock64 (pthread_mutex_t *mutex, |
567 | clockid_t clockid, |
568 | const struct __timespec64 *abstime) |
569 | { |
570 | if (__glibc_unlikely (!futex_abstimed_supported_clockid (clockid))) |
571 | return EINVAL; |
572 | |
573 | LIBC_PROBE (mutex_clocklock_entry, 3, mutex, clockid, abstime); |
574 | return __pthread_mutex_clocklock_common (mutex, clockid, abstime); |
575 | } |
576 | |
577 | #if __TIMESIZE == 64 |
578 | strong_alias (___pthread_mutex_clocklock64, ___pthread_mutex_clocklock) |
579 | #else /* __TIMESPEC64 != 64 */ |
580 | strong_alias (___pthread_mutex_clocklock64, __pthread_mutex_clocklock64) |
581 | libc_hidden_def (__pthread_mutex_clocklock64) |
582 | |
583 | int |
584 | ___pthread_mutex_clocklock (pthread_mutex_t *mutex, |
585 | clockid_t clockid, |
586 | const struct timespec *abstime) |
587 | { |
588 | struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime); |
589 | |
590 | return ___pthread_mutex_clocklock64 (mutex, clockid, &ts64); |
591 | } |
592 | #endif /* __TIMESPEC64 != 64 */ |
593 | libc_hidden_ver (___pthread_mutex_clocklock, __pthread_mutex_clocklock) |
594 | #ifndef SHARED |
595 | strong_alias (___pthread_mutex_clocklock, __pthread_mutex_clocklock) |
596 | #endif |
597 | versioned_symbol (libc, ___pthread_mutex_clocklock, |
598 | pthread_mutex_clocklock, GLIBC_2_34); |
599 | #if OTHER_SHLIB_COMPAT (libpthread, GLIBC_2_30, GLIBC_2_34) |
600 | compat_symbol (libpthread, ___pthread_mutex_clocklock, |
601 | pthread_mutex_clocklock, GLIBC_2_30); |
602 | #endif |
603 | |
604 | int |
605 | ___pthread_mutex_timedlock64 (pthread_mutex_t *mutex, |
606 | const struct __timespec64 *abstime) |
607 | { |
608 | LIBC_PROBE (mutex_timedlock_entry, 2, mutex, abstime); |
609 | return __pthread_mutex_clocklock_common (mutex, CLOCK_REALTIME, abstime); |
610 | } |
611 | |
612 | #if __TIMESIZE == 64 |
613 | strong_alias (___pthread_mutex_timedlock64, ___pthread_mutex_timedlock) |
614 | #else /* __TIMESPEC64 != 64 */ |
615 | strong_alias (___pthread_mutex_timedlock64, __pthread_mutex_timedlock64); |
616 | libc_hidden_def (__pthread_mutex_timedlock64) |
617 | |
618 | int |
619 | ___pthread_mutex_timedlock (pthread_mutex_t *mutex, |
620 | const struct timespec *abstime) |
621 | { |
622 | struct __timespec64 ts64 = valid_timespec_to_timespec64 (*abstime); |
623 | |
624 | return __pthread_mutex_timedlock64 (mutex, &ts64); |
625 | } |
626 | #endif /* __TIMESPEC64 != 64 */ |
627 | versioned_symbol (libc, ___pthread_mutex_timedlock, |
628 | pthread_mutex_timedlock, GLIBC_2_34); |
629 | libc_hidden_ver (___pthread_mutex_timedlock, __pthread_mutex_timedlock) |
630 | #ifndef SHARED |
631 | strong_alias (___pthread_mutex_timedlock, __pthread_mutex_timedlock) |
632 | #endif |
633 | |
634 | #if OTHER_SHLIB_COMPAT (libpthread, GLIBC_2_2, GLIBC_2_34) |
635 | compat_symbol (libpthread, ___pthread_mutex_timedlock, |
636 | pthread_mutex_timedlock, GLIBC_2_2); |
637 | #endif |
638 | |